

# Pilot Test Report

# **Petroleum Remediation Program**

Report date: February 11, 2016

County: Isanti

Guidance Document 7-06

Doc Type: Corrective Action Design

**Instructions:** Complete this report to document the results of a pilot test of a remediation system or other in situ remediation technology. See Guidance Document 7-01 *Corrective Action Design and Implementation* for more information and requirements. Do not revise or delete any text or questions from this report form. Items may be added if they are needed to support the pilot test results. If an item is not applicable, provide a brief explanation.

MPCA Leak ID: 8001

City: Cambridge

# **Responsible Party Information**

| Name: Mille Lacs Oil Company                                                |           | Phone: _ 763-689-2220 |
|-----------------------------------------------------------------------------|-----------|-----------------------|
| Mailing address: 102 Main Street                                            |           |                       |
| City: Cambridge                                                             | State: MN | 55088                 |
| Alternate contact (if any)<br>for responsible party: <u>Ms. Maria Olson</u> |           | Phone:                |
| Leak Site Information                                                       |           |                       |
| Leak site name: Former Union 76                                             |           | Phone: NA             |
| Leak site address: 329 East First Avenue                                    |           |                       |

Zip code: 55088

# Consultant (or other) Information

By signing this document, I/we acknowledge that we are submitting this document on behalf of and as agents of the responsible person or volunteer for this leak site. I/we acknowledge that if information in this document is inaccurate or incomplete, it will delay the completion of remediation and may harm the environment and may result in a reduction in Petrofund reimbursement. In addition, I/we acknowledge on behalf of the responsible person or volunteer for this leak site that if this document is determined to contain a false material statement, representation, or certification, or if it omits material information, the responsible person or volunteer may be found to be in violation of Minn. Stat. § 115.075 (2007) or Minn. R. 7000.0300 (Duty of Candor), and that the responsible person or volunteer may be liable for civil penalties.

MN

| Company name:    | Wenck     | Associates, Inc. |         |            |         |           |        |     |           |  |
|------------------|-----------|------------------|---------|------------|---------|-----------|--------|-----|-----------|--|
| Mailing address: | 1800 P    | ioneer Creek Ce  | nter    |            |         |           |        |     |           |  |
| City: Maple Pl   | lain      |                  |         | State:     | MN      |           | Zip co | de: | 55359     |  |
| Project manager  | name:     | Adam Zobel       |         |            |         |           | Phone: | 763 | -479-5145 |  |
| Fax:             |           |                  | E-mail: | azobel@wer | nck.com |           |        |     |           |  |
| Report Author    | ·(s)      |                  |         |            |         |           |        |     |           |  |
| Print name: Da   | an Larson |                  |         |            | Title:  | Geologist |        |     |           |  |
| Signature:       | Dan Lan   | -                |         |            | Date:   | 2/11/16   |        |     |           |  |
|                  |           |                  |         |            | -       |           |        |     |           |  |

### Report Reviewer(s)

| Print name:   | Adam Zobel     | Title: | Senior Environmental Project Manager |
|---------------|----------------|--------|--------------------------------------|
| Signature:    | adu Psoul      | Date:  | 2/11/16                              |
| Print name:   |                | Title: |                                      |
| Signature:    |                | Date:  |                                      |
| Name of field | technician(s): |        |                                      |

## Section 1: Pilot Test Overview

- 1. If the completed pilot test was different than requested by the Minnesota Pollution Control Agency, identify the differences and explain why. **NA**.
- 2. Identify the person responsible for conducting the pilot test. Dan Larson.

Identify the remediation technology that was tested and the number of remediation and monitoring points that were used.

Wenck conducted a soil vapor extraction (SVE) pilot test with two SVE wells,15 permanent pilot test monitoring points, and the existing monitoring wells (MW-1, MW-3, MW-5, MW-6, MW-7, MW-8, and MW-9. This system was used to determine develop design parameters for the full-scale of an SVE at the site. Pilot test monitoring points and existing monitoring wells will hereafter be described as monitoring points (*Figure 3*).

The pilot monitoring points include one shallow 4" diameter SVE well screened from 5-15 feet below grade and one deep 4" diameter SVE well screened from approximately 9-19 feet below grade. A total of 15 permanent air monitoring points were installed. Nine of the 15 points are deep (15 feet below grade) and six of the points are shallow (5 feet below grade). A nest of shallow and deep points was completed at 5 locations. The other 5 un-nested points consist of 4 deep and 1 shallow point.

3. Provide a chronological list of all pilot test activities and the date each activity was completed.

November 9-11, 2015: Soil vapor extraction wells and pilot test monitoring points were installed. November 16-18, 2015: Pilot test implementation.

4. Describe all permits, approvals, and variances needed prior to pilot test system installation and startup.

No permits, approvals or variances were needed.

 Describe any wastes that were generated during pilot test system installation and how they were handled and disposed of. Provide copies of waste disposal documents, permits, and related documentation that were not included in Guidance Document 7-05 *Pilot Test Work Plan* in Appendix A.

Four drums of soil cuttings were generated during drilling/probing of the soil vapor extraction wells and pilot test monitoring points. These drums are in the process of being characterized for disposal in February or March 2016. No water waste was generated during the well/monitoring point installation or pilot test implementation.

- 6. Describe any major problems encountered during pilot test system installation, including installation of remediation and monitoring points. Discuss how the problems were resolved and how they affect pilot test results.
  - Wenck proposed using 20 slot stainless-steel screens for the soil vapor extraction wells. The drilling
    subcontractor made a mistake and ordered 10 slot screens stainless-steel screens instead of 20 slot screens.
    The screens were delivered to the site, thus this error was not identified until the day of drilling. Wenck
    weighed the cost of delaying the SVE well installation versus the potential affect the different screen size
    would have on the pilot test results. If the slot size is too small, there may not be adequate flow through the
    screen for maximum radius of influence (ROI) and the vacuum measured in the extraction well could be too
    high and would not reflect a realistic vacuum. If the slot size is too large for a given air-extraction rate,
    excessive pressure drop within the screen interval can occur, resulting in diminished ROI.

It was determined to continue with installation of the 10 slot screens based on past experience with positive results from both 10 slot and 20 slot screen sizes in sand/silt lithology. Based on pilot test results, it does not appear that the 10 slot screens significantly affected the ROI or extraction well vacuums.

- Vacuum gauges and pitot tubes installed on the pre-manifold pipes by H2K were not working. Wenck removed them and used the holes to collect measurements using the Fluke 922 Airflow Meter. This instrument was able to measure both vacuum and velocity/flow using a pitot tube. This change did not affect the pilot test results.
- The pilot test skid was not constructed such that there was room for measurement of total airflow postmanifold. Wenck collected measurements from each vent well pipe pre-manifold. These measurements were added together for total flow if both wells were being used. Wenck does not believe this affected the pilot test.
- 7. Identify any data gaps or inconsistencies in the site investigation, risk evaluation, and monitoring data and discuss resulting major assumptions that affect the pilot test results.

Based on the extensive amount of investigation, monitoring well sampling, and laser induced fluorescence (LIF) data, there are no major data gaps or inconsistencies identified.

# Section 2: Target Zone

Illustrate the target zone's geometry, geology, and hydrogeology and preferential flow routes and flow barriers on a site map and cross sections in Section 15. Include applicable tables and figures from the focused investigation in Appendix B.

1. Identify the primary contaminant phase targeted by the system and describe its physical and chemical properties as relevant to the remediation strategy.

The goal of the corrective action is to target the light non-aqueous phase liquid (LNAPL) zone and reduce the residual LNAPL. The reduction/cleanup of the LNAPL would reduce residual contributions to the dissolved phase and thereby stabilize/reduce the DRO, GRO, and VOC concentrations in groundwater at the Site and down-gradient of the site. By extracting soil vapor from the vadose zone and soil/water interface, Wenck anticipates a reduction in LNAPL.

At this time air sparging (AS) is not anticipated to be utilized during initial soil venting. Air sparging may be used with the SVE system in the future, depending on the effectiveness of the SVE system alone. Air sparge points are anticipated to be installed during initial SVE system construction due to the cost savings of not needing to trench/lay piping multiple times. The air sparge points would be installed approximately 10 feet below the average seasonal groundwater table.

2. Describe the geometry, geology, and hydrogeology of the target zone.

The target zone is the LNAPL in the soil smear zone above the groundwater table. *Figures 4 through 6* and cross section *Figures 10 and 11A-11*C detail the target zone. The chemicals of concern are petroleum hydrocarbons including diesel range organics (DRO), gasoline range organics (GRO), and benzene, toluene, ethybenzene, and xylene (BTEX) compounds. The site geology consists of poorly graded sand and silty sand. The soil profile generally includes a near-surface layer of sandy silt and silty sand between 4 and 8 feet thick. This sand/silt layer is underlain by fine-grained poorly-graded sand. Seasonal groundwater elevations range from approximately 17 to 22 feet below grade. A semi-confining silt/clay layer is present at approximately 30 feet below grade across the Site. Groundwater flow is towards the southwest.

The mobility of the LNAPL is considered low based on monitoring well observations, LIF data, and the age of the release. However, the existing LNAPL is contributing to the dissolved phase petroleum concentrations down-gradient.

Describe the remediation strategy for remediating the target zone in terms of the subsurface physical, chemical and biological processes that the full-scale system will be designed to induce and control over time to achieve permanent risk reduction.

The remediation strategy will be venting the target zone which will reduce the LNAPL and dissolved contaminants. The final system will likely include 6 or 7 soil vapor extraction wells that are cycled off of one or two blowers/enclosures (*Figure 6*). The pilot test SVE wells (SV-1 and SV-2) will likely be utilized with 4 or 5 additional SVE wells. The number of blowers/enclosures will depend on whether or not we are able to complete directional drilling to connect the two parcels on either side of Buchanan Street. If directional drilling under Buchanan Street is not feasible or possible, two blowers/enclosures would be necessary, one on each parcel.

Initially, the system will likely run as an SVE system with vacuum divided among 2 or 3 wells at a time. The vacuum and airflows will be monitored and regulated for each well individually to optimize cleanup performance. There will also, initially, be some experimentation with operation of all the wells and different combinations, along with different amounts of dilution air. The ROI and PID results will be measured during different the combinations to determine the most effective vent well combination. This combination will also change with time to affect different areas of the target zone at different times.

Air sparge may be introduced at a later time, depending on the effectiveness of the stand-alone SVE system. Air sparging would be pulsed throughout operation to maximize the operation and minimize preferential pathways while

maintaining control on vapor emissions and confirmation of sub-surface vapor capture. Once the concentrations of organic vapor recovery reach asymptotic levels, Wenck anticipates the following possible next steps:

- Request closure based on low air emission concentrations and significant reduction of petroleum concentrations in monitoring wells near the source area from venting alone.
- Request closure based on low air emission concentrations, significant reduction of petroleum concentrations in monitoring wells near the source area from venting alone, and confirmation of cleanup with LIF probes conducted in the source area.
- 3. If applicable, describe target-zone accessibility issues or subsurface conditions that act as a barrier to or short-circuit the intended subsurface response and how they were accommodated by the pilot test system design.

The sub-surface is relatively consistent and conducive to the SVE/AS remedial approach, in particular below 8 feet. Utilities, land access and sub-surface vapor control are the primary conditions that require special attention. In general the site is well suited for SVE/AS remediation. One concern was whether or not there would be short-circuiting to the gravel and grassy surfaces in the area. The pilot test confirmed there are one or two silty sand, sandy silt, or clayey sand layers down to approximately 4 to 8 feet *(Appendix C)*. Based on this, it appears there is an airflow cap covering the entire area.

# Section 3: Remediation and Monitoring Points

Provide a site map showing the locations of all pilot test remediation and monitoring points. Include construction diagrams, borings logs, and, if applicable, Minnesota Department of Health (MDH) *Well and Boring Records* in Appendix C. Provide a remediation and monitoring point construction summary table in Section 16 (Table 1).

1. Provide a rationale for the location and construction specifications (e.g., screen interval, distance from source) for each remediation and monitoring point based on the target zone, remediation strategy, and conceptual design of the full-scale system.

The pilot test included two SVE wells (SV-1 and SV-2). The the "deep well" (SV-1) was screened from 9-19' below grade and the "shallow well" (SV-2) was screened from 5-15' below grade. The SVE wells are 4-inch diameter and were constructed in a way that they could eventually be incorporated into the final system. Pilot test monitoring points were installed shallow at 5' and deep at 15' to measure the radius of influence (ROI) horizontally and vertically from the SVE wells. See *Figure 3* for the proposed plan view layout and *Figure 11C* for cross-section detail for vertical layout.

2. Describe remediation and monitoring point installation activities, including the methods and procedures used for drilling and installation of each remediation and monitoring point.

### **SVE Well Construction**

Well and monitoring point construction diagrams are shown on *Figure D101 in Appendix D*. The wells were installed using a hollow-stem auger rig with a 10 inch (OD) boring diameter. The SVE well screens were 10 slot wound stainless steel, 10 feet in length, and the riser pipes were schedule 40 PVC. The wells were finished above-grade with a traditional protop with locking cover. These protops are considered temporary as they will be removed and replaced with an at-grade manhole, with lateral connections below grade.

### **Monitoring Point Construction**

### Un-Nested Points:

A one-foot deep hollow-stem auger hole was drilled using 10-inch (OD) augers. Geoprobe dual-tube tooling was advanced to the desired depth (5 feet for shallow and 15 feet for deep). A 12-inch, stainless-steel implant (with attached anchor) was attached to the appropriate colored tubing (blue for deep and green for shallow) and lowered through the tooling string to near bottom. Filter pack sand was placed around the implant and to one foot above the top of the implant (Dual-tube tooling was gradually removed during this process). Bentonite crumbles (dry) was placed approximately 1 foot above the filter pack. A small amount of water was added to the top of this first lift of bentonite (tremied to avoid getting inner dual tube rods wet). Additional bentonite was added and hydrated in approximate one-foot lifts to approximately one foot below the surface as tooling was gradually removed from the ground. The monitoring point was completed with a 6-inch, flush-mount hand hole. The hand hole was completed with a uger cuttings around the outside to fill the remaining annular space of the 10-inch borehole. The hand hole was completed at a depth such that snow plows and/or lawn mowers would not interfere with it. A vinyl tubing cap was placed on the tubing the tubing was labeled (shallow or deep) and coiled inside of the hand hole. See boring logs/construction diagrams in *Appendix C* and *Figure D101 in Appendix D*.

Nested Points: A one-foot deep hollow-stem auger hole was drilled using 10-inch (OD) augers. Geoprobe dual-tube tooling was advanced to the desired depth (15 feet). The 12-inch implant and anchor was attached to the blue colored tubing and lowered through the tooling string to the bottom. Filter pack sand was placed around the implant and to one foot above the top of the implant (Dual-tube tooling was gradually removed during this process). Bentonite crumbles (dry) were placed approximately 1 foot above the filter pack. A small amount of water was poured on top of this first lift of bentonite (tremied to avoid getting inner dual tube rods wet). Additional bentonite was added and hydrated in approximate one-foot lifts as tooling was removed from the ground to a depth of 5.5 feet. Another 12-inch implant and anchor was then attached to the green colored tubing and lowered through the tooling string to a depth of

5 feet. Filter pack sand was placed around the implant approximately six inches below the bottom and one foot above the top of the implant (Dual-tube tooling was gradually removed during this process). Bentonite crumbles (dry) were placed approximately 1 foot above the filter pack. A small amount of water was poured on top of this first lift of bentonite. Additional bentonite was added and hydrated in approximate one-foot lifts to a depth of one foot below grade as tooling was removed from the ground. The monitoring point was completed with a 6-inch, flush-mount hand hole. The hand hole was completed with auger cuttings around the outside to fill the remaining annular space of the 10-inch borehole. The hand hole was completed at a depth just below surrounding grade such that snow plows and/or lawn mowers would not interfere or damage the surface completion. A vinyl tubing cap was placed on the tubing and the tubing was labeled (shallow or deep) and coiled inside of the hand hole. See boring logs/construction diagrams in *Appendix C* and *Figure D101 in Appendix D*.

3. Describe the results of any sampling, monitoring, or laboratory analyses completed during installation. Provide data summary tables in Section 16 and laboratory analytical reports in Appendix D.

No sampling, monitoring, or laboratory analyses was completed during remediation and monitoring point installation, with the exception of PID readings measured during installation of the soil vapor extraction wells (SV-1 and SV-2). These PID results are shown on the boring logs included in *Appendix C*.

4. Describe any remediation and monitoring point installation and construction decisions that were made in the field and what criteria were used.

As discussed in Section 1, Wenck proposed using 20 slot stainless-steel screens for the soil vapor extraction wells. The drilling subcontractor made a mistake and ordered 10 slot screens stainless-steel screens. The screens were delivered to the site. This error was not identified until the day of drilling. Wenck weighed the cost of delaying the SVE well installation versus the potential affect the different screen size would have on the pilot test results. If the slot size is too small, there may not be adequate flow through the screen for maximum radius of influence (ROI) and the vacuum measured in the extraction well could be too high and would not reflect a realistic vacuum. If the slot size is too large for a given air-extraction rate, excessive pressure drop within the screen interval can occur, resulting in diminished ROI.

It was determined to continue with installation of the 10 slot screens based on past experience with positive results from both 10 slot and 20 slot screen sizes in sand/silt lithology. Based on pilot test results, it does not appear that the 10 slot screens significantly affected the ROI or extraction well vacuums.

5. Describe the methods and procedures for developing remediation and monitoring points and the development results.

There was no need to develop vadose zone monitoring points.

6. Discuss the status of each remediation and monitoring point after the test was completed.

All of the monitoring points remain intact. The SVE wells were finished above-grade with a traditional protop with locking cover. These protops are considered temporary as they will be removed and replaced with an at-grade manhole, with lateral connections below grade. Concrete was not used inside of the protop to prevent damage to the pvc riser during construction of the final system.

Monitoring points are semi-permanent as they are set in the ground, but not cemented in. The handholes protecting the sample tubing are slightly recessed to prevent snow plows or lawn mowers from damaging them.

# Section 4: System Equipment, Process Flow, and System Controls

Include a process and instrumentation diagram (P&ID) representing the equipment configuration(s) that was pilot tested in Section 15. Use unique identifiers to refer to specific items on the P&ID when describing system equipment, process flow, and monitoring of pilot test system functions. Refer to remediation point construction diagrams, site maps, or other figures as necessary to describe specific system equipment and processes. When describing major equipment or instrumentation, refer to appropriate manufacturer-or vendor-supplied manuals or excerpts included in Appendix E.

- 1. Identify the pilot test system's major equipment and discuss their operation principles, performance specifications, and operating ranges.
  - 5 HP URAI24 rotary lobe blower (75 CFM @ 14" Hg vacuum)
  - VLS-100 Moisture separator, with high level switch, sight glass, and drain valve
  - SVE vacuum switch
  - 6' X 10' Trailer for blower skid assembly
  - Control panel, with starters, overloads, and breakers necessary to run equipment

The pilot test equipment selected produced the desired ROI for the known soil types of the area. The P&ID is shown on *Figure 12*.

2. Describe how the major equipment was connected to each other and to the remediation points through conveyance lines and manifold design.

### Each 4" SVE well was connected to the blower skid in the following order:

- 4" SVE well riser pipe
- 4" x 2" Fernco reducer
- 2" 90 degree elbow with glued clear plastic pvc pipe
- 2" fernco connector
- 2" flexible hose (25')
- 2" fernco connector
- 2"x 3" 90 degree elbow
- 3" PVC pipe on blower skid

3. Describe process flow for all gases, liquids, solids, and their mixtures through the system from intake points to discharge points. Identify passive control features such as gravity drainage and backflow prevention.

### Gases flowed from the two SVE wells to:

- Two 3" PVC pipes
- Each 3" pipe had a hole for pitot tube and a hole for vacuum measurement
- Ball valve on each 3" pipe
- 4" manifold pipe
- VLS-100 Moisture separator, with high level switch, sight glass, and drain valve
- Vacuum gauge
- Lateral 2" pipe with gate valve and inlet silencer
- Air filter
- 5 HP URAI24 rotary lobe blower
- 2" effluent/discharge pipe with thermometer
- Sample port with ball valve
- Discharge silencer
- 4. Identify the locations of process control devices, including those located along conveyance lines from intake points to discharge points and at remediation points. For each location, describe what process the device controlled and the purpose for controlling the process at that location. Describe the operation principles for each device, including manual adjustment methods and procedures and logic for automated controls.

### Ball valves were used to adjust airflow in each vent well (pre-manifold). The gate valve was used to add dilution air.

5. Identify the control settings that were monitored over the course of the test. Describe the units of measurement, range, accuracy, and data collection methods and procedures as appropriate for each control setting.

# The ball valve adjustments were not monitored, they were either 100% open or 100% closed. The gate valve for dilution air was monitored using vacuum readings in each pipe (pre-manifold). The gate valve was adjusted to achieve vacuum readings approximately one-half of the normal vacuum measurements (see *Section 7* for further information).

6. Identify all locations where process material physical parameters (e.g., flow, pressure, temperature, fluid levels) were measured along conveyance lines from intake to discharge points and at active remediation points. For each location, describe what materials and properties were measured and why they were measured at that location. Describe the operation principles, measurement units, range, and accuracy for each instrument. Describe data collection methods and procedures for each instrument. Include an excerpt from the airflow measurement instrument's manual describing how to convert measured flow rates to standard temperature and pressure conditions in Appendix E.

### • Hole in each 3" pipe for pitot tube

Velocity and airflow measurements were collected at the first hole in each pipe. This location was chosen by H2K as a representative location to collect accurate velocity and airflow measurements for each SVE well. Velocity and airflow measurements were collected using a Fluke 922 Airflow meter/digital monometer. The velocity range is 250-16,000 fpm. The velocity accuracy is 2.5% of reading at 2,000 fpm. The airflow range is 0-99,999 cfm. The airflow accuracy is indicated as a "function of velocity and duct size" according to the manual. Plumbers putty was used to seal around the tubing/hole to ensure accurate readings. Tape was used to cover each hole when not in use.

### • Hole in each 3" pipe for vacuum measurements

Vacuum measurements were collected at the second hole in each pipe. This location was chosen by H2K as a representative location to collect accurate vacuum measurements for each SVE well. Vacuum measurements were collected using a Dwyer Series 477 Digital Manometer. The range is 0-200 inH2O. The accuracy is + or - 0.10%.

Plumbers putty was used to seal around the tubing/hole to ensure accurate readings. Tape was used to cover each hole when not in use.

• Vacuum gauge (post moisture separator)

This was a direct-read vacuum gauge, installed on the equipment provided by H2K. This location was chosen by H2K as a representative location to collect total vacuum readings for the system.

• 2" effluent/stack pipe with thermometer

This was a direct-read thermometer, installed on the equipment provided by H2K. This location was chosen by H2K as a representative location to collect temperature readings of effluent air from the system.

• Sample port with ball valve

This sample port was used for both photoionization (PID) readings and TO-15 samples. This sample port location was chosen because it was after the blower and before the stack silencer, providing a representative sample equivalent to stack discharge of the eventual SVE system. PID readings were collected using a MiniRae Lite. The range is 0.1 ppm to 5,000 ppm. The accuracy is + or - 5%.

 Identify instruments (or methods) that were used to monitor equipment operation parameters, such as equipment run time and on/off cycles. Describe what parameters were monitored and the purpose for monitoring them. Describe each instrument's operation principles, measurement units, range, and accuracy.

NA.

8. Describe the results of any testing, such as pressure testing, that was completed prior to system startup at the conveyance lines, manifolds, and equipment from the remediation points through the rest of the system to confirm that they were not leaking or otherwise compromised. Describe testing methods and procedures.

The blower skid was designed and assembled by H2K. H2K indicated they completed a soap test on air lines after construction of the blower skid. This consisted of running the blower and spraying joints with soap to make sure it did not bubble or get sucked into the line.

## Section 5: Process Material Chemistry

Refer to the P&ID and, if necessary, other figures and diagrams when describing the locations where process materials (e.g., groundwater, air) were monitored or sampled for chemical parameters.

1. Identify all monitoring and sampling locations between intake points and discharge points, including remediation points. For each monitoring and sampling location, describe the process material that was monitored or sampled, the chemical parameters that were measured, and the purpose for collecting the data at that location.

### • Sample port with ball valve

This sample port was used for both photoionization (PID) readings and TO-15 samples. This sample port location was chosen because it was after the blower and before the stack silencer, providing a representative sample equivalent to stack discharge of the eventual SVE system.

2. Describe field monitoring methods and procedures. For each monitoring location, describe monitoring equipment and/or instrumentation, including operation principles, measurement units, range, and accuracy.

VOC sampling was completed by connecting tubing to the sample port and the 1 liter summa canister. A moisture filter was connected between the summa canister and sampling port. The summa canisters were fitted with 200 milliliters per minute flow restrictor (approximately 5 minutes per sample).

3. For each parameter collected for off-site laboratory analysis, describe collection methods and procedures, selected laboratory analytical methods and their rationale, and quality assurance and quality control (QA/QC) measures.

The first VOC sample (E-1) was collected from the effluent sample port during Test #1 at approximately 30 minutes after startup (11/16/15, 12:56-1:05 PM). Both SVE wells were open 100% with no dilution air.

The second VOC sample (E-2) was collected at the approximate  $\frac{1}{2}$  way point of the pilot test (11/17/15, 1:10 to 1:18 PM) after Test #2. This second sample was collected during Test #3, which was created specifically for the VOC sample and both SVE wells were open 100% with no dilution air.

The third and final VOC sample (E-3) was collected at the end of the pilot test (11/18/15, 3:57 to 4:04 PM) after Test #6. This sample was collected during Test #7, which was created specifically for the VOC sample and both SVE wells were open 100% with no dilution air.

The laboratory analytical method for VOC air sampling was EPA Method TO-15 which is the standard analytical method for these samples. The laboratory reports and QA/QC protocols followed by the analytical laboratory (Pace Analytical) are included in the lab reports in Appendix D.

4. For chemistry data used in mass balance calculations or for other reasons requiring associated flow, identify the flow measurement locations and instruments (described in Section 4) associated with respective monitoring or sampling points.

|           |         |                      | Airflow     | Total  |              |              |                      |
|-----------|---------|----------------------|-------------|--------|--------------|--------------|----------------------|
| Effluent  |         |                      | Measurement | Vacuum | SV-1 Airflow | SV-2 Airflow | <b>Total Airflow</b> |
| Sample ID | Test #  | Effluent Sample Time | Time        | InH2O  | (CFM)        | (CFM)        | (CFM)                |
| E-1       | Test #1 | 12:56 to 1:05 PM     | 1:45 PM     | 25     | 34           | 55           | 89                   |
| E-2       | Test #3 | 1:10 to 1:18 PM      | 1:18 PM     | 32     | 36           | 86           | 122                  |
| E-3       | test #7 | 3:57 to 4:04 PM      | 4:00 PM     | 31.5   | 47           | 44           | 91                   |

The following flow measurements were recorded during collection of effluent VOC (TO-15) samples.

# Section 6: Subsurface Response Monitoring

For each item below, identify the monitoring points where the system's effects on the specified target-zone conditions were measured over the course of the pilot test. Describe the types of data that were collected at each monitoring point and provide a rationale for collecting each type. Describe data collection methods and procedures including the type, operation principles, measurement units, range, and accuracy of field instruments. Refer to appropriate figures and diagrams to identify measurement locations and to support monitoring methods and procedures.

1. Target zone's physical conditions (e.g., fluid levels, pressure, temperature):

Pilot monitoring points and monitoring wells were monitored with a Fluke 922 Airflow meter /digital monometer for differential pressure reading. There were 22 different monitoring points that were measured between 5 to 8 times for each run. Monitoring points were measured for differential pressure until the measurements reached stabilization. See Table 1 for pilot test monitoring point data results.

2. Target zone's chemical conditions (e.g., organic vapor concentrations, dissolved oxygen, redox potential) as measured in the field:

### PID measurements were collected at blower stack sample port. See Table 3.

3. Target zone's chemical conditions (e.g., volatile organic compounds (VOCs), gasoline range organics (GRO), diesel range organics (DRO)) as measured by laboratory analysis:

Effluent samples were collected for laboratory analysis by EPA method TO-15 VOCs as described in Section 5.

# Section 7: Pilot Test Description and Data Presentation

Refer to appropriate tables, figures, and appendices when describing system configurations, control adjustments, and data collection locations. Provide pilot test figures and data tables in Sections 15 and 16, respectively. Include laboratory analytical reports in Appendix D and attach field or sampling data sheets in Appendix F. All data must have a temporal reference point relative to the start of the pilot test or given stage. This section is to include mass removal and waste treatment data, if applicable.

1. Briefly summarize the pilot test from start to finish, including baseline monitoring, equipment testing, start and stop times of stages and step tests, downtime between stages, and rebound monitoring, as applicable.

Day 1 (11/16/2015)

Setup (8:00 AM to 9:47 AM)

Baseline Monitoring (9:48 AM to 11:15 AM)

Prior to starting the SVE system, all 22 monitoring points were measured for differential pressure.

<u>Test #1 (12:20 PM to 4:45 PM)</u> During this initial test both wells were open 100% and there was no dilution air. Effluent sample E-1 was collected during this test.

### Day 2 (11/17/2015)

### Test #2 ( 8:50 AM to 1:00 PM)

During this test SV-1 was open 100%, SV-2 was closed and there was no dilution air.

### Test #3 (1:05 PM to 1:20 PM)

This test was only for collecting the 2<sup>nd</sup> VOC sample (E-2). Both wells were open 100% and there was no dilution air.

### Test #4 (1:22 PM to 3:32 PM)

During this test SV-1 was closed, SV-2 was open 100% and there was no dilution air.

### Rebound Measurements (3:37 to 3:47)

After Test #4, 14 of the monitoring points were measured after shutdown of the system for the day.

### Day 3 (11/18/2015)

### Test #5 (8:50 AM to 11:45 AM)

During this test SV-1 was open 100%, SV-2 was closed and there was 50% dilution air. To achieve this, the dilution air gate valve was closed until the vacuum in the SV-1 line was at approximately ½ of the vacuum in SV-1 for Run #4. Test #4 had vacuum readings in SV-1 at approximately 51 inches H2O. Thus, the vacuum was set to approximately 25 inches H2O. The gate valve needed to be closed or opened slightly during the test to maintain 25 inches H2O in SV-1.

### Test #6 (11:46 AM to 3:35 PM)

During this test SV-1 was closed, SV-2 was open 100% and there was 50% dilution air. To achieve this, the dilution air gate valve was closed until the vacuum in the SV-2 line was at approximately ½ of the vacuum in SV-1 for Test #4. Test #4 had vacuum readings in SV-1 at approximately 54 inches H2O. Thus, the vacuum was set to approximately 27 inches H2O. The gate valve needed to be closed or opened slightly during the test to maintain 27 inches H2O in SV-2.

### Test #7 (3:35 PM)

This test was only for collecting the 3rd VOC sample (E-3). Both wells were open 100% and there was no dilution air.

### Disassemble Equipment/Cleanup (3:35 PM to 4:30 PM)

2. Describe any baseline data (e.g., groundwater elevations, light non-aqueous phase liquid thicknesses) collected prior to initiating the pilot test. Provide a rationale for the types, locations, and collection frequency of the data that were collected.

# Prior to starting the SVE system, all 22 monitoring points were measured for differential pressure to establish a baseline and validate the differential pressures during the pilot test.

3. Describe baseline data collection methods and procedures, including field equipment and laboratory analytical methods, if applicable.

# The baseline testing consisted of turning the SVE system on using the same parameters as Test #1 and measuring differential pressure in all 22 monitoring points. The monitoring points and monitoring wells were monitored with a Fluke 922 Airflow meter /digital monometer for differential pressure.

4. Describe the results of any remediation and monitoring point testing, such as pressure testing, that was completed prior to system startup to confirm that they were not short circuiting, leaking, or otherwise compromised and were in hydraulic or pneumatic connection with the target zone. Describe testing methods and procedures.

# There was no remediation or monitoring point testing. As previously indicated, the blower assembly was soap tested by H2K before being delivered to the site.

 Describe the results of any conveyance line, manifold, and equipment testing, such as pressure testing, that was completed prior to system startup to confirm that they were not leaking or otherwise compromised. Describe testing methods and procedures.

# There was no remediation or monitoring point testing. As previously indicated, the blower assembly was soap tested by H2K before being delivered to the site.

6. Describe the equipment configuration and remediation and monitoring points that were used during each stage of the pilot test in order of stage completion. Provide a rationale for the configuration and order. Describe the transition between each stage, including any downtime due to equipment reconfiguration. Describe any major problems encountered during operation, how the problems were resolved, and how they affected the results.

The equipment configuration and remediation and monitoring points during each individual test did not change, with the exception of opening and closing ball valves for SV-1 and SV-2 and opening the gate valve for adding dilution air.

# As shown in question 1 above, there was very little down time between each test. Also note that the system did not operate after hours since the site was not secured.

# The majority of the pilot test was run during rainy and windy conditions, with heavy rain at times. Wenck constructed a temporary canopy over the SVE trailer/skid to be able to keep working.

 Describe the types, collection locations, and collection frequency of operation monitoring data (e.g., system control settings, process material parameters, subsurface response) that were collected during each stage. Provide the rationale for collecting each data type at the locations and frequency.

### The following SVE system measurements were recorded approximately 4 to 5 times during each test:

- SV-1 vacuum (inches H2O) pre-manifold, if ball valve was open.
- SV-2 vacuum (inches H2O) pre-manifold, if ball valve was open.
- SV-1 air velocity (FPM) pre-manifold, if ball valve was open.
- SV-2 air velocity (FPM) pre-manifold, if ball valve was open.
- SV-1 airflow (CFM) pre-manifold, if ball valve was open.
- SV-2 airflow (CFM) pre-manifold, if ball valve was open.
- Total vacuum (inches H2O) post manifold and moisture separator
- Stack temperature (Fahrenheit) effluent pipe
- PID reading sample port in effluent pipe

#### These measurements were generally taken in between the monitoring point measurements.

8. Identify the process and/or operation monitoring data that were used as criteria to determine when a given stage was complete.

### Each test was run until differential pressure readings in the monitoring points stabilized.

Describe and provide the rationale for system control adjustments that were made over the course of each stage, including
adjustments for step tests. Describe what process flow parameter(s) was controlled (e.g., flow rate, pressure), how it was
controlled, and what process and/or subsurface response was monitored for effect.

# System control adjustments were not generally made during east test. The primary goal was to get accurate differential pressure readings in the monitoring points to determine the radius of influence under different SVE configurations.

10. If a step test was conducted, describe and provide the rationale for the number and sequence of steps. Specify what parameter (e.g., flow rate, pressure) was adjusted, how it was adjusted, and whether it was a step up or step down. Identify the process and/or operation monitoring data that were used as criteria to determine when a given step was complete.

# The tests completed as described in question 1 above will be useful to some extent as a step test. Additional step tests would have been completed if more time was available; however, the primary goal of identifying the ROI was achieved.

11. Describe any rebound data collected after pilot test completion. Provide the rationale for the types, locations, and collection frequency of the data that were collected.

### The only rebound data collected was after test #4 as described in question 1 above.

12. Describe rebound data collection methods and procedures, including field equipment and laboratory analytical methods, if applicable.

### After Test #4, 14 of the monitoring points were measured for vacuum after shutdown of the system for the day.

### Section 8: Data Evaluation

Provide data evaluation figures and tables in Sections 15 and 16, respectively. Refer to appropriate figures and tables when describing evaluation results.

1. Provide and explain the equation(s) that were used for converting airflow velocity measurements to volumetric airflow rates and/or volumetric airflow rates to standard temperature and pressure conditions. Describe each equation variable, including its data source (i.e., instruments) and measurement unit. Provide example calculations using pilot test data.

### Airflow measurements were collected using a Fluke 922 Airflow meter/digital monometer, no conversion was needed.

2. Provide and explain the equations that were used for calculating mass removal. Describe each equation variable, including its data source and unit of measurement. Provide example calculations using pilot test data.

Emission Rate (Total VOCs) = Effluent Concentration \* flow rate. 15.15 lbs/hr = 44,453,800 ug/m<sup>3</sup> \* 91 ft<sup>3</sup>/min \* 60 min/hr \* 1 m<sup>3</sup>/35.31 ft<sup>3</sup> \* 2.205 e<sup>-9</sup> lbs/1 ug

Mass Removed per day = Emission Rate \* 24 363.6 lbs/day = 15.1 lbs/hr \* 24 hrs/day

While three effluent VOC samples were collected under the same system operating conditions, only the third/last effluent sample (E-3) was used in the emission rate calculation as it was deemed the most representative of initial operation of a permanent system with the same size blower, two SVE wells in the source area, and no dilution air. Note that O-Xylene was detected in E-1 and E-2 but not in E-3. Wenck used a concentration of 31,300 ug/m<sup>3</sup>, just below the detection limit of 31,400 ug/m<sup>3</sup>.

The pilot test calculated mass removal is likely overstated as there will be additional SVE wells outside of the source area, mixing cleaner air with the source area well(s). Sample E-3 was collected at the end of the 3-day pilot test.

The flow rate measurement used in the above calculation was taken during the collection of sample E-3. This flow rate was the addition of the flow rates in SV-1 (47 CFM) and SV-2 (44 CFM).

3. Discuss pilot test data evaluation results. Describe the methods (e.g., contour maps, graphs) and calculations used to evaluate each data set.

Radius of influence contour maps were created for each of the following test runs. These contour maps were created using only the deep monitoring points because the shallow monitoring points generally had lower vacuum readings than their corresponding deep monitoring point. Also, monitoring well MW-3 did not indicate any vacuum, likely due to very little, if any screen exposed above the water table. The last round of vacuum measurements for each test were used to create the contour maps. All vacuum readings are shown on *Table 1*.

### Test #1 (both wells were open 100%, no dilution air)

This initial test resulted in an estimated ROI of 330 feet using 0.1 inches H2O as the ROI boundary. There was also an approximate 130 foot ROI at 1 inches H2O (See Figure 13).

### Test #2 (SV-1 was open 100%, SV-2 was closed and no dilution air)

This test resulted in a ROI of approximately 200 feet using 0.1 inches H2O as the ROI boundary. There was also an approximate 120 foot ROI at 1 inches H2O (See Figure 14).

### Test #4 (SV-1 was closed, SV-2 was open 100% and no dilution air)

Test #4 created a ROI of approximately 240 feet using 0.1 inches H2O as the ROI boundary. The ROI at 1 inches H2O was approximately 140 feet (See Figure 15).

### Test #5 (SV-1 was open 100%, SV-2 was closed and dilution air was added to achieve 1/2 the vacuum of Test # 2)

This test resulted in a ROI of approximately 200 feet using 0.1 inches H2O as the ROI boundary. There was also an approximate 100 foot ROI at 1 inches H2O (See Figure 16).

### Test #6 (SV-1 was closed, SV-2 was open 100% and dilution air was added to achieve ½ the vacuum of Test #4)

This test resulted in a ROI of approximately 220 feet using 0.1 inches H2O as the ROI boundary. The ROI at 1 inches H2O was approximately 100 feet (See Figure 17)

### Section 9: Technical Feasibility Determination

For each applicable category below, discuss whether and how the results confirm the technical feasibility of the technology and equipment configuration when employed as the full-scale system envisioned in the conceptual design from Section 5 of Guidance Document 7-02 *Conceptual Corrective Action Design Report (CCAD)*.

1. Subsurface response and control within the target zone.

The results of the pilot test indicate a much larger ROI (up to 330 feet) than the ROI speculated on in the CCAD (20 feet). The deeper portion (6-20') of the target zone is generally uniform and produces a mostly symmetrical ROI. There is less response in the shallow (<6') target zone, due to silt layers. This is not detrimental to the feasibility of a full-scale system as LNAPL is more prevalent in the deeper zone at the water table. The silt layers will actually aid in minimizing short-circuiting in grassy and gravel areas at the Site.

The pilot test indicated that the shallow SVE well (SV-2) resulted in a slightly larger ROI than the deeper well (SV-1). The screen for vent well SV-1 was likely 6 inches to 1 foot below the water table during the pilot test. This may have

resulted in pulling water up into the screen, reducing the screened area in the vadose-zone. The ideal SVE screen placement would be at or near the water table, but not submerged in it (a few inches above the water table); however, due to the fluctuating water table (approximately 3 feet) it is not possible to achieve this year round. Given the minor difference in ROI between the two pilot test vent wells, the placement of vent well screens above the water table is not critical. However, it may be advantageous to place the bottom of future vent well screens at a depth such that they are exposed for the majority of time. Wenck will set each vent well screen approximately one foot above the average groundwater elevation for that area.

2. Targeted contaminant phase mass removal or in situ elimination.

As demonstrated in the mass removal rate calculation, mass removal of VOCs will be high during operation of the fullscale system, especially at start-up.

3. Light non-aqueous phase liquid (LNAPL) handling, storage, and disposal.

LNAPL will not be generated during operation of the full-scale system.

4. Wastewater treatment and/or discharge.

It is not anticipated that wastewater will be generated in large amounts during operation of the full-scale system. Any water accumulated in the knock-out tank will be drummed for disposal.

5. Air emissions control.

Air emissions control may be necessary, depending on how the full-scale system is designed and operated, (i.e., how much dilution air will be used and other factors). Wenck will follow the MPCA Air Emission Controls Guidance Document 7-09a and complete the Air Emissions Screening Spreadsheet during completion of the SDCAD.

6. Other elements of the full-scale system's conceptual design.

Wenck indicated in the CCAD that once the concentrations of organic vapor recovery reach asymptotic levels, air sparge wells will be introduced to release additional VOCs for capture by the SVE system. After reviewing results of the pilot test, it's possible air sparging may not be needed. To determine this, Wenck may propose a limited LIF investigation to confirm the reduction of LNAPL. Monitoring well data would also be evaluated to determine the soil venting system effectiveness on reducing dissolved contaminant concentrations in the groundwater. However, Wenck anticipates that to reach LNAPL not exposed to the vadose zone, air sparging will be needed. At this point it is anticipated that air sparge points and lateral piping will be installed during trenching for the vent piping.

7. Do the pilot test results demonstrate technical feasibility of the technology and equipment configuration?

Yes (Go to Section 10.)

□ No (Skip Sections 10 and 11. Go to Section 12.)

# Section 10: Conceptual Design Update

For each applicable category below, discuss how the results affect the full-scale system's conceptual design assumptions made in Section 5 of the CCAD.

1. System mechanical components, instrumentation, and controls.

# The conceptual design assumptions for system mechanical components, instrumentation and controls have not change based on results of the pilot test.

2. Remediation point construction and well field layout.

The following CCAD conceptual estimates were made based on an effective radius of influence of 20 feet from each SVE and AS well:

- Twelve (12) deep SVE wells screened from 17-22 feet so the screened interval intersects with the groundwater table and the LNAPL target zone.
- Five (5) medium depth SVE wells installed above the water table, screened from 12-17 feet.
- Three (3) shallow SVE wells installed at the source area and screened from 5-15' to control potential vapor migration, especially during the air sparge remediation stage.
- Three (3) sparge wells screened from 25-27 feet below grade within the groundwater table.

Based on results of the pilot test, Wenck anticipates the full-scale system to have the following remediation point components (see *Figure 6*):

- One (1) SVE well screened 9-19 feet (existing SV-1)
- One (1) SVE well screened 5-15 feet (existing SV-2)
- Five (5) SVE wells screened approximately 955 to 945 feet, or approximately 7 to 17 feet below grade.
- Three (3) sparge wells screened from 26-28 feet below grade within the groundwater table.
- Nine (9) deep and six (6) shallow monitoring points (existing)

Adding five SVE wells would give us 7 total SVE wells surrounding the 3 proposed air sparge wells. A screen interval of 7 to 17 feet will accomplish both remediating LNAPL in the vadose zone and at the water table along with controlling potential vapor migration.

3. LNAPL handling, storage, and disposal.

LNAPL will not be generated during operation of the full-scale system.

4. Wastewater treatment.

It is not anticipated that wastewater will be generated in large amounts during operation of the full-scale system. Any water accumulated in the knock-out tank will be drummed for disposal.

5. Air emissions control.

Air emissions control may be necessary, depending on how the full-scale system is designed, how much dilution air will be used and other factors. Wenck will follow the MPCA Air Emission Controls Guidance Document 7-09a and complete the Air Emissions Screening Spreadsheet during completion of the SDCAD. As mentioned in the CCAD: discharge treatment by carbon may be added to the process if necessary

6. Operation monitoring schedule.

Operation monitoring will include documenting system vacuum and airflow measurements along with individual SVE well vacuum and airflow measurements. Analytical samples will also be collected from the discharge effluent for VOC analysis. These measurements/samples will be collected more frequently during initial startup of the system. Also, during startup, individual SVE wells and dilution air will be adjusted to optimize the system.

After the first two or three weeks, the site visits will decrease to approximately one visit per week and eventually go to semi-monthly.

7. Remediation endpoints and operation duration.

The pilot test results do not significantly affect the full-scale system's conceptual design assumptions made in Section 5 of the CCAD. The remediation strategy will be venting the target zone which will reduce the LNAPL and dissolved contaminants. The final system will likely run off of two blower/enclosures since the LNAPL plume extends across Buchanan Street. Horizontal drilling may be employed, if feasible, to allow for only one blower/enclosure.

Initially, the system will run as an SVE system with both shallow and deep wells connected to the manifolds, where vacuum and airflows will be monitored and regulated for each well individually to optimize cleanup performance. Wenck indicated in the CCAD that once the concentrations of organic vapor recovery reach asymptotic levels, air sparge wells will be introduced to release additional VOCs for capture by the SVE system. After reviewing results of the pilot test, it's possible air sparging may not be needed.

Wenck anticipates that to reach LNAPL not exposed to the vadose zone, air sparging may be needed. At this point it is anticipated that air sparge points and lateral piping will be installed during trenching for the vent piping, to conserve costs and avoid disturbing private property twice. If air sparging is introduced it will be pulsed throughout operation to maximize the operation and minimize preferential pathways while maintaining control on vapor emissions and confirmation of sub-surface vapor capture.

Once the concentrations of organic vapor recovery reach asymptotic levels, with or without air sparging, Wenck anticipates the following possible next steps:

- Request closure based on low air emission concentrations and significant reduction of petroleum hydrocarbon concentrations in monitoring wells near the source area.
- Request closure based on low air emission concentrations, significant reduction of petroleum hydrocarbon concentrations in monitoring wells near the source area, and confirmation of cleanup with LIF probes conducted in the source area. The benchmark for residual impacts as determined by the LIF investigation will be a response of <10% fluorescence throughout the existing impacted area.

The operational duration of the system is difficult to estimate at this time. System performance and effectiveness monitoring data will be used to develop an estimate of the anticipated operations duration.

8. Equipment maintenance schedule.

### This soil venting/air sparge system is expected to require very little maintenance.

9. Other elements of the full-scale system's conceptual design.

### N/A

## Section 11: Economic Feasibility Determination

Based on the information discussed in Section 10, provide an updated life-cycle cost estimate for the proposed full-scale system in Appendix G. Update focused investigation and pilot test costs to reflect actual costs.

1. Discuss the updated life-cycle cost estimate. Describe any major assumptions that were made in order to estimate costs.

### The life-cycle cost has been updated and is included in Appendix G.

2. Compare the updated life-cycle cost estimate to the life-cycle cost estimate presented in the CCAD and discuss the results of this comparison.

# The life-cycle cost for the planned SVE/air sparge remediation has gone down from \$544,000 to \$407,000 based primarily on reducing the number of SVE wells due to a larger than anticipated ROI.

3. Discuss whether the pilot test results significantly affect the assumptions made when preparing life-cycle cost estimates for the non-selected corrective action alternatives evaluated in the CCAD.

### The pilot test indicated a much higher ROI, reinforcing the chosen remediation technology, SVE/air sparge.

4. List the corrective action alternatives evaluated in the CCAD with their corresponding and, if applicable, updated life-cycle cost estimate totals. Compare the life-cycle costs of the alternatives with the updated life-cycle cost estimate of the proposed full-scale system.

#### The corrective action alternatives included:

- Chemical Injection (Cost table was not produced due to high cost)
- Excavation
- Dual Phase Soil Vapor Extraction
- SVE/Air Sparge

SVE/air sparge was previously the lowest cost alternative and still is the lowest cost alternative.

5. Based on the cost-estimate comparison and any other relevant factors, discuss the economic feasibility of the full-scale system.

Soil venting/air sparging is economically the most feasible remediation alternative. The pilot test confirmed there is a near-surface silty cap across the site, which channels the airflow a great distance laterally through the more permeable sand. This large ROI will, result in less vent wells and trenching and faster cleanup time than was originally anticipated. Also, it's possible the site may achieve regulatory closure without employing air sparging.

### Section 12: Site Conceptual Model Update

Include updated cumulative tables and figures from Guidance Document 4-06 *Investigation Report Form* in Appendix H. Include documentation of additional site investigation, site monitoring, and interim corrective actions in Appendix I. Also include copies of tables, figures, or other information from the focused investigation if relevant to the site conceptual model or the pilot test design in Appendix B.

1. Describe any additional site investigation, site monitoring, and/or interim corrective actions completed since the last submitted report.

Wenck has been conducting monthly product level checks on the monitoring well network. Wenck has also completed three rounds of quarterly groundwater sampling at the Site for 2015 and one round in 2016. The results of the product level checks and sampling are included on the attached tables in *Table 1* and *Appendix F*.

As requested by the MPCA, quarterly monitoring well sampling was completed on May 8, August 13, and November 3, 2015 and February 2, 2016. Wenck also completed monthly light non-aqueous phase liquid (LNAPL) measurements on MWs 3, 7, 8, and 9 in March 2015 through January 2016. The February 2016 monthly (LNAPL) measurements for

monitoring wells 3,7,8, and 9 also included recently installed Soil Vapor Extraction well (SVE-1). Monitoring wells and historical sampling locations are shown on the attached Figures.

2. Discuss the results of the additional site investigation, site monitoring, and/or interim corrective actions.

Monthly product checks were completed on wells MW-3, MW-7, MW-8, and MW-9.

LNAPL was not observed during this report period and has not been observed in any well since the March 6, 2015 monthly product check. Samples were collected the last three quarters of 2015 as well as the first 2016 quarterly sampling event. Petroleum VOC concentrations have generally been stable or declining in the wells sampled.

The cumulative data collected from these sampling events is recorded on the updated Tables attached in Appendix H. The laboratory analytical reports are attached in Appendix D.

3. Provide an updated and comprehensive site conceptual model.

LNAPL The laser induced fluorescence (LIF) boring data from the Focused Investigation Report shows that LNAPL from the The laser induced fluorescence (LIF) boring data from the Focused Investigation Report shows that LNAPL from the INAPL in MW-3 release is defined. Data collected from the first quarterly event in February 2014 showed 0.52 feet of LNAPL in MW-3 and 0.02 feet of LNAPL in MW-7. The results of product level checks on March 6, 2014 revealed 0.53 feet in MW-3 and 0.03 feet in MW-7. However, from June 2014 through March 2015, only trace levels (approximately 0.01') of product were measured in MW-3, MW-7, and MW-8. The LIF investigation data shows a defined source area of LNAPL that is present at and above the groundwater extending down-gradient of the release area. The LNAPL at the Site appears relatively stable, however, it is contributing to down-gradient impacts to the dissolved phase.

### Groundwater

Groundwater monitoring/investigation has been ongoing at the Site since June 1995. Concentrations of DRO, GRO, and BTEX are relatively stable compared to historical data. Groundwater analytical data is shown on Table 11. Sites within the contaminant plume utilize the City Water supply and no private well have been identified. The proposed remedial system will reduce and eventually eliminate LNAPL, resulting in a reduction of on-site and down-gradient dissolved phase petroleum hydrocarbon concentrations.

### Vapor Intrusion

As noted in the Focused Investigation Report, in 2011, Liesch collected three soil vapor samples to assess off-Site vapor intrusion potential. Vapor Pt #1 was collected west of the Midwest Environmental Consulting building located at 145 Second Avenue SE, Vapor Pt #2 was collected on the east side of the American Legion Building located at 200 Second Avenue SE, and Vapor Pt #3 was collected to the east of the Cambridge Bible Bookstore located at 220 Main Street South. All vapor samples were collected at depths between 6-8 feet below grade. No detectable concentrations of VOCs were identified in Vapor Pt #1 and Vapor Pt #3. Vapor Pt #2 (American Legion) defected several VOCs. Benzene was detected at 84.6 ug/m<sup>3</sup> and 1,3-butadine was detected at 64.5 ug/m<sup>3</sup>. MPCA guidance document 4-01a provides guidelines for comparing soil gas sample results to 10 times (10x) the ISV and 100 times (100x) the ISV. Benzene detected at 86.6 ug/m<sup>3</sup> in Vapor Pt #2 exceeds the 10x Residential ISV of 45 ug/m<sup>3</sup>, but does not exceed the 10x Industrial ISV of 130 ug/m<sup>3</sup> or the 100x Residential ISV 450 ug/m<sup>3</sup>. While 1,3 Butadiene exceeds the 100x Residential ISV of 30 ug/m<sup>3</sup>, 1,3-Butadine is not anticipated to be a compound associated with the identified release. The results are shown on Table 20.

In 2011, Liesch collected a subslab vapor sample beneath the basement of the American Legion building to assess the potential for vapor migration into the building. Petroleum VOCs were not detected above 10x the MPCA Residential or Industrial ISVs in sample Subslab-1 (Table 20). Based on results of the Subslab-1 sample beneath the American Legion building, there does not appear to be a vapor pathway between the deeper (18-20') dissolved phase petroleum impacts and the American Legions subslab.

In addition, an updated utility vapor survey was conducted in 2011 and no petroleum vapors were identified. Elevated concentrations of VOC exist in the groundwater. However, the low concentrations of VOCs detected in the soil vapor data and the age of the release suggest that much of the volatilization associated with the release has already occurred. Thus, the vapor intrusion risk is low and no vapor mitigation is recommended at this time.

#### Surface Water Receptors

Figure 1 shows the Rum River located west of the Site. The Rum River is located approximately 4,000 feet downgradient of

the release and 3,500 feet from the leading edge of the contamination plume. Based on the distance to the Rum River, the risk to this receptor is considered low.

## Section 13: Recommendations

1. If the pilot test results support the proposed corrective action, provide a schedule for submitting Guidance Document 7-07a *Remediation System Detailed Corrective Action Design Report (SDCAD)*. If not, recommend an alternative course of action and a schedule for submitting a revised CCAD.

# Wenck anticipates submitting the SDCAD (Guidance Document 7-07a) approximately 45 to 60 days after receiving MPCA approval of the Pilot Test Report.

- 2. Provide recommendations for additional site investigation, site monitoring, and/or interim corrective actions to be completed prior to corrective action design approval, including their purpose and schedule for completion.
  - Sample monitoring wells according to the following schedule for 2015:
    - o Quarterly: MWs 1, 3, 6, 7, 8, 9, and 10
    - Semi-annually: MW-11
    - Annually: MW-6A
  - Monitoring wells will be sampled for diesel range organics (DRO), gasoline range organics (GRO), and benzene, toluene, ethylbenzene, and xylenes (BTEX). A duplicate sample will also be collected for DRO, GRO, and BTEX once per sampling round.
  - Measure water levels in all wells on a quarterly basis.
  - Measure LNAPL in wells 3, 7, 8, and 9 on a monthly basis. LNAPL will also be measured in SV-1 until the full-scale system is installed.

## Section 15: Figures

Attach new figures specific to this report in order of discussion in the text. All figures must include a north arrow, scale, and legend as applicable. Approximate scales are not acceptable. Figures required in Appendix H should not be included in this section. New figures must include those listed below. Attach additional figures as needed and list below.

- One or more site maps showing (as applicable):
  - Structures
  - Boring and well locations (including any drinking water wells on site)
  - Suspected source(s) of LNAPL
  - Locations and depths of on-site buried utilities
  - All past and present petroleum storage tanks, piping, dispensers, and transfer areas
  - Horizontal extent of LNAPL
  - Horizontal extent of the target zone
  - Remediation and monitoring points, conveyance lines, equipment shed, and waste discharge locations
  - Distinguish sequential elements of investigations by dates, symbols, etc. in the legend.
- Cross sections depicting target-zone geometry, geology, and hydrogeology and preferential flow routes and barriers to flow
- Process and instrumentation diagram

Figures Included:

- Figure 1 Site Location Map
- Figure 2 Aerial Site View
- Figure 3 SVE Wells and Monitoring Points
- Figure 4 LIF Maximum Fluorescence Contour Map <15'
- Figure 5 LIF Maximum Fluorescence Contour Map <15'
- Figure 6 Existing and Proposed SVE System Features
- Figure 7 Utility Locations
- Figure 8 Groundwater Gradient Contour Map
- Figure 9 End Points of Geologic Cross Sections
- Figure 10 Cross Section A-A'
- Figure 11A Cross Section B-B' (Southwest)
- Figure 11B Cross Section B-B' (Middle)
- Figure 11C Cross Section B-B' (Northeast)
- Figure 12 Process and Instrumentation Diagram
- Figure 13 ROI Test #1 Both SV-1 and SV-2
- Figure 14 ROI –Test #2 SV-1 Only
- Figure 15– ROI Test #4 SV-2 Only
- Figure 16 ROI Test #5 SV-1 Only with 50% Dilution Air
- Figure 16 ROI Test #6 SV-2 Only with 50% Dilution Air

# Section 16: Tables

Attach new tables specific to this report in order of discussion in the text. Tables required in Appendix H should not be included in this section. New tables must include those listed below. Attach additional tables as needed and list below.

Table 1
 Remediation and Monitoring Point Construction Summary

### Table 1 – Pilot Test and Monitoring Point Data Sheets

 Table 2 – Effluent Analytical Summary Table

Table 3 – Total VOC concentrations

# Section 17: Appendices

Attach all required or applicable appendices in the following order. Indicate those appendices that are included in this report by marking the check box. All reproduced data must be legible. Attach additional appendices as needed and list below.

|             | Appendix A | Waste handling and disposal documentation, required permit/approval applications and/or acquired permit/approvals, and Guidance Document 7-09b <i>Air Emissions Screening Spreadsheet</i> documentation.          |
|-------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Appendix B | Focused investigation tables, figures, and other information, if applicable.                                                                                                                                      |
| $\boxtimes$ | Appendix C | Boring logs, construction diagrams, and MDH Well and Boring Records for all remediation and monitoring points.                                                                                                    |
| $\boxtimes$ | Appendix D | Copies of laboratory analytical reports, including a copy of the chain-of-custody form. Include laboratory QA/QC data, chromatograms, and MDH laboratory certification number.                                    |
| $\boxtimes$ | Appendix E | Excerpts from manufacturer- or vendor-supplied equipment and instrumentation manuals.                                                                                                                             |
| $\boxtimes$ | Appendix F | Field or sampling data sheets or logs (sampling forms, field crew notes, etc.).                                                                                                                                   |
| $\boxtimes$ | Appendix G | Updated life-cycle cost estimate for the proposed corrective action and, if applicable, updated life-cycle cost estimates for non-selected alternatives.                                                          |
| $\boxtimes$ | Appendix H | Cumulative and updated tables and figures from Guidance Document 4-06 Investigation Report Form.                                                                                                                  |
| $\boxtimes$ | Appendix I | Additional site investigation, site monitoring, and interim corrective action methods and procedures and associated documentation (boring logs, sampling information forms, laboratory analytical reports, etc.). |

**Figures** 









| <2%<br>-45 | <22%<br>L-44<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6<br>-2/TH-6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                               |                   |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LEGEND<br>• 11-22<br>• 1.0P-1-1<br>• | 20 40<br>GRAPHIC SCALE IN FEET<br>TARGET ZONE 0'-15'<br>SOLI BORING (SEPT 201<br>H-8 MONITORING WELL<br>LIF/EC PROBE (MAR 20<br>LIF-EC PROBE (MAR 20<br>LIF-EC PROBE (SEPT 21 | 2)<br>11)<br>212) |
|            | PROJECT TITLE<br>PILOT TEST<br>FORMER UNION 76<br>CAMBRIDGE, MN<br>MILLE LACS OILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SHEET TITLE<br>LIF MA<br>CON<br>DWN BY CHK'D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | XIMUM FLUORESEN<br>TOUR MAP <15 FT                                                                                                                                            | CE<br>2016        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CVE         AZ           PROJECT NO.         3228-0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SCALE AS SH<br>SHEET NO.<br>FIGURE 4                                                                                                                                          | OWN<br>REV NO.    |







|     |                      |     |     |          | SEAL | PRIME CONSULTANT                                                            |
|-----|----------------------|-----|-----|----------|------|-----------------------------------------------------------------------------|
|     |                      |     |     |          |      |                                                                             |
|     |                      |     |     |          |      | V WENCK                                                                     |
|     |                      |     |     |          |      | ASSOCIATES                                                                  |
|     |                      |     |     |          |      |                                                                             |
|     |                      |     |     |          |      | Responsive partner, Exceptional outcomes,                                   |
| 0   | ISSUED FOR REVIEW    | CVE | APZ | 2/27/14  |      |                                                                             |
| REV | REVISION DESCRIPTION | DWN | APP | REV DATE |      | 1800 PIONNER CREEK CENTER 763.479.4200<br>MAPLE PLAIN MN 55359 763.479.4242 |

| -44 $-12$ $-12$ $-12$ $-12$ $-12$ $-12$ $-12$ $-12$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ | LEGEND<br>MH-3 JTH 5 WOINTOR WELL<br>MH-3 TH 5 WOINTOR WELL<br>MH-3 TH 5 WOINTOR WELL                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LEGEND<br>TH-22 SOIL BORING<br>WW-3/TH-8 MONITORING WELL<br>BOWPOR PT. 2 VAPOR PROBE<br>* SUBSLAB VAPOR SAMPLE<br>>>                                                                                                                                            |
| PROJECT TITLE PILOT TEST<br>FORMER UNION 76<br>CAMBRIDGE, MN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                 |
| MILLE LACS UILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | UWN         BY         CHK'D         APP'D         DWG DATE         FEB.         2016           CVE         AZ         PROJECT NO.         SHEET NO.         REV NO.         REV NO.           3228–0009         FIGURE         7         T         T         T |



|          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                                                                                                                                                                                                                        | -          |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 6.39     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |                                                                                                                                                                                                                        |            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |                                                                                                                                                                                                                        |            |
|          | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |                                                                                                                                                                                                                        |            |
|          | j j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                                                                                                                                                                                                                        |            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |                                                                                                                                                                                                                        |            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |                                                                                                                                                                                                                        |            |
|          | MW−2/TH−6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                       |                                                                                                                                                                                                                        |            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |                                                                                                                                                                                                                        |            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |                                                                                                                                                                                                                        |            |
|          | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                                                                                                                                                                                                                        |            |
|          | T+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                                                                                                                                                                                                                        |            |
| [H–24    | I I I I I I I I I I I I I I I I I I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |                                                                                                                                                                                                                        |            |
| <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |                                                                                                                                                                                                                        |            |
|          | i Ei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |                                                                                                                                                                                                                        |            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |                                                                                                                                                                                                                        |            |
|          | t is the second |                                                                       |                                                                                                                                                                                                                        |            |
|          | ; <u></u> = = = = = = = = = = = = = = = = = =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |                                                                                                                                                                                                                        |            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |                                                                                                                                                                                                                        |            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |                                                                                                                                                                                                                        |            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |                                                                                                                                                                                                                        |            |
| /        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |                                                                                                                                                                                                                        |            |
| /        | ŧ ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                                                                                                                                                                                                                        |            |
|          | ŧ ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                                                                                                                                                                                                                        |            |
| ĺ        | Ŧ Ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                                                                                                                                                                                                                        |            |
| /        | Ŧ Ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                                                                                                                                                                                                                        |            |
| /        | ŧ ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                                                                                                                                                                                                                        |            |
| í.       | ŧ ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                                                                                                                                                                                                                        |            |
|          | ŧ ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                                                                                                                                                                                                                        |            |
|          | Ŧ Ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                                                                                                                                                                                                                        |            |
|          | Ŧ Ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                                                                                                                                                                                                                        |            |
|          | ŧ ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |                                                                                                                                                                                                                        |            |
|          | <i>主 主</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |                                                                                                                                                                                                                        |            |
|          | Ē Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       | Λ                                                                                                                                                                                                                      |            |
| 7        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       | 4                                                                                                                                                                                                                      |            |
| I        | ĒĒ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |                                                                                                                                                                                                                        |            |
| ŧ        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       |                                                                                                                                                                                                                        |            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ê                                                                     | 30 60<br>GRAPHIC SCALE IN FEET                                                                                                                                                                                         |            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       | 30 60<br>GRAPHIC SCALE IN FEET                                                                                                                                                                                         |            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LEGEND<br>OTH-22<br>OLGP-1-<br>R Ww-3/1                               | 30 60<br>GRAPHIC SCALE IN FEET<br>SOIL BORING<br>SOIL BORING (SEPT 2012)<br>H-8 MONITORING WELL                                                                                                                        |            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LEGEND<br>©TH-22<br>(● LCP-1<br>Nww-3/T                               | 30 60<br>GRAPHIC SCALE IN FEET<br>SOIL BORING<br>2 SOIL BORING (SEPT 2012)<br>H-8 MONITORING WELL<br>- GROUNDWATER GRADIENT CONTO                                                                                      | ι          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LEGEND<br>OTH-22<br>(●)LGP-1-<br>Mw-3/T                               | 30 60<br>GRAPHIC SCALE IN FEET<br>SOIL BORING<br>2 SOIL BORING (SEPT 2012)<br>H-8 MONITORING WELL<br>- GROUNDWATER GRADIENT CONTO                                                                                      | ι          |
| PRO      | VECT TITLE PILOT TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LEGEND<br>TH-22<br>CTH-22<br>CLCP-1-<br>MW-3/T<br>SHEET TITLE<br>GROU | 30 60<br>GRAPHIC SCALE IN FEET<br>SOIL BORING<br>SOIL BORING (SEPT 2012)<br>H-B MONTORING WELT<br>- GROUNDWATER GRADIENT CONTO                                                                                         | <i>ا</i> ل |
| PRO      | VECT TITLE<br>PILOT TEST<br>FORMER UNION 76<br>CAMBRIDGE, MN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LEGEND<br>TH-22<br>(•) LCP-1<br>WW-3/T<br>SHEET TITLE<br>GROU<br>CONT | 30 60<br>GRAPHIC SCALE IN FEET<br>SOIL BORING<br>SOIL BORING (SEPT 2012)<br>H-B MONITORING WELL<br>GROUNDWATER GRADIENT CONTO<br>NDWATER GRADIENT<br>OUR MAP 11/7/14                                                   | ر<br>ا     |
| PRO      | JECT TITLE<br>PILOT TEST<br>FORMER UNION 76<br>CAMBRIDGE, MN<br>MILLE LACS OILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                       | 30 60<br>GRAPHIC SCALE IN FEET<br>SOIL BORING<br>2 SOIL BORING (SEPT 2012)<br>H-B MONITORING WELL<br>- GROUNDWATER GRADIENT CONTO<br>NDWATER GRADIENT<br>OUR MAP 11/7/14<br>APP'D DWG DATE FEB. 2016<br>SCALE AS SHOWN | ر<br>ا     |





|     |                      |     |     |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                    |               |             |       |                   |                                       |                  | HORIZONTAL SCA | LE: 1"=20 FT.<br>1"=5 FT. |
|-----|----------------------|-----|-----|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------|-------------|-------|-------------------|---------------------------------------|------------------|----------------|---------------------------|
|     |                      |     |     |          | <b>WENCK</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1800 PIONEER CREEK CENTER<br>MAPLE PLAIN, MN 55359 | DWN BY<br>CVE | снк'd<br>AZ | APP'D | PROJECT<br>FORMER | PILOT TEST<br>UNION 76, CAMBRIDGE, MN | SHEET<br>TITLE C | ROSS SECTION   | A-A'                      |
|     |                      |     |     |          | ASSOCIATES<br>Responsive partner. Exceptional outcomes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | /63.4/9.4200<br>763.479.4242                       | DWG DA        | FEB. 2      | 2016  | CLIENT            | MILLE LACS OIL                        | PROJECT NO.      | SHEET NO.      | REV NO                    |
| REV | REVISION DESCRIPTION | DWN | APP | REV DATE | and a second barrier of the second barrier o |                                                    | SCALE         | AS SH       | OWN   |                   |                                       | 3228-0009        | FIGURE I       | 0                         |





1:\32

|                         |                                                            |                                                              | 965 -                             | _                         |
|-------------------------|------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------|---------------------------|
|                         |                                                            | IW-7<br>162.01<br>T GS                                       |                                   |                           |
|                         |                                                            | 26 L                                                         | /960/-                            |                           |
|                         |                                                            | 394                                                          | 955                               |                           |
| DRLY                    |                                                            | 1270                                                         | 950 -                             | -1°.                      |
| D SAND                  |                                                            | 948.01<br>1135<br>945.86<br>943.44                           | 945 -                             | MATCHLINE<br>SEE FIGURE 1 |
|                         |                                                            | 1494<br>1398<br>EOB @                                        | 940 –<br>938.01                   |                           |
|                         |                                                            |                                                              | 935                               |                           |
| 943.44<br>1270<br>(//// | LEG<br>GROUNDWAT<br>PID READIN<br>HISTORICAL<br>SILTY SAND | END<br>TER ELEVATION (AE<br>G<br>LIGHT NON—AQUE<br>ADED SAND | 30VE MSL)<br>925 –<br>OUS PHASE L | QUID                      |
| 540                     | 560                                                        | 580                                                          | 600                               |                           |
| EST<br>CAMBRIDGE, MN    | SHEET CF                                                   | ROSS SECT                                                    | ION B-                            | B'                        |
| S UIL                   | PROJECT NO. 3228-0009                                      | sheet no.<br>FIGURE                                          | 11B                               | REV NO.                   |



|                      |                          | HORIZONTAL SCALE: 1"=<br>VERTICAL SCALE: 1"= | 20 FT.<br>5 FT. |
|----------------------|--------------------------|----------------------------------------------|-----------------|
| EST<br>CAMBRIDGE, MN | SHEET<br>TITLE CF        | ROSS SECTION B-                              | B'              |
|                      |                          |                                              |                 |
| S UIL                | PROJECT NO.<br>3228-0009 | SHEET NO.<br>FIGURE 11C                      | REV NO.         |



Plot Date & Time:4 February 2016



| VI       | VACUUM INDICATOR            |
|----------|-----------------------------|
| PI       | PRESSURE INDICATOR          |
| LAH      | LEVEL ALARM HIGH            |
| LSHHLEVE | L SWITCH HIGH HIGH          |
| VRV      | VACCUM RELIEF VALVE         |
| DPI      | DIFFERENTIAL PRESSURE INDIC |
| FE       | FLOW ELEMENT (PITOT TUBE)   |
| HS       | HAND SWITCH (THIS IS LOCATE |
| НОА      | HAND/OFF/AUTO SWITCH        |
| TI       | TEMPERATURE INDICATOR       |
|          |                             |

| F |                                           | WENCK<br>ASSOCIATES<br>1800. PIONEER CREEK CENTER<br>MAPLE PLAIN, MN 55359<br>763.479.4200<br>763.479.4420 | DWN BY CHK'D APP'D<br>CVE AZ | PROJECT PILOT TEST<br>FORMER UNION 76, CAMBRIDGE, MN | SHEET<br>TITLE<br>INST | PROCESS AND<br>RUMENTATION DIAG | GRAM   |
|---|-------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------|------------------------|---------------------------------|--------|
|   |                                           |                                                                                                            | FEB. 2016                    | MILLE LACS UIL                                       | PROJECT NO.            | SHEET NO.                       | REV NO |
|   | REV REVISION DESCRIPTION DWN APP REV DATE |                                                                                                            | SCALE AS SHOWN               | 1                                                    | 3228-0009              | FIGURE 12                       |        |

TED ON THE PANEL)

CATOR

2" GALV

- DISCHARGE SILENCER





# Legend

- O Deep Monitoring Points
- Existing Monitoring Well  $\mathbf{\Phi}$
- ▲ SVE Well

## **Differential Pressure**

- -10.0
- -1.0
- -0.1
- – Inferred Contour
- ROI Radius of Influence

2011 Aerial Photograph (Source: MN GEO)

Path: L:\3228\0005\mxd\Pressure Contours\Run 4 Deep.mxd Date: 2/2/2016 Time: 1:46:33 PM User: kachd0606

60

Feet 🖊

60

30



MW-GA MW-G

ROI Test #4 - SV-2 Only



MW=1 -0.79

P=4D =5.42

P=3D =14.50

5V-1

P=7/D =8.69

P-8D -1.31

MW-11 -0.62

P-9D -1.53

 $(\mathbf{O})$ 

MW-7 -1.45

MW-8 -0.52

MW-9 -0.11

P=10D -0.73

# Legend

- O Deep Monitoring Points
- + Existing Monitoring Well
- ▲ SVE Well

# **Differential Pressure**

- -10.0
- -1.0
- -0.1
- – Inferred Contour
- ROI Radius of Influence

2011 Aerial Photograph (Source: MN GEO)

Path: L:\3228\0005\mxd\Pressure Contours\Run 5 Deep.mxd Date: 2/2/2016 Time: 1:48:49 PM User: kachd0606

60

Feet 📕

60

30



MW-GA MW-G





P=4D =2.59

P=8D =6.35

**SV-1** 

P=7D =2.19

P-8D -0.78

MW=11 -0.52

P-9D -1.20

MW-7 -0-92

MW-8 -0-26

P=10D -0.417
# Legend

- O Deep Monitoring Points
- Existing Monitoring Well  $\mathbf{\Phi}$
- ▲ SVE Well

# **Differential Pressure**

- -10.0
- -1.0
- -0.1

60

- – Inferred Contour
- ROI Radius of Influence

ROI Test #6 - SV-2 Only with 50% Dilution Air





Tables

| Date       | Run # | SVE-1<br>approx<br>% | SVE-2<br>approx<br>% | Time        | Vacuum -<br>Pre-<br>manifold<br>(SV-1)<br>(in H2O) | Vacuum -<br>Pre-<br>manifold<br>(SV-2)<br>(in H2O) | Total<br>Vacuum<br>Post-<br>Moisture<br>Separator<br>(in H2O) | SV-1<br>Velocity<br>FPM | SV-1<br>Airflow<br>(SFM) | SV-2<br>Velocity<br>FPM | SV-2<br>Airflow<br>(SFM) | Stack<br>Temp (F) | PID<br>Reading<br>Effluent<br>(ppm) | TO-15<br>Sample<br>Collected | Dilution<br>Air<br>approx<br>% | Notes                                             |
|------------|-------|----------------------|----------------------|-------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|-------------------------|--------------------------|-------------------------|--------------------------|-------------------|-------------------------------------|------------------------------|--------------------------------|---------------------------------------------------|
| 11/16/2015 |       | 100                  | 100                  | 12:21:00 PM | NA*                                                | NA*                                                | -19                                                           | NA*                     | NA*                      | NA*                     | NA*                      | NA*               | 906                                 |                              | 0                              | NA*- H2K Installed Gauges not working<br>properly |
| 11/16/2015 |       | 100                  | 100                  | 12:52:00 PM | NA*                                                | NA*                                                | -25                                                           | NA*                     | NA*                      | NA*                     | NA*                      | NA*               | 1070                                | E-1                          | 0                              | NA*- H2K Installed Gauges not working<br>properly |
| 11/16/2015 | 1     | 100                  | 100                  | 1:45:00 PM  | -20.6                                              | -20.6                                              | -25                                                           | 700                     | 34                       | 1140                    | 55                       | 65                | 1010                                |                              | 0                              | Switched to hand measurements with fluke          |
| 11/16/2015 |       | 100                  | 100                  | 2:35:00 PM  | -22.8                                              | -22.5                                              | -22.5                                                         | 1100                    | 40                       | 1415                    | 69                       | 70                | 1025                                |                              | 0                              |                                                   |
| 11/16/2015 |       | 100                  | 100                  | 3:22:00 PM  | -31.1                                              | -32.2                                              | -29                                                           | 1200                    | 55                       | 1880                    | 75                       | 72                | 1126                                |                              | 0                              |                                                   |
| 11/16/2015 |       | 100                  | 100                  | 4:02:00 PM  | -31.9                                              | -31.9                                              | -30                                                           | 750                     | 51                       | 1065                    | 59                       | 70                | 1087                                |                              | 0                              |                                                   |
| 11/17/2015 |       | 100                  | 0                    | 8:53:00 AM  | -43.4                                              |                                                    | -40                                                           | 1300                    | 62                       |                         | -                        | 74                | 1100                                |                              | 0                              |                                                   |
| 11/17/2015 |       | 100                  | 0                    | 9:54:00 AM  | -50.5                                              |                                                    | -41                                                           | 1132                    | 57                       |                         |                          | 76                | 945                                 |                              | 0                              |                                                   |
| 11/17/2015 | 2     | 100                  | 0                    | 10:35:00 AM | -51.5                                              |                                                    | -49                                                           | 1128                    | 55                       |                         |                          | 83                | 977                                 |                              | 0                              |                                                   |
| 11/17/2015 |       | 100                  | 0                    | 11:33:00 AM | -50.3                                              |                                                    | -45                                                           | 1147                    | 56                       |                         |                          | 85                | 978                                 |                              | 0                              |                                                   |
| 11/17/2015 |       | 100                  | 0                    | 12:57:00 PM | -51                                                |                                                    | -50                                                           | 1135                    | 55                       |                         |                          | 80                | 1498                                |                              | 0                              |                                                   |
| 11/17/2015 | 3     | 100                  | 100                  | 1:18:00 PM  | -37                                                | -37.4                                              | -32                                                           | 760                     | 36                       | 1400                    | 86                       | 75                | 1216                                | E-2                          | 0                              | 1:02 PM - Opened both wells for TO-15 sample      |

| 11/17/2015                                                                       |   | 0                                 | 100                                    | 1:26:00 PM                                                                        | -   | -51.6                                        | -49                                     |                     |    | 1300                                | 58                                   | 80                             | 1104                                     |     | 0                               |                                                                                                                                                            |
|----------------------------------------------------------------------------------|---|-----------------------------------|----------------------------------------|-----------------------------------------------------------------------------------|-----|----------------------------------------------|-----------------------------------------|---------------------|----|-------------------------------------|--------------------------------------|--------------------------------|------------------------------------------|-----|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11/17/2015                                                                       | 4 | 0                                 | 100                                    | 2:08:00 PM                                                                        | -   | -53.5                                        | -50                                     | -                   | -  | 1376                                | 60                                   | 82                             | 1036                                     |     | 0                               |                                                                                                                                                            |
| 11/17/2015                                                                       | 4 | 0                                 | 100                                    | 12:00:00 AM                                                                       | -   | -54.4                                        | -50                                     |                     | -  | 1270                                | 61                                   | 77                             | 939                                      |     | 0                               |                                                                                                                                                            |
| 11/17/2015                                                                       |   | 0                                 | 100                                    | 3:32:00 PM                                                                        | -   | -53.8                                        | -50                                     |                     | -  | 1149                                | 57                                   | 80                             | 1066                                     |     | 0                               |                                                                                                                                                            |
| 11/18/2015                                                                       |   | 100                               | 0                                      | 8:50:00 AM                                                                        | -25 |                                              | -23                                     | 806                 | 37 |                                     |                                      | 72                             | 1250                                     |     | 50                              | Tweaked dilution air valve to keep vacuum<br>@ -25(in H20)                                                                                                 |
| 11/18/2015                                                                       | 5 | 100                               | 0                                      | 9:44:00 AM                                                                        | -25 |                                              | -22                                     | 750                 | 31 |                                     |                                      | 73                             | 1437                                     |     | 50                              | Tweaked dilution air valve to keep vacuum<br>@ -25(in H20)                                                                                                 |
| 11/18/2015                                                                       |   | 100                               | 0                                      | 10:30:00 AM                                                                       | -25 |                                              | -23                                     | 950                 | 51 |                                     |                                      | 73                             | 1452                                     |     | 50                              | Tweaked dilution air valve to keep vacuum<br>@ -25(in H20)                                                                                                 |
| 11/18/2015                                                                       |   | 100                               | 0                                      | 11:25:00 AM                                                                       | -25 |                                              | -21                                     | 900                 | 45 |                                     | -                                    | 73                             | 1455                                     |     | 50                              | Tweaked dilution air valve to keep vacuum<br>@ -25(in H20)                                                                                                 |
|                                                                                  |   |                                   |                                        |                                                                                   |     |                                              |                                         |                     |    |                                     |                                      |                                |                                          |     |                                 |                                                                                                                                                            |
| 11/18/2015                                                                       |   | 0                                 | 100                                    | 11:55:00 AM                                                                       |     | -26.5                                        |                                         |                     |    |                                     |                                      |                                |                                          |     | 50                              | Set vacuum to -26.5(in H20) then waited appx 1 hour for system to equilibrate.                                                                             |
| 11/18/2015                                                                       |   | 0                                 | 100<br>100                             | 11:55:00 AM<br>1:21:00 PM                                                         |     | -26.5<br>-26.8                               | <br>-22                                 |                     |    | <br>929                             | <br>46                               | <br>74                         | <br>1313                                 |     | 50<br>50                        | Set vacuum to -26.5(in H20) then waited<br>appx 1 hour for system to equilibrate.<br>Vac - SV-2 -27.5(in H20) - Opened dilution<br>to get to -26.8(in H20) |
| 11/18/2015<br>11/18/2015<br>11/18/2015                                           | 6 | 0                                 | 100<br>100<br>100                      | 11:55:00 AM<br>1:21:00 PM<br>2:20:00 PM                                           |     | -26.5<br>-26.8<br>-27                        |                                         |                     |    | <br>929<br>862                      | <br>46<br>43                         | <br>74<br>73                   | <br>1313<br>1372                         |     | 50<br>50<br>50                  | Set vacuum to -26.5(in H20) then waited<br>appx 1 hour for system to equilibrate.<br>Vac - SV-2 -27.5(in H20) - Opened dilution<br>to get to -26.8(in H20) |
| 11/18/2015<br>11/18/2015<br>11/18/2015<br>11/18/2015                             | 6 | 0 0 0 0                           | 100<br>100<br>100<br>100               | 11:55:00 AM<br>1:21:00 PM<br>2:20:00 PM<br>2:55:00 PM                             |     | -26.5<br>-26.8<br>-27<br>-27.9               | <br>-22<br>-22<br>-22.5                 |                     |    | <br>929<br>862<br>815               | <br>46<br>43<br>43                   | <br>74<br>73<br>73             | <br>1313<br>1372<br>1460                 |     | 50<br>50<br>50<br>50            | Set vacuum to -26.5(in H20) then waited<br>appx 1 hour for system to equilibrate.<br>Vac - SV-2 -27.5(in H20) - Opened dilution<br>to get to -26.8(in H20) |
| 11/18/2015<br>11/18/2015<br>11/18/2015<br>11/18/2015<br>11/18/2015               | 6 | 0<br>0<br>0<br>0<br>0             | 100<br>100<br>100<br>100<br>100        | 11:55:00 AM<br>1:21:00 PM<br>2:20:00 PM<br>2:55:00 PM<br>3:33:00 PM               |     | -26.5<br>-26.8<br>-27<br>-27.9<br>-28        | <br>-22<br>-22<br>-22.5<br>-23          |                     |    | <br>929<br>862<br>815<br>820        | <br>46<br>43<br>43<br>43<br>42       | <br>74<br>73<br>73<br>70       | <br>1313<br>1372<br>1460<br>1487         |     | 50<br>50<br>50<br>50<br>50      | Set vacuum to -26.5(in H20) then waited<br>appx 1 hour for system to equilibrate.<br>Vac - SV-2 -27.5(in H20) - Opened dilution<br>to get to -26.8(in H20) |
| 11/18/2015<br>11/18/2015<br>11/18/2015<br>11/18/2015<br>11/18/2015<br>11/18/2015 | 6 | 0<br>0<br>0<br>0<br>0<br>0<br>100 | 100<br>100<br>100<br>100<br>100        | 11:55:00 AM<br>1:21:00 PM<br>2:20:00 PM<br>2:55:00 PM<br>3:33:00 PM<br>4:00:00 PM | 33  | -26.5<br>-26.8<br>-27<br>-27.9<br>-28<br>-33 | <br>-22<br>-22<br>-22.5<br>-23<br>-31.5 | <br><br><br><br>946 |    | <br>929<br>862<br>815<br>820<br>883 | <br>46<br>43<br>43<br>43<br>42<br>44 | <br>74<br>73<br>73<br>70<br>74 | <br>1313<br>1372<br>1460<br>1487<br>1699 | E-3 | 50<br>50<br>50<br>50<br>50<br>0 | Set vacuum to -26.5(in H20) then waited<br>appx 1 hour for system to equilibrate.<br>Vac - SV-2 -27.5(in H20) - Opened dilution<br>to get to -26.8(in H20) |
| 11/18/2015<br>11/18/2015<br>11/18/2015<br>11/18/2015<br>11/18/2015<br>11/18/2015 | 6 | 0<br>0<br>0<br>0<br>0<br>100      | 100<br>100<br>100<br>100<br>100<br>100 | 11:55:00 AM<br>1:21:00 PM<br>2:20:00 PM<br>2:55:00 PM<br>3:33:00 PM<br>4:00:00 PM | 33  | -26.5<br>-26.8<br>-27<br>-27.9<br>-28<br>-33 | <br>-22<br>-22.5<br>-23<br>-31.5        | <br><br><br><br>946 |    | <br>929<br>862<br>815<br>820<br>883 | <br>46<br>43<br>43<br>43<br>42<br>44 | <br>74<br>73<br>73<br>70<br>74 | <br>1313<br>1372<br>1460<br>1487<br>1699 | E-3 | 50<br>50<br>50<br>50<br>50<br>0 | Set vacuum to -26.5(in H20) then waited<br>appx 1 hour for system to equilibrate.<br>Vac - SV-2 -27.5(in H20) - Opened dilution<br>to get to -26.8(in H20) |

| F                      | Run #                           | <b>#</b>                        | B4 S        | tartup                                   |      |                                          |      |                                          |      |                                       |
|------------------------|---------------------------------|---------------------------------|-------------|------------------------------------------|------|------------------------------------------|------|------------------------------------------|------|---------------------------------------|
| Monitoring<br>Point ID | Distance<br>from SV-<br>1 (ft.) | Distance<br>from SV-<br>2 (ft.) | Time        | Differential Pressure<br>Reading (in WC) | Time | Differential Pressure<br>Reading (in WC) | Time | Differential Pressure<br>Reading (in WC) | Time | Differential Press<br>Reading (in WC) |
| MW-3                   | 18                              | 27                              | 9:48:00 AM  | 0.00                                     |      |                                          |      |                                          |      |                                       |
| P-1S                   | 29                              | 40                              | 9:50:00 AM  | 0.11                                     |      |                                          |      |                                          |      |                                       |
| P-2S                   | 42                              | 18                              | 9:45:00 AM  | -0.03                                    |      |                                          |      |                                          |      |                                       |
| P-2D                   | 42                              | 18                              | 9:45:00 AM  | 0.02                                     |      |                                          |      |                                          |      |                                       |
| P-3S                   | 27                              | 21                              | 9:55:00 AM  | 0.05                                     |      |                                          |      |                                          |      |                                       |
| P-3D                   | 27                              | 21                              | 9:55:00 AM  | 0.04                                     |      |                                          |      |                                          |      |                                       |
| P-4D                   | 70                              | 70                              | 10:00:00 AM | 0.02                                     |      |                                          |      |                                          |      |                                       |
| P-5S                   | 151                             | 149                             | 10:05:00 AM | 0.03                                     |      |                                          |      |                                          |      |                                       |
| MW-1                   | 157                             | 155                             | 10:10:00 AM | 0.05                                     |      |                                          |      |                                          |      |                                       |
| P-6D                   | 87                              | 61                              | 10:12:00 AM | 0.05                                     |      |                                          |      |                                          |      |                                       |
| P-7S                   | 78                              | 81                              | 10:15:00 AM | -0.07                                    |      |                                          |      |                                          |      |                                       |
| P-7D                   | 78                              | 81                              | 10:15:00 AM | 0.08                                     |      |                                          |      |                                          |      |                                       |
| P-8D                   | 116                             | 117                             | 10:20:00 AM | 0.14                                     |      |                                          |      |                                          |      |                                       |
| MW-11                  | 140                             | 144                             | 10:22:00 AM | 0.09                                     |      |                                          |      |                                          |      |                                       |
| P-9S                   | 76                              | 104                             | 10:25:00 AM | 0.05                                     |      |                                          |      |                                          |      |                                       |
| P-9D                   | 76                              | 104                             | 10:25:00 AM | 0.10                                     |      |                                          |      |                                          |      |                                       |
| P-10S                  | 134                             | 158                             | 10:30:00 AM | 0.09                                     |      |                                          |      |                                          |      |                                       |
| P-10D                  | 134                             | 158                             | 10:30:00 AM | 0.09                                     |      |                                          |      |                                          |      |                                       |
| MW-7                   | 101                             | 126                             | 10:45:00 AM | 0.13                                     |      |                                          |      |                                          |      |                                       |
| MW-8                   | 149                             | 176                             | 10:50:00 AM | 0.11                                     |      |                                          |      |                                          |      |                                       |
| MW-9                   | 217                             | 241                             | 11:45:00 AM | 0.08                                     |      |                                          |      |                                          |      |                                       |
| MW-6                   | 362                             | 386                             | 11:00:00 AM | 0.03                                     |      |                                          |      |                                          |      |                                       |
| MW-6A                  | 365                             | 393                             | 11:00:00 AM | 0.01                                     |      |                                          |      |                                          |      |                                       |
| MW-10                  | 522                             | 552                             | 11:15:00 AM | 0.01                                     |      |                                          |      |                                          |      |                                       |
|                        |                                 |                                 |             |                                          |      |                                          |      |                                          |      |                                       |
| Matea                  |                                 |                                 |             |                                          |      |                                          |      |                                          |      |                                       |

Notes:

ure

Table 1 Pilot Test Data Sheet Former Union 76 Mille Lacs Oil

| Run a                  | # 1 Shallow<br>Distance Distance Differentia |                                     |               |                                             |         |                                             |            |                                             |         |                                             |         |                                          |
|------------------------|----------------------------------------------|-------------------------------------|---------------|---------------------------------------------|---------|---------------------------------------------|------------|---------------------------------------------|---------|---------------------------------------------|---------|------------------------------------------|
| Monitoring<br>Point ID | Distance<br>from S<br>1 (ft.)                | e Distance<br>V-from SV-<br>2 (ft.) | Time          | Differential<br>Pressure Reading<br>(in WC) | Time    | Differential<br>Pressure Reading<br>(in WC) | Time       | Differential<br>Pressure Reading<br>(in WC) | Time    | Differential<br>Pressure Reading<br>(in WC) | Time    | Differential Pressure<br>Reading (in WC) |
| P-1S                   | 29                                           | 40                                  | 12:51 PM      | -4.54                                       | 2:06 PM | -4.90                                       | 3:01:00 PM | -5.62                                       | 3:42 PM | -5.75                                       | 4:11 PM | -5.02                                    |
| P-2S                   | 42                                           | 18                                  | 12:52 PM      | -8.31                                       | 2:07 PM | -9.12                                       | 3:03:00 PM | -11.34                                      | 3:43 PM | -11.43                                      | 4:11 PM | -10.87                                   |
| P-3S                   | 27                                           | 21                                  | 12:53 PM      | -2.51                                       | 2:10 PM | -0.42                                       | 3:05:00 PM | 0.10                                        | 3:45 PM | -0.32                                       | 4:15 PM | -0.33                                    |
| P-5S                   | 151                                          | 149                                 | 12:55 PM      | -0.11                                       | 2:15 PM | -0.51                                       | 3:09:00 PM | -0.59                                       | 3:48 PM | -0.25                                       | 4:20 PM | -0.25                                    |
| P-7S                   | 78                                           | 81                                  | 12:58 PM      | -1.49                                       | 2:17 PM | -2.10                                       | 3:15:00 PM | -2.43                                       | 3:52 PM | -2.57                                       | 4:26 PM | -2.42                                    |
| P-9S                   | 76                                           | 104                                 | 1:05 PM       | -0.72                                       | 2:22 PM | -0.60                                       | 3:20:00 PM | -0.80                                       | 3:54 PM | -0.79                                       | 4:30 PM | -0.79                                    |
| P-10S                  | 134                                          | 158                                 | 1:06 PM       | -0.50                                       | 2:24 PM | -0.47                                       | 3:23:00 PM | -0.62                                       | 3:56 PM | -0.63                                       | 4:32 PM | -0.63                                    |
|                        |                                              |                                     |               |                                             |         |                                             |            |                                             |         |                                             |         |                                          |
| Notes: S               | hallow                                       | / Monitor                           | ing Points On | ly                                          | -       |                                             |            |                                             |         |                                             |         |                                          |

| Run # <sup>2</sup>     | 1 Dee                           | эр                              |             |                                          |            |                                          |            |                                          |            |                                          |            |                                          |
|------------------------|---------------------------------|---------------------------------|-------------|------------------------------------------|------------|------------------------------------------|------------|------------------------------------------|------------|------------------------------------------|------------|------------------------------------------|
| Monitoring Point<br>ID | Distance<br>from SV-<br>1 (ft.) | Distance<br>from SV-<br>2 (ft.) | Time        | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) |
| MW-3                   | 18                              | 27                              | 12:50:00 PM | 0.00                                     | 2:05:00 PM | -0.05                                    | 3:00:00 PM | -0.43                                    | 3:41:00 PM | -0.02                                    | 4:09:00 PM | -0.05                                    |
| P-2D                   | 42                              | 18                              | 12:52:00 PM | -8.78                                    | 2:08:00 PM | -9.77                                    | 3:03:00 PM | -11.96                                   | 3:44:00 PM | -12.01                                   | 4:11:00 PM | -11.49                                   |
| P-3D                   | 27                              | 21                              | 12:53:00 PM | -11.40                                   | 2:12:00 PM | -12.05                                   | 3:06:00 PM | -14.10                                   | 3:46:00 PM | -14.16                                   | 4:17:00 PM | -13.85                                   |
| P-4D                   | 70                              | 70                              | 12:54:00 PM | -3.61                                    | 2:13:00 PM | -4.24                                    | 3:08:00 PM | -5.30                                    | 3:46:00 PM | -5.47                                    | 4:18:00 PM | -5.35                                    |
| MW-1                   | 157                             | 155                             | 12:56:00 PM | -0.32                                    | 2:14:00 PM | -0.18                                    | 3:10:00 PM | -0.18                                    | 3:48:00 PM | -0.80                                    | 4:21:00 PM | -0.69                                    |
| P-6D                   | 87                              | 61                              | 12:57:00 PM | -3.38                                    | 2:16:00 PM | -3.68                                    | 3:12:00 PM | -4.23                                    | 3:50:00 PM | -4.55                                    | 4:25:00 PM | -4.48                                    |
| P-7D                   | 78                              | 81                              | 12:58:00 PM | -3.12                                    | 2:19:00 PM | -3.43                                    | 3:16:00 PM | -4.14                                    | 3:53:00 PM | -4.24                                    | 4:27:00 PM | -4.16                                    |
| P-8D                   | 116                             | 117                             | 1:00:00 PM  | -1.03                                    | 2:21:00 PM | -1.11                                    | 3:18:00 PM | -1.42                                    | 3:53:00 PM | -1.49                                    | 4:28:00 PM | -1.46                                    |
| MW-11                  | 140                             | 144                             | 1:01:00 PM  | -0.42                                    | 2:20:00 PM | -0.48                                    | 3:19:00 PM | -0.66                                    | 3:54:00 PM | -0.57                                    | 4:29:00 PM | -0.58                                    |
| P-9D                   | 76                              | 104                             | 1:05:00 PM  | -1.80                                    | 2:23:00 PM | -1.68                                    | 3:21:00 PM | -2.08                                    | 3:55:00 PM | -2.14                                    | 4:30:00 PM | -2.08                                    |
| P-10D                  | 134                             | 158                             | 1:06:00 PM  | -0.76                                    | 2:25:00 PM | -0.65                                    | 3:24:00 PM | -0.90                                    | 3:57:00 PM | -0.91                                    | 4:32:00 PM | -0.91                                    |
| MW-7                   | 101                             | 126                             | 1:10:00 PM  | -1.42                                    | 2:26:00 PM | -1.50                                    | 3:25:00 PM | -1.84                                    | 3:56:00 PM | -1.78                                    | 4:31:00 PM | -1.75                                    |
| MW-8                   | 149                             | 176                             | 1:11:00 PM  | -0.44                                    | 2:27:00 PM | -0.32                                    | 3:26:00 PM | -0.67                                    | 3:58:00 PM | -0.55                                    | 4:32:00 PM | -0.54                                    |
| MW-9                   | 217                             | 241                             | 1:12:00 PM  | -0.02                                    | 2:29:00 PM | -0.60                                    | 3:27:00 PM | -0.11                                    | 3:59:00 PM | -0.43                                    | 4:35:00 PM | -0.38                                    |
| MW-6                   | 362                             | 386                             | 1:13:00 PM  | 0.03                                     | 2:30:00 PM | 0.03                                     | 3:30:00 PM | -0.51                                    | 4:00:00 PM | 0.00                                     | 4:40:00 PM | 0.00                                     |
| MW-6A                  | 365                             | 393                             | 1:13:00 PM  | 0.01                                     |            |                                          |            |                                          |            |                                          |            |                                          |
| MW-10                  | 522                             | 552                             | 1:14:00 PM  | 0.01                                     |            |                                          |            |                                          |            |                                          |            |                                          |
|                        |                                 |                                 |             |                                          |            |                                          |            |                                          |            |                                          |            |                                          |
| Notes: Deep            | monitor                         | ing poi                         | nts only    |                                          |            |                                          |            |                                          |            |                                          |            |                                          |

Table 1 Pilot Test Data Sheet Former Union 76 Mille Lacs Oil

| Run # 2 Shallow              |                                |                                   |            |                                          | Cambridge, MN |                                          |             |                                          |             |                                          |
|------------------------------|--------------------------------|-----------------------------------|------------|------------------------------------------|---------------|------------------------------------------|-------------|------------------------------------------|-------------|------------------------------------------|
| Monitoring Point ID          | Distance<br>from SV<br>1 (ft.) | Distance<br>- from SV-<br>2 (ft.) | ·Time      | Differential Pressure<br>Reading (in WC) | Time          | Differential Pressure<br>Reading (in WC) | Time        | Differential Pressure<br>Reading (in WC) | Time        | Differential Pressure<br>Reading (in WC) |
| P-1S                         | 29                             | 40                                | 9:24:00 AM | -5.08                                    | 10:15:00 AM   | -5.17                                    | 11:08:00 AM | -5.22                                    | 12:35:00 PM | -5.42                                    |
| P-2S                         | 42                             | 18                                | 9:26:00 AM | -6.71                                    | 10:15:00 AM   | -7.83                                    | 11:09:00 AM | -8.12                                    | 12:36:00 PM | -8.24                                    |
| P-3S                         | 27                             | 21                                | 9:28:00 AM | -0.13                                    | 10:17:00 AM   | -0.20                                    | 11:10:00 AM | 0.10                                     | 12:38:00 PM | -0.80                                    |
| P-5S                         | 151                            | 149                               | 9:31:00 AM | -0.11                                    | 10:19:00 AM   | -0.20                                    | 11:13:00 AM | -0.19                                    | 12:42:00 PM | -0.20                                    |
| P-7S                         | 78                             | 81                                | 9:35:00 AM | -1.23                                    | 10:21:00 AM   | -1.59                                    | 11:16:00 AM | -3.31                                    | 12:45:00 PM | -3.30                                    |
| P-9S                         | 76                             | 104                               | 9:39:00 AM | -0.73                                    | 10:24:00 AM   | -0.84                                    | 11:20:00 AM | -0.83                                    | 12:49:00 PM | -0.86                                    |
| P-10S                        | 134                            | 158                               | 9:41:00 AM | -0.48                                    | 10:27:00 AM   | -0.60                                    | 11:22:00 AM | -0.55                                    | 12:51:00 PM | -0.56                                    |
|                              |                                |                                   |            |                                          |               |                                          |             |                                          |             |                                          |
| Notes: Shallow monitoring po | oints on                       | ly                                |            |                                          |               |                                          |             |                                          |             |                                          |

| Run # 2 Deep           |                                 |                                 |            |                                          |             |                                          |             |                                          |             |                                          |
|------------------------|---------------------------------|---------------------------------|------------|------------------------------------------|-------------|------------------------------------------|-------------|------------------------------------------|-------------|------------------------------------------|
| Monitoring Point ID    | Distance<br>from SV-<br>1 (ft.) | Distance<br>from SV-<br>2 (ft.) | Time       | Differential Pressure<br>Reading (in WC) | Time        | Differential Pressure<br>Reading (in WC) | Time        | Differential Pressure<br>Reading (in WC) | Time        | Differential Pressure<br>Reading (in WC) |
| MW-3                   | 18                              | 27                              | 9:23:00 AM | 0.00                                     | 10:14:00 AM | 0.00                                     | 11:07:00 AM | 0.01                                     | 12:34:00 PM | 0.00                                     |
| P-2D                   | 42                              | 18                              | 9:27:00 AM | -7.05                                    | 10:16:00 AM | -8.16                                    | 11:09:00 AM | -8.44                                    | 12:37:00 PM | -8.54                                    |
| P-3D                   | 27                              | 21                              | 9:29:00 AM | -10.59                                   | 10:17:00 AM | -11.68                                   | 11:11:00 AM | -11.98                                   | 12:40:00 PM | -12.12                                   |
| P-4D                   | 70                              | 70                              | 9:30:00 AM | -3.78                                    | 10:18:00 AM | -4.57                                    | 11:12:00 AM | -4.76                                    | 12:41:00 PM | -4.84                                    |
| MW-1                   | 157                             | 155                             | 9:32:00 AM | -0.32                                    | 10:19:00 AM | -0.51                                    | 11:14:00 AM | -0.51                                    | 12:43:00 PM | -0.52                                    |
| P-6D                   | 87                              | 61                              | 9:34:00 AM | -2.56                                    | 10:20:00 AM | -3.03                                    | 11:15:00 AM | -3.17                                    | 12:44:00 PM | -3.16                                    |
| P-7D                   | 78                              | 81                              | 9:36:00 AM | -3.44                                    | 10:21:00 AM | -3.95                                    | 11:17:00 AM | -4.04                                    | 12:47:00 PM | -4.07                                    |
| P-8D                   | 116                             | 117                             | 9:37:00 AM | -1.07                                    | 10:22:00 AM | -1.33                                    | 11:18:00 AM | -1.33                                    | 12:48:00 PM | -1.33                                    |
| MW-11                  | 140                             | 144                             | 9:38:00 AM | -0.47                                    | 10:22:00 AM | -0.61                                    | 11:19:00 AM | -0.60                                    | 12:49:00 PM | -0.57                                    |
| P-9D                   | 76                              | 104                             | 9:40:00 AM | -1.93                                    | 10:24:00 AM | -2.20                                    | 11:21:00 AM | -2.21                                    | 12:50:00 PM | -2.24                                    |
| P-10D                  | 134                             | 158                             | 9:42:00 AM | -0.73                                    | 10:27:00 AM | -0.89                                    | 11:22:00 AM | -0.84                                    | 12:52:00 PM | -0.86                                    |
| MW-7                   | 101                             | 126                             | 9:43:00 AM | -1.68                                    | 10:26:00 AM | -1.98                                    | 11:23:00 AM | -1.98                                    | 12:51:00 PM | -1.97                                    |
| MW-8                   | 149                             | 176                             | 9:44:00 AM | -0.47                                    | 10:28:00 AM | -0.55                                    | 11:24:00 AM | -0.55                                    | 12:53:00 PM | -0.55                                    |
| MW-9                   | 217                             | 241                             | 9:45:00 AM | -0.03                                    | 10:29:00 AM | -0.04                                    | 11:25:00 AM | -0.02                                    | 12:54:00 PM | -0.01                                    |
| MW-6                   | 362                             | 386                             | 9:46:00 AM | 0.03                                     | 10:30:00 AM | 0.03                                     |             |                                          |             |                                          |
| MW-6A                  | 365                             | 393                             |            |                                          |             |                                          |             |                                          |             |                                          |
| MW-10                  | 522                             | 552                             |            |                                          |             |                                          |             |                                          |             |                                          |
|                        |                                 |                                 |            |                                          |             |                                          |             |                                          |             |                                          |
| Notes: Deep monitoring | points or                       | nly                             | •          |                                          |             |                                          | •           |                                          | •           |                                          |

|                     | Table 1<br>Pilot Test Data Sheet<br>Former Union 76<br>Milie Lacs Oli |                                 |            |                                             |            |                                             |                                             |  |  |  |  |  |  |  |
|---------------------|-----------------------------------------------------------------------|---------------------------------|------------|---------------------------------------------|------------|---------------------------------------------|---------------------------------------------|--|--|--|--|--|--|--|
| Run # 4 Sha         | allow                                                                 |                                 | Camb       | ridge, MN                                   |            |                                             |                                             |  |  |  |  |  |  |  |
| Monitoring Point ID | Distance<br>from SV-<br>1 (ft.)                                       | Distance<br>from SV-<br>2 (ft.) | Time       | Differential<br>Pressure Reading<br>(in WC) | Time       | Differential<br>Pressure Reading<br>(in WC) | Differential<br>Pressure Reading<br>(in WC) |  |  |  |  |  |  |  |
| P-1S                | 29                                                                    | 40                              | 1:38:00 PM | -3.46                                       | 2:30:00 PM | -3.26                                       | -3.17                                       |  |  |  |  |  |  |  |
| P-2S                | 42                                                                    | 18                              | 1:39:00 PM | -13.20                                      | 2:32:00 PM | -13.78                                      | -13.74                                      |  |  |  |  |  |  |  |
| P-3S                | 27                                                                    | 21                              | 1:42:00 PM | -0.88                                       | 2:34:00 PM | -0.94                                       | -0.84                                       |  |  |  |  |  |  |  |
| P-5S                | 151                                                                   | 149                             | 1:45:00 PM | -0.20                                       | 2:39:00 PM | -0.21                                       | -0.31                                       |  |  |  |  |  |  |  |
| P-7S                | 78                                                                    | 81                              | 1:53:00 PM | -2.93                                       | 2:42:00 PM | -2.89                                       | -3.57                                       |  |  |  |  |  |  |  |
| P-9S                | 76                                                                    | 104                             | 1:56:00 PM | -0.56                                       | 2:50:00 PM | -0.57                                       | -0.61                                       |  |  |  |  |  |  |  |
| P-10S               | 134                                                                   | 158                             | 1:57:00 PM | -0.44                                       | 2:53:00 PM | -0.45                                       | -0.51                                       |  |  |  |  |  |  |  |

Notes: Shallow monitoring points only

| Run # 4 Deep        | )                               |                                 |            |                                          |            |                                          |            |                                          |
|---------------------|---------------------------------|---------------------------------|------------|------------------------------------------|------------|------------------------------------------|------------|------------------------------------------|
| Monitoring Point ID | Distance<br>from SV-<br>1 (ft.) | Distance<br>from SV-<br>2 (ft.) | Time       | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) |
| MW-3                | 18                              | 27                              | 1:37:00 PM | 0.00                                     | 2:29:00 PM | 0.00                                     | 3:10:00 PM | 0.00                                     |
| P-2D                | 42                              | 18                              | 1:40:00 PM | -13.97                                   | 2:33:00 PM | -14.56                                   | 3:12:00 PM | -14.45                                   |
| P-3D                | 27                              | 21                              | 1:43:00 PM | -14.16                                   | 2:36:00 PM | -14.60                                   | 3:14:00 PM | -14.50                                   |
| P-4D                | 70                              | 70                              | 1:44:00 PM | -5.07                                    | 2:37:00 PM | -5.26                                    | 3:15:00 PM | -5.42                                    |
| MW-1                | 157                             | 155                             | 1:46:00 PM | -0.56                                    | 2:40:00 PM | -0.58                                    | 3:16:00 PM | -0.79                                    |
| P-6D                | 87                              | 61                              | 1:47:00 PM | -4.97                                    | 2:41:00 PM | -5.29                                    | 3:17:00 PM | -5.41                                    |
| P-7D                | 78                              | 81                              | 1:53:00 PM | -3.58                                    | 2:43:00 PM | -3.57                                    | 3:20:00 PM | -3.69                                    |
| P-8D                | 116                             | 117                             | 1:54:00 PM | -1.21                                    | 2:47:00 PM | -1.21                                    | 3:21:00 PM | -1.31                                    |
| MW-11               | 140                             | 144                             | 1:55:00 PM | -0.55                                    | 2:48:00 PM | -0.54                                    | 3:22:00 PM | -0.62                                    |
| P-9D                | 76                              | 104                             | 1:56:00 PM | -1.47                                    | 2:51:00 PM | -1.45                                    | 3:24:00 PM | -1.54                                    |
| P-10D               | 134                             | 158                             | 1:57:00 PM | -0.64                                    | 2:53:00 PM | -0.63                                    | 3:25:00 PM | -0.73                                    |
| MW-7                | 101                             | 126                             | 1:58:00 PM | -1.38                                    | 2:52:00 PM | -1.37                                    | 3:26:00 PM | -1.45                                    |
| MW-8                | 149                             | 176                             | 1:59:00 PM | -0.45                                    | 2:54:00 PM | -0.42                                    | 3:27:00 PM | -0.52                                    |
| MW-9                | 217                             | 241                             | 2:00:00 PM | 0.04                                     | 2:55:00 PM | -0.01                                    | 3:28:00 PM | -0.11                                    |
| MW-6                | 362                             | 386                             | 2:02:00 PM | 0.08                                     |            |                                          |            |                                          |
| MW-6A               | 365                             | 393                             |            |                                          |            |                                          |            |                                          |
| MW-10               | 522                             | 552                             |            |                                          |            |                                          |            |                                          |
| -                   |                                 |                                 |            |                                          |            |                                          |            |                                          |
|                     |                                 | 1                               |            |                                          |            | 1                                        |            |                                          |

Notes: Deep monitoring points only

|                              |                                 |                              |            | ··'                                         | Campridge, Min |                                             |             |                                             |             |                                             |
|------------------------------|---------------------------------|------------------------------|------------|---------------------------------------------|----------------|---------------------------------------------|-------------|---------------------------------------------|-------------|---------------------------------------------|
| Run # 5 Shallow              |                                 |                              |            |                                             |                |                                             |             |                                             |             |                                             |
| Monitoring Point ID          | Distance<br>from SV·<br>1 (ft.) | Distance from SV-<br>2 (ft.) | Time       | Differential<br>Pressure Reading<br>(in WC) | Time           | Differential<br>Pressure Reading<br>(in WC) | Time        | Differential<br>Pressure Reading<br>(in WC) | Time        | Differential<br>Pressure Reading<br>(in WC) |
| P-1S                         | 29                              | 40                           | 9:17:00 AM | 0.43                                        | 10:07:00 AM    | 0.30                                        | 10:57:00 AM | 0.38                                        | 11:28:00 AM | 0.20                                        |
| P-2S                         | 42                              | 18                           | 9:18:00 AM | -1.38                                       | 10:08:00 AM    | -2.21                                       | 10:58:00 AM | -2.42                                       | 11:29:00 AM | -2.44                                       |
| P-3S                         | 27                              | 21                           | 9:19:00 AM | -0.03                                       | 10:10:00 AM    | -0.13                                       | 11:01:00 AM | -0.20                                       | 11:30:00 AM | -0.20                                       |
| P-5S                         | 151                             | 149                          | 9:21:00 AM | -0.04                                       | 10:13:00 AM    | -0.10                                       | 11:04:00 AM | -0.06                                       | 11:34:00 AM | -0.06                                       |
| P-7S                         | 78                              | 81                           | 9:27:00 AM | -0.01                                       | 10:16:00 AM    | 0.21                                        | 11:06:00 AM | 0.74                                        | 11:36:00 AM | 0.15                                        |
| P-9S                         | 76                              | 104                          | 9:32:00 AM | -0.38                                       | 10:21:00 AM    | -0.47                                       | 11:12:00 AM | -0.40                                       | 11:40:00 AM | -0.43                                       |
| P-10S                        | 134                             | 158                          | 9:34:00 AM | -0.23                                       | 10:23:00 AM    | -0.38                                       | 11:13:00 AM | -0.26                                       | 11:42:00 AM | -0.29                                       |
| Notes: Shallow monitoring po | oints on                        | ly                           |            |                                             |                |                                             |             |                                             |             |                                             |
|                              |                                 |                              |            |                                             |                |                                             |             |                                             |             |                                             |
|                              |                                 |                              |            |                                             |                |                                             |             |                                             |             |                                             |

| Run # 5 Deep             |                                 |                                 |            |                                          |             |                                          |             |                                          |             |                                          |
|--------------------------|---------------------------------|---------------------------------|------------|------------------------------------------|-------------|------------------------------------------|-------------|------------------------------------------|-------------|------------------------------------------|
| Monitoring Point ID      | Distance<br>from SV-<br>1 (ft.) | Distance<br>from SV-<br>2 (ft.) | Time       | Differential Pressure<br>Reading (in WC) | Time        | Differential Pressure<br>Reading (in WC) | Time        | Differential Pressure<br>Reading (in WC) | Time        | Differential Pressure<br>Reading (in WC) |
| MW-3                     | 18                              | 27                              | 9:16:00 AM | 0.05                                     | 10:06:00 AM | 0.03                                     | 10:57:00 AM | -0.07                                    | 11:27:00 AM | -0.07                                    |
| P-2D                     | 42                              | 18                              | 9:18:00 AM | -3.70                                    | 10:09:00 AM | -4.45                                    | 11:00:00 AM | -4.57                                    | 11:29:00 AM | -4.51                                    |
| P-3D                     | 27                              | 21                              | 9:19:00 AM | -5.60                                    | 10:11:00 AM | -6.33                                    | 11:02:00 AM | -6.43                                    | 11:30:00 AM | -6.35                                    |
| P-4D                     | 70                              | 70                              | 9:20:00 AM | -2.04                                    | 10:12:00 AM | -2.69                                    | 11:03:00 AM | -2.61                                    | 11:32:00 AM | -2.59                                    |
| MW-1                     | 157                             | 155                             | 9:22:00 AM | -0.15                                    | 10:14:00 AM | -0.31                                    | 11:04:00 AM | -0.24                                    | 11:34:00 AM | -0.22                                    |
| P-6D                     | 87                              | 61                              | 9:25:00 AM | -1.39                                    | 10:15:00 AM | -1.75                                    | 11:05:00 AM | -1.77                                    | 11:35:00 AM | -1.75                                    |
| P-7D                     | 78                              | 81                              | 9:28:00 AM | -1.85                                    | 10:17:00 AM | -2.22                                    | 11:07:00 AM | -2.21                                    | 11:37:00 AM | -2.19                                    |
| P-8D                     | 116                             | 117                             | 9:30:00 AM | -0.63                                    | 10:19:00 AM | -0.82                                    | 11:10:00 AM | -0.78                                    | 11:38:00 AM | -0.78                                    |
| MW-11                    | 140                             | 144                             | 9:31:00 AM | -0.26                                    | 10:20:00 AM | -0.35                                    | 11:11:00 AM | -0.35                                    | 11:39:00 AM | -0.32                                    |
| P-9D                     | 76                              | 104                             | 9:33:00 AM | -1.02                                    | 10:22:00 AM | -1.26                                    | 11:12:00 AM | -1.10                                    | 11:40:00 AM | -1.20                                    |
| P-10D                    | 134                             | 158                             | 9:35:00 AM | -0.39                                    | 10:24:00 AM | -0.54                                    | 11:13:00 AM | -0.38                                    | 11:42:00 AM | -0.47                                    |
| MW-7                     | 101                             | 126                             | 9:36:00 AM | -0.86                                    | 10:23:00 AM | -1.08                                    | 11:14:00 AM | -0.79                                    | 11:41:00 AM | -0.92                                    |
| MW-8                     | 149                             | 176                             | 9:37:00 AM | -0.25                                    | 10:25:00 AM | -0.37                                    | 11:14:00 AM | -0.26                                    | 11:43:00 AM | -0.26                                    |
| MW-9                     | 217                             | 241                             | 9:38:00 AM | -0.02                                    | 10:26:00 AM | -0.03                                    | 11:15:00 AM | 0.03                                     | 11:44:00 AM | -0.03                                    |
| MW-6                     | 362                             | 386                             |            |                                          |             |                                          |             |                                          |             |                                          |
| MW-6A                    | 365                             | 393                             |            |                                          |             |                                          |             |                                          |             |                                          |
| MW-10                    | 522                             | 552                             |            |                                          |             |                                          |             |                                          |             |                                          |
|                          |                                 |                                 |            |                                          |             |                                          |             |                                          |             |                                          |
| Notes: Deep monitoring p | oints or                        | nly                             |            |                                          |             |                                          |             |                                          |             |                                          |

| Run # 6 S           | Shallov                         | W                               |             |                                          | Mille Lac<br>Cambridg | cs Oil<br>ge, MN                         |            |                                          |            |                                          |
|---------------------|---------------------------------|---------------------------------|-------------|------------------------------------------|-----------------------|------------------------------------------|------------|------------------------------------------|------------|------------------------------------------|
| Monitoring Point ID | Distance<br>from SV-<br>1 (ft.) | Distance<br>from SV-<br>2 (ft.) | Time        | Differential Pressure<br>Reading (in WC) | Time                  | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) |
| P-1S                | 29                              | 40                              | 12:55:00 PM | 0.33                                     | 1:54:00 PM            | 0.30                                     | 2:30:00 PM | 0.29                                     | 3:12:00 PM | 0.40                                     |
| P-2S                | 42                              | 18                              | 12:56:00 PM | -2.64                                    | 1:55:00 PM            | -2.62                                    | 2:31:00 PM | -2.51                                    | 3:13:00 PM | -2.50                                    |
| P-3S                | 27                              | 21                              | 12:58:00 PM | -0.15                                    | 1:56:00 PM            | -0.14                                    | 2:33:00 PM | -0.13                                    | 3:14:00 PM | -0.09                                    |
| P-5S                | 151                             | 149                             | 1:00:00 PM  | -0.38                                    | 2:00:00 PM            | -0.07                                    | 2:36:00 PM | -0.07                                    | 3:18:00 PM | -0.80                                    |
| P-7S                | 78                              | 81                              | 1:03:00 PM  | 0.55                                     | 2:04:00 PM            | 0.20                                     | 2:40:00 PM | 0.07                                     | 3:21:00 PM | 0.11                                     |
| P-9S                | 76                              | 104                             | 1:08:00 PM  | -0.61                                    | 2:08:00 PM            | -0.28                                    | 2:43:00 PM | -0.24                                    | 3:25:00 PM | -0.29                                    |
| P-10S               | 134                             | 158                             | 1:10:00 PM  | -0.49                                    | 2:10:00 PM            | -0.25                                    | 2:44:00 PM | -0.19                                    | 3:26:00 PM | -0.24                                    |
| Notoo, Shallow      |                                 |                                 |             |                                          |                       |                                          |            |                                          |            |                                          |

Table 1

INOTES: Shallow monitoring points only

| Run # 6 Deep              |                                 |                                 |             |                                          |            |                                          |            |                                          |            |                                          |
|---------------------------|---------------------------------|---------------------------------|-------------|------------------------------------------|------------|------------------------------------------|------------|------------------------------------------|------------|------------------------------------------|
| Monitoring Point ID       | Distance<br>from SV-<br>1 (ft.) | Distance<br>from SV-<br>2 (ft.) | Time        | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) |
| MW-3                      | 18                              | 27                              | 12:54:00 PM | -0.04                                    | 1:54:00 PM | -0.05                                    | 2:29:00 PM | 0.31                                     | 3:12:00 PM | -0.06                                    |
| P-2D                      | 42                              | 18                              | 12:57:00 PM | -7.38                                    | 1:56:00 PM | -7.31                                    | 2:32:00 PM | -6.96                                    | 3:13:00 PM | -7.00                                    |
| P-3D                      | 27                              | 21                              | 12:58:00 PM | -7.44                                    | 1:57:00 PM | -7.32                                    | 2:33:00 PM | -6.95                                    | 3:15:00 PM | -6.99                                    |
| P-4D                      | 70                              | 70                              | 12:59:00 PM | -2.74                                    | 1:59:00 PM | -2.87                                    | 2:34:00 PM | -2.65                                    | 3:16:00 PM | -2.74                                    |
| MW-1                      | 157                             | 155                             | 1:01:00 PM  | -0.62                                    | 2:01:00 PM | -0.33                                    | 2:37:00 PM | -0.31                                    | 3:19:00 PM | -0.35                                    |
| P-6D                      | 87                              | 61                              | 1:02:00 PM  | -3.11                                    | 2:03:00 PM | -2.84                                    | 2:38:00 PM | -2.75                                    | 3:20:00 PM | -2.77                                    |
| P-7D                      | 78                              | 81                              | 1:04:00 PM  | -2.17                                    | 2:04:00 PM | -1.90                                    | 2:41:00 PM | -1.83                                    | 3:22:00 PM | -1.90                                    |
| P-8D                      | 116                             | 117                             | 1:05:00 PM  | -0.94                                    | 2:05:00 PM | -0.72                                    | 2:42:00 PM | -0.67                                    | 3:23:00 PM | -0.74                                    |
| MW-11                     | 140                             | 144                             | 1:07:00 PM  | -0.55                                    | 2:06:00 PM | -0.31                                    | 2:42:00 PM | -0.28                                    | 3:23:00 PM | -0.34                                    |
| P-9D                      | 76                              | 104                             | 1:09:00 PM  | -1.08                                    | 2:09:00 PM | -0.79                                    | 2:43:00 PM | -0.71                                    | 3:25:00 PM | -0.77                                    |
| P-10D                     | 134                             | 158                             | 1:10:00 PM  | -0.59                                    | 2:11:00 PM | -0.35                                    | 2:44:00 PM | -0.30                                    | 3:27:00 PM | -0.38                                    |
| MW-7                      | 101                             | 126                             | 1:11:00 PM  | -0.97                                    | 2:09:00 PM | -0.60                                    | 2:45:00 PM | -0.55                                    | 3:26:00 PM | -0.63                                    |
| MW-8                      | 149                             | 176                             | 1:12:00 PM  | -0.56                                    | 2:15:00 PM | -0.33                                    | 2:46:00 PM | -0.17                                    | 3:27:00 PM | -0.24                                    |
| MW-9                      | 217                             | 241                             | 1:13:00 PM  | -0.30                                    | 2:12:00 PM | -0.03                                    | 2:47:00 PM | -0.02                                    | 3:28:00 PM | -0.05                                    |
| MW-6                      | 362                             | 386                             | 1:14:00 PM  | -0.29                                    | 2:13:00 PM | -0.05                                    | 2:48:00 PM | 0.02                                     | 3:29:00 PM | -0.03                                    |
| MW-6A                     | 365                             | 393                             |             |                                          |            |                                          |            |                                          |            |                                          |
| MW-10                     | 522                             | 552                             |             |                                          |            |                                          |            |                                          |            |                                          |
|                           |                                 |                                 |             |                                          |            |                                          |            |                                          |            |                                          |
| Notes: Deep monitoring po | oints onl                       | У                               |             |                                          |            |                                          |            |                                          |            |                                          |
|                           |                                 |                                 |             |                                          |            |                                          |            |                                          |            |                                          |
|                           |                                 |                                 |             |                                          |            |                                          |            |                                          |            |                                          |

# Table 2 Effluent Analytical Summary Former Union 76 Mille Lacs Oil Cambridge, MN

| Parameter              | Method | Matrix | Units | CAS         | E-1      | E-2      | E-3      |  |
|------------------------|--------|--------|-------|-------------|----------|----------|----------|--|
| Method TO-15           |        |        |       |             |          |          |          |  |
| 1,2,4-Trimethylbenzene | TO-15  | Air    | ug/m3 | 95-63-6     | 104000   | 245000   | 147000   |  |
| 1,3,5-Trimethylbenzene | TO-15  | Air    | ug/m3 | 108-67-8    | 67700    | 118000   | 81700    |  |
| 4-Ethyltoluene         | TO-15  | Air    | ug/m3 | 622-96-8    | 69100    | 113000   | 79800    |  |
| Benzene                | TO-15  | Air    | ug/m3 | 71-43-2     | 3690000  | 3780000  | 4050000  |  |
| Cyclohexane            | TO-15  | Air    | ug/m3 | 110-82-7    | 14400000 | 15300000 | 15800000 |  |
| Ethylbenzene           | TO-15  | Air    | ug/m3 | 100-41-4    | 482000   | 678000   | 626000   |  |
| Methylene Chloride     | TO-15  | Air    | ug/m3 | 75-09-2     | 167000   | 187000   | 198000   |  |
| Toluene                | TO-15  | Air    | ug/m3 | 108-88-3    | 3260000  | 3340000  | 4290000  |  |
| m&p-Xylene             | TO-15  | Air    | ug/m3 | 179601-23-1 | 1660000  | 2450000  | 2070000  |  |
| n-Heptane              | TO-15  | Air    | ug/m3 | 142-82-5    | 4690000  | 5180000  | 5380000  |  |
| n-Hexane               | TO-15  | Air    | ug/m3 | 110-54-3    | 11100000 | 11300000 | 11700000 |  |
| o-Xylene               | TO-15  | Air    | ug/m3 | 95-47-6     | 459000   | 735000   | <31400   |  |

Notes:

BOLD = -Un-BOLD = -

= The analyte has a detection at a quantifiable numerical value

= The analyte was not detected at or above the adjusted Method Detection Limit (MDL)

Only detected compounds are shown

# Table 3 Total VOCs Former Union 76 Mille Lacs Oil Cambridge, MN

| Parameter              | Method | Matrix | Units | CAS         | E-1        | % of VOCs | E-2        | % of VOCs | E-3        | % of VOCs |
|------------------------|--------|--------|-------|-------------|------------|-----------|------------|-----------|------------|-----------|
| Method TO-15           |        |        |       |             |            |           |            |           |            |           |
| 1,2,4-Trimethylbenzene | TO-15  | Air    | ug/m3 | 95-63-6     | 104,000    | 0.26%     | 245,000    | 0.56%     | 147,000    | 0.33%     |
| 1,3,5-Trimethylbenzene | TO-15  | Air    | ug/m3 | 108-67-8    | 67,700     | 0.17%     | 118,000    | 0.27%     | 81,700     | 0.18%     |
| 4-Ethyltoluene         | TO-15  | Air    | ug/m3 | 622-96-8    | 69,100     | 0.17%     | 113,000    | 0.26%     | 79,800     | 0.18%     |
| Benzene                | TO-15  | Air    | ug/m3 | 71-43-2     | 3,690,000  | 9.19%     | 3,780,000  | 8.70%     | 4,050,000  | 9.11%     |
| Cyclohexane            | TO-15  | Air    | ug/m3 | 110-82-7    | 14,400,000 | 35.87%    | 15,300,000 | 35.23%    | 15,800,000 | 35.54%    |
| Ethylbenzene           | TO-15  | Air    | ug/m3 | 100-41-4    | 482,000    | 1.20%     | 678,000    | 1.56%     | 626,000    | 1.41%     |
| Methylene Chloride     | TO-15  | Air    | ug/m3 | 75-09-2     | 167,000    | 0.42%     | 187,000    | 0.43%     | 198,000    | 0.45%     |
| Toluene                | TO-15  | Air    | ug/m3 | 108-88-3    | 3,260,000  | 8.12%     | 3,340,000  | 7.69%     | 4,290,000  | 9.65%     |
| m&p-Xylene             | TO-15  | Air    | ug/m3 | 179601-23-1 | 1,660,000  | 4.13%     | 2,450,000  | 5.64%     | 2,070,000  | 4.66%     |
| n-Heptane              | TO-15  | Air    | ug/m3 | 142-82-5    | 4,690,000  | 11.68%    | 5,180,000  | 11.93%    | 5,380,000  | 12.10%    |
| n-Hexane               | TO-15  | Air    | ug/m3 | 110-54-3    | 11,100,000 | 27.65%    | 11,300,000 | 26.02%    | 11,700,000 | 26.32%    |
| o-Xylene               | TO-15  | Air    | ug/m3 | 95-47-6     | 459,000    | 1.14%     | 735,000    | 1.69%     | 31,300     | 0.07%     |
|                        |        |        |       | Total VOCs  | 40,148,800 |           | 43,426,000 |           | 44,453,800 |           |
| Notes:                 |        |        |       | PID Reading | 1,070      |           | 1,216      |           | 1,699      |           |

Detected comounds only

# Appendix A

Waste Handling and Disposal Documents

# Appendix B

Intentionally left Blank

# Appendix C

Boring Logs / Construction Diagrams



01-28-2016 \FRANCIS\Vol1\3228 - Mille Lacs Oi\09 Pilot Test Cambridge\Quicklog\SV-1.bo



01-28-2016 \\FRANCIS\Vol1\3228 - Mille Lacs Oi\09 Pilot Test Cambridge\Quicklog\SV-2.bo



# LOG OF Monitoring Point P-1S





# 01-28-2016 \\FRANCIS\Vol1\3228 - Mille Lacs Oi\09 Pilot Test Cambridge\Quicklog\P-2S-2D.bo



01-28-2016 \\FRANCIS\Vol1\3228 - Mille Lacs Oi\09 Pilot Test Cambridge\Quicklog\P-3S-3D.bo



01-28-2016 \\FRANCIS\Vol1\3228 - Mille Lacs Oi\09 Pilot Test Cambridge\Quicklog\P-4D.bo



# LOG OF Monitoring Point P-5S





01-28-2016 \\FRANCIS\Vol1\3228 - Mille Lacs Oil\09 Pilot Test Cambridge\Quicklog\P-6D.bo



01-28-2016 \\FRANCIS\Vol1\3228 - Mille Lacs Oi\09 Pilot Test Cambridge\Quicklog\P-7S-7D.bo



01-28-2016 \\FRANCIS\Vol1\3228 - Mille Lacs Oi\09 Pilot Test Cambridge\Quicklog\P-8D.bo



# LOG OF Monitoring Point P-9S / 9D



01-28-2016 \\FRANCIS\Vol1\3228 - Mille Lacs Oi\09 Pilot Test Cambridge\Quicklog\P-9S-9D.bo



# Appendix D

Laboratory Reports and Chain-of-Custody Forms



Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

November 30, 2015

Adam P. Zobel Wenck Associates, Inc 1800 Pioneer Creek Center P.O. BOX 249 Maple Plain, MN 55359

RE: Project: 3228 Mille Lacs Oil-Cambridge Pace Project No.: 10330584

Dear Adam Zobel:

Enclosed are the analytical results for sample(s) received by the laboratory on November 19, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kabon Xiong

Kabor Xiong kabor.xiong@pacelabs.com Project Manager

Enclosures

cc: Dan Larson, Wenck Assoicates



# **REPORT OF LABORATORY ANALYSIS**



Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

# CERTIFICATIONS

Project: 3228 Mille Lacs Oil-Cambridge

Pace Project No.: 10330584

### **Minnesota Certification IDs**

1700 Elm Street SE Suite 200, Minneapolis, MN 55414 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605 Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062 Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909

Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN\_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530 North Carolina State Public Health #: 27700 North Dakota Certification #: R-036 Ohio EPA #: 4150 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Washington Certification #: C486 West Virginia Certification #: 382 West Virginia DHHR #:9952C Wisconsin Certification #: 999407970

**REPORT OF LABORATORY ANALYSIS** 



# ANALYTICAL RESULTS

## Project: 3228 Mille Lacs Oil-Cambridge

Pace Project No.: 10330584

| Sample: E-1              | Lab ID: 10330584001 |          | Collected: 11/16/ | 15 13:05         | Received: 11/19/15 09:45 Matrix: Air |                |          |      |
|--------------------------|---------------------|----------|-------------------|------------------|--------------------------------------|----------------|----------|------|
| Parameters               | Results             | Units    | Report Limit      | DF               | Prepared                             | Analyzed       | CAS No.  | Qual |
| TO15 MSV AIR             | Analytical Metho    | d: TO-15 |                   |                  |                                      |                |          |      |
| Acetone                  | ND                  | ug/m3    | 82900             | 34406.           |                                      | 11/24/15 06:11 | 67-64-1  |      |
| Benzene                  | 3690000             | ug/m3    | 22400             | 34406.           |                                      | 11/24/15 06:11 | 71-43-2  |      |
| Benzyl chloride          | ND                  | ug/m3    | 36100             | 34406.           |                                      | 11/24/15 06:11 | 100-44-7 |      |
| Bromodichloromethane     | ND                  | ug/m3    | 117000            | 34406.           |                                      | 11/24/15 06:11 | 75-27-4  |      |
| Bromoform                | ND                  | ug/m3    | 181000            | 34406.           |                                      | 11/24/15 06:11 | 75-25-2  |      |
| Bromomethane             | ND                  | ug/m3    | 27200             | 34406.           |                                      | 11/24/15 06:11 | 74-83-9  |      |
| 1,3-Butadiene            | ND                  | ug/m3    | 15500             | 4<br>34406.<br>4 |                                      | 11/24/15 06:11 | 106-99-0 |      |
| 2-Butanone (MEK)         | ND                  | ug/m3    | 103000            | -<br>34406.      |                                      | 11/24/15 06:11 | 78-93-3  |      |
| Carbon disulfide         | ND                  | ug/m3    | 21700             | 34406.           |                                      | 11/24/15 06:11 | 75-15-0  |      |
| Carbon tetrachloride     | ND                  | ug/m3    | 110000            | 34406.           |                                      | 11/24/15 06:11 | 56-23-5  |      |
| Chlorobenzene            | ND                  | ug/m3    | 32300             | 34406.           |                                      | 11/24/15 06:11 | 108-90-7 |      |
| Chloroethane             | ND                  | ug/m3    | 18600             | 34406.           |                                      | 11/24/15 06:11 | 75-00-3  |      |
| Chloroform               | ND                  | ug/m3    | 34100             | 34406.           |                                      | 11/24/15 06:11 | 67-66-3  |      |
| Chloromethane            | ND                  | ug/m3    | 14500             | -<br>34406.<br>4 |                                      | 11/24/15 06:11 | 74-87-3  |      |
| Cyclohexane              | 14400000            | ug/m3    | 24100             | -<br>34406.<br>4 |                                      | 11/24/15 06:11 | 110-82-7 | Е    |
| Dibromochloromethane     | ND                  | ug/m3    | 59500             | -<br>34406.<br>4 |                                      | 11/24/15 06:11 | 124-48-1 |      |
| 1,2-Dibromoethane (EDB)  | ND                  | ug/m3    | 53700             | 34406.<br>4      |                                      | 11/24/15 06:11 | 106-93-4 |      |
| 1,2-Dichlorobenzene      | ND                  | ug/m3    | 105000            | 34406.<br>4      |                                      | 11/24/15 06:11 | 95-50-1  |      |
| 1,3-Dichlorobenzene      | ND                  | ug/m3    | 105000            | 34406.<br>4      |                                      | 11/24/15 06:11 | 541-73-1 |      |
| 1,4-Dichlorobenzene      | ND                  | ug/m3    | 42000             | 34406.<br>4      |                                      | 11/24/15 06:11 | 106-46-7 |      |
| Dichlorodifluoromethane  | ND                  | ug/m3    | 34800             | 34406.<br>4      |                                      | 11/24/15 06:11 | 75-71-8  |      |
| 1,1-Dichloroethane       | ND                  | ug/m3    | 28200             | 34406.<br>4      |                                      | 11/24/15 06:11 | 75-34-3  |      |
| 1,2-Dichloroethane       | ND                  | ug/m3    | 14100             | 34406.<br>4      |                                      | 11/24/15 06:11 | 107-06-2 |      |
| 1,1-Dichloroethene       | ND                  | ug/m3    | 27900             | 34406.<br>4      |                                      | 11/24/15 06:11 | 75-35-4  |      |
| cis-1,2-Dichloroethene   | ND                  | ug/m3    | 27900             | 34406.<br>4      |                                      | 11/24/15 06:11 | 156-59-2 |      |
| trans-1,2-Dichloroethene | ND                  | ug/m3    | 27900             | 34406.<br>4      |                                      | 11/24/15 06:11 | 156-60-5 |      |
| 1,2-Dichloropropane      | ND                  | ug/m3    | 32300             | 34406.<br>4      |                                      | 11/24/15 06:11 | 78-87-5  |      |

# **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..


#### Project: 3228 Mille Lacs Oil-Cambridge

Pace Project No.: 10330584

| Sample: E-1                 | Lab ID: 1033    | 0584001   | Collected: 11/16/ | 15 13:05         | Received: 11 | I/19/15 09:45 N | latrix: Air |      |
|-----------------------------|-----------------|-----------|-------------------|------------------|--------------|-----------------|-------------|------|
| Parameters                  | Results         | Units     | Report Limit      | DF               | Prepared     | Analyzed        | CAS No.     | Qual |
| TO15 MSV AIR                | Analytical Meth | od: TO-15 |                   |                  |              |                 |             |      |
| cis-1,3-Dichloropropene     | ND              | ug/m3     | 79400             | 34406.           |              | 11/24/15 06:11  | 10061-01-5  |      |
| trans-1,3-Dichloropropene   | ND              | ug/m3     | 79400             | 4<br>34406.      |              | 11/24/15 06:11  | 10061-02-6  |      |
| Dichlorotetrafluoroethane   | ND              | ug/m3     | 48900             | 4<br>34406.      |              | 11/24/15 06:11  | 76-14-2     |      |
| Ethanol                     | ND              | ug/m3     | 165000            | 4<br>34406.      |              | 11/24/15 06:11  | 64-17-5     |      |
| Ethyl acetate               | ND              | ug/m3     | 25100             | 4<br>34406.      |              | 11/24/15 06:11  | 141-78-6    |      |
| Ethylbenzene                | 482000          | ug/m3     | 30300             | 4<br>34406.      |              | 11/24/15 06:11  | 100-41-4    |      |
| 4-Ethyltoluene              | 69100           | ug/m3     | 34400             | 4<br>34406.      |              | 11/24/15 06:11  | 622-96-8    |      |
| n-Heptane                   | 4690000         | ug/m3     | 28600             | 34406.           |              | 11/24/15 06:11  | 142-82-5    |      |
| Hexachloro-1,3-butadiene    | ND              | ug/m3     | 186000            | 34406.           |              | 11/24/15 06:11  | 87-68-3     |      |
| n-Hexane                    | 11100000        | ug/m3     | 24800             | 4<br>34406.      |              | 11/24/15 06:11  | 110-54-3    | Е    |
| 2-Hexanone                  | ND              | ug/m3     | 143000            | 34406.           |              | 11/24/15 06:11  | 591-78-6    |      |
| Methylene Chloride          | 167000          | ug/m3     | 121000            | 34406.           |              | 11/24/15 06:11  | 75-09-2     |      |
| 4-Methyl-2-pentanone (MIBK) | ND              | ug/m3     | 143000            | 34406.           |              | 11/24/15 06:11  | 108-10-1    |      |
| Methyl-tert-butyl ether     | ND              | ug/m3     | 126000            | 34406.           |              | 11/24/15 06:11  | 1634-04-4   |      |
| Naphthalene                 | ND              | ug/m3     | 183000            | 34406.           |              | 11/24/15 06:11  | 91-20-3     |      |
| 2-Propanol                  | ND              | ug/m3     | 86000             | -<br>34406.<br>4 |              | 11/24/15 06:11  | 67-63-0     |      |
| Propylene                   | ND              | ug/m3     | 12000             | -<br>34406.<br>4 |              | 11/24/15 06:11  | 115-07-1    |      |
| Styrene                     | ND              | ug/m3     | 29900             | -<br>34406.<br>4 |              | 11/24/15 06:11  | 100-42-5    |      |
| 1,1,2,2-Tetrachloroethane   | ND              | ug/m3     | 48000             | -<br>34406.<br>4 |              | 11/24/15 06:11  | 79-34-5     |      |
| Tetrachloroethene           | ND              | ug/m3     | 23700             | -<br>34406.<br>4 |              | 11/24/15 06:11  | 127-18-4    |      |
| Tetrahydrofuran             | ND              | ug/m3     | 20600             | -<br>34406.<br>4 |              | 11/24/15 06:11  | 109-99-9    |      |
| Toluene                     | 3260000         | ug/m3     | 26500             | -<br>34406.<br>4 |              | 11/24/15 06:11  | 108-88-3    |      |
| 1,2,4-Trichlorobenzene      | ND              | ug/m3     | 259000            | -<br>34406.      |              | 11/24/15 06:11  | 120-82-1    |      |
| 1,1,1-Trichloroethane       | ND              | ug/m3     | 38200             | 34406.           |              | 11/24/15 06:11  | 71-55-6     |      |
| 1,1,2-Trichloroethane       | ND              | ug/m3     | 18900             | -<br>34406.<br>4 |              | 11/24/15 06:11  | 79-00-5     |      |
| Trichloroethene             | ND              | ug/m3     | 18900             | 34406.<br>4      |              | 11/24/15 06:11  | 79-01-6     |      |
| Trichlorofluoromethane      | ND              | ug/m3     | 39200             | 34406.<br>4      |              | 11/24/15 06:11  | 75-69-4     |      |

# **REPORT OF LABORATORY ANALYSIS**



#### Project: 3228 Mille Lacs Oil-Cambridge

Pace Project No.: 10330584

| Sample: E-1                    | Lab ID: 1    | 0330584001    | Collected: 11/16/ | 15 13:05    | Received: | 11/19/15 09:45 I | Matrix: Air |      |
|--------------------------------|--------------|---------------|-------------------|-------------|-----------|------------------|-------------|------|
| Parameters                     | Results      | Units         | Report Limit      | DF          | Prepared  | Analyzed         | CAS No.     | Qual |
| TO15 MSV AIR                   | Analytical M | lethod: TO-15 |                   |             |           |                  |             |      |
| 1,1,2-Trichlorotrifluoroethane | ND           | ug/m3         | 55100             | 34406.<br>4 |           | 11/24/15 06:11   | 76-13-1     |      |
| 1,2,4-Trimethylbenzene         | 104000       | ug/m3         | 34400             | 34406.<br>4 |           | 11/24/15 06:11   | 95-63-6     |      |
| 1,3,5-Trimethylbenzene         | 67700        | ug/m3         | 34400             | 34406.<br>4 |           | 11/24/15 06:11   | 108-67-8    |      |
| Vinyl acetate                  | ND           | ug/m3         | 61600             | 34406.<br>4 |           | 11/24/15 06:11   | 108-05-4    |      |
| Vinyl chloride                 | ND           | ug/m3         | 8950              | 34406.<br>4 |           | 11/24/15 06:11   | 75-01-4     |      |
| m&p-Xylene                     | 1660000      | ug/m3         | 60900             | 34406.<br>4 |           | 11/24/15 06:11   | 179601-23-1 |      |
| o-Xylene                       | 459000       | ug/m3         | 30300             | 34406.<br>4 |           | 11/24/15 06:11   | 95-47-6     |      |



#### Project: 3228 Mille Lacs Oil-Cambridge

## Pace Project No.: 10330584

| Sample: E-2                 | Lab ID: 103     | 30584002   | Collected: 11/17/ | 15 13:18 | Received: 1 | 1/19/15 09:45 N | 1atrix: Air |      |
|-----------------------------|-----------------|------------|-------------------|----------|-------------|-----------------|-------------|------|
| Parameters                  | Results         | Units      | Report Limit      | DF       | Prepared    | Analyzed        | CAS No.     | Qual |
| TO15 MSV AIR                | Analytical Meth | nod: TO-15 |                   |          |             |                 |             |      |
| Acetone                     | ND              | ug/m3      | 88800             | 36864    |             | 11/24/15 06:44  | 67-64-1     |      |
| Benzene                     | 3780000         | ug/m3      | 24000             | 36864    |             | 11/24/15 06:44  | 71-43-2     |      |
| Benzyl chloride             | ND              | ug/m3      | 38700             | 36864    |             | 11/24/15 06:44  | 100-44-7    |      |
| Bromodichloromethane        | ND              | ug/m3      | 126000            | 36864    |             | 11/24/15 06:44  | 75-27-4     |      |
| Bromoform                   | ND              | ug/m3      | 194000            | 36864    |             | 11/24/15 06:44  | 75-25-2     |      |
| Bromomethane                | ND              | ug/m3      | 29100             | 36864    |             | 11/24/15 06:44  | 74-83-9     |      |
| 1,3-Butadiene               | ND              | ug/m3      | 16600             | 36864    |             | 11/24/15 06:44  | 106-99-0    |      |
| 2-Butanone (MEK)            | ND              | ug/m3      | 111000            | 36864    |             | 11/24/15 06:44  | 78-93-3     |      |
| Carbon disulfide            | ND              | ug/m3      | 23200             | 36864    |             | 11/24/15 06:44  | 75-15-0     |      |
| Carbon tetrachloride        | ND              | ug/m3      | 118000            | 36864    |             | 11/24/15 06:44  | 56-23-5     |      |
| Chlorobenzene               | ND              | ug/m3      | 34700             | 36864    |             | 11/24/15 06:44  | 108-90-7    |      |
| Chloroethane                | ND              | ug/m3      | 19900             | 36864    |             | 11/24/15 06:44  | 75-00-3     |      |
| Chloroform                  | ND              | ug/m3      | 36500             | 36864    |             | 11/24/15 06:44  | 67-66-3     |      |
| Chloromethane               | ND              | ug/m3      | 15500             | 36864    |             | 11/24/15 06:44  | 74-87-3     |      |
| Cyclohexane                 | 15300000        | ug/m3      | 25800             | 36864    |             | 11/24/15 06:44  | 110-82-7    | Е    |
| Dibromochloromethane        | ND              | ug/m3      | 63800             | 36864    |             | 11/24/15 06:44  | 124-48-1    |      |
| 1,2-Dibromoethane (EDB)     | ND              | ug/m3      | 57500             | 36864    |             | 11/24/15 06:44  | 106-93-4    |      |
| 1,2-Dichlorobenzene         | ND              | ug/m3      | 113000            | 36864    |             | 11/24/15 06:44  | 95-50-1     |      |
| 1,3-Dichlorobenzene         | ND              | ug/m3      | 113000            | 36864    |             | 11/24/15 06:44  | 541-73-1    |      |
| 1,4-Dichlorobenzene         | ND              | ug/m3      | 45000             | 36864    |             | 11/24/15 06:44  | 106-46-7    |      |
| Dichlorodifluoromethane     | ND              | ug/m3      | 37200             | 36864    |             | 11/24/15 06:44  | 75-71-8     |      |
| 1,1-Dichloroethane          | ND              | ug/m3      | 30200             | 36864    |             | 11/24/15 06:44  | 75-34-3     |      |
| 1,2-Dichloroethane          | ND              | ug/m3      | 15100             | 36864    |             | 11/24/15 06:44  | 107-06-2    |      |
| 1,1-Dichloroethene          | ND              | ug/m3      | 29900             | 36864    |             | 11/24/15 06:44  | 75-35-4     |      |
| cis-1,2-Dichloroethene      | ND              | ug/m3      | 29900             | 36864    |             | 11/24/15 06:44  | 156-59-2    |      |
| trans-1,2-Dichloroethene    | ND              | ug/m3      | 29900             | 36864    |             | 11/24/15 06:44  | 156-60-5    |      |
| 1,2-Dichloropropane         | ND              | ug/m3      | 34700             | 36864    |             | 11/24/15 06:44  | 78-87-5     |      |
| cis-1,3-Dichloropropene     | ND              | ug/m3      | 85000             | 36864    |             | 11/24/15 06:44  | 10061-01-5  |      |
| trans-1,3-Dichloropropene   | ND              | ug/m3      | 85000             | 36864    |             | 11/24/15 06:44  | 10061-02-6  |      |
| Dichlorotetrafluoroethane   | ND              | ug/m3      | 52300             | 36864    |             | 11/24/15 06:44  | 76-14-2     |      |
| Ethanol                     | ND              | ug/m3      | 177000            | 36864    |             | 11/24/15 06:44  | 64-17-5     |      |
| Ethyl acetate               | ND              | ug/m3      | 26900             | 36864    |             | 11/24/15 06:44  | 141-78-6    |      |
| Ethylbenzene                | 678000          | ug/m3      | 32400             | 36864    |             | 11/24/15 06:44  | 100-41-4    |      |
| 4-Ethyltoluene              | 113000          | ug/m3      | 36900             | 36864    |             | 11/24/15 06:44  | 622-96-8    |      |
| n-Heptane                   | 5180000         | ug/m3      | 30600             | 36864    |             | 11/24/15 06:44  | 142-82-5    |      |
| Hexachloro-1,3-butadiene    | ND              | ug/m3      | 200000            | 36864    |             | 11/24/15 06:44  | 87-68-3     |      |
| n-Hexane                    | 11300000        | ug/m3      | 26500             | 36864    |             | 11/24/15 06:44  | 110-54-3    | Е    |
| 2-Hexanone                  | ND              | ug/m3      | 154000            | 36864    |             | 11/24/15 06:44  | 591-78-6    |      |
| Methylene Chloride          | 187000          | ug/m3      | 130000            | 36864    |             | 11/24/15 06:44  | 75-09-2     |      |
| 4-Methyl-2-pentanone (MIBK) | ND              | ug/m3      | 154000            | 36864    |             | 11/24/15 06:44  | 108-10-1    |      |
| Methyl-tert-butyl ether     | ND              | ug/m3      | 135000            | 36864    |             | 11/24/15 06:44  | 1634-04-4   |      |
| Naphthalene                 | ND              | ug/m3      | 196000            | 36864    |             | 11/24/15 06:44  | 91-20-3     |      |
| 2-Propanol                  | ND              | ug/m3      | 92200             | 36864    |             | 11/24/15 06:44  | 67-63-0     |      |
| Propylene                   | ND              | ug/m3      | 12900             | 36864    |             | 11/24/15 06:44  | 115-07-1    |      |
| Styrene                     | ND              | ug/m3      | 32100             | 36864    |             | 11/24/15 06:44  | 100-42-5    |      |
| 1,1,2,2-Tetrachloroethane   | ND              | ug/m3      | 51500             | 36864    |             | 11/24/15 06:44  | 79-34-5     |      |
| Tetrachloroethene           | ND              | ug/m3      | 25400             | 36864    |             | 11/24/15 06:44  | 127-18-4    |      |

# **REPORT OF LABORATORY ANALYSIS**



#### Project: 3228 Mille Lacs Oil-Cambridge

#### Pace Project No.: 10330584

| Sample: E-2                    | Lab ID: 103    | 330584002  | Collected: 11/17/ | 15 13:18 | Received: 11 | /19/15 09:45 N | latrix: Air |      |
|--------------------------------|----------------|------------|-------------------|----------|--------------|----------------|-------------|------|
| Parameters                     | Results        | Units      | Report Limit      | DF       | Prepared     | Analyzed       | CAS No.     | Qual |
| TO15 MSV AIR                   | Analytical Met | hod: TO-15 |                   |          |              |                |             |      |
| Tetrahydrofuran                | ND             | ug/m3      | 22100             | 36864    |              | 11/24/15 06:44 | 109-99-9    |      |
| Toluene                        | 3340000        | ug/m3      | 28400             | 36864    |              | 11/24/15 06:44 | 108-88-3    |      |
| 1,2,4-Trichlorobenzene         | ND             | ug/m3      | 278000            | 36864    |              | 11/24/15 06:44 | 120-82-1    |      |
| 1,1,1-Trichloroethane          | ND             | ug/m3      | 40900             | 36864    |              | 11/24/15 06:44 | 71-55-6     |      |
| 1,1,2-Trichloroethane          | ND             | ug/m3      | 20300             | 36864    |              | 11/24/15 06:44 | 79-00-5     |      |
| Trichloroethene                | ND             | ug/m3      | 20300             | 36864    |              | 11/24/15 06:44 | 79-01-6     |      |
| Trichlorofluoromethane         | ND             | ug/m3      | 42000             | 36864    |              | 11/24/15 06:44 | 75-69-4     |      |
| 1,1,2-Trichlorotrifluoroethane | ND             | ug/m3      | 59000             | 36864    |              | 11/24/15 06:44 | 76-13-1     |      |
| 1,2,4-Trimethylbenzene         | 245000         | ug/m3      | 36800             | 36864    |              | 11/24/15 06:44 | 95-63-6     |      |
| 1,3,5-Trimethylbenzene         | 118000         | ug/m3      | 36800             | 36864    |              | 11/24/15 06:44 | 108-67-8    |      |
| Vinyl acetate                  | ND             | ug/m3      | 65900             | 36864    |              | 11/24/15 06:44 | 108-05-4    |      |
| Vinyl chloride                 | ND             | ug/m3      | 9580              | 36864    |              | 11/24/15 06:44 | 75-01-4     |      |
| m&p-Xylene                     | 2450000        | ug/m3      | 65200             | 36864    |              | 11/24/15 06:44 | 179601-23-1 |      |
| o-Xylene                       | 735000         | ug/m3      | 32400             | 36864    |              | 11/24/15 06:44 | 95-47-6     |      |



#### Project: 3228 Mille Lacs Oil-Cambridge

Pace Project No.: 10330584

| Sample: E-3              | Lab ID: 1033     | 0584003   | Collected: 11/18/ | 15 16:04         | Received: 11 | /19/15 09:45 N | latrix: Air |      |
|--------------------------|------------------|-----------|-------------------|------------------|--------------|----------------|-------------|------|
| Parameters               | Results          | Units     | Report Limit      | DF               | Prepared     | Analyzed       | CAS No.     | Qual |
| TO15 MSV AIR             | Analytical Metho | od: TO-15 |                   |                  |              |                |             |      |
| Acetone                  | ND               | ug/m3     | 85900             | 35635.           |              | 11/24/15 07:16 | 67-64-1     |      |
| Benzene                  | 4050000          | ug/m3     | 23200             | 2<br>35635.      |              | 11/24/15 07:16 | 71-43-2     | E    |
| Benzyl chloride          | ND               | ug/m3     | 37400             | 2<br>35635.<br>2 |              | 11/24/15 07:16 | 100-44-7    |      |
| Bromodichloromethane     | ND               | ug/m3     | 121000            | 35635.<br>2      |              | 11/24/15 07:16 | 75-27-4     |      |
| Bromoform                | ND               | ug/m3     | 187000            | 35635.           |              | 11/24/15 07:16 | 75-25-2     |      |
| Bromomethane             | ND               | ug/m3     | 28200             | 35635.           |              | 11/24/15 07:16 | 74-83-9     |      |
| 1,3-Butadiene            | ND               | ug/m3     | 16000             | 35635.           |              | 11/24/15 07:16 | 106-99-0    |      |
| 2-Butanone (MEK)         | ND               | ug/m3     | 107000            | 35635.           |              | 11/24/15 07:16 | 78-93-3     |      |
| Carbon disulfide         | ND               | ug/m3     | 22500             | 2<br>35635.      |              | 11/24/15 07:16 | 75-15-0     |      |
| Carbon tetrachloride     | ND               | ug/m3     | 114000            | 2<br>35635.      |              | 11/24/15 07:16 | 56-23-5     |      |
| Chlorobenzene            | ND               | ug/m3     | 33500             | 2<br>35635.      |              | 11/24/15 07:16 | 108-90-7    |      |
| Chloroethane             | ND               | ug/m3     | 19200             | 2<br>35635.      |              | 11/24/15 07:16 | 75-00-3     |      |
| Chloroform               | ND               | ug/m3     | 35300             | 2<br>35635.      |              | 11/24/15 07:16 | 67-66-3     |      |
| Chloromethane            | ND               | ug/m3     | 15000             | 2<br>35635.      |              | 11/24/15 07:16 | 74-87-3     |      |
| Cyclohexane              | 15800000         | ug/m3     | 24900             | 2<br>35635.      |              | 11/24/15 07:16 | 110-82-7    | E    |
| Dibromochloromethane     | ND               | ug/m3     | 61600             | 2<br>35635.      |              | 11/24/15 07:16 | 124-48-1    |      |
| 1,2-Dibromoethane (EDB)  | ND               | ug/m3     | 55600             | 35635.           |              | 11/24/15 07:16 | 106-93-4    |      |
| 1,2-Dichlorobenzene      | ND               | ug/m3     | 109000            | 2<br>35635.      |              | 11/24/15 07:16 | 95-50-1     |      |
| 1,3-Dichlorobenzene      | ND               | ug/m3     | 109000            | 35635.           |              | 11/24/15 07:16 | 541-73-1    |      |
| 1,4-Dichlorobenzene      | ND               | ug/m3     | 43500             | 35635.           |              | 11/24/15 07:16 | 106-46-7    |      |
| Dichlorodifluoromethane  | ND               | ug/m3     | 36000             | 35635.           |              | 11/24/15 07:16 | 75-71-8     |      |
| 1,1-Dichloroethane       | ND               | ug/m3     | 29200             | 35635.           |              | 11/24/15 07:16 | 75-34-3     |      |
| 1,2-Dichloroethane       | ND               | ug/m3     | 14600             | 35635.           |              | 11/24/15 07:16 | 107-06-2    |      |
| 1,1-Dichloroethene       | ND               | ug/m3     | 28900             | 35635.           |              | 11/24/15 07:16 | 75-35-4     |      |
| cis-1,2-Dichloroethene   | ND               | ug/m3     | 28900             | 2<br>35635.<br>2 |              | 11/24/15 07:16 | 156-59-2    |      |
| trans-1,2-Dichloroethene | ND               | ug/m3     | 28900             | 2<br>35635.<br>2 |              | 11/24/15 07:16 | 156-60-5    |      |
| 1,2-Dichloropropane      | ND               | ug/m3     | 33500             | 25635.<br>2      |              | 11/24/15 07:16 | 78-87-5     |      |

## **REPORT OF LABORATORY ANALYSIS**



#### Project: 3228 Mille Lacs Oil-Cambridge

Pace Project No.: 10330584

| Sample: E-3                 | Lab ID: 1033    | 30584003  | Collected: 11/18/ | 15 16:04         | Received: 11 | I/19/15 09:45 N | latrix: Air |      |
|-----------------------------|-----------------|-----------|-------------------|------------------|--------------|-----------------|-------------|------|
| Parameters                  | Results         | Units     | Report Limit      | DF               | Prepared     | Analyzed        | CAS No.     | Qual |
| TO15 MSV AIR                | Analytical Meth | od: TO-15 |                   |                  |              |                 |             |      |
| cis-1,3-Dichloropropene     | ND              | ug/m3     | 82200             | 35635.           |              | 11/24/15 07:16  | 10061-01-5  |      |
| trans-1,3-Dichloropropene   | ND              | ug/m3     | 82200             | 2<br>35635.<br>2 |              | 11/24/15 07:16  | 10061-02-6  |      |
| Dichlorotetrafluoroethane   | ND              | ug/m3     | 50600             | 35635.           |              | 11/24/15 07:16  | 76-14-2     |      |
| Ethanol                     | ND              | ug/m3     | 171000            | 35635.           |              | 11/24/15 07:16  | 64-17-5     |      |
| Ethyl acetate               | ND              | ug/m3     | 26000             | 35635.           |              | 11/24/15 07:16  | 141-78-6    |      |
| Ethylbenzene                | 626000          | ug/m3     | 31400             | 35635.           |              | 11/24/15 07:16  | 100-41-4    |      |
| 4-Ethyltoluene              | 79800           | ug/m3     | 35600             | 35635.<br>2      |              | 11/24/15 07:16  | 622-96-8    |      |
| n-Heptane                   | 5380000         | ug/m3     | 29600             | 35635.           |              | 11/24/15 07:16  | 142-82-5    | Е    |
| Hexachloro-1,3-butadiene    | ND              | ug/m3     | 193000            | 35635.           |              | 11/24/15 07:16  | 87-68-3     |      |
| n-Hexane                    | 11700000        | ug/m3     | 25700             | 35635.           |              | 11/24/15 07:16  | 110-54-3    | Е    |
| 2-Hexanone                  | ND              | ug/m3     | 148000            | 35635.           |              | 11/24/15 07:16  | 591-78-6    |      |
| Methylene Chloride          | 198000          | ug/m3     | 126000            | 35635.           |              | 11/24/15 07:16  | 75-09-2     |      |
| 4-Methyl-2-pentanone (MIBK) | ND              | ug/m3     | 148000            | 35635.<br>2      |              | 11/24/15 07:16  | 108-10-1    |      |
| Methyl-tert-butyl ether     | ND              | ug/m3     | 131000            | 35635.<br>2      |              | 11/24/15 07:16  | 1634-04-4   |      |
| Naphthalene                 | ND              | ug/m3     | 190000            | 35635.<br>2      |              | 11/24/15 07:16  | 91-20-3     |      |
| 2-Propanol                  | ND              | ug/m3     | 89100             | 35635.<br>2      |              | 11/24/15 07:16  | 67-63-0     |      |
| Propylene                   | ND              | ug/m3     | 12500             | 35635.<br>2      |              | 11/24/15 07:16  | 115-07-1    |      |
| Styrene                     | ND              | ug/m3     | 31000             | 35635.<br>2      |              | 11/24/15 07:16  | 100-42-5    |      |
| 1,1,2,2-Tetrachloroethane   | ND              | ug/m3     | 49700             | 35635.<br>2      |              | 11/24/15 07:16  | 79-34-5     |      |
| Tetrachloroethene           | ND              | ug/m3     | 24600             | 35635.<br>2      |              | 11/24/15 07:16  | 127-18-4    |      |
| Tetrahydrofuran             | ND              | ug/m3     | 21400             | 35635.<br>2      |              | 11/24/15 07:16  | 109-99-9    |      |
| Toluene                     | 4290000         | ug/m3     | 27400             | 35635.<br>2      |              | 11/24/15 07:16  | 108-88-3    |      |
| 1,2,4-Trichlorobenzene      | ND              | ug/m3     | 269000            | 35635.           |              | 11/24/15 07:16  | 120-82-1    |      |
| 1,1,1-Trichloroethane       | ND              | ug/m3     | 39600             | 35635.<br>2      |              | 11/24/15 07:16  | 71-55-6     |      |
| 1,1,2-Trichloroethane       | ND              | ug/m3     | 19600             | 2<br>35635.<br>2 |              | 11/24/15 07:16  | 79-00-5     |      |
| Trichloroethene             | ND              | ug/m3     | 19600             | 35635.<br>2      |              | 11/24/15 07:16  | 79-01-6     |      |
| Trichlorofluoromethane      | ND              | ug/m3     | 40600             | 2<br>35635.<br>2 |              | 11/24/15 07:16  | 75-69-4     |      |

# **REPORT OF LABORATORY ANALYSIS**



#### Project: 3228 Mille Lacs Oil-Cambridge

Pace Project No.: 10330584

| Sample: E-3                    | Lab ID: 1    | 0330584003    | Collected: 11/18/ | 15 16:04         | Received: | 11/19/15 09:45 N | /latrix: Air |      |
|--------------------------------|--------------|---------------|-------------------|------------------|-----------|------------------|--------------|------|
| Parameters                     | Results      | Units         | Report Limit      | DF               | Prepared  | Analyzed         | CAS No.      | Qual |
| TO15 MSV AIR                   | Analytical M | lethod: TO-15 |                   |                  |           |                  |              |      |
| 1,1,2-Trichlorotrifluoroethane | ND           | ug/m3         | 57000             | 35635.<br>2      |           | 11/24/15 07:16   | 76-13-1      |      |
| 1,2,4-Trimethylbenzene         | 147000       | ug/m3         | 35600             | 35635.<br>2      |           | 11/24/15 07:16   | 95-63-6      |      |
| 1,3,5-Trimethylbenzene         | 81700        | ug/m3         | 35600             | -<br>35635.<br>2 |           | 11/24/15 07:16   | 108-67-8     |      |
| Vinyl acetate                  | ND           | ug/m3         | 63800             | -<br>35635.<br>2 |           | 11/24/15 07:16   | 108-05-4     |      |
| Vinyl chloride                 | ND           | ug/m3         | 9270              | 35635.<br>2      |           | 11/24/15 07:16   | 75-01-4      |      |
| m&p-Xylene                     | 2070000      | ug/m3         | 63100             | 35635.<br>2      |           | 11/24/15 07:16   | 179601-23-1  |      |
| o-Xylene                       | ND           | ug/m3         | 31400             | 2<br>25635.<br>2 |           | 11/24/15 07:16   | 95-47-6      |      |



Project: 3228 Mille Lacs Oil-Cambridge

Pace Project No.: 10330584

| QC Batch:           | AIR/24698                         | Analysis Method:      | TO-15                  |
|---------------------|-----------------------------------|-----------------------|------------------------|
| QC Batch Method:    | TO-15                             | Analysis Description: | TO15 MSV AIR Low Level |
| Associated Lab Same | bles: 10330584001, 10330584002, 1 | 0330584003            |                        |

METHOD BLANK: 2142742

Matrix: Air Associated Lab Samples: 10330584001, 10330584002, 10330584003

|                                |       | Blank  | Reporting |                |            |
|--------------------------------|-------|--------|-----------|----------------|------------|
| Parameter                      | Units | Result | Limit     | Analyzed       | Qualifiers |
| 1,1,1-Trichloroethane          | ug/m3 | ND     | 1.1       | 11/23/15 13:00 |            |
| 1,1,2,2-Tetrachloroethane      | ug/m3 | ND     | 1.4       | 11/23/15 13:00 |            |
| 1,1,2-Trichloroethane          | ug/m3 | ND     | 0.55      | 11/23/15 13:00 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/m3 | ND     | 1.6       | 11/23/15 13:00 |            |
| 1,1-Dichloroethane             | ug/m3 | ND     | 0.82      | 11/23/15 13:00 |            |
| 1,1-Dichloroethene             | ug/m3 | ND     | 0.81      | 11/23/15 13:00 |            |
| 1,2,4-Trichlorobenzene         | ug/m3 | ND     | 7.5       | 11/23/15 13:00 |            |
| 1,2,4-Trimethylbenzene         | ug/m3 | ND     | 1.0       | 11/23/15 13:00 |            |
| 1,2-Dibromoethane (EDB)        | ug/m3 | ND     | 1.6       | 11/23/15 13:00 |            |
| 1,2-Dichlorobenzene            | ug/m3 | ND     | 3.1       | 11/23/15 13:00 |            |
| 1,2-Dichloroethane             | ug/m3 | ND     | 0.41      | 11/23/15 13:00 |            |
| 1,2-Dichloropropane            | ug/m3 | ND     | 0.94      | 11/23/15 13:00 |            |
| 1,3,5-Trimethylbenzene         | ug/m3 | ND     | 1.0       | 11/23/15 13:00 |            |
| 1,3-Butadiene                  | ug/m3 | ND     | 0.45      | 11/23/15 13:00 |            |
| 1,3-Dichlorobenzene            | ug/m3 | ND     | 3.1       | 11/23/15 13:00 |            |
| 1,4-Dichlorobenzene            | ug/m3 | ND     | 1.2       | 11/23/15 13:00 |            |
| 2-Butanone (MEK)               | ug/m3 | ND     | 3.0       | 11/23/15 13:00 |            |
| 2-Hexanone                     | ug/m3 | ND     | 4.2       | 11/23/15 13:00 |            |
| 2-Propanol                     | ug/m3 | ND     | 2.5       | 11/23/15 13:00 |            |
| 4-Ethyltoluene                 | ug/m3 | ND     | 1.0       | 11/23/15 13:00 |            |
| 4-Methyl-2-pentanone (MIBK)    | ug/m3 | ND     | 4.2       | 11/23/15 13:00 |            |
| Acetone                        | ug/m3 | ND     | 2.4       | 11/23/15 13:00 |            |
| Benzene                        | ug/m3 | ND     | 0.65      | 11/23/15 13:00 |            |
| Benzyl chloride                | ug/m3 | ND     | 1.0       | 11/23/15 13:00 |            |
| Bromodichloromethane           | ug/m3 | ND     | 3.4       | 11/23/15 13:00 |            |
| Bromoform                      | ug/m3 | ND     | 5.3       | 11/23/15 13:00 |            |
| Bromomethane                   | ug/m3 | ND     | 0.79      | 11/23/15 13:00 |            |
| Carbon disulfide               | ug/m3 | ND     | 0.63      | 11/23/15 13:00 |            |
| Carbon tetrachloride           | ug/m3 | ND     | 3.2       | 11/23/15 13:00 |            |
| Chlorobenzene                  | ug/m3 | ND     | 0.94      | 11/23/15 13:00 |            |
| Chloroethane                   | ug/m3 | ND     | 0.54      | 11/23/15 13:00 |            |
| Chloroform                     | ug/m3 | ND     | 0.99      | 11/23/15 13:00 |            |
| Chloromethane                  | ug/m3 | ND     | 0.42      | 11/23/15 13:00 |            |
| cis-1,2-Dichloroethene         | ug/m3 | ND     | 0.81      | 11/23/15 13:00 |            |
| cis-1,3-Dichloropropene        | ug/m3 | ND     | 2.3       | 11/23/15 13:00 |            |
| Cyclohexane                    | ug/m3 | ND     | 0.70      | 11/23/15 13:00 |            |
| Dibromochloromethane           | ug/m3 | ND     | 1.7       | 11/23/15 13:00 |            |
| Dichlorodifluoromethane        | ug/m3 | ND     | 1.0       | 11/23/15 13:00 |            |
| Dichlorotetrafluoroethane      | ug/m3 | ND     | 1.4       | 11/23/15 13:00 |            |
| Ethanol                        | ug/m3 | ND     | 4.8       | 11/23/15 13:00 |            |
| Ethyl acetate                  | ug/m3 | ND     | 0.73      | 11/23/15 13:00 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



Project: 3228 Mille Lacs Oil-Cambridge

Pace Project No.: 10330584

| METHOD BLANK: 214274      | 42                           | Matrix:    | Air       |                |            |
|---------------------------|------------------------------|------------|-----------|----------------|------------|
| Associated Lab Samples:   | 10330584001, 10330584002, 10 | 0330584003 |           |                |            |
|                           |                              | Blank      | Reporting |                |            |
| Parameter                 | Units                        | Result     | Limit     | Analyzed       | Qualifiers |
| Ethylbenzene              | ug/m3                        | ND         | 0.88      | 11/23/15 13:00 |            |
| Hexachloro-1,3-butadiene  | ug/m3                        | ND         | 5.4       | 11/23/15 13:00 |            |
| m&p-Xylene                | ug/m3                        | ND         | 1.8       | 11/23/15 13:00 |            |
| Methyl-tert-butyl ether   | ug/m3                        | ND         | 3.7       | 11/23/15 13:00 |            |
| Methylene Chloride        | ug/m3                        | ND         | 3.5       | 11/23/15 13:00 |            |
| n-Heptane                 | ug/m3                        | ND         | 0.83      | 11/23/15 13:00 |            |
| n-Hexane                  | ug/m3                        | ND         | 0.72      | 11/23/15 13:00 |            |
| Naphthalene               | ug/m3                        | ND         | 5.3       | 11/23/15 13:00 |            |
| o-Xylene                  | ug/m3                        | ND         | 0.88      | 11/23/15 13:00 |            |
| Propylene                 | ug/m3                        | ND         | 0.35      | 11/23/15 13:00 |            |
| Styrene                   | ug/m3                        | ND         | 0.87      | 11/23/15 13:00 |            |
| Tetrachloroethene         | ug/m3                        | ND         | 0.69      | 11/23/15 13:00 |            |
| Tetrahydrofuran           | ug/m3                        | ND         | 0.60      | 11/23/15 13:00 |            |
| Toluene                   | ug/m3                        | ND         | 0.77      | 11/23/15 13:00 |            |
| trans-1,2-Dichloroethene  | ug/m3                        | ND         | 0.81      | 11/23/15 13:00 |            |
| trans-1,3-Dichloropropene | ug/m3                        | ND         | 2.3       | 11/23/15 13:00 |            |
| Trichloroethene           | ug/m3                        | ND         | 0.55      | 11/23/15 13:00 |            |
| Trichlorofluoromethane    | ug/m3                        | ND         | 1.1       | 11/23/15 13:00 |            |
| Vinyl acetate             | ug/m3                        | ND         | 1.8       | 11/23/15 13:00 |            |
| Vinyl chloride            | ug/m3                        | ND         | 0.26      | 11/23/15 13:00 |            |

#### LABORATORY CONTROL SAMPLE: 2142743

| Deremeter                      | Linita | Spike | LCS    | LCS   | % Rec  | Qualifiara |
|--------------------------------|--------|-------|--------|-------|--------|------------|
| Parameter                      | Units  | Conc. | Result | % Rec | Limits | Quaimers   |
| 1,1,1-Trichloroethane          | ug/m3  | 55.5  | 65.7   | 118   | 72-140 |            |
| 1,1,2,2-Tetrachloroethane      | ug/m3  | 69.8  | 71.6   | 103   | 68-137 |            |
| 1,1,2-Trichloroethane          | ug/m3  | 55.5  | 69.6   | 125   | 66-138 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/m3  | 77.9  | 80.3   | 103   | 70-132 |            |
| 1,1-Dichloroethane             | ug/m3  | 41.2  | 46.5   | 113   | 68-137 |            |
| 1,1-Dichloroethene             | ug/m3  | 40.3  | 42.6   | 106   | 73-138 |            |
| 1,2,4-Trichlorobenzene         | ug/m3  | 75.5  | 74.8   | 99    | 48-150 |            |
| 1,2,4-Trimethylbenzene         | ug/m3  | 50    | 47.7   | 95    | 75-134 |            |
| 1,2-Dibromoethane (EDB)        | ug/m3  | 78.1  | 95.1   | 122   | 75-132 |            |
| 1,2-Dichlorobenzene            | ug/m3  | 61.2  | 59.4   | 97    | 71-129 |            |
| 1,2-Dichloroethane             | ug/m3  | 41.2  | 48.4   | 118   | 73-139 |            |
| 1,2-Dichloropropane            | ug/m3  | 47    | 55.6   | 118   | 70-130 |            |
| 1,3,5-Trimethylbenzene         | ug/m3  | 50    | 47.7   | 95    | 75-133 |            |
| 1,3-Butadiene                  | ug/m3  | 22.5  | 23.2   | 103   | 66-135 |            |
| 1,3-Dichlorobenzene            | ug/m3  | 61.2  | 59.1   | 97    | 75-131 |            |
| 1,4-Dichlorobenzene            | ug/m3  | 61.2  | 65.4   | 107   | 69-135 |            |
| 2-Butanone (MEK)               | ug/m3  | 150   | 171    | 114   | 67-131 |            |
| 2-Hexanone                     | ug/m3  | 208   | 193    | 93    | 72-130 |            |
| 2-Propanol                     | ug/m3  | 125   | 138    | 110   | 66-133 |            |
| 4-Ethyltoluene                 | ug/m3  | 50    | 47.6   | 95    | 75-130 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### Project: 3228 Mille Lacs Oil-Cambridge

Pace Project No.: 10330584

#### LABORATORY CONTROL SAMPLE: 2142743

| Parameter         Units         Conc.         Result         % Rec         Limits         Qualifiers           4-Methyl-2-pentanone (MIBK)         ug/m3         208         224         108         68-134           Acatone         ug/m3         32.5         38.9         100         75-134           Benzen         ug/m3         52.5         53.9         103         75-134           Bromodichloromethane         ug/m3         39.5         42.3         107         71-132           Carbon tetracholide         ug/m3         31.7         31.6         100         56-139           Carbon tetracholide         ug/m3         46.8         58.1         124         71-132           Chiorobenzene         ug/m3         21.7         56.1         113         73-136           Chiorobenzene         ug/m3         21         21.8         104         52-143           Chiorobentane         ug/m3         23         58.2         96         75-129           Chiorobentane         ug/m3         21         21.8         104         52-143           Chiorobentane         ug/m3         35         38.2         96         75-136           Dichiorodifuororethane         ug                                                                                                  |                             |       | Spike | LCS    | LCS   | % Rec  |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------|-------|--------|-------|--------|------------|
| 4-Methyl-2-pentanone (MIBK)         ug/m3         208         224         108         68-134           Acetone         ug/m3         121         96.0         79         65-144           Benzene         ug/m3         32.5         38.9         120         64-139           Benzyt chloride         ug/m3         52.5         53.9         103         75-129           Bromodichlorenethane         ug/m3         39.5         42.3         107         71-132           Carbon disulfide         ug/m3         39.5         42.3         107         71-132           Carbon disulfide         ug/m3         46.8         58.1         124         71-132           Chlorothrane         ug/m3         26.8         27.8         104         71-132           Chlorothrane         ug/m3         42.4         56.1         113         73-136           Chlorothrane         ug/m3         43.2         45.4         98         75-120           Chlorothrane         ug/m3         35.3         38.2         109         62-143           Dibromodikhoroethane         ug/m3         56.8         83.2         96         75-136           Dichlorothromethane         ug/m3         36.6<                                                                                                  | Parameter                   | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Acetone       ug/m3       121       96.0       79       63.144         Benzye chloride       ug/m3       32.5       38.9       100       64.139         Borsyn chloride       ug/m3       68.2       67.9       100       75-129         Bromodorn       ug/m3       39.5       42.3       107       71-132         Carbon disulfide       ug/m3       31.7       31.6       100       56-139         Carbon tetrachloride       ug/m3       46.8       58.1       124       71-132         Chlorobenzene       ug/m3       49.7       56.1       113       73-166         Chlorothane       ug/m3       49.7       56.1       113       73-166         Chlorothane       ug/m3       40.3       48.4       120       64-137         Chlorothane       ug/m3       40.2       45.4       98       75-136         Dichorothene       ug/m3       36.6       83.2       96       75-136         Dichorotentane       ug/m3       36.6       83.2       96       75-136         Dichorotentane       ug/m3       36.6       41.4       113       64-137         Chlorotentaluorotenhane       ug/m3       36.6                                                                                                                                                                                        | 4-Methyl-2-pentanone (MIBK) | ug/m3 |       | 224    | 108   | 68-134 |            |
| Benzene         ug/m3         32.5         38.9         120         64.139           Benzyl chloride         ug/m3         62.5         53.9         100         75-129           Bromodichloromethane         ug/m3         105         103         98         72-130           Bromodichloromethane         ug/m3         31.7         31.6         100         56-139           Carbon disulfide         ug/m3         64.6         63.1         99         75-150           Chlorobenzene         ug/m3         26.8         27.8         104         71-132           Chlorobenzene         ug/m3         46.8         58.1         113         73-136           Chlorobethane         ug/m3         49.7         56.1         113         73-136           Chloromethane         ug/m3         40.3         48.4         120         64-137           cis-1.3-Dichloropropene         ug/m3         35         38.2         109         67-138           Dichlorodiflucoromethane         ug/m3         71.1         77.8         109         71-139           Ethayl acetate         ug/m3         36.6         41.4         113         64-137           Ethayl acetate         ug/m3                                                                                                      | Acetone                     | ug/m3 | 121   | 96.0   | 79    | 63-144 |            |
| Benzyl chloride         ug/m3         52.5         53.9         103         75-129           Bromodichloromethane         ug/m3         105         103         98         72-130           Bromomethane         ug/m3         39.5         42.3         107         71-132           Carbon disulfide         ug/m3         31.7         31.6         109         56-139           Carbon tetrachloride         ug/m3         46.8         58.1         124         71-132           Chlorobenzene         ug/m3         49.7         56.1         113         73-136           Chlorothane         ug/m3         40.2         45.4         98         75-128           Chlorothane         ug/m3         46.2         45.4         98         75-128           Cyclohexane         ug/m3         35         38.2         109         62-143           Dichorotflucromethane         ug/m3         56.8         113         70-141           Dichorotflucromethane         ug/m3         36.6         41.4         113         64-137           Dichorotflucromethane         ug/m3         36.6         41.4         113         64-137           Dichorotflucromethane         ug/m3         36.6                                                                                               | Benzene                     | ug/m3 | 32.5  | 38.9   | 120   | 64-139 |            |
| Bromodichloromethane         ug/m3         68.2         67.9         100         77-134           Bromodifum         ug/m3         105         103         98         72-130           Bromomethane         ug/m3         31.7         31.6         100         56-139           Carbon tertachloride         ug/m3         64         63.1         99         76-150           Chlorobenzene         ug/m3         26.8         27.8         104         71-132           Chloroberhane         ug/m3         46.8         58.1         124         71-132           Chloroform         ug/m3         47.7         56.1         113         73-136           Chloroform         ug/m3         40.2         45.4         98         75-128           Cyclohexane         ug/m3         46.2         45.4         98         75-128           Dichlorodifluoromethane         ug/m3         50.3         56.9         113         70-141           Dichlorotertafluoroethane         ug/m3         96.8         82.2         86         60-144           Ethyl acetate         ug/m3         86.8         41.4         113         64-137           Etharol         ug/m3         108                                                                                                               | Benzyl chloride             | ug/m3 | 52.5  | 53.9   | 103   | 75-129 |            |
| Bromotorm         ug/m3         105         103         98         72-130           Bromonethane         ug/m3         39.5         42.3         107         71-132           Carbon disulfide         ug/m3         64         63.1         99         75-150           Chorobenzene         ug/m3         66.8         58.1         124         71-132           Chorobenzene         ug/m3         46.8         58.1         104         71-129           Chorobenzene         ug/m3         49.7         56.1         113         73-136           Chorobenhane         ug/m3         40.3         48.4         120         64-137           cis-1,2-Dichlorobene         ug/m3         46.2         45.4         98         75-136           Dichorobenene         ug/m3         58         82.2         96         75-136           Dichorobenene         ug/m3         71.1         77.8         109         71-139           Ethanol         ug/m3         46.2         52.6         119         71-136           Ethyloenzene         ug/m3         44.2         52.6         119         71-136           Ethyloenzene         ug/m3         45.8         100 <td< td=""><td>Bromodichloromethane</td><td>ug/m3</td><td>68.2</td><td>67.9</td><td>100</td><td>75-134</td><td></td></td<> | Bromodichloromethane        | ug/m3 | 68.2  | 67.9   | 100   | 75-134 |            |
| Bromomethane         ug/m3         39.5         42.3         107         71-132           Carbon tisulifide         ug/m3         31.7         31.6         100         56-139           Carbon tetrachloride         ug/m3         64         63.1         99         75-150           Chiorobenzene         ug/m3         46.8         58.1         124         71-132           Chioroomthane         ug/m3         47.7         56.1         113         73-136           Chioroomethane         ug/m3         40.3         48.4         104         52-143           cis-1,2-Dichloroothene         ug/m3         46.2         45.4         98         75-128           Cyclohexane         ug/m3         50.3         56.9         113         70-141           Dichlorodifuoromethane         ug/m3         56.8         83.2         96         75-136           Dichlorodifuoromethane         ug/m3         56.8         82.2         86         60-144           Ethyl acetate         ug/m3         86.3         104         117         71-134           Methylenc-Noiroi         ug/m3         183         200         109         73-134           Methylenc Choiroic         ug/m3                                                                                                 | Bromoform                   | ug/m3 | 105   | 103    | 98    | 72-130 |            |
| Carbon disulfide         ug/m3         31.7         31.6         100         56-139           Carbon tetrachloride         ug/m3         64         63.1         99         75-150           Chlorobenzene         ug/m3         26.8         27.8         104         71-132           Chloroberhane         ug/m3         21         21.8         104         52-143           Cis-1,2-Dichloroethene         ug/m3         40.3         48.4         120         64-137           cis-1,2-Dichloroethene         ug/m3         45.2         45.4         98         75-128           Cyclohexane         ug/m3         35         38.2         109         62-143           Dibromochloromethane         ug/m3         50.3         65.9         113         70-141           Dichloroditromethane         ug/m3         35.8         82.2         86         60-144           Ethyla         ug/m3         36.6         41.4         113         64-137           Ethylaceitate         ug/m3         36.8         107         99         61-150           msp-Xylene         ug/m3         138         200         109         73-134           Methylene Chloride         ug/m3         35.                                                                                                  | Bromomethane                | ug/m3 | 39.5  | 42.3   | 107   | 71-132 |            |
| Carbon tetrachloride         ug/m3         64         63.1         99         75-150           Chlorobenzene         ug/m3         46.8         58.1         124         71-132           Chlorothane         ug/m3         49.7         56.1         113         73-136           Chloromethane         ug/m3         49.7         56.1         113         73-136           Chloromethane         ug/m3         40.3         48.4         120         64-137           cis-1,2-Dichloropthene         ug/m3         35         38.2         109         62-143           Dichorotetrafluoroethane         ug/m3         50.3         56.9         113         70-141           Dichlorotetrafluoroethane         ug/m3         71.1         77.8         109         71-139           Ethylactate         ug/m3         36.6         41.4         113         64-137           Methylenc         ug/m3         16.7<                                                                                                  | Carbon disulfide            | ug/m3 | 31.7  | 31.6   | 100   | 56-139 |            |
| Chlorobenzene         ug/m3         46.8         58.1         124         71-132           Chloroberhane         ug/m3         46.8         27.8         104         71-129           Chloroberhane         ug/m3         47.7         56.1         113         73-136           Chlorobrethane         ug/m3         40.3         48.4         120         64-137           cis-1,2-Dichlorobrepopene         ug/m3         46.2         45.4         98         75-128           Cyclohexane         ug/m3         35         38.2         109         62-143           Dibromochloromethane         ug/m3         50.3         56.9         113         70-141           Dichlorobifluoromethane         ug/m3         95.8         82.2         86         60-144           Ethanol         ug/m3         46.2         25.6         119         71-139           Ethylacetate         ug/m3         46.3         200         109         73-134           Hexachloro-1,3-butadiene         ug/m3         18.3         104         117         71-134           Methyl-tert-butyl ether         ug/m3         135         14.4         186         63-135           Nap-Xylene         ug/m3                                                                                                    | Carbon tetrachloride        | ug/m3 | 64    | 63.1   | 99    | 75-150 |            |
| Chloroethane         ug/m3         26.8         27.8         104         71-129           Chloroform         ug/m3         49.7         56.1         113         73-136           Chloroethane         ug/m3         40.3         48.4         120         64-137           cis-1,2-Dichloroethene         ug/m3         46.2         45.4         98         75-128           Cyclohexane         ug/m3         35         38.2         96         75-136           Dichloroothoromethane         ug/m3         50.3         56.9         113         70-141           Dichloroothane         ug/m3         35.6         91.3         70-141           Dichloroothane         ug/m3         36.6         41.4         113         64-137           Ethylacetate         ug/m3         36.6         41.4         113         64-137           Ethylacetate         ug/m3         36.6         41.4         113         64-137           Hexachloro-1,3-butadiene         ug/m3         108         1007         99         51-150           m&p-Xylene         ug/m3         135         174         910         64-130           n+Hexachloro-1,3-butadiene         ug/m3         53.3         5                                                                                                  | Chlorobenzene               | ug/m3 | 46.8  | 58.1   | 124   | 71-132 |            |
| Chloroform         ug/m3         49.7         56.1         113         73-136           Chloromethane         ug/m3         21         21.8         104         52-143           cis-1,2-Dichloroptopene         ug/m3         46.2         45.4         98         75-128           Cyclohexane         ug/m3         35         38.2         109         62-143           Dibromochloromethane         ug/m3         50.3         56.9         113         70-141           Dichlorofifuoromethane         ug/m3         95.8         82.2         86         60-144           Ethyla cotate         ug/m3         36.6         41.4         113         64-137           Ethyla cotate         ug/m3         36.6         41.4         113         64-137           Ethyla cotate         ug/m3         36.6         41.4         113         64-137           Ethyla cotate         ug/m3         108         107         99         51-150           m&p-Xylene         ug/m3         183         200         109         73-134           Methyl-tert-bulyl ether         ug/m3         41.7         45.2         108         63-135           n-Hexane         ug/m3         45.3                                                                                                           | Chloroethane                | ug/m3 | 26.8  | 27.8   | 104   | 71-129 |            |
| Chloromethane         ug/m3         21         21.8         104         52-143           cis-1,2-Dichloroethene         ug/m3         40.3         48.4         120         64-137           cis-1,3-Dichloroptopene         ug/m3         35         38.2         109         62-143           Dibromochloromethane         ug/m3         50.3         56.9         113         70-134           Dichlorotetrafluoroethane         ug/m3         75.1         77.8         109         71-139           Ethanol         ug/m3         95.8         82.2         86         60-144           Ethylacetate         ug/m3         36.6         41.4         113         64.137           Ethylacetate         ug/m3         108         107         99         51-150           m&p-Xylene         ug/m3         183         200         109         73-134           Methyl-tert-butyl ether         ug/m3         55.8         33.9         94         69-135           n-Hegxane         ug/m3         55.8         33.9         94         69-135           Naphthalene         ug/m3         55.3         51.4         96         43-150           o-Xylene         ug/m3         45.3                                                                                                          | Chloroform                  | ug/m3 | 49.7  | 56.1   | 113   | 73-136 |            |
| cis-1,2-Dichloroptene       ug/m3       40.3       48.4       120       64-137         cis-1,3-Dichloroptopene       ug/m3       46.2       45.4       98       75-128         Cyclohexane       ug/m3       35       38.2       109       62-143         Dichlorodifluoromethane       ug/m3       50.3       56.9       113       70-141         Dichlorotetrafluoroethane       ug/m3       71.1       77.8       109       71-139         Ethanol       ug/m3       36.6       41.4       113       64-137         Ethyl acetate       ug/m3       36.6       41.4       113       64-137         Ethyl acetate       ug/m3       36.6       41.4       113       64-137         Ethyl acetate       ug/m3       48.3       104       117       71-136         Mexachloro-13-butadiene       ug/m3       183       200       109       73-134         Methylene Chloride       ug/m3       41.7       71-136       64-130       117       71-134         Methylene Chloride       ug/m3       17.7       176       100       64-130       117       114       113       64-137         retaxale       ug/m3       35.8       33                                                                                                                                                                | Chloromethane               | ug/m3 | 21    | 21.8   | 104   | 52-143 |            |
| cis-1,3-Dichloropropeneug/m346.245.49875-128Cyclohexaneug/m33538.210962-143Dibromochloromethaneug/m386.683.29675-136Dichlorodifluoromethaneug/m371.177.810971-139Ethanolug/m395.882.28660-144Ethyl acetateug/m336.641.411364-137Ethylacetateug/m344.252.611971-136Hexachloro-1,3-butadieneug/m31081079951-150m&p-Xyleneug/m317717610064-130Nethyl-ten-tuyl etherug/m341.745.210863-135n-Hexaneug/m335.833.99469-135Naphthaleneug/m317.517.49958-135o-Xyleneug/m337.512975-134Propyleneug/m33032.810958-135Styreneug/m33032.810958-135Tetrachlorotheneug/m33032.810958-135Toleneug/m346.211561-140trans-1,2-Dichloropheneug/m354.667.712470-134Tichloropheneug/m354.667.712470-134Tichloropheneug/m355.830.58560-139Vinyl acetateug/m356.667.712470-134 <td< td=""><td>cis-1,2-Dichloroethene</td><td>ug/m3</td><td>40.3</td><td>48.4</td><td>120</td><td>64-137</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                | cis-1,2-Dichloroethene      | ug/m3 | 40.3  | 48.4   | 120   | 64-137 |            |
| Cyclohexaneug/m33538.210962-143Dibromochloromethaneug/m386.683.29675-136Dichlorodifluoromethaneug/m350.356.911370-141Dichlorotettrafluoroethaneug/m371.177.810971-139Ethanolug/m395.882.28660-144Ethyla cetateug/m336.641.411364-137Ethylbenzeneug/m344.252.611971-136Hexachloro-1,3-butadieneug/m31081079951-150m&p-Xyleneug/m318320010973-134Methyl-tert-butyl etherug/m317717610064-130n-Heptaneug/m335.833.99469-135Naphthaleneug/m353.351.49643-150o-Xyleneug/m344.253.012075-134Propyleneug/m343.355.712975-133Tetrachloroetheneug/m33032.810958-135Tolueneug/m340.346.211561-140trans-1,3-Dichloroptopeneug/m346.245.89975-134Trichloroetheneug/m346.245.89975-134Tichloroetheneug/m346.245.89975-134Tolueneug/m346.245.89975-134Tichloroetheneug/m354.667.7 <td>cis-1,3-Dichloropropene</td> <td>ug/m3</td> <td>46.2</td> <td>45.4</td> <td>98</td> <td>75-128</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                              | cis-1,3-Dichloropropene     | ug/m3 | 46.2  | 45.4   | 98    | 75-128 |            |
| Dibromochloromethane         ug/m3         86.6         83.2         96         75-136           Dichlorodifluoromethane         ug/m3         50.3         56.9         113         70-141           Dichlorotetrafluoroethane         ug/m3         71.1         77.8         109         71-139           Ethanol         ug/m3         36.6         41.4         113         64-137           Ethylacetate         ug/m3         44.2         52.6         119         71-136           Hexachloro-1,3-butadiene         ug/m3         44.2         52.6         119         71-136           Methyl-tert-butyl ether         ug/m3         108         107         99         51-150           m&p.xylene         ug/m3         183         200         109         73-134           Methyl-tert-butyl ether         ug/m3         177         176         100         64-130           n-Hexane         ug/m3         35.3         51.4         96         935         135           Naphthalene         ug/m3         44.2         53.0         120         75-134           Propylene         ug/m3         30         32.8         109         58-135           Tetrahydrofuran                                                                                                           | Cyclohexane                 | ug/m3 | 35    | 38.2   | 109   | 62-143 |            |
| Dichlorodifluoromethaneug/m350.356.911370-141Dichlorotetrafluoroethaneug/m371.177.810971-139Ethanolug/m395.882.28660-144Ethyl acetateug/m336.641.411364-137Ethyl acetateug/m344.252.611971-136Hexachloro-1,3-butadieneug/m31081079951-150m&p-Xyleneug/m388.310411771-134Methyl-tert-butyl etherug/m317717610064-130n-Heptaneug/m335.833.99469-135n-Hexaneug/m335.833.99469-135Naphthaleneug/m341.745.210863-135n-Hexaneug/m335.833.99469-135Naphthaleneug/m335.833.99469-135Naphthaleneug/m341.771.49958-135Styreneug/m343.355.712975-134Propyleneug/m33032.810958-135Styreneug/m346.245.89975-134Tetrahydrofuranug/m346.245.89975-134Tichoroetheneug/m346.245.89975-134Tichoroetheneug/m354.667.712470-134Ticholoroetheneug/m354.667.712470-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dibromochloromethane        | ug/m3 | 86.6  | 83.2   | 96    | 75-136 |            |
| Dichlorotetrafluoroethaneug/m371.177.810971-139Ethanolug/m395.882.28660-144Ethyl acetateug/m336.641.411364-137Ethylbenzeneug/m344.252.611971-136Hexachloro-1,3-butadieneug/m31081079951-150m&p-Xyleneug/m318320010973-134Methyl-tert-butyl etherug/m317717610064-130n-Heptaneug/m341.745.210863-135n-Hexaneug/m335.833.99469-135Naphthaleneug/m344.253.012075-134Propyleneug/m343.355.712975-133Styreneug/m338.345.511970-129trans-1,2-Dichloroetheneug/m338.345.511970-129trans-1,3-Dichloropropeneug/m357.160.975-134Trichloroetheneug/m335.830.58560-139Trichloroetheneug/m357.160.975-134Trichloroetheneug/m357.160.975-134Trichloroetheneug/m357.160.975-134Trichloroetheneug/m357.160.975-134Trichloroetheneug/m357.160.975-134Trichloroetheneug/m357.160.975-134Trichloroetheneug/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dichlorodifluoromethane     | ug/m3 | 50.3  | 56.9   | 113   | 70-141 |            |
| Ethanolug/m395.882.28660-144Ethyl acetateug/m336.641.411364-137Ethyl benzeneug/m344.252.611971-136Hexachloro-1,3-butadieneug/m31081079951-150m&p-Xyleneug/m388.310411771-134Methyl-tert-butyl etherug/m317717610064-130n-Heptaneug/m341.745.210863-135n-Hexaneug/m335.833.99469-135Naphthaleneug/m344.253.012075-134Propyleneug/m344.253.012075-134Propyleneug/m343.355.712975-133Styreneug/m33032.810958-135Tolueneug/m338.345.511970-129trans-1,2-Dichloroetheneug/m346.245.89975-134Trichloroetheneug/m357.160.910767-140Vinyl acetateug/m355.830.58560-139Vinyl chlorideug/m357.160.910767-140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dichlorotetrafluoroethane   | ug/m3 | 71.1  | 77.8   | 109   | 71-139 |            |
| Ethyl acetateug/m336.641.411364-137Ethylbenzeneug/m344.252.611971-136Hexachlorc-1,3-butadieneug/m31081079951-150m&p-Xyleneug/m388.310411771-134Methyl-tert-butyl etherug/m318320010973-134Methyl-tert-butyl etherug/m317717610064-130n-Heptaneug/m341.745.210863-135n-Hexaneug/m335.833.99469-135Naphthaleneug/m344.253.012075-134Propyleneug/m317.517.49958-135Styreneug/m343.355.712975-133Tetrachloretheneug/m33032.810958-135Tolueneug/m340.346.211561-140trans-1,2-Dichloropteneug/m346.245.89975-134Trichloropteneug/m357.160.910767-140Vinyl acetateug/m355.712470-13470-134Trichlorofhueneug/m357.160.910767-140Vinyl acetateug/m357.160.910767-140Vinyl chlorideug/m355.830.58560-139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ethanol                     | ug/m3 | 95.8  | 82.2   | 86    | 60-144 |            |
| Ethylbenzeneug/m344.252.611971-136Hexachloro-1,3-butadieneug/m31081079951-150m&p-Xyleneug/m388.310411771-134Methyl-tert-butyl etherug/m318320010973-134Methyl-tert-butyl etherug/m317717610064-130n-Heptaneug/m341.745.210863-135n-Hexaneug/m335.833.99469-135Naphthaleneug/m353.351.49643-150o-Xyleneug/m344.253.012075-134Propyleneug/m317.517.49958-135Styreneug/m36979.111566-137Tetrahloroetheneug/m33032.810958-135Tolueneug/m340.346.211561-140trans-1,2-Dichloroetheneug/m354.667.712470-134Trichloroftheneug/m355.830.58560-139Vinyl acetateug/m335.830.58560-139Vinyl chlorideug/m335.830.58560-139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ethyl acetate               | ug/m3 | 36.6  | 41.4   | 113   | 64-137 |            |
| Hexachloro-1,3-butadieneug/m31081079951-150m&p-Xyleneug/m388.310411771-134Methyl-tert-butyl etherug/m318320010973-134Methylene Chlorideug/m317717610064-130n-Heptaneug/m341.745.210863-135n-Hexaneug/m335.833.99469-135Naphthaleneug/m353.351.49643-150o-Xyleneug/m344.253.012075-134Propyleneug/m317.517.49958-135Styreneug/m36979.111566-137Tetrachloroetheneug/m33032.810958-135Tolueneug/m346.245.89975-134trans-1,2-Dichloroptopeneug/m357.160.910767-140trans-1,3-Dichloroptopeneug/m357.160.910767-140Vinyl acetateug/m335.830.58560-139Vinyl chlorideug/m335.830.58560-139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ethylbenzene                | ug/m3 | 44.2  | 52.6   | 119   | 71-136 |            |
| m&p-Xyleneug/m388.310411771-134Methyl-tert-butyl etherug/m318320010973-134Methylene Chlorideug/m317717610064-130n-Heptaneug/m341.745.210863-135n-Hexaneug/m335.833.99469-135Naphthaleneug/m353.351.49643-150o-Xyleneug/m344.253.012075-134Propyleneug/m317.517.49958-135Styreneug/m343.355.712975-133Tetrachloroetheneug/m36979.111566-137Tetrachloroetheneug/m338.345.511970-129trans-1,2-Dichloroetheneug/m346.245.89975-134Trichloroftheneug/m357.160.910767-140Vinyl acetateug/m354.667.712470-134Vinyl chlorideug/m335.830.58560-139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hexachloro-1,3-butadiene    | ug/m3 | 108   | 107    | 99    | 51-150 |            |
| Methyl-tert-butyl etherug/m318320010973-134Methylene Chlorideug/m317717610064-130n-Heptaneug/m341.745.210863-135n-Hexaneug/m335.833.99469-135Naphthaleneug/m353.351.49643-150o-Xyleneug/m344.253.012075-134Propyleneug/m317.517.49958-135Styreneug/m343.355.712975-133Tetrachloroetheneug/m36979.111566-137Tetrachloroetheneug/m338.345.511970-129trans-1,2-Dichloroetheneug/m346.245.89975-134Trichloroptopeneug/m354.667.712470-134Trichloroetheneug/m355.830.58560-139Vinyl acetateug/m335.830.58560-139Vinyl chlorideug/m32627.110472-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m&p-Xylene                  | ug/m3 | 88.3  | 104    | 117   | 71-134 |            |
| Methylene Chlorideug/m317717610064-130n-Heptaneug/m341.745.210863-135n-Hexaneug/m335.833.99469-135Naphthaleneug/m353.351.49643-150o-Xyleneug/m344.253.012075-134Propyleneug/m317.517.49958-135Styreneug/m343.355.712975-133Tetrachloroetheneug/m36979.111566-137Tetrachloroetheneug/m33032.810958-135Tolueneug/m340.346.211561-140trans-1,2-Dichloroetheneug/m346.245.89975-134Trichloroetheneug/m357.160.910767-140Vinyl acetateug/m335.830.58560-139Vinyl chlorideug/m335.830.58560-139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Methyl-tert-butyl ether     | ug/m3 | 183   | 200    | 109   | 73-134 |            |
| n-Heptaneug/m341.745.210863-135n-Hexaneug/m335.833.99469-135Naphthaleneug/m353.351.49643-150o-Xyleneug/m344.253.012075-134Propyleneug/m317.517.49958-135Styreneug/m343.355.712975-133Tetrachloroetheneug/m36979.111566-137Tetrachloroetheneug/m33032.810958-135Tolueneug/m338.345.511970-129trans-1,2-Dichloroetheneug/m346.245.89975-134Trichloroetheneug/m354.667.712470-134Trichloroetheneug/m355.830.58560-139Vinyl acetateug/m335.830.58560-139Vinyl chlorideug/m32627.110472-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Methylene Chloride          | ug/m3 | 177   | 176    | 100   | 64-130 |            |
| n-Hexaneug/m335.833.99469-135Naphthaleneug/m353.351.49643-150o-Xyleneug/m344.253.012075-134Propyleneug/m317.517.49958-135Styreneug/m343.355.712975-133Tetrachloroetheneug/m36979.111566-137Tetrahydrofuranug/m33032.810958-135Tolueneug/m338.345.511970-129trans-1,2-Dichloroetheneug/m346.245.89975-134Trichloroetheneug/m354.667.712470-134Trichlorofluoromethaneug/m355.830.58560-139Vinyl acetateug/m335.830.58560-139Vinyl chlorideug/m32627.110472-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n-Heptane                   | ug/m3 | 41.7  | 45.2   | 108   | 63-135 |            |
| Naphthaleneug/m353.351.49643-150o-Xyleneug/m344.253.012075-134Propyleneug/m317.517.49958-135Styreneug/m343.355.712975-133Tetrachloroetheneug/m36979.111566-137Tetrahydrofuranug/m33032.810958-135Tolueneug/m338.345.511970-129trans-1,2-Dichloroetheneug/m346.245.89975-134Trichloroetheneug/m354.667.712470-134Trichloroetheneug/m355.830.58560-139Vinyl acetateug/m335.830.58560-139Vinyl chlorideug/m32627.110472-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n-Hexane                    | ug/m3 | 35.8  | 33.9   | 94    | 69-135 |            |
| o-Xyleneug/m344.253.012075-134Propyleneug/m317.517.49958-135Styreneug/m343.355.712975-133Tetrachloroetheneug/m36979.111566-137Tetrahydrofuranug/m33032.810958-135Tolueneug/m338.345.511970-129trans-1,2-Dichloroetheneug/m346.245.89975-134Trichloroetheneug/m354.667.712470-134Trichlorofluoromethaneug/m357.160.910767-140Vinyl acetateug/m335.830.58560-139Vinyl chlorideug/m32627.110472-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Naphthalene                 | ug/m3 | 53.3  | 51.4   | 96    | 43-150 |            |
| Propyleneug/m317.517.49958-135Styreneug/m343.355.712975-133Tetrachloroetheneug/m36979.111566-137Tetrahydrofuranug/m33032.810958-135Tolueneug/m338.345.511970-129trans-1,2-Dichloroetheneug/m346.245.89975-134Trichloroetheneug/m354.667.712470-134Trichloroetheneug/m357.160.910767-140Vinyl acetateug/m335.830.58560-139Vinyl chlorideug/m32627.110472-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | o-Xylene                    | ug/m3 | 44.2  | 53.0   | 120   | 75-134 |            |
| Styreneug/m343.355.712975-133Tetrachloroetheneug/m36979.111566-137Tetrahydrofuranug/m33032.810958-135Tolueneug/m338.345.511970-129trans-1,2-Dichloroetheneug/m340.346.211561-140trans-1,3-Dichloropropeneug/m346.245.89975-134Trichloroetheneug/m354.667.712470-134Trichlorofluoromethaneug/m355.830.58560-139Vinyl acetateug/m32627.110472-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Propylene                   | ug/m3 | 17.5  | 17.4   | 99    | 58-135 |            |
| Tetrachloroetheneug/m36979.111566-137Tetrahydrofuranug/m33032.810958-135Tolueneug/m338.345.511970-129trans-1,2-Dichloroetheneug/m340.346.211561-140trans-1,3-Dichloropropeneug/m346.245.89975-134Trichloroetheneug/m354.667.712470-134Trichlorofluoromethaneug/m357.160.910767-140Vinyl acetateug/m335.830.58560-139Vinyl chlorideug/m32627.110472-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Styrene                     | ug/m3 | 43.3  | 55.7   | 129   | 75-133 |            |
| Tetrahydrofuranug/m33032.810958-135Tolueneug/m338.345.511970-129trans-1,2-Dichloroetheneug/m340.346.211561-140trans-1,3-Dichloropropeneug/m346.245.89975-134Trichloroetheneug/m354.667.712470-134Trichlorofluoromethaneug/m357.160.910767-140Vinyl acetateug/m335.830.58560-139Vinyl chlorideug/m32627.110472-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Tetrachloroethene           | ug/m3 | 69    | 79.1   | 115   | 66-137 |            |
| Tolueneug/m338.345.511970-129trans-1,2-Dichloroetheneug/m340.346.211561-140trans-1,3-Dichloropropeneug/m346.245.89975-134Trichloroetheneug/m354.667.712470-134Trichlorofluoromethaneug/m357.160.910767-140Vinyl acetateug/m335.830.58560-139Vinyl chlorideug/m32627.110472-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Tetrahydrofuran             | ug/m3 | 30    | 32.8   | 109   | 58-135 |            |
| trans-1,2-Dichloroetheneug/m340.346.211561-140trans-1,3-Dichloropropeneug/m346.245.89975-134Trichloroetheneug/m354.667.712470-134Trichlorofluoromethaneug/m357.160.910767-140Vinyl acetateug/m335.830.58560-139Vinyl chlorideug/m32627.110472-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Toluene                     | ug/m3 | 38.3  | 45.5   | 119   | 70-129 |            |
| trans-1,3-Dichloropropeneug/m346.245.89975-134Trichloroetheneug/m354.667.712470-134Trichlorofluoromethaneug/m357.160.910767-140Vinyl acetateug/m335.830.58560-139Vinyl chlorideug/m32627.110472-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | trans-1,2-Dichloroethene    | ug/m3 | 40.3  | 46.2   | 115   | 61-140 |            |
| Trichloroetheneug/m354.667.712470-134Trichlorofluoromethaneug/m357.160.910767-140Vinyl acetateug/m335.830.58560-139Vinyl chlorideug/m32627.110472-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | trans-1,3-Dichloropropene   | ug/m3 | 46.2  | 45.8   | 99    | 75-134 |            |
| Trichlorofluoromethaneug/m357.160.910767-140Vinyl acetateug/m335.830.58560-139Vinyl chlorideug/m32627.110472-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Trichloroethene             | ug/m3 | 54.6  | 67.7   | 124   | 70-134 |            |
| Vinyl acetate         ug/m3         35.8         30.5         85         60-139           Vinyl chloride         ug/m3         26         27.1         104         72-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Trichlorofluoromethane      | ug/m3 | 57.1  | 60.9   | 107   | 67-140 |            |
| Vinyl chloride ug/m3 26 27.1 104 72-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Vinyl acetate               | ug/m3 | 35.8  | 30.5   | 85    | 60-139 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vinyl chloride              | ug/m3 | 26    | 27.1   | 104   | 72-129 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



\_

. . . . . . . . . . . .

Project: 3228 Mille Lacs Oil-Cambridge

Pace Project No.: 10330584

#### SAMPLE DUPLICATE: 2143382

|                                |                 | 10330123001 | Dup        |        |          |
|--------------------------------|-----------------|-------------|------------|--------|----------|
| Parameter                      | Units           | Result      | Result     | RPD Qu | alifiers |
| 1.1.1-Trichloroethane          | ua/m3           | <0.77       |            |        |          |
| 1.1.2.2-Tetrachloroethane      | ug/m3           | <0.49       | ND         |        |          |
| 1.1.2-Trichloroethane          | ug/m3           | <0.078      | ND         |        |          |
| 1.1.2-Trichlorotrifluoroethane | ug/m3           | <1.1        | ND         |        |          |
| 1.1-Dichloroethane             | ug/m3           | <0.57       | ND         |        |          |
| 1.1-Dichloroethene             | ug/m3           | <0.071      | ND         |        |          |
| 1.2.4-Trichlorobenzene         | ug/m3           | <5.2        | ND         |        |          |
| 1.2.4-Trimethylbenzene         | ug/m3           | 3.5         | 3.5        | 1      |          |
| 1.2-Dibromoethane (EDB)        | ug/m3           | <1.1        | ND         |        |          |
| 1,2-Dichlorobenzene            | ug/m3           | <0.85       | ND         |        |          |
| 1.2-Dichloroethane             | ug/m3           | <0.064      | ND         |        |          |
| 1.2-Dichloropropane            | ug/m3           | <0.65       | ND         |        |          |
| 1.3.5-Trimethylbenzene         | ug/m3           | <0.70       | ND         |        |          |
| 1.3-Butadiene                  | ua/m3           | <0.40       | ND         |        |          |
| 1,3-Dichlorobenzene            | ua/m3           | <0.85       | ND         |        |          |
| 1.4-Dichlorobenzene            | ua/m3           | 1.5J        | 1.4J       |        |          |
| 2-Butanone (MEK)               | ug/m3           | <2.1        | ND         |        |          |
| 2-Hexanone                     | ug/m3           | 3.3J        | 3 1.1      |        |          |
| 2-Propanol                     | ug/m3           | 15.8        | 16.6       | 5      |          |
| 4-Ethyltoluene                 | ug/m3           | 2.2         | 2.1        | 3      |          |
| 4-Methyl-2-pentanone (MIBK)    | ug/m3           | <2.9        | ND         | Ũ      |          |
| Acetone                        | ug/m3           | 20.4        | 20.5       | 0      |          |
| Benzene                        | ug/m3           | 3.1         | 31         | 0      |          |
| Benzyl chloride                | ug/m3           | <0.73       | ND         | Ŭ      |          |
| Bromodichloromethane           | ug/m3           | < 0.097     | ND         |        |          |
| Bromoform                      | ug/m3           | <0.15       | ND         |        |          |
| Bromomethane                   | ug/m3           | <0.87       | ND         |        |          |
| Carbon disulfide               | ug/m3           | 0.67J       | 73.1       |        |          |
| Carbon tetrachloride           | ug/m3           | < 0.095     | ND         |        |          |
| Chlorobenzene                  | ug/m3           | < 0.65      | ND         |        |          |
| Chloroethane                   | ug/m3           | < 0.043     | ND         |        |          |
| Chloroform                     | ug/m3           | 0.71.J      | 68.1       |        |          |
| Chloromethane                  | ug/m3           | <0.029      |            |        |          |
| cis-1 2-Dichloroethene         | ug/m3           | <0.057      | ND         |        |          |
| cis-1 3-Dichloropropene        | ug/m3           | <0.64       | ND         |        |          |
| Cyclohexane                    | ua/m3           | 2.7         | 28         | 2      |          |
| Dibromochloromethane           | ug/m3           | <1.2        |            | £      |          |
| Dichlorodifluoromethane        | ug/110<br>µg/m3 | 1.9         | 1 9        | 0      |          |
| Dichlorotetrafluoroethane      | ug/113          | <0.99       |            | v      |          |
| Ethanol                        | ug/113<br>µa/m3 | 266         | 260        | 1      |          |
| Ethyl acetate                  | ug/110<br>µg/m3 | 4.3         | 200<br>4 3 | 0      |          |
| Ethylbenzene                   | ug/113          | 1 9         | 4.5<br>1 Q | 5      |          |
| Heyachloro-1 3-butadiene       | ug/m3           | ~75         |            | 5      |          |
| m&n-Xvlene                     | ug/m3           | 7 4         | 75         | 2      |          |
| Methyl-tert-hutyl ether        | ug/113<br>1/m2  | <25         |            | 2      |          |
| Methylene Chloride             | ug/m3           | 30 0        | 22 6       | 53 P1  |          |
| n-Hentane                      | ug/m3           | 00.0<br>00  | 22.0       |        |          |
| n-neplane                      | uy/ma           | 2.2         | 2.3        | 4      |          |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



Project: 3228 Mille Lacs Oil-Cambridge

Pace Project No.: 10330584

#### SAMPLE DUPLICATE: 2143382

|                           |       | 10330123001 | Dup    |     |            |
|---------------------------|-------|-------------|--------|-----|------------|
| Parameter                 | Units | Result      | Result | RPD | Qualifiers |
| n-Hexane                  | ug/m3 | 10.7        | 8.5    | 23  | 3          |
| Naphthalene               | ug/m3 | 5.0J        | 5.1J   |     |            |
| o-Xylene                  | ug/m3 | 2.4         | 2.4    | 2   | 2          |
| Propylene                 | ug/m3 | 92.9        | 103    | 11  | E          |
| Styrene                   | ug/m3 | 1.1J        | 1.2    |     |            |
| Tetrachloroethene         | ug/m3 | 0.49J       | ND     |     |            |
| Tetrahydrofuran           | ug/m3 | < 0.042     | ND     |     |            |
| Toluene                   | ug/m3 | 15.5        | 13.1   | 16  | 5          |
| trans-1,2-Dichloroethene  | ug/m3 | <0.057      | ND     |     |            |
| trans-1,3-Dichloropropene | ug/m3 | <0.64       | ND     |     |            |
| Trichloroethene           | ug/m3 | 9600        | 1240   | 154 | E,R1       |
| Trichlorofluoromethane    | ug/m3 | 1.4J        | 1.4J   |     |            |
| Vinyl acetate             | ug/m3 | < 0.063     | ND     |     |            |
| Vinyl chloride            | ug/m3 | <0.038      | ND     |     |            |
|                           |       |             |        |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### QUALIFIERS

Project: 3228 Mille Lacs Oil-Cambridge

Pace Project No.: 10330584

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### SAMPLE QUALIFIERS

#### Sample: 10330584001

[1] This result is reported from a serial dilution.

Sample: 10330584002

[1] This result is reported from a serial dilution.

Sample: 10330584003

[1] This result is reported from a serial dilution.

#### ANALYTE QUALIFIERS

- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- R1 RPD value was outside control limits.



## QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:3228 Mille Lacs Oil-CambridgePace Project No.:10330584

| Lab ID      | Sample ID | QC Batch Method | QC Batch  | Analytical Method | Analytical<br>Batch |
|-------------|-----------|-----------------|-----------|-------------------|---------------------|
| 10330584001 | E-1       | TO-15           | AIR/24698 |                   |                     |
| 10330584002 | E-2       | TO-15           | AIR/24698 |                   |                     |
| 10330584003 | E-3       | TO-15           | AIR/24698 |                   |                     |

| ace Analytical ° |  |
|------------------|--|
| Pac              |  |

10330584 AIR: CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

1700 Elm Street SE, Suite 200, Minneapolis, MN 55414 Air Technical Phone: 612.607.6386

Survey of

FC046Rev.01, 03Feb2010

| 5                                     | 7                          | Document N<br>Air Sample Condition | lame:<br>Upon Receipt | Document Revised: 29Ju<br>Page 1 of 1             | ine2015                |
|---------------------------------------|----------------------------|------------------------------------|-----------------------|---------------------------------------------------|------------------------|
| Pa                                    | ce Analytical <sup>®</sup> | Document<br>F-MN-A-106-            | No.:<br>rev.10        | Issuing Authority<br>Pace Minnesota Quality       | :<br>/ Office          |
| ir Sample Condition C<br>Upon Receipt | lient Name:<br>Wenc K      | Pr                                 | roject #: <b>WO</b>   | #:103305                                          | 84                     |
| Courier:                              | ed Ex UPS                  | Speedee Clie                       | nt 10330              | <b>  </b>    <b>                             </b> |                        |
| Tracking Number:                      |                            |                                    |                       |                                                   |                        |
| Custody Seal on Cooler/E              | Box Present? Yes           | No Seals Intact                    | ? 🛛 Yes 🖉 🕅           | Optional: Proj. Due Date:                         | Proj. Name:            |
| acking Material:                      | bble Wrap Bubble           | Bags Foam None                     | e 🗌 Tin Can 🔲 Of      | her: Tem                                          | p Blank rec: 🗌 Yes 🖉 N |
| emp. (TO17 and TO13 samp              | oles only) (°C):           | Corrected Temp (°C):               | Thermom. Used         | : B88A912167504                                   | 72337080               |
| Temp should be above freez            | ting to 6°C Correction Fac | :tor:                              | Date & Initials       | of Person Examining Contents:                     |                        |
| pe of ice Received                    | ue 🗌 Wet 🕅 None            |                                    |                       |                                                   | <i>V</i>               |
|                                       |                            |                                    |                       | Comments:                                         |                        |
| Chain of Custody Present              | ?                          | Yes No                             | □N/A 1.               |                                                   |                        |
| Chain of Custody Filled O             | ut?                        | Yes No                             | □N/A 2.               |                                                   |                        |
| Chain of Custody Relinqui             | ished?                     | Yes No                             | N/A 3.                |                                                   |                        |
| Sampler Name and/or Sig               | nature on COC?             | Yes No                             | <u>N/A</u> 4.         |                                                   |                        |
| Samples Arrived within H              | old Time?                  | Yes No                             | N/A 5.                |                                                   |                        |
| Short Hold Time Analysis              | (<72 hr)?                  | Yes No                             | N/A 6.                |                                                   |                        |
| Rush Turn Around Time I               | Requested?                 | Yes No                             | N/A 7.                |                                                   |                        |
|                                       |                            | Yes No                             | N/A 8.                |                                                   |                        |
| Page Containers Used                  | ว                          |                                    |                       |                                                   |                        |
| Containers Intact?                    | <u>;</u>                   |                                    |                       |                                                   |                        |
| Media: Air Can                        | Airhag Filter              |                                    | N/A<br>11             |                                                   |                        |
| Sample Labels Match COC               | ?                          | TAY INO                            | <br>ΠΝ/Α 12           | · · · · · · · · · · · · · · · · · · ·             |                        |
|                                       |                            |                                    |                       |                                                   |                        |
| Samples Received:                     |                            |                                    | [                     |                                                   |                        |
|                                       | Canisters                  |                                    |                       | Canisters                                         |                        |
| Sample Number                         |                            | Flow Controller ID                 | Sample Number         | Can ID                                            | Flow Controller ID     |
| $\frac{L^{-1}}{E^{-1}}$               | 2841                       | 0410                               |                       |                                                   |                        |
| E-C<br>E-3                            | 1370                       | 0490                               |                       |                                                   |                        |
| 6-3                                   |                            | 0686                               |                       |                                                   |                        |
|                                       |                            |                                    |                       | ·····                                             |                        |
|                                       |                            |                                    |                       |                                                   |                        |
|                                       |                            |                                    |                       |                                                   | -                      |
|                                       |                            |                                    |                       |                                                   |                        |
| <u>* </u>                             |                            |                                    |                       | · · · · · · · · · · · · · · · · · · ·             |                        |
|                                       |                            |                                    |                       |                                                   |                        |
| LIENT NOTIFICATION/RE<br>Person Conta | SOLUTION                   |                                    | Date/Time:            | Field Data Required?                              | Yes No                 |
| Comments/Resol                        | ution:                     | ······                             |                       |                                                   |                        |
|                                       |                            |                                    | -                     |                                                   |                        |
|                                       | <i>(</i> *                 |                                    |                       | 2                                                 |                        |



Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

May 21, 2015

Kelly Jaworski Wenck 1800 Pioneer Creek Cente Maple Plain, MN 55359

RE: Project: 3228-01 Former Union 76 Pace Project No.: 10305683

Dear Kelly Jaworski:

Enclosed are the analytical results for sample(s) received by the laboratory on May 08, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kabor Xing

Kabor Xiong kabor.xiong@pacelabs.com Project Manager

Enclosures

cc: Adam P. Zobel, Wenck Associates, Inc





Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

#### CERTIFICATIONS

Project: 3228-01 Former Union 76

#### Pace Project No.: 10305683

#### **Minnesota Certification IDs**

1700 Elm Street SE Suite 200, Minneapolis, MN 55414 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605 Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062 Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909

Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN\_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530 North Carolina State Public Health #: 27700 North Dakota Certification #: R-036 Ohio EPA #: 4150 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Virginia/VELAP Certification #: Pace Washington Certification #: C486 West Virginia Certification #: 382 West Virginia DHHR #:9952C Wisconsin Certification #: 999407970



Project: 3228-01 Former Union 76

Pace Project No.: 10305683

| Sample: MW-1               | Lab ID: 1030    | 05683001  | Collected: 05/08/ | 15 05:05 | 5 Received: 05 | /08/15 18:26   | Aatrix: Water |       |
|----------------------------|-----------------|-----------|-------------------|----------|----------------|----------------|---------------|-------|
| Parameters                 | Results         | Units     | Report Limit      | DF       | Prepared       | Analyzed       | CAS No.       | Qual  |
| WIDRO GCS                  | Analytical Meth | od: WI MC | DDDRO Preparation | Method   | I: WI MOD DRO  |                |               |       |
| WDRO C10-C28               | 1.6             | mg/L      | 0.11              | 1        | 05/12/15 14:03 | 05/14/15 13:12 |               | T6,T7 |
| Surrogates                 |                 |           |                   |          |                |                |               |       |
| n-Triacontane (S)          | 96              | %.        | 50-150            | 1        | 05/12/15 14:03 | 05/14/15 13:12 | 638-68-6      |       |
| WIGRO GCV                  | Analytical Meth | od: WI MC | DD GRO            |          |                |                |               |       |
| Benzene                    | ND              | ug/L      | 1.0               | 1        |                | 05/20/15 11:11 | 71-43-2       |       |
| Ethylbenzene               | 16.6            | ug/L      | 1.0               | 1        |                | 05/20/15 11:11 | 100-41-4      |       |
| Gasoline Range Organics    | 1530            | ug/L      | 100               | 1        |                | 05/20/15 11:11 |               |       |
| Toluene                    | ND              | ug/L      | 1.0               | 1        |                | 05/20/15 11:11 | 108-88-3      |       |
| Xylene (Total)             | 595             | ug/L      | 3.0               | 1        |                | 05/20/15 11:11 | 1330-20-7     |       |
| Surrogates                 |                 | •         |                   |          |                |                |               |       |
| a,a,a-Trifluorotoluene (S) | 107             | %.        | 80-150            | 1        |                | 05/20/15 11:11 | 98-08-8       |       |



Project: 3228-01 Former Union 76

Pace Project No.: 10305683

| Sample: MW-3               | Lab ID: 103     | 05683002  | Collected: 05/08/ | 15 04:30 | Received: 05   | /08/15 18:26 M | latrix: Water |      |
|----------------------------|-----------------|-----------|-------------------|----------|----------------|----------------|---------------|------|
| Parameters                 | Results         | Units     | Report Limit      | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                  | Analytical Meth | od: WI MC | D DRO Preparation | Method   | : WI MOD DRO   |                |               |      |
| WDRO C10-C28               | 12.4            | mg/L      | 1.1               | 10       | 05/12/15 14:03 | 05/14/15 16:18 |               | T7   |
| Surrogates                 |                 |           |                   |          |                |                |               |      |
| n-Triacontane (S)          | 37              | %.        | 50-150            | 10       | 05/12/15 14:03 | 05/14/15 16:18 | 638-68-6      | S4   |
| WIGRO GCV                  | Analytical Meth | od: WI MC | DD GRO            |          |                |                |               |      |
| Benzene                    | 1860            | ug/L      | 25.0              | 25       |                | 05/21/15 11:42 | 71-43-2       |      |
| Ethylbenzene               | 42.1            | ug/L      | 1.0               | 1        |                | 05/20/15 11:35 | 100-41-4      | IU   |
| Gasoline Range Organics    | 17300           | ug/L      | 2500              | 25       |                | 05/21/15 11:42 |               |      |
| Toluene                    | 1320            | ug/L      | 25.0              | 25       |                | 05/21/15 11:42 | 108-88-3      |      |
| Xylene (Total)             | 4590            | ug/L      | 75.0              | 25       |                | 05/21/15 11:42 | 1330-20-7     |      |
| Surrogates                 |                 | -         |                   |          |                |                |               |      |
| a,a,a-Trifluorotoluene (S) | 142             | %.        | 80-150            | 1        |                | 05/20/15 11:35 | 98-08-8       |      |



Project: 3228-01 Former Union 76

Pace Project No.: 10305683

| Sample: MW-6                    | Lab ID: 103     | 05683003   | Collected: 05/08/ | 15 12:15 | 5 Received: 05 | /08/15 18:26   | Aatrix: Water |      |
|---------------------------------|-----------------|------------|-------------------|----------|----------------|----------------|---------------|------|
| Parameters                      | Results         | Units      | Report Limit      | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                       | Analytical Meth | nod: WI MC | D DRO Preparation | Method   | : WI MOD DRO   |                |               |      |
| WDRO C10-C28                    | 5.7             | mg/L       | 0.51              | 5        | 05/12/15 14:03 | 05/14/15 16:33 |               | T7   |
| Surrogates<br>n-Triacontane (S) | 85              | %.         | 50-150            | 5        | 05/12/15 14:03 | 05/14/15 16:33 | 638-68-6      |      |
| WIGRO GCV                       | Analytical Meth | nod: WI MC | D GRO             |          |                |                |               |      |
| Benzene                         | 2500            | ug/L       | 50.0              | 50       |                | 05/21/15 12:06 | 71-43-2       |      |
| Ethylbenzene                    | 953             | ug/L       | 50.0              | 50       |                | 05/21/15 12:06 | 100-41-4      |      |
| Gasoline Range Organics         | 15400           | ug/L       | 5000              | 50       |                | 05/21/15 12:06 |               |      |
| Toluene                         | 2480            | ug/L       | 50.0              | 50       |                | 05/21/15 12:06 | 108-88-3      |      |
| Xylene (Total)                  | 4250            | ug/L       | 150               | 50       |                | 05/21/15 12:06 | 1330-20-7     |      |



Project: 3228-01 Former Union 76

Pace Project No.: 10305683

| Sample: MW-7                           | Lab ID: 1030    | 05683004  | Collected: 05/08/ | 15 13:03 | B Received: 05 | 08/15 18:26 N  | Aatrix: Water |      |
|----------------------------------------|-----------------|-----------|-------------------|----------|----------------|----------------|---------------|------|
| Parameters                             | Results         | Units     | Report Limit      | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                              | Analytical Meth | od: WI MC | D DRO Preparation | Method   | : WI MOD DRO   |                |               |      |
| WDRO C10-C28                           | 11.1            | mg/L      | 1.1               | 10       | 05/12/15 14:03 | 05/14/15 15:54 |               | T7   |
| <i>Surrogates</i><br>n-Triacontane (S) | 77              | %.        | 50-150            | 10       | 05/12/15 14:03 | 05/14/15 15:54 | 638-68-6      |      |
| WIGRO GCV                              | Analytical Meth | od: WI MC | D GRO             |          |                |                |               |      |
| Benzene                                | 2440            | ug/L      | 50.0              | 50       |                | 05/21/15 12:30 | 71-43-2       |      |
| Ethylbenzene                           | 1360            | ug/L      | 50.0              | 50       |                | 05/21/15 12:30 | 100-41-4      |      |
| Gasoline Range Organics                | 28100           | ug/L      | 5000              | 50       |                | 05/21/15 12:30 |               |      |
| Toluene                                | 5760            | ug/L      | 50.0              | 50       |                | 05/21/15 12:30 | 108-88-3      |      |
| Xylene (Total)                         | 7610            | ug/L      | 150               | 50       |                | 05/21/15 12:30 | 1330-20-7     |      |



Project: 3228-01 Former Union 76

Pace Project No.: 10305683

| Sample: MW-8               | Lab ID: 103     | 05683005   | Collected: 05/08/ | 15 14:10 | Received: 05   | /08/15 18:26 M | latrix: Water |       |
|----------------------------|-----------------|------------|-------------------|----------|----------------|----------------|---------------|-------|
| Parameters                 | Results         | Units      | Report Limit      | DF       | Prepared       | Analyzed       | CAS No.       | Qual  |
| WIDRO GCS                  | Analytical Meth | nod: WI MC | D DRO Preparation | Method   | : WI MOD DRO   |                |               |       |
| WDRO C10-C28               | 13.1            | mg/L       | 1.1               | 10       | 05/12/15 14:03 | 05/14/15 16:02 |               | T7    |
| Surrogates                 |                 |            |                   |          |                |                |               |       |
| n-Triacontane (S)          | 73              | %.         | 50-150            | 10       | 05/12/15 14:03 | 05/14/15 16:02 | 638-68-6      |       |
| WIGRO GCV                  | Analytical Meth | nod: WI MC | D GRO             |          |                |                |               |       |
| Benzene                    | 148             | ug/L       | 1.0               | 1        |                | 05/20/15 12:46 | 71-43-2       |       |
| Ethylbenzene               | 61.4            | ug/L       | 1.0               | 1        |                | 05/20/15 12:46 | 100-41-4      |       |
| Gasoline Range Organics    | 12900           | ug/L       | 1000              | 10       |                | 05/21/15 12:53 |               |       |
| Toluene                    | 243             | ug/L       | 1.0               | 1        |                | 05/20/15 12:46 | 108-88-3      |       |
| Xylene (Total)             | 251             | ug/L       | 3.0               | 1        |                | 05/20/15 12:46 | 1330-20-7     |       |
| Surrogates                 |                 | -          |                   |          |                |                |               |       |
| a,a,a-Trifluorotoluene (S) | 46              | %.         | 80-150            | 1        |                | 05/20/15 12:46 | 98-08-8       | IU,S2 |



Project: 3228-01 Former Union 76

Pace Project No.: 10305683

| Sample: MW-9               | Lab ID: 1030    | 05683006  | Collected: 05/08/1 | 15 14:55 | 5 Received: 05 | 08/15 18:26 M  | latrix: Water |      |
|----------------------------|-----------------|-----------|--------------------|----------|----------------|----------------|---------------|------|
| Parameters                 | Results         | Units     | Report Limit       | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                  | Analytical Meth | od: WI MC | D DRO Preparation  | Method   | I: WI MOD DRO  |                |               |      |
| WDRO C10-C28               | 7.6             | mg/L      | 1.1                | 10       | 05/12/15 14:03 | 05/14/15 16:10 |               | T7   |
| Surrogates                 | 70              | 0/        | 50.450             | 4.0      |                | 05/44/45 40 40 |               |      |
| n-Triacontane (S)          | 79              | %.        | 50-150             | 10       | 05/12/15 14:03 | 05/14/15 16:10 | 638-68-6      |      |
| WIGRO GCV                  | Analytical Meth | od: WI MC | D GRO              |          |                |                |               |      |
| Benzene                    | 1900            | ug/L      | 25.0               | 25       |                | 05/21/15 13:17 | 71-43-2       |      |
| Ethylbenzene               | 1130            | ug/L      | 25.0               | 25       |                | 05/21/15 13:17 | 100-41-4      |      |
| Gasoline Range Organics    | 20600           | ug/L      | 2500               | 25       |                | 05/21/15 13:17 |               |      |
| Toluene                    | 2300            | ug/L      | 25.0               | 25       |                | 05/21/15 13:17 | 108-88-3      |      |
| Xylene (Total)             | 7270            | ug/L      | 75.0               | 25       |                | 05/21/15 13:17 | 1330-20-7     |      |
| Surrogates                 |                 |           |                    |          |                |                |               |      |
| a,a,a-Trifluorotoluene (S) | 159             | %.        | 80-150             | 1        |                | 05/20/15 13:10 | 98-08-8       | S0   |



Project: 3228-01 Former Union 76

Pace Project No.: 10305683

| Sample: MW-10              | Lab ID: 1030    | 05683007  | Collected: 05/08/ | 15 11:15 | 5 Received: 05 | 5/08/15 18:26 N | latrix: Water |       |
|----------------------------|-----------------|-----------|-------------------|----------|----------------|-----------------|---------------|-------|
| Parameters                 | Results         | Units     | Report Limit      | DF       | Prepared       | Analyzed        | CAS No.       | Qual  |
| WIDRO GCS                  | Analytical Meth | od: WI MC | D DRO Preparation | Method   | : WI MOD DRO   |                 |               |       |
| WDRO C10-C28               | 4.4             | mg/L      | 0.11              | 1        | 05/12/15 14:03 | 05/14/15 14:06  |               | T6,T7 |
| Surrogates                 |                 |           |                   |          |                |                 |               |       |
| n-Triacontane (S)          | 91              | %.        | 50-150            | 1        | 05/12/15 14:03 | 05/14/15 14:06  | 638-68-6      |       |
| WIGRO GCV                  | Analytical Meth | od: WI MC | DD GRO            |          |                |                 |               |       |
| Benzene                    | 212             | ug/L      | 1.0               | 1        |                | 05/20/15 13:33  | 71-43-2       |       |
| Ethylbenzene               | 246             | ug/L      | 1.0               | 1        |                | 05/20/15 13:33  | 100-41-4      |       |
| Gasoline Range Organics    | 7580            | ug/L      | 500               | 5        |                | 05/21/15 13:41  |               |       |
| Toluene                    | 229             | ug/L      | 1.0               | 1        |                | 05/20/15 13:33  | 108-88-3      |       |
| Xylene (Total)             | 1030            | ug/L      | 3.0               | 1        |                | 05/20/15 13:33  | 1330-20-7     |       |
| Surrogates                 |                 | 0         |                   |          |                |                 |               |       |
| a,a,a-Trifluorotoluene (S) | 110             | %.        | 80-150            | 1        |                | 05/20/15 13:33  | 98-08-8       |       |



Project: 3228-01 Former Union 76

Pace Project No.: 10305683

| Sample: MW-11              | Lab ID: 1030    | 5683008   | Collected: 05/08/ | 15 10:20 | 0 Received: 05 | /08/15 18:26 N | latrix: Water |      |
|----------------------------|-----------------|-----------|-------------------|----------|----------------|----------------|---------------|------|
| Parameters                 | Results         | Units     | Report Limit      | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                  | Analytical Meth | od: WI MC | D DRO Preparation | Method   | : WI MOD DRO   |                |               |      |
| WDRO C10-C28               | ND              | mg/L      | 0.12              | 1        | 05/12/15 14:03 | 05/14/15 14:45 |               |      |
| Surrogates                 |                 |           |                   |          |                |                |               |      |
| n-Triacontane (S)          | 91              | %.        | 50-150            | 1        | 05/12/15 14:03 | 05/14/15 14:45 | 638-68-6      |      |
| WIGRO GCV                  | Analytical Meth | od: WI MC | D GRO             |          |                |                |               |      |
| Benzene                    | ND              | ug/L      | 1.0               | 1        |                | 05/20/15 13:57 | 71-43-2       |      |
| Ethylbenzene               | ND              | ug/L      | 1.0               | 1        |                | 05/20/15 13:57 | 100-41-4      |      |
| Gasoline Range Organics    | ND              | ug/L      | 100               | 1        |                | 05/20/15 13:57 |               |      |
| Toluene                    | ND              | ug/L      | 1.0               | 1        |                | 05/20/15 13:57 | 108-88-3      |      |
| Xylene (Total)             | 4.4             | ug/L      | 3.0               | 1        |                | 05/20/15 13:57 | 1330-20-7     |      |
| Surrogates                 |                 | U         |                   |          |                |                |               |      |
| a,a,a-Trifluorotoluene (S) | 98              | %.        | 80-150            | 1        |                | 05/20/15 13:57 | 98-08-8       |      |



Project: 3228-01 Former Union 76

Pace Project No.: 10305683

| Sample: Duplicate-1     | Lab ID: 103     | 05683010   | Collected: 05/08/ | 15 00:00 | Received: 05   | /08/15 18:26 N | Aatrix: Water |      |
|-------------------------|-----------------|------------|-------------------|----------|----------------|----------------|---------------|------|
| Parameters              | Results         | Units      | Report Limit      | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS               | Analytical Meth | nod: WI MC | D DRO Preparation | Method   | WI MOD DRO     |                |               |      |
| WDRO C10-C28            | 9.6             | mg/L       | 1.1               | 10       | 05/12/15 14:03 | 05/14/15 15:47 |               | T7   |
| n-Triacontane (S)       | 81              | %.         | 50-150            | 10       | 05/12/15 14:03 | 05/14/15 15:47 | 638-68-6      |      |
| WIGRO GCV               | Analytical Meth | nod: WI MC | D GRO             |          |                |                |               |      |
| Benzene                 | 2090            | ug/L       | 50.0              | 50       |                | 05/21/15 14:04 | 71-43-2       |      |
| Ethylbenzene            | 1140            | ug/L       | 50.0              | 50       |                | 05/21/15 14:04 | 100-41-4      |      |
| Gasoline Range Organics | 23600           | ug/L       | 5000              | 50       |                | 05/21/15 14:04 |               |      |
| Toluene                 | 2470            | ug/L       | 50.0              | 50       |                | 05/21/15 14:04 | 108-88-3      |      |
| Xylene (Total)          | 7350            | ug/L       | 150               | 50       |                | 05/21/15 14:04 | 1330-20-7     |      |



Project: 3228-01 Former Union 76

Pace Project No.: 10305683

| QC Batch:          | GCV   | /13756   |
|--------------------|-------|----------|
| QC Batch Method:   | WI N  | 10D GRO  |
| Associated Lab Sam | ples: | 10305683 |

Analysis Method: WI MOD GRO Analysis Description:

WIGRO GCV Water 10305683001, 10305683002, 10305683003, 10305683004, 10305683005, 10305683006, 10305683007,

10305683008, 10305683010

## METHOD BLANK: 1970465 Associated Lab Samples:

Matrix: Water

10305683001, 10305683002, 10305683003, 10305683004, 10305683005, 10305683006, 10305683007, 10305683008, 10305683010

|                            |       | Blank  | Reporting |                |            |
|----------------------------|-------|--------|-----------|----------------|------------|
| Parameter                  | Units | Result | Limit     | Analyzed       | Qualifiers |
| Benzene                    | ug/L  | ND     | 1.0       | 05/20/15 10:48 |            |
| Ethylbenzene               | ug/L  | ND     | 1.0       | 05/20/15 10:48 |            |
| Gasoline Range Organics    | ug/L  | ND     | 100       | 05/20/15 10:48 |            |
| Toluene                    | ug/L  | ND     | 1.0       | 05/20/15 10:48 |            |
| Xylene (Total)             | ug/L  | ND     | 3.0       | 05/20/15 10:48 |            |
| a,a,a-Trifluorotoluene (S) | %.    | 96     | 80-150    | 05/20/15 10:48 |            |

| LABORATORY CONTROL SAMPLE & | LCSD: 1970466 |       | 19     | 70467  |       |       |        |     |     |            |
|-----------------------------|---------------|-------|--------|--------|-------|-------|--------|-----|-----|------------|
|                             |               | Spike | LCS    | LCSD   | LCS   | LCSD  | % Rec  |     | Max |            |
| Parameter                   | Units         | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qualifiers |
| Benzene                     | ug/L          | 100   | 110    | 92.3   | 110   | 92    | 80-120 | 17  | 20  |            |
| Ethylbenzene                | ug/L          | 100   | 117    | 96.9   | 117   | 97    | 80-120 | 19  | 20  |            |
| Gasoline Range Organics     | ug/L          | 1000  | 1140   | 994    | 114   | 99    | 80-120 | 14  | 20  |            |
| Toluene                     | ug/L          | 100   | 119    | 99.1   | 119   | 99    | 80-120 | 18  | 20  |            |
| Xylene (Total)              | ug/L          | 300   | 351    | 291    | 117   | 97    | 80-120 | 19  | 20  |            |
| a,a,a-Trifluorotoluene (S)  | %.            |       |        |        | 97    | 107   | 80-150 |     |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | 3228-01 Fo        | mer Union              | 76                          |          |             |           |          |          |           |           |      |            |
|--------------------|-------------------|------------------------|-----------------------------|----------|-------------|-----------|----------|----------|-----------|-----------|------|------------|
| Pace Project No.:  | 10305683          |                        |                             |          |             |           |          |          |           |           |      |            |
| QC Batch:          | OEXT/291          | 42                     |                             | Analys   | sis Method  | 1: '      |          | DRO      |           |           |      |            |
| QC Batch Method:   | WI MOD E          | RO                     |                             | Analys   | sis Descrip | otion:    | NIDRO G  | CS       |           |           |      |            |
| Associated Lab San | nples: 103<br>103 | 05683001,<br>05683008, | 10305683002,<br>10305683010 | 10305683 | 3003, 1030  | 05683004, | 10305683 | 005, 103 | 05683006, | 103056830 | 007, |            |
| METHOD BLANK:      | 1962795           |                        |                             | 1        | Matrix: Wa  | ater      |          |          |           |           |      |            |
| Associated Lab San | nples: 103<br>103 | 05683001,<br>05683008, | 10305683002,<br>10305683010 | 10305683 | 3003, 1030  | )5683004, | 10305683 | 005, 103 | 05683006, | 103056830 | 007, |            |
|                    |                   |                        |                             | Blank    | k F         | Reporting |          |          |           |           |      |            |
| Paran              | neter             |                        | Units                       | Resu     | lt          | Limit     | Ana      | alyzed   | Qualif    | iers      |      |            |
| WDRO C10-C28       |                   |                        | mg/L                        |          | ND          | 0.1       | 0 05/14/ | 15 12:57 |           |           |      |            |
| n-Triacontane (S)  |                   |                        | %.                          |          | 86          | 50-15     | 0 05/14/ | 15 12:57 |           |           |      |            |
| LABORATORY COM     | NTROL SAMI        | PLE & LCS              | D: 1962796                  |          |             | 1962797   |          |          |           |           |      |            |
|                    |                   |                        |                             | Spike    | LCS         | LCSD      | LCS      | LCSD     | % Rec     |           | Max  |            |
| Paran              | neter             |                        | Units                       | Conc.    | Result      | Result    | % Rec    | % Rec    | Limits    | RPD       | RPD  | Qualifiers |
| WDRO C10-C28       |                   |                        | mg/L                        | 2        | 1.          | 8 1       | .9 88    | 95       | 75-115    | 8         | 20   |            |
| n-Triacontane (S)  |                   |                        | %.                          |          |             |           | 86       | 95       | 50-150    |           |      |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### QUALIFIERS

#### Project: 3228-01 Former Union 76

Pace Project No.: 10305683

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

- IU The internal standard recoveries associated with this sample exceed the upper control limit. The reported results should be considered estimated values.
- S0 Surrogate recovery outside laboratory control limits.
- S2 Surrogate recovery outside laboratory control limits due to matrix interferences (confirmed by similar results from sample re-analysis).
- S4 Surrogate recovery not evaluated against control limits due to sample dilution.
- T6 High boiling point hydrocarbons are present in the sample.
- T7 Low boiling point hydrocarbons are present in the sample.



## QUALITY CONTROL DATA CROSS REFERENCE TABLE

 Project:
 3228-01 Former Union 76

 Pace Project No.:
 10305683

| Lab ID      | Sample ID   | QC Batch Method | QC Batch   | Analytical Method | Analytical<br>Batch |
|-------------|-------------|-----------------|------------|-------------------|---------------------|
| 10305683001 | MW-1        | WI MOD DRO      | OEXT/29142 | WI MOD DRO        | GCSV/15688          |
| 10305683002 | MW-3        | WI MOD DRO      | OEXT/29142 | WI MOD DRO        | GCSV/15688          |
| 10305683003 | MW-6        | WI MOD DRO      | OEXT/29142 | WI MOD DRO        | GCSV/15688          |
| 10305683004 | MW-7        | WI MOD DRO      | OEXT/29142 | WI MOD DRO        | GCSV/15688          |
| 10305683005 | MW-8        | WI MOD DRO      | OEXT/29142 | WI MOD DRO        | GCSV/15688          |
| 10305683006 | MW-9        | WI MOD DRO      | OEXT/29142 | WI MOD DRO        | GCSV/15688          |
| 10305683007 | MW-10       | WI MOD DRO      | OEXT/29142 | WI MOD DRO        | GCSV/15688          |
| 10305683008 | MW-11       | WI MOD DRO      | OEXT/29142 | WI MOD DRO        | GCSV/15688          |
| 10305683010 | Duplicate-1 | WI MOD DRO      | OEXT/29142 | WI MOD DRO        | GCSV/15688          |
| 10305683001 | MW-1        | WI MOD GRO      | GCV/13756  |                   |                     |
| 10305683002 | MW-3        | WI MOD GRO      | GCV/13756  |                   |                     |
| 10305683003 | MW-6        | WI MOD GRO      | GCV/13756  |                   |                     |
| 10305683004 | MW-7        | WI MOD GRO      | GCV/13756  |                   |                     |
| 10305683005 | MW-8        | WI MOD GRO      | GCV/13756  |                   |                     |
| 10305683006 | MW-9        | WI MOD GRO      | GCV/13756  |                   |                     |
| 10305683007 | MW-10       | WI MOD GRO      | GCV/13756  |                   |                     |
| 10305683008 | MW-11       | WI MOD GRO      | GCV/13756  |                   |                     |
| 10305683010 | Duplicate-1 | WI MOD GRO      | GCV/13756  |                   |                     |

# CHAIN-OF-CUSTODY / Analytical Request Document

| 1,02063                                                   | Page:     | 1714345                                                                             | REGULATORY AGENCY            | THE VIENCE AT CONTRACTOR TO MAIN WATED |               | UST RCRA DIHER                   | Site Location Counter MyC   | STATE:                   | Analysis Filtered (Y/N) |                                                                   | Z Che Chain -                          | Two coolers                                         | Chlorin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pace Project No./ Lab I.D.                                                                                  |                  | 18 33             | \$<br>\$         | 5 P         | 50      | es te       |             |             | 6/EX UNIY 00% |                  |    | DATE TIME SAMPLE CONDITIONS        | 5-25 1826 1-2 Y N Y  | 1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Jaci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n ni qm<br>se (Y/N)<br>se (Y/N)<br>fed Co<br>fed Co<br>(Y/N) | 589<br>563<br>161<br>162<br>163<br>163<br>163<br>163<br>163<br>163<br>163<br>163<br>163<br>163 |
|-----------------------------------------------------------|-----------|-------------------------------------------------------------------------------------|------------------------------|----------------------------------------|---------------|----------------------------------|-----------------------------|--------------------------|-------------------------|-------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------|-------------------|------------------|-------------|---------|-------------|-------------|-------------|---------------|------------------|----|------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| s a LEGAL DOCUMEN I . All felevant neuts must be comprete | Section C | Invoice Information:<br>Attention:                                                  | Company Name: Disconting the | Address. 1 UNAT UP NAME UP UN UP 100   |               | Pace Quote<br>Reference:         | Pace Project<br>Manager:    | Pace Profile #:          | Requested               | Preservatives ≥ ∠ ∠                                               | (Page )                                | 8)<br>** 1<br>** 1<br>** 1<br>** 1<br>**            | TA 9M9<br>boy<br>boy<br>boy<br>tei<br>cui<br>cui<br>cui<br>cui<br>cui<br>cui<br>cui<br>cui<br>cui<br>cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GIGO I<br>DIGO<br>Ofher<br>Nacy 203<br>Nach<br>Hacy<br>Hacy<br>Hacy<br>Hacy<br>Hacy<br>Hacy<br>Hacy<br>Hacy |                  |                   |                  |             |         |             | ×<br>×<br>× |             |               |                  |    | TIME ACCEPTED BY / AFFILIATION     | S 6:26 un lac        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LER: LOANNA MINUN                                            | LER: OL N N N 2 2 (MM/DD/YY):                                                                  |
| The Chain-of-Custody (                                    | iction B  | quired Project Information:<br>port To: ຊ້ຳູ້ເດີ M ຈໍ້າໄກ ຈໍ່                       | DATE NULLEY                  | a toperance and                        |               | rchase Order No.:                | Ject Name: Fromer Union PLO | oject Number: 3.2.7.3D.1 |                         | ss<br>DE سور<br>DE سور الحرح                                      | DW VT COMPOSITE COMPOSITE ENDIGRAB     | 은 약 일 2 원 - 약 2 년 년 년 년 년 년 년 년 년 년 년 년 년 년 년 년 년 년 | 7 분 분 년<br>- 3005<br>- 100<br>- 10<br>- 1 | р<br>D XIЯТАМ<br>T ЭЈЯМА2<br>НАС<br>AMA2                                                                    | Wr A S///15 5:25 | WT (215)2/14 4:30 | WT R SPAIS L2:15 | WT A 1 1:0% | M16 2.0 | WIT 61 2:55 | WTG NIS     | MTG 1 10.20 |               | MIT EI 5/8/5     |    | RELINQUISHED BY / AFFILIATION DATE | But & Min Warek S131 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CONTRACTOR OF CONT | SAMPLER NAME AND JOURN                                       | SIGNATURE of SAMP                                                                              |
| Pace Analytical"<br>www.pacelabs.com                      | Section A | Required Client Information: Re-<br>Company: 2010 2010 2010 2010 2010 2010 2010 201 | Address: No. 2 Martin Co     | 1202 WOODANE Dr                        | woodbury will | Email To: Lmi Nev Brux NOCLON Pu | Phone, 266, C273, Fax: Pro  | Requested Due Date/TAT:  |                         | Section D Matrix Code<br>Required Client Information MATRIX / COI | Drinking Water<br>Water<br>Waste Water |                                                     | AMPLE IU Whe<br>(A-Z, 0-9 / -) Air<br>Sample IDS MUST BE UNIQUE Tissue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cther<br>Cther                                                                                              | an un r l        | A RIVE A          | A IN A           | 2 - MAR - 2 | Q - MAN | NN -6       | 7 WW-10     | R.W.~ LI    | S THID BLANK  | 10 Dublicate - 1 | wa | 12 and the comments                | Prince ad PT TON     | the set of some of the set of some of the set of the se | Pac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | je 16                                                        | č)                                                                                             |

| Page Anglitical*                                                                                                                                                                                   | D<br>Sample Con                             | ocument<br>dition U              | Name:<br>pon Rece                      | ipt Form                     | Do                                         | cument Revise<br>Page 1                             | ed: 23Feb2015<br>of 1        |                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------|----------------------------------------|------------------------------|--------------------------------------------|-----------------------------------------------------|------------------------------|--------------------------------------------------------------------|
| Tact Allaly lical                                                                                                                                                                                  | ا<br>F-۱                                    | Documer<br>VIN-L-21              | nt No.:<br>3-rev.13                    | -                            | Pa                                         | Issuing Au<br>ce Minnesota                          | thority:<br>Quality Office   |                                                                    |
| Upon Receipt                                                                                                                                                                                       | ssociat                                     | 25                               | Project                                | : #: [ WO                    | )#:1                                       | .0305                                               | 5683                         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |
| Durier:     Fed Ex     UPS       Commercial     Pace     SpeeDee       Tracking Number:     SpeeDee                                                                                                | USPS                                        | ٦k                               | lient                                  | 103                          | 05683                                      |                                                     |                              |                                                                    |
| Custody Seal on Cooler/Box Present? Yes                                                                                                                                                            | No                                          | Seals Int                        | act?                                   | ]Yes 🖻                       | No Opt                                     | <b>ional:</b> Proj.                                 | Due Date: F                  | Proj. Name:                                                        |
| Packing Material: Bubble Wrap Bubble I                                                                                                                                                             | 3ags 🗌 Non                                  | e 🗌                              | Other:                                 | <u></u>                      |                                            | Temp                                                | Blank?                       | es No                                                              |
| hermometer B88A9130516413 B88A9121<br>Used: B88A0143                                                                                                                                               | 167504 Typ<br>3310098                       | e of Ice:                        | 12We                                   | et 🗍 Blue                    | Non                                        | e Sample                                            | s on ice, cooling p          | process has begun                                                  |
| emp should be above freezing to 6°C Correction                                                                                                                                                     | p Corrected (*C<br>Factor: 子の               | ): <u> </u>                      | Dat                                    | te and Initia                | Biological<br>s of Person                  | Examining Co                                        | ntents: VA                   | INO L'IN/A                                                         |
| SDA Regulated Soil ( M/A, water sample)<br>d samples originate in a quarantine zone within the Un<br>S, NC, NM, NY, OK, OR, SC, TN, TX or WA (check maps)<br>If Yes to either question, fill out a | iited States: AL, /<br>?<br>a Regulated Soi | AR, AZ, C/<br>I <b>Checkli</b> s | 4, FL, GA,<br>□Yes<br>st (F-MN         | ID, LA.<br>No<br>-Q-338) and | Did samples<br>including Ha<br>include wit | originate from a<br>wali and Puerto<br>h SCUR/COC p | a foreign source (<br>Rico)? | nternationally,<br>Yes No                                          |
|                                                                                                                                                                                                    | ·····                                       |                                  |                                        | L                            |                                            | COMME                                               | NTS:                         |                                                                    |
| Chain of Custody Present?                                                                                                                                                                          | Ves                                         | []No                             | □n/A                                   | 1.                           |                                            |                                                     |                              |                                                                    |
| hain of Custody Filled Out?                                                                                                                                                                        | <b>V</b> es                                 | No                               | □n/a                                   | 2.                           |                                            |                                                     |                              |                                                                    |
| hain of Custody Relinquished?                                                                                                                                                                      | Mes                                         | □No                              | □n/a                                   | 3.                           |                                            |                                                     |                              |                                                                    |
| ampler Name and/or Signature on COC?                                                                                                                                                               | Ves                                         | No                               | □n/a                                   | 4.                           |                                            |                                                     |                              |                                                                    |
| amples Arrived within Hold Time?                                                                                                                                                                   | <b>∏</b> ¥Yes                               | ΠNO                              |                                        | 5.                           |                                            |                                                     |                              |                                                                    |
| nort Hold Time Analysis (<72 hr)?                                                                                                                                                                  | <br>[]Yes                                   | FINO                             |                                        | 6.                           |                                            |                                                     |                              |                                                                    |
| ush Turn Around Time Requested?                                                                                                                                                                    |                                             | ENNO                             |                                        | 7.                           |                                            |                                                     |                              | . ·                                                                |
| ufficient Volume?                                                                                                                                                                                  | TWes.                                       |                                  |                                        | 8                            |                                            |                                                     |                              |                                                                    |
| priect Containers Used?                                                                                                                                                                            |                                             |                                  |                                        | а.<br>а                      |                                            | · · · · · · · · · · · · · · · · · · ·               |                              |                                                                    |
| -Pace Containers Used?                                                                                                                                                                             | Elver                                       |                                  |                                        |                              | 4                                          |                                                     |                              |                                                                    |
| antainers Intact?                                                                                                                                                                                  |                                             |                                  |                                        | 10                           |                                            |                                                     |                              |                                                                    |
| Itorod Volumo Possiund for Dissoluted Tests?                                                                                                                                                       | erres                                       |                                  |                                        | 10.                          | 15                                         | i<br>La chatta ta da c                              |                              |                                                                    |
| merela labala Matel, 20.52                                                                                                                                                                         | Yes                                         |                                  |                                        | 11. Note                     | if sediment                                | is visible in the                                   | dissolved conta              | ner                                                                |
| ample Labels Match COC?                                                                                                                                                                            | Yes                                         | L]No                             | L]N/A                                  | 12.                          |                                            |                                                     |                              |                                                                    |
| -Includes Date/Time/ID/Analysis Matrix:                                                                                                                                                            | 'n                                          | -                                | na di Caritana any any amin'ny fisiana |                              |                                            |                                                     |                              |                                                                    |
| necked?<br>Il containers needing preservation are found to be in<br>publiance with EPA recommendation?                                                                                             | ☐Yes                                        | □No                              | UN/A                                   | 13.<br>Sample #              | ∏HNO₃                                      | ∏H₂SO₄                                              | <u></u> NaOH                 | Пнсі                                                               |
| $HO_3$ , $H_2SO_4$ , $HC <2$ ; NaOH >9 Sulfide, NaOH>12 Cyanic<br>sceptions; VOA, Coliform, TOC, Oil and Grease,                                                                                   | de) 🗌 Yes                                   | No                               | CIN/A                                  | Initial whe                  | 1                                          | Lot #                                               | ofadded                      |                                                                    |
| eadspace in VOA Vials ( Semm)?                                                                                                                                                                     | TYes                                        |                                  |                                        | completed                    | e I.M.                                     | Mul-2                                               | rvative:                     |                                                                    |
| ip Blank Present?                                                                                                                                                                                  |                                             |                                  |                                        | 15                           | e op the                                   |                                                     | - vials                      |                                                                    |
| rip Blank Custody Seals Present?                                                                                                                                                                   | TYPE                                        |                                  |                                        | L.J.                         |                                            |                                                     |                              |                                                                    |
| ace Trip Blank Lot # (if purchased): 042015-                                                                                                                                                       | 01                                          |                                  | h                                      |                              |                                            |                                                     | 4"<br>~                      |                                                                    |
| CLIENT NOTIFICATION/RESOLUTION                                                                                                                                                                     |                                             |                                  |                                        | <b>.</b>                     |                                            | Field Data R                                        | equired?                     | es 🗍 No                                                            |
| erson Contacted:                                                                                                                                                                                   |                                             |                                  |                                        | Date/Tin                     | ne:                                        |                                                     | -400.001                     |                                                                    |
| amments /Resolution                                                                                                                                                                                |                                             |                                  |                                        |                              | 1 4+ 1                                     |                                                     |                              |                                                                    |
| Uninchts/hts/hts/http/                                                                                                                                                                             |                                             |                                  |                                        |                              |                                            | 999,009 = 99 = 90 = 90 = 90 = 90 = 90 =             |                              |                                                                    |
|                                                                                                                                                                                                    |                                             |                                  |                                        |                              |                                            |                                                     |                              |                                                                    |
|                                                                                                                                                                                                    |                                             | 1                                |                                        |                              |                                            |                                                     | · -                          |                                                                    |

| Page 1 | 17 | of | 17 |
|--------|----|----|----|
|--------|----|----|----|

e .....



Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

August 24, 2015

Adam P. Zobel Wenck Associates, Inc 1800 Pioneer Creek Center P.O. BOX 249 Maple Plain, MN 55359

# RE: Project: 3228-01 Former Union 76-REV Pace Project No.: 10318160

Dear Adam Zobel:

Enclosed are the analytical results for sample(s) received by the laboratory on August 13, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

This report was revised on August 24, 2015 to remove VOC analysis and report GRO/BTEX by WI GRO.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kabor Xing

Kabor Xiong kabor.xiong@pacelabs.com Project Manager

Enclosures

cc: Todd Fryzek, Wenck Associates





Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

#### CERTIFICATIONS

Project: 3228-01 Former Union 76-REV

Pace Project No.: 10318160

#### **Minnesota Certification IDs**

1700 Elm Street SE Suite 200, Minneapolis, MN 55414 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605 Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062 Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909

Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN\_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530 North Carolina State Public Health #: 27700 North Dakota Certification #: R-036 Ohio EPA #: 4150 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Virginia/VELAP Certification #: Pace Washington Certification #: C486 West Virginia Certification #: 382 West Virginia DHHR #:9952C Wisconsin Certification #: 999407970



Project: 3228-01 Former Union 76-REV

Pace Project No.: 10318160

| Sample: MW-1               | Lab ID: 103     | 18160001   | Collected: 08/13/ | 15 04:00 | ) Received: 08 | 8/13/15 17:30 N | latrix: Water |       |
|----------------------------|-----------------|------------|-------------------|----------|----------------|-----------------|---------------|-------|
| Parameters                 | Results         | Units      | Report Limit      | DF       | Prepared       | Analyzed        | CAS No.       | Qual  |
| WIDRO GCS                  | Analytical Meth | nod: WI MC | D DRO Preparation | Method   | I: WI MOD DRO  |                 |               |       |
| WDRO C10-C28               | 1.5             | mg/L       | 0.11              | 1        | 08/14/15 14:32 | 08/18/15 13:58  |               | T6,T7 |
| Surrogates                 |                 |            |                   |          |                |                 |               |       |
| n-Triacontane (S)          | 113             | %.         | 50-150            | 1        | 08/14/15 14:32 | 08/18/15 13:58  | 638-68-6      |       |
| WIGRO GCV                  | Analytical Meth | nod: WI MC | D GRO             |          |                |                 |               |       |
| Benzene                    | ND              | ug/L       | 1.0               | 1        |                | 08/20/15 19:20  | 71-43-2       |       |
| Ethylbenzene               | 11.8            | ug/L       | 1.0               | 1        |                | 08/20/15 19:20  | 100-41-4      |       |
| Gasoline Range Organics    | 1140            | ug/L       | 100               | 1        |                | 08/20/15 19:20  |               |       |
| Toluene                    | ND              | ug/L       | 1.0               | 1        |                | 08/20/15 19:20  | 108-88-3      |       |
| Xylene (Total)             | 409             | ug/L       | 3.0               | 1        |                | 08/20/15 19:20  | 1330-20-7     |       |
| Surrogates                 |                 | 0          |                   |          |                |                 |               |       |
| a.a.a-Trifluorotoluene (S) | 109             | %.         | 80-150            | 1        |                | 08/20/15 19:20  | 98-08-8       |       |


Project: 3228-01 Former Union 76-REV

Pace Project No.: 10318160

| Sample: MW-3               | Lab ID: 103     | 8160002   | Collected: 08/13/1 | 15 03:30 | Received: 08   | /13/15 17:30 N | latrix: Water |      |
|----------------------------|-----------------|-----------|--------------------|----------|----------------|----------------|---------------|------|
| Parameters                 | Results         | Units     | Report Limit       | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                  | Analytical Meth | od: WI MC | D DRO Preparation  | Method   | : WI MOD DRO   |                |               |      |
| WDRO C10-C28               | 16.4            | mg/L      | 2.2                | 20       | 08/18/15 17:36 | 08/20/15 11:10 |               | T7   |
| Surrogates                 | _               |           |                    |          |                |                |               |      |
| n-Triacontane (S)          | 0               | %.        | 50-150             | 20       | 08/18/15 17:36 | 08/20/15 11:10 | 638-68-6      | S4   |
| WIGRO GCV                  | Analytical Meth | od: WI MC | D GRO              |          |                |                |               |      |
| Benzene                    | 2210            | ug/L      | 10.0               | 10       |                | 08/20/15 14:59 | 71-43-2       |      |
| Ethylbenzene               | 115             | ug/L      | 10.0               | 10       |                | 08/20/15 14:59 | 100-41-4      |      |
| Gasoline Range Organics    | 21700           | ug/L      | 1000               | 10       |                | 08/20/15 14:59 |               |      |
| Toluene                    | 1650            | ug/L      | 10.0               | 10       |                | 08/20/15 14:59 | 108-88-3      |      |
| Xylene (Total)             | 5460            | ug/L      | 30.0               | 10       |                | 08/20/15 14:59 | 1330-20-7     |      |
| Surrogates                 |                 | U         |                    |          |                |                |               |      |
| a,a,a-Trifluorotoluene (S) | 95              | %.        | 80-150             | 10       |                | 08/20/15 14:59 | 98-08-8       |      |



Project: 3228-01 Former Union 76-REV

Pace Project No.: 10318160

| Sample: MW-8               | Lab ID: 1031    | 8160003   | Collected: 08/13/1 | 15 02:30 | ) Received: 08 | /13/15 17:30 N | Aatrix: Water |      |
|----------------------------|-----------------|-----------|--------------------|----------|----------------|----------------|---------------|------|
| Parameters                 | Results         | Units     | Report Limit       | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                  | Analytical Meth | od: WI MC | D DRO Preparation  | Method   | : WI MOD DRO   |                |               |      |
| WDRO C10-C28               | 11.2            | mg/L      | 2.4                | 20       | 08/18/15 17:36 | 08/20/15 11:03 |               | T7   |
| Surrogates                 |                 |           |                    |          |                |                |               |      |
| n-Triacontane (S)          | 0               | %.        | 50-150             | 20       | 08/18/15 17:36 | 08/20/15 11:03 | 638-68-6      | S4   |
| WIGRO GCV                  | Analytical Meth | od: WI MC | D GRO              |          |                |                |               |      |
| Benzene                    | 843             | ug/L      | 10.0               | 10       |                | 08/20/15 15:23 | 71-43-2       |      |
| Ethylbenzene               | 398             | ug/L      | 10.0               | 10       |                | 08/20/15 15:23 | 100-41-4      |      |
| Gasoline Range Organics    | 12300           | ug/L      | 1000               | 10       |                | 08/20/15 15:23 |               |      |
| Toluene                    | 1610            | ug/L      | 10.0               | 10       |                | 08/20/15 15:23 | 108-88-3      |      |
| Xylene (Total)             | 1830            | ug/L      | 30.0               | 10       |                | 08/20/15 15:23 | 1330-20-7     |      |
| Surrogates                 |                 | U         |                    |          |                |                |               |      |
| a,a,a-Trifluorotoluene (S) | 98              | %.        | 80-150             | 10       |                | 08/20/15 15:23 | 98-08-8       |      |



Project: 3228-01 Former Union 76-REV

Pace Project No.: 10318160

| Sample: MW-7               | Lab ID: 103     | 18160004  | Collected: 08/13/ | 15 02:00 | ) Received: 08 | /13/15 17:30 N | Aatrix: Water |      |
|----------------------------|-----------------|-----------|-------------------|----------|----------------|----------------|---------------|------|
| Parameters                 | Results         | Units     | Report Limit      | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                  | Analytical Meth | od: WI MC | D DRO Preparation | Method   | : WI MOD DRO   |                |               |      |
| WDRO C10-C28               | 10.7            | mg/L      | 2.2               | 20       | 08/18/15 17:36 | 08/20/15 11:16 |               | T7   |
| Surrogates                 |                 |           |                   |          |                |                |               |      |
| n-Triacontane (S)          | 0               | %.        | 50-150            | 20       | 08/18/15 17:36 | 08/20/15 11:16 | 638-68-6      | S4   |
| WIGRO GCV                  | Analytical Meth | od: WI MC | D GRO             |          |                |                |               |      |
| Benzene                    | 3600            | ug/L      | 50.0              | 50       |                | 08/20/15 14:11 | 71-43-2       |      |
| Ethylbenzene               | 1830            | ug/L      | 50.0              | 50       |                | 08/20/15 14:11 | 100-41-4      |      |
| Gasoline Range Organics    | 37000           | ug/L      | 5000              | 50       |                | 08/20/15 14:11 |               |      |
| Toluene                    | 7650            | ug/L      | 50.0              | 50       |                | 08/20/15 14:11 | 108-88-3      |      |
| Xylene (Total)             | 10100           | ug/L      | 150               | 50       |                | 08/20/15 14:11 | 1330-20-7     |      |
| Surrogates                 |                 | 5         |                   |          |                |                |               |      |
| a,a,a-Trifluorotoluene (S) | 107             | %.        | 80-150            | 50       |                | 08/20/15 14:11 | 98-08-8       |      |



Project: 3228-01 Former Union 76-REV

Pace Project No.: 10318160

| Sample: MW-9               | Lab ID: 103     | 18160005  | Collected: 08/13/ | 15 01:20 | 0 Received: 08 | /13/15 17:30 N | latrix: Water |      |
|----------------------------|-----------------|-----------|-------------------|----------|----------------|----------------|---------------|------|
| Parameters                 | Results         | Units     | Report Limit      | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                  | Analytical Meth | od: WI MC | D DRO Preparation | Method   | : WI MOD DRO   |                |               |      |
| WDRO C10-C28               | 7.5             | mg/L      | 2.3               | 20       | 08/18/15 17:36 | 08/20/15 10:56 |               | T7   |
| Surrogates                 |                 |           |                   |          |                |                |               |      |
| n-Triacontane (S)          | 0               | %.        | 50-150            | 20       | 08/18/15 17:36 | 08/20/15 10:56 | 638-68-6      | S4   |
| WIGRO GCV                  | Analytical Meth | od: WI MC | D GRO             |          |                |                |               |      |
| Benzene                    | 2700            | ug/L      | 10.0              | 10       |                | 08/20/15 15:46 | 71-43-2       |      |
| Ethylbenzene               | 1190            | ug/L      | 10.0              | 10       |                | 08/20/15 15:46 | 100-41-4      |      |
| Gasoline Range Organics    | 27900           | ug/L      | 1000              | 10       |                | 08/20/15 15:46 |               |      |
| Toluene                    | 3880            | ug/L      | 10.0              | 10       |                | 08/20/15 15:46 | 108-88-3      |      |
| Xylene (Total)             | 7270            | ug/L      | 30.0              | 10       |                | 08/20/15 15:46 | 1330-20-7     |      |
| Surrogates                 |                 | 0         |                   |          |                |                |               |      |
| a,a,a-Trifluorotoluene (S) | 110             | %.        | 80-150            | 10       |                | 08/20/15 15:46 | 98-08-8       |      |



Project: 3228-01 Former Union 76-REV

Pace Project No.: 10318160

| Sample: MW-6A              | Lab ID: 103     | 18160006   | Collected: 08/13/ | 15 12:45 | Received: 08   | /13/15 17:30 N | Aatrix: Water |      |
|----------------------------|-----------------|------------|-------------------|----------|----------------|----------------|---------------|------|
| Parameters                 | Results         | Units      | Report Limit      | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                  | Analytical Meth | nod: WI MC | D DRO Preparation | Method   | : WI MOD DRO   |                |               |      |
| WDRO C10-C28               | 0.13            | mg/L       | 0.11              | 1        | 08/18/15 17:36 | 08/20/15 12:51 |               |      |
| n-Triacontane (S)          | 82              | %.         | 50-150            | 1        | 08/18/15 17:36 | 08/20/15 12:51 | 638-68-6      |      |
| WIGRO GCV                  | Analytical Meth | nod: WI MC | D GRO             |          |                |                |               |      |
| Benzene                    | ND              | ug/L       | 1.0               | 1        |                | 08/19/15 05:34 | 71-43-2       |      |
| Ethylbenzene               | ND              | ug/L       | 1.0               | 1        |                | 08/19/15 05:34 | 100-41-4      |      |
| Gasoline Range Organics    | ND              | ug/L       | 100               | 1        |                | 08/19/15 05:34 |               |      |
| Toluene                    | ND              | ug/L       | 1.0               | 1        |                | 08/19/15 05:34 | 108-88-3      |      |
| Xylene (Total)             | ND              | ug/L       | 3.0               | 1        |                | 08/19/15 05:34 | 1330-20-7     |      |
| Surrogates                 |                 | Ū          |                   |          |                |                |               |      |
| a,a,a-Trifluorotoluene (S) | 96              | %.         | 80-150            | 1        |                | 08/19/15 05:34 | 98-08-8       | pН   |



Project: 3228-01 Former Union 76-REV

Pace Project No.: 10318160

| Sample: MW-6               | Lab ID: 103     | 18160007   | Collected: 08/13/ | 15 11:00 | Received: 08   | 8/13/15 17:30 N | latrix: Water |      |
|----------------------------|-----------------|------------|-------------------|----------|----------------|-----------------|---------------|------|
| Parameters                 | Results         | Units      | Report Limit      | DF       | Prepared       | Analyzed        | CAS No.       | Qual |
| WIDRO GCS                  | Analytical Meth | nod: WI MC | D DRO Preparation | Method   | : WI MOD DRO   |                 |               |      |
| WDRO C10-C28               | 3.6             | mg/L       | 1.2               | 10       | 08/18/15 17:36 | 08/20/15 11:43  |               | T7   |
| Surrogates                 |                 |            |                   |          |                |                 |               |      |
| n-Triacontane (S)          | 76              | %.         | 50-150            | 10       | 08/18/15 17:36 | 08/20/15 11:43  | 638-68-6      |      |
| WIGRO GCV                  | Analytical Meth | nod: WI MC | D GRO             |          |                |                 |               |      |
| Benzene                    | 2420            | ug/L       | 10.0              | 10       |                | 08/20/15 16:10  | 71-43-2       |      |
| Ethylbenzene               | 968             | ug/L       | 10.0              | 10       |                | 08/20/15 16:10  | 100-41-4      |      |
| Gasoline Range Organics    | 18300           | ug/L       | 1000              | 10       |                | 08/20/15 16:10  |               |      |
| Toluene                    | 2750            | ug/L       | 10.0              | 10       |                | 08/20/15 16:10  | 108-88-3      |      |
| Xylene (Total)             | 3920            | ug/L       | 30.0              | 10       |                | 08/20/15 16:10  | 1330-20-7     |      |
| Surrogates                 |                 | 0          |                   |          |                |                 |               |      |
| a.a.a-Trifluorotoluene (S) | 91              | %.         | 80-150            | 10       |                | 08/20/15 16:10  | 98-08-8       |      |



Project: 3228-01 Former Union 76-REV

Pace Project No.: 10318160

| Sample: MW-10                          | Lab ID: 1031    | 8160008   | Collected: 08/13/1 | 15 10:15 | 5 Received: 08 | /13/15 17:30 M | fatrix: Water |      |
|----------------------------------------|-----------------|-----------|--------------------|----------|----------------|----------------|---------------|------|
| Parameters                             | Results         | Units     | Report Limit       | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                              | Analytical Meth | od: WI MC | D DRO Preparation  | Method   | I: WI MOD DRO  |                |               |      |
| WDRO C10-C28                           | 3.4             | mg/L      | 2.0                | 20       | 08/18/15 17:36 | 08/20/15 11:23 |               | T7   |
| <i>Surrogates</i><br>n-Triacontane (S) | 0               | %.        | 50-150             | 20       | 08/18/15 17:36 | 08/20/15 11:23 | 638-68-6      | S4   |
| WIGRO GCV                              | Analytical Meth | od: WI MC | D GRO              |          |                |                |               |      |
| Benzene                                | 229             | ug/L      | 10.0               | 10       |                | 08/20/15 16:34 | 71-43-2       |      |
| Ethylbenzene                           | 366             | ug/L      | 10.0               | 10       |                | 08/20/15 16:34 | 100-41-4      |      |
| Gasoline Range Organics                | 8140            | ug/L      | 1000               | 10       |                | 08/20/15 16:34 |               |      |
| Toluene                                | 238             | ug/L      | 10.0               | 10       |                | 08/20/15 16:34 | 108-88-3      |      |
| Xylene (Total)                         | 1620            | ug/L      | 30.0               | 10       |                | 08/20/15 16:34 | 1330-20-7     |      |
| Surrogates                             |                 | 0         |                    |          |                |                |               |      |
| a,a,a-Trifluorotoluene (S)             | 78              | %.        | 80-150             | 10       |                | 08/20/15 16:34 | 98-08-8       | S1   |



Project: 3228-01 Former Union 76-REV

### Pace Project No.: 10318160

| Sample: Trip Blank                              | Lab ID: 103     | 18160009                      | Collected: 08/13/1 | 5 00:00 | Received: 0 | 8/13/15 17:30 N | latrix: Water |      |  |  |
|-------------------------------------------------|-----------------|-------------------------------|--------------------|---------|-------------|-----------------|---------------|------|--|--|
| Parameters                                      | Results         | Units                         | Report Limit       | DF      | Prepared    | Analyzed        | CAS No.       | Qual |  |  |
| WIGRO GCV                                       | Analytical Meth | Analytical Method: WI MOD GRO |                    |         |             |                 |               |      |  |  |
| Benzene                                         | ND              | ug/L                          | 1.0                | 1       |             | 08/18/15 21:40  | 71-43-2       |      |  |  |
| Ethylbenzene                                    | ND              | ug/L                          | 1.0                | 1       |             | 08/18/15 21:40  | 100-41-4      |      |  |  |
| Gasoline Range Organics                         | ND              | ug/L                          | 100                | 1       |             | 08/18/15 21:40  |               |      |  |  |
| Toluene                                         | ND              | ug/L                          | 1.0                | 1       |             | 08/18/15 21:40  | 108-88-3      |      |  |  |
| Xylene (Total)                                  | ND              | ug/L                          | 3.0                | 1       |             | 08/18/15 21:40  | 1330-20-7     |      |  |  |
| <i>Surrogates</i><br>a,a,a-Trifluorotoluene (S) | 108             | %.                            | 80-150             | 1       |             | 08/18/15 21:40  | 98-08-8       |      |  |  |



WI MOD GRO

WIGRO GCV Water

Project: 3228-01 Former Union 76-REV

Pace Project No.: 10318160

| QC Batch:        | GCV/14261 |
|------------------|-----------|
| QC Batch Method: | WI MOD GF |

QC Batch Method: WI MOD GRO Associated Lab Samples: 10318160006, 10318160009

METHOD BLANK: 2052247

Matrix: Water

Analysis Method:

Analysis Description:

| Parameter                  | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|----------------------------|-------|-----------------|--------------------|----------------|------------|
| Benzene                    | ug/L  | ND              | 1.0                | 08/18/15 21:16 |            |
| Ethylbenzene               | ug/L  | ND              | 1.0                | 08/18/15 21:16 |            |
| Gasoline Range Organics    | ug/L  | ND              | 100                | 08/18/15 21:16 |            |
| Toluene                    | ug/L  | ND              | 1.0                | 08/18/15 21:16 |            |
| Xylene (Total)             | ug/L  | ND              | 3.0                | 08/18/15 21:16 |            |
| a,a,a-Trifluorotoluene (S) | %.    | 111             | 80-150             | 08/18/15 21:16 |            |

| LABORATORY CONTROL SAMPLE  | & LCSD: 2052248 |       | 20     | )52249 |       |       |        |     |     |            |
|----------------------------|-----------------|-------|--------|--------|-------|-------|--------|-----|-----|------------|
|                            |                 | Spike | LCS    | LCSD   | LCS   | LCSD  | % Rec  |     | Max |            |
| Parameter                  | Units           | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qualifiers |
| Benzene                    | ug/L            | 100   | 115    | 99.7   | 115   | 100   | 80-120 | 14  | 20  | СН         |
| Ethylbenzene               | ug/L            | 100   | 118    | 104    | 118   | 104   | 80-120 | 13  | 20  | СН         |
| Gasoline Range Organics    | ug/L            | 1000  | 1060   | 1020   | 106   | 102   | 80-120 | 4   | 20  |            |
| Toluene                    | ug/L            | 100   | 111    | 99.7   | 111   | 100   | 80-120 | 11  | 20  |            |
| Xylene (Total)             | ug/L            | 300   | 344    | 303    | 115   | 101   | 80-120 | 13  | 20  |            |
| a,a,a-Trifluorotoluene (S) | %.              |       |        |        | 108   | 116   | 80-150 |     |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: 3228-01 Former Union 76-REV

Pace Project No.: 10318160

| QC Batch:        | GCV/14274  |
|------------------|------------|
| QC Batch Method: | WI MOD GRO |

METHOD BLANK: 2054565

Analysis Method:

Analysis Description: WIGRO GCV Water

WI MOD GRO

Associated Lab Samples: 10318160001, 10318160002, 10318160003, 10318160004, 10318160005, 10318160007, 10318160008

Matrix: Water

Associated Lab Samples: 10318160001, 10318160002, 10318160003, 10318160004, 10318160005, 10318160007, 10318160008

|                            |       | Blank  | Reporting |                |            |
|----------------------------|-------|--------|-----------|----------------|------------|
| Parameter                  | Units | Result | Limit     | Analyzed       | Qualifiers |
| Benzene                    | ug/L  | ND     | 1.0       | 08/20/15 12:12 |            |
| Ethylbenzene               | ug/L  | ND     | 1.0       | 08/20/15 12:12 |            |
| Gasoline Range Organics    | ug/L  | ND     | 100       | 08/20/15 12:12 |            |
| Toluene                    | ug/L  | ND     | 1.0       | 08/20/15 12:12 |            |
| Xylene (Total)             | ug/L  | ND     | 3.0       | 08/20/15 12:12 |            |
| a,a,a-Trifluorotoluene (S) | %.    | 113    | 80-150    | 08/20/15 12:12 |            |

| LABORATORY CONTROL SAMPLE & LCS | SD: 2054566 |       | 20     | 54567  |       |       |        |     |     |            |
|---------------------------------|-------------|-------|--------|--------|-------|-------|--------|-----|-----|------------|
|                                 |             | Spike | LCS    | LCSD   | LCS   | LCSD  | % Rec  |     | Max |            |
| Parameter                       | Units       | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qualifiers |
| Benzene                         | ug/L        | 100   | 101    | 103    | 101   | 103   | 80-120 | 1   | 20  |            |
| Ethylbenzene                    | ug/L        | 100   | 104    | 108    | 104   | 108   | 80-120 | 3   | 20  |            |
| Gasoline Range Organics         | ug/L        | 1000  | 1010   | 1080   | 101   | 108   | 80-120 | 7   | 20  |            |
| Toluene                         | ug/L        | 100   | 97.7   | 103    | 98    | 103   | 80-120 | 5   | 20  |            |
| Xylene (Total)                  | ug/L        | 300   | 305    | 311    | 102   | 104   | 80-120 | 2   | 20  |            |
| a,a,a-Trifluorotoluene (S)      | %.          |       |        |        | 104   | 112   | 80-150 |     |     |            |

| MATRIX SPIKE & MATRIX SPI  | KE DUPLICATE | : 205456 | 68          |              | 2054569 |        |       |       |        |     |      |
|----------------------------|--------------|----------|-------------|--------------|---------|--------|-------|-------|--------|-----|------|
|                            | 1031         | 7499003  | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |     |      |
| Parameter                  | Units        | Result   | Conc.       | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD | Qual |
| Benzene                    | ug/L         | 1.1      | 100         | 100          | 109     | 113    | 107   | 112   | 80-120 | 4   |      |
| Ethylbenzene               | ug/L         | ND       | 100         | 100          | 111     | 114    | 111   | 114   | 80-120 | 2   |      |
| Gasoline Range Organics    | ug/L         | ND       | 1000        | 1000         | 1110    | 1110   | 111   | 111   | 80-120 | 0   |      |
| Toluene                    | ug/L         | ND       | 100         | 100          | 107     | 107    | 107   | 107   | 80-120 | 0   |      |
| Xylene (Total)             | ug/L         | ND       | 300         | 300          | 325     | 336    | 108   | 112   | 80-120 | 3   |      |
| a,a,a-Trifluorotoluene (S) | %.           |          |             |              |         |        | 104   | 103   | 80-150 |     |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



| Project:           | 3228-01 Former U | nion 76-REV   |        |              |          |        |          |        |      |     |            |
|--------------------|------------------|---------------|--------|--------------|----------|--------|----------|--------|------|-----|------------|
| Pace Project No .: | 10318160         |               |        |              |          |        |          |        |      |     |            |
| QC Batch:          | OEXT/30389       |               | Analys | sis Method:  | W        |        | RO       |        |      |     |            |
| QC Batch Method:   | WI MOD DRO       |               | Analys | sis Descript | ion: W   | IDRO G | CS       |        |      |     |            |
| Associated Lab San | nples: 103181600 | 001           |        |              |          |        |          |        |      |     |            |
| METHOD BLANK:      | 2050648          |               | Ν      | Matrix: Wat  | ter      |        |          |        |      |     |            |
| Associated Lab San | nples: 103181600 | 001           |        |              |          |        |          |        |      |     |            |
|                    |                  |               | Blank  | K R          | eporting |        |          |        |      |     |            |
| Paran              | neter            | Units         | Resul  | t            | Limit    | Ana    | alyzed   | Qualif | iers |     |            |
| WDRO C10-C28       |                  | mg/L          |        | ND           | 0.10     | 08/18/ | 15 13:45 |        |      |     |            |
| n-Triacontane (S)  |                  | %.            |        | 85           | 50-150   | 08/18/ | 15 13:45 |        |      |     |            |
| LABORATORY CON     | NTROL SAMPLE &   | LCSD: 2050649 |        | 2            | 2050650  |        |          |        |      |     |            |
|                    |                  |               | Spike  | LCS          | LCSD     | LCS    | LCSD     | % Rec  |      | Max |            |
| Paran              | neter            | Units         | Conc.  | Result       | Result   | % Rec  | % Rec    | Limits | RPD  | RPD | Qualifiers |
| WDRO C10-C28       |                  | mg/L          | 2      | 1.7          | 2.0      | 86     | 101      | 75-115 | 16   | 20  |            |
| n-Triacontane (S)  |                  | %.            |        |              |          | 90     | 104      | 50-150 |      |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



| Project:           | 3228-01 Former Ur | nion 76-REV      |          |                 |            |         |          |           |           |     |            |
|--------------------|-------------------|------------------|----------|-----------------|------------|---------|----------|-----------|-----------|-----|------------|
| Pace Project No.:  | 10318160          |                  |          |                 |            |         |          |           |           |     |            |
| QC Batch:          | OEXT/30427        |                  | Analys   | sis Method:     | W          |         | RO       |           |           |     |            |
| QC Batch Method:   | WI MOD DRO        |                  | Analys   | sis Description | on: W      | IDRO G  | CS       |           |           |     |            |
| Associated Lab Sar | mples: 103181600  | 02, 10318160003, | 10318160 | 0004, 10318     | 160005, 10 | 0318160 | 006, 103 | 18160007, | 103181600 | 08  |            |
| METHOD BLANK:      | 2052898           |                  | N        | Matrix: Wate    | er         |         |          |           |           |     |            |
| Associated Lab Sar | mples: 103181600  | 02, 10318160003, | 10318160 | 004, 10318      | 160005, 10 | 0318160 | 006, 103 | 18160007, | 103181600 | 08  |            |
|                    |                   |                  | Blank    | k Re            | porting    |         |          |           |           |     |            |
| Parar              | neter             | Units            | Resu     | lt              | Limit      | Ana     | lyzed    | Qualif    | iers      |     |            |
| WDRO C10-C28       |                   | mg/L             |          | ND              | 0.10       | 08/20/  | 15 10:36 |           |           |     |            |
| n-Triacontane (S)  |                   | %.               |          | 95              | 50-150     | 08/20/  | 15 10:36 |           |           |     |            |
| LABORATORY CO      | NTROL SAMPLE & I  | -CSD: 2052899    |          | 20              | )52900     |         |          |           |           |     |            |
|                    |                   |                  | Spike    | LCS             | LCSD       | LCS     | LCSD     | % Rec     |           | Max |            |
| Parar              | neter             | Units            | Conc.    | Result          | Result     | % Rec   | % Rec    | Limits    | RPD       | RPD | Qualifiers |
| WDRO C10-C28       |                   | mg/L             | 2        | 1.5             | 1.8        | 77      | 90       | 75-115    | 15        | 20  |            |
| n-Triacontane (S)  |                   | %.               |          |                 |            | 80      | 89       | 50-150    |           |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### QUALIFIERS

Project: 3228-01 Former Union 76-REV

Pace Project No.: 10318160

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### BATCH QUALIFIERS

#### Batch: GCV/14261

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

### ANALYTE QUALIFIERS

- CH The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.
- S1 Surrogate recovery outside laboratory control limits (confirmed by re-analysis).
- S4 Surrogate recovery not evaluated against control limits due to sample dilution.
- T6 High boiling point hydrocarbons are present in the sample.
- T7 Low boiling point hydrocarbons are present in the sample.
- pH Post-analysis pH measurement indicates insufficient VOA sample preservation.



## QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:3228-01 Former Union 76-REVPace Project No.:10318160

| Lab ID      | Sample ID  | QC Batch Method | QC Batch   | Analytical Method | Analytical<br>Batch |
|-------------|------------|-----------------|------------|-------------------|---------------------|
| 10318160001 | MW-1       | WI MOD DRO      | OEXT/30389 | WI MOD DRO        | GCSV/16471          |
| 10318160002 | MW-3       | WI MOD DRO      | OEXT/30427 | WI MOD DRO        | GCSV/16489          |
| 10318160003 | MW-8       | WI MOD DRO      | OEXT/30427 | WI MOD DRO        | GCSV/16489          |
| 10318160004 | MW-7       | WI MOD DRO      | OEXT/30427 | WI MOD DRO        | GCSV/16489          |
| 10318160005 | MW-9       | WI MOD DRO      | OEXT/30427 | WI MOD DRO        | GCSV/16489          |
| 10318160006 | MW-6A      | WI MOD DRO      | OEXT/30427 | WI MOD DRO        | GCSV/16489          |
| 10318160007 | MW-6       | WI MOD DRO      | OEXT/30427 | WI MOD DRO        | GCSV/16489          |
| 10318160008 | MW-10      | WI MOD DRO      | OEXT/30427 | WI MOD DRO        | GCSV/16489          |
| 10318160001 | MW-1       | WI MOD GRO      | GCV/14274  |                   |                     |
| 10318160002 | MW-3       | WI MOD GRO      | GCV/14274  |                   |                     |
| 10318160003 | MW-8       | WI MOD GRO      | GCV/14274  |                   |                     |
| 10318160004 | MW-7       | WI MOD GRO      | GCV/14274  |                   |                     |
| 10318160005 | MW-9       | WI MOD GRO      | GCV/14274  |                   |                     |
| 10318160006 | MW-6A      | WI MOD GRO      | GCV/14261  |                   |                     |
| 10318160007 | MW-6       | WI MOD GRO      | GCV/14274  |                   |                     |
| 10318160008 | MW-10      | WI MOD GRO      | GCV/14274  |                   |                     |
| 10318160009 | Trip Blank | WI MOD GRO      | GCV/14261  |                   |                     |

大いろう 1960 Pace Project No./ Lab I.D. COSTER (N/A) DRINKING WATER 22 Ł 5 600 200 200 268 53 semples Intact -> SAMPLE CONDITIONS F-ALL-Q-020rev:07, 15-May-200  $\sim$ 0 Ĉ OTHER (N/A) Sealed Cooler doored 450 BUC CD718160 0 REX ö 00 1 (N/A) eoi 07 Received on GROUND WATER English ( Residual Chlorine (Y/V) σ COMPLOS D° ni qmoT Ś Pag RCRA REGULATORY AGENC S Requested Analysis Filtered (Y/N) TIME Z R Site Location STATE: NPDES DATE 8/12/12 83 M The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately. UST 1 AHO. DATE Signed (MM/DD/YY): ACCEPTED BY / AFFILIATION ASS R M 0923) X3131076 'OTO pouront M 80 S.S. 🖡 isəT sisylsnA 🌡 1 N /A 4 P N Wenchs Other Do. Methanol Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days Ċ, Preservatives CosseN Wencle ないられ maple HOBN ICH X  $\times$  $\succ$ invoice Information: 9 <sup>E</sup>ONH Company Name: RON R Pace Quote Reference: Pace Project Manager: Pace Profile #: <sup>v</sup>OS<sup>z</sup>H Section C Unpreserved TIME Attention: Address: 5 **# OF CONTAINERS** SAMPLER NAME AND SIGNATURE 136 SIGNATURE of SAMPLER: PRINT Name of SAMPLER: SAMPLE TEMP AT COLLECTION DATE TIME awende, com 00 COMPOSITE END/GRAB で カ DATE Safe Muller werer COLLECTED TOIMER UNION RELINQUISHED BY / AFFILIATION 2:30 3:30 00:3 1.20 Stic 6:3 00:11 S S S TIME 0-822 Mu COMPOSITE START 8/13/15/ DATE False Required Project Information: Lahe N Ø (G=GRAB C=COMP) **39YT 3J9MAS** Purchase Order No.: G Project Number: (fiel of seboo bilisv ees) MATRIX CODE Project Name: Section B Report To: ORIGINAL Copy To: AR WC SL PWVT OT SL PW Matrix Codes MATRIX / CODE 於 Drinking Water Water Product Soil/Solid Oli Mipe Airisue Other Other S S H5SO CONS <u>ceeler</u> A D Trip B)an Q -millera wence MW = (2A MW-60 weeddall MW-6 WW WORDN ry MWN ADDITIONAL COMMENTS STAL MW -9 t-m MW1-8 (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE **MW-3** Petro Purch KI NW-1 Pace Analytical www.pacelabs.com n SAMPLE ID MEMCK Phone: 1 - 305 - See Required Client Information CLAQAND Section A Required Client Information: Requested Due Date/TAT: 1001 Section D Company: Email To: # ane ۲ Address: 10 12 Page 18 of 19 11 3 \*\$ ແກ ω ٢ 60 တ # WBTI ~ R

CHAIN-OF-CUSTODY / Analytical Request Document

|                                                      | Pace Analytical                                                                               | Sa                                  | Do<br>ample Con<br>E<br>F-N | ocument<br>dition U<br>Documer<br>/IN-L-21 | t Name:<br><b>pon Rece</b><br>nt No.:<br><b>3-rev.13</b> | ipt Fo     | rm             | D                                                                                                               | ocument<br>Issu<br>ace Minr | : Revised<br>Page 1 o<br>ling Auth<br>nesota Q | l: 23Feb2(<br>f 1<br>hority:<br>huality Off | )15<br>ice         |                                                                                                                 |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------|--------------------------------------------|----------------------------------------------------------|------------|----------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------|---------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------|
| Sample Cor<br>Upon Rec                               | ndition<br>ceipt                                                                              |                                     |                             |                                            | Project                                                  | #:         | MC             | )#:                                                                                                             | 10                          | 318                                            | 316                                         | 0                  |                                                                                                                 |
| Courier:                                             | Fed Ex                                                                                        |                                     | USPS                        | A                                          | Client                                                   |            |                |                                                                                                                 |                             |                                                |                                             |                    |                                                                                                                 |
|                                                      |                                                                                               |                                     | [_]Otner:_                  |                                            |                                                          |            | 103            | 18160                                                                                                           |                             |                                                | -                                           |                    |                                                                                                                 |
| nacking iv                                           |                                                                                               |                                     |                             | (P-Ministration in the state               |                                                          | L          |                |                                                                                                                 |                             |                                                |                                             |                    |                                                                                                                 |
| Custody Se                                           | al on Cooler/Box Present?                                                                     | Yes No                              |                             | Seals Int                                  | tact?                                                    | ]Yes       | PNO            | Op Op                                                                                                           | tional:                     | Proj. Di                                       | ue Date:                                    | Proj.              | Name:                                                                                                           |
| Packing Ma                                           | aterial: Bubble Wrap                                                                          | Bubble Bags                         | Non                         | e 🗌                                        | Other:                                                   |            |                |                                                                                                                 |                             | Temp B                                         | lank? [                                     | Yes                | No                                                                                                              |
| Thermomet<br>Used:                                   | ter 🔲 B88A9130516413                                                                          | B88A91216750                        | 4 Тур<br>98 Тур             | e of Ice:                                  | We                                                       | t          | Blue           | Nor                                                                                                             | ne 🗹                        | Samples                                        | on ice, cool                                | ing proce          | ss has begun                                                                                                    |
| Cooler Tem<br>Temp should<br>USDA Regula             | p Read (°C): <u>1,7,17,5</u><br>I be above freezing to 6°C<br>ated Soil ( 17 N/A, water samr  | Cooler Temp Cor<br>Correction Fact  | rected (°C)<br>or:          | : <u>19</u><br>2.0                         | 17.5<br>Dat                                              | e and      | Bi<br>Initials | iological<br>of Persoi                                                                                          | Tissue Fi<br>1 Examin       | rozen?<br>Ning Con                             | Yes<br>tents:                               | □no<br>N#          | 21/A<br>81315                                                                                                   |
| Did samples o<br>MS, NC, NM,                         | NY, OK, OR, SC, TN, TX or WA (<br>If Yes to either questi                                     | vithin the United S<br>check maps)? | itates: AL, A               | R, AZ, C                                   | A, FL, GA,                                               | ID, LA     | . Di<br>]No in | id samples<br>cluding Ha                                                                                        | s originate<br>awaii and    | e from a f<br>Puerto Ri                        | oreign sour                                 | rce (interr<br>Yes | ationally,<br>s 🗌 No                                                                                            |
|                                                      | a rea to enner quest                                                                          | on, ni out a keg                    |                             | CHECKI                                     | 26 (E-14114-                                             | ·u-334     | s) and in      | ciuae wi                                                                                                        | COR SCOR                    | CUC pa                                         | perwork.                                    |                    |                                                                                                                 |
| Chain of Cus                                         | stody Present?                                                                                |                                     | [Avac                       |                                            |                                                          | 1          |                |                                                                                                                 |                             | JIVIIVIEINI                                    | 3:                                          |                    |                                                                                                                 |
| Chain of Cus                                         | stody Filled Out?                                                                             |                                     | L'ITES                      |                                            |                                                          | <u> </u>   |                |                                                                                                                 |                             |                                                | ****                                        | 500 (a.a.).        |                                                                                                                 |
| Chain of Cus                                         | tody Relinquished?                                                                            |                                     | El res                      |                                            |                                                          | 2.         |                |                                                                                                                 |                             |                                                |                                             |                    |                                                                                                                 |
| Sampler Nar                                          | me and/or Signature on COC2                                                                   |                                     | []Yes                       |                                            |                                                          | 3.         |                |                                                                                                                 |                             |                                                |                                             |                    |                                                                                                                 |
| Samples Arr                                          | ived within Hold Time?                                                                        |                                     | Elver                       |                                            |                                                          | 4,<br>r    |                |                                                                                                                 |                             |                                                |                                             |                    |                                                                                                                 |
| Short Hold T                                         |                                                                                               |                                     | Ves                         |                                            |                                                          | 5.         |                |                                                                                                                 | *****                       |                                                |                                             |                    |                                                                                                                 |
| Ruch Turn A                                          | round Time Requested?                                                                         |                                     |                             | IV NO                                      |                                                          | b,<br>-7   |                | *****                                                                                                           |                             |                                                |                                             |                    |                                                                                                                 |
| Sufficient Ve                                        |                                                                                               |                                     | Yes                         | L <sub>M</sub> No                          |                                                          | /.         |                |                                                                                                                 |                             |                                                |                                             |                    |                                                                                                                 |
| Correct Cont                                         | numer                                                                                         |                                     | V Yes                       |                                            |                                                          | 8.         |                |                                                                                                                 |                             |                                                |                                             |                    |                                                                                                                 |
| Deep Con                                             | tainers Usear                                                                                 |                                     | Aves                        | ∐No                                        | ∐N/A                                                     | 9.         |                |                                                                                                                 |                             |                                                |                                             |                    |                                                                                                                 |
| -Pace Con                                            | ntainers Used?                                                                                |                                     | Yes                         | No                                         |                                                          |            |                |                                                                                                                 |                             |                                                |                                             |                    |                                                                                                                 |
| Containers in                                        |                                                                                               |                                     | ✓Yes                        | No                                         |                                                          | 10.        |                |                                                                                                                 |                             |                                                |                                             |                    |                                                                                                                 |
| Completebo                                           | Ime Received for Dissolved Tes                                                                | ts :'                               | Yes                         | <u>No</u>                                  | MN/A                                                     | 11.        | Note if        | sediment                                                                                                        | is visible                  | in the di                                      | ssolved co                                  | ntainer            |                                                                                                                 |
| Sample Labe                                          |                                                                                               | a                                   | Yes                         | ∐No                                        | ∐n/a                                                     | 12.        |                |                                                                                                                 |                             |                                                |                                             |                    |                                                                                                                 |
| -Includes                                            | Date/Time/ID/Analysis Matrix                                                                  | K: W                                |                             |                                            |                                                          |            |                |                                                                                                                 |                             |                                                |                                             |                    |                                                                                                                 |
| checked?<br>All container                            | s needing preservation are fou                                                                | nd to be in                         | □Yes                        | ΠNο                                        | AN/A                                                     | 13.<br>Sam | ple #          | ∐HNO₃                                                                                                           | □H₂                         | SO4                                            | □NaOH                                       |                    | ПНСІ                                                                                                            |
| (HNO <sub>3</sub> , H <sub>2</sub> SO<br>Exceptions: | with EPA recommendation?<br>4, HCI<2; NaOH >9 Sulfide, NaO<br>TOA, Coliform, TOC, Oil and Gre | H>12 Cyanide)<br>ease.              | □Yes                        | □No                                        | EN/A                                                     | Initia     | l when         |                                                                                                                 |                             | lot#of                                         | added                                       | *.                 |                                                                                                                 |
| QR0/8015 (W                                          | vater) DOC                                                                                    |                                     | Yes                         | No                                         | N/A                                                      | com        | oleted:        |                                                                                                                 |                             | preserva                                       | ative:                                      |                    |                                                                                                                 |
| Headspace in                                         | VOA Vials ( >6mm)?                                                                            |                                     | Wes                         | No                                         | DIN/A                                                    | 14.        | Yce Mu         | 29, 1/6                                                                                                         | MW                          | 6A                                             |                                             |                    |                                                                                                                 |
| Trip Blank Pr                                        | esent?                                                                                        | Ű                                   | 13 Hes                      | □No                                        | CIN/A                                                    | 15.        | •              | ł                                                                                                               |                             | -1                                             |                                             |                    |                                                                                                                 |
| Trip Blank Cu                                        | istody Seals Present?                                                                         | 115 AL                              | /Ø/es                       | □No                                        | N/A                                                      |            |                |                                                                                                                 |                             |                                                |                                             |                    |                                                                                                                 |
| Pace Trip Bla                                        | nк Lot # (If purchased):К                                                                     | 112-01                              |                             |                                            | v                                                        |            |                | Section and second s |                             |                                                |                                             |                    |                                                                                                                 |
| С                                                    | LIENT NOTIFICATION/RESOL                                                                      | UTION                               |                             |                                            |                                                          |            |                |                                                                                                                 | Field D                     | ata Req                                        | uired? [                                    | ]Yes [             | No                                                                                                              |
| Person Cont                                          | acted:                                                                                        |                                     | 100-0                       |                                            |                                                          | Da         | te/Time:       |                                                                                                                 |                             |                                                |                                             |                    |                                                                                                                 |
| Comments/F                                           | Resolution:                                                                                   |                                     |                             |                                            |                                                          |            |                |                                                                                                                 |                             |                                                |                                             | 1                  |                                                                                                                 |
| *****                                                |                                                                                               |                                     |                             |                                            | a Pintana da angenera                                    |            |                |                                                                                                                 |                             |                                                |                                             |                    | ****                                                                                                            |
| Pro                                                  | ject Manager Review:                                                                          | 414                                 |                             |                                            |                                                          |            | Da             | ate:                                                                                                            | Sti                         | 911                                            | 1                                           |                    | administration of the second secon |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).



Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

November 10, 2015

Adam P. Zobel Wenck Associates, Inc 1800 Pioneer Creek Center P.O. BOX 249 Maple Plain, MN 55359

# RE: Project: 32280007 Cambridge GW Monitori Pace Project No.: 10328800

Dear Adam Zobel:

Enclosed are the analytical results for sample(s) received by the laboratory on November 04, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kabon Xiong

Kabor Xiong kabor.xiong@pacelabs.com Project Manager

Enclosures

cc: Cory J. Anderson, Wenck Associates





Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

#### CERTIFICATIONS

Project: 32280007 Cambridge GW Monitori

Pace Project No.: 10328800

#### **Minnesota Certification IDs**

1700 Elm Street SE Suite 200, Minneapolis, MN 55414 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605 Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062 Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909

Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN\_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530 North Carolina State Public Health #: 27700 North Dakota Certification #: R-036 Ohio EPA #: 4150 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Washington Certification #: C486 West Virginia Certification #: 382 West Virginia DHHR #:9952C Wisconsin Certification #: 999407970



## **PROJECT NARRATIVE**

Project: 32280007 Cambridge GW Monitori

Pace Project No.: 10328800

Date: November 10, 2015

The GRO values for sample 10328800001 (MW-1) appear to indicate that the vials were non-homogenous. The highest value was reported to present the highest risk data.



## **PROJECT NARRATIVE**

Project: 32280007 Cambridge GW Monitori

Pace Project No.: 10328800

### Method: WI MOD DRO

Description:WIDRO GCSClient:Wenck Associates, Inc.Date:November 10, 2015

#### **General Information:**

9 samples were analyzed for WI MOD DRO. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Sample Preparation:

The samples were prepared in accordance with WI MOD DRO with any exceptions noted below.

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

#### Surrogates:

All surrogates were within QC limits with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### Additional Comments:

Analyte Comments:

### QC Batch: OEXT/31544

- T7: Low boiling point hydrocarbons are present in the sample.
  - DUPLICATE (Lab ID: 10328800009)
  - WDRO C10-C28
  - MW-1 (Lab ID: 10328800001)
  - WDRO C10-C28
  - MW-10 (Lab ID: 10328800003)
  - WDRO C10-C28
  - MW-3 (Lab ID: 10328800008)
  - WDRO C10-C28
  - MW-6 (Lab ID: 10328800004) • WDRO C10-C28



Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

#### **PROJECT NARRATIVE**

Project: 32280007 Cambridge GW Monitori

Pace Project No.: 10328800

Method:WI MOD DRODescription:WIDRO GCSClient:Wenck Associates, Inc.Date:November 10, 2015

Analyte Comments:

QC Batch: OEXT/31544

T7: Low boiling point hydrocarbons are present in the sample.

• MW-7 (Lab ID: 10328800007)

• WDRO C10-C28

• MW-8 (Lab ID: 10328800006)

• WDRO C10-C28

• MW-9 (Lab ID: 10328800005)

• WDRO C10-C28



### **PROJECT NARRATIVE**

Project: 32280007 Cambridge GW Monitori

Pace Project No.: 10328800

### Method: WI MOD GRO

Description:WIGRO GCVClient:Wenck Associates, Inc.Date:November 10, 2015

#### General Information:

10 samples were analyzed for WI MOD GRO. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

#### Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

#### Surrogates:

All surrogates were within QC limits with any exceptions noted below.

#### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### Additional Comments:

Analyte Comments:

#### QC Batch: GCV/14602

1M: Results for sample10328800001 appear to indicate that the vials were non-homogenous. The highest value was reported to present the highest risk data.
• MW-1 (Lab ID: 10328800001)

• a,a,a-Trifluorotoluene (S)

This data package has been reviewed for quality and completeness and is approved for release.



#### Project: 32280007 Cambridge GW Monitori

Pace Project No.: 10328800

| Sample: MW-1               | Lab ID: 103       | 28800001   | Collected: 11/03/2 | 15 10:20 | Received: 11   | /04/15 12:04 N | Aatrix: Water |        |
|----------------------------|-------------------|------------|--------------------|----------|----------------|----------------|---------------|--------|
| Parameters                 | Results           | Units      | Report Limit       | DF       | Prepared       | Analyzed       | CAS No.       | Qual   |
| WIDRO GCS                  | Analytical Mether | nod: WI MC | D DRO Preparation  | Method   | : WI MOD DRO   |                |               |        |
| WDRO C10-C28               | 2.1               | mg/L       | 0.11               | 1        | 11/05/15 12:14 | 11/07/15 12:22 |               | T7     |
| Surrogates                 |                   |            |                    |          |                |                |               |        |
| n-Triacontane (S)          | 81                | %.         | 50-150             | 1        | 11/05/15 12:14 | 11/07/15 12:22 | 638-68-6      |        |
| WIGRO GCV                  | Analytical Mether | nod: WI MC | D GRO              |          |                |                |               |        |
| Benzene                    | ND                | ug/L       | 1.0                | 1        |                | 11/05/15 22:11 | 71-43-2       |        |
| Ethylbenzene               | 27.2              | ug/L       | 2.5                | 1        |                | 11/05/15 22:11 | 100-41-4      |        |
| Gasoline Range Organics    | 2780              | ug/L       | 100                | 1        |                | 11/05/15 22:11 |               |        |
| Toluene                    | ND                | ug/L       | 2.5                | 1        |                | 11/05/15 22:11 | 108-88-3      |        |
| Xylene (Total)             | 920               | ug/L       | 3.0                | 1        |                | 11/05/15 22:11 | 1330-20-7     |        |
| Surrogates                 |                   | 0          |                    |          |                |                |               |        |
| a,a,a-Trifluorotoluene (S) | 104               | %.         | 80-150             | 1        |                | 11/05/15 22:11 | 98-08-8       | 1M, D6 |



#### Project: 32280007 Cambridge GW Monitori

## Pace Project No.: 10328800

| Sample: MW-11                          | Lab ID: 1032    | 28800002   | Collected: 11/03/1 | 15 10:45 | Received: 11   | /04/15 12:04 N | latrix: Water |      |
|----------------------------------------|-----------------|------------|--------------------|----------|----------------|----------------|---------------|------|
| Parameters                             | Results         | Units      | Report Limit       | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                              | Analytical Meth | iod: WI MO | D DRO Preparation  | Method   | : WI MOD DRO   |                |               |      |
| WDRO C10-C28                           | ND              | mg/L       | 0.11               | 1        | 11/05/15 12:14 | 11/07/15 13:40 |               |      |
| <i>Surrogates</i><br>n-Triacontane (S) | 83              | %.         | 50-150             | 1        | 11/05/15 12:14 | 11/07/15 13:40 | 638-68-6      |      |
| WIGRO GCV                              | Analytical Meth | od: WI MO  | D GRO              |          |                |                |               |      |
| Benzene                                | ND              | ug/L       | 1.0                | 1        |                | 11/05/15 22:35 | 71-43-2       |      |
| Ethylbenzene                           | ND              | ug/L       | 2.5                | 1        |                | 11/05/15 22:35 | 100-41-4      |      |
| Gasoline Range Organics                | ND              | ug/L       | 100                | 1        |                | 11/05/15 22:35 |               |      |
| Toluene                                | ND              | ug/L       | 2.5                | 1        |                | 11/05/15 22:35 | 108-88-3      |      |
| Xylene (Total)                         | ND              | ug/L       | 3.0                | 1        |                | 11/05/15 22:35 | 1330-20-7     |      |
| Surrogates                             |                 | Ũ          |                    |          |                |                |               |      |
| a,a,a-Trifluorotoluene (S)             | 96              | %.         | 80-150             | 1        |                | 11/05/15 22:35 | 98-08-8       |      |



Pace Project No.: 10328800

| Sample: MW-10              | Lab ID: 1032    | 28800003  | Collected: 11/03/1 | 15 11:05 | 5 Received: 11 | /04/15 12:04 N | Aatrix: Water |      |
|----------------------------|-----------------|-----------|--------------------|----------|----------------|----------------|---------------|------|
| Parameters                 | Results         | Units     | Report Limit       | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                  | Analytical Meth | od: WI MC | DDDRO Preparation  | Method   | : WI MOD DRO   |                |               |      |
| WDRO C10-C28               | 3.4             | mg/L      | 0.11               | 1        | 11/05/15 12:14 | 11/07/15 12:30 |               | T7   |
| Surrogates                 |                 |           |                    |          |                |                |               |      |
| n-Triacontane (S)          | 77              | %.        | 50-150             | 1        | 11/05/15 12:14 | 11/07/15 12:30 | 638-68-6      |      |
| WIGRO GCV                  | Analytical Meth | od: WI MC | DD GRO             |          |                |                |               |      |
| Benzene                    | 279             | ug/L      | 10.0               | 10       |                | 11/06/15 15:57 | 71-43-2       |      |
| Ethylbenzene               | 342             | ug/L      | 25.0               | 10       |                | 11/06/15 15:57 | 100-41-4      |      |
| Gasoline Range Organics    | 7590            | ug/L      | 1000               | 10       |                | 11/06/15 15:57 |               |      |
| Toluene                    | 182             | ug/L      | 25.0               | 10       |                | 11/06/15 15:57 | 108-88-3      |      |
| Xylene (Total)             | 1320            | ug/L      | 30.0               | 10       |                | 11/06/15 15:57 | 1330-20-7     |      |
| Surrogates                 |                 | 5         |                    |          |                |                |               |      |
| a,a,a-Trifluorotoluene (S) | 103             | %.        | 80-150             | 10       |                | 11/06/15 15:57 | 98-08-8       |      |



#### Project: 32280007 Cambridge GW Monitori

Pace Project No.: 10328800

| Sample: MW-6                           | Lab ID: 103     | 28800004   | Collected: 11/03/1 | 5 12:03 | B Received: 11 | /04/15 12:04 N | latrix: Water |      |
|----------------------------------------|-----------------|------------|--------------------|---------|----------------|----------------|---------------|------|
| Parameters                             | Results         | Units      | Report Limit       | DF      | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                              | Analytical Meth | nod: WI MC | D DRO Preparation  | Methoo  | : WI MOD DRO   |                |               |      |
| WDRO C10-C28                           | 4.7             | mg/L       | 0.11               | 1       | 11/05/15 12:14 | 11/07/15 12:38 |               | T7   |
| <i>Surrogates</i><br>n-Triacontane (S) | 79              | %.         | 50-150             | 1       | 11/05/15 12:14 | 11/07/15 12:38 | 638-68-6      |      |
| WIGRO GCV                              | Analytical Meth | nod: WI MC | D GRO              |         |                |                |               |      |
| Benzene                                | 2060            | ug/L       | 20.0               | 20      |                | 11/06/15 16:44 | 71-43-2       |      |
| Ethylbenzene                           | 724             | ug/L       | 50.0               | 20      |                | 11/06/15 16:44 | 100-41-4      |      |
| Gasoline Range Organics                | 14200           | ug/L       | 2000               | 20      |                | 11/06/15 16:44 |               |      |
| Toluene                                | 1880            | ug/L       | 50.0               | 20      |                | 11/06/15 16:44 | 108-88-3      |      |
| Xylene (Total)                         | 3120            | ug/L       | 60.0               | 20      |                | 11/06/15 16:44 | 1330-20-7     |      |
| Surrogates                             |                 | -          |                    |         |                |                |               |      |
| a,a,a-Trifluorotoluene (S)             | 114             | %.         | 80-150             | 20      |                | 11/06/15 16:44 | 98-08-8       |      |



#### Project: 32280007 Cambridge GW Monitori

Pace Project No.: 10328800

| Sample: MW-9               | Lab ID: 103    | 328800005   | Collected: 11/03/ | 15 12:50 | Received: 11   | /04/15 12:04 M | latrix: Water |      |
|----------------------------|----------------|-------------|-------------------|----------|----------------|----------------|---------------|------|
| Parameters                 | Results        | Units       | Report Limit      | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                  | Analytical Met | thod: WI MC | D DRO Preparation | Method   | : WI MOD DRO   |                |               |      |
| WDRO C10-C28               | 10.6           | mg/L        | 0.53              | 5        | 11/05/15 12:14 | 11/07/15 11:51 |               | T7   |
| Surrogates                 |                |             |                   |          |                |                |               |      |
| n-Triacontane (S)          | 77             | %.          | 50-150            | 5        | 11/05/15 12:14 | 11/07/15 11:51 | 638-68-6      |      |
| WIGRO GCV                  | Analytical Met | thod: WI MC | D GRO             |          |                |                |               |      |
| Benzene                    | 5470           | ug/L        | 50.0              | 50       |                | 11/06/15 17:32 | 71-43-2       |      |
| Ethylbenzene               | 1620           | ug/L        | 125               | 50       |                | 11/06/15 17:32 | 100-41-4      |      |
| Gasoline Range Organics    | 33700          | ug/L        | 5000              | 50       |                | 11/06/15 17:32 |               |      |
| Toluene                    | 5160           | ug/L        | 125               | 50       |                | 11/06/15 17:32 | 108-88-3      |      |
| Xylene (Total)             | 8010           | ug/L        | 150               | 50       |                | 11/06/15 17:32 | 1330-20-7     |      |
| Surrogates                 |                | 0           |                   |          |                |                |               |      |
| a,a,a-Trifluorotoluene (S) | 100            | %.          | 80-150            | 50       |                | 11/06/15 17:32 | 98-08-8       |      |



#### Project: 32280007 Cambridge GW Monitori

Pace Project No.: 10328800

| Sample: MW-8                           | Lab ID: 103     | 28800006   | Collected: 11/03/1 | 5 13:25 | 5 Received: 11 | /04/15 12:04 M | latrix: Water |      |
|----------------------------------------|-----------------|------------|--------------------|---------|----------------|----------------|---------------|------|
| Parameters                             | Results         | Units      | Report Limit       | DF      | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                              | Analytical Meth | nod: WI MC | D DRO Preparation  | Method  | : WI MOD DRO   |                |               |      |
| WDRO C10-C28                           | 12.4            | mg/L       | 0.52               | 5       | 11/05/15 12:14 | 11/07/15 11:59 |               | T7   |
| <i>Surrogates</i><br>n-Triacontane (S) | 84              | %.         | 50-150             | 5       | 11/05/15 12:14 | 11/07/15 11:59 | 638-68-6      |      |
| WIGRO GCV                              | Analytical Meth | nod: WI MC | D GRO              |         |                |                |               |      |
| Benzene                                | 1020            | ug/L       | 20.0               | 20      |                | 11/06/15 18:19 | 71-43-2       |      |
| Ethylbenzene                           | 335             | ug/L       | 50.0               | 20      |                | 11/06/15 18:19 | 100-41-4      |      |
| Gasoline Range Organics                | 15100           | ug/L       | 2000               | 20      |                | 11/06/15 18:19 |               |      |
| Toluene                                | 1680            | ug/L       | 50.0               | 20      |                | 11/06/15 18:19 | 108-88-3      |      |
| Xylene (Total)                         | 1900            | ug/L       | 60.0               | 20      |                | 11/06/15 18:19 | 1330-20-7     |      |
| Surrogates                             |                 | -          |                    |         |                |                |               |      |
| a,a,a-Trifluorotoluene (S)             | 95              | %.         | 80-150             | 20      |                | 11/06/15 18:19 | 98-08-8       |      |



#### Project: 32280007 Cambridge GW Monitori

Pace Project No.: 10328800

| Sample: MW-7               | Lab ID: 103   | 328800007   | Collected: 11/03/ | 15 14:05 | 5 Received: 11 | /04/15 12:04 M | latrix: Water |      |
|----------------------------|---------------|-------------|-------------------|----------|----------------|----------------|---------------|------|
| Parameters                 | Results       | Units       | Report Limit      | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                  | Analytical Me | thod: WI MC | D DRO Preparation | Method   | : WI MOD DRO   |                |               |      |
| WDRO C10-C28               | 19.2          | mg/L        | 1.1               | 10       | 11/05/15 12:14 | 11/07/15 12:07 |               | T7   |
| Surrogates                 |               |             |                   |          |                |                |               |      |
| n-Triacontane (S)          | 69            | %.          | 50-150            | 10       | 11/05/15 12:14 | 11/07/15 12:07 | 638-68-6      |      |
| WIGRO GCV                  | Analytical Me | thod: WI MC | D GRO             |          |                |                |               |      |
| Benzene                    | 3140          | ug/L        | 50.0              | 50       |                | 11/06/15 19:06 | 71-43-2       |      |
| Ethylbenzene               | 1530          | ug/L        | 125               | 50       |                | 11/06/15 19:06 | 100-41-4      |      |
| Gasoline Range Organics    | 35900         | ug/L        | 5000              | 50       |                | 11/06/15 19:06 |               |      |
| Toluene                    | 7140          | ug/L        | 125               | 50       |                | 11/06/15 19:06 | 108-88-3      |      |
| Xylene (Total)             | 8450          | ug/L        | 150               | 50       |                | 11/06/15 19:06 | 1330-20-7     |      |
| Surrogates                 |               | 0           |                   |          |                |                |               |      |
| a,a,a-Trifluorotoluene (S) | 106           | %.          | 80-150            | 50       |                | 11/06/15 19:06 | 98-08-8       |      |



#### Project: 32280007 Cambridge GW Monitori

Pace Project No.: 10328800

| Sample: MW-3                           | Lab ID: 103       | 28800008   | Collected: 11/03/1 | 5 14:40 | Received: 11   | /04/15 12:04 M | latrix: Water |      |
|----------------------------------------|-------------------|------------|--------------------|---------|----------------|----------------|---------------|------|
| Parameters                             | Results           | Units      | Report Limit       | DF      | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                              | Analytical Mether | hod: WI MC | D DRO Preparation  | Method  | : WI MOD DRO   |                |               |      |
| WDRO C10-C28                           | 7.3               | mg/L       | 0.52               | 5       | 11/05/15 12:14 | 11/07/15 11:44 |               | T7   |
| <i>Surrogates</i><br>n-Triacontane (S) | 62                | %.         | 50-150             | 5       | 11/05/15 12:14 | 11/07/15 11:44 | 638-68-6      |      |
| WIGRO GCV                              | Analytical Mether | hod: WI MC | D GRO              |         |                |                |               |      |
| Benzene                                | 1560              | ug/L       | 20.0               | 20      |                | 11/06/15 19:53 | 71-43-2       |      |
| Ethylbenzene                           | ND                | ug/L       | 50.0               | 20      |                | 11/06/15 19:53 | 100-41-4      |      |
| Gasoline Range Organics                | 16300             | ug/L       | 2000               | 20      |                | 11/06/15 19:53 |               |      |
| Toluene                                | 1370              | ug/L       | 50.0               | 20      |                | 11/06/15 19:53 | 108-88-3      |      |
| Xylene (Total)                         | 4400              | ug/L       | 60.0               | 20      |                | 11/06/15 19:53 | 1330-20-7     |      |
| Surrogates                             |                   |            |                    |         |                |                |               |      |
| a,a,a-Trifluorotoluene (S)             | 106               | %.         | 80-150             | 20      |                | 11/06/15 19:53 | 98-08-8       |      |



#### Project: 32280007 Cambridge GW Monitori

## Pace Project No.: 10328800

| Sample: DUPLICATE          | Lab ID: 1032    | 28800009  | Collected: 11/03/1 | 5 00:00 | Received: 11   | /04/15 12:04 N | Aatrix: Water |      |
|----------------------------|-----------------|-----------|--------------------|---------|----------------|----------------|---------------|------|
| Parameters                 | Results         | Units     | Report Limit       | DF      | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                  | Analytical Meth | od: WI MC | D DRO Preparation  | Method  | : WI MOD DRO   |                |               |      |
| WDRO C10-C28               | 4.6             | mg/L      | 0.11               | 1       | 11/05/15 12:14 | 11/07/15 12:15 |               | T7   |
| Surrogates                 |                 |           |                    |         |                |                |               |      |
| n-Triacontane (S)          | 78              | %.        | 50-150             | 1       | 11/05/15 12:14 | 11/07/15 12:15 | 638-68-6      |      |
| WIGRO GCV                  | Analytical Meth | od: WI MC | D GRO              |         |                |                |               |      |
| Benzene                    | 2150            | ug/L      | 20.0               | 20      |                | 11/06/15 20:40 | 71-43-2       |      |
| Ethylbenzene               | 865             | ug/L      | 50.0               | 20      |                | 11/06/15 20:40 | 100-41-4      |      |
| Gasoline Range Organics    | 16200           | ug/L      | 2000               | 20      |                | 11/06/15 20:40 |               |      |
| Toluene                    | 2000            | ug/L      | 50.0               | 20      |                | 11/06/15 20:40 | 108-88-3      |      |
| Xylene (Total)             | 3820            | ug/L      | 60.0               | 20      |                | 11/06/15 20:40 | 1330-20-7     |      |
| Surrogates                 |                 | U         |                    |         |                |                |               |      |
| a,a,a-Trifluorotoluene (S) | 100             | %.        | 80-150             | 20      |                | 11/06/15 20:40 | 98-08-8       |      |



Project: 32280007 Cambridge GW Monitori

## Pace Project No.: 10328800

Date: 11/10/2015 10:56 AM

| Sample: TRIP BLANK                       | Lab ID: 103     | 28800010   | Collected: 11/03/1 | 5 00:00 | Received: 17 | I/04/15 12:04 N | latrix: Water |      |
|------------------------------------------|-----------------|------------|--------------------|---------|--------------|-----------------|---------------|------|
| Parameters                               | Results         | Units      | Report Limit       | DF      | Prepared     | Analyzed        | CAS No.       | Qual |
| WIGRO GCV                                | Analytical Meth | nod: WI MC | D GRO              |         |              |                 |               |      |
| Benzene                                  | ND              | ug/L       | 1.0                | 1       |              | 11/06/15 02:54  | 71-43-2       |      |
| Ethylbenzene                             | ND              | ug/L       | 2.5                | 1       |              | 11/06/15 02:54  | 100-41-4      |      |
| Gasoline Range Organics                  | ND              | ug/L       | 100                | 1       |              | 11/06/15 02:54  |               |      |
| Toluene                                  | ND              | ug/L       | 2.5                | 1       |              | 11/06/15 02:54  | 108-88-3      |      |
| Xylene (Total)                           | ND              | ug/L       | 3.0                | 1       |              | 11/06/15 02:54  | 1330-20-7     |      |
| Surrogates<br>a,a,a-Trifluorotoluene (S) | 103             | %.         | 80-150             | 1       |              | 11/06/15 02:54  | 98-08-8       |      |



Matrix: Water

Project: 32280007 Cambridge GW Monitori

Pace Project No.: 10328800

| QC Batch:        | GC |
|------------------|----|
| QC Batch Method: | WI |

Analysis Method:

| QC Batch:           | GCV/1 | 4602                      | Analysis N  |
|---------------------|-------|---------------------------|-------------|
| QC Batch Method:    | WI MC | DD GRO                    | Analysis D  |
| Associated Lab Samp | les:  | 10328800001, 10328800002, | 10328800010 |

Analysis Description: WIGRO GCV Water

WI MOD GRO

METHOD BLANK: 2127968

| Associated Lab Samples:    | : 10328800001, 10328800002, 10328800010 |        |           |                |            |  |  |  |
|----------------------------|-----------------------------------------|--------|-----------|----------------|------------|--|--|--|
|                            |                                         | Blank  | Reporting |                |            |  |  |  |
| Parameter                  | Units                                   | Result | Limit     | Analyzed       | Qualifiers |  |  |  |
| Benzene                    | ug/L                                    | ND     | 1.0       | 11/05/15 17:29 |            |  |  |  |
| Ethylbenzene               | ug/L                                    | ND     | 2.5       | 11/05/15 17:29 |            |  |  |  |
| Gasoline Range Organics    | ug/L                                    | ND     | 100       | 11/05/15 17:29 |            |  |  |  |
| Toluene                    | ug/L                                    | ND     | 2.5       | 11/05/15 17:29 |            |  |  |  |
| Xylene (Total)             | ug/L                                    | ND     | 3.0       | 11/05/15 17:29 |            |  |  |  |
| a,a,a-Trifluorotoluene (S) | %.                                      | 101    | 80-150    | 11/05/15 17:29 |            |  |  |  |

# LABORATORY CONTROL SAMPLE & LCSD: 2127969

| Parameter                  | Units | Spike<br>Conc. | LCS<br>Result | LCSD<br>Result | LCS<br>% Rec | LCSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qualifiers |
|----------------------------|-------|----------------|---------------|----------------|--------------|---------------|-----------------|-----|------------|------------|
| Benzene                    | ug/L  | 100            | 91.6          | 91.5           | 92           | 91            | 80-120          | 0   | 20         |            |
| Ethylbenzene               | ug/L  | 100            | 91.0          | 93.2           | 91           | 93            | 80-120          | 2   | 20         |            |
| Gasoline Range Organics    | ug/L  | 1000           | 969           | 930            | 97           | 93            | 80-120          | 4   | 20         |            |
| Toluene                    | ug/L  | 100            | 90.6          | 95.5           | 91           | 95            | 80-120          | 5   | 20         |            |
| Xylene (Total)             | ug/L  | 300            | 258           | 271            | 86           | 90            | 80-120          | 5   | 20         |            |
| a,a,a-Trifluorotoluene (S) | %.    |                |               |                | 107          | 103           | 80-150          |     |            |            |

2127970

| olifioro  |
|-----------|
| uglifiaro |
| Jaimers   |
|           |
|           |
|           |
|           |
|           |
|           |
|           |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



Project: 32280007 Cambridge GW Monitori

Pace Project No.: 10328800

METHOD BLANK: 2128820

| QC Batch:        | GCV/14605  |
|------------------|------------|
| QC Batch Method: | WI MOD GRO |

Analysis Method: WI MOD GRO Analysis Description: WIGRO GCV Water

Associated Lab Samples: 10328800003, 10328800004, 10328800005, 10328800006, 10328800007, 10328800008, 10328800009

Matrix: Water

Associated Lab Samples: 10328800003, 10328800004, 10328800005, 10328800006, 10328800007, 10328800008, 10328800009

|                            |       | Blank  | Reporting |                |            |
|----------------------------|-------|--------|-----------|----------------|------------|
| Parameter                  | Units | Result | Limit     | Analyzed       | Qualifiers |
| Benzene                    | ug/L  | ND     | 1.0       | 11/06/15 14:23 |            |
| Ethylbenzene               | ug/L  | ND     | 2.5       | 11/06/15 14:23 |            |
| Gasoline Range Organics    | ug/L  | ND     | 100       | 11/06/15 14:23 |            |
| Toluene                    | ug/L  | ND     | 2.5       | 11/06/15 14:23 |            |
| Xylene (Total)             | ug/L  | ND     | 3.0       | 11/06/15 14:23 |            |
| a,a,a-Trifluorotoluene (S) | %.    | 108    | 80-150    | 11/06/15 14:23 |            |

| LABORATORY CONTROL SAMPLE & LC | 28822 |       |        |        |       |       |        |     |     |            |
|--------------------------------|-------|-------|--------|--------|-------|-------|--------|-----|-----|------------|
|                                |       | Spike | LCS    | LCSD   | LCS   | LCSD  | % Rec  |     | Max |            |
| Parameter                      | Units | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qualifiers |
| Benzene                        | ug/L  | 100   | 97.2   | 91.5   | 97    | 91    | 80-120 | 6   | 20  |            |
| Ethylbenzene                   | ug/L  | 100   | 98.5   | 95.4   | 98    | 95    | 80-120 | 3   | 20  |            |
| Gasoline Range Organics        | ug/L  | 1000  | 938    | 908    | 94    | 91    | 80-120 | 3   | 20  |            |
| Toluene                        | ug/L  | 100   | 97.2   | 93.8   | 97    | 94    | 80-120 | 4   | 20  |            |
| Xylene (Total)                 | ug/L  | 300   | 278    | 268    | 93    | 89    | 80-120 | 3   | 20  |            |
| a,a,a-Trifluorotoluene (S)     | %.    |       |        |        | 99    | 100   | 80-150 |     |     |            |

| MATRIX SPIKE & MATRIX SPI  | 11    |          | 2130412     |              |        |        |       |       |        |     |      |
|----------------------------|-------|----------|-------------|--------------|--------|--------|-------|-------|--------|-----|------|
|                            | 1032  | 29302001 | MS<br>Spike | MSD<br>Spike | MS     | MSD    | MS    | MSD   | % Rec  |     |      |
| Parameter                  | Units | Result   | Conc.       | Conc.        | Result | Result | % Rec | % Rec | Limits | RPD | Qual |
| Benzene                    | ug/L  | 78.4     | 100         | 100          | 182    | 176    | 104   | 98    | 80-120 | 3   |      |
| Ethylbenzene               | ug/L  | ND       | 100         | 100          | 108    | 103    | 106   | 101   | 80-120 | 4   |      |
| Gasoline Range Organics    | ug/L  | 279      | 1000        | 1000         | 1170   | 1180   | 89    | 90    | 80-120 | 1   |      |
| Toluene                    | ug/L  | 15.9     | 100         | 100          | 111    | 106    | 95    | 90    | 80-120 | 5   |      |
| Xylene (Total)             | ug/L  | 39.6     | 300         | 300          | 321    | 303    | 94    | 88    | 80-120 | 6   |      |
| a,a,a-Trifluorotoluene (S) | %.    |          |             |              |        |        | 98    | 103   | 80-150 |     |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



| Project:                                                                                                                                    | 32280007 Cambri | dge GW Monitori |                         |             |                |                |            |           |           |      |            |
|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-------------------------|-------------|----------------|----------------|------------|-----------|-----------|------|------------|
| Pace Project No.:                                                                                                                           | 10328800        |                 |                         |             |                |                |            |           |           |      |            |
| QC Batch:                                                                                                                                   | OEXT/31544      |                 | W                       | WI MOD DRO  |                |                |            |           |           |      |            |
| QC Batch Method:                                                                                                                            | WI MOD DRO      |                 | Analysis Description: W |             |                | /IDRO G        | CS         |           |           |      |            |
| Associated Lab Samples: 10328800001, 10328800002, 10328800003, 1<br>10328800008, 10328800009                                                |                 |                 |                         |             | 800004, 1      | 0328800        | 005, 103   | 28800006, | 103288000 | 007, |            |
| METHOD BLANK:                                                                                                                               | 2127612         |                 | N                       | latrix: Wat | er             |                |            |           |           |      |            |
| Associated Lab Samples: 10328800001, 10328800002, 10328800003, 10328800004, 10328800005, 10328800006, 10328800007, 10328800008, 10328800009 |                 |                 |                         |             |                |                |            |           |           |      |            |
|                                                                                                                                             |                 |                 | Blank                   | Re          | eporting       |                |            |           |           |      |            |
| Paran                                                                                                                                       | neter           | Units           | Result                  | t           | Limit Analyzed |                | Qualifiers |           |           |      |            |
| WDRO C10-C28                                                                                                                                |                 | mg/L            |                         | ND          | 0.10           | 11/07/15 11:28 |            |           |           |      |            |
| n-Triacontane (S)                                                                                                                           |                 | %.              | 73 50-15                |             | 50-150         | 11/07/         | 15 11:28   |           |           |      |            |
| LABORATORY CON                                                                                                                              | NTROL SAMPLE &  | LCSD: 2127613   |                         | 2           | 127614         |                |            |           |           |      |            |
|                                                                                                                                             |                 |                 | Spike                   | LCS         | LCSD           | LCS            | LCSD       | % Rec     |           | Max  |            |
| Paran                                                                                                                                       | neter           | Units           | Conc.                   | Result      | Result         | % Rec          | % Rec      | Limits    | RPD       | RPD  | Qualifiers |
| WDRO C10-C28                                                                                                                                |                 | mg/L            | 2                       | 1.8         | 1.8            | 88             | 92         | 75-115    | 4         | 20   |            |
| n-Triacontane (S)                                                                                                                           |                 | %.              |                         |             |                | 78             | 76         | 50-150    |           |      |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## QUALIFIERS

Project: 32280007 Cambridge GW Monitori

Pace Project No.: 10328800

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

- 1M Results for sample10328800001 appear to indicate that the vials were non-homogenous. The highest value was reported to present the highest risk data.
- D6 The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory control limits.
- T7 Low boiling point hydrocarbons are present in the sample.


# QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project: | 32280007 Cambridge GW Monitori |
|----------|--------------------------------|
|          |                                |

Pace Project No.: 10328800

| Lab ID      | Sample ID  | QC Batch Method | QC Batch   | Analytical Method | Analytical<br>Batch |
|-------------|------------|-----------------|------------|-------------------|---------------------|
| 10328800001 | MW-1       | WI MOD DRO      | OEXT/31544 | WI MOD DRO        | GCSV/17207          |
| 10328800002 | MW-11      | WI MOD DRO      | OEXT/31544 | WI MOD DRO        | GCSV/17207          |
| 10328800003 | MW-10      | WI MOD DRO      | OEXT/31544 | WI MOD DRO        | GCSV/17207          |
| 10328800004 | MW-6       | WI MOD DRO      | OEXT/31544 | WI MOD DRO        | GCSV/17207          |
| 10328800005 | MW-9       | WI MOD DRO      | OEXT/31544 | WI MOD DRO        | GCSV/17207          |
| 10328800006 | MW-8       | WI MOD DRO      | OEXT/31544 | WI MOD DRO        | GCSV/17207          |
| 10328800007 | MW-7       | WI MOD DRO      | OEXT/31544 | WI MOD DRO        | GCSV/17207          |
| 10328800008 | MW-3       | WI MOD DRO      | OEXT/31544 | WI MOD DRO        | GCSV/17207          |
| 10328800009 | DUPLICATE  | WI MOD DRO      | OEXT/31544 | WI MOD DRO        | GCSV/17207          |
| 10328800001 | MW-1       | WI MOD GRO      | GCV/14602  |                   |                     |
| 10328800002 | MW-11      | WI MOD GRO      | GCV/14602  |                   |                     |
| 10328800003 | MW-10      | WI MOD GRO      | GCV/14605  |                   |                     |
| 10328800004 | MW-6       | WI MOD GRO      | GCV/14605  |                   |                     |
| 10328800005 | MW-9       | WI MOD GRO      | GCV/14605  |                   |                     |
| 10328800006 | MW-8       | WI MOD GRO      | GCV/14605  |                   |                     |
| 10328800007 | MW-7       | WI MOD GRO      | GCV/14605  |                   |                     |
| 10328800008 | MW-3       | WI MOD GRO      | GCV/14605  |                   |                     |
| 10328800009 | DUPLICATE  | WI MOD GRO      | GCV/14605  |                   |                     |
| 10328800010 | TRIP BLANK | WI MOD GRO      | GCV/14602  |                   |                     |

| -                | Pace Analytical<br>www.pacetata.com                                    |                           |                      |                      | He C                          | AIN-OF.              | -CUS<br><sup>Jy is a L</sup> | STOL<br>EGAL D         |                          | Analy<br>ENT. All        | <b>ytica</b><br>relevant | fields n      | <b>ques</b><br>nust be c | it Doc        | <b>Jumer</b><br>accurately |                                       | BL    | 5          | 20               | Q        |                  | Г             |
|------------------|------------------------------------------------------------------------|---------------------------|----------------------|----------------------|-------------------------------|----------------------|------------------------------|------------------------|--------------------------|--------------------------|--------------------------|---------------|--------------------------|---------------|----------------------------|---------------------------------------|-------|------------|------------------|----------|------------------|---------------|
| Sectic<br>Requir | <b>on A</b><br>ed Client Information:                                  | Section B<br>Required Pro | oject Infc           | ormation:            |                               |                      | σΞ                           | iection (              | С<br>ormation            |                          |                          |               |                          |               |                            |                                       | Page  |            | 5                |          |                  |               |
| Compa            | WENCH ASSOCIATES                                                       | Report To:                | 7 de                 | m Zobe               | 21 ALO                        | below                | CK 10                        | ttention:              | M                        | 21.55                    | N.C.                     | 12            | 17                       | मु            |                            |                                       |       | locand     | 980              | 20       |                  |               |
| Addres           | 1500 pioneer creek cont                                                | COPY TO: C                | 1001                 | r Ander              | 205                           |                      | 0                            | ompany                 | Name:                    | 3                        | NY<br>NY                 | Į₹            | 2                        | te S R        | REGULA                     | FORY A                                | GENCY |            |                  |          |                  | Conceptor the |
| Ž                | aple plain MIV                                                         |                           | 50                   | deren                | Jubbu                         | W. 07.7              | 4                            | ddress                 | 800 2                    | Uneer                    | Creel                    | Z MA          | ple 2                    | (ciù          | NPDE                       | €<br>S:                               | GROUN | ID WATE    |                  | DRINKING | WATER            | ¥.            |
| Email            | 10: AzdelQuerk, Com                                                    | Purchase Or               | der No.:             |                      |                               |                      |                              | ace Quote<br>eference: | MIC                      | 2                        | 553                      | 5             |                          |               | T UST                      | L                                     | RCRA  |            |                  | DTHER _  |                  |               |
| Phone:           | CHIG LIVE SUL                                                          | Project Namε              | S.C.                 | n bridge             | 30                            | whiter               | d ⊻<br>K                     | ace Projet<br>anager:  | ×                        | 1                        | 6                        | X             | 540                      |               | Site Loca                  | tion                                  | A W   |            |                  |          |                  |               |
| Reque            | sted Due Date/TAT: North                                               | Project Numt              | ber:                 | \$228 200            | 5 Ol                          | 101                  | ĥ                            | ace Profile            | :#0                      |                          |                          |               |                          |               | STA                        | TE:                                   |       | <br>7      |                  |          |                  |               |
|                  |                                                                        |                           |                      |                      |                               |                      |                              |                        |                          |                          |                          |               | Requi                    | ested A       | nalysis ł                  | iltered                               | (N/A) |            |                  |          |                  |               |
| Ϋ́Ϋ́             | ection D Matrix<br>squired Client Information <u>MATRIX</u>            | Codes<br>/ CODE           | (Jhei (<br>에너)       |                      | CULECTE                       | D                    |                              |                        | Pres                     | servativ                 | es                       | <b>1</b> N /A | · · · · · ·              |               |                            |                                       |       |            |                  |          |                  |               |
|                  | Drinking We<br>Water Water<br>Waster Wate<br>Product<br>Soil/Solid     | er DW<br>er WT<br>SL SL   | GEAB C=CO            | COMPOSITE            |                               | omposite<br>:ND/GRAB |                              | s                      |                          |                          |                          | 1             | XE                       |               |                            |                                       |       | (N/A)      |                  |          |                  |               |
|                  | SAMPLE ID OI<br>(A-Z. 0-9 / ,-) Ar<br>Sample (Ds MUST BE UNIQUE Tissue | TAR PC                    | APE (G=              |                      |                               |                      | TA 9ME                       | 791NIAT<br>290         |                          |                          | · · ·                    | t≳9T ≳l       | 121                      |               |                            | · · · · · · · · · · · · · · · · · · · | е.    | Shlorine   |                  |          |                  |               |
| # MƏT            | Other                                                                  | E AUGLIA                  | O XIATAN<br>T BIAMAS | H<br>H<br>V<br>C     |                               |                      | IT 3J9MA8                    | Jupreserv<br># OF CON  | <sup>8</sup> ON⊦<br>PSC¢ | N <sup>g</sup> OH<br>HCI | Viher<br>Nethanol        | ISVIENA.      | 650                      | ent de la     |                            |                                       |       | ) leubisə? |                  |          |                  |               |
| +                | 1-mw                                                                   |                           | 0.5                  | HATE W               | 1 W3                          | 15 10 20             |                              | )<br>n.                | 1                        | 1                        |                          |               | N<br>N                   |               |                            |                                       |       |            |                  | olect M  | ע רמה יה.        | T             |
| 8                | 11-MW                                                                  |                           |                      |                      |                               | 10 34                |                              |                        |                          | 5                        |                          | '<br>         | 5                        |               |                            |                                       |       |            |                  |          |                  |               |
| ŝ                | PI-MW                                                                  |                           |                      | $\overline{\langle}$ |                               | 11:25                |                              |                        |                          | 21                       |                          |               | 53                       |               |                            |                                       |       |            |                  |          |                  | T             |
| 4                | WW-6                                                                   |                           |                      |                      |                               | 12:00                |                              |                        |                          | 10                       |                          |               | 5                        |               |                            |                                       |       |            |                  |          |                  | T             |
| 2                | NW-9                                                                   |                           |                      |                      |                               | 3                    |                              |                        |                          | <u>,</u>                 |                          |               | 2                        |               |                            | -                                     |       |            |                  |          |                  | T             |
| 9                | 201 100                                                                |                           |                      |                      |                               | 12:21                |                              |                        |                          | 2                        |                          | ''            | 2                        |               |                            |                                       |       |            |                  |          |                  | T             |
| 7                | MW-7                                                                   |                           |                      |                      |                               | 10°2                 |                              |                        |                          | 52                       |                          |               | ~ ~<br>> ~               |               |                            |                                       | -     |            |                  |          |                  | T             |
| 8                | 11.11/1                                                                | Column color              |                      |                      |                               | 14:21                |                              |                        |                          | л U                      | -                        |               | N N<br>N L               | +             |                            |                                       |       |            |                  |          |                  | T             |
| » 2              | Trip Black                                                             |                           | 2                    |                      | P                             |                      | <u> </u>                     |                        |                          | で                        | +                        |               | 10                       | -             |                            |                                       |       |            |                  |          |                  |               |
| Ē                |                                                                        |                           |                      |                      |                               |                      |                              |                        |                          |                          |                          |               |                          |               |                            |                                       |       |            |                  |          |                  | TT            |
| 12               |                                                                        |                           |                      |                      | Allowing of the second second |                      |                              |                        |                          |                          |                          |               | Contract and State Law   |               |                            | All and a second                      |       |            |                  |          |                  |               |
|                  | ADDITIONAL COMMENTS                                                    | -<br>                     | RELINQ               | UISHED BY / AFF      | ILLATION                      | EAD 1                | <u>ш</u> і.                  | TIME                   |                          |                          | ACCEPT                   | ED BY /       | AFFILIA                  | N             | DAI                        | ш                                     | BME   |            | SAMPLE           | CONDITIO | 4S               |               |
|                  |                                                                        | 3                         | Z                    | vellersen            | 3                             | 11 (1)               | 2                            | ۲                      |                          | ¢                        | 4                        | ł             | ļ                        |               |                            |                                       |       |            |                  |          |                  | T             |
|                  |                                                                        | 3                         | J                    | 2 - C                |                               |                      | $\parallel$                  |                        | 4                        | R                        | Ż                        | B             | XX                       | Å             | 11.4.                      | 51                                    | 2     |            | 4.15             |          |                  |               |
|                  |                                                                        | Ĵ                         | ģ                    | R<br>R               | Y la                          | 211.4.               | 5                            | 203                    | K)                       | à                        | b)                       | S             | q                        | e j           | 14/13                      | (S jz                                 | Sr.   | S.         | 83<br>87         | N        | 7                |               |
|                  |                                                                        | C                         |                      |                      | ,                             |                      |                              |                        |                          | <b>)</b>                 | nun,                     |               | <b>,</b>                 |               | •                          |                                       | 18 .  |            | ~                |          | -                |               |
| Page             | č                                                                      | RGINAL                    |                      | SA                   | MPLER NAN                     | AE AND SIGN          | ATURE                        |                        |                          |                          | ٩                        |               |                          |               |                            |                                       |       | 202        | ()<br>( N        | ooler    | tostn            |               |
| e 22 (           |                                                                        |                           |                      |                      | ININ                          | Name of SAM          | PLER:                        | U                      | 2                        | 1                        |                          | XI            | C                        |               |                            |                                       |       | ui qme     | celved<br>celved | (N/Y)    | (N/Y)<br>I səlqr | •••••         |
| of 2             |                                                                        |                           |                      |                      | SIGN                          | ATURE of SAM         | PLER:                        | N                      |                          | $\backslash$             | $\langle \rangle$        | J.            | DAIE S                   | ane<br>Signee |                            | 14                                    | 5     | 9T         | ,<br>ਮ<br>ਅਸ     | s92      | шв2              |               |
| 3                | *Important Note: By signing this form you are acce                     | spting Pace's NET         | . 30 day p           | ayment terms and aç  | treeing to late c             | harges of 1.5% pt    | r month fi                   | or any invo            | vices not p              | aid within               | 30 days.                 | ĺ             | 0                        |               |                            |                                       |       | F-ALL-Q-   | 020rev.07        | 15-May-2 | 07               | I I           |

|                                                 | <b>1</b> 7 ,                                                                                                                                       | De<br>Sample Con              | ocument<br>dition U | : Name:         | Document Revised: 23Feb2015                                                                        |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------|-----------------|----------------------------------------------------------------------------------------------------|
|                                                 | Pace Analytical                                                                                                                                    | [                             | Documer             | nt No.:         | Issuing Authority:                                                                                 |
|                                                 |                                                                                                                                                    | F-1                           | VIN-L-21            | 3-rev.13        | Pace Minnesota Quality Office                                                                      |
| ample Cor<br>Upon Red                           | Client Name:                                                                                                                                       | antes                         |                     | Project         | # WO#:10328800                                                                                     |
| urier:<br>]Commerc<br>Fracking N                | ☐Fed Ex ☐UP:<br>cial ∰ <del>Pac</del> e ☐Spe<br>lumber:                                                                                            | s Dusps<br>eeDee Other:       |                     | Client          | 10328800                                                                                           |
| ustody Se                                       | al on Cooler/Box Present? []Yes                                                                                                                    | 2No                           | Seals Int           | tact?           | ]Yes ANO Optional: Proj. Due Date: Proj. Name:                                                     |
| acking Ma                                       | aterial: 🔲 Bubble Wrap 🛛 🕅 Bubble Wrap                                                                                                             | bble Bags 🗌 Non               | e 🗌                 | Other:          | Temp Blank?                                                                                        |
| iermomel<br>Used:                               | ter B88A9130516413 B88<br>3.5<br>3.5<br>3.7                                                                                                        | A912167504 Typ<br>A0143310098 | e of Ice:           | 10 2 2          | et Blue None Samples on ice, cooling process has b                                                 |
| mp should<br>DA Regula                          | b Read (°C): <u>'3, </u> Cooler<br>be above freezing to 6°C Corre<br>ated Soil (VS). N/A, water sample)<br>originate in a quarantine zone within t | remp Corrected (*C            | ): 3.1              |                 | Biological Tissue Frozen? []Yes [No ]X<br>te and Initials of Person Examining Contents: 67 ///4//6 |
| , NC, NM,                                       | NY, OK, OR, SC, TN, TX or WA (check n<br>If Yes to either question, fill                                                                           | naps)?<br>out a Regulated Soi | l Checkli           | Yes<br>St (F-MN | -Q-338) and include with SCUR/COC paperwork.                                                       |
|                                                 |                                                                                                                                                    |                               |                     |                 | COMMENTS:                                                                                          |
| nain of Cu                                      | stody Present?                                                                                                                                     | <b>V</b> ELYes                | □No                 | □n/A            | 1.                                                                                                 |
| nain of Cu                                      | stody Filled Out?                                                                                                                                  | (25 Ves                       | No                  | □n/a            | 2.                                                                                                 |
| ain of Cu                                       | stody Relinquished?                                                                                                                                | Yes                           | No                  | □n/A            | 3.                                                                                                 |
| mpler Na                                        | me and/or Signature on COC?                                                                                                                        | 12 Yes                        | □No                 | □n/A            | 4.                                                                                                 |
| mples Ari                                       | rived within Hold Time?                                                                                                                            | XYes                          | □No                 | □n/a            | 5.                                                                                                 |
| ort Hold                                        | Time Analysis (<72 hr)?                                                                                                                            | <br>∏Yes                      | Xino                | <br>            | 6.                                                                                                 |
| ish Turn /                                      | Around Time Requested?                                                                                                                             | □Yes                          | Disio               |                 | 7.                                                                                                 |
| fficient V                                      | olume?                                                                                                                                             | 15Qac                         |                     |                 | 8                                                                                                  |
| rrect Con                                       | tainers Used?                                                                                                                                      | NV or                         |                     |                 | 0                                                                                                  |
| -Pace Co                                        | ntainers Used?                                                                                                                                     | v v v                         |                     |                 | 5.                                                                                                 |
| ntoingral                                       | Intaniel's Oseu:                                                                                                                                   | Dates                         |                     |                 |                                                                                                    |
| arad Val                                        | undeli                                                                                                                                             | <u>V</u> 24¥es                |                     | N/A             |                                                                                                    |
| tereu von                                       | ale Mattale COCO                                                                                                                                   | Ves N                         |                     |                 | 11. Note if sediment is visible in the dissolved container                                         |
| mple Lab                                        | els Match COC?                                                                                                                                     | De De Ves                     | ∐No                 | ∐n/A            | 12.                                                                                                |
| -Includes                                       | Date/Time/ID/Analysis Matrix:                                                                                                                      |                               | . '                 |                 |                                                                                                    |
| ecked?                                          | rs needing preservation are found to b                                                                                                             | Yes                           | □No                 | XN/A            | 13. HNO <sub>3</sub> H <sub>2</sub> SO <sub>4</sub> NaOH HC                                        |
| mpliance                                        | with EPA recommendation?                                                                                                                           |                               |                     |                 |                                                                                                    |
| NO <sub>3</sub> , H <sub>2</sub> SC<br>centions | J <sub>4</sub> , HCl<2; NaOH >9 Sulfide, NaOH>12 (<br>VOA Coliform TOC Oil and Grease                                                              | Cyanide) 🗌 Yes                | []No                | GIN/A           | Initial when Lot # of added                                                                        |
| 10/8015 (                                       | water) DOC                                                                                                                                         | <b>∮</b> ⊥Yes                 | □No                 | <u> </u>        | completed: preservative:                                                                           |
| adspace I                                       | in VOA Vials ( >6mm)?                                                                                                                              | Yes                           | VXIN0               | □n/A            | 14.                                                                                                |
| p Blank P                                       | resent?                                                                                                                                            | Axes                          | No                  | □n/A            | 15.                                                                                                |
| ip Blank C                                      | ustody Seals Present?                                                                                                                              | <b>H</b> Ives                 | □No                 | □n/A            |                                                                                                    |
| an Tuin DI                                      | ank Lot # (if purchased): 1007                                                                                                                     | 2-01                          |                     |                 |                                                                                                    |
| се тпры                                         | CLIENT NOTIFICATION/RESOLUTION                                                                                                                     | N                             |                     |                 | Field Data Required? Yes No                                                                        |
| се ттры                                         |                                                                                                                                                    |                               |                     |                 | Date/Time:                                                                                         |
| erson Con                                       | tacted:                                                                                                                                            | -                             |                     |                 | Date/ mile.                                                                                        |
| erson Con                                       | tacted:                                                                                                                                            | •                             |                     |                 |                                                                                                    |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).



Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

February 05, 2016

Adam P. Zobel Wenck Associates, Inc 1800 Pioneer Creek Center P.O. BOX 249 Maple Plain, MN 55359

# RE: Project: 3228-01 Cambridge GW Monitorin Pace Project No.: 10337538

Dear Adam Zobel:

Enclosed are the analytical results for sample(s) received by the laboratory on February 03, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Canin frem

Carrie Jensen carrie.jensen@pacelabs.com Project Manager

Enclosures





Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

## CERTIFICATIONS

Project: 3228-01 Cambridge GW Monitorin

Pace Project No.: 10337538

#### **Minnesota Certification IDs**

1700 Elm Street SE Suite 200, Minneapolis, MN 55414 525 N 8th Street, Salina, KS 67401 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605 Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062 Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909

Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN\_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530 North Carolina State Public Health #: 27700 North Dakota Certification #: R-036 Ohio EPA #: 4150 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Virginia/VELAP Certification #: Pace Washington Certification #: C486 West Virginia Certification #: 382 West Virginia DHHR #:9952C Wisconsin Certification #: 999407970



## Project: 3228-01 Cambridge GW Monitorin

Pace Project No.: 10337538

| Sample: MW-1                           | Lab ID: 1033    | 37538001  | Collected: 02/02/1 | 6 10:12 | Received: 02   | 2/03/16 12:29 N | Aatrix: Water |      |
|----------------------------------------|-----------------|-----------|--------------------|---------|----------------|-----------------|---------------|------|
| Parameters                             | Results         | Units     | Report Limit       | DF      | Prepared       | Analyzed        | CAS No.       | Qual |
| WIDRO GCS                              | Analytical Meth | od: WI MC | DDDRO Preparation  | Method  | : WI MOD DRO   |                 |               |      |
| WDRO C10-C28                           | 1.0             | mg/L      | 0.11               | 1       | 02/03/16 15:39 | 02/04/16 16:41  |               | T7   |
| <i>Surrogates</i><br>n-Triacontane (S) | 86              | %.        | 50-150             | 1       | 02/03/16 15:39 | 02/04/16 16:41  | 638-68-6      |      |
| WIGRO GCV                              | Analytical Meth | od: WI MC | D GRO              |         |                |                 |               |      |
| Benzene                                | ND              | ug/L      | 2.0                | 2       |                | 02/04/16 14:58  | 71-43-2       |      |
| Ethylbenzene                           | 15.6            | ug/L      | 2.0                | 2       |                | 02/04/16 14:58  | 100-41-4      |      |
| Gasoline Range Organics                | 1960            | ug/L      | 200                | 2       |                | 02/04/16 14:58  |               |      |
| Toluene                                | ND              | ug/L      | 2.0                | 2       |                | 02/04/16 14:58  | 108-88-3      |      |
| Xylene (Total)                         | 666             | ug/L      | 6.0                | 2       |                | 02/04/16 14:58  | 1330-20-7     |      |
| Surrogates                             |                 | 0         |                    |         |                |                 |               |      |
| a,a,a-Trifluorotoluene (S)             | 98              | %.        | 80-150             | 2       |                | 02/04/16 14:58  | 98-08-8       |      |



## Project: 3228-01 Cambridge GW Monitorin

Pace Project No.: 10337538

| Sample: MW-10                   | Lab ID: 103     | 37538002  | Collected: 02/02/1 | 6 11:02 | Received: 02   | 2/03/16 12:29 N | latrix: Water |      |
|---------------------------------|-----------------|-----------|--------------------|---------|----------------|-----------------|---------------|------|
| Parameters                      | Results         | Units     | Report Limit       | DF      | Prepared       | Analyzed        | CAS No.       | Qual |
| WIDRO GCS                       | Analytical Meth | od: WI MC | D DRO Preparation  | Method  | : WI MOD DRO   |                 |               |      |
| WDRO C10-C28                    | 4.4             | mg/L      | 0.11               | 1       | 02/03/16 15:39 | 02/04/16 16:48  |               | T7   |
| Surrogates<br>n-Triacontane (S) | 83              | %.        | 50-150             | 1       | 02/03/16 15:39 | 02/04/16 16:48  | 638-68-6      |      |
| WIGRO GCV                       | Analytical Meth | od: WI MC | D GRO              |         |                |                 |               |      |
| Benzene                         | 277             | ug/L      | 10.0               | 10      |                | 02/04/16 14:35  | 71-43-2       |      |
| Ethylbenzene                    | 363             | ug/L      | 10.0               | 10      |                | 02/04/16 14:35  | 100-41-4      |      |
| Gasoline Range Organics         | 8060            | ug/L      | 1000               | 10      |                | 02/04/16 14:35  |               |      |
| Toluene                         | 291             | ug/L      | 10.0               | 10      |                | 02/04/16 14:35  | 108-88-3      |      |
| Xylene (Total)                  | 1270            | ug/L      | 30.0               | 10      |                | 02/04/16 14:35  | 1330-20-7     |      |
| Surrogates                      |                 | U         |                    |         |                |                 |               |      |
| a,a,a-Trifluorotoluene (S)      | 115             | %.        | 80-150             | 10      |                | 02/04/16 14:35  | 98-08-8       |      |



## Project: 3228-01 Cambridge GW Monitorin

Pace Project No.: 10337538

| Sample: MW-6               | Lab ID: 103     | 37538003  | Collected: 02/02/2 | 16 11:45 | Received: 02   | /03/16 12:29 N | latrix: Water |       |
|----------------------------|-----------------|-----------|--------------------|----------|----------------|----------------|---------------|-------|
| Parameters                 | Results         | Units     | Report Limit       | DF       | Prepared       | Analyzed       | CAS No.       | Qual  |
| WIDRO GCS                  | Analytical Meth | od: WI MC | D DRO Preparation  | Method   | : WI MOD DRO   |                |               |       |
| WDRO C10-C28               | 5.2             | mg/L      | 0.11               | 1        | 02/03/16 15:39 | 02/04/16 16:34 |               | T6,T7 |
| Surrogates                 |                 |           |                    |          |                |                |               |       |
| n-Triacontane (S)          | 82              | %.        | 50-150             | 1        | 02/03/16 15:39 | 02/04/16 16:34 | 638-68-6      |       |
| WIGRO GCV                  | Analytical Meth | od: WI MC | D GRO              |          |                |                |               |       |
| Benzene                    | 1910            | ug/L      | 20.0               | 20       |                | 02/04/16 13:24 | 71-43-2       |       |
| Ethylbenzene               | 874             | uq/L      | 20.0               | 20       |                | 02/04/16 13:24 | 100-41-4      |       |
| Gasoline Range Organics    | 18600           | ug/L      | 2000               | 20       |                | 02/04/16 13:24 |               |       |
| Toluene                    | 1930            | ug/L      | 20.0               | 20       |                | 02/04/16 13:24 | 108-88-3      |       |
| Xylene (Total)             | 3710            | ug/L      | 60.0               | 20       |                | 02/04/16 13:24 | 1330-20-7     |       |
| Surrogates                 |                 | 0         |                    |          |                |                |               |       |
| a,a,a-Trifluorotoluene (S) | 105             | %.        | 80-150             | 20       |                | 02/04/16 13:24 | 98-08-8       |       |



## Project: 3228-01 Cambridge GW Monitorin

Pace Project No.: 10337538

| Sample: MW-9               | Lab ID: 103     | 37538004  | Collected: 02/02/1 | 16 13:13 | B Received: 02 | /03/16 12:29 N | Aatrix: Water |      |
|----------------------------|-----------------|-----------|--------------------|----------|----------------|----------------|---------------|------|
| Parameters                 | Results         | Units     | Report Limit       | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                  | Analytical Meth | od: WI MC | D DRO Preparation  | Method   | : WI MOD DRO   |                |               |      |
| WDRO C10-C28               | 10.3            | mg/L      | 0.53               | 5        | 02/03/16 15:39 | 02/05/16 09:51 |               | T7   |
| Surrogates                 |                 | -         |                    |          |                |                |               |      |
| n-Triacontane (S)          | 88              | %.        | 50-150             | 5        | 02/03/16 15:39 | 02/05/16 09:51 | 638-68-6      |      |
| WIGRO GCV                  | Analytical Meth | od: WI MC | D GRO              |          |                |                |               |      |
| Benzene                    | 4100            | ug/L      | 50.0               | 50       |                | 02/04/16 12:37 | 71-43-2       |      |
| Ethylbenzene               | 1070            | ug/L      | 50.0               | 50       |                | 02/04/16 12:37 | 100-41-4      |      |
| Gasoline Range Organics    | 27700           | ug/L      | 5000               | 50       |                | 02/04/16 12:37 |               |      |
| Toluene                    | 3760            | ug/L      | 50.0               | 50       |                | 02/04/16 12:37 | 108-88-3      |      |
| Xylene (Total)             | 5720            | uq/L      | 150                | 50       |                | 02/04/16 12:37 | 1330-20-7     |      |
| Surrogates                 |                 | 0         |                    |          |                |                |               |      |
| a,a,a-Trifluorotoluene (S) | 100             | %.        | 80-150             | 50       |                | 02/04/16 12:37 | 98-08-8       |      |



## Project: 3228-01 Cambridge GW Monitorin

Pace Project No.: 10337538

| Sample: MW-8               | Lab ID: 103     | 37538005  | Collected: 02/02/1 | 16 13:48 | Received: 02   | /03/16 12:29 N | latrix: Water |      |
|----------------------------|-----------------|-----------|--------------------|----------|----------------|----------------|---------------|------|
| Parameters                 | Results         | Units     | Report Limit       | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                  | Analytical Meth | od: WI MC | D DRO Preparation  | Method   | : WI MOD DRO   |                |               |      |
| WDRO C10-C28               | 8.5             | mg/L      | 0.52               | 5        | 02/03/16 15:39 | 02/05/16 09:57 |               | T7   |
| Surrogates                 |                 |           |                    |          |                |                |               |      |
| n-Triacontane (S)          | 70              | %.        | 50-150             | 5        | 02/03/16 15:39 | 02/05/16 09:57 | 638-68-6      |      |
| WIGRO GCV                  | Analytical Meth | od: WI MC | D GRO              |          |                |                |               |      |
| Benzene                    | 1360            | ug/L      | 20.0               | 20       |                | 02/04/16 13:48 | 71-43-2       |      |
| Ethylbenzene               | 526             | ug/L      | 20.0               | 20       |                | 02/04/16 13:48 | 100-41-4      |      |
| Gasoline Range Organics    | 21400           | ug/L      | 2000               | 20       |                | 02/04/16 13:48 |               |      |
| Toluene                    | 2100            | ug/L      | 20.0               | 20       |                | 02/04/16 13:48 | 108-88-3      |      |
| Xylene (Total)             | 2880            | ug/L      | 60.0               | 20       |                | 02/04/16 13:48 | 1330-20-7     |      |
| Surrogates                 |                 | 0         |                    |          |                |                |               |      |
| a,a,a-Trifluorotoluene (S) | 101             | %.        | 80-150             | 20       |                | 02/04/16 13:48 | 98-08-8       |      |



## Project: 3228-01 Cambridge GW Monitorin

Pace Project No.: 10337538

| Sample: MW-7               | Lab ID: 1033    | 37538006  | Collected: 02/02/1 | 6 14:22 | Received: 02   | /03/16 12:29 N | latrix: Water |      |
|----------------------------|-----------------|-----------|--------------------|---------|----------------|----------------|---------------|------|
| Parameters                 | Results         | Units     | Report Limit       | DF      | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                  | Analytical Meth | od: WI MC | D DRO Preparation  | Method  | : WI MOD DRO   |                |               |      |
| WDRO C10-C28               | 19.4            | mg/L      | 1.1                | 10      | 02/03/16 15:39 | 02/05/16 10:04 |               | Τ7   |
| Surrogates                 |                 |           |                    |         |                |                |               |      |
| n-Triacontane (S)          | 0               | %.        | 50-150             | 10      | 02/03/16 15:39 | 02/05/16 10:04 | 638-68-6      | S4   |
| WIGRO GCV                  | Analytical Meth | od: WI MC | D GRO              |         |                |                |               |      |
| Benzene                    | 2850            | ug/L      | 50.0               | 50      |                | 02/04/16 13:01 | 71-43-2       |      |
| Ethylbenzene               | 1450            | ug/L      | 50.0               | 50      |                | 02/04/16 13:01 | 100-41-4      |      |
| Gasoline Range Organics    | 37900           | ug/L      | 5000               | 50      |                | 02/04/16 13:01 |               |      |
| Toluene                    | 5410            | ug/L      | 50.0               | 50      |                | 02/04/16 13:01 | 108-88-3      |      |
| Xylene (Total)             | 8550            | ug/L      | 150                | 50      |                | 02/04/16 13:01 | 1330-20-7     |      |
| Surrogates                 |                 | 0         |                    |         |                |                |               |      |
| a,a,a-Trifluorotoluene (S) | 97              | %.        | 80-150             | 50      |                | 02/04/16 13:01 | 98-08-8       |      |



## Project: 3228-01 Cambridge GW Monitorin

Pace Project No.: 10337538

| Sample: MW-3                           | Lab ID: 103     | 37538007   | Collected: 02/02/ | 16 15:15 | 5 Received: 02 | /03/16 12:29   | Aatrix: Water |      |
|----------------------------------------|-----------------|------------|-------------------|----------|----------------|----------------|---------------|------|
| Parameters                             | Results         | Units      | Report Limit      | DF       | Prepared       | Analyzed       | CAS No.       | Qual |
| WIDRO GCS                              | Analytical Meth | nod: WI MC | D DRO Preparation | Method   | : WI MOD DRO   |                |               |      |
| WDRO C10-C28                           | 15.8            | mg/L       | 1.0               | 10       | 02/03/16 15:39 | 02/05/16 10:11 |               | T7   |
| <i>Surrogates</i><br>n-Triacontane (S) | 0               | %.         | 50-150            | 10       | 02/03/16 15:39 | 02/05/16 10:11 | 638-68-6      | S4   |
| WIGRO GCV                              | Analytical Meth | nod: WI MC | D GRO             |          |                |                |               |      |
| Benzene                                | 2280            | ug/L       | 20.0              | 20       |                | 02/04/16 14:11 | 71-43-2       |      |
| Ethylbenzene                           | 163             | ug/L       | 20.0              | 20       |                | 02/04/16 14:11 | 100-41-4      |      |
| Gasoline Range Organics                | 19700           | ug/L       | 2000              | 20       |                | 02/04/16 14:11 |               |      |
| Toluene                                | 1430            | ug/L       | 20.0              | 20       |                | 02/04/16 14:11 | 108-88-3      |      |
| Xylene (Total)                         | 4490            | ug/L       | 60.0              | 20       |                | 02/04/16 14:11 | 1330-20-7     |      |
| Surrogates                             |                 | Ū          |                   |          |                |                |               |      |
| a,a,a-Trifluorotoluene (S)             | 105             | %.         | 80-150            | 20       |                | 02/04/16 14:11 | 98-08-8       |      |



## Project: 3228-01 Cambridge GW Monitorin

Pace Project No.: 10337538

| Sample: DUP-1              | Lab ID: 103     | 37538008   | Collected: 02/02/ | 16 00:00 | Received: 02   | 2/03/16 12:29 N | latrix: Water |      |
|----------------------------|-----------------|------------|-------------------|----------|----------------|-----------------|---------------|------|
| Parameters                 | Results         | Units      | Report Limit      | DF       | Prepared       | Analyzed        | CAS No.       | Qual |
| WIDRO GCS                  | Analytical Meth | nod: WI MC | D DRO Preparation | Method   | : WI MOD DRO   |                 |               |      |
| WDRO C10-C28               | 10.3            | mg/L       | 1.0               | 10       | 02/03/16 15:39 | 02/05/16 10:18  |               | T7   |
| Surrogates                 |                 |            |                   |          |                |                 |               |      |
| n-Triacontane (S)          | 0               | %.         | 50-150            | 10       | 02/03/16 15:39 | 02/05/16 10:18  | 638-68-6      | S4   |
| WIGRO GCV                  | Analytical Meth | nod: WI MC | D GRO             |          |                |                 |               |      |
| Benzene                    | 1370            | ug/L       | 20.0              | 20       |                | 02/04/16 15:22  | 71-43-2       |      |
| Ethylbenzene               | 476             | ug/L       | 20.0              | 20       |                | 02/04/16 15:22  | 100-41-4      |      |
| Gasoline Range Organics    | 15900           | ug/L       | 2000              | 20       |                | 02/04/16 15:22  |               |      |
| Toluene                    | 2020            | ug/L       | 20.0              | 20       |                | 02/04/16 15:22  | 108-88-3      |      |
| Xylene (Total)             | 2550            | ug/L       | 60.0              | 20       |                | 02/04/16 15:22  | 1330-20-7     |      |
| Surrogates                 |                 | •          |                   |          |                |                 |               |      |
| a,a,a-Trifluorotoluene (S) | 105             | %.         | 80-150            | 20       |                | 02/04/16 15:22  | 98-08-8       |      |



Project: 3228-01 Cambridge GW Monitorin

## Pace Project No.: 10337538

| Sample: TRIP BLANK         | Lab ID: 10   | 0337538009   | Collected: 02/02/1 | 6 00:00 | Received: 02 | 2/03/16 12:29 N | latrix: Water |      |
|----------------------------|--------------|--------------|--------------------|---------|--------------|-----------------|---------------|------|
| Parameters                 | Results      | Units        | Report Limit       | DF      | Prepared     | Analyzed        | CAS No.       | Qual |
| WIGRO GCV                  | Analytical M | ethod: WI MO | D GRO              |         |              |                 |               |      |
| Benzene                    | ND           | ug/L         | 1.0                | 1       |              | 02/04/16 20:51  | 71-43-2       |      |
| Ethylbenzene               | ND           | ug/L         | 1.0                | 1       |              | 02/04/16 20:51  | 100-41-4      |      |
| Gasoline Range Organics    | ND           | ug/L         | 100                | 1       |              | 02/04/16 20:51  |               |      |
| Toluene                    | ND           | ug/L         | 1.0                | 1       |              | 02/04/16 20:51  | 108-88-3      |      |
| Xylene (Total)             | ND           | ug/L         | 3.0                | 1       |              | 02/04/16 20:51  | 1330-20-7     |      |
| Surrogates                 |              | -            |                    |         |              |                 |               |      |
| a,a,a-Trifluorotoluene (S) | 98           | %.           | 80-150             | 1       |              | 02/04/16 20:51  | 98-08-8       |      |



## **QUALITY CONTROL DATA**

Project: 3228-01 Cambridge GW Monitorin

|  | Pace Pro | ject No.: | 10337538 |
|--|----------|-----------|----------|
|--|----------|-----------|----------|

QC Batch:GCV/14921QC Batch Method:WI MOD GROAssociated Lab Samples:1033753

 4921
 Analysis Method:
 WI MOD GRO

 DD GRO
 Analysis Description:
 WIGRO GCV Water

 10337538001, 10337538002, 10337538003, 10337538004, 10337538005, 10337538006, 10337538007,
 Non-state

10337538008, 10337538009

# METHOD BLANK: 2185787 Associated Lab Samples: 1

Matrix: Water

 $10337538001,\,10337538002,\,10337538003,\,10337538004,\,10337538005,\,10337538006,\,10337538007,\,10337538008,\,10337538009$ 

|                            |       | Blank  | Reporting |                |            |
|----------------------------|-------|--------|-----------|----------------|------------|
| Parameter                  | Units | Result | Limit     | Analyzed       | Qualifiers |
| Benzene                    | ug/L  | ND     | 1.0       | 02/04/16 10:39 |            |
| Ethylbenzene               | ug/L  | ND     | 1.0       | 02/04/16 10:39 |            |
| Gasoline Range Organics    | ug/L  | ND     | 100       | 02/04/16 10:39 |            |
| Toluene                    | ug/L  | ND     | 1.0       | 02/04/16 10:39 |            |
| Xylene (Total)             | ug/L  | ND     | 3.0       | 02/04/16 10:39 |            |
| a,a,a-Trifluorotoluene (S) | %.    | 96     | 80-150    | 02/04/16 10:39 |            |

| LABORATORY CONTROL SAMPLE & | LCSD: 2185788 |       | 21     | 85789  |       |       |        |     |     |            |
|-----------------------------|---------------|-------|--------|--------|-------|-------|--------|-----|-----|------------|
|                             |               | Spike | LCS    | LCSD   | LCS   | LCSD  | % Rec  |     | Max |            |
| Parameter                   | Units         | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qualifiers |
| Benzene                     | ug/L          | 100   | 91.5   | 99.3   | 91    | 99    | 80-120 | 8   | 20  |            |
| Ethylbenzene                | ug/L          | 100   | 86.5   | 95.8   | 86    | 96    | 80-120 | 10  | 20  |            |
| Gasoline Range Organics     | ug/L          | 1000  | 959    | 962    | 96    | 96    | 80-120 | 0   | 20  |            |
| Toluene                     | ug/L          | 100   | 94.2   | 102    | 94    | 102   | 80-120 | 8   | 20  |            |
| Xylene (Total)              | ug/L          | 300   | 275    | 296    | 92    | 99    | 80-120 | 7   | 20  |            |
| a,a,a-Trifluorotoluene (S)  | %.            |       |        |        | 99    | 100   | 80-150 |     |     |            |

| MATRIX SPIKE & MATRIX SPIK | E DUPLICATI | E: 21857 | 97    |       | 2185798 |        |       |       |        |     |      |
|----------------------------|-------------|----------|-------|-------|---------|--------|-------|-------|--------|-----|------|
|                            |             |          | MS    | MSD   |         |        |       |       |        |     |      |
|                            | 103         | 37533001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     |      |
| Parameter                  | Units       | Result   | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | Qual |
| Benzene                    | ug/L        | 1.8      | 100   | 100   | 98.7    | 101    | 97    | 99    | 80-120 | 3   |      |
| Ethylbenzene               | ug/L        | ND       | 100   | 100   | 93.0    | 95.4   | 93    | 95    | 80-120 | 3   |      |
| Gasoline Range Organics    | ug/L        | ND       | 1000  | 1000  | 1020    | 1050   | 102   | 105   | 80-120 | 2   |      |
| Toluene                    | ug/L        | ND       | 100   | 100   | 99.6    | 102    | 99    | 102   | 80-120 | 2   |      |
| Xylene (Total)             | ug/L        | ND       | 300   | 300   | 288     | 296    | 96    | 99    | 80-120 | 3   |      |
| a,a,a-Trifluorotoluene (S) | %.          |          |       |       |         |        | 100   | 99    | 80-150 |     |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



# **QUALITY CONTROL DATA**

| Project:           | 3228-01 Cambrid           | dge GW Monitorin           |                       |             |            |                |          |           |           |      |            |
|--------------------|---------------------------|----------------------------|-----------------------|-------------|------------|----------------|----------|-----------|-----------|------|------------|
| Pace Project No.:  | 10337538                  |                            |                       |             |            |                |          |           |           |      |            |
| QC Batch:          | OEXT/32452                |                            | Analysis Method:      |             |            | I MOD E        | RO       |           |           |      |            |
| QC Batch Method:   | WI MOD DRO                |                            | Analysis Description: |             |            | /IDRO G        | CS       |           |           |      |            |
| Associated Lab San | nples: 1033753<br>1033753 | 8001, 10337538002,<br>8008 | 10337538              | 003, 10337  | 7538004, 1 | 0337538        | 005, 103 | 37538006, | 103375380 | 007, |            |
| METHOD BLANK:      | 2185187                   |                            | Ν                     | Aatrix: Wat | ter        |                |          |           |           |      |            |
| Associated Lab San | nples: 1033753<br>1033753 | 8001, 10337538002,<br>8008 | 10337538              | 003, 10337  | 7538004, 1 | 0337538        | 005, 103 | 37538006, | 103375380 | 007, |            |
|                    |                           |                            | Blank                 | K R         | eporting   |                |          |           |           |      |            |
| Paran              | Parameter U               |                            | Result                |             | Limit      | Analyzed       |          | Qualif    | iers      |      |            |
| WDRO C10-C28       |                           | mg/L                       | ND                    |             | 0.10       | 02/04/16 15:45 |          |           |           |      |            |
| n-Triacontane (S)  |                           | %.                         |                       | 73          | 50-150     | 02/04/         | 16 15:45 |           |           |      |            |
| LABORATORY COM     | NTROL SAMPLE              | & LCSD: 2185188            |                       | 2           | 185189     |                |          |           |           |      |            |
|                    |                           |                            | Spike                 | LCS         | LCSD       | LCS            | LCSD     | % Rec     |           | Max  |            |
| Paran              | neter                     | Units                      | Conc.                 | Result      | Result     | % Rec          | % Rec    | Limits    | RPD       | RPD  | Qualifiers |
| WDRO C10-C28       |                           | <br>mg/L                   | 2                     | 1.6         | 1.7        | 7 82           | 83       | 75-115    | 2         | 20   |            |
| n-Triacontane (S)  |                           | %.                         |                       |             |            | 84             | 83       | 50-150    |           |      |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## QUALIFIERS

Project: 3228-01 Cambridge GW Monitorin

Pace Project No.: 10337538

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

- S4 Surrogate recovery not evaluated against control limits due to sample dilution.
- T6 High boiling point hydrocarbons are present in the sample.
- T7 Low boiling point hydrocarbons are present in the sample.



# QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 3228-01 Cambridge GW Monitorin

Pace Project No.: 10337538

| Lab ID      | Sample ID  | QC Batch Method | QC Batch   | Analytical Method | Analytical<br>Batch |
|-------------|------------|-----------------|------------|-------------------|---------------------|
| 10337538001 | MW-1       | WI MOD DRO      | OEXT/32452 | WI MOD DRO        | GCSV/17848          |
| 10337538002 | MW-10      | WI MOD DRO      | OEXT/32452 | WI MOD DRO        | GCSV/17848          |
| 10337538003 | MW-6       | WI MOD DRO      | OEXT/32452 | WI MOD DRO        | GCSV/17848          |
| 10337538004 | MW-9       | WI MOD DRO      | OEXT/32452 | WI MOD DRO        | GCSV/17848          |
| 10337538005 | MW-8       | WI MOD DRO      | OEXT/32452 | WI MOD DRO        | GCSV/17848          |
| 10337538006 | MW-7       | WI MOD DRO      | OEXT/32452 | WI MOD DRO        | GCSV/17848          |
| 10337538007 | MW-3       | WI MOD DRO      | OEXT/32452 | WI MOD DRO        | GCSV/17848          |
| 10337538008 | DUP-1      | WI MOD DRO      | OEXT/32452 | WI MOD DRO        | GCSV/17848          |
| 10337538001 | MW-1       | WI MOD GRO      | GCV/14921  |                   |                     |
| 10337538002 | MW-10      | WI MOD GRO      | GCV/14921  |                   |                     |
| 10337538003 | MW-6       | WI MOD GRO      | GCV/14921  |                   |                     |
| 10337538004 | MW-9       | WI MOD GRO      | GCV/14921  |                   |                     |
| 10337538005 | MW-8       | WI MOD GRO      | GCV/14921  |                   |                     |
| 10337538006 | MW-7       | WI MOD GRO      | GCV/14921  |                   |                     |
| 10337538007 | MW-3       | WI MOD GRO      | GCV/14921  |                   |                     |
| 10337538008 | DUP-1      | WI MOD GRO      | GCV/14921  |                   |                     |
| 10337538009 | TRIP BLANK | WI MOD GRO      | GCV/14921  |                   |                     |

| Pace Analytical                                            | CHAIN-OF<br>The Chain-of-Custo                                             | -CUSTODY / Analytical Request I<br>dy is a LEGAL DOCUMENT. All relevant fields must be comp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>Document</b><br>Meted accurately. | 103378                                                                                           | 3116 R |
|------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------|--------|
| Section A<br>Required Clent Information:                   | Section B<br>Required Project Information:                                 | Section C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Page:                                | { of [                                                                                           |        |
| Company: WENCH ASSEC                                       | Report To: Cory Mylation, condetionation                                   | AN Attention: Mel 55 20 WW Partiention:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      | 2022340                                                                                          |        |
| Address: 16 UND; On ear crear Leave                        | COPY TO: Adam Zonel azelelower                                             | LEW COMPANY NAME: WEWE MY POSSIC CULTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | REGULATORY AGENCY                    |                                                                                                  |        |
| Miner Chican, NN                                           |                                                                            | Address:<br>1600 Pibyler urein-centor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I NPDES KGROUND                      | D WATER T DRINKING WA                                                                            | TER    |
| Phone 1: Candel Scheruly                                   | Purchase Order No.:                                                        | Reference: Maple Picen, MNN or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 CAL UST F RCRA                     | L OTHER                                                                                          |        |
| 102- 414-2182 m                                            | MONTHAME CAMPANDER OW MONTHAN                                              | The Manager: 1 Cickor X Trans is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Site Location                        |                                                                                                  |        |
| Requested Due Date TAT: PLOT worl                          | Project Number: 5228-01                                                    | Pace Profile #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STATE: WIN                           |                                                                                                  |        |
|                                                            |                                                                            | in a Request                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ed Analysis Filtered (Y/N)           |                                                                                                  |        |
| Section D Matrix C<br>Required Client Information MATRIX / | odes odes (COLLECTED CODE (COLLECTED )                                     | Preservatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                                                                                                  |        |
| Drinking Wate<br>Water<br>Waster Water<br>Product          | T DW<br>WT WT COMPOSITE<br>OMPOSITE COMPOSITE<br>TART ENDIGRAD             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | 7 <b>(</b> N                                                                                     |        |
| SAMPLE ID OI                                               | (3=6R<br>(3=6 M<br>(3=6 N                                                  | EX<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>11<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      | 1/Y) e                                                                                           |        |
| (A-Z, 0-9 /) Wipe<br>Sample IDs MUST BE UNIQUE Tissue      | а <mark>А</mark> Ка<br>ОDE<br>(РЕ (                                        | та ям:<br>be<br>be<br>construction<br>be<br>be<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>construction<br>constructio |                                      | aninold                                                                                          |        |
| Other                                                      | 2<br>2 ХІЯТАІ<br>ГТ ЭЈЧМА                                                  | С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      | O leubis                                                                                         |        |
| 1-MK 1                                                     |                                                                            | C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C     C    C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | Ĕ Pace Project No./ La                                                                           | b I.D. |
| 2 /1/W-10                                                  |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | 255                                                                                              |        |
| 3 /////la                                                  |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 |        |
| 4 MW-9                                                     | 15.13                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | 1<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 1      |
| 5 ///~-8                                                   | 8HSI                                                                       | 5 5 33 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | 1 000 H                                                                                          | 2001   |
| 6 WW-7                                                     | 1423                                                                       | 5 23 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                      | 233                                                                                              |        |
| 7 J. 17                                                    |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | 120                                                                                              |        |
|                                                            |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | A20                                                                                              |        |
| 10 77 10 21 11                                             |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | 500                                                                                              | Ì      |
|                                                            |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      | 500                                                                                              |        |
| 12                                                         | I I LEWAC                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                                                                                  |        |
| ADDITIONAL COMMENTS                                        | RELINQUISHED BY / AFFILIATION DATE                                         | TIME ACCEPTED BY / AFFILIATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE TIME                            | SAMPLE CONDITIONS                                                                                |        |
| Two Trip Blowks                                            | Carlhuberten (Lugarch) [21311                                              | 6 Herto Lasson / Re.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.3.16 1140                          |                                                                                                  |        |
| Three wolkers                                              | for Mrn                                                                    | 1229 N. C. Are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2-3-16 1229 2.                       | <u> </u>                                                                                         |        |
|                                                            | Alow Dall Have 231                                                         | 6 1229                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                                    | 3                                                                                                |        |
| P                                                          |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · · ·                                | 2                                                                                                |        |
| THO age                                                    | IGINAL SAMPLER NAME AND SIGNAT                                             | TURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.                                   | on<br>v<br>on<br>oler                                                                            | וופרנ  |
| 16 o                                                       | PRINT Name of SAMP                                                         | LER. COLY HANDERSON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ui du                                | ni qm<br>bevie:<br>(N/Y) e<br>botsu<br>(N/Y)<br>(N/Y)                                            | (N/A)  |
| f 17                                                       | SIGNATURE of SAMPI                                                         | LER: DATE Signer (MMIDD/Y);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21316                                | Reo<br>Seal                                                                                      |        |
| *Important Note: By signing this form you are acceptin,    | g Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per | month for any invoices not paid within 30 days.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E-A                                  | ALL-O-020rev.07.15-Mav-2007                                                                      |        |

| Ø                                                                                                                                                                                                                                                             | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                           | Do                                                              | cument l                                           | Name:                            |                                        | Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cument Revis                                                 | ed: 05Jan2016                                                           |                                          | ]         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------|----------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------|-----------|
|                                                                                                                                                                                                                                                               | Pace Analytical*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sa                                                                                        | nple Cond                                                       | ition Up                                           | on Recei                         | pt Form                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page 1 (                                                     | of 1                                                                    |                                          | -         |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           | F-M                                                             | IN-L-213                                           | -rev.1S                          |                                        | Pac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e Minnesota (                                                | Quality Office                                                          | ;                                        |           |
| Imple Condition<br>Upon Receipt                                                                                                                                                                                                                               | Client Name:<br>Wench                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                           |                                                                 |                                                    | Project                          | #: <b>NO</b>                           | #:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .0337                                                        | 7538                                                                    |                                          |           |
| urier: [<br>Commercial [<br>iracking Number:                                                                                                                                                                                                                  | Fed Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | UPS  <br> SpeeDee                                                                         | _USPS<br>_Other:_                                               | C                                                  | lient                            | 1033                                   | /538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |                                                                         |                                          |           |
| ustody Seal on Coole                                                                                                                                                                                                                                          | er/Box Present? 🛛 📿                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes 🗌 No                                                                                  | S                                                               | ieals Inta                                         | act? 📿                           | Yes 🗌 No                               | Optio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | onal: Proj. [                                                | Due Date:                                                               | Proj. N                                  | lame:     |
| acking Material:                                                                                                                                                                                                                                              | _Bubble Wrap 🛛 🖉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Bubble Bags                                                                               | []]None                                                         | • 🔲 C                                              | )ther:                           |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Temp I                                                       | Blank? 🛛 🛛                                                              | Yes                                      | ΠNο       |
| Dermometer<br>Used: 11<br>20 ler Temp Read (°C)<br>mp should be above<br>3DA Regulated Soil ( j<br>d samples originate in                                                                                                                                     | 1401163 $151401164$ $51401164$ $151401164$ $1: 1.9$ $2.1$ $1.4$ $1: 1.9$ $2.1$ $1.4$ $1: 1.9$ $2.1$ $1.4$ $1: 1.9$ $2.1$ $1.4$ $1: 1.9$ $2.1$ $1.4$ $1: 1.9$ $2.1$ $1.4$ $1: 1.9$ $2.1$ $1.4$ $1: 1.9$ $2.1$ $1.4$ $1: 1.9$ $2.1$ $1.4$ $1: 1.9$ $2.1$ $1.4$ $1: 1.9$ $2.1$ $1.4$ $1: 1.9$ $2.1$ $1.4$ $1: 1.9$ $2.1$ $1.4$ $1: 1.9$ $1.4$ $1.4$ $1: 1.9$ $2.1$ $1.4$ $1: 1.9$ $1.4$ $1.4$ $1: 1.9$ $1.4$ $1.4$ $1: 1.9$ $1.4$ $1.4$ $1: 1.9$ $1.4$ $1.4$ $1: 1.9$ $1.4$ $1.4$ $1: 1.9$ $1.4$ $1.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | B88A912167504<br>B88A014331009<br>Dier Temp Corr<br>Dirrection Factor<br>nin the United S | + Type<br>+8<br>•ected (°C):<br>>r: <u>+⊅</u> .<br>tates: AL, A | e of Ice:<br>: 2 - 1 - 1<br>2 - 1 - 1<br>R, AZ, CA | 2.3, 1.<br>                      | t Blue<br>and Initials C<br>D, LA. Dic | None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None<br>None | Samples<br>issue Frozen?<br>Examining Co<br>priginate from a | s on ice, coolin<br>Yes<br>ntents: <u>2</u><br>foreign source<br>Ricol? | g proces:<br>No<br>-7 - 1 (<br>e (intern | s has beg |
| , NC, NM, NY, OK, OR,<br>I <b>f Y</b>                                                                                                                                                                                                                         | , SC, 1N, 1X or WA (che<br><b>es to either question</b> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ck maps)?<br>, fill out a Regu                                                            | ulated Soil                                                     | Checklis                                           | t (F-MN-                         | Q-338) and inc                         | duding Hav<br>d <mark>ude wit</mark> h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | h SCUR/COC p                                                 | aperwork.                                                               |                                          |           |
|                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           |                                                                 |                                                    |                                  |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COMME                                                        | NTS:                                                                    |                                          |           |
| nain of Custody Prese                                                                                                                                                                                                                                         | nt?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                           | Yes                                                             | No                                                 | □n/a                             | 1.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                         |                                          |           |
| hain of Custody Filled                                                                                                                                                                                                                                        | Out?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                           | Ves                                                             | No                                                 | □n/a                             | 2.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                         |                                          |           |
| nain of Custody Reline                                                                                                                                                                                                                                        | quished?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                           | Ves_                                                            | No                                                 | N/A                              | 3.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                         |                                          |           |
| ampler Name and/or :                                                                                                                                                                                                                                          | Signature on COC?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                           | Ves                                                             | No                                                 | □n/a                             | 4.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                         |                                          |           |
| amples Arrive <b>d</b> within                                                                                                                                                                                                                                 | Hold Time?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                           | Ves                                                             | No                                                 | □n/a                             | 5.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                         |                                          |           |
| hort Hold Time Analy                                                                                                                                                                                                                                          | sis (<72 hr)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                           | Yes                                                             |                                                    | □n/a                             | 6.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                         |                                          |           |
| ush Turn Around Tim                                                                                                                                                                                                                                           | e Requested?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                           | ∐Yes_                                                           | No.                                                | □n/a                             | 7.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                         |                                          |           |
| ufficient Volume?                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           | Yes                                                             | No                                                 | □n/A                             | 8.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                         |                                          |           |
| orrect Containers Use                                                                                                                                                                                                                                         | d?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                           | Vyes .                                                          | ΠNo                                                | □n/a                             | 9.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                         |                                          |           |
| -Pace Containers Us                                                                                                                                                                                                                                           | ed?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                           |                                                                 | —<br>∏No                                           | <br>∏n/a                         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                         |                                          |           |
| ontainers Intact?                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                           | Yes                                                             | <br>No                                             |                                  | 10.                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                         |                                          |           |
| Itered Volume Receiv                                                                                                                                                                                                                                          | ed for Dissolved Tests?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ?                                                                                         | <br>□Yes                                                        | <br>∏No                                            |                                  | 11. Note if                            | sediment i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | is visible in the                                            | dissolved con                                                           | tainer                                   |           |
| ample Labels Match C                                                                                                                                                                                                                                          | OC?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                           | TYes                                                            |                                                    |                                  | 12.                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                         |                                          |           |
| Includer Date/Time                                                                                                                                                                                                                                            | /ID/Analysis Matrix:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WI                                                                                        | 105                                                             |                                                    | <u></u> ,,,,                     |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                         |                                          |           |
| -includes bate/inne<br>Il containers needing<br>hecked?                                                                                                                                                                                                       | acid/base preservation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | have been                                                                                 | Yes                                                             | No                                                 |                                  | 13.                                    | HNO₃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ∏H₂SO₄                                                       | NaOH                                                                    |                                          | Пнсі      |
| Il containers needing                                                                                                                                                                                                                                         | preservation are found<br>ecommendation?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l to be in<br>>12 Cyanide)                                                                | □Yes                                                            | □No                                                |                                  | Sample #                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              |                                                                         |                                          |           |
| HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , HCl<2; N                                                                                                                                                                                                  | aon >9 Sunde, Naon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                           |                                                                 |                                                    |                                  | Initial when                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Lot #                                                        | of a <b>d</b> ded                                                       |                                          |           |
| $HNO_3$ , $H_2SO_4$ , $HCI<2$ ; N<br>xceptions (VOA), Collife                                                                                                                                                                                                 | orm, TOC, Oil and Grea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | se,                                                                                       | <u> </u>                                                        | <b>—</b>                                           | <b>D</b> • • • •                 | a a main la ta d                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                              | ivative;                                                                |                                          |           |
| HNO <sub>3</sub> , H <sub>2</sub> SO <sub>3</sub> , HCl<2; N<br>xceptions (VOA, Colife<br>iRO/B015 (Water) DOC                                                                                                                                                | aOH >9 Sunde, NaOH<br>prm, TOC, Oil and Grea<br>C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | se,                                                                                       | Yes                                                             |                                                    |                                  | completed:                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | prese                                                        |                                                                         |                                          |           |
| HNO3, H2SO3, HCI<2; N<br>xceptions (VOA, Colifo<br>RO/B015 (Water) DOC<br>leadspace in VOA Vial                                                                                                                                                               | s ( >6mm)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | se,                                                                                       | Yes                                                             |                                                    |                                  | completed:                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | prese                                                        |                                                                         |                                          |           |
| HNO3, H2SO3, HCI<2; N<br>xceptions (VO), Colifo<br>(RO/B015 (Water) DO(<br>leadspace in VOA Vial<br>rip Blank Present?                                                                                                                                        | IaOH >9 Suffice, NaOH<br>prm, TOC, Oil and Grea:<br>S ( >6mm)?<br>Is Present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | se,<br>                                                                                   | Yes<br>Yes<br>Yes                                               |                                                    | N/A<br>N/A<br>N/A                | completed:<br>14.<br>15.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | prese                                                        |                                                                         |                                          |           |
| HNO3, H2SO3, HCI<2; N<br>xcentions (VOA), Colifo<br>RO/B015 (Water) DO(<br>leadspace in VOA Vial.<br>rip Blank Present?<br>rip Blank Custody Sea<br>lace Trip Blank Lot # (i                                                                                  | Is Present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | se,<br>                                                                                   | Yes<br>Yes<br>Yes<br>Yes                                        |                                                    | N/A<br>N/A<br>N/A<br>N/A         | completed:<br>14.<br>15.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | prese                                                        |                                                                         |                                          |           |
| HNO3, H <sub>2</sub> SO <sub>2</sub> , HCl<2; N<br>exceptions (VOA, Colifo<br>RO/B015 (water) DOC<br>eadspace in VOA Vial<br>rip Blank Present?<br>rip Blank Custody Sea<br>Pace Trip Blank Lot # (i<br>CLIFNT NC                                             | Is Present?<br>f purchased): (2) [2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>6~0\</u><br>TION                                                                       | Ves<br>Ves<br>Ves<br>Ves                                        |                                                    | □ N/A<br>□ N/A<br>□ N/A<br>□ N/A | completed:<br>14.<br>15.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Field Data R                                                 | equired?                                                                | ]Yes [                                   | No        |
| HNO3, H2SO3, HCI<2; N<br>ixcentions (VOA, Colifo<br>RO/B015 (Water) DOC<br>ieadspace in VOA Vial<br>rip Blank Present?<br>rip Blank Custody Sea<br>Pace Trip Blank Lot # (i<br>CLIENT NC<br>Person Contacted:                                                 | In the solution of the solutio | se,<br><u>C ~ D \</u><br>TION                                                             | Yes<br>Yes<br>Ves                                               |                                                    | □ N/A<br>□ N/A<br>□ N/A<br>□ N/A | completed:<br>14.<br>15.<br>Date/Time  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Field Data R                                                 | equired?                                                                | ]Yes [                                   | No        |
| HNO3, H2SO4, HCI<2; N<br>exceptions/VOA, Colifo<br>RO/B015 (Water) DOC<br>leadspace in VOA Vial<br>rip Blank Present?<br>rip Blank Custody Sea<br>Pace Trip Blank Lot # (i<br>CLIENT NC<br>Person Contacted:<br>comments/Resolution                           | Is Present?<br>f purchased): (2) [2) 1<br>DTIFICATION/RESOLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | se,<br><u>(~ d )</u><br>TION                                                              | Ves<br>Ves<br>Ves<br>Ves                                        |                                                    | □ N/A<br>□ N/A<br>□ N/A          | completed:<br>14.<br>15.<br>Date/Time  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Field Data R                                                 | equired?                                                                | ]Yes [                                   | ]No       |
| HNO3, H <sub>2</sub> SO <sub>3</sub> , HCl<2; N<br>ixceptions (VOA, Colifo<br>RO/B015 (water) DOC<br>leadspace in VOA Vial<br>rip Blank Present?<br>rip Blank Custody Sea<br>ace Trip Blank Lot # (i<br>CLIENT NC<br>'erson Contacted:<br>.omments/Resolution | Is Present?<br>f purchased): <u>() [2] 1</u><br>DTIFICATION/RESOLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | se,<br><u>(-)</u><br>TION                                                                 | Ves<br>Ves<br>Ves<br>Ves                                        |                                                    | N/A<br>N/A<br>N/A                | completed:<br>14.<br>15.<br>Date/Time  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Field Data R                                                 | equired?                                                                | ]Yes [                                   | ]No       |
| HNO3, H2SO3, HCI<2; N<br>xcentions/VOA, Colife<br>RO/B015 (Water) DOC<br>leadspace in VOA Vial<br>rip Blank Present?<br>rip Blank Custody Sea<br>ace Trip Blank Lot # (i<br>CLIENT NC<br>erson Contacted:<br>comments/Resolution                              | In:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>     (</u>                                                                             | Ves<br>Ves<br>Ves<br>Ves                                        |                                                    |                                  | completed:<br>14.<br>15.<br>Date/Time  | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Field Data R                                                 | equired?                                                                | ]Yes [                                   | No        |

.

L

# Appendix E

Equipment / Instrument Manuals

# 

# 922 Airflow Meter

# **Users Manual**

PN 2683880 November 2006 Rev.1, 12/07

© 2006-2007 Fluke Corporation, All rights reserved. Printed in Taiwan. Product specifications are subject to change without notice. All product names are trademarks of their respective companies.

## LIMITED WARRANTY AND LIMITATION OF LIABILITY

This Fluke product will be free from defects in material and workmanship for two years from the date of purchase. This warranty does not cover fuses, disposable batteries, or damage from accident, neglect, misuse, alteration, contamination, or abnormal conditions of operation or handling. Resellers are not authorized to extend any other warranty on Fluke's behalf. To obtain service during the warranty period, contact your nearest Fluke authorized service center to obtain return authorization information, then send the product to that Service Center with a description of the problem.

THIS WARRANTY IS YOUR ONLY REMEDY. NO OTHER WARRANTIES, SUCH AS FITNESS FOR A PARTICULAR PURPOSE, ARE EXPRESSED OR IMPLIED. FLUKE IS NOT LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL OR CONSEQUEN-TIAL DAMAGES OR LOSSES, ARISING FROM ANY CAUSE OR THEORY. Since some states or countries do not allow the exclusion or limitation of an implied warranty or of incidental or consequential damages, this limitation of liability may not apply to you.

> Fluke Corporation P.O. Box 9090 Everett, WA 98206-9090 U.S.A.

Fluke Europe B.V. P.O. Box 1186 5602 BD Eindhoven The Netherlands

11/99

# **Table of Contents**

Title

#### Page

| Introduction                   | 1  |
|--------------------------------|----|
| Safety Information and Symbols | 2  |
| Contacting Fluke               | 4  |
| Pushbutton Functions           | 5  |
| Display                        | 7  |
| Using the Meter                | 9  |
| Power                          | 9  |
| Measurement Units              | 9  |
| Backlight                      | 9  |
| Automatic Power Off            | 9  |
| Temperature                    | 10 |
| Secondary Menu Modes           | 10 |
| Zero                           | 10 |
| Min Max Avg                    | 10 |
| Hold                           | 11 |
| Saving Samples                 | 11 |

## **922** Users Manual

| leasuring Differential Pressure12 | 2 |
|-----------------------------------|---|
| leasuring Velocity                | 4 |
| Velocity Measurement 14           | 4 |
| leasuring Flow                    | 6 |
| he Setup Menu1                    | 7 |
| Clearing Sample Data              | 8 |
| Recall                            | 9 |
| Naintenance1                      | 9 |
| Cleaning                          | 0 |
| Replacing the Batteries           | 0 |
| Specifications                    | 2 |
| Agency Approvals                  | 4 |
| Replacement Parts                 | 4 |
| Accessories and Optional Items    | 5 |

# List of Tables

| Table | e Title               | Page |
|-------|-----------------------|------|
| 1.    | International Symbols | 3    |
| 2.    | Pushbuttons           | 6    |
| 3.    | Display Description   | 8    |

# List of Figures

| Figur | e Title                           | Page |
|-------|-----------------------------------|------|
| 1.    | 922 Airflow Meter                 | 5    |
| 2.    | Display                           | 7    |
| 3.    | Differential Pressure Measurement | 13   |
| 4.    | Pitot Tube Connection             | 15   |
| 5.    | Replacing the Batteries.          | 21   |

# **922**

# Introduction

The Fluke 922 Airflow Meter ("the Meter") is a handheld instrument that measures differential pressure and calculates air velocity and air flow.

The Meter ships with the following items:

- Holster
- Carrying case
- Tubing and tubing strap
- Four AA Batteries (installed)
- Users Manual
- Wrist Strap

# Safety Information and Symbols

A  $\Delta$ Caution identifies conditions and actions that may damage the Meter. A  $\Delta$ Warning identifies conditions and actions that pose hazard(s) to the user.

# ▲ **Marning**

To avoid injury, or damage to the Meter, follow these safety guidelines:

- Read the entire Users Manual before using the Meter.
- Use the Meter only as described in the Users Manual or the protection provided by the meter may be impaired.
- Inspect the Meter before use. Do not use it if it appears damaged.
- The Meter contains no user-serviceable parts. Do not open the Meter. For service, the Meter must be sent to Fluke. See "Contacting Fluke".
- Have the Meter serviced only by qualified service personnel.
- Adhere to local and national safety codes. Individual protective equipment must be used to prevent injury.

# ▲ Caution

To avoid possible damage to the Meter, avoid using the Meter in an excessively dirty or dusty atmosphere. Excessive particle intake can damage the Meter.

International symbols used on the Meter and in the manual are explained in Table 1.

| Symbol | Description                                             | Symbol             | Description                                                                                                           |
|--------|---------------------------------------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------|
| ⚠      | Risk of danger. Important information. Refer to manual. |                    | Recycling information                                                                                                 |
| ÷      | Battery                                                 | <b>C</b><br>N10140 | Conforms to Australian standards                                                                                      |
| CE     | Conforms to EU directives                               | <b>阿</b>           | Do not dispose of this product as unsorted<br>municipal waste. Contact Fluke or a<br>qualified recycler for disposal. |

#### Table 1. International Symbols

## **922** Users Manual

## **Contacting Fluke**

To contact Fluke, use one of the following telephone numbers: USA: 1-888-99-FLUKE (1-888-993-5853) Canada: 1-800-36-FLUKE (1-800-363-5853) Europe: +31 402-675-200 Japan: +81-3-3434-0181 Singapore: +65-738-5655 Anywhere in the world: +1-425-446-5500 Or visit Fluke's Web site at: www.fluke.com. Register the Meter at: http://register.fluke.com

## **Pushbutton Functions**

Figure 1 and Table 2 explain the Meter's pushbuttons.



Figure 1. 922 Airflow Meter

## Table 2. Pushbuttons

| Pushbutton | Function                                                                                                 |
|------------|----------------------------------------------------------------------------------------------------------|
| 1          | Power button. Press to turn the Meter on or off. Hold for 5 seconds to display Meter's firmware version. |
| 2          | Activates velocity mode. See "Measuring Velocity".                                                       |
| 3          | Turns the backlight on and off.                                                                          |
| 4          | Activates flow mode. See "Measuring Flow".                                                               |
| 5          | Calculates average of stored values.                                                                     |
| 6          | Activates live Min Max Avg functions. See "Min Max Avg".                                                 |
| 7          | Used to increase manual inputs, scroll through memory, and to navigate the Setup menu.                   |
| 8          | Press and hold 2 seconds to zero out the display before taking readings.                                 |
| 9          | Used to decrease manual inputs, scroll through memory, and to navigate the Setup menu.                   |
| (10)       | Press to enter the Setup menu. See "The Setup Menu".                                                     |
| (11)       | Used to access secondary features listed in yellow on the Meter.                                         |
| (12)       | Used to store data and accept changes to the setup menu and flow parameters.                             |
| 13         | Holds the present reading.                                                                               |
| (14)       | Activates pressure mode. See "Measuring Differential Pressure".                                          |

## Display

Figure 2 and Table 3 describe the display.



Figure 2. Display
### Table 3. Display Description

| 1              | Shift key is in use and secondary menu functionality is engaged                          |
|----------------|------------------------------------------------------------------------------------------|
| 2              | Hold is engaged                                                                          |
| 3              | Annunciators showing that sample memory is being accessed and the number of samples      |
| 4              | Indicates that a stored sample (or all samples) is about to be deleted from memory       |
| 5              | Units of pressure, velocity, and flow                                                    |
| 6              | Units of length and temperature                                                          |
| $\overline{O}$ | Digits for temperature and setup parameters                                              |
| 8              | Duct shape choices                                                                       |
| 9              | Low battery indicator. Replace the battery as soon as the low battery indicator appears. |
| (10)           | Digits for main measurements of pressure, velocity, and flow                             |
| (11)           | Min Max and Hold indicators                                                              |
| (12)           | Pressure, Velocity, or Flow modes are active                                             |

### Using the Meter

#### Power

To turn Meter power on or off, press (). Meter power is provided by four AA batteries. To replace the batteries, see "Maintenance".

#### **Measurement Units**

The Meter supports both Metric and US measurement units. Select the desired measurement type using the Setup menu. See "The Setup Menu".

Note

If any measured value of any parameter is above the specified range, the Meter shows "OL".

#### **Backlight**

Press (i) to turn on the backlight. The backlight automatically turns off after 2 minutes.

#### Automatic Power Off

To conserve battery power, the Meter changes to sleep mode after 20 minutes of inactivity. To turn the Meter back on, press (). To disable automatic power off, turn the meter on while simultaneously holding () and () until the display shows **APO OFF**. Repeat this procedure to re-enable this feature. The display shows **APO ON**.

#### **922** Users Manual

#### **Temperature**

Ambient temperature is displayed on the Meter as a reference. The temperature can be displayed in either °C or °F. See "The Setup Menu".

#### Secondary Menu Modes

Use with other select pushbuttons to shift to secondary menu modes and functions:

- Press and then HOLD to access the Clear functions. See "Clearing Sample Data".
- Press and then 🚟 to access the Recall menu. See "Recall".
- Press and then we to access the Clear All function. See "Clearing Sample Data".

#### Zero

To zero differential pressure, velocity or flow, have both pressure ports open to ambient conditions, then, press and hold effor 2 seconds. Upon zeroing, the meter beeps.

#### Min Max Avg

The Min Max mode stores live minimum (MIN) and maximum (MAX) input values. When the input drops below the stored minimum value or above the stored maximum value, the Meter beeps and stores the new value. Min Max mode also calculates an average (AVG) of all readings taken since the mode was activated. This mode can be used to capture

intermittent readings, record maximum and minimum readings while you are away or when you cannot watch the Meter.

To use Min Max mode, press  $\boxed{MX}$ . The maximum reading appears first. Each subsequent press of  $\boxed{MX}$  steps through the minimum, average, and live readings, and back to the maximum reading.

To exit Min Max mode, press [MMX] for approximately two seconds. When in Min Max mode, the Auto-off feature is automatically disabled.

#### Hold

Pressing [HOLD] captures the current reading and holds it on the display. If [HOLD] is pressed while in Min Max mode, the reading is held on the display and Min Max mode continues to store minimum and maximum values.

### **Saving Samples**

The Meter saves various samples in its three major modes. To save a sample, do the following:

- 1. When taking a sample, press I to store the sample. The Meter can save up to 99 samples in each of its three modes.
- 2. Once the samples are taken, press [AVERAGE] to view the average of all the samples.

#### **922** Users Manual

Press [AREA: PRESSURE], [PRESSURE], [VELOCITY] or [PROME] to exit calculate mode. If the memory is full (99 samples have been stored), more samples cannot be stored. If the user attempts to store another sample, the Meter flashes "Full" and does not save new readings.

### Measuring Differential Pressure

To measure differential pressure, do the following, see Figure 3:

- 1. Press **PRESSURE** to enter the pressure mode.
- 2. Connect a single hose to the "Input (+)" port, leaving the "Ref (-)" port unconnected.
- 3. With the tubing open to ambient conditions press and hold model for 2 seconds.
- 4. Place the input hose in a different zone than the Meter.
- 5. The Meter displays the differential pressure of the input zone with respect to the reference zone. For instance, a positive reading means that the input zone is positively pressured with respect to the Meter location or its reference zone.

#### Airflow Meter Measuring Differential Pressure



Figure 3. Differential Pressure Measurement

eog05.eps

### Measuring Velocity

The Meter uses standard ambient conditions (temperature =21.1 °C/70 °F, barometric pressure = 14.7 psia / 1013 mbar), to approximate actual velocity and flow.

#### Velocity Measurement

To measure velocity, do the following:

- 1. Press VELOCITY to enter Velocity mode.
- Connect the hoses to the pitot tube and to the Meter. The "Input (+)" pressure port on the Meter connects to the yellow hose from the total pressure connection of the pitot tube. The "Ref (-)" pressure port on the Meter connects to the black hose from the static pressure connection of the pitot tube. See Figure 4.

Note

If Measure Velocity measures negative on the display, check to make sure that the hoses are attached to the correct ports on the Meter and the pitot tube.

3. With the pitot tube open to ambient conditions press and hold *m* for 2 seconds.

Airflow Meter Measuring Velocity



Figure 4. Pitot Tube Connection

### **Measuring Flow**

- 1. Press FLOW VOLUME.
- 2. The Meter requests the duct shape and size. The Meter stores the last duct shape and size that is entered. If the duct is different than the stored version, press ▼ or ▲ to find the proper duct type for the measurement (rectangular or round).
- 3. Press to select the duct type.
- 4. If the duct is rectangular, use ▼ and ▲ to select the X dimension and press I to store it. Use ▼ and ▲ to select the Y dimension. Hold ▼ or ▲ to increase the rate of change. Press I to store it.
- 5. If the duct is round, use 💌 and 🔺 to select the duct diameter and press 🚟 to store it.
- 6. To measure flow, refer to Steps 2 3 in "Measuring Velocity".

Note

If Measure Velocity measures negative on the display, check to make sure that the hoses are attached to the correct ports on the Meter and the pitot tube.

#### Notes

HOLD, SAVE, CALCULATE, SHIFT, MIN MAX, ZERO, and SETUP UNITS can be used when measuring pressure, velocity and flow.

If **FRESSURE** or **VELOCITY** is pressed before pressing **FRESSURE** or **VELOCITY** is pressed before pressing **FRESSURE** or the final time, the Meter will escape the flow setup process and will not save any of the selections made or values entered.

### The Setup Menu

Use the Setup menu to change the following Meter parameters:

- Pressure units
- Velocity units
- Flow (Volume) units
- Temperature units
- Duct dimension units

To modify the Meter setup parameters:

- 1. From any screen, press I to enter Setup menu editing mode.
- 2. Use ▼ and ▲ to change the measurement units. Hold down ▼ or ▲ to increase the rate of change.

3. Press 🚟 to store the change. The Meter beeps to signal that the change has been stored. With each press of 🚟, the menu moves to the next parameter. To exit the Setup menu without changing subsequent parameters, press PRESSURE, VELOCITY, or COME.

### **Clearing Sample Data**

The Meter stores data that periodically will need to be cleared. Individual samples or the entire data memory can be cleared. When the memory is full (99 samples), it shows "Full" on the display when 🚟 is pressed and the Meter emits short beeps and will not save any value unless some samples are cleared.

To clear individual sample data, do the following:

- 1. Press either  $\ensuremath{\texttt{PRESSURE}}\xspace, \ensuremath{\texttt{VELOCITY}}\xspace, or \ensuremath{\texttt{volume}}\xspace$  to clear samples for that mode.
- 2. Press
- 3. Press HOLD (CLEAR).
- 4. Use **▼** and **▲** to select the desired sample number. The last measurement saved appears first.
- 5. Press I to clear the sample. Note that the number of samples displayed is reduced.

To clear all sample data, do the following:

- 1. Press
- 2. Press AVERAGE (CLEAR ALL).

- 3. Press ME to clear all samples. The Meter beeps and the display shows 0 samples.

### Recall

- 1. Press either PRESSURE, VELOCITY, or VOLUME to recall samples for that mode.
- 2. Press
- 3. Press ﷺ (RECALL) to recall samples. Use ▼ and ▲ to locate the desired sample. Hold ▲ or ▼ to increase the rate of change.
- 4. Press PRESSURE, VELOCITY, or VOLUME to exit the Recall menu.

#### Maintenance

This section provides basic maintenance information, including battery replacement instructions.

### **∆**Caution

Do not attempt to repair or service the Meter unless qualified to do so and have the relevant calibration, performance test, and service information.

#### Cleaning

Clean only with soap and water. Remove any residue afterwards.

Periodically wipe the case with a damp cloth and mild detergent.

Do not use abrasives or solvents.

### **Replacing the Batteries**

When the low battery symbol appears ( **±**) the meter will not save samples and "bAtt" appears on the display when **s** is pressed.

The Meter uses four AA batteries (supplied). To replace the batteries, do the following (see Figure 5):

- 1. Turn off the Meter.
- 2. Remove the holster.
- 3. Place the Meter face down on a nonabrasive surface and loosen the battery door screw with a Phillips screwdriver.
- 4. Lift the battery access door away from the Meter.
- 5. Replace the batteries as shown in Figure 5. Observe the battery polarity shown in the battery compartment.
- 6. Secure the battery access door back in position with the screw.
- 7. Reinstall the Holster.

Airflow Meter Maintenance



Figure 5. Replacing the Batteries

### **Specifications**

| Parameter                          | Range                         | Accuracy                             | Resolution                | Units Displayed     |  |  |  |  |  |  |  |
|------------------------------------|-------------------------------|--------------------------------------|---------------------------|---------------------|--|--|--|--|--|--|--|
| Air Pressure                       | ± 4000 Pascal                 | ±1% + 1 Pascal                       | 1 Pascal                  | Ра                  |  |  |  |  |  |  |  |
|                                    | $\pm$ 16 in H <sub>2</sub> O  | $\pm 1\% + 0.01$ in H <sub>2</sub> 0 | 0.001 in H <sub>2</sub> 0 | in H₂O              |  |  |  |  |  |  |  |
|                                    | $\pm$ 400 mm H <sub>2</sub> 0 | $\pm 1\% + 0.1 \text{ mm H}_20$      | 0.1 mm H <sub>2</sub> 0   | mm H <sub>2</sub> 0 |  |  |  |  |  |  |  |
|                                    | ± 40 mbar                     | ±1% + 0.01 mbar                      | 0.01 mbar                 | mb                  |  |  |  |  |  |  |  |
|                                    | ± 0.6 PSI                     | ±1% + 0.0001 PSI                     | 0.0001 PSI                | PSI                 |  |  |  |  |  |  |  |
| Air Velocity                       | 250-16,000 fpm                | ±2.5% of reading at                  | 1 fpm                     | fpm                 |  |  |  |  |  |  |  |
|                                    | 1-80 m/s                      | 2000 fpm<br>(10.00 m/s)              | 0.001 m/s                 | m/s                 |  |  |  |  |  |  |  |
| Air Flow                           | 0-99,999 cfm                  | accuracy is function of              | 1 cfm                     | cfm                 |  |  |  |  |  |  |  |
| (Volume)                           | 0-99,999 m³/hr                | velocity and duct size               | 1 m³/hr                   | m³/hr               |  |  |  |  |  |  |  |
|                                    | 0-99,999 l/s                  |                                      | 1 l/s                     | l/s                 |  |  |  |  |  |  |  |
| Temperature                        | 0 to 50 °C                    | ±1 % + 2 °C                          | 0.1 °C                    | °C                  |  |  |  |  |  |  |  |
| 32 to 122 °F ±1 % + 4 °F 0.1 °F °F |                               |                                      |                           |                     |  |  |  |  |  |  |  |
| Use of Zero funct                  | ion is required to achie      | ve these specifications.             |                           |                     |  |  |  |  |  |  |  |

#### **Airflow Meter**

Specifications

| Environme                                      | ntal                                                      |
|------------------------------------------------|-----------------------------------------------------------|
| Operating Temperature                          | 0 °C to +50 °C                                            |
| Storage Temperature                            | -40 °C to +60 °C                                          |
| Temperature Coefficient                        | 0.025 X (specified accuracy) / °C<br>(< 18 °C or > 28 °C) |
| Relative Humidity:                             |                                                           |
| Non condensing (< 10 °C)                       |                                                           |
| 90 % RH (10 °C to 30 °C)                       |                                                           |
| 75 % RH (30 °C to 40 °C)                       |                                                           |
| 45 % RH (40 °C to 50 °C)(Without Condensation) |                                                           |
| IP Rating                                      | IP40                                                      |
| Operating Altitude                             | 2000 m                                                    |
| Storage Altitude                               | 12000 m                                                   |
| EMI, RFI, EMC                                  | Meets requirements for EN61326-1                          |
| Vibration                                      | MIL-PREF-28800F, Class 3                                  |
| Maximum Pressure at each Port                  | 10 PSI                                                    |

### Agency Approvals

**CE** Conforms to EU directives



Conforms to Australian standards

### **Replacement Parts**

| Replacement Part                                    | Part Number |
|-----------------------------------------------------|-------------|
| Battery 1.5 V Alkaline Size AA (4) NEDA 15A, IECLR6 | 650181      |
| Holster                                             | 2729807     |
| Wrist Strap                                         | 2729793     |
| Hoses, 1 black and 1 yellow w/test lead strap       | 2766087     |
| Battery Door                                        | 2729818     |
| Battery Door Screw                                  | 2729829     |
| Hard Carrying Case                                  | 2774694     |
| Users Manual                                        | 2683880     |
| Users Manual on CD                                  | 2766430     |

### **Accessories and Optional Items**

| Description                                                                                                                                                                                                  | Item or Part Number |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Toolpak Meter Hanging Kit<br>Includes: Magnetic Strip, 2 Straps (9 inch and 12 inch), 2 Latch Tabs                                                                                                           | TPak                |
| Fluke 922 Kit<br>Includes: Fluke 922 Airflow Meter, 12 inch pitot tube, TPak Magnetic Strip,<br>TPak Strap, 9 inches, TPak Latch Tab, Four AA Batteries 1.5 V Alkaline,<br>Users Manual, Large Carrying Case | Fluke 922-Kit       |



# Series 477A Handheld Digital Manometer

### **Specifications - Installation and Operation Instructions**



**Series 477A Digital Manometers** are versatile, hand-held, battery operated manometers available in several basic ranges from 0-20 in. w.c. up to 100 psi. All models measure either positive, negative or differential pressures with ±0.10% of full scale accuracy. You can select from up to seven common English and metric pressure units so conversions are not necessary. A memory function allows storage of up to 40 readings for later recall and a backlight provides auxiliary lighting for hard-to-see locations. Also standard are a hold feature plus both visual and audible overpressure alarms.

### **SPECIFICATIONS**

Service: Air and compatible gases. Wetted Parts: Consult factory. Accuracy: ±0.10% of full scale from 60 to 78°F (15.6 to 25.6°C); ±1% of full scale from 32 to 60 and 78 to 104°F (0 to 15 .6 and 25.6 to 40°C). Pressure Hysteresis: ±0.1% of full scale. Pressure Limits: See chart. Temperature Limits: 32 to 104°F (0 to 40°C). Storage Temperature Limits: -4 to 176°F (-20 to 80°C). Display: 4-digit LCD (.425° H x .234° W digits). Resolution: See chart. Power Requirements: 9 volt alkaline battery. Battery included but not connected. Weight: 10.2 oz. (289 g).

**Connections:** Two barbed connections for use with  $1/8^{\circ}$  (3.18 mm) or  $3/16^{\circ}$  (4.76 mm) I.D. tubing for 477A-1, 477A-2, 477A-3, 477A-4 and 477A-5 only. Two compression fittings for use with  $1/8^{\circ}$  (3.18 mm) I.D. x  $1/4^{\circ}$  (6.35 mm) O.D. tubing for 477A-6 and 477A-7 only.

| Model<br>Number | English<br>Range        | Metric<br>Range              |  |  |  |  |  |  |  |  |  |  |
|-----------------|-------------------------|------------------------------|--|--|--|--|--|--|--|--|--|--|
| 477A-1          | 0-20.00 in. w.c.        | 0-4.982 kPa                  |  |  |  |  |  |  |  |  |  |  |
| 477A-2          | 0-40.00 in. w.c.        | 0-40.00 in. w.c. 0-9.96 kPa  |  |  |  |  |  |  |  |  |  |  |
| 477A-3          | 0-200.0 in. w.c.        | 0-200.0 in. w.c. 0-49.82 kPa |  |  |  |  |  |  |  |  |  |  |
| 477A-4          | 0-10.00 psi             | 0-68.95 kPa                  |  |  |  |  |  |  |  |  |  |  |
| 477A-5          | 0-30.00 psi 0-206.9 kPa |                              |  |  |  |  |  |  |  |  |  |  |
| 477A-6          | 0-50.00 psi 0-344.8 kPa |                              |  |  |  |  |  |  |  |  |  |  |
| 477A-7          | 0-100.0 psi 0-689.5 kPa |                              |  |  |  |  |  |  |  |  |  |  |
| Maximum         | Pressure                | Pressure                     |  |  |  |  |  |  |  |  |  |  |
| 477A-1          | 3 psi (0.:              | 21 bar)                      |  |  |  |  |  |  |  |  |  |  |
| 477A-2          | 3 psi (0.21 bar)        |                              |  |  |  |  |  |  |  |  |  |  |
| 477A-3          | 15 psi (1.03 bar)       |                              |  |  |  |  |  |  |  |  |  |  |
| 477A-4          | 30 psi (2               | 30 psi (2.07 bar)            |  |  |  |  |  |  |  |  |  |  |
| 477A-5          | 60 psi (4               | .13 bar)                     |  |  |  |  |  |  |  |  |  |  |
| 477A-6          | 100 psi (6.89 bar)      |                              |  |  |  |  |  |  |  |  |  |  |
| 477A-7          | 200 psi (               | (13.78 bar)                  |  |  |  |  |  |  |  |  |  |  |

### **Available Pressure Units:**

477A-1 & 477A-2: psi, in. w.c., mm w.c., in. Hg, mm Hg, Pa, kPa, bar, mbar

477A-3 & 477A-4: psi, in. w.c., mm w.c., in. Hg, mm Hg, kPa, bar, mbar

477A-5, 477A-6 & 477A-7: psi, in. w.c., in. Hg, mm Hg, kPa, bar, mbar

| DWYER INSTRUMENTS, INC.                             | Phone: 219/879-8000 | www.dwyer-inst.com          |
|-----------------------------------------------------|---------------------|-----------------------------|
| P.O. BOX 373 • MICHIGAN CITY, INDIANA 46361, U.S.A. | Fax: 219/872-9057   | e-mail: info@dwyer-inst.com |

### **INSTRUCTIONS**

## **Battery Installation**

The unit is shipped with a separate 9 volt alkaline battery which must be installed before operation. Remove the two screws holding the bottom endcap in place and remove the endcap. Connect the battery to the enclosed battery clip observing correct polarity. Be careful not to trap wires between the battery, case or foam pads which retain the battery. This could make it difficult to install the battery or remove it later for replacement. Be sure the rubber gasket is properly seated in the gasket channel of the endcap and replace end-cap. Note that the endcap will only fit one way because the holes are slightly off-center. Place the "Z" shaped wrist strap clip in one of the screw recesses and replace the screws. Do not overtighten the screws. Attach wrist strap to clip.

When battery replacement becomes necessary, use only a 9 volt alkaline type such as a Duracell<sup>®</sup> MN1604, Eveready<sup>®</sup> 522 or equivalent. Zinc-carbon types, often labeled Heavyduty are not recommended because of the increased potential for leakage. Alkaline batteries are also a better value because they last up to three times longer in this device.

### **On-Off Operation**

The on-off control is a toggle function. Press and release the ON/OFF key once to turn unit on; again to turn it off. If the manometer is left on with no activity for approximately 20 minutes, unit will turn itself off to conserve the battery.

# **Display Backlight**

The Model 477A includes a display backlight to allow use in the dark or in poor lighting conditions. Manometer must be switched off before this feature can be activated. Next, press and hold the ON/OFF key down. After about 1 second the backlight will come on and remain lighted for approximately 2 minutes after which it will turn itself off to conserve battery life.

# **Zeroing Pressure Reading**

Potential inaccuracy due to temperature effects can be minimized by re-zeroing immediately before use. To zero the display, vent both ports to atmosphere so no pressure is applied to either port. Press the ZERO/STORE key and - - - - will be momentarily displayed as zeroing occurs. Zeroing is not possible when the memory mode is in use. It must be done before selecting that function.

If the unit is accidently zeroed with pressure applied to one of the ports, the pressure reading might display incorrectly. To correct, vent the pressure ports to atmosphere and press the ZERO/STORE key to zero the unit.

### **Pressure Connections**

To measure single positive pressure, connect tubing to port marked + and vent opposite port to atmosphere. To measure differential positive pressure, connect higher positive pressure to port marked + and lower positive pressure to port marked -. Manometer will indicate the difference between the two.

### **Selecting Pressure Units**

Up to seven pressure units are available. The display will indicate the current selection. To change to different units, use the UNITS/LOC key. Each touch will cause an advance to the next choice. The selected units will remain in memory even when power is shut off. This way, your preference will always be displayed after the initial selection.

# **Display Hold**

There may be situations where you want to temporarily retain a reading. The Model 477A includes a Display Hold feature which freezes the current reading and holds it in the display until cleared. To activate this operation, momentarily press the HOLD/MEMORY key when the pressure you want to save is displayed. A HOLD indicator will appear in the display to indicate that the reading shown is frozen. To return to normal operation, press the HOLD/MEMORY key again. The HOLD indicator will disappear and the current pressure will again be shown.

# **Memory Function**

A memory function is included in the Model 477A that allows you to store up to 40 pressure readings for later review or recording. This feature is especially valuable for making a traverse of duct velocity pressures with a Pitot tube or for multipoint pressure measurements. The readings are stored in non-volatile memory so they will be retained even if the unit is shut off or the battery is removed.

### **Storing Pressure Readings**

To store a reading, press and hold the HOLD/MEMORY until ST01 is displayed then release the key. Next, press ZERO/STORE key to save current reading to ST01 memory location. A beep will sound indicating that the reading has been saved. As each reading is saved, the memory location display will advance to the next number. To resume pressure measurement, press the HOLD/MEMORY key again. Note that in the memory mode, the display zero function is not available. To zero the display, you must first exit the memory mode and then press the ZERO/STORE key.

### Viewing Stored Readings - Selecting a Location

To view the contents of memory, press and hold the HOLD/MEMORY until RD01 is displayed then release the key. Next, press UNITS/LOC to view other memory location. To resume pressure measurement, press the HOLD/MEMORY key again.

# **Clearing Memory**

To clear the contents of memory, press and hold the HOLD/MEMORY until CLR is displayed then release the key. Next, press ZERO/STORE key to clear all previously stored readings. During this operation - - - will be displayed. Once memory is cleared, the current pressure will be displayed.

# **Exiting Memory Mode**

To exit the memory mode press the HOLD/MEMORY key again and the unit will return to normal operation.

## **Dampening Function**

The dampening feature allows the user to enter a dampening number from 1 to 16 (default value = 2). Entering a larger number increases the amount of readings that are averaged for each display update.

In order to access the dampening feature, follow the instructions below:

1. Press and hold the HOLD/MEMORY button. The upper right portion of the LCD scrolls through a menu selection (HOLD, ST01, RD01, CLR, and DAMP). When "DAMP" is shown, release the HOLD/MEMORY button. This selects the dampening feature.

2. Once "DAMP" is selected, a number is shown in the upper right portion of the LCD, along with the current pressure reading. This number is the dampening number. Adjust the number up by pressing the ZERO/STORE button or down by pressing the UNITS/LOC button. The LCD update rate slows as the number increases from 1 to 16. Therefore, for best results, choose the smallest number that provides a stable pressure reading.

Once the pressure reading is stable, press and release the HOLD/MEMORY button to store the dampening value.

### **Overpressure Alarm**

A visual indicator and audible alarm are provided to alert the operator that pressure has exceeded the operating range of the unit. Exceeding the range will not damage it or affect calibration as long as the maximum rated pressure is not exceeded. Do not exceed the maximum rated pressure of the manometer. Doing so will cause permanent damage to the sensor, may rupture the housing and/or cause injury. The maximum pressure is shown on the rear label and on page 1 of these instructions.

### Low Battery Indicator

A weak battery can cause improper operation or inaccurate measurements. A low battery indicator is provided on the display to show when the battery needs replacement. Although the unit might appear to function and indicate properly, the accuracy of readings cannot be guaranteed when the LOW BAT indicator is illuminated. Replace the battery with a fresh one. Do not leave an exhausted battery in the unit due to potential leakage.

### MAINTENANCE

The Series 477A handheld digital manometers are not field repairable and should be returned if repair is needed (field repair should not be attempted and may void warranty). Be sure to include a brief description of the problem plus any relevant application notes. Contact customer service to receive a return goods authorization number before shipping.

Duracell<sup>®</sup> is a registered trademark of The Gillette Company Everready<sup>®</sup> is a registered trademark of The Everready Battery Company, Inc.

©Copyright 2009 Dwyer Instruments, Inc.

Printed in U.S.A. 7/09

FR# 02-443239-00 Rev. 3

DWYER INSTRUMENTS, INC. P.O. BOX 373 • MICHIGAN CITY, INDIANA 46361, U.S.A. Fax: 219/872-9057

Phone: 219/879-8000 www.dwyer-inst.com

e-mail: info@dwyer-inst.com

# **ROOTS<sup>™</sup> UNIVERSAL RAI<sup>®</sup>** Rotary Positive Displacement Blowers

# Specifications Frames 22 thru 718

### DESIGN AND CONSTRUCTION FEATURES

- Steel detachable mounting feet
- Rigid one-piece cast iron casing
- Anti-friction bearings
- Thrust control
- Splash oil lubricated spur timing gears
- Connections in standard pipe sizes
- Balanced, precision machined bi-lobe impellers
- Ground steel shafts

### Basic Blower Description

Universal RAI blowers are heavy duty blowers designed with detachable rugged steel mounting feet that permit easy in-field adaptability to either vertical or horizontal installation requirements.

Because of the detachable mounting feet, these units can be easily adapted to any of four drive shaft positions - right hand, left hand, bottom or top. The compact, sturdy design is engineered for continuous service when operated in accordance with speed and pressure ratings.

The basic model consists of a cast iron casing and cast iron involute impellers. Carburized and ground alloy steel spur timing gears are secured to the steel shafts with a taper mounting and locknut. Oversized antifriction bearings are used, with a cylindrical roller bearing at the drive shaft to withstand V-belt pull. The Universal RAI features thrust control, with splash oil lube on the gear end and grease lube on the drive end.

Available accessories include driver, relief valve, inlet and discharge silencers, inlet filter, check valve, extended base, v-belt or flexible coupling and drive guards.

### **Strongest Warranty in the Industry**

ROOTS<sup>™</sup> Universal RAI<sup>®</sup> blowers are warranted for two years plus an additional 6 months for shipping and construction where required. ROOTS synthetic oil is recommended for longer lubricant life.







Horizontal Drive End

Vertical Gear End

Horizontal Gear End



### **Bi-Lobe Operating Principle**

Two figure-eight lobe impellers mounted on parallel shafts rotate in opposite directions. As each impeller passes the blower inlet, it traps a finite volume of air and carries it around the case to the blower outlet, where the air is discharged. With constant speed operation, the displaced volume is essentially the same regardless of pressure,

temperature or barometric pressure. Timing gears control the relative position of the impellers to each other and maintain small but finite clearances. This allows operation without lubrication being required inside the lobe cavity.



| Frame | Speed | 1 F  | PSI  | 6 F  | PSI          | 7 6   | PSI  | 10   | PSI  | 12  | PSI  | 13   | PSI  | 14  | PSI  | 15  | PSI  | Maxir | num Va | cuum |
|-------|-------|------|------|------|--------------|-------|------|------|------|-----|------|------|------|-----|------|-----|------|-------|--------|------|
| Size  | RPM   | CFM  | BHP  | CFM  | BHP          | CFM   | BHP  | CFM  | BHP  | CFM | BHP  | CFM  | BHP  | CFM | BHP  | CFM | BHP  | "HGV  | CFM    | BHP  |
|       | 1160  | 10   | 0.1  |      |              |       |      |      |      |     |      |      |      |     |      |     |      | 4     | 6      | 0.2  |
| 22    | 3600  | 49   | 0.3  | 38   | 1.6          | 36    | 1.8  | 32   | 2.6  | 29  | 3.1  |      |      |     |      |     |      | 14    | 28     | 1.8  |
|       | 5275  | 76   | 0.5  | 64   | 2.4          | 63    | 2.7  | 59   | 3.8  | 56  | 4.6  |      |      |     |      |     |      | 15    | 53     | 2.8  |
|       | 1160  | 24   | 0.2  |      |              |       |      |      |      |     |      |      |      |     |      |     |      | 6     | 12     | 0.5  |
| 24    | 3600  | 102  | 0.6  | 83   | 3.1          | 81    | 3.6  |      |      |     |      |      |      |     |      |     |      | 14    | 69     | 3.5  |
|       | 5275  | 156  | 0.9  | 137  | 4.6          | 135   | 5.4  |      |      |     |      |      |      |     |      |     |      | 15    | 119    | 5.5  |
|       | 1160  | 40   | 0.2  | 21   | 1.4          | 19    | 1.6  |      |      |     |      |      |      |     |      |     |      | 10    | 18     | 1.1  |
| 32    | 2800  | 113  | 0.6  | 95   | 3.4          | 93    | 3.9  | 86   | 5.6  | 82  | 6.7  | 81   | 7.2  | 79  | 7.8  | 77  | 8.3  | 15    | 78     | 4.1  |
|       | 3600  | 149  | 0.9  | 131  | 4.4          | 129   | 5.2  | 122  | 7.3  | 118 | 8.7  | 117  | 9.4  | 115 | 10.1 | 113 | 10.8 | 16    | 110    | 5.3  |
|       | 1160  | 55   | 0.3  | 31   | 19           | 28    | 2.2  | 122  | 1.0  | 110 | 0.1  |      | 0.1  | 110 | 10.1 | 110 | 10.0 | 10    | 27     | 1.5  |
| 33    | 2800  | 156  | 0.0  | 132  | 4.6          | 120   | 5.4  | 120  | 77   | 116 | 9.2  |      |      |     |      |     |      | 1/    | 113    | 5.2  |
| 55    | 2000  | 205  | 1.0  | 101  | 6.1          | 170   | 7    | 170  | 0.0  | 165 | 11.0 |      |      |     |      |     |      | 15    | 150    | 7.2  |
|       | 1160  | 205  | 0.5  | 61   | 0.1          | 57    | 26   | 170  | 9.9  | 105 | 11.9 |      |      |     |      |     |      | 10    | 55     | 7.5  |
| 26    | 2000  | 90   | 1.5  | 00   | J.I          | 004   | 0.0  |      |      |     |      |      |      |     |      |     |      | 10    | 010    | 2.5  |
| 30    | 2800  | 262  | 1.5  | 229  | 10.1         | 224   | 8.9  |      |      |     |      |      |      |     |      |     |      | 12    | 213    | 10.1 |
|       | 3600  | 344  | 2.1  | 310  | 10.1         | 306   | 11.7 |      |      |     |      |      |      |     |      |     |      | 15    | 278    | 12.1 |
|       | 860   | 38   | 0.2  | 18   | 1.4          | 15    | 1.6  |      |      | 50  |      |      |      |     |      |     |      | 8     | 19     | 0.9  |
| 42    | 1760  | 92   | 0.5  | 72   | 2.8          | 69    | 3.3  | 62   | 4./  | 58  | 5.6  |      |      |     |      |     |      | 14    | 56     | 3.2  |
|       | 3600  | 204  | 1.4  | 183  | 6.1          | 181   | 7.1  | 173  | 9.9  | 169 | 11.8 | 167  | 12.8 | 165 | 13.7 | 163 | 14.7 | 16    | 160    | 7.7  |
|       | 860   | 79   | 0.5  | 42   | 2.7          | 37    | 3.2  |      |      |     |      |      |      |     |      |     |      | 8     | 46     | 1.8  |
| 45    | 1760  | 188  | 1    | 151  | 5.7          | 146   | 6.6  | 133  | 9.4  |     |      |      |      |     |      |     |      | 12    | 134    | 5.5  |
|       | 3600  | 410  | 2.7  | 374  | 12.2         | 369   | 14.1 | 356  | 19.8 |     |      |      |      |     |      |     |      | 16    | 332    | 15.4 |
|       | 860   | 105  | 0.6  | 59   | 3.6          | 53    | 4.2  |      |      |     |      |      |      |     |      |     |      | 8     | 63     | 2.4  |
| 47    | 1760  | 249  | 1.3  | 203  | 7.5          | 196   | 8.7  |      |      |     |      |      |      |     |      |     |      | 12    | 181    | 7.3  |
|       | 3600  | 542  | 3.5  | 496  | 16.1         | 490   | 18.6 |      |      |     |      |      |      |     |      |     |      | 15    | 452    | 19.1 |
|       | 700   | 72   | 0.4  | 42   | 2.4          | 38    | 2.8  |      |      |     |      |      |      |     |      |     |      | 10    | 36     | 2    |
| 53    | 1760  | 211  | 1.2  | 181  | 6.3          | 177   | 7.3  | 167  | 10.3 | 160 | 12.3 | 157  | 13.3 | 155 | 14.4 |     |      | 14    | 158    | 7.1  |
|       | 2850  | 355  | 2.5  | 325  | 10.7         | 321   | 12.3 | 310  | 17.2 | 304 | 20.5 | 301  | 22.1 | 298 | 23.8 | 295 | 25.4 | 16    | 291    | 13.4 |
|       | 700   | 123  | 0.7  | 78   | 4.1          | 72    | 4.7  |      |      |     |      |      |      |     |      |     |      | 10    | 70     | 3.3  |
| 56    | 1760  | 358  | 2    | 312  | 10.5         | 306   | 12.2 | 290  | 17.3 | 280 | 20.6 | 276  | 22.3 |     |      |     |      | 14    | 276    | 11.8 |
|       | 2850  | 598  | 4    | 553  | 17.7         | 547   | 20.5 | 531  | 28.7 | 521 | 34.2 | 517  | 37   |     |      |     |      | 16    | 501    | 22.4 |
|       | 700   | 187  | 1    | 130  | 5.9          |       |      |      |      |     |      |      |      |     |      |     |      | 8     | 135    | 3.9  |
| 59    | 1760  | 529  | 2.9  | 472  | 15.3         | 464   | 17.8 |      |      |     |      |      |      |     |      |     |      | 12    | 445    | 14.9 |
|       | 2850  | 881  | 5.9  | 824  | 26           | 816   | 30   |      |      |     |      |      |      |     |      |     |      | 15    | 770    | 30.8 |
|       | 700   | 140  | 0.8  | 93   | 4.5          | 86    | 5.3  | 70   | 7.5  |     |      |      |      |     |      |     |      | 12    | 71     | 4.4  |
| 65    | 1760  | 400  | 2.4  | 353  | 11.9         | 347   | 13.8 | 330  | 19.4 | 320 | 23.2 | 316  | 25.1 | 311 | 27   | 307 | 28.9 | 16    | 300    | 15.2 |
|       | 2350  | 546  | 3.8  | 499  | 16.4         | 492   | 19   | 475  | 26.5 | 466 | 31.6 | 461  | 34.1 | 457 | 36.6 | 452 | 39.1 | 16    | 445    | 25.6 |
|       | 700   | 224  | 12   | 149  | 7.3          | 139   | 8.5  |      | 2010 |     | 0110 |      | 0    | 101 | 0010 | 102 | 0011 | 10    | 135    | 5.9  |
| 68    | 1760  | 643  | 3.7  | 567  | 18.9         | 557   | 21.9 | 530  | 31   | 515 | 37   | 507  | 40 1 | 500 | 43.1 |     |      | 15    | 495    | 22.7 |
|       | 2350  | 876  | 5.6  | 801  | 25.9         | 790   | 29.9 | 763  | 42.1 | 748 | 50.2 | 740  | 54.2 | 733 | 58.3 |     |      | 16    | 715    | 32.8 |
|       | 700   | 420  | 23   | 279  | 13.6         | 260   | 15.0 | 100  | 72.1 | 740 | 00.2 | 7 40 | 04.2 | 100 | 00.0 |     |      | 8     | 202    | 8.9  |
| 615   | 1760  | 1205 | 6.6  | 1062 | 24.0         | 1044  | 10.6 |      |      |     |      |      |      |     |      |     |      | 12    | 007    | 22.0 |
| 015   | 2250  | 1641 | 0.0  | 1500 | 34.9<br>47.6 | 1/044 | 40.0 |      |      |     |      |      |      |     |      |     |      | 14    | 1200   | 52.9 |
|       | 2300  | 1041 | 9.7  | 104  | 47.0         | 1401  | 20.Z | 105  | 10.0 |     |      |      |      |     |      |     |      | 14    | 1309   | 03.4 |
| 70    | 5/5   | 192  | 1.1  | 134  | 1.0          | 120   | 17.0 | 100  | 10.2 | 407 | 20.0 | 401  | 00.7 | 415 | 05.1 | 410 | 07.0 | 10    | 117    | 10.7 |
| 76    | 1400  | 527  | 3    | 468  | 15.4         | 460   | 17.8 | 439  | 25.3 | 427 | 30.2 | 421  | 32.7 | 415 | 35.1 | 410 | 37.6 | 10    | 413    | 19.7 |
|       | 2050  | 790  | 5.3  | /31  | 23.4         | 723   | 27   | 702  | 37.9 | 690 | 45.1 | 684  | 48.7 | 679 | 52.4 | 673 | 56   | 16    | 674    | 29.5 |
|       | 575   | 362  | 1.9  | 271  | 11.1         | 258   | 13   | 226  | 18.6 |     |      |      |      |     |      |     |      | 12    | 228    | 10.9 |
| 711   | 1400  | 970  | 5.2  | 880  | 27.7         | 867   | 32.2 | 835  | 45.7 |     |      |      |      |     |      |     |      | 15    | 793    | 33.5 |
|       | 2050  | 1450 | 8.8  | 1359 | 41.8         | 1347  | 48.4 | 1315 | 68.2 |     |      |      |      |     |      |     |      | 16    | 1256   | 53.1 |
|       | 575   | 600  | 3.1  | 470  | 18.1         |       |      |      |      |     |      |      |      |     |      |     |      | 10    | 446    | 14.8 |
| 718   | 1400  | 1590 | 8.1  | 1460 | 44.8         |       |      |      |      |     |      |      |      |     |      |     |      | 12    | 1398   | 43.6 |
|       | 2050  | 2370 | 13.3 | 2240 | 66.9         |       |      |      |      |     |      |      |      |     |      |     |      | 12    | 2178   | 64.7 |

### **URAI Blower Performance**

 Notes:
 1. Performance based on inlet air at standard pressure of 14.7 psia, standard temperature of 68° F, and specific gravity of 1.0.

 2. Vacuum ratings based on inlet air at standard temperature of 68°F, discharge pressure of 30" Hg and specific gravity of 1.0.

### **Outline Drawing and Dimensions**



Universal RAI® Blower Dimensions

| Frame |         |       |       | Drive | Shaft Loo | cation |      |       |       |       |                |       |       |             | iniet &        |      | Approx            |
|-------|---------|-------|-------|-------|-----------|--------|------|-------|-------|-------|----------------|-------|-------|-------------|----------------|------|-------------------|
| Size  | A       | В     | C     | D     | D1        | D2     | N    | 0     | 01    | Р     | P <sup>1</sup> | R     | U     | Keyway      | Disch.<br>Dia. | AX   | Net Wt.<br>(lbs.) |
| 22    | 5.13    | 5.00  | 9.75  | 3.75  | 6.25      | 3.75   | 2.50 | 9.63  | 6.88  | 6.25  | 9.25           | 5.00  | .625  | .188 x .094 | 1.0 NPT        | 1.25 | 32                |
| 24    | 5.13    | 7.00  | 11.75 | 3.75  | 6.25      | 3.75   | 2.50 | 9.63  | 6.88  | 6.25  | 9.25           | 5.00  | .625  | .188 x .094 | 2.0 NPT        | 1.25 | 43                |
| 32    | 7.25    | 6.75  | 11.25 | 5.00  | 8.50      | 5.00   | 2.44 | 12.81 | 8.88  | 7.75  | 12.13          | 6.75  | .750  | .188 x .094 | 1.25 NPT       | 1.75 | 69                |
| 33    | 7.25    | 7.63  | 12.13 | 5.00  | 8.50      | 5.00   | 2.44 | 12.81 | 8.88  | 7.75  | 12.13          | 6.75  | .750  | .188 x .094 | 2.0 NPT        | 1.75 | 74                |
| 36    | 7.25    | 10.00 | 14.63 | 5.00  | 8.50      | 5.00   | 2.56 | 12.81 | 8.88  | 7.75  | 12.13          | 6.75  | .750  | .188 x .094 | 2.5 NPT        | 1.75 | 102               |
| 42    | 8.00    | 7.25  | 13.00 | 6.25  | 10.25     | 6.25   | 3.18 | 15.06 | 10.63 | 8.75  | 13.63          | 8.25  | .875  | .188 x .094 | 1.5 NPT        | 2.00 | 88                |
| 45    | 8.00    | 10.00 | 15.50 | 6.25  | 10.25     | 6.25   | 2.94 | 15.06 | 10.63 | 8.75  | 13.63          | 8.25  | .875  | .188 x .094 | 2.5 NPT        | 2.00 | 109               |
| 47    | 8.00    | 11.75 | 17.63 | 6.25  | 10.25     | 6.25   | 3.31 | 15.06 | 10.50 | 8.50  | 13.63          | 8.25  | .875  | .188 x .094 | 3.0 NPT        | 2.00 | 128               |
| 53    | 10.50   | 8.38  | 15.38 | 6.25  | 11.25     | 6.75   | 3.68 | 17.38 | 11.88 | 10.25 | 17.25          | 8.75  | 1.125 | .250 x .125 | 2.5 NPT        | 2.50 | 143               |
| 56    | 10.50   | 11.00 | 18.00 | 6.25  | 11.25     | 6.75   | 3.38 | 17.38 | 12.25 | 11.00 | 17.25          | 8.75  | 1.125 | .250 x .125 | 4.0 NPT        | 2.50 | 170               |
| 59    | 10.50   | 14.00 | 21.18 | 6.25  | 11.25     | 6.75   | 3.88 | 17.38 | 12.25 | 11.00 | 17.25          | 8.75  | 1.125 | .250 x .125 | 4.0 NPT        | 2.50 | 204               |
| 65    | 11.00*  | 10.00 | 18.38 | 8.75  | 14.75     | 8.75   | 3.56 | 21.63 | 15.13 | 12.75 | 19.75          | 11.75 | 1.375 | .312 x .156 | 3.0 NPT        | 3.00 | 245               |
| 68    | 11.00*  | 13.00 | 21.38 | 8.75  | 14.75     | 8.75   | 3.69 | 21.63 | 15.13 | 12.75 | 19.75          | 11.75 | 1.375 | .312 x .156 | 5.0 NPT        | 3.00 | 285               |
| 615   | 11.00*  | 20.00 | 28.38 | 8.75  | 14.75     | 8.75   | 3.69 | 21.63 | 16.25 | 15.00 | 19.75          | 11.75 | 1.375 | .312 x .156 | 6.0 FLG        | 3.00 | 425               |
| 76    | 14.00** | 11.75 | 19.94 | 11.00 | 18.00     | 11     | 4.06 | 26.13 | 20.69 | 19.38 | 23.25          | 14.50 | 1.562 | .375 x .188 | 4.0 NPT        | 3.50 | 400               |
| 711   | 14.00** | 16.75 | 25.19 | 11.00 | 18.00     | 11     | 4.31 | 26.13 | 19.50 | 17.00 | 23.25          | 14.50 | 1.562 | .375 x .188 | 6.0 FLG        | 3.50 | 530               |
| 718   | 14.00** | 23.75 | 32.19 | 11.00 | 18.00     | 11     | 4.31 | 26.13 | 19.50 | 17.00 | 23.25          | 14.50 | 1.562 | .375 x .188 | 8.0 FLG        | 3.50 | 650               |

\*17.00 in horizontal configuration

\*\*21.00 in horizontal configuration

#### **Dresser Roots**

Houston, Texas Headquarters • U.S. Toll Free Phone: 1 877-363-ROOT(S) (7668) • Direct Phone: +1 832-590-2600 Connersville, Indiana Operations • Direct Phone: +1 765-827-9200 European Operations • Phone: +44 (0) 1695 52600 • Email: roots.europe@dresser.com USA/Canada Sales • Phone: +1 773-444-3360 Houston, Texas Factory Service • Phone: +1 713-896-4810 Mexico City Sales and Factory Service • Phone: +52 55 5889 5811 Dubai Sales and Factory Service • Phone: +971 4-8855481 Malaysia Sales • Phone: +60 3 2267 2600 China Sales • Phone: +86 10 8486 2440 Shanghai Factory Service • Phone: +86 21 5858 7638

©2010 Dresser, Inc. all rights reserved. • Printed in the U.S.A. • All information subject to change without notice. • Universal RAI is a registered trademark of Dresser, Inc. ROOTS is a trademark of Dresser, Inc.



# Appendix F

Field / Sampling Data Sheets

| Date       | Run # | SVE-1<br>approx<br>% | SVE-2<br>approx<br>% | Time        | Vacuum -<br>Pre-<br>manifold<br>(SV-1)<br>(in H2O) | Vacuum -<br>Pre-<br>manifold<br>(SV-2)<br>(in H2O) | Total<br>Vacuum<br>Post-<br>Moisture<br>Separator<br>(in H2O) | SV-1<br>Velocity<br>FPM | SV-1<br>Airflow<br>(SFM) | SV-2<br>Velocity<br>FPM | SV-2<br>Airflow<br>(SFM) | Stack<br>Temp (F) | PID<br>Reading<br>Effluent<br>(ppm) | TO-15<br>Sample<br>Collected | Dilution<br>Air<br>approx<br>% | Notes                                             |
|------------|-------|----------------------|----------------------|-------------|----------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------|-------------------------|--------------------------|-------------------------|--------------------------|-------------------|-------------------------------------|------------------------------|--------------------------------|---------------------------------------------------|
| 11/16/2015 |       | 100                  | 100                  | 12:21:00 PM | NA*                                                | NA*                                                | -19                                                           | NA*                     | NA*                      | NA*                     | NA*                      | NA*               | 906                                 |                              | 0                              | NA*- H2K Installed Gauges not working<br>properly |
| 11/16/2015 |       | 100                  | 100                  | 12:52:00 PM | NA*                                                | NA*                                                | -25                                                           | NA*                     | NA*                      | NA*                     | NA*                      | NA*               | 1070                                | E-1                          | 0                              | NA*- H2K Installed Gauges not working<br>properly |
| 11/16/2015 |       | 100                  | 100                  | 1:45:00 PM  | -20.6                                              | -20.6                                              | -25                                                           | 700                     | 34                       | 1140                    | 55                       | 65                | 1010                                |                              | 0                              | Switched to hand measurements with fluke          |
| 11/16/2015 |       | 100                  | 100                  | 2:35:00 PM  | -22.8                                              | -22.5                                              | -22.5                                                         | 1100                    | 40                       | 1415                    | 69                       | 70                | 1025                                |                              | 0                              |                                                   |
| 11/16/2015 |       | 100                  | 100                  | 3:22:00 PM  | -31.1                                              | -32.2                                              | -29                                                           | 1200                    | 55                       | 1880                    | 75                       | 72                | 1126                                |                              | 0                              |                                                   |
| 11/16/2015 |       | 100                  | 100                  | 4:02:00 PM  | -31.9                                              | -31.9                                              | -30                                                           | 750                     | 51                       | 1065                    | 59                       | 70                | 1087                                |                              | 0                              |                                                   |
| 11/17/2015 |       | 100                  | 0                    | 8:53:00 AM  | -43.4                                              |                                                    | -40                                                           | 1300                    | 62                       |                         | -                        | 74                | 1100                                |                              | 0                              |                                                   |
| 11/17/2015 | Ī     | 100                  | 0                    | 9:54:00 AM  | -50.5                                              |                                                    | -41                                                           | 1132                    | 57                       |                         |                          | 76                | 945                                 |                              | 0                              |                                                   |
| 11/17/2015 | 2     | 100                  | 0                    | 10:35:00 AM | -51.5                                              |                                                    | -49                                                           | 1128                    | 55                       |                         |                          | 83                | 977                                 |                              | 0                              |                                                   |
| 11/17/2015 |       | 100                  | 0                    | 11:33:00 AM | -50.3                                              |                                                    | -45                                                           | 1147                    | 56                       |                         |                          | 85                | 978                                 |                              | 0                              |                                                   |
| 11/17/2015 |       | 100                  | 0                    | 12:57:00 PM | -51                                                |                                                    | -50                                                           | 1135                    | 55                       |                         |                          | 80                | 1498                                |                              | 0                              |                                                   |
| 11/17/2015 | 3     | 100                  | 100                  | 1:18:00 PM  | -37                                                | -37.4                                              | -32                                                           | 760                     | 36                       | 1400                    | 86                       | 75                | 1216                                | E-2                          | 0                              | 1:02 PM - Opened both wells for TO-15 sample      |
| 11/17/2015 |       | 0                    | 100                  | 1:26:00 PM  |                                                    | -51.6                                              | -49                                                           |                         |                          | 1300                    | 58                       | 80                | 1104                                |                              | 0                              |                                                   |
| 11/17/2015 |       | 0                    | 100                  | 2:08:00 PM  |                                                    | -53.5                                              | -50                                                           |                         |                          | 1376                    | 60                       | 82                | 1036                                |                              | 0                              |                                                   |
| 11/17/2015 | 4     | 0                    | 100                  | 12:00:00 AM |                                                    | -54.4                                              | -50                                                           |                         |                          | 1270                    | 61                       | 77                | 939                                 |                              | 0                              |                                                   |
| 11/17/2015 |       | 0                    | 100                  | 3:32:00 PM  |                                                    | -53.8                                              | -50                                                           |                         |                          | 1149                    | 57                       | 80                | 1066                                |                              | 0                              |                                                   |

| 11/18/2015 |   | 100 | 0   | 8:50:00 AM  | -25 |       | -23   | 806 | 37 |     |    | 72 | 1250 |     | 50 | Tweaked dilution air valve to keep vacuum<br>@ -25(in H20)                     |
|------------|---|-----|-----|-------------|-----|-------|-------|-----|----|-----|----|----|------|-----|----|--------------------------------------------------------------------------------|
| 11/18/2015 | 5 | 100 | 0   | 9:44:00 AM  | -25 |       | -22   | 750 | 31 |     |    | 73 | 1437 |     | 50 | Tweaked dilution air valve to keep vacuum<br>@ -25(in H20)                     |
| 11/18/2015 | 3 | 100 | 0   | 10:30:00 AM | -25 |       | -23   | 950 | 51 |     |    | 73 | 1452 |     | 50 | Tweaked dilution air valve to keep vacuum<br>@ -25(in H20)                     |
| 11/18/2015 |   | 100 | 0   | 11:25:00 AM | -25 |       | -21   | 900 | 45 |     |    | 73 | 1455 |     | 50 | Tweaked dilution air valve to keep vacuum<br>@ -25(in H20)                     |
| 11/18/2015 |   | 0   | 100 | 11:55:00 AM | -   | -26.5 |       |     | -  |     |    |    | -    |     | 50 | Set vacuum to -26.5(in H20) then waited appx 1 hour for system to equilibrate. |
| 11/18/2015 |   | 0   | 100 | 1:21:00 PM  | -   | -26.8 | -22   |     | -  | 929 | 46 | 74 | 1313 |     | 50 | Vac - SV-2 -27.5(in H20) - Opened dilution<br>to get to -26.8(in H20)          |
| 11/18/2015 | 6 | 0   | 100 | 2:20:00 PM  | -   | -27   | -22   |     |    | 862 | 43 | 73 | 1372 |     | 50 |                                                                                |
| 11/18/2015 |   | 0   | 100 | 2:55:00 PM  |     | -27.9 | -22.5 |     |    | 815 | 43 | 73 | 1460 |     | 50 |                                                                                |
| 11/18/2015 |   | 0   | 100 | 3:33:00 PM  | -   | -28   | -23   |     |    | 820 | 42 | 70 | 1487 |     | 50 |                                                                                |
| 11/18/2015 | 7 | 100 | 100 | 4:00:00 PM  | -33 | -33   | -31.5 | 946 | 47 | 883 | 44 | 74 | 1699 | E-3 | 0  | Opened both wells for TO-15 sample                                             |
|            |   |     |     |             |     |       |       |     |    |     |    |    |      |     |    |                                                                                |

| Pilot Test Data Sheet |
|-----------------------|
| Former Union 76       |
| Mille Lacs Oil        |
| Cambridge, MN         |

| Run #                  |                                |                                  | B4 S        | tartup                                   |      |                                          |      |                                          |      |                                     |  |
|------------------------|--------------------------------|----------------------------------|-------------|------------------------------------------|------|------------------------------------------|------|------------------------------------------|------|-------------------------------------|--|
| Monitoring<br>Point ID | Distance<br>from SV<br>1 (ft.) | Distance<br>- from SV<br>2 (ft.) | -Time       | Differential Pressure<br>Reading (in WC) | Time | Differential Pressure<br>Reading (in WC) | Time | Differential Pressure<br>Reading (in WC) | Time | Differential Pres<br>Reading (in WC |  |
| MW-3                   | 18                             | 27                               | 9:48:00 AM  | 0.00                                     |      |                                          |      |                                          |      |                                     |  |
| P-1S                   | 29                             | 40                               | 9:50:00 AM  | 0.11                                     |      |                                          |      |                                          |      |                                     |  |
| P-2S                   | 42                             | 18                               | 9:45:00 AM  | -0.03                                    |      |                                          |      |                                          |      |                                     |  |
| P-2D                   | 42                             | 18                               | 9:45:00 AM  | 0.02                                     |      |                                          |      |                                          |      |                                     |  |
| P-3S                   | 27                             | 21                               | 9:55:00 AM  | 0.05                                     |      |                                          |      |                                          |      |                                     |  |
| P-3D                   | 27                             | 21                               | 9:55:00 AM  | 0.04                                     |      |                                          |      |                                          |      |                                     |  |
| P-4D                   | 70                             | 70                               | 10:00:00 AM | 0.02                                     |      |                                          |      |                                          |      |                                     |  |
| P-5S                   | 151                            | 149                              | 10:05:00 AM | 0.03                                     |      |                                          |      |                                          |      |                                     |  |
| MW-1                   | 157                            | 155                              | 10:10:00 AM | 0.05                                     |      |                                          |      |                                          |      |                                     |  |
| P-6D                   | 87                             | 61                               | 10:12:00 AM | 0.05                                     |      |                                          |      |                                          |      |                                     |  |
| P-7S                   | 78                             | 81                               | 10:15:00 AM | -0.07                                    |      |                                          |      |                                          |      |                                     |  |
| P-7D                   | 78                             | 81                               | 10:15:00 AM | 0.08                                     |      |                                          |      |                                          |      |                                     |  |
| P-8D                   | 116                            | 117                              | 10:20:00 AM | 0.14                                     |      |                                          |      |                                          |      |                                     |  |
| MW-11                  | 140                            | 144                              | 10:22:00 AM | 0.09                                     |      |                                          |      |                                          |      |                                     |  |
| P-9S                   | 76                             | 104                              | 10:25:00 AM | 0.05                                     |      |                                          |      |                                          |      |                                     |  |
| P-9D                   | 76                             | 104                              | 10:25:00 AM | 0.10                                     |      |                                          |      |                                          |      |                                     |  |
| P-10S                  | 134                            | 158                              | 10:30:00 AM | 0.09                                     |      |                                          |      |                                          |      |                                     |  |
| P-10D                  | 134                            | 158                              | 10:30:00 AM | 0.09                                     |      |                                          |      |                                          |      |                                     |  |
| MW-7                   | 101                            | 126                              | 10:45:00 AM | 0.13                                     |      |                                          |      |                                          |      |                                     |  |
| MW-8                   | 149                            | 176                              | 10:50:00 AM | 0.11                                     |      |                                          |      |                                          |      |                                     |  |
| MW-9                   | 217                            | 241                              | 11:45:00 AM | 0.08                                     |      |                                          |      |                                          |      |                                     |  |
| MW-6                   | 362                            | 386                              | 11:00:00 AM | 0.03                                     |      |                                          |      |                                          |      |                                     |  |
| MW-6A                  | 365                            | 393                              | 11:00:00 AM | 0.01                                     |      |                                          |      |                                          |      |                                     |  |
| MW-10                  | 522                            | 552                              | 11:15:00 AM | 0.01                                     |      |                                          |      |                                          |      |                                     |  |
|                        |                                |                                  |             |                                          |      |                                          |      |                                          |      |                                     |  |
| Notos                  | *                              |                                  |             |                                          | -    |                                          | -    |                                          |      |                                     |  |

Notes:



| Run                    | Run # 1 Shallow                |                                  |                 |                                             |         |                                             |            |                                             |         |                                             |         |                                          |
|------------------------|--------------------------------|----------------------------------|-----------------|---------------------------------------------|---------|---------------------------------------------|------------|---------------------------------------------|---------|---------------------------------------------|---------|------------------------------------------|
| Monitoring<br>Point ID | Distance<br>from SV<br>1 (ft.) | Distance<br>- from SV<br>2 (ft.) | -Time           | Differential<br>Pressure Reading<br>(in WC) | Time    | Differential<br>Pressure Reading<br>(in WC) | Time       | Differential<br>Pressure Reading<br>(in WC) | Time    | Differential<br>Pressure Reading<br>(in WC) | Time    | Differential Pressure<br>Reading (in WC) |
| P-1S                   | 29                             | 40                               | 12:51 PM        | -4.54                                       | 2:06 PM | -4.90                                       | 3:01:00 PM | -5.62                                       | 3:42 PM | -5.75                                       | 4:11 PM | -5.02                                    |
| P-2S                   | 42                             | 18                               | 12:52 PM        | -8.31                                       | 2:07 PM | -9.12                                       | 3:03:00 PM | -11.34                                      | 3:43 PM | -11.43                                      | 4:11 PM | -10.87                                   |
| P-3S                   | 27                             | 21                               | 12:53 PM        | -2.51                                       | 2:10 PM | -0.42                                       | 3:05:00 PM | 0.10                                        | 3:45 PM | -0.32                                       | 4:15 PM | -0.33                                    |
| P-5S                   | 151                            | 149                              | 12:55 PM        | -0.11                                       | 2:15 PM | -0.51                                       | 3:09:00 PM | -0.59                                       | 3:48 PM | -0.25                                       | 4:20 PM | -0.25                                    |
| P-7S                   | 78                             | 81                               | 12:58 PM        | -1.49                                       | 2:17 PM | -2.10                                       | 3:15:00 PM | -2.43                                       | 3:52 PM | -2.57                                       | 4:26 PM | -2.42                                    |
| P-9S                   | 76                             | 104                              | 1:05 PM         | -0.72                                       | 2:22 PM | -0.60                                       | 3:20:00 PM | -0.80                                       | 3:54 PM | -0.79                                       | 4:30 PM | -0.79                                    |
| P-10S                  | 134                            | 158                              | 1:06 PM         | -0.50                                       | 2:24 PM | -0.47                                       | 3:23:00 PM | -0.62                                       | 3:56 PM | -0.63                                       | 4:32 PM | -0.63                                    |
| Notes: S               | hallow                         | Monitor                          | ing Points Only | <u> </u>                                    |         |                                             |            |                                             |         |                                             |         |                                          |

| Run # 1                | l Dee                           | әр                                |             |                                          |            |                                          |            |                                          |            |                                          |            |                                          |
|------------------------|---------------------------------|-----------------------------------|-------------|------------------------------------------|------------|------------------------------------------|------------|------------------------------------------|------------|------------------------------------------|------------|------------------------------------------|
| Monitoring Point<br>ID | Distance<br>from SV-<br>1 (ft.) | Distance<br>- from SV-<br>2 (ft.) | Time        | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) |
| MW-3                   | 18                              | 27                                | 12:50:00 PM | 0.00                                     | 2:05:00 PM | -0.05                                    | 3:00:00 PM | -0.43                                    | 3:41:00 PM | -0.02                                    | 4:09:00 PM | -0.05                                    |
| P-2D                   | 42                              | 18                                | 12:52:00 PM | -8.78                                    | 2:08:00 PM | -9.77                                    | 3:03:00 PM | -11.96                                   | 3:44:00 PM | -12.01                                   | 4:11:00 PM | -11.49                                   |
| P-3D                   | 27                              | 21                                | 12:53:00 PM | -11.40                                   | 2:12:00 PM | -12.05                                   | 3:06:00 PM | -14.10                                   | 3:46:00 PM | -14.16                                   | 4:17:00 PM | -13.85                                   |
| P-4D                   | 70                              | 70                                | 12:54:00 PM | -3.61                                    | 2:13:00 PM | -4.24                                    | 3:08:00 PM | -5.30                                    | 3:46:00 PM | -5.47                                    | 4:18:00 PM | -5.35                                    |
| MW-1                   | 157                             | 155                               | 12:56:00 PM | -0.32                                    | 2:14:00 PM | -0.18                                    | 3:10:00 PM | -0.18                                    | 3:48:00 PM | -0.80                                    | 4:21:00 PM | -0.69                                    |
| P-6D                   | 87                              | 61                                | 12:57:00 PM | -3.38                                    | 2:16:00 PM | -3.68                                    | 3:12:00 PM | -4.23                                    | 3:50:00 PM | -4.55                                    | 4:25:00 PM | -4.48                                    |
| P-7D                   | 78                              | 81                                | 12:58:00 PM | -3.12                                    | 2:19:00 PM | -3.43                                    | 3:16:00 PM | -4.14                                    | 3:53:00 PM | -4.24                                    | 4:27:00 PM | -4.16                                    |
| P-8D                   | 116                             | 117                               | 1:00:00 PM  | -1.03                                    | 2:21:00 PM | -1.11                                    | 3:18:00 PM | -1.42                                    | 3:53:00 PM | -1.49                                    | 4:28:00 PM | -1.46                                    |
| MW-11                  | 140                             | 144                               | 1:01:00 PM  | -0.42                                    | 2:20:00 PM | -0.48                                    | 3:19:00 PM | -0.66                                    | 3:54:00 PM | -0.57                                    | 4:29:00 PM | -0.58                                    |
| P-9D                   | 76                              | 104                               | 1:05:00 PM  | -1.80                                    | 2:23:00 PM | -1.68                                    | 3:21:00 PM | -2.08                                    | 3:55:00 PM | -2.14                                    | 4:30:00 PM | -2.08                                    |
| P-10D                  | 134                             | 158                               | 1:06:00 PM  | -0.76                                    | 2:25:00 PM | -0.65                                    | 3:24:00 PM | -0.90                                    | 3:57:00 PM | -0.91                                    | 4:32:00 PM | -0.91                                    |
| MW-7                   | 101                             | 126                               | 1:10:00 PM  | -1.42                                    | 2:26:00 PM | -1.50                                    | 3:25:00 PM | -1.84                                    | 3:56:00 PM | -1.78                                    | 4:31:00 PM | -1.75                                    |
| MW-8                   | 149                             | 176                               | 1:11:00 PM  | -0.44                                    | 2:27:00 PM | -0.32                                    | 3:26:00 PM | -0.67                                    | 3:58:00 PM | -0.55                                    | 4:32:00 PM | -0.54                                    |
| MW-9                   | 217                             | 241                               | 1:12:00 PM  | -0.02                                    | 2:29:00 PM | -0.60                                    | 3:27:00 PM | -0.11                                    | 3:59:00 PM | -0.43                                    | 4:35:00 PM | -0.38                                    |
| MW-6                   | 362                             | 386                               | 1:13:00 PM  | 0.03                                     | 2:30:00 PM | 0.03                                     | 3:30:00 PM | -0.51                                    | 4:00:00 PM | 0.00                                     | 4:40:00 PM | 0.00                                     |
| MW-6A                  | 365                             | 393                               | 1:13:00 PM  | 0.01                                     |            |                                          |            |                                          |            |                                          |            |                                          |
| MW-10                  | 522                             | 552                               | 1:14:00 PM  | 0.01                                     |            |                                          |            |                                          |            |                                          |            |                                          |
|                        |                                 |                                   |             |                                          |            |                                          |            |                                          |            |                                          |            |                                          |

| Run # 2 Shallow             |                                |                                 |            |                                             |             |                                             |             |                                             |             |                                             |
|-----------------------------|--------------------------------|---------------------------------|------------|---------------------------------------------|-------------|---------------------------------------------|-------------|---------------------------------------------|-------------|---------------------------------------------|
| Monitoring Point ID         | Distance<br>from SV<br>1 (ft.) | Distance<br>from SV-<br>2 (ft.) | Time       | Differential<br>Pressure Reading<br>(in WC) | Time        | Differential<br>Pressure Reading<br>(in WC) | Time        | Differential<br>Pressure Reading<br>(in WC) | Time        | Differential<br>Pressure Reading<br>(in WC) |
| P-1S                        | 29                             | 40                              | 9:24:00 AM | -5.08                                       | 10:15:00 AM | -5.17                                       | 11:08:00 AM | -5.22                                       | 12:35:00 PM | -5.42                                       |
| P-2S                        | 42                             | 18                              | 9:26:00 AM | -6.71                                       | 10:15:00 AM | -7.83                                       | 11:09:00 AM | -8.12                                       | 12:36:00 PM | -8.24                                       |
| P-3S                        | 27                             | 21                              | 9:28:00 AM | -0.13                                       | 10:17:00 AM | -0.20                                       | 11:10:00 AM | 0.10                                        | 12:38:00 PM | -0.80                                       |
| P-5S                        | 151                            | 149                             | 9:31:00 AM | -0.11                                       | 10:19:00 AM | -0.20                                       | 11:13:00 AM | -0.19                                       | 12:42:00 PM | -0.20                                       |
| P-7S                        | 78                             | 81                              | 9:35:00 AM | -1.23                                       | 10:21:00 AM | -1.59                                       | 11:16:00 AM | -3.31                                       | 12:45:00 PM | -3.30                                       |
| P-9S                        | 76                             | 104                             | 9:39:00 AM | -0.73                                       | 10:24:00 AM | -0.84                                       | 11:20:00 AM | -0.83                                       | 12:49:00 PM | -0.86                                       |
| P-10S                       | 134                            | 158                             | 9:41:00 AM | -0.48                                       | 10:27:00 AM | -0.60                                       | 11:22:00 AM | -0.55                                       | 12:51:00 PM | -0.56                                       |
| Notes: Shallow monitoring p | oints or                       | ily                             | I          |                                             | I           | 1                                           | I           |                                             | I           |                                             |

| Run # 2 Deep             |                                 |                                 |            |                                          |             |                                          |             |                                          |             |                                          |
|--------------------------|---------------------------------|---------------------------------|------------|------------------------------------------|-------------|------------------------------------------|-------------|------------------------------------------|-------------|------------------------------------------|
| Monitoring Point ID      | Distance<br>from SV-<br>1 (ft.) | Distance<br>from SV-<br>2 (ft.) | Time       | Differential Pressure<br>Reading (in WC) | Time        | Differential Pressure<br>Reading (in WC) | Time        | Differential Pressure<br>Reading (in WC) | Time        | Differential Pressure<br>Reading (in WC) |
| MW-3                     | 18                              | 27                              | 9:23:00 AM | 0.00                                     | 10:14:00 AM | 0.00                                     | 11:07:00 AM | 0.01                                     | 12:34:00 PM | 0.00                                     |
| P-2D                     | 42                              | 18                              | 9:27:00 AM | -7.05                                    | 10:16:00 AM | -8.16                                    | 11:09:00 AM | -8.44                                    | 12:37:00 PM | -8.54                                    |
| P-3D                     | 27                              | 21                              | 9:29:00 AM | -10.59                                   | 10:17:00 AM | -11.68                                   | 11:11:00 AM | -11.98                                   | 12:40:00 PM | -12.12                                   |
| P-4D                     | 70                              | 70                              | 9:30:00 AM | -3.78                                    | 10:18:00 AM | -4.57                                    | 11:12:00 AM | -4.76                                    | 12:41:00 PM | -4.84                                    |
| MW-1                     | 157                             | 155                             | 9:32:00 AM | -0.32                                    | 10:19:00 AM | -0.51                                    | 11:14:00 AM | -0.51                                    | 12:43:00 PM | -0.52                                    |
| P-6D                     | 87                              | 61                              | 9:34:00 AM | -2.56                                    | 10:20:00 AM | -3.03                                    | 11:15:00 AM | -3.17                                    | 12:44:00 PM | -3.16                                    |
| P-7D                     | 78                              | 81                              | 9:36:00 AM | -3.44                                    | 10:21:00 AM | -3.95                                    | 11:17:00 AM | -4.04                                    | 12:47:00 PM | -4.07                                    |
| P-8D                     | 116                             | 117                             | 9:37:00 AM | -1.07                                    | 10:22:00 AM | -1.33                                    | 11:18:00 AM | -1.33                                    | 12:48:00 PM | -1.33                                    |
| MW-11                    | 140                             | 144                             | 9:38:00 AM | -0.47                                    | 10:22:00 AM | -0.61                                    | 11:19:00 AM | -0.60                                    | 12:49:00 PM | -0.57                                    |
| P-9D                     | 76                              | 104                             | 9:40:00 AM | -1.93                                    | 10:24:00 AM | -2.20                                    | 11:21:00 AM | -2.21                                    | 12:50:00 PM | -2.24                                    |
| P-10D                    | 134                             | 158                             | 9:42:00 AM | -0.73                                    | 10:27:00 AM | -0.89                                    | 11:22:00 AM | -0.84                                    | 12:52:00 PM | -0.86                                    |
| MW-7                     | 101                             | 126                             | 9:43:00 AM | -1.68                                    | 10:26:00 AM | -1.98                                    | 11:23:00 AM | -1.98                                    | 12:51:00 PM | -1.97                                    |
| MW-8                     | 149                             | 176                             | 9:44:00 AM | -0.47                                    | 10:28:00 AM | -0.55                                    | 11:24:00 AM | -0.55                                    | 12:53:00 PM | -0.55                                    |
| MW-9                     | 217                             | 241                             | 9:45:00 AM | -0.03                                    | 10:29:00 AM | -0.04                                    | 11:25:00 AM | -0.02                                    | 12:54:00 PM | -0.01                                    |
| MW-6                     | 362                             | 386                             | 9:46:00 AM | 0.03                                     | 10:30:00 AM | 0.03                                     |             |                                          |             |                                          |
| MW-6A                    | 365                             | 393                             |            |                                          |             |                                          |             |                                          |             |                                          |
| MW-10                    | 522                             | 552                             |            |                                          |             |                                          |             |                                          |             |                                          |
|                          |                                 |                                 |            |                                          |             |                                          |             |                                          |             |                                          |
| Notes: Deep monitoring p | oints or                        | nly                             |            |                                          |             |                                          |             |                                          |             |                                          |

| Run # 4 Sha         | llow                            |                                 |            |                                          |            |                                          |                                          |
|---------------------|---------------------------------|---------------------------------|------------|------------------------------------------|------------|------------------------------------------|------------------------------------------|
| Monitoring Point ID | Distance<br>from SV-<br>1 (ft.) | Distance<br>from SV-<br>2 (ft.) | Time       | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) | Differential Pressure<br>Reading (in WC) |
| P-1S                | 29                              | 40                              | 1:38:00 PM | -3.46                                    | 2:30:00 PM | -3.26                                    | -3.17                                    |
| P-2S                | 42                              | 18                              | 1:39:00 PM | -13.20                                   | 2:32:00 PM | -13.78                                   | -13.74                                   |
| P-3S                | 27                              | 21                              | 1:42:00 PM | -0.88                                    | 2:34:00 PM | -0.94                                    | -0.84                                    |
| P-5S                | 151                             | 149                             | 1:45:00 PM | -0.20                                    | 2:39:00 PM | -0.21                                    | -0.31                                    |
| P-7S                | 78                              | 81                              | 1:53:00 PM | -2.93                                    | 2:42:00 PM | -2.89                                    | -3.57                                    |
| P-9S                | 76                              | 104                             | 1:56:00 PM | -0.56                                    | 2:50:00 PM | -0.57                                    | -0.61                                    |
| P-10S               | 134                             | 158                             | 1:57:00 PM | -0.44                                    | 2:53:00 PM | -0.45                                    | -0.51                                    |

Notes: Shallow monitoring points only
| Run # 4 Deep        |                                 |                                 |            |                                          |            |                                          |            |                                          |
|---------------------|---------------------------------|---------------------------------|------------|------------------------------------------|------------|------------------------------------------|------------|------------------------------------------|
| Monitoring Point ID | Distance<br>from SV-<br>1 (ft.) | Distance<br>from SV-<br>2 (ft.) | Time       | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) |
| MW-3                | 18                              | 27                              | 1:37:00 PM | 0.00                                     | 2:29:00 PM | 0.00                                     | 3:10:00 PM | 0.00                                     |
| P-2D                | 42                              | 18                              | 1:40:00 PM | -13.97                                   | 2:33:00 PM | -14.56                                   | 3:12:00 PM | -14.45                                   |
| P-3D                | 27                              | 21                              | 1:43:00 PM | -14.16                                   | 2:36:00 PM | -14.60                                   | 3:14:00 PM | -14.50                                   |
| P-4D                | 70                              | 70                              | 1:44:00 PM | -5.07                                    | 2:37:00 PM | -5.26                                    | 3:15:00 PM | -5.42                                    |
| MW-1                | 157                             | 155                             | 1:46:00 PM | -0.56                                    | 2:40:00 PM | -0.58                                    | 3:16:00 PM | -0.79                                    |
| P-6D                | 87                              | 61                              | 1:47:00 PM | -4.97                                    | 2:41:00 PM | -5.29                                    | 3:17:00 PM | -5.41                                    |
| P-7D                | 78                              | 81                              | 1:53:00 PM | -3.58                                    | 2:43:00 PM | -3.57                                    | 3:20:00 PM | -3.69                                    |
| P-8D                | 116                             | 117                             | 1:54:00 PM | -1.21                                    | 2:47:00 PM | -1.21                                    | 3:21:00 PM | -1.31                                    |
| MW-11               | 140                             | 144                             | 1:55:00 PM | -0.55                                    | 2:48:00 PM | -0.54                                    | 3:22:00 PM | -0.62                                    |
| P-9D                | 76                              | 104                             | 1:56:00 PM | -1.47                                    | 2:51:00 PM | -1.45                                    | 3:24:00 PM | -1.54                                    |
| P-10D               | 134                             | 158                             | 1:57:00 PM | -0.64                                    | 2:53:00 PM | -0.63                                    | 3:25:00 PM | -0.73                                    |
| MW-7                | 101                             | 126                             | 1:58:00 PM | -1.38                                    | 2:52:00 PM | -1.37                                    | 3:26:00 PM | -1.45                                    |
| MW-8                | 149                             | 176                             | 1:59:00 PM | -0.45                                    | 2:54:00 PM | -0.42                                    | 3:27:00 PM | -0.52                                    |
| MW-9                | 217                             | 241                             | 2:00:00 PM | 0.04                                     | 2:55:00 PM | -0.01                                    | 3:28:00 PM | -0.11                                    |
| MW-6                | 362                             | 386                             | 2:02:00 PM | 0.08                                     |            |                                          |            |                                          |
| MW-6A               | 365                             | 393                             |            |                                          |            |                                          |            |                                          |
| MW-10               | 522                             | 552                             |            |                                          |            |                                          |            |                                          |
|                     |                                 |                                 |            |                                          |            |                                          |            |                                          |
|                     |                                 |                                 |            |                                          |            |                                          |            |                                          |

Notes: Deep monitoring points only

| Run # 5 Shallow     |                                 |                              |            |                                          |             |                                          |             |                                          |             |                                          |
|---------------------|---------------------------------|------------------------------|------------|------------------------------------------|-------------|------------------------------------------|-------------|------------------------------------------|-------------|------------------------------------------|
| Monitoring Point ID | Distance<br>from SV-<br>1 (ft.) | Distance from SV-<br>2 (ft.) | Time       | Differential Pressure<br>Reading (in WC) | Time        | Differential Pressure<br>Reading (in WC) | Time        | Differential Pressure<br>Reading (in WC) | Time        | Differential Pressure<br>Reading (in WC) |
| P-1S                | 29                              | 40                           | 9:17:00 AM | 0.43                                     | 10:07:00 AM | 0.30                                     | 10:57:00 AM | 0.38                                     | 11:28:00 AM | 0.20                                     |
| P-2S                | 42                              | 18                           | 9:18:00 AM | -1.38                                    | 10:08:00 AM | -2.21                                    | 10:58:00 AM | -2.42                                    | 11:29:00 AM | -2.44                                    |
| P-3S                | 27                              | 21                           | 9:19:00 AM | -0.03                                    | 10:10:00 AM | -0.13                                    | 11:01:00 AM | -0.20                                    | 11:30:00 AM | -0.20                                    |
| P-5S                | 151                             | 149                          | 9:21:00 AM | -0.04                                    | 10:13:00 AM | -0.10                                    | 11:04:00 AM | -0.06                                    | 11:34:00 AM | -0.06                                    |
| P-7S                | 78                              | 81                           | 9:27:00 AM | -0.01                                    | 10:16:00 AM | 0.21                                     | 11:06:00 AM | 0.74                                     | 11:36:00 AM | 0.15                                     |
| P-9S                | 76                              | 104                          | 9:32:00 AM | -0.38                                    | 10:21:00 AM | -0.47                                    | 11:12:00 AM | -0.40                                    | 11:40:00 AM | -0.43                                    |
| P-10S               | 134                             | 158                          | 9:34:00 AM | -0.23                                    | 10:23:00 AM | -0.38                                    | 11:13:00 AM | -0.26                                    | 11:42:00 AM | -0.29                                    |

Notes: Shallow monitoring points only

| Run # 5 Deep             |                                 |                                 |            |                                          |             |                                          |             |                                          |             |                                          |
|--------------------------|---------------------------------|---------------------------------|------------|------------------------------------------|-------------|------------------------------------------|-------------|------------------------------------------|-------------|------------------------------------------|
| Monitoring Point ID      | Distance<br>from SV-<br>1 (ft.) | Distance<br>from SV-<br>2 (ft.) | Time       | Differential Pressure<br>Reading (in WC) | Time        | Differential Pressure<br>Reading (in WC) | Time        | Differential Pressure<br>Reading (in WC) | Time        | Differential Pressure<br>Reading (in WC) |
| MW-3                     | 18                              | 27                              | 9:16:00 AM | 0.05                                     | 10:06:00 AM | 0.03                                     | 10:57:00 AM | -0.07                                    | 11:27:00 AM | -0.07                                    |
| P-2D                     | 42                              | 18                              | 9:18:00 AM | -3.70                                    | 10:09:00 AM | -4.45                                    | 11:00:00 AM | -4.57                                    | 11:29:00 AM | -4.51                                    |
| P-3D                     | 27                              | 21                              | 9:19:00 AM | -5.60                                    | 10:11:00 AM | -6.33                                    | 11:02:00 AM | -6.43                                    | 11:30:00 AM | -6.35                                    |
| P-4D                     | 70                              | 70                              | 9:20:00 AM | -2.04                                    | 10:12:00 AM | -2.69                                    | 11:03:00 AM | -2.61                                    | 11:32:00 AM | -2.59                                    |
| MW-1                     | 157                             | 155                             | 9:22:00 AM | -0.15                                    | 10:14:00 AM | -0.31                                    | 11:04:00 AM | -0.24                                    | 11:34:00 AM | -0.22                                    |
| P-6D                     | 87                              | 61                              | 9:25:00 AM | -1.39                                    | 10:15:00 AM | -1.75                                    | 11:05:00 AM | -1.77                                    | 11:35:00 AM | -1.75                                    |
| P-7D                     | 78                              | 81                              | 9:28:00 AM | -1.85                                    | 10:17:00 AM | -2.22                                    | 11:07:00 AM | -2.21                                    | 11:37:00 AM | -2.19                                    |
| P-8D                     | 116                             | 117                             | 9:30:00 AM | -0.63                                    | 10:19:00 AM | -0.82                                    | 11:10:00 AM | -0.78                                    | 11:38:00 AM | -0.78                                    |
| MW-11                    | 140                             | 144                             | 9:31:00 AM | -0.26                                    | 10:20:00 AM | -0.35                                    | 11:11:00 AM | -0.35                                    | 11:39:00 AM | -0.32                                    |
| P-9D                     | 76                              | 104                             | 9:33:00 AM | -1.02                                    | 10:22:00 AM | -1.26                                    | 11:12:00 AM | -1.10                                    | 11:40:00 AM | -1.20                                    |
| P-10D                    | 134                             | 158                             | 9:35:00 AM | -0.39                                    | 10:24:00 AM | -0.54                                    | 11:13:00 AM | -0.38                                    | 11:42:00 AM | -0.47                                    |
| MW-7                     | 101                             | 126                             | 9:36:00 AM | -0.86                                    | 10:23:00 AM | -1.08                                    | 11:14:00 AM | -0.79                                    | 11:41:00 AM | -0.92                                    |
| MW-8                     | 149                             | 176                             | 9:37:00 AM | -0.25                                    | 10:25:00 AM | -0.37                                    | 11:14:00 AM | -0.26                                    | 11:43:00 AM | -0.26                                    |
| MW-9                     | 217                             | 241                             | 9:38:00 AM | -0.02                                    | 10:26:00 AM | -0.03                                    | 11:15:00 AM | 0.03                                     | 11:44:00 AM | -0.03                                    |
| MW-6                     | 362                             | 386                             |            |                                          |             |                                          |             |                                          |             |                                          |
| MW-6A                    | 365                             | 393                             |            |                                          |             |                                          |             |                                          |             |                                          |
| MW-10                    | 522                             | 552                             |            |                                          |             |                                          |             |                                          |             |                                          |
|                          |                                 |                                 |            |                                          |             |                                          |             |                                          |             |                                          |
| Notes: Deep monitoring p | oints or                        | nly                             | -          |                                          | -           |                                          | -           |                                          |             |                                          |

| Run # 6 Sł          | Run # 6 Shallow                 |                                 |             |                                          |            |                                          |            |                                          |            |                                          |
|---------------------|---------------------------------|---------------------------------|-------------|------------------------------------------|------------|------------------------------------------|------------|------------------------------------------|------------|------------------------------------------|
| Monitoring Point ID | Distance<br>from SV-<br>1 (ft.) | Distance<br>from SV-<br>2 (ft.) | Time        | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) |
| P-1S                | 29                              | 40                              | 12:55:00 PM | 0.33                                     | 1:54:00 PM | 0.30                                     | 2:30:00 PM | 0.29                                     | 3:12:00 PM | 0.40                                     |
| P-2S                | 42                              | 18                              | 12:56:00 PM | -2.64                                    | 1:55:00 PM | -2.62                                    | 2:31:00 PM | -2.51                                    | 3:13:00 PM | -2.50                                    |
| P-3S                | 27                              | 21                              | 12:58:00 PM | -0.15                                    | 1:56:00 PM | -0.14                                    | 2:33:00 PM | -0.13                                    | 3:14:00 PM | -0.09                                    |
| P-5S                | 151                             | 149                             | 1:00:00 PM  | -0.38                                    | 2:00:00 PM | -0.07                                    | 2:36:00 PM | -0.07                                    | 3:18:00 PM | -0.80                                    |
| P-7S                | 78                              | 81                              | 1:03:00 PM  | 0.55                                     | 2:04:00 PM | 0.20                                     | 2:40:00 PM | 0.07                                     | 3:21:00 PM | 0.11                                     |
| P-9S                | 76                              | 104                             | 1:08:00 PM  | -0.61                                    | 2:08:00 PM | -0.28                                    | 2:43:00 PM | -0.24                                    | 3:25:00 PM | -0.29                                    |
| P-10S               | 134                             | 158                             | 1:10:00 PM  | -0.49                                    | 2:10:00 PM | -0.25                                    | 2:44:00 PM | -0.19                                    | 3:26:00 PM | -0.24                                    |
| Notes: Shallow m    | l<br>onitorin                   | g points                        | l<br>only   | 1                                        | 1          | 1                                        | 1          | 1                                        | 1          | 1                                        |

| Run # 6 Deep              |                                 |                                 |             |                                          |            |                                          |            |                                          |            |                                          |
|---------------------------|---------------------------------|---------------------------------|-------------|------------------------------------------|------------|------------------------------------------|------------|------------------------------------------|------------|------------------------------------------|
| Monitoring Point ID       | Distance<br>from SV-<br>1 (ft.) | Distance<br>from SV-<br>2 (ft.) | Time        | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) | Time       | Differential Pressure<br>Reading (in WC) |
| MW-3                      | 18                              | 27                              | 12:54:00 PM | -0.04                                    | 1:54:00 PM | -0.05                                    | 2:29:00 PM | 0.31                                     | 3:12:00 PM | -0.06                                    |
| P-2D                      | 42                              | 18                              | 12:57:00 PM | -7.38                                    | 1:56:00 PM | -7.31                                    | 2:32:00 PM | -6.96                                    | 3:13:00 PM | -7.00                                    |
| P-3D                      | 27                              | 21                              | 12:58:00 PM | -7.44                                    | 1:57:00 PM | -7.32                                    | 2:33:00 PM | -6.95                                    | 3:15:00 PM | -6.99                                    |
| P-4D                      | 70                              | 70                              | 12:59:00 PM | -2.74                                    | 1:59:00 PM | -2.87                                    | 2:34:00 PM | -2.65                                    | 3:16:00 PM | -2.74                                    |
| MW-1                      | 157                             | 155                             | 1:01:00 PM  | -0.62                                    | 2:01:00 PM | -0.33                                    | 2:37:00 PM | -0.31                                    | 3:19:00 PM | -0.35                                    |
| P-6D                      | 87                              | 61                              | 1:02:00 PM  | -3.11                                    | 2:03:00 PM | -2.84                                    | 2:38:00 PM | -2.75                                    | 3:20:00 PM | -2.77                                    |
| P-7D                      | 78                              | 81                              | 1:04:00 PM  | -2.17                                    | 2:04:00 PM | -1.90                                    | 2:41:00 PM | -1.83                                    | 3:22:00 PM | -1.90                                    |
| P-8D                      | 116                             | 117                             | 1:05:00 PM  | -0.94                                    | 2:05:00 PM | -0.72                                    | 2:42:00 PM | -0.67                                    | 3:23:00 PM | -0.74                                    |
| MW-11                     | 140                             | 144                             | 1:07:00 PM  | -0.55                                    | 2:06:00 PM | -0.31                                    | 2:42:00 PM | -0.28                                    | 3:23:00 PM | -0.34                                    |
| P-9D                      | 76                              | 104                             | 1:09:00 PM  | -1.08                                    | 2:09:00 PM | -0.79                                    | 2:43:00 PM | -0.71                                    | 3:25:00 PM | -0.77                                    |
| P-10D                     | 134                             | 158                             | 1:10:00 PM  | -0.59                                    | 2:11:00 PM | -0.35                                    | 2:44:00 PM | -0.30                                    | 3:27:00 PM | -0.38                                    |
| MW-7                      | 101                             | 126                             | 1:11:00 PM  | -0.97                                    | 2:09:00 PM | -0.60                                    | 2:45:00 PM | -0.55                                    | 3:26:00 PM | -0.63                                    |
| MW-8                      | 149                             | 176                             | 1:12:00 PM  | -0.56                                    | 2:15:00 PM | -0.33                                    | 2:46:00 PM | -0.17                                    | 3:27:00 PM | -0.24                                    |
| MW-9                      | 217                             | 241                             | 1:13:00 PM  | -0.30                                    | 2:12:00 PM | -0.03                                    | 2:47:00 PM | -0.02                                    | 3:28:00 PM | -0.05                                    |
| MW-6                      | 362                             | 386                             | 1:14:00 PM  | -0.29                                    | 2:13:00 PM | -0.05                                    | 2:48:00 PM | 0.02                                     | 3:29:00 PM | -0.03                                    |
| MW-6A                     | 365                             | 393                             |             |                                          |            |                                          |            |                                          |            |                                          |
| MW-10                     | 522                             | 552                             |             |                                          |            |                                          |            |                                          |            |                                          |
|                           |                                 |                                 |             |                                          |            |                                          |            |                                          |            |                                          |
| Notes: Deep monitoring po | ints onl                        | У                               |             |                                          |            |                                          |            |                                          |            |                                          |
|                           |                                 |                                 |             |                                          |            |                                          |            |                                          |            |                                          |

### Appendix G

Updated Life-Cycle Cost Estimate

Life Cycle Cost Sheet - SVE/Air Sparge

| Description                                                                     | Quantity | Price    | Unit           | Total     |
|---------------------------------------------------------------------------------|----------|----------|----------------|-----------|
| Access Agreements                                                               | 3        | \$1,210  | per property   | \$3,630   |
| Pilot test work plan                                                            | 1        | \$6,000  | report         | \$6,000   |
| Pilot test equipment                                                            | 1        | \$5,000  | equipment      | \$5,000   |
| Pilot test holes for radius of influence                                        | 12       | \$1,000  | per pilot hole | \$12,000  |
| Pilot test observation                                                          | 6        | \$1,000  | per day        | \$6,000   |
| Pilot test report                                                               | 1        | \$6,000  | report         | \$6,000   |
| SDCAD Report                                                                    | 1        | \$6,000  | report         | \$6,000   |
| SVE/Sparge well install                                                         | 10       | \$1,500  | per well       | \$15,000  |
| Well Installation Oversight                                                     | 5        | \$1,000  | per day        | \$5,000   |
| Blower/skid fabrication, delivery                                               | 2        | \$24,000 | system         | \$48,000  |
| construction                                                                    | 2        | \$45,000 | lump sum       | \$90,000  |
| Construction Oversight                                                          | 10       | \$1,000  | day            | \$10,000  |
| Start-up/optimization                                                           | 5        | \$1,000  | day            | \$5,000   |
| Start-up sampling                                                               | 10       | \$250    | per sample     | \$2,500   |
| Installation Report                                                             | 1        | \$6,000  | report         | \$6,000   |
| TOTAL CAPITOL                                                                   |          |          |                | \$226,130 |
| Annual Monitoring (LIF<br>sampling, monitoring well<br>sampling, vent sampling) | 3        | \$25,000 | per year       | \$75,000  |
| Annual Operation (Electrical, maintenance)                                      | 3        | \$3,000  | lump sum       | \$9,000   |
| TOTAL ANNUAL                                                                    |          |          |                | \$84,000  |
| System shut-down oversight                                                      | 5        | \$1,000  | day            | \$5,000   |
| Well sealing                                                                    | 20       | \$1,500  | per well       | \$30,000  |
| TOTAL SHUT-DOWN                                                                 |          |          |                | \$35,000  |
| 20% Contingency                                                                 |          |          |                | \$62,026  |
| Total                                                                           |          |          |                | \$407,156 |

#### Life Cycle Cost Sheet - Dual Phase

| Description                       | Quantity | Price    | Unit           | Total                                  |
|-----------------------------------|----------|----------|----------------|----------------------------------------|
| Access Agreements                 | 4        | \$1,210  | per property   | \$4,840                                |
| Pilot test work plan              | 1        | \$6,000  | report         | \$6,000                                |
| Pilot test equipment              | 1        | \$3,000  | equipment      | \$3,000                                |
| Pilot test holes for radius of    |          |          |                |                                        |
| influence                         | 12       | \$1,000  | per pilot hole | \$12,000                               |
| Pilot test observation            | 5        | \$1,000  | per day        | \$5,000                                |
| Pilot test report                 | 1        | \$6,000  | report         | \$6,000                                |
|                                   |          |          |                |                                        |
| Corrective Action Design          | 1        | \$6,000  | report         | \$6,000                                |
| SVE/Extraction well install       | 24       | \$1,500  | per well       | \$36,000                               |
| Well Installation Oversight       | 10       | \$1,000  | per day        | \$10,000                               |
|                                   |          |          |                |                                        |
| Blower/skid fabrication, delivery | 2        | \$24,000 | system         | \$48,000                               |
| Trenching, electrical,            |          | ¢15 000  |                | ¢00.000                                |
|                                   | 2        |          | dov            | \$90,000<br>\$40,000                   |
|                                   | 10       | \$1,000  | uay            | \$10,000                               |
| Start-up/optimization             | 5        | \$1,000  | aay            | \$5,000                                |
|                                   | 10       | \$250    | per sample     | \$2,500                                |
|                                   | 1        | \$6,000  | report         | \$6,000                                |
|                                   |          |          |                | \$250,340                              |
| Annual Monitoring (LIF            |          |          |                |                                        |
| sampling, monitoring well         |          |          |                |                                        |
| of stinger tubes. vent sampling)  | 3        | \$65.000 | per vear       | \$195.000                              |
|                                   |          | <i></i>  |                | ÷::::;:::::::::::::::::::::::::::::::: |
| Water recovery/disposal from      |          | ¢40.000  |                | ¢40.000                                |
| system                            |          | \$10,000 | nump sum       | \$10,000                               |
| Annual Operation (Electrical,     |          |          |                |                                        |
| maintenance)                      | 3        | \$5,000  | lump sum       | \$15,000                               |
| TOTAL ANNUAL                      |          |          |                | \$220,000                              |
|                                   |          |          |                |                                        |
| System shut down oversight        | 10       | ¢4 000   | dov            | ¢10.000                                |
| System shut-down oversight        | 10       | \$1,000  | uay            | \$10,000                               |
|                                   |          |          |                |                                        |
| Well sealing                      | 24       | \$1,500  | per well       | \$36,000                               |
| TOTAL SHUT-DOWN                   |          |          |                | \$46,000                               |
| 20% Contingency                   |          |          |                | \$94,068                               |
| Total                             |          |          |                | \$610,408                              |

### Life Cycle Cost Sheet

#### Excavation - Source area to water table

| Description                                                                        | Quantity | Price    | Unit                           | Total     |
|------------------------------------------------------------------------------------|----------|----------|--------------------------------|-----------|
| Soil trucking and disposal                                                         | 6,650    | \$40     | per ton                        | \$266,000 |
| Trucking and Backfill                                                              | 6,650    | \$20     | per ton                        | \$133,000 |
| Excavation Contractor                                                              | 10       | \$1,000  | per day                        | \$10,000  |
| Seal MW-3                                                                          | 1        | \$1,500  | each                           | \$1,500   |
| Install new MW-3                                                                   | 1        | \$2,500  | each                           | \$2,500   |
| Excavation Oversight                                                               | 10       | \$1,500  |                                | \$15,000  |
|                                                                                    |          |          | per confirmation sample set    |           |
| Excavation sample analysis                                                         | 40       | \$65     | (DRO/GRO/BTEX)                 | \$2,600   |
| Reporting                                                                          | 1        | \$5,000  |                                | \$5,000   |
| Quarterly<br>sampling/monitoring with<br>monthly LNAPL checks<br>and annual report | 3        | \$25,000 | annual follow-up<br>monitoring | \$75,000  |
| 20% Contingency                                                                    |          |          |                                | \$102,120 |
| Total                                                                              |          |          |                                | \$612,720 |

### Appendix H

Cumulative and Updated Tables/Figures

### Tables

Attach all tables from the *Investigation Report Form* and indicate those that have been updated during this reporting period by marking the check box below. **Tables must include all cumulative data.** 

| Updated     | Table Number and Na me                                                                                                               |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------|
| $\boxtimes$ | Table 1. Tank Information                                                                                                            |
| $\boxtimes$ | Table 2. Results of Soil Headspace Screening                                                                                         |
| $\boxtimes$ | Table 3. Analytical Results of Soil Samples                                                                                          |
|             | Table 4. Other Contaminants Detected in Soils (Petroleum or Non-petroleum Derived)                                                   |
|             | Table 5. Contaminated Surface Soil Results                                                                                           |
|             | Table 6. Water Level Measurements and Depths of Water Samples Collected from           Borings                                       |
| $\bowtie$   | Table 7. Analytical Results of Water Samples Collected from Borings                                                                  |
| $\boxtimes$ | Table 8. Other Contaminants Detected in Water Samples Collected from Borings<br>(Petroleum or Non-petroleum Derived)                 |
| $\bowtie$   | Table 9. Monitoring Well Completion Information                                                                                      |
| $\bowtie$   | Table 10. Water Level Measurements in Wells                                                                                          |
| $\boxtimes$ | Table 11. Analytical Results of Water Samples Collected from Wells                                                                   |
| $\boxtimes$ | Table 12. Other Contaminants Detected in Water Samples Collected from Wells (Petroleum or Non-petroleum Derived)                     |
|             | Table 13. Natural Attenuation Parameters                                                                                             |
| $\bowtie$   | Table 14. Free Product Recovery                                                                                                      |
|             | Table 15. Properties Located within 500 feet of the Release Source                                                                   |
|             | Table 16. Water Supply Wells Located within 500 feet of the Release Source and           Municipal or Industrial Wells within ½ mile |
|             | Table 17. Surface Water Receptor Information                                                                                         |
| $\boxtimes$ | Table 18. Utility Receptor Information                                                                                               |
| $\boxtimes$ | Table 19. Vapor Survey Results                                                                                                       |
| $\boxtimes$ | Table 20. Results of Soil Gas Sampling for Vapor Intrusion Screening                                                                 |
|             | Table 21. LNAPL Recovery Test                                                                                                        |

#### Table 1 **Tank Information**

| Tank # | Tank<br>Material <sup>1</sup> | UST or<br>AST | Capacity<br>(gallons) | Contents<br>(product<br>type) | Year<br>Installed | Tank<br>Status <sup>2</sup> | Tank Condition |
|--------|-------------------------------|---------------|-----------------------|-------------------------------|-------------------|-----------------------------|----------------|
| 001    |                               | UST           | 1,000                 | Diesel Fuel                   | Unknown           | Removed                     | Good           |
| 002    |                               | UST           | 5,000                 | Gasoline                      | Unknown           | Removed                     | Good           |
| 003    |                               | UST           | 5,000                 | Gasoline                      | Unknown           | Removed                     | Good           |

<sup>1</sup> "F" for fiberglass or "S" for Steel
 <sup>2</sup> Indicate: removed (date), abandoned in place (date), or currently in use. Add additional rows as needed.

Notes:

| Depth                                                                                                                                                                                                       |                                |                                              |                                                      |                                                                   | Soil Bo                                | ring ID                                          |                  |           |                   |           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------|--------------------------------------------------|------------------|-----------|-------------------|-----------|
| (ft)                                                                                                                                                                                                        | 1                              | 2                                            | 3                                                    | 4                                                                 | 5                                      | 6                                                | 7                | 8         | 9                 | 10        |
| 4                                                                                                                                                                                                           |                                |                                              |                                                      |                                                                   |                                        |                                                  |                  |           |                   |           |
| 5                                                                                                                                                                                                           | 80                             | 6.0                                          |                                                      |                                                                   | 210                                    |                                                  | 170              |           |                   |           |
| 6                                                                                                                                                                                                           |                                |                                              |                                                      |                                                                   |                                        | 0.0                                              |                  | 150       |                   |           |
| 8                                                                                                                                                                                                           |                                |                                              |                                                      |                                                                   |                                        |                                                  |                  |           |                   |           |
| 9                                                                                                                                                                                                           |                                |                                              |                                                      |                                                                   |                                        |                                                  |                  |           |                   |           |
| 11                                                                                                                                                                                                          | 1000+                          | 5.0                                          | 5.0                                                  | 0.0                                                               | 310                                    | 4.0                                              | 160              | 180       |                   |           |
| 12                                                                                                                                                                                                          |                                |                                              |                                                      |                                                                   |                                        |                                                  |                  |           | 66                | 450       |
| 15                                                                                                                                                                                                          |                                |                                              |                                                      |                                                                   |                                        |                                                  | 135              |           |                   |           |
| 16                                                                                                                                                                                                          |                                |                                              |                                                      |                                                                   | 400                                    | 50                                               |                  | 160       | 32                | 12        |
| 17                                                                                                                                                                                                          |                                |                                              | 5.0                                                  | 0.0                                                               |                                        |                                                  |                  |           |                   |           |
| 18                                                                                                                                                                                                          | 1000+                          | 68                                           |                                                      |                                                                   |                                        |                                                  |                  |           |                   |           |
| 20                                                                                                                                                                                                          | 1000+                          |                                              | 7.5                                                  | 0.0                                                               |                                        |                                                  |                  |           | 1000 +            | 1000+     |
| 21                                                                                                                                                                                                          |                                |                                              |                                                      |                                                                   | 200                                    | 30                                               | 140              | 130       |                   |           |
| 26                                                                                                                                                                                                          |                                |                                              |                                                      |                                                                   | 240                                    | 0.5                                              | 5.0              | 250       |                   |           |
| 29                                                                                                                                                                                                          | 5.0                            |                                              |                                                      |                                                                   |                                        |                                                  |                  |           |                   |           |
|                                                                                                                                                                                                             |                                |                                              |                                                      |                                                                   |                                        |                                                  |                  |           |                   |           |
|                                                                                                                                                                                                             |                                |                                              |                                                      |                                                                   |                                        |                                                  |                  |           |                   |           |
|                                                                                                                                                                                                             |                                |                                              |                                                      |                                                                   |                                        |                                                  |                  |           |                   |           |
| Depth                                                                                                                                                                                                       |                                |                                              |                                                      |                                                                   | Soil Bo                                | ring ID                                          | 1                | 1         | -                 |           |
| Depth<br>(ft)                                                                                                                                                                                               | 11                             | 12                                           | 13                                                   | 14                                                                | Soil Bo<br>15                          | ring ID<br>16                                    | 17               | 18        | 19                | 20        |
| <b>Depth</b><br>(ft)<br>4                                                                                                                                                                                   | <b>11</b><br>0.5               | <b>12</b><br>1.0                             | <b>13</b><br>5.0                                     | <b>14</b><br>9.5                                                  | Soil Bo<br>15                          | ring ID<br>16                                    | 17               | 18        | 19                | 20        |
| <b>Depth</b><br>(ft)<br>4<br>5                                                                                                                                                                              | <b>11</b><br>0.5               | <b>12</b><br>1.0                             | <b>13</b><br>5.0                                     | <b>14</b><br>9.5                                                  | Soil Bo<br>15                          | ring ID<br>16                                    | 17               | 18        | 19                | 20        |
| <b>Depth</b> (ft) 4 5 6                                                                                                                                                                                     | <b>11</b><br>0.5               | <b>12</b><br>1.0                             | <b>13</b><br>5.0                                     | <b>14</b><br>9.5                                                  | Soil Bo<br>15                          | ring ID<br>16                                    | 17               | 18        | 19                | 20        |
| <b>Depth</b><br>(ft)<br>4<br>5<br>6<br>8                                                                                                                                                                    | <b>11</b><br>0.5               | <b>12</b><br>1.0                             | <b>13</b><br>5.0<br>1000+                            | <b>14</b><br>9.5<br>36                                            | Soil Bo<br>15                          | ring ID<br>16                                    | 17               | 18        | 19                | 20        |
| Depth           (ft)           4           5           6           8           9                                                                                                                            | 11<br>0.5<br>0.0               | <b>12</b><br>1.0<br>0.5                      | <b>13</b><br>5.0<br>1000+<br>1000+                   | <b>14</b><br>9.5<br>36                                            | Soil Bo<br>15                          | ring ID<br>16<br>0.0                             | 0.0              | <b>18</b> | <b>19</b>         | 20        |
| Depth<br>(ft)<br>4<br>5<br>6<br>8<br>9<br>11                                                                                                                                                                | <b>11</b><br>0.5<br>0.0        | <b>12</b><br>1.0<br>0.5                      | <b>13</b><br>5.0<br>1000+<br>1000+                   | <b>14</b><br>9.5<br>36                                            | Soil Bo<br>15<br>390                   | ring ID<br>16<br>0.0                             | 0.0              | 0.0       | <b>19</b>         | 20        |
| Depth<br>(ft)<br>4<br>5<br>6<br>8<br>9<br>11<br>12                                                                                                                                                          | 11<br>0.5<br>0.0<br>0.0        | <b>12</b><br>1.0<br>0.5<br>0.0               | <b>13</b><br>5.0<br>1000+<br>1000+<br>580            | 14<br>9.5<br>36<br>240                                            | Soil Bo<br>15<br>390                   | ring ID<br>16<br>0.0                             | 0.0              | 0.0       | <b>19</b>         | 20        |
| Depth           (ft)           4           5           6           8           9           11           12           15                                                                                     | 11<br>0.5<br>0.0<br>0.0<br>0.5 | <b>12</b><br>1.0<br>0.5<br>0.0               | <b>13</b><br>5.0<br>1000+<br>1000+<br>580            | 14<br>9.5<br>36<br>240                                            | Soil Bo<br>15<br>390                   | <b>ring ID</b> 16 0.0                            | 0.0              | 0.0       | <b>19</b> 0.0     | 20        |
| Depth<br>(ft)           4           5           6           8           9           11           12           15           16                                                                               | 11<br>0.5<br>0.0<br>0.0<br>0.5 | <b>12</b><br>1.0<br>0.5<br>0.0               | <b>13</b><br>5.0<br>1000+<br>1000+<br>580<br>1000+   | 14<br>9.5<br>36<br>240<br>550                                     | Soil Bo<br>15<br>390<br>1000+          | <b>ring ID</b> 16 0.0                            | 0.0              | 0.0       | <b>19</b> 0.0     | 20        |
| Depth<br>(ft)<br>4<br>5<br>6<br>8<br>9<br>11<br>12<br>15<br>16<br>17                                                                                                                                        | 11<br>0.5<br>0.0<br>0.0<br>0.5 | <b>12</b><br>1.0<br>0.5<br>0.0               | 13<br>5.0<br>1000+<br>1000+<br>580<br>1000+          | 14         9.5           36         240           550         550 | Soil Bo<br>15<br>390<br>1000+          | <b>ring ID</b> 16 0.0                            | 0.0              | 0.0       | 19<br>0.0         | 20        |
| Depth<br>(ft)           4           5           6           8           9           11           12           15           16           17           18                                                     | 11<br>0.5<br>0.0<br>0.0<br>0.5 | <b>12</b><br>1.0<br>0.5<br>0.0               | 13<br>5.0<br>1000+<br>1000+<br>580<br>1000+          | 14         9.5           36         240           550             | Soil Bo<br>15<br>390<br>1000+          | 0.0                                              | 0.0              | 0.0       | 0.0               | <b>20</b> |
| Depth           (ft)           4           5           6           8           9           11           12           15           16           17           18           20                                 | 11<br>0.5<br>0.0<br>0.0<br>0.5 | <b>12</b><br>1.0<br>0.5<br>0.0<br>0.0<br>9.0 | 13<br>5.0<br>1000+<br>1000+<br>580<br>1000+<br>1000+ | 14<br>9.5<br>36<br>240<br>550                                     | Soil Bo<br>15<br>390<br>1000+<br>1000+ | ning ID           16           0.0           105 | 17<br>0.0<br>136 | 0.0       | 19<br>0.0<br>480  | <b>20</b> |
| Depth<br>(ft)           4           5           6           8           9           11           12           15           16           17           18           20           21                           | 11<br>0.5<br>0.0<br>0.0<br>0.5 | 12<br>1.0<br>0.5<br>0.0<br>0.0<br>9.0        | 13<br>5.0<br>1000+<br>1000+<br>580<br>1000+<br>1000+ | 14<br>9.5<br>36<br>240<br>550<br>1000+                            | Soil Bo<br>15<br>390<br>1000+<br>1000+ | ning ID           16           0.0           105 | 17<br>0.0<br>136 | 0.0       | 19<br>0.0<br>480  | <b>20</b> |
| Depth<br>(ft)           4           5           6           8           9           11           12           15           16           17           18           20           21           26              | 11<br>0.5<br>0.0<br>0.0<br>0.5 | 12<br>1.0<br>0.5<br>0.0<br>0.0<br>9.0        | 13<br>5.0<br>1000+<br>1000+<br>580<br>1000+<br>1000+ | 14<br>9.5<br>36<br>240<br>550                                     | Soil Bo<br>15<br>390<br>1000+<br>1000+ | ring ID           16           0.0           105 | 17<br>0.0<br>136 | 0.0       | <b>19</b> 0.0 480 | <b>20</b> |
| Depth<br>(ft)           4           5           6           8           9           11           12           15           16           17           18           20           21           26           29 | 11<br>0.5<br>0.0<br>0.0<br>0.5 | 12<br>1.0<br>0.5<br>0.0<br>9.0               | 13<br>5.0<br>1000+<br>1000+<br>580<br>1000+<br>1000+ | 14         9.5         36         240         550         1000+   | Soil Bo<br>15<br>390<br>1000+<br>1000+ | ning ID           16           0.0           105 | 17<br>0.0<br>136 | 0.0       | 19<br>0.0<br>480  | <b>20</b> |

# Table 2Results of Soil Headspace Screening

| Depth |     |     |      |      | Soil B | oring ID |  |  |
|-------|-----|-----|------|------|--------|----------|--|--|
| (ft)  | 21  | 22  | 23   | 24   | 25     |          |  |  |
| 4     |     |     |      |      |        |          |  |  |
| 5     |     |     | 1999 | 1999 | 5.0    |          |  |  |
| 6     |     |     |      |      |        |          |  |  |
| 8     |     |     |      |      |        |          |  |  |
| 9     |     |     | 1999 | 1999 | 5.0    |          |  |  |
| 11    |     |     |      |      |        |          |  |  |
| 12    |     |     |      |      |        |          |  |  |
| 15    |     |     | 1999 | 1999 | 5.4    |          |  |  |
| 16    |     |     |      |      |        |          |  |  |
| 17    |     |     |      |      |        |          |  |  |
| 18    | 360 |     |      |      |        |          |  |  |
| 20    |     | 698 |      |      |        |          |  |  |

## Table 2Results of Soil Headspace Screening

|         | Soil Boring ID |        |             |      |       |       |  |  |  |  |  |
|---------|----------------|--------|-------------|------|-------|-------|--|--|--|--|--|
| Depth   | <b>MW-7</b>    | LGP-1- | <b>MW-8</b> | MW-9 | MW-10 | MW-11 |  |  |  |  |  |
| (ft)    |                | 12     |             |      |       |       |  |  |  |  |  |
| 0-2     | 0              |        |             |      |       |       |  |  |  |  |  |
| 0-2.5   |                | 0.5    |             |      |       |       |  |  |  |  |  |
| 0-5     |                |        | 0.9         | 1.9  | 3.2   | 3.2   |  |  |  |  |  |
| 2.5-5   |                | 0.5    |             |      |       |       |  |  |  |  |  |
| 5-7     | 39.4           |        |             |      |       |       |  |  |  |  |  |
| 5-7.5   |                | 1.0    |             |      |       |       |  |  |  |  |  |
| 5-10    |                |        | 2.4         | 1.2  | 4.1   | 5.0   |  |  |  |  |  |
| 7.5-10  |                | 1.2    |             |      |       |       |  |  |  |  |  |
| 10-12   | 127            |        |             |      |       |       |  |  |  |  |  |
| 10-12.5 |                | 10.2   |             |      |       |       |  |  |  |  |  |
| 10-15   |                |        | 177.4       | 3.3  | 5.9   | 6.7   |  |  |  |  |  |
| 12.5-15 |                | 6.4    |             |      |       |       |  |  |  |  |  |
| 12.5-   | 1035           |        |             |      |       |       |  |  |  |  |  |
| 14.5    |                |        |             |      |       |       |  |  |  |  |  |
| 15-17.5 |                | 9.6    |             |      |       |       |  |  |  |  |  |
| 15-20   |                |        | 894         | 1511 | 5.8   | 5.0   |  |  |  |  |  |
| 15-17   | 1494           |        |             |      |       |       |  |  |  |  |  |
| 15-17.5 |                |        |             |      |       |       |  |  |  |  |  |
| 17-19   | 1598           |        |             |      |       |       |  |  |  |  |  |
| 17.5-20 |                | 3.6    |             |      |       |       |  |  |  |  |  |
| 20-22.5 |                | 1.5    |             |      |       |       |  |  |  |  |  |
| 20-25   |                |        | 124         |      | 863   |       |  |  |  |  |  |
| 22.5-25 |                | 26.7   |             |      |       |       |  |  |  |  |  |
| 25-27.5 |                | 2.1    |             |      |       |       |  |  |  |  |  |
| 27.5-30 |                | 1.7    |             |      |       |       |  |  |  |  |  |
|         |                |        |             |      |       |       |  |  |  |  |  |

List instruments used and discuss field methods and procedures in Section 6. Add additional rows as needed, and copy the entire table if more columns are needed. Notes:

| Boring<br>ID | Sampled<br>Depth<br>(ft) | Date<br>Sampled | Benzene | Toluene | Ethyl-<br>benzene | Xylenes | MTBE | GRO   | DRO  | Lab<br>Type <sup>2</sup> |
|--------------|--------------------------|-----------------|---------|---------|-------------------|---------|------|-------|------|--------------------------|
| TH-1         | 17.5-19.5                | 4/19/95         | < 0.05  | 0.078   | < 0.05            | < 0.15  |      | <10*  | 334  | Fix                      |
| TH-1         | 28-30                    | 4/19/95         | 4.97    | 52      | 45.9              | 322     |      | 2140  | <10  | Fix                      |
| TH-2         | 17.5-19.5                | 4/19/95         | < 0.05  | 0.101   | < 0.05            | 0.159   |      | <10   | <10  | Fix                      |
| TH-3         | 17.5-19.5                | 4/19/95         | < 0.05  | < 0.05  | < 0.05            | < 0.15  |      | <10   | <10  | Fix                      |
| TH-4         | 18.5-20.5                | 4/19/95         | < 0.05  | 0.069   | < 0.05            | < 0.15  |      | <10   | <10  | Fix                      |
| TH-6         | 15-16.5                  | 6/27/95         | < 0.05  | < 0.05  | < 0.05            | < 0.15  |      | <10   | <10  | Fix                      |
| TH-7         | 5-6.5                    | 6/27/95         | < 0.05  | < 0.145 | 0.109             | < 0.15  |      | 86.6  | 155  | Fix                      |
| TH-7         | 25-26.5                  | 6/27/95         | < 0.05  | 0.089   | < 0.05            | < 0.15  |      | <10   | <10  | Fix                      |
| TH-8         | 5-6.5                    | 6/27/95         | 326     | 794     | 183               | 955     |      | 14700 | 3470 | Fix                      |
|              |                          |                 |         |         |                   |         |      |       |      |                          |

Table 3 Analytical Results of Soil Samples<sup>1</sup>

<sup>1</sup> Report results in mg/kg. Use less than symbols to show detection limit. <sup>2</sup> Indicate "mobile" or "fixed" in the lab type column. Add additional rows as needed.

Notes:

Monitoring Report Page 6

Table 4 **Other Contaminants Detected in Soils (Petroleum or Non-petroleum Derived)**<sup>1</sup>

| Boring<br>ID | Sampled<br>Depth<br>(ft) | Date<br>Sampled |  |  |  | Lab<br>Type <sup>2</sup> |
|--------------|--------------------------|-----------------|--|--|--|--------------------------|
|              |                          |                 |  |  |  |                          |
|              |                          |                 |  |  |  |                          |
|              |                          |                 |  |  |  |                          |
|              |                          |                 |  |  |  |                          |
|              |                          |                 |  |  |  |                          |
|              |                          |                 |  |  |  |                          |
|              |                          |                 |  |  |  |                          |
|              |                          |                 |  |  |  |                          |
|              |                          |                 |  |  |  |                          |
|              |                          |                 |  |  |  |                          |

<sup>1</sup> Report results in mg/kg. Use less than symbols to show detection limit. <sup>2</sup> Indicate "mobile" or "fixed" in the lab type column.

Indicate other contaminants (either petroleum or non-petroleum derived) detected in soil collected from borings. Add additional rows as needed, and copy the entire table if more columns are needed. Notes:

## Table 5 Contaminated Surface Soil Results

| Sample ID | Headspace 10 ppm or Greater <sup>1</sup><br>(Y/N) | Petroleum Saturated<br>(Y/N) |
|-----------|---------------------------------------------------|------------------------------|
|           |                                                   |                              |
|           |                                                   |                              |
|           |                                                   |                              |
|           |                                                   |                              |

<sup>1</sup> As measured with a photoionization detector (PID). Add additional rows as needed.

Notes:

### Table 6 Water Level Measurements and Depths of Water Samples Collected from Borings

|                               | Soil Boring |   |   |   |   |   |   |   |   |    |  |
|-------------------------------|-------------|---|---|---|---|---|---|---|---|----|--|
|                               | 1           | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |
| Static Water                  |             |   |   |   |   |   |   |   |   |    |  |
| Level Depth <sup>1</sup> (ft) |             |   |   |   |   |   |   |   |   |    |  |
| Sampled                       |             |   |   |   |   |   |   |   |   |    |  |
| Depth (ft)                    |             |   |   |   |   |   |   |   |   |    |  |
| Sampling                      |             |   |   |   |   |   |   |   |   |    |  |
| Method <sup>2</sup>           |             |   |   |   |   |   |   |   |   |    |  |

<sup>1</sup> Describe the methods used to measure water levels in borings in Section 6.

<sup>2</sup> Refer to Guidance Document 4-05 for acceptable ground water sampling methods. Notes:

|                  | Data      | Sampled       |         |         | Ethyl             |         |       |           |       | Lab                      |
|------------------|-----------|---------------|---------|---------|-------------------|---------|-------|-----------|-------|--------------------------|
| Boring ID        | Date      | Deptn<br>(ft) | Renzene | Toluene | Ethyl-<br>benzene | Xylenes | MTRF  | GRO       | DRO   | LaD<br>Type <sup>2</sup> |
| TH-1             | 4/19/95   | (11)          | 1 080   | 1 520   | 943               | 9 000   | WITDE | 5 840     | DRO   | Fixed                    |
| TH-9             | 8/01/95   | 20            | 129     | 133     | 38.5              | 68.7    |       | 3.200     | 1.500 | Fixed                    |
| TH-10            | 8/01/95   | 20            | 318     | 314     | 49.9              | 295     |       | 15,100    | - ,   | Fixed                    |
| TH-11            | 8/01/95   | 20            | <1.0    | <1.0    | <1.0              | <3.0    |       | <100      |       | Fixed                    |
| TH-12            | 8/01/95   | 20            | 1.1     | 1.9     | 1.1               | 3.1     |       | <100      |       | Fixed                    |
| TH-13            | 8/01/95   | 20            | 130,000 | 349,000 | 162,000           | 244,000 |       | 9,100,000 |       | Fixed                    |
| TH-14            | 8/01/95   | 20            | 19,600  | 37,200  | 11,200            | 66,200  |       | 1,660,000 |       | Fixed                    |
| TH-15            | 8/01/95   | 20            | 10,100  | 20,500  | 5,160             | 23,100  |       | 597,000   |       | Fixed                    |
| TH-16            | 8/01/95   | 20            | 2,130   | 5,210   | 1,230             | 5,910   |       | 135,000   |       | Fixed                    |
| TH-17            | 11/28/95  | 20            | 3.6     | <0.4    | <0.4              | < 0.5   |       | <100      | 300   | Fixed                    |
| TH-18            | 11/28/95  | 20            | < 0.5   | <0.4    | < 0.4             | < 0.5   |       | <100      | <100  | Fixed                    |
| TH-19            | 11/28/95  | 20            | 1,900   | 5,470   | 3,350             | 25,730  |       | 57,900    | 7,300 | Fixed                    |
| TH-20            | 11/28/95  | 20            | 1,450   | 85.6    | 75.1              | 494.7   |       | 10,900    | 1,500 | Fixed                    |
| TH-21            | 11/28/95  | 22            | 328     | 55.5    | 377               | 910     |       | 12,900    |       | Fixed                    |
| TH-22            | 11/28/95  | 22            | 122     | 69.9    | 17.1              | 99.6    |       | 1,100     | 100   | Fixed                    |
| TH-23            | 6/23/97   | 20-24         | 1,346   | 11,900  | 990               | 6,590   |       | 49,880    |       | Fixed                    |
| TH-24            | 6/23/97   | 20-24         | 1,310   | 2,650   | 674               | 4,200   |       | 26,930    |       | Fixed                    |
| TH-25            | 6/23/97   | 20-24         | <1.0    | 2.1     | <1.0              | <3.0    |       | <100      |       | Fixed                    |
| TH-26            | 6/23/97   | 20-24         | 1.0     | 3.4     | <1.0              | <3.0    |       | <100      |       | Fixed                    |
| TH-27            | 6/23/97   | 22-26         | 2,260   | 899     | 774               | 1,540   |       | 13,100    |       | Fixed                    |
| TH-28            | 6/23/97   | 22-26         | 4,160   | 2,520   | 538               | 2,880   |       | 22,800    |       | Fixed                    |
| TH-29            | 6/23/97   | 22            | 11.3    | 3.3     | <1.0              | <3.0    |       | 180       |       | Fixed                    |
| TH-30            | 6/23/97   | 22            | <1.0    | <1.0    | <1.0              | <3.0    |       | <100      |       | Fixed                    |
| TH-31            | 6/24/97   | 22-26         | 88.2    | 3.1     | <1.0              | 7.1     |       | 730       |       | Fixed                    |
| TH-32            | 6/24/97   | 22-26         | 2,550   | 9,080   | 1,350             | 7,190   |       | 33,000    |       | Fixed                    |
| TH-33            | 6/24/97   | 22-26         | 3,340   | 5,230   | 1,980             | 9,320   |       | 50,200    |       | Fixed                    |
| TH-34            | 6/24/97   | 22-26         | 28.5    | 39.5    | 43.2              | 209     |       | 1,380     |       | Fixed                    |
| TH-35            | 6/24/97   | 20-22         | 3,540   | 9,690   | 1,370             | 8,380   |       | 37,600    |       | Fixed                    |
| TH-36            | 6/24/97   | 22-26         | 1,720   | 298     | 294               | 754     |       | 8,360     |       | Fixed                    |
| TH-37            | 7/21/97   | 24-25         | 313     | 3.5     | 2.2               | 10.8    |       | 1,800     |       | Fixed                    |
| TH-38            | 7/21/97   | 22-26         | 209     | <1.0    | 1.2               | 8.8     |       | 700       |       | Fixed                    |
| TH-39            | 7/21/97   | 28-32         | 147     | <1.0    | <1.0              | <3.0    |       | 500       |       | Fixed                    |
| TH-40            | 7/21/97   | 24-28         | 42      | <1.0    | <1.0              | 1.8     |       | 100       |       | Fixed                    |
| TH-41            | 7/21/97   | 24-28         | <1.0    | <1.0    | <1.0              | <3.0    |       | <100      |       | Fixed                    |
| TH-42            | 8/02/97   | 24-26         | <1.0    | <1.0    | <1.0              | <3.0    |       | <100      |       | Fixed                    |
| TH-43            | 7/23/97   | 21-26         | 291     | <1.0    | 1.1               | 5.3     |       | 670       |       | Fixed                    |
| TH-44            | 7/23/97   | 24-26         | 36      | <1.0    | <1.0              | <3.0    |       | <100      |       | Fixed                    |
| TH-45            | 7/23/97   | 26-28         | 4.9     | <1.0    | <1.0              | <3.0    |       | <100      |       | Fixed                    |
| GP-1             | 1/21/2010 | 24-29         | 895     | 613     | 508               | 2,200   | <25   | 10,200    | 3.6   | Fixed                    |
| GP-2             | 1/21/2010 | 25-30         | 10.4    | 3.5     | <1.0              | 8.6     | 5.7   | 1,240     | 0.42  | Fixed                    |
| Trip Blank       | 1/21/2010 |               | <1.0    | <1.0    | <1.0              | <1.0    | <5.0  | <100      |       | Fixed                    |
| Equip.           |           |               |         |         |                   |         |       |           |       |                          |
| Blank            |           |               |         |         |                   |         |       |           |       |                          |
| Lab Blank        |           |               |         |         |                   |         |       |           |       |                          |
| HRL <sup>3</sup> |           |               | 10      | 200     | 50                | 300     |       | 200       |       |                          |

 Table 7

 Analytical Results of Water Samples Collected from Borings<sup>1</sup>

Monitoring Report Page 9

<sup>1</sup> Report results in μg/L. Use less than symbols to show detection limit.
<sup>2</sup> Indicate "mobile" or "fixed" in the lab type column.
<sup>3</sup> See <u>http://www.health.state.mn.us/divs/eh/groundwater/hrltable.html</u> for list of current HRLs. Add additional rows as needed. Notes:

#### Table 8 Other Contaminants Detected in Water Samples Collected from Borings (Petroleum or Non-petroleum Derived)<sup>1</sup>

|                  | Date    | Sampled<br>Depth |         | Methylethyl | 1,2-di-      | Methyl         | 1,2-          |               |                  | N-            | 1,3,5- | Tert-<br>Butylbenzen | 1,2,4- | Sec-         | p-               |                |            | Lab               |
|------------------|---------|------------------|---------|-------------|--------------|----------------|---------------|---------------|------------------|---------------|--------|----------------------|--------|--------------|------------------|----------------|------------|-------------------|
| Boring ID        | Sampled | (ft)             | Acetone | ketone      | chloroethane | isobutylethane | Dibromoethane | Chlorobenzene | Isopropylbenzene | propylbenzene | TMB    | e                    | TMB    | Butylbenzene | Isopropyltoluene | n-butylbenzene | Napthalene | Type <sup>2</sup> |
| TH-17            | 20      | 11/20/1995       | 4.5     | <2.8        | < 0.3        | < 0.7          | < 0.8         | <0.4          | <0.7             | < 0.8         | < 0.2  | < 0.6                | < 0.7  | < 0.5        | <0.4             | < 0.3          | < 0.7      |                   |
| TH-18            | 20      | 11/20/1995       | < 0.3   | <2.8        | < 0.3        | <0.7           | <0.8          | <0.4          | < 0.7            | <0.8          | < 0.2  | <0.6                 | <0.7   | < 0.5        | <0.4             | <0.3           | <0.7       |                   |
| TH-19            | 20      | 11/20/1995       | 820     | 52,200      | < 0.3        | <0.7           | < 0.8         | <0.4          | 7,780            | 3,010         | 3,680  | 1,430                | 10,200 | 2,110        | 968              | 5,330          | 2,200      |                   |
| TH-20            | 20      | 11/21/1995       | 52.3    | 529         | 41.9         | 12             | 15.9          | <0.4          | 19.4             | 2.2           | 70.1   | <0.6                 | 375    | <0.5         | < 0.4            | 28.7           | 172        |                   |
| TH-21            | 22      | 11/21/1995       | 56.8    | 1630        | 24           | < 0.7          | < 0.8         | 112           | 302              | 384           | 491    | 120                  | 1500   | 224          | 77.5             | 505            | 361        |                   |
| TH-22            | 22      | 11/21/1995       | 29      | 63          | < 0.3        | <0.7           | < 0.8         | <0.4          | 4.1              | 0.9           | 4.6    | <0.6                 | 20.7   | < 0.5        | <0.4             | 4.8            | 5.8        |                   |
| GP-1             |         |                  |         |             |              |                |               |               |                  |               | 113    |                      | 413    |              |                  |                |            |                   |
| GP-2             | 25-30   | 1/21/2010        |         |             |              |                |               |               |                  |               |        |                      | 1.1    |              |                  |                |            |                   |
| Trip Blank       |         |                  |         |             |              |                |               |               |                  |               |        |                      |        |              |                  |                |            |                   |
| Equip. Blank     |         |                  |         |             |              |                |               |               |                  |               |        |                      |        |              |                  |                |            |                   |
| Lab Blank        |         |                  |         |             |              |                |               |               |                  |               |        |                      |        |              |                  |                |            |                   |
| HRL <sup>3</sup> |         |                  |         |             |              |                |               |               |                  |               |        |                      |        |              |                  |                |            |                   |

 

 Intel
 Image: Intel
 Image: Intel
 Image: Notes:

|         | MDH<br>Unique |           |         | Top of | Bottom of           |                 | Total Well<br>Depth<br>from |
|---------|---------------|-----------|---------|--------|---------------------|-----------------|-----------------------------|
| Well    | Well          | Date      | Surface | Casing | Well                | Screen Interval | Surface                     |
| Number  |               |           |         |        | Elevation<br>020.07 | (Elev Elev.)    | (11)                        |
| M W - 1 | 554377        | 6/15/1995 | 963.07  | 963.10 | 939.07              | 939.07-949.07   | 24                          |
| MW-2    | 554378        | 6/15/1995 | 963.67  | 963.37 | 939.67              | 939.67–949.67   | 24                          |
| MW-3    | 554379        | 6/15/1995 | 961.97  | 963.72 | 934.97              | 934.97–944.97   | 27                          |
| MW-4    | 617207        | 9/01/1998 | 964.87  | 964.62 | 935.87              | 935.87–945.87   | 29                          |
| MW-5    | 617205        | 9/02/1998 | 963.84  | 963.68 | 934.84              | 934.84–944.84   | 29                          |
| MW-5A   | 617206        | 9/02/1998 | 963.81  | 963.62 | 919.81              | 919.81-929.81   | 44                          |
| MW-6    | 617203        | 9/02/1998 | 963.94  | 963.93 | 934.94              | 934.94–944.94   | 29                          |
| MW-6A   | 617204        | 9/02/1998 | 963.76  | 963.73 | 922.76              | 922.76-932.76   | 41                          |
| MW-7    | 731591        | 9/19/2005 | 963.27  | 963.29 | 939.29              | 939.29–949.29   | 24                          |
|         |               |           |         |        |                     |                 |                             |
|         |               |           |         |        |                     |                 |                             |
|         |               |           |         |        |                     |                 |                             |
|         |               |           |         |        |                     |                 |                             |

# Table 9 (Previous Data)Monitoring Well Completion Information1

<sup>1</sup> Include well construction diagrams and MDH well logs in Section 6.

Add additional rows as needed.

Notes: (location and elevation of benchmark)

| Well   | MDH<br>Unique<br>Well | Date       | Surface   | Top of<br>Casing | Bottom of<br>Well | Screen Interval | Total Well<br>Depth<br>from<br>Surface |
|--------|-----------------------|------------|-----------|------------------|-------------------|-----------------|----------------------------------------|
| Number | Number                | Installed  | Elevation | Elevation        | Elevation         | (Elev Elev.)    | (ft)                                   |
| MW-1   | 554377                | 6/15/1995  | 962.92    | 963.00           | 938.92            | 938.92-948.92   | 24                                     |
| MW-2   | 554378                | 6/15/1995  | Unknown   | Unknown          | Unknown           | Unknown         | 24                                     |
| MW-3   | 554379                | 6/15/1995  | 962.18    | 961.59           | 935.18            | 935.18-945.18   | 27                                     |
| MW-4   | 617207                | 9/01/1998  | Unknown   | Unknown          | Unknown           | Unknown         | 29                                     |
| MW-5   | 617205                | 9/02/1998  | Unknown   | Unknown          | Unknown           | Unknown         | 29                                     |
| MW-5A  | 617206                | 9/02/1998  | Unknown   | Unknown          | Unknown           | Unknown         | 44                                     |
| MW-6   | 617203                | 9/02/1998  | 962.61    | 962.41           | 933.61            | 933.61-943.61   | 29                                     |
| MW-6A  | 617204                | 9/02/1998  | 962.65    | 962.46           | 921.65            | 921.65-931.65   | 41                                     |
| MW-7   | 731591                | 9/19/2005  | 962.01    | 961.91           | 938.01            | 938.01-948.01   | 24                                     |
| MW-8   | 792988                | 12/11/2012 | 962.54    | 962.60           | 936.54            | 936.54-951.54   | 26                                     |
| MW-9   | 792989                | 12/12/2012 | 961.89    | 961.85           | 935.89            | 935.89-950.89   | 26                                     |
| MW-10  | 792990                | 12/13/2012 | 963.94    | 963.94           | 935.94            | 935.94-945.94   | 28                                     |
| MW-11  | 792991                | 12/11/2012 | 962.13    | 964.46           | 937.13            | 937.13-947.13   | 25                                     |

# Table 9 (January 2013 Resurveyed Data)Monitoring Well Completion Information1

<sup>1</sup> Include well construction diagrams and MDH well logs in Section 6.

Add additional rows as needed.

Notes: (location and elevation of benchmark)

| Well<br>Number | Date Sampled | Depth to Water<br>from Top of Riser | Product<br>Thickness | Depth to Water<br>Below Grade | Relative Groundwater<br>Elevation | Water Level Above<br>Screen (Y/N) |
|----------------|--------------|-------------------------------------|----------------------|-------------------------------|-----------------------------------|-----------------------------------|
| MW-1           | 1/11/2002    | NR                                  | NR                   | NR                            | NR                                | NR                                |
|                | 6/24/2002    | NR                                  | ND                   | NR                            | NR                                | Ν                                 |
|                | 9/13/2002    | 18.21                               | ND                   | 18.18                         | 944.89                            | Ν                                 |
|                | 12/26/2002   | 17.73                               | ND                   | 17.70                         | 945.37                            | Ν                                 |
|                | 4/14/2003    | 18.18                               | ND                   | 18.15                         | 944.92                            | Ν                                 |
|                | 7/7/2003     | 17.74                               | ND                   | 17.71                         | 945.36                            | Ν                                 |
|                | 10/10/2003   | 17.42                               | ND                   | 17.39                         | 945.68                            | Ν                                 |
|                | 2/6/2004     | 18.20                               | ND                   | 18.17                         | 944.9                             | Ν                                 |
|                | 3/18/2004    | 18.48                               | ND                   | 18.45                         | 944.62                            | Ν                                 |
|                | 6/18/2004    | NR                                  | ND                   | NR                            | NR                                | NR                                |
|                | 9/7/2004     | 18.17                               | ND                   | 18.14                         | 944.93                            | Ν                                 |
|                | 9/14/2004    | NR                                  | ND                   | NR                            | NR                                | NR                                |
|                | 12/20/2004   | 18.32                               | ND                   | 18.29                         | 944.78                            | Ν                                 |
|                | 2/23/2005    | NR                                  | ND                   | NR                            | NR                                | NR                                |
|                | 3/10/2005    | 18.51                               | ND                   | 18.48                         | 944.59                            | Ν                                 |
|                | 4/11/2005    | 18.79                               | ND                   | 18.76                         | 944.31                            | Ν                                 |
|                | 6/9/2005     | 18.93                               | ND                   | 18.90                         | 944.17                            | Ν                                 |
|                | 8/4/2005     | 18.77                               | ND                   | 18.74                         | 944.33                            | Ν                                 |
|                | 11/1/2005    | 17.16                               | ND                   | 17.13                         | 945.94                            | Ν                                 |
|                | 3/1/2006     | 18.13                               | ND                   | 18.1                          | 944.97                            | Ν                                 |
|                | 7/13/2006    | Dry                                 | ND                   | NR                            | NR                                | Ν                                 |
|                | 10/4/2006    | 18.67                               | ND                   | 18.64                         | 944.43                            | Ν                                 |
|                | 3/9/2007     | NS Covered<br>w snow pile           | NA                   | NR                            | NR                                | NA                                |
|                | 7/24/2007    | 19.28                               | ND                   | 19.25                         | 943.82                            | Ν                                 |
|                | 1/20/2010    | 19.95                               | ND                   | 19.92                         | 943.15                            | Ν                                 |
|                | 1/12/2011    | 18.96                               | 0.15                 | 18.93                         | 944.14                            | Ν                                 |
|                | 3/21/2011    | 19.16                               | ND                   | 19.13                         | 943.94                            | Ν                                 |
|                | 6/7/2011     | 18.59                               | ND                   | 18.56                         | 944.51                            | Ν                                 |
|                | 10/4/2011    | 17.03                               | ND                   | 17.00                         | 946.07                            | Ν                                 |
|                | 01/10/2013   | 18.21                               | ND                   | 18.13                         | 944.79                            | Ν                                 |
|                | 05/3/2013    | 18.87                               | ND                   | 18.79                         | 944.13                            | Ν                                 |
|                | 2/3/14       | 19.97                               | ND                   | 19.89                         | 943.03                            | Ν                                 |
|                | 4/03/14      | 19.19                               | ND                   | 19.11                         | 943.81                            | Ν                                 |
|                | 5/02/14      | 19.08                               | ND                   | 19.00                         | 943.92                            | Ν                                 |
|                | 8/01/14      | 18.34                               | ND                   | 18.26                         | 944.66                            | Ν                                 |
|                | 11/7/14      | 16.61                               | ND                   | 16.53                         | 946.39                            | Ν                                 |
|                | 02/09/15     | 17.25                               | ND                   | 17.17                         | 945.75                            | Ν                                 |

Table 10Water Level Measurements in Wells1

| Well<br>Number | Date Sampled | Depth to Water<br>from Top of Riser | Product<br>Thickness | Depth to Water<br>Below Grade | Relative Groundwater | Water Level Above<br>Screen (V/N) |
|----------------|--------------|-------------------------------------|----------------------|-------------------------------|----------------------|-----------------------------------|
| Tumber         | 05/08/15     | 17.7                                | ND                   | 17.62                         | 945.3                | N                                 |
|                | 08/13/15     | 17.61                               | ND                   | 17.53                         | 945.39               | N                                 |
|                | 11/03/15     | 18.26                               | ND                   | 18.18                         | 944.74               | Ν                                 |
|                | 2/02/16      | 17.63                               | ND                   | 17.55                         | 945.37               | Ν                                 |
| MW-3           | 10/10/2003   | 18.11                               | ND                   | 16.36                         | 945.61               | Y                                 |
|                | 2/6/2004     | 20.19                               | 1.3'                 | 18.44                         | 943.53               | Ν                                 |
|                | 3/18/2004    | 20.21                               | 1.3                  | 18.46                         | 943.51               | Ν                                 |
|                | 6/18/2004    | 19.65                               | 0.56                 | 17.90                         | 944.07               | Ν                                 |
|                | 9/7/2004     | 18.97                               | ND                   | 17.22                         | 944.75               | Ν                                 |
|                | 9/14/2004    | 18.82                               | NR                   | 17.07                         | 944.90               | Ν                                 |
|                | 12/20/2004   | 19.13                               | 0.05                 | 17.38                         | 944.59               | Ν                                 |
|                | 2/23/2005    | 10.94                               | 0.77                 | 9.19                          | 952.78               | Ν                                 |
|                | 3/10/2005    | 19.61                               | 0.47                 | 17.86                         | 944.11               | Y                                 |
|                | 4/11/2005    | 20.13                               | 0.86                 | 18.38                         | 943.59               | Ν                                 |
|                | 6/9/2005     | 20.46                               | 1.03                 | 18.71                         | 943.26               | Ν                                 |
|                | 7/12/2005    | 20.22                               | 0.82                 | 18.47                         | 943.50               | Ν                                 |
|                | 8/4/2005     | 20.15                               | 0.79                 | 18.4                          | 943.57               | Ν                                 |
|                | 9/28/2005    | N/R                                 | N/R                  | NR                            | NR                   |                                   |
|                | 10/5/2005    | 16.76                               | 0.3                  | 15.01                         | 946.96               | Y                                 |
|                | 11/1/2005    | 17.44                               | 0                    | 15.69                         | 946.28               | Y                                 |
|                | 3/1/2006     | 17.65                               | ND                   | 15.9                          | 946.07               | Y                                 |
|                | 7/13/2006    | 18.34                               | .52'                 | 16.59                         | 945.38               | Y                                 |
|                | 10/4/2006    | 18.92                               | ND                   | 17.17                         | 944.8                | Ν                                 |
|                | 3/9/2007     | 19.98                               | 5.5"                 | 18.23                         | 943.74               | Ν                                 |
|                | 7/24/2007    | NA                                  | 0.8"                 | NR                            | NR                   | Ν                                 |
|                | 1/20/2010    | TOC Broken                          | 4"                   | NR                            | NR                   | Ν                                 |
|                | 3/21/2011    | 17.89                               | ND                   | 16.14                         | 945.83               | Y                                 |
|                | 6/7/2011     | 17.29                               | ND                   | 15.54                         | 946.43               | Y                                 |
|                | 10/4/2011    | 15.77                               | ND                   | 14.02                         | 947.95               | Y                                 |
|                | 01/10/2013   | NA                                  | 7"                   | NA                            | NA                   | NA                                |
|                | 05/3/2013    | NA                                  | 5"                   | NA                            | NA                   | NA                                |
|                | 2/3/2014     | 18.04                               | 0.52'                | 18.63                         | 943.55               | Ν                                 |
|                |              |                                     | (6.24 ")             |                               |                      |                                   |
|                | 3/6/2014     | 18.12                               | 0.53'                | 18.71                         | 943.47               | Ν                                 |
|                | 4/3/2014     | 18.22                               | 0.56'                | 18.81                         | 943.37               | Ν                                 |
|                | 5/2/2014     | 17.69                               | 0.04                 | 18.28                         | 943.86               | Ν                                 |
|                | 6/4/2014     | 17.00                               | ND                   | 17.59                         | 944.59               | Ν                                 |
|                | 7/04/14      | 16.54                               | ND                   | 17.13                         | 945.05               | Ν                                 |
|                | 8/01/14      | 16.07                               | 0.01                 | 16.66                         | 945.52               | Y                                 |

Table 10Water Level Measurements in Wells1

| Well   | Date Sampled from Top of Riser Thickness |       | Depth to Water | Relative Groundwater | Water Level Above |        |
|--------|------------------------------------------|-------|----------------|----------------------|-------------------|--------|
| Number | 0/02/14                                  | 15 76 |                | 16 35                | 9/15 8/           | V      |
|        | 10/03/14                                 | 15.70 | ND             | 16.07                | 946 11            | I<br>V |
|        | 11/07/14                                 | 15 31 | Trace          | 15.07                | 946.28            | I<br>V |
|        | 12/05/14                                 | 15.51 | Trace          | 16.11                | 946.07            | I<br>V |
|        | 01/02/15                                 | 15.52 | trace          | 16.11                | 946               | I<br>V |
|        | 02/09/15                                 | 15.97 |                | 16.56                | 945 62            | I<br>V |
|        | 03/06/15                                 | 16.06 | trace          | 16.55                | 945 53            | I<br>V |
|        | 04/02/15                                 | 16.24 | ND             | 16.83                | 945.35            | Y V    |
|        | 05/08/15                                 | 16.43 | ND             | 17.02                | 945.16            | N      |
|        | 06/05/15                                 | 16.55 | ND             | 17.14                | 945.04            | N      |
|        | 07/01/15                                 | 16.53 | ND             | 17.12                | 945.06            | N      |
|        | 08/13/15                                 | 16.16 | ND             | 16.75                | 945.43            | V      |
|        | 09/03/15                                 | 16.01 | ND             | 16.6                 | 945.58            | Y      |
|        | 10/02/15                                 | 16.03 | ND             | 16.62                | 945.56            | Y      |
|        | 11/02/15                                 | 14.90 | ND             | 15.49                | 946.69            | Y      |
|        | 12/04/15                                 | 16.13 | ND             | 16.72                | 945.46            | Y      |
|        | 1/11/16                                  | 16.19 | ND             | 16.78                | 945.40            | Y      |
|        | 2/02/16                                  | 16.29 | ND             | 16.88                | 945.30            | Y      |
| MW-6   | 1/11/2002                                | 20.21 | ND             | 20.22                | 943.72            | Ν      |
|        | 6/24/2002                                | NR    | ND             | NR                   | NR                | Ν      |
|        | 9/13/2002                                | 19.57 | ND             | 19.58                | 944.36            | Ν      |
|        | 12/26/2002                               | 18.58 | ND             | 18.59                | 945.35            | Y      |
|        | 4/14/2003                                | 18.85 | ND             | 18.86                | 945.08            | Y      |
|        | 7/7/2003                                 | 18.65 | ND             | 18.66                | 945.28            | Y      |
|        | 10/10/2003                               | 18.21 | ND             | 18.22                | 945.72            | Y      |
|        | 2/6/2004                                 | 19.41 | ND             | 19.42                | 944.52            | Ν      |
|        | 3/18/2004                                | 19.14 | ND             | 19.15                | 944.79            | Ν      |
|        | 6/18/2004                                | NR    | ND             | NR                   | NR                | NR     |
|        | 9/7/2004                                 | 19.02 | ND             | 19.03                | 944.91            | Ν      |
|        | 9/14/2004                                | NR    | ND             | NR                   | NR                | Ν      |
|        | 12/20/2004                               | 19.1  | ND             | 19.11                | 944.83            | Ν      |
|        | 2/23/2005                                | NR    | ND             | NR                   | NR                | NR     |
|        | 3/10/2005                                | 19.13 | ND             | 19.14                | 944.80            | Ν      |
|        | 4/11/2005                                | 20.59 | ND             | 20.60                | 943.34            | Ν      |
|        | 6/9/2005                                 | 19.65 | ND             | 19.66                | 944.28            | Ν      |
|        | 8/4/2005                                 | 19.71 | ND             | 19.72                | 944.22            | Ν      |
|        | 11/1/2005                                | 19.22 | ND             | 19.23                | 944.71            | Ν      |
|        | 3/1/2006                                 | 19.74 | ND             | 19.75                | 944.19            | Ν      |
|        | 7/13/2006                                | 19.51 | ND             | 19.52                | 944.42            | Ν      |

Table 10Water Level Measurements in Wells1

| Well<br>Number | Date Sampled | Depth to Water<br>from Top of Riser | Product<br>Thickness | Depth to Water<br>Below Grade | Relative Groundwater<br>Elevation | Water Level Above<br>Screen (Y/N) |
|----------------|--------------|-------------------------------------|----------------------|-------------------------------|-----------------------------------|-----------------------------------|
| 1 (united)     | 10/4/2006    | 19.59                               | ND                   | 19.60                         | 944.34                            | N                                 |
|                | 3/9/2007     | 19.87                               | ND                   | 19.88                         | 944.06                            | N                                 |
|                | 7/24/2007    | 20.12                               | ND                   | 20.13                         | 943.81                            | N                                 |
|                | 1/20/2010    | 20.67                               | ND                   | 20.68                         | 943.26                            | N                                 |
|                | 1/12/2011    | 19.73                               | ND                   | 19.74                         | 944.2                             | N                                 |
|                | 3/21/2011    | 19.83                               | ND                   | 19.84                         | 944.1                             | Ν                                 |
|                | 6/7/2011     | 19.52                               | ND                   | 19.53                         | 944.41                            | N                                 |
|                | 10/4/2011    | 17.98                               | ND                   | 17.99                         | 945.95                            | Y                                 |
|                | 01/10/2013   | 18.86                               | ND                   | 19.06                         | 943.55                            | Ν                                 |
|                | 05/3/2013    | 19.50                               | ND                   | 19.70                         | 942.91                            | Ν                                 |
|                | 2/3/14       | 19.61                               | ND                   | 19.81                         | 942.8                             | Ν                                 |
|                | 5/02/14      | 19.83                               | ND                   | 20.03                         | 942.58                            | Ν                                 |
|                | 08/01/14     | 18.39                               | ND                   | 18.59                         | 944.02                            | Y                                 |
|                | 11/07/14     | 17.42                               | ND                   | 17.62                         | 944.99                            | Y                                 |
|                | 02/09/14     | 17.92                               | ND                   | 18.12                         | 944.49                            | Y                                 |
|                | 05/08/15     | 18.35                               | ND                   | 18.55                         | 944.06                            | Y                                 |
|                | 08/13/15     | 18.28                               | ND                   | 18.48                         | 944.13                            | Y                                 |
|                | 11/03/15     | 16.96                               | ND                   | 17.16                         | 945.45                            | Y                                 |
|                | 2/02/16      | 18.28                               | ND                   | 18.48                         | 944.13                            | Y                                 |
| MW-6A          | 1/11/2002    | 20.13                               | ND                   | 20.16                         | 943.6                             | Y                                 |
|                | 6/24/2002    | NR                                  | ND                   | NR                            | NR                                | Y                                 |
|                | 6/24/2002    | NR                                  | ND                   | NR                            | NR                                | Y                                 |
|                | 9/13/2002    | 19.48                               | ND                   | 19.51                         | 944.25                            | Y                                 |
|                | 12/26/2002   | 18.61                               | ND                   | 18.64                         | 945.12                            | Y                                 |
|                | 4/14/2003    | 18.96                               | ND                   | 18.99                         | 944.77                            | Y                                 |
|                | 7/7/2003     | 18.79                               | ND                   | 18.82                         | 944.94                            | Y                                 |
|                | 10/10/2003   | 20.19                               | ND                   | 20.22                         | 943.54                            | Y                                 |
|                | 2/6/2004     | 19.46                               | ND                   | 19.49                         | 944.27                            | Y                                 |
|                | 3/18/2004    | 19.19                               | ND                   | 19.22                         | 944.54                            | Y                                 |
|                | 6/18/2004    | NR                                  | ND                   | NR                            | NR                                | NR                                |
|                | 9/7/2004     | 19.83                               | ND                   | 19.86                         | 943.9                             | Y                                 |
|                | 9/14/2004    | NR                                  | ND                   | NR                            | NR                                | NR                                |
|                | 12/20/2004   | 19.18                               | ND                   | 19.21                         | 944.55                            | Y                                 |
|                | 2/23/2005    | NR                                  | ND                   | NR                            | NR                                | NR                                |
|                | 3/10/2005    | 19.21                               | ND                   | 19.24                         | 944.52                            | Y                                 |
|                | 4/11/2005    | 19.44                               | ND                   | 19.47                         | 944.29                            | Y                                 |
|                | 6/9/2005     | 20.06                               | ND                   | 20.09                         | 943.67                            | Y                                 |
|                | 8/4/2005     | 21.11                               | ND                   | 21.14                         | 942.62                            | Y                                 |
|                | 11/1/2005    | 21.51                               | ND                   | 21.54                         | 942.22                            | Y                                 |

Table 10Water Level Measurements in Wells1

| Well<br>Number | Date Sampled | Depth to Water<br>from Top of Riser | Product<br>Thickness | Depth to Water<br>Below Grade | Relative Groundwater<br>Elevation | Water Level Above<br>Screen (Y/N) |
|----------------|--------------|-------------------------------------|----------------------|-------------------------------|-----------------------------------|-----------------------------------|
|                | 3/1/2006     | 19.13                               | ND                   | 19.16                         | 944.6                             | Y                                 |
|                | 7/13/2006    | 21.19                               | ND                   | 21.22                         | 942.54                            | Y                                 |
|                | 10/4/2006    | 20.05                               | ND                   | 20.08                         | 943.68                            | Y                                 |
|                | 3/9/2007     | 20.31                               | ND                   | 20.34                         | 943.42                            | Y                                 |
|                | 7/24/2007    | 20.16                               | ND                   | 20.19                         | 943.57                            | Y                                 |
|                | 1/20/2010    | 20.70                               | ND                   | 20.73                         | 943.03                            | Y                                 |
|                | 1/12/2011    | 19.78                               | ND                   | 19.81                         | 943.95                            | Y                                 |
|                | 3/21/2011    | 19.87                               | ND                   | 19.9                          | 943.86                            | Y                                 |
|                | 6/7/2011     | 19.56                               | ND                   | 19.59                         | 944.17                            | Y                                 |
|                | 10/4/2011    | 18.03                               | ND                   | 18.06                         | 945.7                             | Y                                 |
|                | 01/10/2013   | 18.53                               | ND                   | 18.72                         | 943.93                            | Y                                 |
|                | 05/3/2013    | 19.55                               | ND                   | 19.74                         | 942.91                            | Y                                 |
|                | 08/01/2014   | 18.45                               | ND                   | 18.64                         | 944.01                            | Y                                 |
|                | 05/08/15     | 18.41                               | ND                   | 18.6                          | 944.05                            | Y                                 |
|                | 08/13/15     | 18.33                               | ND                   | 18.52                         | 944.13                            | Y                                 |
|                | 11/03/15     | 17.03                               | ND                   | 17.22                         | 945.43                            | Y                                 |
|                | 2/02/16      | 18.33                               | ND                   | 18.52                         | 944.13                            | Y                                 |
| MW-7           | 9/16/2005    | 17.00                               | ND                   | 16.98                         | 946.29                            | Ν                                 |
|                | 11/1/2005    | 17.72                               | ND                   | 17.70                         | 945.57                            | Ν                                 |
|                | 3/1/2006     | 17.81                               | ND                   | 17.79                         | 945.48                            | Ν                                 |
|                | 7/13/2006    | 18.14                               | ND                   | 18.12                         | 945.15                            | Ν                                 |
|                | 10/4/2006    | 18.20                               | ND                   | 18.18                         | 945.09                            | Ν                                 |
|                | 3/9/2007     | 18.60                               | ND                   | 18.58                         | 944.69                            | Ν                                 |
|                | 7/24/2007    | 18.83                               | ND                   | 18.81                         | 944.46                            | Ν                                 |
|                | 1/20/2010    | 20.45                               | 16"                  | 20.43                         | 942.84                            | Ν                                 |
|                | 1/21/2011    | 18.50                               | 0.15                 | 18.48                         | 944.79                            | Ν                                 |
|                | 3/21/2011    | 18.8                                | 0.15                 | 18.78                         | 944.49                            | Ν                                 |
|                | 6/7/2011     | 18.13                               | ND                   | 18.11                         | 945.16                            | Ν                                 |
|                | 10/4/2011    | 16.53                               | ND                   | 16.51                         | 946.76                            | Ν                                 |
|                | 01/10/2013   | 17.63                               | 0.06'                | 17.73                         | 944.28                            | Ν                                 |
|                | 05/3/2013    | 18.31                               | 0.06'                | 18.41                         | 943.50                            | Ν                                 |
|                | 2/3/14       | 18.30                               | 0.02'                | 18.40                         | 943.61                            | Ν                                 |
|                | 3/6/2014     | 18.35                               | 0.03'                | 18.45                         | 943.56                            | Ν                                 |
|                | 4/3/14       | 18.54                               | 0.03                 | 18.64                         | 943.37                            | Ν                                 |
|                | 5/2/14       | 18.47                               | 0.02                 | 18.57                         | 943.44                            | Ν                                 |
|                | 6/4/14       | 17.87                               | ND                   | 17.97                         | 944.04                            | Ν                                 |
|                | 7/4/14       | 17.40                               | ND                   | 17.50                         | 944.51                            | N                                 |
|                | 8/1/14       | 16.895                              | 0.005                | 17.00                         | 945.01                            | N                                 |
|                | 9/2/14       | 16.52                               | .01                  | 16.62                         | 945.40                            | Ν                                 |

Table 10Water Level Measurements in Wells1

| Well<br>Number | Date Sampled | Depth to Water<br>from Top of Riser | Product<br>Thickness | Depth to Water<br>Below Grade | Relative Groundwater | Water Level Above |
|----------------|--------------|-------------------------------------|----------------------|-------------------------------|----------------------|-------------------|
| Tumber         | 10/03/13     | 16.24                               | ND                   | 16.34                         | 945.67               | N                 |
|                | 11/07/14     | 16.05                               | Trace                | 16.15                         | 945.86               | N                 |
|                | 12/05/14     | 16.21                               | Trace                | 16.31                         | 945.7                | N                 |
|                | 01/02/15     | 16.56                               | Trace                | 16.66                         | 945.35               | N                 |
|                | 02/09/15     | 16.65                               | 0.015                | 16.75                         | 945.21               | N                 |
|                | 03/06/15     | 16.72                               | 0.01                 | 16.82                         | 945.19               | Ν                 |
|                | 04/02/15     | 16.89                               | ND                   | 16.99                         | 945.02               | Ν                 |
|                | 05/08/15     | 17.1                                | ND                   | 17.2                          | 944.81               | Ν                 |
|                | 06/05/15     | 17.23                               | ND                   | 17.33                         | 944.68               | Ν                 |
|                | 07/01/15     | 17.22                               | ND                   | 17.32                         | 944.69               | Ν                 |
|                | 08/13/15     | 16.9                                | ND                   | 17.0                          | 945.01               | Ν                 |
|                | 09/03/15     | 16.75                               | ND                   | 16.85                         | 945.16               | Ν                 |
|                | 10/02/15     | 16.75                               | ND                   | 16.85                         | 945.16               | Ν                 |
|                | 11/03/15     | 15.66                               | ND                   | 15.76                         | 946.25               | Ν                 |
|                | 12/04/15     | 16.81                               | ND                   | 16.91                         | 945.10               | Ν                 |
|                | 1/11/16      | 16.88                               | ND                   | 16.98                         | 945.03               | Ν                 |
|                | 2/02/16      | 16.98                               | ND                   | 17.08                         | 944.93               | Ν                 |
| MW-8           | 01/10/2013   | 18.44                               | ND                   | 18.38                         | 944.16               | N                 |
|                | 05/3/2013    | 19.14                               | 1/16"                | 19.08                         | 943.46               | Ν                 |
|                | 2/3/2014     | Buried by snow                      | v bank, soil j       | pile and constru              | iction equipment     |                   |
|                | 3/6/2014     | Buried by snov                      | v bank, soil j       | pile and constru              | iction equipment     |                   |
|                | 4/3/2014     | Buried by snov                      | v bank, soil j       | pile and constru              | iction equipment     |                   |
|                | 5/02/14      | 19.33                               | 0.04                 | 19.27                         | 943.27               | Ν                 |
|                | 6/04/14      | 18.76                               | 0.02                 | 18.7                          | 943.84               | Ν                 |
|                | 7/04/14      | 18.27                               | ND                   | 18.21                         | 944.33               | Ν                 |
|                | 08/01/14     | 17.77                               | 0.01                 | 17.71                         | 944.83               | Ν                 |
|                | 9/02/14      | 17.41                               | 0.01                 | 17.35                         | 945.19               | Ν                 |
|                | 10/03/14     | 17.11                               | ND                   | 17.05                         | 945.49               | Ν                 |
|                | 11/07/14     | 16.9                                | Trace                | 16.84                         | 945.70               | Ν                 |
|                | 12/05/14     | 17.06                               | Trace                | 17                            | 945.54               | Ν                 |
|                | 01/02/15     | 17.29                               | Trace                | 17.23                         | 945.31               | Ν                 |
|                | 02/09/15     | 17.49                               | 0.01                 | 17.43                         | 945.11               | Ν                 |
|                | 03/06/15     | 17.56                               | 0.01                 | 17.5                          | 945.04               | Ν                 |
|                | 04/02/15     | 17.03                               | ND                   | 16.97                         | 945.57               | Ν                 |
|                | 05/08/15     | 17.95                               | ND                   | 17.89                         | 944.65               | Ν                 |
|                | 06/05/15     | 18.06                               | ND                   | 18.00                         | 944.54               | Ν                 |
|                | 07/01/15     | 18.06                               | ND                   | 18.00                         | 944.54               | Ν                 |
|                | 08/13/15     | 17.75                               | ND                   | 17.69                         | 944.85               | N                 |
|                | 09/03/15     | 17.6                                | ND                   | 17.54                         | 945                  | N                 |

Table 10Water Level Measurements in Wells1

| Well     |              | Depth to Water    | Product   | Depth to Water | Relative Groundwater | Water Level Above |
|----------|--------------|-------------------|-----------|----------------|----------------------|-------------------|
| Number   | Date Sampled | from Top of Riser | Thickness | Below Grade    | Elevation            | Screen (Y/N)      |
|          | 10/02/15     | 1/.02             |           | 1/.50          | 944.98               | IN<br>N           |
|          | 11/03/15     | 10.5              | ND<br>ND  | 16.44          | 940.1                | IN<br>N           |
|          | 12/04/15     | 17.66             | ND        | 17.60          | 944.94               | N                 |
|          | 1/11/16      | 17.73             | ND        | 17.67          | 944.87               | N                 |
|          | 2/02/16      | 17.84             | ND        | 17.78          | 944.76               | N                 |
| MW-9     | 01/10/2013   | 17.79             | ND        | 17.83          | 944.06               | N                 |
|          | 05/3/2013    | 18.44             | ND        | 18.48          | 943.41               | N                 |
|          | 2/3/2014     | 18.45             | ND        | 18.49          | 943.40               | Ν                 |
|          | 3/6/2014     | 18.46             | ND        | 18.5           | 943.41               | Ν                 |
|          | 4/03/14      | 18.91             | ND        | 18.95          | 942.94               | Ν                 |
|          | 5/02/14      | 18.65             | ND        | 18.69          | 943.20               | Ν                 |
|          | 6/04/14      | 18.13             | ND        | 18.17          | 943.72               | Ν                 |
|          | 7/04/14      | 17.66             | ND        | 17.7           | 944.19               | Ν                 |
|          | 8/01/14      | 17.19             | ND        | 17.23          | 944.66               | Ν                 |
|          | 9/02/14      | 17.56             | 0.01      | 17.6           | 944.29               | Ν                 |
|          | 10/03/14     | 16.5              | ND        | 16.54          | 945.35               | Ν                 |
|          | 11/07/14     | 16.29             | trace     | 16.33          | 945.56               | Ν                 |
|          | 12/05/14     | 16.42             | Trace     | 16.46          | 945.43               | Ν                 |
|          | 01/02/15     | 16.53             | Trace     | 16.57          | 945.32               | Ν                 |
|          | 02/09/15     | 16.84             | 0.01      | 16.88          | 945.01               | Ν                 |
|          | 03/06/15     | 16.9              | 16.899    | 16.94          | 944.95               | Ν                 |
|          | 04/02/15     | 17.09             | ND        | 17.13          | 944.76               | Ν                 |
|          | 05/08/15     | 17.29             | ND        | 17.33          | 944.56               | Ν                 |
|          | 06/05/15     | 17.42             | ND        | 17.46          | 944.43               | Ν                 |
|          | 07/01/15     | 17.42             | ND        | 17.46          | 944.43               | Ν                 |
|          | 08/13/15     | 17.14             | ND        | 17.18          | 944.71               | Ν                 |
| -        | 09/03/15     | 16.99             | ND        | 17.03          | 944.86               | Ν                 |
|          | 10/02/15     | 16.99             | ND        | 17.03          | 944.86               | Ν                 |
|          | 11/03/15     | 15.85             | ND        | 15.89          | 946                  | Ν                 |
|          | 12/04/15     | 17.05             | ND        | 17.09          | 944.8                | Ν                 |
|          | 1/11/16      | 17.11             | ND        | 17.15          | 944.74               | Ν                 |
|          | 2/02/16      | 17.21             | ND        | 17.25          | 944.64               | Ν                 |
| MW-10    | 01/10/2013   | 21.18             | ND        | 21.18          | 942.76               | N                 |
| -        | 05/3/2013    | 21.81             | ND        | 21.81          | 942.13               | N                 |
|          | 2/3/2014     | 22.92             | ND        | 22.92          | 941.02               | Ν                 |
|          | 5/2/2014     | 22.12             | ND        | 22.12          | 941.82               | N                 |
| <u> </u> | 08/01/2014   | 21.65             | ND        | 21.65          | 942.29               | N                 |
|          | 11/07/14     | 19.73             | ND        | 19.73          | 944.21               | N                 |
|          | 02/09/15     | 20.18             | ND        | 20.18          | 943.76               | N                 |

Table 10Water Level Measurements in Wells1

| Well<br>Number | Date Sampled | Depth to Water<br>from Top of Riser | Product<br>Thickness | Depth to Water<br>Below Grade | Relative Groundwater<br>Elevation | Water Level Above<br>Screen (Y/N) |
|----------------|--------------|-------------------------------------|----------------------|-------------------------------|-----------------------------------|-----------------------------------|
|                | 05/08/15     | 20.64                               | ND                   | 20.64                         | 943.3                             | N                                 |
|                | 08/13/15     | 20.65                               | ND                   | 20.65                         | 943.29                            | Ν                                 |
|                | 11/03/15     | 19.31                               | ND                   | 19.31                         | 944.63                            | Ν                                 |
|                | 02/02/16     | 20.59                               | ND                   | 20.59                         | 943.35                            | Ν                                 |
| MW-11          | 01/10/2013   | 19.87                               | ND                   | 17.54                         | 944.59                            | Ν                                 |
|                | 05/3/2013    | 20.54                               | ND                   | 18.21                         | 943.92                            | Ν                                 |
|                | 05/2/2014    | 20.64                               | ND                   | 18.31                         | 943.82                            | Ν                                 |
|                | 08/01/2014   | 18.87                               | ND                   | 16.54                         | 945.59                            | Ν                                 |
|                | 11/07/14     | 18.13                               | ND                   | 15.8                          | 946.33                            | Ν                                 |
|                | 05/08/15     | 19.31                               | ND                   | 16.98                         | 945.15                            | Ν                                 |
|                | 11/03/15     | 17.83                               | ND                   | 15.5                          | 946.63                            | Ν                                 |
|                | 02/02/16     | 19.14                               | ND                   | 16.81                         | 945.32                            | Ν                                 |

Table 10Water Level Measurements in Wells1

<sup>1</sup> Describe the methods used to measure water levels in Section 6. Add additional rows as needed.

Notes:

|             | Date       | D            | <b>T</b> 1 | Ethyl-     | <b>X</b> 7 <b>1</b> |              | CDO                 | DDO       | Lab <sub>2</sub>  |
|-------------|------------|--------------|------------|------------|---------------------|--------------|---------------------|-----------|-------------------|
| Well Number | Sampled    | Benzene      | Toluene    | benzene    | Xylenes             | MTBE         | GRO                 | DRO       | Type <sup>2</sup> |
| IVI VV - I  | 6/24/2002  | NS           | NS         | NS<br>2.6  | INS<br>26/15        | NS           | 200                 | INS<br>NC | Fixed             |
|             | 0/24/2002  | <1.0<br><1.0 | <u> </u>   | 2.0        | 20/13               |              | 200<br>610 H        | INS<br>NS | Fixed             |
|             | 9/13/2002  | <1.0<br><1.0 | 5.0        | 14<br><1.0 | 67                  | INA<br>NA    | <u>010 П</u><br>110 | INS<br>NS | Fixed             |
|             | 12/20/2002 | <1.0<br><1.0 | <u> </u>   | <u> </u>   | 121                 | $\sim 1.0$   | 1 000               | INS<br>NS | Fixed             |
|             | 4/14/2003  | <1.0         | 2.1        | 4.1<br>o   | 2 100               | <1.0         | 1,900               | INS<br>NC | Fixed             |
|             | 10/10/2002 | <1.0<br><1.0 | 17         | 0          | 2,100               | <1.0<br><1.0 | 4,500               | NG        | Fixed             |
|             | 10/10/2003 | <1.0<br>ND   | 10         | 19         | 380                 | <1.0<br>ND   | 2,300               | INS<br>NC | Fixed             |
|             | 2/0/2004   | ND           | 2.1        | 9.1        | 192                 | ND<br>ND     | 240                 | INS<br>NC | Fixed             |
|             | 3/18/2004  | ND           | 14         | 03         | 2400                | ND<br>ND     | 2,300               | INS<br>NC | Fixed             |
|             | 9/7/2004   | ND           | 51.0       | 220        | 2400                | ND           | 0,800               | INS<br>NC | Fixed             |
|             | 12/20/2004 | ND           | 51.9<br>ND | 300        | 4660                | ND           | 8,940               | NS<br>NC  | Fixed             |
|             | 3/10/2005  | ND           | ND         | 12.8       | 2940                | ND           | 11,500              | NS<br>NC  | Fixed             |
|             | 6/9/2005   | ND<br>2.0    | ND         | 16.4       | 905                 | ND           | 2,220               | NS<br>NC  | Fixed             |
|             | 8/4/2005   | 3.8          | ND         | 94<br>ND   | 2100                | ND           | 4,300               | NS<br>NG  | Fixed             |
|             | 11/9/2005  | < 0.50       | ND<br>15 0 | ND         | 100                 | ND           | 9,400               | NS<br>NG  | Fixed             |
|             | 3/1/2006   | <1.0         | <5.0       | 110<br>NG  | 3,900               | NS<br>NC     | 10,000              | NS<br>NG  | Fixed             |
|             | //13/2006  | well         | NS         | NS         | NS                  | NS           | NS                  | NS        | Fixed             |
|             | 10/4/2006  |              | <5.0       | 2.7        | 100                 | <1.0         | 100                 | (00       | г <sup>.</sup> 1  |
|             | 10/4/2006  | <0.05        | <5.0       | 2.7        | 100                 | <1.0         | 190<br>NG           | 680<br>NG | Fixed             |
|             | 3/9/2007   | NS           | NS         | NS         | NS                  | NS (1.0      | NS<br><100          | NS<br>NC  | Fixed             |
|             | //24/2007  | <0.5         | <0.5       | 0.55       | 1.93                | <1.0         | <100                | NS        | Fixed             |
|             | 1/20/2010  | <1.0         | <1.0       | <1.0       | <3.0                | < 5.0        | <100                | 180       | Fixed             |
|             | 1/12/2011  | <1.0         | <1.0       | <1.0       | 23.4                | < 5.0        | <100                | 2600      | Fixed             |
|             | 3/23/2011  | <1.0         | <1.0       | <1.0       | 4.7                 | <5.0         | <100                | 1610      | Fixed             |
|             | 6/8/2011   | <1.0         | <1.0       | 1.5        | 59.2                | <5.0         | 218                 | 2230      | Fixed             |
|             | 10/4/2011  | <1.0         | <1.0       | 8.6        | 272                 | <5.0         | 838                 | 1960      | Fixed             |
|             | 01/10/2013 | <1.0         | <1.0       | 55.2       | 1,270               | <5.0         | 3,390               | 1,450     | Fixed             |
|             | 05/3/2013  | <1.0         | <1.0       | 28.9       | 573                 | <5.0         | 2,050               | 831       | Fixed             |
|             | 2/3/2014   | 2.2          | <1.0       | 20.8       | 434                 | NS           | 1,430               | 1,300     | Fixed             |
|             | 5/2/2014   | <1.0         | <1.0       | 1.4        | 13.8                | NS           | <100                | 210       | fixed             |
|             | 08/01/2014 | <1.0         | <1.0       | 14.8       | 240                 | NS           | 805                 | 1600      | fixed             |
|             | 11/07/2014 | <1.0         | <1.0       | 12.5       | 322                 | NS           | 966                 | 1900      | fixed             |
|             | 02/09/2015 | <1.0         | <1.0       | 15.8       | 541                 | NA*          | 1410                | 820       | fixed             |
|             | 05/08/2015 | <1.0         | <1.0       | 16.6       | 595                 | NA*          | 1530                | 1600      | fixed             |
|             | 08/13/2015 | <1.0         | <1.0       | 11.8       | 409                 | NA*          | 1140                | 1500      | fixed             |

 Table 11

 Analytical Results of Water Samples Collected from Wells<sup>1</sup>

| Wall Number | Date<br>Sampled | Donzono | Taluana | Ethyl- | Vylonos    | MTDE | CPO     | DDO   | Lab   |
|-------------|-----------------|---------|---------|--------|------------|------|---------|-------|-------|
| wen Number  | 11/03/2015      |         | <2 5    | 27 2   | 920        | NA*  | 2780    | 2100  | fixed |
|             | 2/02/2016       | <2      | <2.5    | 15.6   | 666        | NA*  | 1960    | 1000  | fixed |
| MW-3        | 3/1/2006        | 1,600   | <5,000  | <1,000 | 5,100      | NS   | 260,000 | NA    | Fixed |
|             | 3/23/2011       | 159     | 209     | 46.9   | 777        | ND   | 8,320   | 8270  | Fixed |
|             | 6/8/2011        | 493     | 521     | 71.8   | 2,900      | <50  | 15,600  | 12800 | Fixed |
|             | 10/5/2011       | 2,420   | 1780    | 156    | 6,800      | <50  | 22,600  | 7630  | Fixed |
|             | 01/10/2013      | NS      | NS      | NS     | NS         | NS   | NS      | NS    | Fixed |
|             | 05/3/2013       | NS      | NS      | NS     | NS         | NS   | NS      | NS    | Fixed |
| MW-3        | 2/3/2014        | NS      | Product |        |            |      |         |       |       |
|             | 5/2/2014        | NS      | Product |        |            |      |         |       |       |
|             | 08/01/2014      | NS      | Product |        |            |      |         |       |       |
|             | 11/07/2014      | NS      | Product |        |            |      |         |       |       |
|             | 02/09/2015      | NS      | Product |        |            |      |         |       |       |
|             | 05/08/2015      | 1860    | 1320    | 42.1   | 4590       | NA*  | 17300   | 12400 | fixed |
|             | 08/13/2015      | 2210    | 1650    | 115    | 5460       | NA*  | 21700   | 16400 | fixed |
|             | 11/03/2015      | 1560    | 1370    | <50    | 4400       | NA*  | 16300   | 7300  | fixed |
|             | 2/02/2016       | 2280    | 1430    | 163    | 4490       | NA*  | 19700   | 15800 | fixed |
| MW-6        | 1/11/2002       | 3,600   | 3,100   | 680    | 1,200/490  | <1.0 | 19,000  | NS    | Fixed |
|             | 6/24/2002       | 5,800   | 5,800   | 1,200  | 3,100/1,10 | <50  | 27,000  | NS    | Fixed |
|             |                 |         |         |        | 0          |      |         |       |       |
|             | 9/13/2002       | 1,600   | 1,100   | 360    | 1,100      | NS   | 8,400 H | NS    | Fixed |
|             | 12/26/2002      | 2,800   | 750     | 3,200  | 2,800      | NS   | 16,000  | NS    | Fixed |
|             | 4/14/2003       | 3,500   | 2,600   | 830    | 2,750      | <20  | 18,000  | NS    | Fixed |
|             | 7/7/2003        | 2,300   | 2,200   | 660    | 1,940      | <50  | 16,000  | NS    | Fixed |
|             | 10/10/2003      | 1,500   | 1,600   | 450    | 1,400      | <50  | 10,000  | NS    | Fixed |
|             | 2/6/2004        | 2700    | 2,200   | 1,000  | 2,540      | ND   | 17,000  | NS    | Fixed |
|             | 3/18/2004       | 3,200   | 2,600   | 830    | 2,180      | ND   | 17,000  | NS    | Fixed |
|             | 9/7/2004        | 3,600   | 2,800   | 1,200  | 4,130      | ND   | 21,000  | NS    | Fixed |
|             | 12/20/2004      | 3,110   | 6,110   | 1,470  | 5,040      | ND   | 25,200  | NS    | Fixed |
|             | 3/10/2005       | 4,030   | 7,650   | 1,610  | 6,340      | ND   | 28,200  | NS    | Fixed |
|             | 6/9/2005        | 4,500   | 5,800   | 1,570  | 5,310      | ND   | 25,800  | NS    | Fixed |
|             | 8/4/2005        | 4,900   | 2,400   | 950    | 2,870      | 420  | 18,000  | NS    | Fixed |
|             | 11/9/2005       | 3,700   | 4,400   | 970    | 100        | ND   | 27,000  | NS    | Fixed |
|             | 3/1/2006        | 2,500   | 1,300   | <100   | 3,500      | NS   | 22,000  | NS    | Fixed |
|             | 7/13/2006       | 2,500   | <500    | <50    | 1,100      | <100 | <10,000 | 5,100 | Fixed |
|             | 10/4/2006       | 3,500   | 2,100   | 1,100  | 2,260      | 350  | 18,000  | 4,300 | Fixed |
|             | 3/9/2007        | 4,000   | 2,700   | 350    | 3,540      | 780  | 19,000  | 5,100 | Fixed |
|             | 7/24/2007       | 740     | 480     | 72     | 730        | <10  | 5,200   | NS    | Fixed |

 Table 11

 Analytical Results of Water Samples Collected from Wells<sup>1</sup>

|                 | Date       | D     | <b>T</b> 1 | Ethyl- | N. I       | MEDE             | CDO        | DDO        |                         |
|-----------------|------------|-------|------------|--------|------------|------------------|------------|------------|-------------------------|
| Well Number     | Sampled    | 3 010 | 1 420      | 579    | Aylenes    | MIBE <50         | <b>GRO</b> | <b>DRO</b> | Type <sup>-</sup>       |
| IVI VV -0       | 1/20/2010  | 2,010 | 2,220      | 725    | 1,510      | <50              | 13,700     | 4,000      | Fixed                   |
|                 | 2/22/2011  | 2,200 | 2,280      | 123    | 2,090      | < <u>&gt;</u> 30 | 14,300     | 2,070      | Fixed                   |
|                 | 5/25/2011  | 2,410 | 1,070      | 490    | 1,320      | 13.0             | 13,600     | 3,830      | Fixed                   |
|                 | 6/8/2011   | 1,890 | 484        | 272    | /48        | <50              | /,060      | 3,230      | Fixed                   |
|                 | 10/4/2011  | 2,810 | 3,500      | 913    | 4,110      | <50              | 18,100     | 4,250      | Fixed                   |
|                 | 01/10/2013 | 2280  | 3370       | 1090   | 4290       | <50              | 16,000     | 3,750      | Fixed                   |
|                 | 05/3/2013  | 2660  | 3620       | 1200   | 4890       | <50              | 26,000     | 4,350      | Fixed                   |
|                 | 2/3/2014   | 2,480 | 1,710      | 1,260  | 4,170      | NS               | 20,700     | 7,200      | Fixed                   |
|                 | 05/02/2014 | <1.0  | <1.0       | 1.4    | 13.8       | NS               | <100       | 210        | fixed                   |
|                 | 08/01/2014 | 3620  | 3290       | 1640   | 5760       | NS               | 23800      | 5900       | fixed                   |
|                 | 11/07/2014 | 2800  | 2540       | 1150   | 4870       | NS               | 20800      | 10400      | fixed                   |
|                 | 02/09/2015 | 2860  | 2320       | 1040   | 4390       | NA*              | 20400      | 5100       | fixed                   |
|                 | 05/08/2015 | 2500  | 2480       | 953    | 4250       | NA*              | 15400      | 5700       | fixed                   |
|                 | 08/13/2015 | 2420  | 2750       | 968    | 3920       | NA*              | 18300      | 3600       | fixed                   |
|                 | 11/03/2015 | 2060  | 1880       | 724    | 3120       | NA*              | 14200      | 4700       | fixed                   |
| DUP-1<br>(MW-6) | 11/03/2015 | 2150  | 2000       | 865    | 3820       | NA*              | 16200      | 4600       | fixed                   |
|                 | 2/02/2016  | 1910  | 1930       | 874    | 3710       | NA*              | 18600      | 5200       | fixed                   |
| MW-6A           | 1/11/2002  | <1.0  | <1.0       | <1.0   | <2.0/<1.0  | 3.4              | <100       | NS         | Fixed                   |
|                 | 6/24/2002  | <1.0  | <1.0       | <1.0   | <2.0/<1.0  | <1.0             | <100       | NS         | Fixed                   |
|                 | 9/13/2002  | <1.0  | <1.0       | <1.0   | <1.0 total | <1.0             | <100       | NS         | Fixed                   |
|                 | 12/26/2002 | <1.0  | <1.0       | <1.0   | <1.0 total | <1.0             | <100       | NS         | Fixed                   |
|                 | 4/14/2003  | <1.0  | <1.0       | <1.0   | <2.0/<1.0  | <1.0             | <60        | NS         | Fixed                   |
|                 | 7/7/2003   | <1.0  | <1.0       | <1.0   | <2.0/<1.0  | <1.0             | <60        | NS         | Fixed                   |
|                 | 10/10/2003 | <1.0  | <1.0       | <1.0   | <2.0/<1.0  | <1.0             | <60        | NS         | Fixed                   |
|                 | 2/6/2004   | ND    | ND         | ND     | ND         | ND               | ND         | NS         | Fixed                   |
|                 | 3/18/2004  | < 0.5 | <1.0       | <1.0   | <0.50/<0.  | <1.0             | ND         | NS         | Fixed                   |
|                 | 0/7/0004   |       |            |        | 50         |                  |            |            | <b>D</b> <sup>1</sup> 1 |
|                 | 9/7/2004   | ND    | ND         | ND     | ND         | ND               | ND         | NS         | Fixed                   |
|                 | 12/20/2004 | ND    | ND         | ND     | ND         | ND               | ND         | NS         | Fixed                   |
|                 | 3/10/2005  | ND    | ND         | ND     | ND         | ND               | ND         | NS         | Fixed                   |
|                 | 6/9/2005   | ND    | ND         | ND     | ND         | ND               | ND         | NS         | Fixed                   |
|                 | 8/4/2005   | ND    | ND         | ND     | ND         | ND               | ND         | NS         | Fixed                   |
|                 | 11/9/2005  | ND    | ND         | ND     | ND         | ND               | ND         | NS         | Fixed                   |
|                 | 3/1/2006   | <1.0  | <5.0       | <1.0   | <3.0       | NS               | <100       | NS         | Fixed                   |
|                 | 7/13/2006  | < 0.5 | <5.0       | < 0.5  | <1.0       | <10.0            | <100       | 140        | Fixed                   |
|                 | 10/4/2006  | < 0.5 | <5.0       | < 0.5  | <1.0       | <10.0            | <100       | 190        | Fixed                   |
|                 | 3/9/2007   | < 0.5 | <5.0       | < 0.5  | <1.0       | <10.0            | <100       | 170        | Fixed                   |

 Table 11

 Analytical Results of Water Samples Collected from Wells<sup>1</sup>

|             | Date       |         |         | Ethyl-           |             |           |             |        | Lab               |
|-------------|------------|---------|---------|------------------|-------------|-----------|-------------|--------|-------------------|
| Well Number | Sampled    | Benzene | Toluene | benzene          | Xylenes     | MTBE      | GRO         | DRO    | Type <sup>2</sup> |
|             | 7/24/2007  | < 0.5   | <5.0    | < 0.5            | <1.0        | <10.0     | <100        | NS     | Fixed             |
|             | 1/20/2010  | <1.0    | <1.0    | <1.0             | <3.0        | <5.0      | <100        | 170    | Fixed             |
|             | 1/12/2011  | <1.0    | <1.0    | <1.0             | <3.0        | <5.0      | <100        | 126    | Fixed             |
|             | 3/23/2011  | <1.0    | <1.0    | <1.0             | <3.0        | <5.0      | <100        | 125    | Fixed             |
|             | 6/8/2011   | <1.0    | <1.0    | <1.0             | <3.0        | <5.0      | <100        | 312    | Fixed             |
|             | 10/4/2011  | <1.0    | <1.0    | <1.0             | <3.0        | <5.0      | <100        | 146    | Fixed             |
|             | 01/10/2013 | <1.0    | <1.0    | <1.0             | <3.0        | <1.0      | <100        | 124    | Fixed             |
|             | 05/3/2013  | <1.0    | <1.0    | <1.0             | <3.0        | <1.0      | <100        | 123    | Fixed             |
|             | 08/01/2014 | <1.0    | <1.0    | <1.0             | <3.0        | NS        | <50.0       | <120   | fixed             |
|             | 08/13/2015 | <1.0    | <1.0    | <1.0             | <3.0        | NA*       | <100        | 130    | fixed             |
| MW-7        | 11/9/2005  | 3900    | 8600    | 1200             | 7800        | ND        | 37000       | NS     | Fixed             |
|             | 3/1/2006   | 5,200   | <12,000 | <2,500           | 8,200       | <2,500    | 42,000      | NS     | Fixed             |
|             | 7/13/2006  | 2,200   | 6,000   | 1,400            | 7,700       | <1.0      | NS          | 6,900  | Fixed             |
|             | 10/4/2006  | 3,300   | 6,000   | 1,900            | 8,300       | <50       | NS          | 9,100  | Fixed             |
|             | 3/9/2007   | 3,900   | 7,300   | 1,500            | 7,000       | <10       | 43,000      | 10,000 | Fixed             |
|             | 7/24/2007  | 3,700   | 7,600   | 1,700            | 8,600       | 1,300     | <100,000    | 8,600  | Fixed             |
|             | 10/4/2011  | 4,540   | 8,050   | 1,910            | 10,200      | 572       | 10200       | 14,200 | Fixed             |
|             | 01/10/2013 | NS      | NS      | NS               | NS          | NS        | NS          | NS     | Fixed             |
|             | 05/3/2013  | NS      | NS      | NS               | NS          | NS        | NS          | NS     | Fixed             |
|             | 2/3/2014   | NS      | Product |                  |             |           |             |        |                   |
|             | 5/2/2014   | NS      | Product |                  |             |           |             |        |                   |
|             | 08/01/2014 | NS      | Product |                  |             |           |             |        |                   |
|             | 11/07/2014 | NS      | Product |                  |             |           |             |        |                   |
|             | 02/09/2015 | NS      | Product |                  |             |           |             |        |                   |
|             | 05/08/2015 | 2440    | 5760    | 1360             | 7610        | NA*       | 28100       | 11100  | fixed             |
|             | 08/13/2015 | 3600    | 7650    | 1830             | 10100       | NA*       | 37000       | 10700  | fixed             |
|             | 11/03/2015 | 3140    | 7140    | 1530             | 8450        | NA*       | 35900       | 19200  | fixed             |
|             | 02/02/2016 | 2850    | 5410    | 1450             | 8550        | NA*       | 37900       | 19400  | fixed             |
| MW-8        | 01/10/2013 | 2,590   | 4,670   | 1,490            | 6,840       | <20       | 26,200      | 27,800 | Fixed             |
|             | 05/3/2013  | NS      | NS      | NS               | NS          | NS        | NS          | NS     | Fixed             |
|             | 2/3/14     | NS      |         | <b>Buried un</b> | der snow ba | nk, const | ruction equ | ipment |                   |
|             | 5/2/2014   | NS      | Product |                  |             |           |             |        |                   |
|             | 08/01/2014 | NS      | Product |                  |             |           |             |        |                   |
|             | 11/07/2014 | NS      | Product |                  |             |           |             |        |                   |
|             | 02/09/2015 | NS      | Product | r                | T           | 1         |             | r      |                   |
|             | 05/08/2015 | 148     | 243     | 61.4             | 251         | NA*       | 12900       | 13100  | fixed             |
|             | 08/13/2015 | 843     | 1610    | 398              | 1830        | NA*       | 12300       | 11200  | fixed             |
|             | 11/03/2015 | 1020    | 1680    | 335              | 1900        | NA*       | 15100       | 12400  | fixed             |

 Table 11

 Analytical Results of Water Samples Collected from Wells<sup>1</sup>

| Well Number     | Date<br>Sampled | Benzene | Toluene | Ethyl-<br>benzene | Xvlenes | MTRE | GRO    | DRO    | Lab<br>Type <sup>2</sup> |
|-----------------|-----------------|---------|---------|-------------------|---------|------|--------|--------|--------------------------|
|                 |                 | 1360    | 2100    | 526               | 2880    | NA*  | 21400  | 8500   | fixed                    |
| DUP-1           | 02/02/2016      | 1370    | 2020    | 476               | 2550    | NA*  | 15900  | 10300  | fixed                    |
| (MW-8)          |                 |         |         | _                 |         |      |        |        |                          |
| MW-9            | 01/10/2013      | 6,690   | 7,210   | 1,840             | 8,950   | <20  | 30,500 | 16,000 | Fixed                    |
|                 | 05/3/2013       | 7,110   | 7,330   | 1,950             | 9,140   | <25  | 47,000 | 787    | Fixed                    |
|                 | 2/3/2014        | 3,950   | 6,030   | 1,460             | 6,860   | NS   | 35,600 | 6,200  | Fixed                    |
|                 | 05/02/2014      | 3610    | 4650    | 1520              | 7530    | NS   | 30700  | 6500   | fixed                    |
| DUP-1           | 05/02/2014      | 4460    | 5500    | 1(50              | 7070    | NS   | 24000  | 5000   | Grad                     |
| (MW-9)          |                 | 4400    | 2270    | 1050              | /9/0    |      | 34800  | 5900   | iixea                    |
|                 | 08/01/2014      | 3720    | 6390    | 1730              | 8430    | NS   | 30400  | 6400   | fixed                    |
|                 | 11/07/2014      | 4550    | 4670    | 1430              | 7060    | NS   | 28900  | 9100   | fixed                    |
| DUP-1<br>(MW-9) | 11/07/2014      | 5570    | 5450    | 1590              | 7780    | NS   | 34500  | 9700   | fixed                    |
|                 | 02/09/2015      | 3590    | 3520    | 1090              | 5020    | NA*  | 27400  | 9800   | fixed                    |
| DUP-1<br>(MW-9) | 02/09/2015      | 4570    | 4570    | 1420              | 6590    | NA*  | 29500  | 9800   | fixed                    |
|                 | 05/08/2015      | 1900    | 2300    | 1130              | 7270    | NA*  | 20600  | 7600   | fixed                    |
| DUP-1<br>(MW-9) | 05/08/2015      | 2090    | 2470    | 1140              | 7350    | NA*  | 23600  | 9600   | fixed                    |
|                 | 08/13/2015      | 2700    | 3880    | 1190              | 7270    | NA*  | 27900  | 7500   | fixed                    |
|                 | 11/03/2015      | 5470    | 5160    | 1620              | 8010    | NA*  | 33700  | 10600  | fixed                    |
|                 | 02/02/2016      | 4100    | 3760    | 1070              | 5720    | NA*  | 27700  | 10300  | fixed                    |
| MW-10           | 01/10/2013      | 375     | 207     | 551               | 2,750   | <10  | 12,500 | 14,700 | Fixed                    |
|                 | 05/3/2013       | 327     | 431     | 427               | 2,080   | <100 | 17,700 | 8,960  | Fixed                    |
|                 | 2/3/2014        | 249     | 313     | 364               | 1,730   | NS   | 12,000 | 7,500  | Fixed                    |
|                 | 05/02/2014      | 266     | 357     | 377               | 1670    | NS   | 10700  | 4700   | fixed                    |
|                 | 08/01/2014      | 291     | 480     | 535               | 2350    | NS   | 10600  | 4300   | fixed                    |
|                 | 11/07/2014      | 104     | 153     | 271               | 1230    | NS   | 6090   | 3300   | fixed                    |
|                 | 02/09/2015      | 196     | 172     | 243               | 1120    | NA*  | 7920   | 3100   | fixed                    |
|                 | 05/08/2015      | 212     | 229     | 246               | 1030    | NA*  | 7580   | 4400   | fixed                    |
|                 | 08/13/2015      | 229     | 238     | 366               | 1620    | NA*  | 8140   | 3400   | fixed                    |
|                 | 11/03/2015      | 279     | 182     | 342               | 1320    | NA*  | 7590   | 3400   | fixed                    |
|                 | 02/02/2016      | 277     | 291     | 363               | 1270    | NA*  | 8060   | 4400   | fixed                    |
| MW-11           | 01/10/2013      | <1.0    | <1.0    | <1.0              | <3.0    | <1.0 | <100   | <105   | Fixed                    |
|                 | 05/3/2013       | <1.0    | <1.0    | <1.0              | <3.0    | <1.0 | <100   | <104   | Fixed                    |
|                 | 05/02/2014      | <1.0    | <1.0    | <1.0              | <3.0    | NS   | <100   | <110   | fixed                    |
|                 | 11/07/2014      | <1.0    | 1.6     | <5.0              | <12.0   | NS   | 253    | <120   | fixed                    |
|                 | 05/08/2015      | <1.0    | <1.0    | <1.0              | 4.4     | NA*  | <100   | <120   | fixed                    |

 Table 11

 Analytical Results of Water Samples Collected from Wells<sup>1</sup>

| Well Number | Date<br>Sampled | Benzene | Toluene | Ethyl-<br>benzene | Xvlenes | MTBE | GRO    | DRO   | Lab<br>Type <sup>2</sup> |
|-------------|-----------------|---------|---------|-------------------|---------|------|--------|-------|--------------------------|
|             | 11/03/2015      | <1.0    | <2.5    | <2.5              | <3.0    | NA*  | <100   | <110  | fixed                    |
| Lab Blank   | 1/11/2002       | ND      | ND      | ND                | ND      | NS   | ND     | NA    | Fixed                    |
|             | 6/24/2002       | ND      | ND      | ND                | ND      | NS   | ND     | NA    | Fixed                    |
|             | 9/13/2002       | ND      | ND      | ND                | ND      | NS   | ND     | NA    | Fixed                    |
|             | 12/26/2002      | ND      | ND      | ND                | ND      | NS   | ND     | NA    | Fixed                    |
|             | 4/14/2003       | ND      | ND      | ND                | ND      | NS   | ND     | NA    | Fixed                    |
|             | 7/7/2003        | ND      | ND      | ND                | ND      | NS   | ND     | NA    | Fixed                    |
|             | 10/10/2003      | ND      | ND      | ND                | ND      | NS   | ND     | NA    | Fixed                    |
|             | 2/6/2004        | ND      | ND      | ND                | ND      | NS   | ND     | NA    | Fixed                    |
|             | 3/18/2004       | ND      | ND      | ND                | ND      | NS   | ND     | NA    | Fixed                    |
|             | 9/7/2004        | ND      | ND      | ND                | ND      | NS   | ND     | NA    | Fixed                    |
|             | 12/20/2004      | ND      | ND      | ND                | ND      | NS   | ND     | NA    | Fixed                    |
|             | 3/10/2005       | ND      | ND      | ND                | ND      | NS   | ND     | NA    | Fixed                    |
|             | 6/9/2005        | ND      | ND      | ND                | ND      | NS   | ND     | NA    | Fixed                    |
|             | 8/4/2005        | ND      | ND      | ND                | ND      | NS   | ND     | NA    | Fixed                    |
|             | 11/9/2005       | ND      | ND      | ND                | ND      | NS   | ND     | NA    | Fixed                    |
|             | 3/1/2006        | ND      | ND      | ND                | ND      | NS   | ND     | NA    | Fixed                    |
|             | 7/13/2006       | ND      | ND      | ND                | ND      | ND   | ND     | NA    | Fixed                    |
|             | 10/4/2006       | ND      | ND      | ND                | ND      | ND   | ND     | NA    | Fixed                    |
|             | 1/12/2011       | ND      | ND      | ND                | ND      | ND   | ND     | NA    | Fixed                    |
|             | 3/23/2011       | ND      | ND      | ND                | ND      | ND   | ND     | NA    | Fixed                    |
|             | 6/8/2011        | ND      | ND      | ND                | ND      | ND   | ND     | NA    | Fixed                    |
|             | 10/4/2011       | ND      | ND      | ND                | ND      | ND   | ND     | NA    | Fixed                    |
|             | 01/10/2013      | ND      | ND      | ND                | ND      | ND   | ND     | NA    | Fixed                    |
|             | 05/3/2013       | ND      | ND      | ND                | ND      | ND   | ND     | NA    | Fixed                    |
|             | 2/3/2014        | Lab     |         |                   |         |      |        |       |                          |
|             |                 | blank   |         |                   |         |      |        |       |                          |
|             |                 | froze   |         |                   |         |      |        |       |                          |
| 05/02/2014  |                 | <1.     | 0       |                   | <1.0    | <1.0 | <3.0 N | IS NS | NS                       |
|             | 08/01/2014      | <1.0    | <1.0    | <1.0              | <3.0    | NS   | <50.0  | NS    | fixed                    |
|             | 11/07/2014      | <1.0    | <1.0    | <5.0              | <12.0   | NS   | <100   | NS    | fixed                    |
|             | 08/13/2015      | <1.0    | <1.0    | <1.0              | <3.0    | NS   | <100   | NS    | fixed                    |
|             | 11/03/2015      | <1.0    | <2.5    | <2.5              | <3.0    | NS   | <100   | NS    | fixed                    |
|             | 02/02/2016      | <1.0    | <1.0    | <1.0              | <3.0    | NS   | <100   | NS    | fixed                    |
| HRL(ug/L)   |                 | 2       | 200     | 50                | 300     | 70   | NL     | NL    |                          |
|             |                 |         |         |                   |         |      |        |       |                          |

 Table 11

 Analytical Results of Water Samples Collected from Wells<sup>1</sup>

<sup>1</sup> Report results in µg/L. Use less than symbols to show detection limit.
Monitoring Report Page 27

<sup>2</sup> Indicate "mobile" or "fixed" in the lab type column.
<sup>3</sup> See <u>http://www.health.state.mn.us/divs/eh/groundwater/hrltable.html</u> for list of current HRLs. Add additional rows as needed.

Notes:

NS = not sampled

ND= Not detected above laboratory reporting limits

|                  | Other VOCs |         |        |         |       |                          |  |  |  |  |
|------------------|------------|---------|--------|---------|-------|--------------------------|--|--|--|--|
| Well Number      | MW-8       | MW-9    | MW-9   | MW-10   | HRL   | Lab<br>Type <sup>2</sup> |  |  |  |  |
| Date Sampled     | 1/10/13    | 1/10/13 | 5/3/13 | 1/10/13 |       |                          |  |  |  |  |
| Acetone          | 523        | <500    | <500   | <250    | 4,000 | Fixed                    |  |  |  |  |
| n-Butylbenzene   | 43.7       | 60.9    | <25    | 40.3    | NE    | Fixed                    |  |  |  |  |
| Sec-Butylbenzene | 22.8       | 31.7    | <25    | 24.3    | NE    | Fixed                    |  |  |  |  |
| Cyclohexane      | 881        | 600     | NA     | 1,030   | NE    | Fixed                    |  |  |  |  |
| 1,2-             | <20        | 53.7    | 74.6   | <10     | 4     | Fixed                    |  |  |  |  |
| Dichloroethane   |            |         |        |         |       |                          |  |  |  |  |
| Cumene           | 115        | 122     | 81.1   | 119     | 300   | Fixed                    |  |  |  |  |
| p-               | 28.6       | 37.9    | <25    | 40.5    | NE    | Fixed                    |  |  |  |  |
| Isopropyltoluene |            |         |        |         |       |                          |  |  |  |  |
| Naphthalene      | 438        | 550     | 428    | 274     | 300   | Fixed                    |  |  |  |  |
| n-Propylbenzene  | 234        | 315     | 193    | 225     | NE    | Fixed                    |  |  |  |  |
| 1,2,4-           | 1,540      | 2,080   | 1,270  | 1,890   | 100   | Fixed                    |  |  |  |  |
| Trimethylbenzene |            |         |        |         |       |                          |  |  |  |  |
| 1,3,5-           | 401        | 523     | 320    | 557     | 100   | Fixed                    |  |  |  |  |
| Trimethylbenzene |            |         |        |         |       |                          |  |  |  |  |
|                  |            |         |        |         |       |                          |  |  |  |  |
|                  |            |         |        |         |       |                          |  |  |  |  |
|                  |            |         |        |         |       |                          |  |  |  |  |
|                  |            |         |        |         |       |                          |  |  |  |  |
| Trip Blank       |            |         |        |         |       |                          |  |  |  |  |
| Equip. Blank     |            |         |        |         |       |                          |  |  |  |  |
| Lab Blank        | İ          | İ       |        |         |       | İ                        |  |  |  |  |

## Table 12

<sup>1</sup> Report results in μg/L. Use less than symbols to show detection limit. <sup>2</sup> Indicate "mobile" or "fixed" in the lab type column. <sup>3</sup> See <u>http://www.health.state.mn.us/divs/eh/groundwater/hrltable.html</u> for list of current HRLs.

Indicate other contaminants (either petroleum or non-petroleum derived) detected in water samples collected from wells. Add additional rows as needed, and copy the entire table if more columns are needed.

Notes: NA = Not Analyzed; NE = Not Established

| Table 13                              |
|---------------------------------------|
| <b>Natural Attenuation Parameters</b> |

| Well<br>Number | Sample<br>Date | Temp.<br>°C | рН | Dissolved<br>Oxygen<br>(mg/L) | Nitrate<br>(mg/L) | (Fe II)<br>(mg/L) | (H <sub>2</sub> S, HS <sup>-</sup> )<br>(mg/L) |
|----------------|----------------|-------------|----|-------------------------------|-------------------|-------------------|------------------------------------------------|
| MW-1           |                |             |    |                               |                   |                   |                                                |
|                |                |             |    |                               |                   |                   |                                                |
| MW-2           |                |             |    |                               |                   |                   |                                                |
|                |                |             |    |                               |                   |                   |                                                |
| MW-3           |                |             |    |                               |                   |                   |                                                |
|                |                |             |    |                               |                   |                   |                                                |
| MW-4           |                |             |    |                               |                   |                   |                                                |
|                |                |             |    |                               |                   |                   |                                                |
|                |                |             |    |                               |                   |                   |                                                |
|                |                |             |    |                               |                   |                   |                                                |

Describe the methods and procedures used in Section 6. Add additional rows as needed Notes:

#### Table 14 **Free Product Recovery**

|             |          | Pı                 | e-Recover          | v Measureme | onts   |                  | Ev<br>Reco | ent<br>verv <sup>3</sup> | Cumi<br>Reco | ılative<br>verv <sup>4</sup> |                                              |
|-------------|----------|--------------------|--------------------|-------------|--------|------------------|------------|--------------------------|--------------|------------------------------|----------------------------------------------|
| Recovery    |          | Depth              | Depth              | FP          | FP     |                  | Reco       |                          | Reco         | very                         |                                              |
| Location    | Recovery | to FP <sup>1</sup> | to GW <sup>2</sup> | Thickness   | Volume | Recovery         | FP         | GW                       | FP           | GW                           |                                              |
| ID          | Date     | (ft)               | (ft)               | (ft)        | (gal)  | Method           | (gal)      | (gal)                    | (gal)        | (gal)                        | Comments                                     |
| MW-3        | 2/3/14   | 17.52              | 18.04              | .52'        | .08    | No recovery      | 0          | 0                        | 0            | 0                            |                                              |
|             | 3/6/14   | 17.59              | 18.12              | .53'        | .08    | required at this | 0          | 0                        | 0            | 0                            |                                              |
| <b>MW-7</b> | 2/3/14   | 18.28              | 18.30              | 0.02'       | .004   | time             | 0          | 0                        | 0            | 0                            |                                              |
|             | 3/6/14   | 18.32              | 18.35              | 0.03'       | .004   |                  | 0          | 0                        | 0            | 0                            |                                              |
| MW-9        | 2/3/14   | NA                 | 18.46              | NA          | 0      |                  | 0          | 0                        | 0            | 0                            |                                              |
|             | 3/6/14   | NA                 | 18.46              | NA          | 0      |                  | 0          | 0                        | 0            | 0                            |                                              |
| MW-8        | 2/3/14   | NS                 |                    |             |        |                  | 0          | 0                        | 0            | 0                            | Not accessible, covered by<br>snow/soil pile |
|             | 3/6/14   | NS                 |                    |             |        |                  | 0          | 0                        | 0            | 0                            | Not accessible, covered by<br>snow/soil pile |
|             |          |                    |                    |             |        |                  |            |                          |              |                              |                                              |
|             |          |                    |                    |             |        |                  |            |                          |              |                              |                                              |

<sup>1</sup> FP = Free Product

 $^{2}$  GW = Ground Water

<sup>3</sup> Volume recovered during individual recovery event for that location.
 <sup>4</sup> Cumulative volume recovered at each recovery location (i.e., keep a running total for each recovery point).
 Describe the methods and procedures used in Section 6. Add additional rows as needed.

Notes:

NA – Not applicable – no product

NS – not sampled

| Table 15                                              |     |
|-------------------------------------------------------|-----|
| Properties Located within 500 feet of the Release Sou | rce |

|                         |                  | Distance             |                          | Water Supply                   | Well                  | Publi<br>Sı       | Public Water<br>Supply        |                        |               | Dossiblo                                  |                                   |
|-------------------------|------------------|----------------------|--------------------------|--------------------------------|-----------------------|-------------------|-------------------------------|------------------------|---------------|-------------------------------------------|-----------------------------------|
| Prop<br>ID <sup>1</sup> | Property Address | From<br>Site<br>(ft) | Well<br>Present<br>(Y/N) | How<br>Determined <sup>2</sup> | Well Use <sup>3</sup> | Utilized<br>(Y/N) | Confirmed<br>by City<br>(Y/N) | Base-<br>ment<br>(Y/N) | Sump<br>(Y/N) | Possible<br>Petroleum<br>Sources<br>(Y/N) | Comments (including property use) |
| 1                       |                  |                      |                          |                                |                       |                   |                               |                        |               |                                           |                                   |
| 2                       |                  |                      |                          |                                |                       |                   |                               |                        |               |                                           |                                   |
| 3                       |                  |                      |                          |                                |                       |                   |                               |                        |               |                                           |                                   |
| 4                       |                  |                      |                          |                                |                       |                   |                               |                        |               |                                           |                                   |
| 5                       |                  |                      |                          |                                |                       |                   |                               |                        |               |                                           |                                   |
| 6                       |                  |                      |                          |                                |                       |                   |                               |                        |               |                                           |                                   |
| 7                       |                  |                      |                          |                                |                       |                   |                               |                        |               |                                           |                                   |
| 8                       |                  |                      |                          |                                |                       |                   |                               |                        |               |                                           |                                   |
| 9                       |                  |                      |                          |                                |                       |                   |                               |                        |               |                                           |                                   |
| 10                      |                  |                      |                          |                                |                       |                   |                               |                        |               |                                           |                                   |
| 11                      |                  |                      |                          |                                |                       |                   |                               |                        |               |                                           |                                   |
| 12                      |                  |                      |                          |                                |                       |                   |                               |                        |               |                                           |                                   |
| 13                      |                  |                      |                          |                                |                       |                   |                               |                        |               |                                           |                                   |
| 14                      |                  |                      |                          |                                |                       |                   |                               |                        |               |                                           |                                   |
| 15                      |                  |                      |                          |                                |                       |                   |                               |                        |               |                                           |                                   |
| 16                      |                  |                      |                          |                                |                       |                   |                               |                        |               |                                           |                                   |
| 17                      |                  |                      |                          |                                |                       |                   |                               |                        |               |                                           |                                   |
| 18                      |                  |                      |                          |                                |                       |                   |                               |                        |               |                                           |                                   |
| 19                      |                  |                      |                          |                                |                       |                   |                               |                        |               |                                           |                                   |
| 20                      |                  |                      |                          |                                |                       |                   |                               |                        |               |                                           |                                   |

<sup>1</sup> Property IDs should correspond to labeled properties in the Potential Receptor Map.
 <sup>2</sup> For example, visual observation, personal contact, telephone, returned postcard, assumed (i.e., no postcard returned).
 <sup>3</sup> For example, domestic, industrial, municipal, livestock, lawn/gardening, irrigation.

Add additional rows as needed.

# Table 16Water Supply Wells Located within 500 feet of theRelease Source and Municipal or Industrial Wells within ½ mile

| Property<br>ID <sup>1</sup> | MDH<br>Unique<br>Well<br>Number | Ground<br>Elevation | Total<br>Depth<br>(ft) | Base of<br>Casing<br>(ft) | Static<br>Elevation | Aquifer | Use | Owner | Distance and<br>Direction<br>from Source<br>(ft) |
|-----------------------------|---------------------------------|---------------------|------------------------|---------------------------|---------------------|---------|-----|-------|--------------------------------------------------|
|                             |                                 |                     |                        |                           |                     |         |     |       |                                                  |
|                             |                                 |                     |                        |                           |                     |         |     |       |                                                  |
|                             |                                 |                     |                        |                           |                     |         |     |       |                                                  |
|                             |                                 |                     |                        |                           |                     |         |     |       |                                                  |
|                             |                                 |                     |                        |                           |                     |         |     |       |                                                  |
|                             |                                 |                     |                        |                           |                     |         |     |       |                                                  |
|                             |                                 |                     |                        |                           |                     |         |     |       |                                                  |
|                             |                                 |                     |                        |                           |                     |         |     |       |                                                  |
|                             |                                 |                     |                        |                           |                     |         |     |       |                                                  |
|                             |                                 |                     |                        |                           |                     |         |     |       |                                                  |

<sup>1</sup> Property IDs should correspond to properties listed in Table 15 and labeled properties in the Potential Receptor Map if known or applicable.

Add additional rows as needed.

| Table 17                                  |
|-------------------------------------------|
| <b>Surface Water Receptor Information</b> |

| Map ID <sup>1</sup> | Name and Type <sup>2</sup> | Distance and Direction<br>from Plume Edge<br>(ft) | Clean<br>Boring/Well<br>Between? <sup>3</sup><br>(Y or N) |
|---------------------|----------------------------|---------------------------------------------------|-----------------------------------------------------------|
|                     |                            |                                                   |                                                           |
|                     |                            |                                                   |                                                           |
|                     |                            |                                                   |                                                           |
|                     |                            |                                                   |                                                           |
|                     |                            |                                                   |                                                           |
|                     |                            |                                                   |                                                           |
|                     |                            |                                                   |                                                           |

<sup>1</sup> Map ID should correspond to a surface water feature ID on the Potential Receptor Map. <sup>2</sup> Type includes, but is not limited to, lake, retention pond, infiltration pond, ditch, intermittent stream, river, creek, rain garden, etc.

<sup>3</sup> If the surface water feature is upgradient or cross-gradient from the site, indicate so with "NA" for not applicable. Add additional rows as needed.

#### Table 18 **Utility Receptor Information**

|                         |                                         |              | Depth to   |           | Flow          |           |             |                   |
|-------------------------|-----------------------------------------|--------------|------------|-----------|---------------|-----------|-------------|-------------------|
|                         |                                         | Construction | Top of     |           | Direction     | Year      | Backfill    | Distance to Water |
| Utility ID <sup>1</sup> | Description                             | Material     | Structure  | Diameter  | (for liquids) | Installed | Material    | Table             |
|                         | Sanitary sewer main beneath S.          |              |            |           |               |           |             |                   |
|                         | Buchanan Street between 1 <sup>st</sup> |              |            |           |               | 2001-     |             |                   |
| 1                       | Ave. E. and $2^{nd}$ Ave SE             | PVC          | 10'        | 21 inches | South         | 2002      | Native soil | 8'                |
|                         | Water main beneath S.                   |              |            |           |               |           |             |                   |
|                         | Buchanan Street between 1 <sup>st</sup> |              |            |           |               | 2001-     |             |                   |
| 2                       | Ave. E. and $2^{nd}$ Ave SE             | Ductile Iron | 7-8'       | 16 inches | North         | 2002      | Native soil | 10'               |
|                         | Storm sewer beneath S.                  |              |            |           |               |           |             |                   |
|                         | Buchanan Street between 1 <sup>st</sup> |              |            |           |               |           |             |                   |
| 3                       | Ave. E. and $2^{nd}$ Ave SE             | Concrete     | 4.5-5 ' ft | 21 inches | South         | unknown   | Native soil | 13'               |
| 1                       |                                         |              |            |           |               |           |             |                   |
| 2                       |                                         |              |            |           |               |           |             |                   |
| 3                       |                                         |              |            |           |               |           |             |                   |
| 4                       |                                         |              |            |           |               |           |             |                   |
| 5                       |                                         |              |            |           |               |           |             |                   |
| 6                       |                                         |              |            |           |               |           |             |                   |
| 7                       |                                         |              |            |           |               |           |             |                   |
| 8                       |                                         |              |            |           |               |           |             |                   |
| 9                       |                                         |              |            |           |               |           |             |                   |
| 10                      |                                         |              |            |           |               |           |             |                   |

<sup>1</sup> ID should correspond to an identified utility line on the Potential Receptor Map. Add more rows as needed.

Notes:

| Utility ID <sup>1</sup> | Name, title, and telephone number for public entity contacted to obtain information or other source of information |
|-------------------------|--------------------------------------------------------------------------------------------------------------------|
| 1, 2, 3                 | As built drawings provided by utility locator with City of Cambridge.                                              |
|                         |                                                                                                                    |
|                         |                                                                                                                    |
|                         |                                                                                                                    |

<sup>1</sup> IDs should correspond to the same IDs in the above table.

Add more rows as needed.

Table 19 Vapor Survey Results

| Location<br>ID <sup>1</sup> | Description <sup>2</sup> | Monitoring<br>Date | PID Reading<br>(ppm) | Percent of the LEL <sup>3</sup> |
|-----------------------------|--------------------------|--------------------|----------------------|---------------------------------|
| 1                           | Storm Sewer catch basin  | 3/23/11            | 0                    | 0                               |
| 2                           | Storm Sewer manhole      | 3/23/11            | 0                    | 0                               |
| 3                           | Storm Sewer catch basin  | 3/23/11            | 0                    | 0                               |
| 4                           | Storm Sewer manhole      | 3/23/11            | 0                    | 0                               |
| 5                           | Storm Sewer catch basin  | 3/23/11            | 0                    | 0                               |
| 6                           | Storm Sewer catch basin  | 3/23/11            | 0                    | 0                               |
| 7                           | Storm Sewer catch basin  | 3/23/11            | 0                    | 0                               |
| 8                           | Storm Sewer manhole      | 3/23/11            | 0                    | 0                               |
| 9                           | Legion basement ambient  | 3/23/11            | 0                    | 0                               |

<sup>1</sup> Location IDs must match labeled locations on the Vapor Survey Map.
 <sup>2</sup> Provide a brief description of the monitoring point (e.g., sump, basement corner, sanitary sewer manhole, storm sewer basin, etc.).
 <sup>3</sup> LEL = Lower Explosive Limit.

Add additional rows as needed.

| Sample ID <sup>2</sup>  | Vapor Pt 1<br>1/21/2010 |                 | Vapor Pt 2<br>1/21/2010 |                 | Vapor Pt 3<br>1/21/2010 |                 | Subslab-1<br>3/22/2011 |                 |        |                 |                                 |
|-------------------------|-------------------------|-----------------|-------------------------|-----------------|-------------------------|-----------------|------------------------|-----------------|--------|-----------------|---------------------------------|
| Date                    |                         |                 |                         |                 |                         |                 |                        |                 |        |                 |                                 |
| Depth (feet)            |                         |                 |                         |                 |                         |                 |                        |                 |        |                 | Desidential                     |
| PID (ppm)               |                         |                 |                         |                 |                         |                 |                        |                 |        |                 | Intrusion                       |
| COMPOUNDS               | Result                  | Report<br>Limit | Result                  | Report<br>Limit | Result                  | Report<br>Limit | Result                 | Report<br>Limit | Result | Report<br>Limit | Screening<br>Value <sup>3</sup> |
| Acetone                 | < 0.64                  | 0.64            | 83.6                    | 0.64            | < 0.64                  | 0.64            | 64.4                   | 0.86            |        |                 | <mark>31,000</mark>             |
| Benzene                 | < 0.87                  | 0.87            | <mark>84.6</mark>       | 0.87            | < 0.87                  | 0.87            | 1.5                    | 1.2             |        |                 | <mark>4.5</mark>                |
| 2-Butanone (MEK)        |                         |                 |                         |                 |                         |                 | 5.1                    | 1.1             |        |                 | <mark>5000</mark>               |
| 1,3-Butadiene           | <0.6                    | 0.6             | <mark>64.5</mark>       | 0.6             | <0.6                    | 0.6             | < 0.81                 | 0.81            |        |                 | <mark>0.3</mark>                |
| Carbon Disulfide        | < 0.84                  | 0.84            | 3.7                     | 0.84            | < 0.84                  | 0.84            | <1.1                   | 1.1             |        |                 | <mark>700</mark>                |
| Chloroform              |                         |                 |                         |                 |                         |                 | 10.2                   | 1.8             |        |                 | <mark>100</mark>                |
| Cyclohexane             | < 0.91                  | 0.91            | 12.8                    | 0.91            | < 0.91                  | 0.91            | 3.2                    | 1.2             |        |                 | <mark>6,000</mark>              |
| Dichlorodifluoromethane |                         |                 |                         |                 |                         |                 | 14.5                   | 1.8             |        |                 | <mark>200</mark>                |
| Ethanol                 | <2.5                    | 2.5             | 15.0                    | 2.5             | <2.5                    | 2.5             | 341                    | 3.4             |        |                 | <mark>15,000</mark>             |
| Ethylbenzene            | <1.2                    | 1.2             | 42.1                    | 1.2             | <1.2                    | 1.2             | 5.7                    | 1.6             |        |                 | 1,000                           |
| 4-Ethyltoluene          | <3.4                    | 3.4             | 7.4                     | 3.4             | <3.4                    | 3.4             | <4.5                   | 4.5             |        |                 | NA                              |
| n-Heptane               | <1.1                    | 1.1             | 78                      | 1.1             | < 0.96                  | 0.96            | 4.5                    | 1.5             |        |                 | NA                              |
| n-Hexane                |                         |                 |                         |                 |                         |                 | 12.2                   | 1.3             |        |                 | <mark>2000</mark>               |
| Methylene Chloride      |                         |                 |                         |                 |                         |                 | 13.8                   | 1.3             |        |                 | <mark>20</mark>                 |
| 2-Propanol              |                         |                 |                         |                 |                         |                 | 18.1                   | 4.5             |        |                 | <mark>7000</mark>               |
| Propylene               |                         |                 |                         |                 |                         |                 | 2.7                    | 0.63            |        |                 | <mark>3000</mark>               |
| Styrene                 | <1.2                    | 1.2             | 44.7                    | 1.2             | <1.2                    | 1.2             | <1.6                   | 1.6             |        |                 | <mark>1,000</mark>              |
| Tolunene                | <1.0                    | 1.0             | 132                     | 1.0             | <1.0                    | 1.0             | 22                     | 1.4             |        |                 | <mark>5,000</mark>              |
| 1,2,4-Trimethylbenzene  | <1.3                    | 1.3             | 9.3                     | 3.4             | <3.4                    | 3.4             | <1.8                   | 1.8             |        |                 | <mark>4</mark>                  |
| M&p-Xylene              | <2.4                    | 2.4             | 88.9                    | 2.4             | <2.4                    | 2.4             | 24.8                   | 3.2             |        |                 | <mark>100</mark>                |
| o-Xylene                | <1.2                    | 1.2             | 27                      | 1.2             | <1.2                    | 1.2             | 5.1                    | 1.6             |        |                 | <mark>100</mark>                |

Table 20 Results of Soil Gas Sampling for Vapor Intrusion Screening<sup>1</sup>

<sup>1</sup> Report results in  $\mu g/m^3$ .

 <sup>2</sup> Sample IDs should correspond to labeled locations on the Vapor Intrusion Assessment Map.
 <sup>3</sup> The Intrusion Screening Values can be found in Guidance Document 4-01a Vapor Intrusion Assessments Performed during Site Investigations.

Add additional rows as needed, and copy the entire table if more columns are needed. Notes:

### **Section 6: Appendices**

Attach all required or applicable appendices in the following order. Indicate those appendices that are included in this report by marking the check box. The appendix section of the report contains sufficient information to document all activities completed since the last report. All reproduced data must be legible. Reports missing required documentation are subject to rejection.

|           | Appendix A | Copies of most recent laboratory analytical reports for Soil, Soil Gas/Sub-<br>slab Vapor/Indoor Air/Ambient Air, and Ground Water samples, including a<br>copy of the Chain of Custody. Include laboratory QA/QC data,<br>Chromatograms, and MDH laboratory certification number. |
|-----------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Appendix B | Methodologies and Procedures, Including Field Screening of Soil, Other<br>Field Analyses, Soil Boring, Soil Sampling, Soil Gas/Sub-Slab/Indoor<br>air/Ambient Air Sampling, Well Installation, and Water Sampling.                                                                 |
|           | Appendix C | Geologic Logs of Additional Soil Borings and Wells Installed. Include Well<br>Construction Diagrams and Copies of the Minnesota Department of Health<br>Well Record for new wells.                                                                                                 |
| $\square$ | Appendix D | Field or sampling data sheets (sampling forms, field crew notes, etc.).                                                                                                                                                                                                            |
|           | Appendix E | Guidance Document 1-03a <i>Spatial Data Reporting Form</i> (if not previously submitted or new site features need to be reported).                                                                                                                                                 |
|           | Appendix F | Guidance Document 2-05 <i>Release Information Worksheet</i> (if not previously submitted).                                                                                                                                                                                         |
|           | Appendix G | Guidance Document 4-19 Conceptual Corrective Action Design Worksheet.                                                                                                                                                                                                              |

#### Web pages and phone numbers MPCA staff http://www.pca.state.mn.us/pca/staff/index.cfm MPCA toll free 1-800-657-3864 Petroleum Remediation Program web page http://www.pca.state.mn.us/programs/lust p.html MPCA Info. Request http://www.pca.state.mn.us/about/inforequest.html MPCA VIC program http://www.pca.state.mn.us/cleanup/vic.html MPCA Petroleum Brownfields Program http://www.pca.state.mn.us/programs/vpic\_p.html MPCA SRS guidance documents http://www.pca.state.mn.us/cleanup/riskbasedoc.html http://www.pca.state.mn.us/cleanup/riskbasedoc.html#surfacewaterpathway http://www.health.state.mn.us/divs/eh/groundwater/hrltable.html MDH HRLs MDH DW hotline 1-800-818-9318 Petrofund Web Page http://www.state.mn.us/cgi-bin/portal/mn/jsp/content.do?id=-536881377&agency=Commerce Petrofund Phone 651-215-1775 or 1-800-638-0418 651-649-5451 or 1-800-422-0798 State Duty Officer

Upon request, this document can be made available in other formats, including Braille, large print and audio tape. TTY users call 651/282-5332 or Greater Minnesota 1-800-657-3864 (voice/TTY).

Printed on recycled paper containing at least 10 percent fibers from paper recycled by consumers.

W:\ts\65677\2011 Field Work LIF Investigation\2011 Ann Report\2011 Annual Report Form.doc

## Appendix I

Intentionally left Blank