

Conceptual Corrective Action Design Report (CCAD)

Petroleum Remediation Program

Guidance Document 7-02

Doc Type: Corrective Action Design

Instructions: Complete this report to recommend a final corrective action. See Guidance Document 7-01 *Corrective Action Design and Implementation* for more information and requirements. Complete Section 1 if this report is not included as an appendix to Guidance Documents 4-06 *Investigation Report Form* or 4-08 *Monitoring Report*. Complete Section 2 for every corrective action. Complete Section 3 for a simple corrective action or Section 4 for a complex corrective action. Complete Section 5 if a remediation system or other in situ remediation technology is proposed. Do not revise or delete any text or questions from this report form. Items may be added if they are needed to support the corrective action design. If an item is not applicable, provide a brief explanation.

MPCA Leak ID:			Report date:	March 26, 2014
Responsible Party Information				
Name: Mille Lacs Oil Company			Phone:	763-689-2220
Mailing address: 102 Main Street				
City: Cambridge	State:	MN	Zi	p code:55088
Alternate contact (if any) for responsible party: Ms. Maria Olson			Phone:	763-689-2220
Leak Site Information				
Leak Site name: Former Union 76			Phone:	NA
Leak Site address: 329 East First Avenue				
City: Cambridge	MN Zi	p code:	55088	County: Isanti

Consultant (or other) Information

By signing this document, I/we acknowledge that we are submitting this document on behalf of and as agents of the responsible person or volunteer for this leak Site. I/we acknowledge that if information in this document is inaccurate or incomplete, it will delay the completion of remediation and may harm the environment and may result in a reduction in Petrofund reimbursement. In addition, I/we acknowledge on behalf of the responsible person or volunteer for this leak Site that if this document is determined to contain a false material statement, representation, or certification, or if it omits material information, the responsible person or volunteer may be found to be in violation of Minn. Stat. § 115.075 (2007) or Minn. R. 7000.0300 (Duty of Candor), and that the responsible person or volunteer may be liable for civil penalties.

Compa	any name: Wenc	k Associates, In	C.				
Mailing	g address: 1800 I	Pioneer Creek C	enter, P.O.	Box 249			
City:	Maple Plain			State:	MN	Zip code:	55359
Projec	t manager name:	Adam Zobel				Phone: 76	63-479-5145
Fax:	763-479-4242		E-mail:	azobel@we	enck.com	n	
Repo	rt Author(s)						
Print n	ame: Adam Zob	el			Title:	Environmental Project	Manager
Signat	ure:	Pole	R		Date:	March 26, 2014	
Print n	ame:				Title:		
www.p	ca.state.mn.us • ca.state.mn.us • .02 • 1/11/11		800-657- 800-657-			282-5332 or 800-657-3864 282-5332 or 800-657-3864	 Available in alternative formats Available in alternative formats

Signature:		Date:	
Report Rev	iewer(s)		
Print name:	Aaron Benker	Title:	Principal
Signature:	An-Bh	_ Date:	March 26, 2014
Print name:		Title:	
Signature:		Date:	
Name of field	technician(s): _ Katie Miller, Adam Zobel		

Section 1: Site Conceptual Model Update

Include updated cumulative tables and figures from Guidance Document 4-06 *Investigation Report Form* in Appendix A. Include documentation of additional Site investigation, Site monitoring, and interim corrective actions in Appendix B.

1. Describe any additional Site investigation, Site monitoring, and/or interim corrective actions completed since the last submitted report.

As requested by the MPCA, quarterly monitoring well sampling for MWs 1, 3, 6, 7, 9, and 10 was completed on February 3, 2014. Wenck also completed light non-aqueous phase liquid (LNAPL) measurements on MWs 3, 7, and 9 in February and March. MPCA had also requested MW-8 be sampled and that the LNAPL be measured; however, MW-8 was buried under a snow collection pile and not accessible. Monitoring wells and historical sampling locations are shown on the attached Figures.

2. Discuss the results of the additional Site investigation, Site monitoring, and/or interim corrective actions.

LNAPL was measured at a thickness of 0.52 feet in MW-3 and at a thickness of 0.02 feet in MW-7 during the February 3, 2014 sampling event. LNAPL was not observed in the other wells sampled. MW-3 and MW-7 were not sampled for groundwater analysis because product was present in the wells. LNAPL was measured at 0.053 feet in MW-3 and at 0.03 feet in MW-7 for the March 6, 2014 sampling event.

Groundwater from MW-1, MW-6, MW-9, and MW-10 were sampled for analysis of diesel range organics (DRO), gasoline range organics (GRO), and benzene, toluene, ethylbenzene and xylenes (BTEX) on February 3, 2014.

DRO was detected at 1,300 ug/L in MW-1, 7,200 ug/L in MW-6, 6,200 ug/L in MW-9 and 7,500 ug/L in MW-10.

GRO was detected at 1,430 ug/L in MW-1, 20,700 ug/L in MW-6, 35,600 ug/L in MW-9, and 12,000 ug/L in MW-10.

Benzene was detected at 2.2 ug/L in MW-1, 2,480 ug/L in MW-6, 3,950 ug/L in MW-9, and 249 ug/L in MW-10.

Toluene was detected at 1,710 ug/L in MW-6, 6,030 ug/L in MW-9, and 313 ug/L in MW-10. Toluene was not detected above laboratory reporting limits in MW-1.

Ethylbenzene was detected at 20.8 ug/L in MW-1, 1,260 ug/L in MW-6, 1,460 ug/L in MW-9, and 364 ug/L in MW-10.

Total xylene was detected at 434 ug/L in MW-1, 4,170 ug/L in MW-6, 6,860 ug/L in MW-9, and 1,730 ug/L in MW-10.

The cumulative data collected from this sampling event is recorded on the updated **Tables** attached in **Appendix A**. The laboratory analytical report is attached in **Appendix B**.

3. Provide an updated and comprehensive Site conceptual model.

LNAPL

The laser induced fluorescence (LIF) boring data from the Focused Investigation Report shows that LNAPL from the release is defined. Data collected from the first quarterly event in February 2014 showed 0.52 feet of LNAPL in MW-3 and 0.02 feet of LNAPL in MW-7. The results of product level checks on March 6, 2014 revealed 0.53 feet in MW-3 and 0.03 feet in MW-7. The LIF investigation data shows a defined source area of LNAPL that is present at and above the groundwater extending down-gradient of the release area. The LNAPL at the Site appears relatively stable, however, it is contributing to down-gradient impacts to the dissolved phase. This CCAD outlines conceptual remediation options to address the LNAPL with the goal to reduce LNAPL to residual.

Groundwater

Groundwater monitoring/investigation has been ongoing at the Site since June 1995. Concentrations of DRO, GRO, and BTEX are relatively stable compared to historical data. Groundwater analytical data is shown on **Table 11**. Sites within the

Vapor Intrusion

As noted in the Focused Investigation Report, in 2011, Liesch collected three soil vapor samples to assess off-Site vapor intrusion potential. Vapor Pt #1 was collected west of the Midwest Environmental Consulting building located at 145 Second Avenue SE, Vapor Pt #2 was collected on the east side of the American Legion Building located at 200 Second Avenue SE, and Vapor Pt #3 was collected to the east of the Cambridge Bible Bookstore located at 220 Main Street South. All vapor samples were collected at depths between 6-8 feet below grade. No detectable concentrations of VOCs were identified in Vapor Pt #1 and Vapor Pt #3. Vapor Pt #2 (American Legion) defected several VOCs. Benzene was detected at 84.6 ug/m³ and 1,3-butadine was detected at 64.5 ug/m³. MPCA guidance document 4-01a provides guidelines for comparing soil gas sample results to 10x the ISV and 100 times the ISV. Benzene detected at 86.6 ug/m³ in Vapor Pt #2 exceeds 10 times the Residential ISV of 45 ug/m³, but does not exceed the 10 times the Industrial ISV of 130 ug/m³ or 100 times the Residential ISV 450 ug/m³. While 1,3 Butadiene exceeds 100 times the Residential ISV of 30 ug/m³, 1,3-Butadine is not anticipated to be a compound associated with the identified release. The results are shown on **Table 20**.

In 2011, Liesch collected a subslab vapor sample beneath the basement of the American Legion building to assess the potential for vapor migration into the building. Petroleum VOCs were not detected above 10x the MPCA Residential or Industrial ISVs in sample Subslab-1 (**Table 20**). Based on results of the Subslab-1 sample beneath the American Legion building, there does not appear to be a vapor pathway between the deeper (18-20') dissolved phase petroleum impacts and the American Legions subslab.

In addition, an updated utility vapor survey was conducted in 2011 and no petroleum vapors were identified. Elevated concentrations of VOC exist in the groundwater. However, the low concentrations of VOCs detected in the soil vapor data and the age of the release suggest that much of the volatilization associated with the release has occurred. Thus, the vapor intrusion risk is low and no vapor mitigation is recommended at this time.

Surface Water Receptors

Figure 1 shows the Rum River located west of the Site. The Rum River is located approximately 4,000 feet down-gradient of the release and 3,500 feet from the leading edge of the contamination plume. Based on the distance to the Rum River, the risk to this receptor is considered low.

4. Provide recommendations for additional Site investigation, Site monitoring, and/or interim corrective actions to be completed prior to corrective action design (CAD) approval, including their purpose and schedule for completion.

The MPCA Petroleum Remediation Program has requested the following monitoring schedule for the Site for 2014:

- Sample monitoring wells according to the following schedule:
 - Quarterly: MWs 1, 3, 6, 7, 8, 9, and 10
 - Semi-annually: MW-11
 - Annually: MW-6A
- Monitoring wells will be sampled for diesel range organics (DRO), gasoline range organics (GRO), and benzene, toluene, ethylbenzene, and xylenes (BTEX). A duplicate sample will also be collected for DRO, GRO, and BTEX once per sampling round.
- Measure water levels in all wells on a quarterly basis.
- Measure LNAPL in wells 3, 7, 8, and 9 on a monthly basis.
- Prepare an Annual Monitoring Report (MPCA Guidance Document 4-08) upon completion of four quarterly sampling events.

Section 2: Final Corrective Action Approach

1. If the CCAD is different than requested by the Minnesota Pollution Control Agency, identify the differences and explain why.

Wenck has not identified any differences in this CCAD compared to what was requested by the MPCA.

2. Discuss the reason for the proposed corrective action.

This CCAD report has been prepared based on a request by the MCPA to reduce the amount of residual LNAPL at the Site.

3. Discuss the corrective action goal relative to the corrective action reason.

The goal of the corrective action is to target the LNAPL zone and reduce the residual LNAPL. The reduction/cleanup of the LNAPL would reduce residual contributions to the dissolved phase and thereby stabilize/reduce the DRO, GRO, and VOC concentrations in groundwater at the Site.

4. List the two or three most feasible corrective action alternatives. Discuss each alternative's capabilities and limitations relative to achieving the corrective action goal, including major design assumptions, relative life-cycle costs, and implementation time frames. Provide life-cycle cost estimates for each alternative in Appendix C.

Chemical Injection

Wenck contacted multiple chemical injection contractors to determine if chemical injection would be applicable for the site. Based on the size of the plume and the target zone area, the cost of the injection product alone was determined to be cost prohibitive as a remediation technique.

Excavation

One potential corrective action approach would be to excavate contaminated soil down to the groundwater table at the source area. Based on the LIF data collected in the Focused Investigation Report, a significant amount of impacts exists at the Site in the source area from 0-15 feet below grade. This impacted area is likely contributing to the LNAPL and the dissolved phase. The source area impacts detected in the LIF investigation are shown on the attached **Figure 4**. The total estimated soil volume to complete a source area excavation within a 40 foot radius of MW-3 to a depth of 20 feet would be approximately 4,750 cubic yards or 6,650 tons. MW-3 would need to be sealed prior to the excavation. The extent of the excavation would be limited by the existing former Union 76 structure to the north, Buchannan Street to the West, and the railroad right-of-way to the east. The excavation would also need to be sloped at a 1½ to 1 ratio due to the sandy soil type. The soil would need to be disposed of at an MPCA approved facility. In addition, the hole would need to be backfilled and compacted with clean soils. Upon backfilling the excavation, a new well would need to be installed in place of MW-3. Post excavation monitoring of the wells would need to be completed for several years to determine the effectiveness of the cleanup. Additional corrective action would likely still be necessary since residual impacts would likely still exist in unexcavated areas, which would be accomplished through a venting/air sparge system. An access agreement would need to be obtained for the excavation work since Mille Lacs Oil does not own the site. A life cycle cost estimate is shown in **Appendix C**.

Dual Phase Soil Vapor Extraction (SVE)

This system would consist of SVE wells within and around the LNAPL plume area. The wells would be constructed with 2-inch diameter PVC. Wells would be installed with 5 foot screens intersecting within the top 2 feet of the water table. A smaller stinger drop-tube consisting of 1-inch diameter tubing would be placed at the LNAPL interface within the soil venting well. Vacuum would be applied to the well and the stinger. The applied vacuum creates a vapor and liquid-phase pressure gradient toward the vacuum wells. Both vapor and liquid would be recovered from the wells. This system would need to be pilot tested prior to a final design. One disadvantage to this system would be the potential need for water-treatment and discharge, which would add expense. Another disadvantage to this system is there is not a significant volume of LNAPL to recover with the stinger drop-tube. Monthly monitoring of the groundwater levels in the wells would be required to adjust the depth of the stinger tube. The shallow 0-15' soils at the source area would also be targeted with four shallow SVE wells. A life cycle cost estimate is shown in **Appendix C**.

Air Sparge (AS) and SVE

This system would consist of several deep and shallow SVE wells within and around the perimeter of the target zone. The shallow 0-15' soils at the source area would also be targeted with three (3) shallow SVE wells installed from 5-15'. Through the middle of the plume Wenck proposes twelve (12) deep SVE wells screened from 17-22 feet below grade. Five (5) medium vent wells screened from 12-17' would be installed around the perimeter of the target zone. Three air sparge wells would be installed through the target zone in the groundwater at a depth of 25-27 feet below grade. The system would begin operation as SVE only, and when initial vapor concentrations reach asymptotic levels, the air sparge wells would be engaged to volatilize additional VOCs for recovery. The wells would be incorporated into a manifold so that wells could be run in different configurations. The sandy soil conditions at the site are optimal for this type of system. The system will need to be pilot tested for design considerations and to determine the radius of influence of the SVE wells and sparge wells. A life cycle cost estimate is shown in **Appendix C**.

5. Identify the selected corrective action alternative and discuss the rationale for selecting it, including discussion of the cost-effectiveness evaluation, if completed.

Wenck has determined the most practical and efficient way to reduce the LNAPL to residual levels at the site is with an AS/SVE system. The system has the ability to be run solely as an SVE system for an extended period of time at the beginning of startup. Additional recovery could then be completed by introducing the AS component.

6. Discuss the measurable corrective action objectives that will be used to demonstrate progress towards achieving the corrective action goal and completing the corrective action.

A combination of product level checks and monitoring/sampling of the existing monitoring well network and LIF drilling technology is proposed to demonstrate progress towards achieving the corrective action goal. The goal is to reduce the LNAPL detections to residual levels. A 30 foot grid of LIF borings would be drilled in and around the target zone to show progress towards the cleanup goal and/or obtain Site closure. A response of 10% by the LIF is proposed as an indicator of residual levels of LNAPL. Another goal will be to show no LNAPL in wells within the existing monitoring well network.

Section 3: Simple Corrective Action

- 1. Summarize and reference previously submitted data, analyses, and conclusions that support and form the basis for the proposed corrective action.
- 2. Discuss implementation of the proposed corrective action to the extent adequate to support CAD approval, including activities, methods and procedures, permits, and implementation reporting. Propose a schedule for completing the corrective action.
- Identify any contaminated waste types (e.g., gases, liquids, solids) and respective volumes that may be generated by corrective action implementation. Discuss how these wastes will be measured, handled, treated, discharged, and/or disposed of. Contaminated soil removed for treatment should be estimated as in-place cubic yards and supported by providing scaled maps and calculations.

Section 4: Complex Corrective Action

1. Identify the technical lead responsible for overseeing the design, implementation, and reporting of the corrective action.

Aaron Benker is the technical lead and principal for the project. Adam Zobel is the project manager and will be responsible for coordination, reporting and MPCA/client correspondence. Shane Waterman, P.G. and Matt Bowers, P.E. will also provide direct review of the pilot testing and system design.

2. Identify and briefly discuss any focused investigation work that is recommended before a pilot test work plan or detailed corrective action design report can be completed. Propose a schedule for submitting Guidance Document 7-03 Focused Investigation Work Plan.

A Focused Investigation has already been completed for the Site. No additional Focused Investigation work is proposed at this time.

3. If no focused investigation is recommended, propose a schedule for submitting Guidance Document 7-05 Pilot Test Work Plan, Guidance Document 7-07a Remediation System Detailed Corrective Action Design Report (SDCAD), or Guidance Document 7-07b Excavation Detailed Corrective Action Design Report (EDCAD).

With CCAD approval by April 15, 2014, Wenck proposes the following schedule:

- Submit Pilot Test Work Plan May 15, 2014
- Complete Pilot Test August 1, 2014
- Submit Remediation System Detailed Corrective Action Design Report (SDCAD) October 1, 2014
- Install Remedial System April 2015

Section 5: Remediation System Conceptual Design

Provide a Site map and, if necessary, cross sections showing the estimated horizontal and vertical extents of the target zone and the locations and screened intervals of proposed remediation and monitoring points in Section 6.

1. Describe the targeted contaminant phase(s), chemicals of concern and their behavior, and target-zone geometry and geology.

The target zone is the LNAPL in soil above and on top of the groundwater table. **Figures 4, 5,** and **6** detail the target zone. The chemical of concern is gasoline including DRO, GRO, and BTEX compounds. The site geology consists of poorly graded sand and silty sand. The soil profile at the groundwater table consists of poorly graded sand. Groundwater is approximately 20 to 22 feet below grade. A confining clay layer is present at approximately 30 feet below grade across the Site.

The mobility of the LNAPL is considered low based on monitoring well observations, LIF data, and the age of the release. However, the existing LNAPL is contributing to the dissolved phase down-gradient.

2. Discuss the remediation strategy, including the relative timing and magnitude of subsurface physical, chemical, and biological processes that the proposed system will be designed to induce and control.

The system will likely run off of two blower/enclosures since the LNAPL plume extends across Buchanan Street. One manifold and enclosure is not likely possible because it would require trenching across South Buchanan Street and street utilities. Initially, the system will run as an SVE system with both shallow and deep wells connected to the manifolds, where vacuum and airflows will be monitored and regulated for each well individually to optimize cleanup performance. Once the concentrations of organic vapor recovery reach asymptotic levels, air sparge wells will be introduced to release additional VOCs for capture by the SVE system. The process of venting the target zone will reduce the LNAPL in soil and groundwater.

3. Describe the location, construction, and screened interval of each proposed remediation and monitoring point in terms of the estimated capture zone or radius of influence.

The SVE and AS well locations, as well as the target zone are shown on the attached Figure 6. Wenck estimates an effective

radius of influence of 20 feet from each SVE and AS well. This will be confirmed through pilot testing. Twelve (12) deep SVE wells will be screened from 17-22 feet so the screened interval intersects with the groundwater table and the LNAPL target zone. Five (5) medium depth SVE wells will be installed above the water table, screened from 12-17 feet. Three (3) shallow

wells will be installed at the source area and screened from 5-15'. The purpose of the shallow wells will be to control potential vapor migration, especially during the air sparge remediation stage. Three sparge wells will be constructed with one-inch PVC with a screen from 25-27 feet below grade within the groundwater table.

4. Discuss the major below- and above-ground equipment (e.g., wells, pumps, compressors, treatment equipment) for the proposed system.

The SVE wells will be constructed with 2-inch schedule 40 PVC. The wells will run back to one of two enclosures. Since Buchannan Street is present within the target zone, it may not be possible to run piping under the road to a single enclosure unit. To estimate the highest cost scenario, Wenck is assuming there will be two enclosures needed. The wells will run back to manifolds. The manifold will be in-line with a condensation knock-out tank, blower and vapor discharge to possible treatment such as carbon. The need for and type of effluent treatment will be determined based on the pilot test and startup testing. Air sparge lines will be connected to an air compressor.

5. Discuss the proposed system's process flow.

Once operational, the SVE will pull a vacuum on the SVE wells, creating a vapor pressure gradient to the wells. The soil vapor will be drawn back through the enclosure manifold to a water vapor knock-out tank. From the knock-out tank, the air will cycle through the blower and discharge. Discharge treatment by carbon may be added to the process if necessary.

When air sparging is incorporated, pulses of compressed air will be introduced to the groundwater table, volatilizing additional hydrocarbons for recovery by the SVE system.

6. Identify the waste streams that will be generated during system operation. Discuss how the wastes will be handled and disposed of. Discuss any waste disposal limitations and conditions such as permits, approvals, or compliance monitoring that the wastes may be subject to.

Operation and start up testing of the vapor effluent will be completed in accordance with MPCA guidance document Air Emission Controls Guidance Document 7-09a. No significant water discharge is anticipated with AS/SVE. The knock-out tank waste will need to be collected and disposed of periodically.

7. Summarize the proposed system's operation strategy from startup to shutdown and any recommended postshutdown monitoring. Integrate the corrective action objectives from Section 2, Item 6, including remediation endpoints and proposed time frames to achieve them.

The system will start operation as an SVE system. The air sparging will be introduced as necessary. The system will be optimized and pulsed at various intervals to maximize the removal of VOCs. Effluent samples will be collected from the system in accordance with MPCA Guidance document Air Emission Controls Guidance Document 7-09a. Operation monitoring will include testing the discharge effluent for VOCs, as well as individual SVE wells as necessary for optimizing the system. The reduction in VOCs from the target zone will reduce the LNAPL to residual levels over time. Existing monitoring wells will be checked for product monthly. When product is no longer detectable in the monitoring wells, a shut-down protocol will be implemented. Monitoring of the wells will continue for several months. For site closure, a LIF investigation will be completed to confirm the reduction of LNAPL. The system will remain in place until evaluation of the LIF data and existing monitoring wells shows cleanup levels to residual. The benchmark for residual impacts as determined by the LIF investigation will be a response of 10% throughout the existing impacted area. If residual criteria is not met, the system will start-up again, targeting areas in excess of residual.

8. Briefly describe the operation monitoring plan, including the type of and frequency that data will be collected and how they will be evaluated to determine progress in achieving the corrective action objectives.

Operation monitoring will include testing the discharge effluent for VOCs, as well as individual SVE wells as necessary for optimizing the system. Product levels will be measured from existing monitoring wells on a monthly basis during system operation. When product is no longer detectable in the monitoring wells, a shut-down protocol will be implemented. Soil vapor sampling will also be completed outside the SVE well network pre and post startup to the west and south of the LNAPL plume.

9. Describe the pilot test. Describe the types of data to be collected and the results needed to demonstrate technical and economic feasibility of the proposed technology relative to the remediation and operation strategies.

The pilot test will be completed using a series of one sparge well and four SVE wells. The pilot test will be completed in two stages. First stage will be testing the effectiveness of the SVE system. The pilot test data collection will collect data for vacuum, air flow, and radius of influence, which will be needed for sizing the blower(s). Pressure readings will be obtained from pilot holes to test for the radius of influence. A monometer will be used to measure the pressure gradient, vacuum and air flow. A series of pilot holes will be installed at varying distances from the wells will be used to measure pressure and influence. Summa canisters will be used to collect effluent samples for TO-15 VOC analysis to demonstrate that VOCs are being vented from the soil and groundwater and at what concentrations.

Section 6: Figures

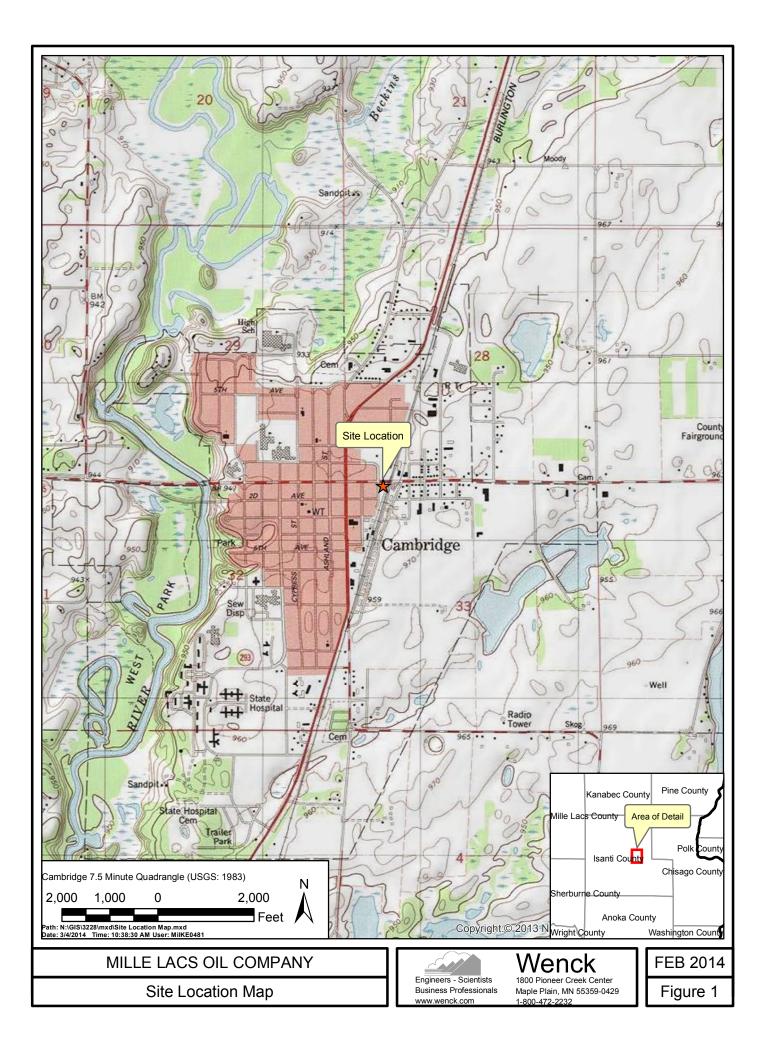
Attach new figures specific to this report in order of discussion in the text and list below. All figures must include a north arrow, scale, and legend as applicable. Approximate scales are not acceptable. Figures required in Appendix A should not be included in this section.

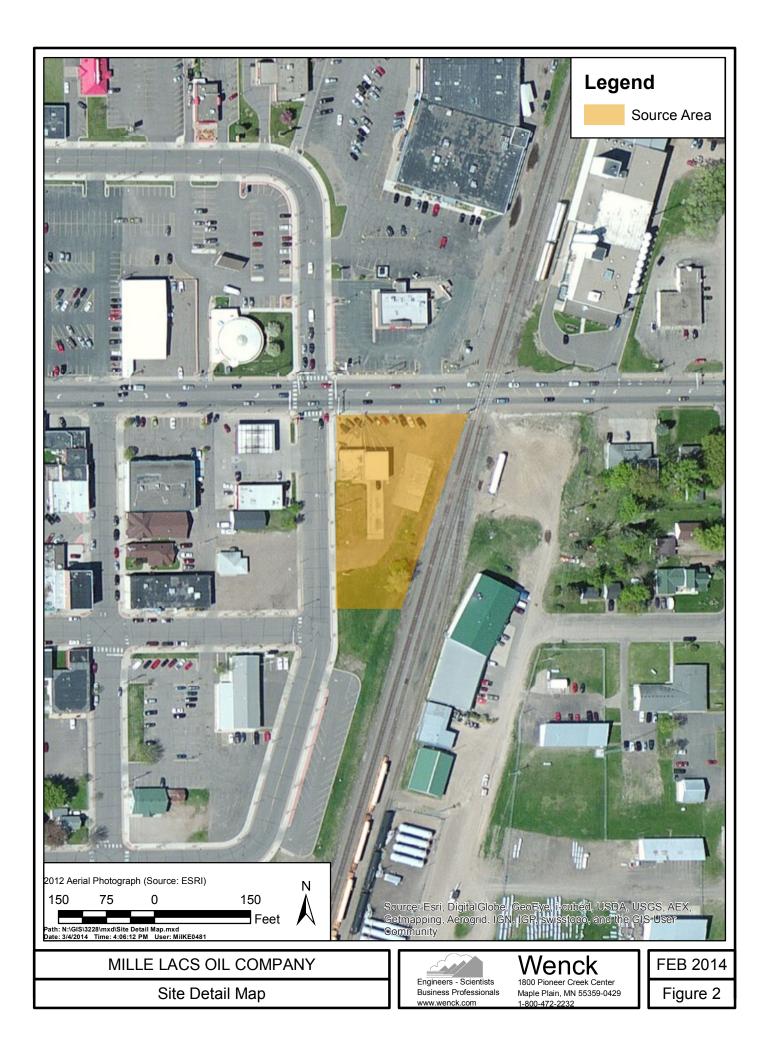
- One or more Site maps showing (as applicable):
 - Structures
 - Boring and well locations (including any drinking water wells on Site)
 - Suspected source(s) of light non-aqueous phase liquid (LNAPL)
 - Locations and depths of on-Site buried utilities
 - All past and present petroleum storage tanks, piping, dispensers, and transfer areas
 - Horizontal extent of LNAPL
 - Horizontal extent of the target zone
 - Proposed remediation and monitoring points

Distinguish sequential elements of investigations by dates, symbols, etc. in the legend.

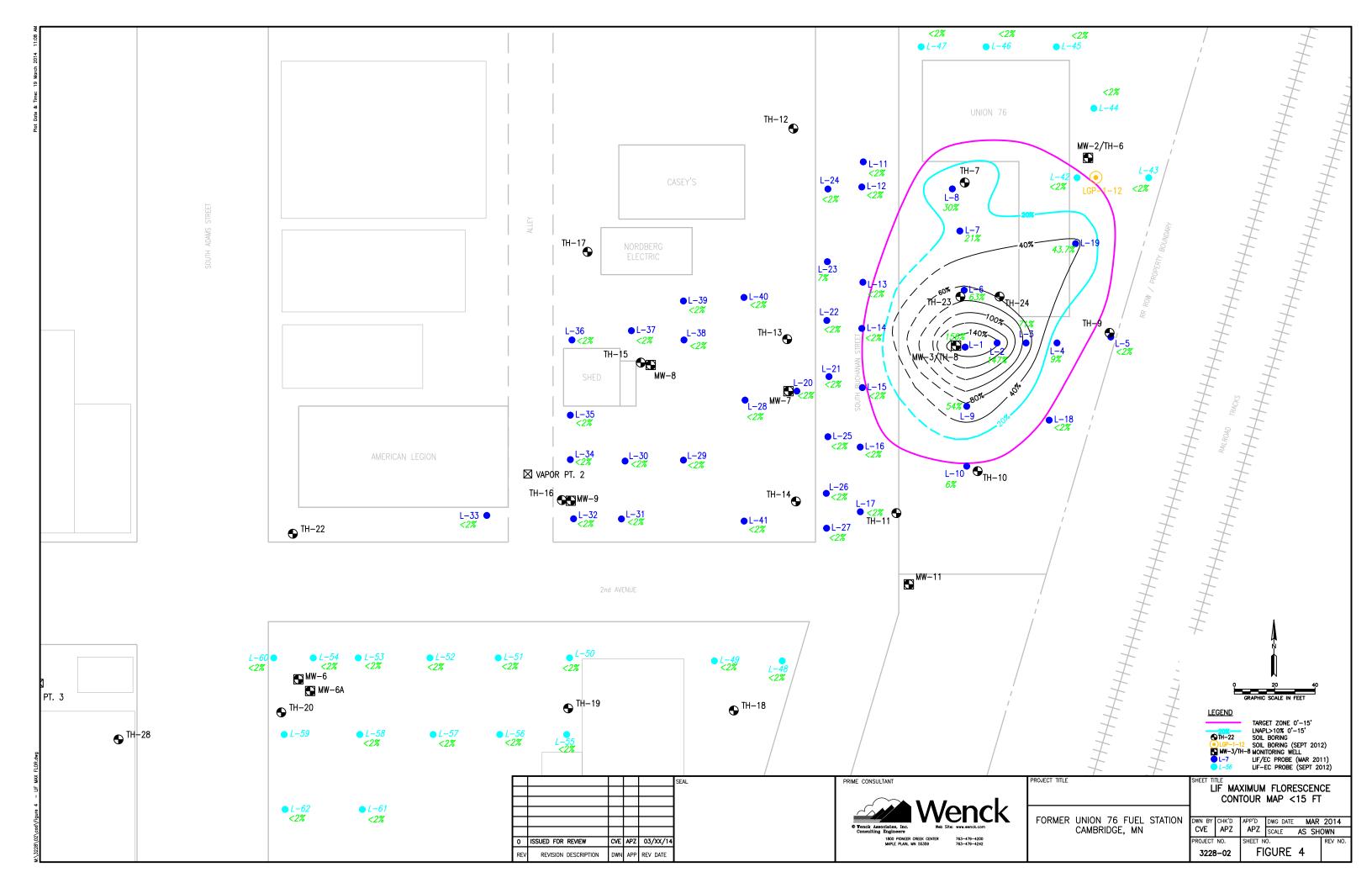
Cross sections depicting target-zone geometry, geology, and hydrogeology and preferential flow routes and barriers to flow

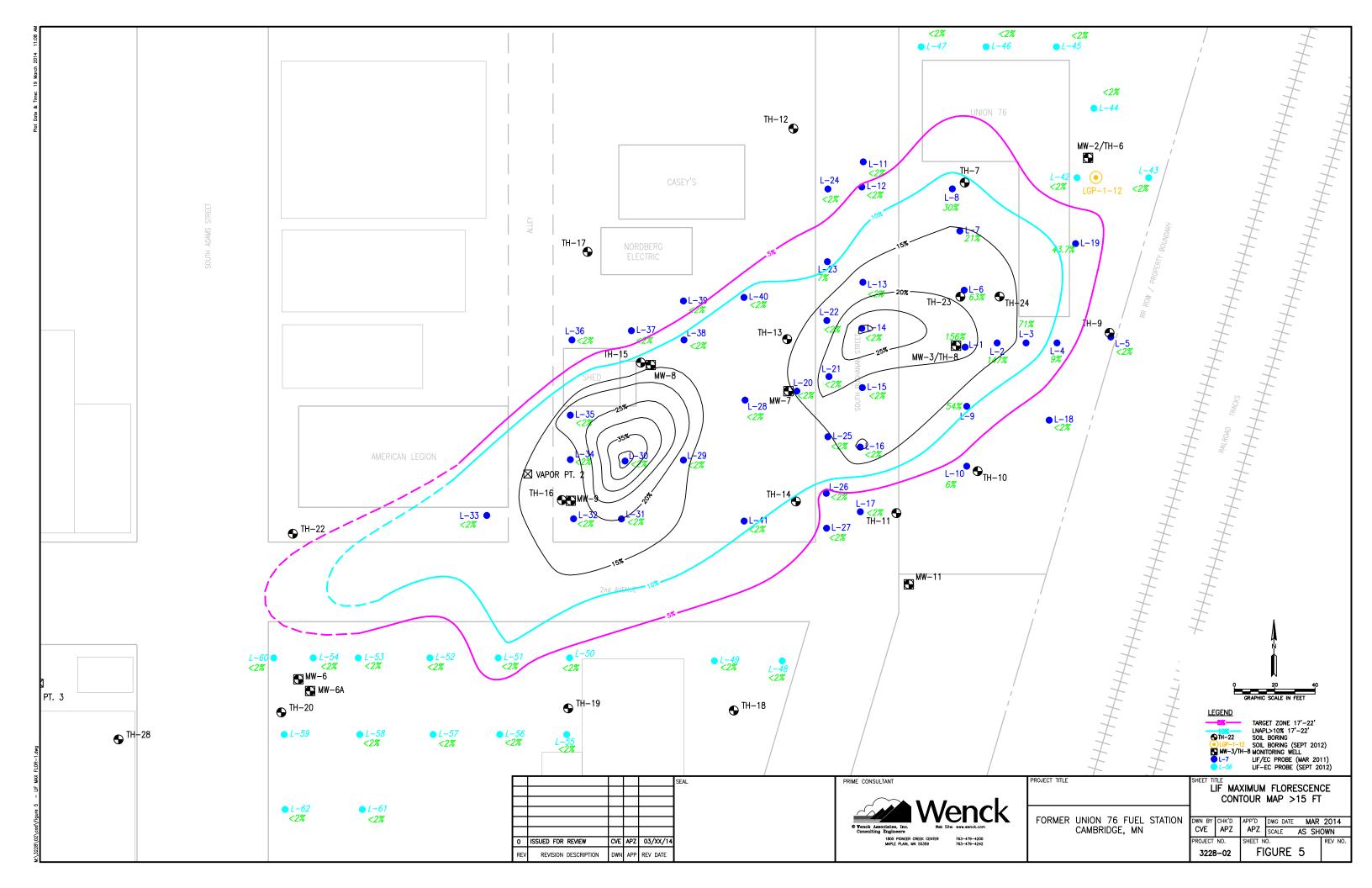
Section 7: Tables

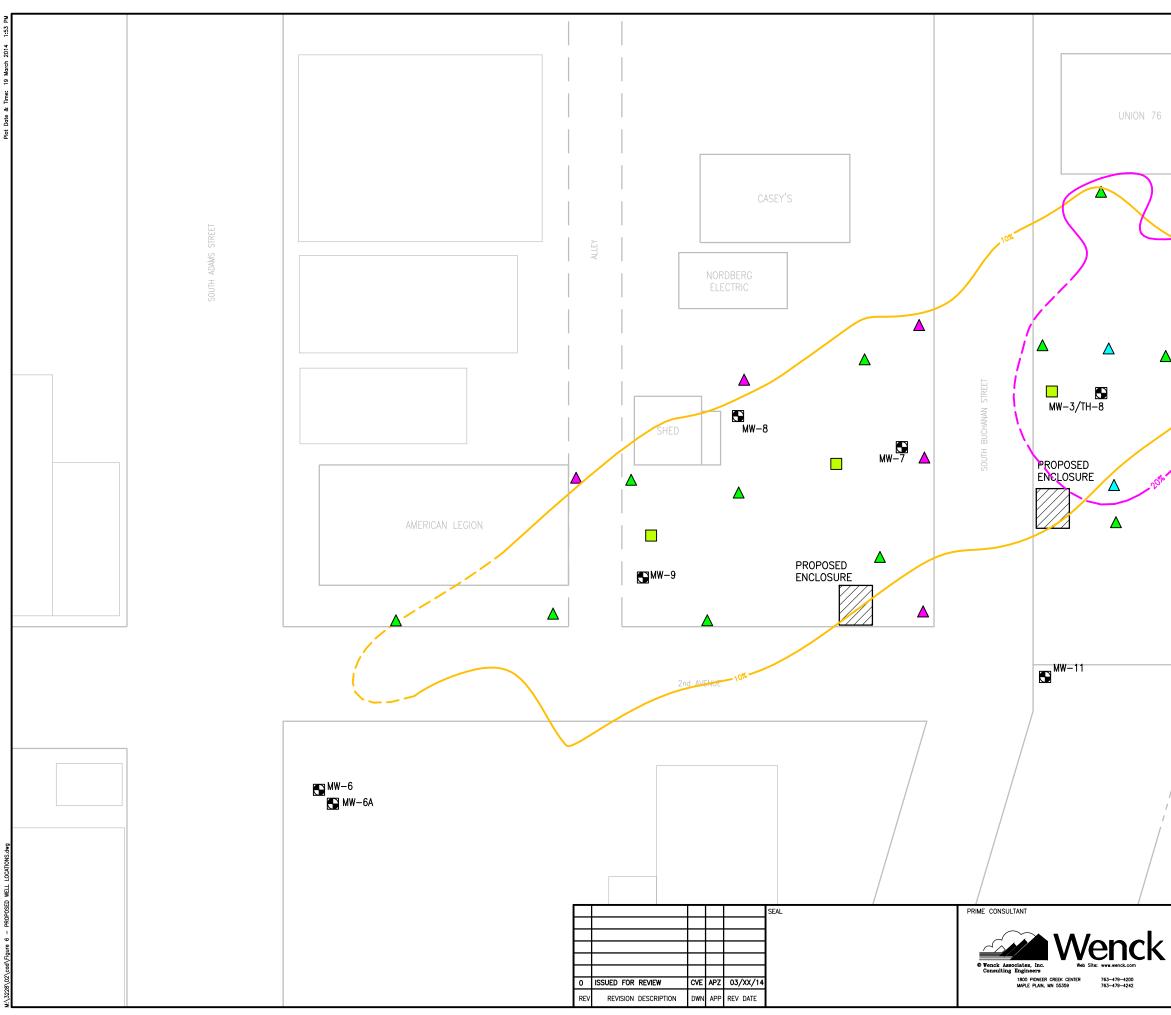

Attach new tables specific to this report in order of discussion in the text and list below. Tables required in Appendix A should not be included in this section.

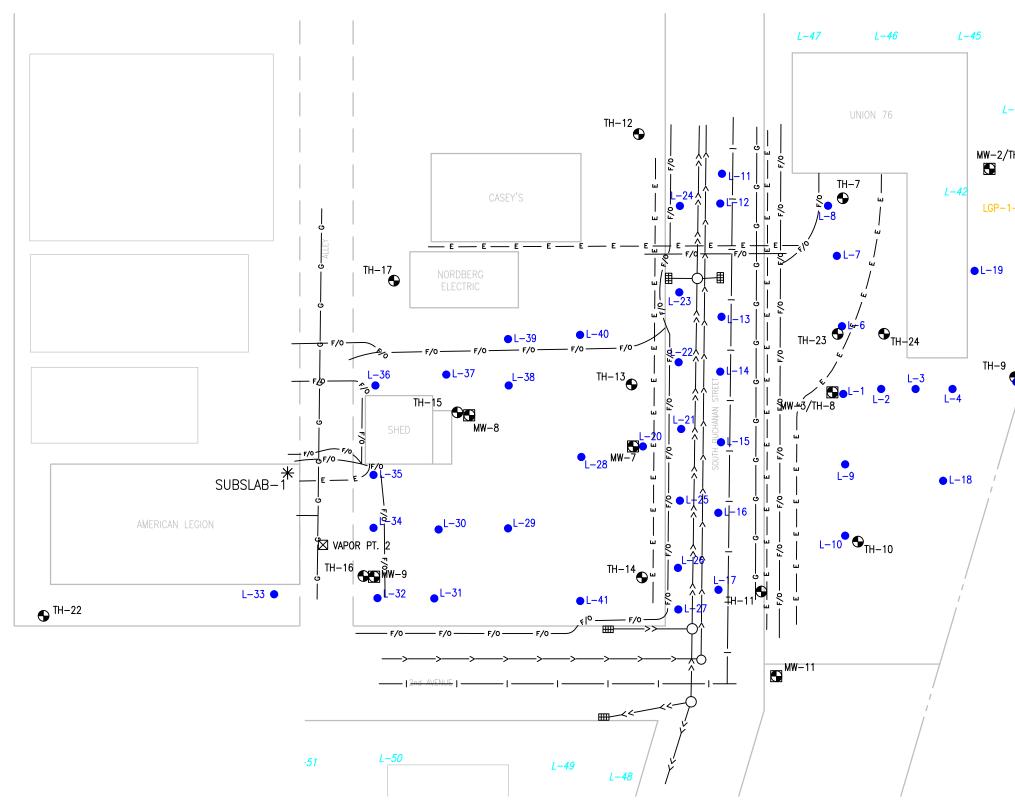

Section 8: Appendices

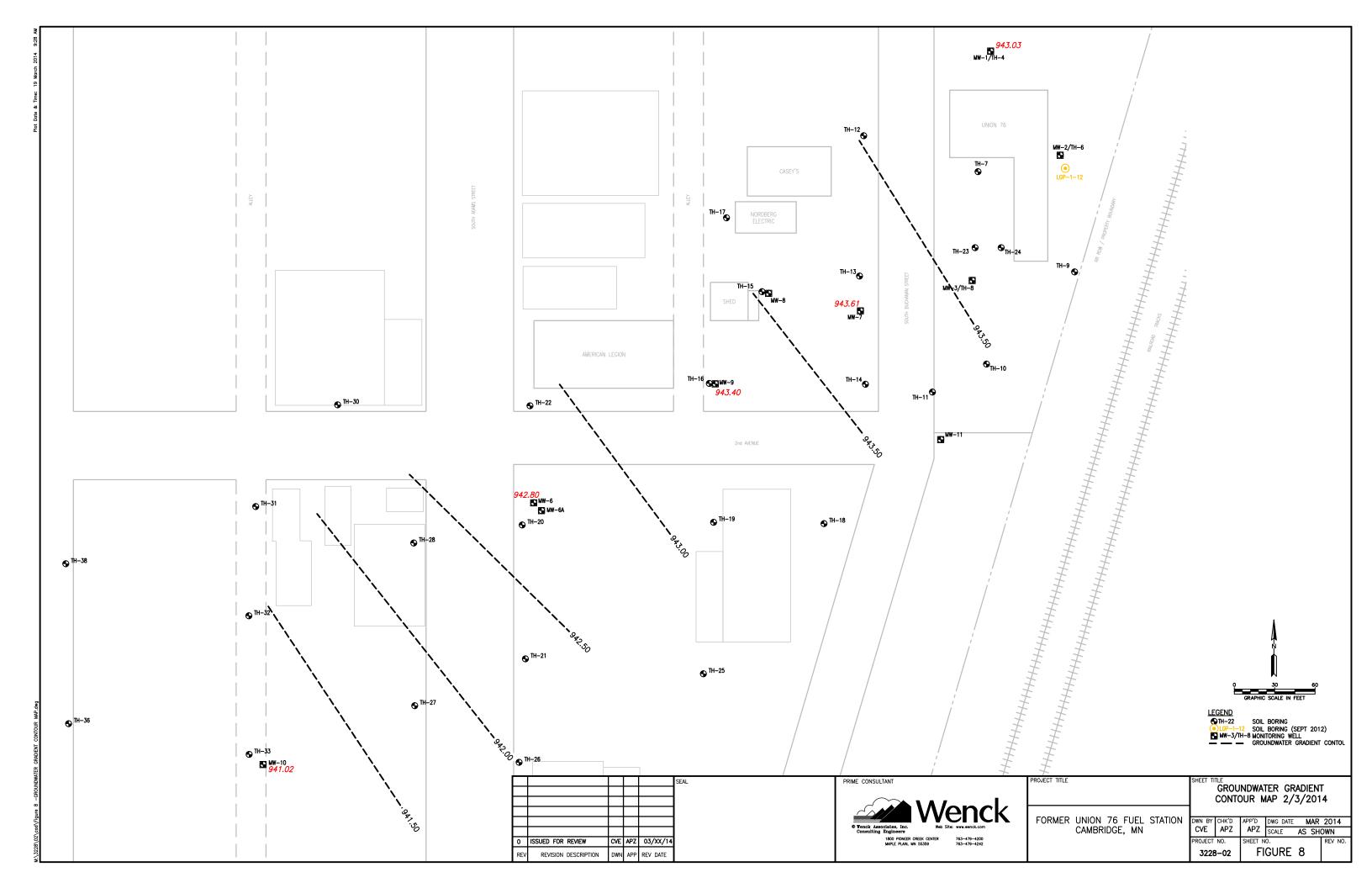

Attach all required or applicable appendices in the following order. Indicate those appendices that are included in this report by marking the check box. All reproduced data must be legible. Attach additional appendices as needed and list below.

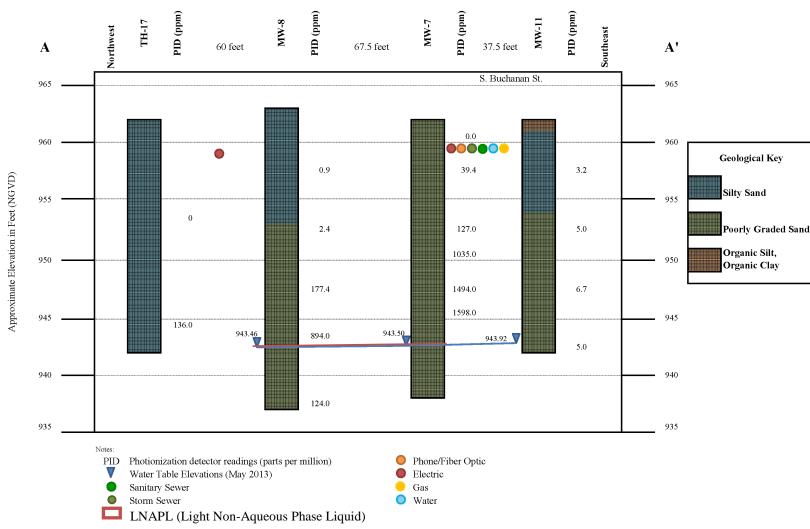

- Appendix A Cumulative and updated tables and figures from Guidance Document 4-06 Investigation Report Form.
- Appendix B Additional Site investigation, Site monitoring, and interim corrective action methods and procedures and associated documentation (boring logs, sampling information forms, laboratory analytical reports, etc.).
- Appendix C Life-cycle cost estimates for each corrective action alternative.


Figures



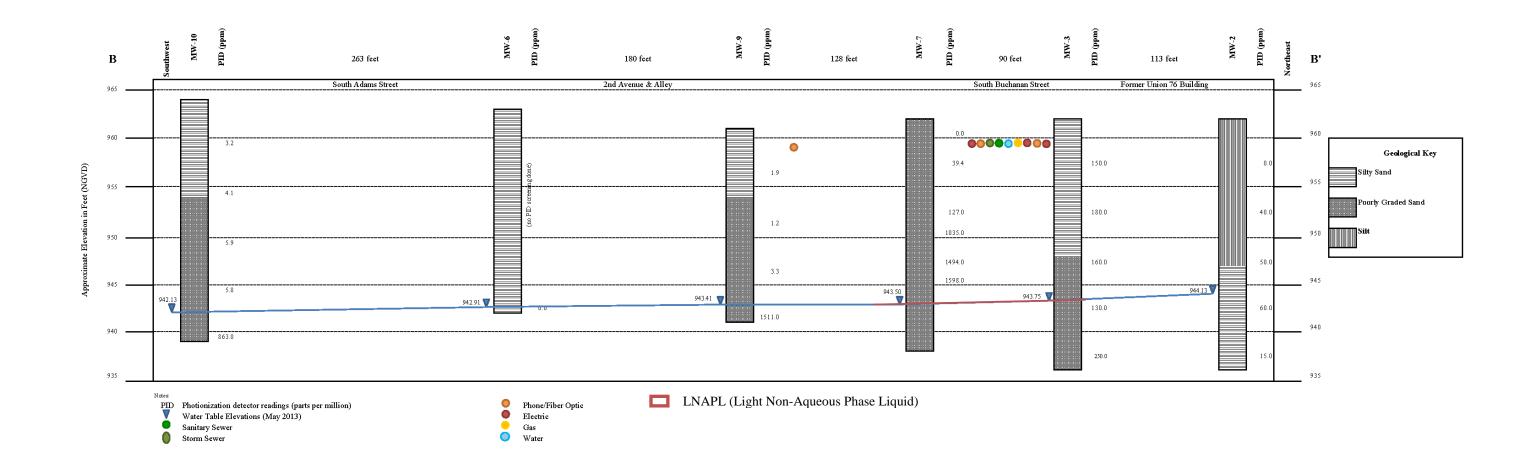






MW-2/TH-6	
MW−2/TH−6 //	
RR ROW / PROPERTY BOUNDARY	
	HHHHHH
	9 20 40
	GRAPHIC SCALE IN FEET TARGET ZONE 0'-12' TARGET ZONE 12'-22' PROPOSED AIR SPARGE WELL PROPOSED SHALLOW SVE WELL 5'-15' (SOURCE CLEANUP) PROPOSED MEDIUM SVE WELL 12'-17' PROPOSED DEEP SVE WELL 17'-22' MONITORING WELL
	SHEET TITLE PROPOSED SVE AND AS WELL LOCATIONS
FORMER UNION 76 FUEL STATION CAMBRIDGE, MN	DWN BY CHK'D APP'D DWG DATE MAR 2014 CVE APZ APZ SCALE AS SHOWN PROJECT NO. SHEET NO. REV NO. REV NO. REV NO.
	3228–02 FIGURE 6

		L-47 L-46 L-4	/	
TH−12		UNION 76	L-44 MW-2/TH-6 //	
		$\begin{array}{c c} TH-7 \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	LGP-1-12	
●L-37 ●L-38 TH-13 ■		TH-23 TH-23 TH-24	TH-9	
TH-15 MW-8 L-28 MW-7 MW-8 MW-7	L_21 , k ≩ oʻ	● L-9 ●L-18	HHHHHHHH RAUROAD TRACKS HHHHLII.	
$\begin{array}{c} \text{TH}-14 \\ \text{H} \\ \text{L}-31 \\ \text{L}-41 \\ \text{F/0} \\ \text{F/0} \\ \text{F/0} \\ \text{F/0} \\ \text{F/0} \\ \text{H} \\ \text{H} \\ \text{F/0} \\ \text{H} \\ \text{H} \\ \text{F/0} \\ \text{H} \\ $		L−10 [●] ● _{TH−10}		Ň
		-11		CRAPHIC SCALE IN FEET CRAPHIC SCALE IN FEET LECEND TH-22 SOIL BORING TH-22 SOIL BORING WW-3/TH-8 MONITORING WELL L-7 LIF/EC PROBE WAPOR PT. 2 VAPOR PROBE * SUBSLAB VAPOR SAMPLE * SUBSLAB VAPOR SAMPLE
L +3 L-48 / ,	r /			STORM SEVEN
0 ISSUED FOR REVIEW CVE APZ 03/XX/14 REV REVISION DESCRIPTION DWN APP REV DATE		Venck Associates, Inc. Consulting Engineers Web Site: www.wenck.or More PLAIN, MN 55559 763-479-42	CAMBRIDGE, MN	DWN BY CVE CHK'D APZ APP'D APZ DWG DATE SCALE MAR 2014 PROJECT NO. SHEET NO. REV NO. REV NO. 3228-02 FIGURE 7



Former Union 76 Fuel Station-Cambridge, MN Mar 14

A – A' Cross Section

Figure 9

Former Union 76 Fuel Station Cambridge, MN Mar 14

B-B' Cross Section

Figure 10

Appendix A

Tables

Attach all tables from the *Investigation Report Form* and indicate those that have been updated during this reporting period by marking the check box below. **Tables must include all cumulative data.**

Updated	Table Number and Name
\boxtimes	Table 1. Tank Information
\boxtimes	Table 2. Results of Soil Headspace Screening
\bowtie	Table 3. Analytical Results of Soil Samples
	Table 4. Other Contaminants Detected in Soils (Petroleum or Non-petroleum Derived)
	Table 5. Contaminated Surface Soil Results
	Table 6. Water Level Measurements and Depths of Water Samples Collected from Borings
\bowtie	Table 7. Analytical Results of Water Samples Collected from Borings
\boxtimes	Table 8. Other Contaminants Detected in Water Samples Collected from Borings(Petroleum or Non-petroleum Derived)
\bowtie	Table 9. Monitoring Well Completion Information
\bowtie	Table 10. Water Level Measurements in Wells
\bowtie	Table 11. Analytical Results of Water Samples Collected from Wells
\boxtimes	Table 12. Other Contaminants Detected in Water Samples Collected from Wells (Petroleum or Non-petroleum Derived)
	Table 13. Natural Attenuation Parameters
\boxtimes	Table 14. Free Product Recovery
	Table 15. Properties Located within 500 feet of the Release Source
	Table 16. Water Supply Wells Located within 500 feet of the Release Source and Municipal or Industrial Wells within ½ mile
	Table 17. Surface Water Receptor Information
\boxtimes	Table 18. Utility Receptor Information
\boxtimes	Table 19. Vapor Survey Results
\bowtie	Table 20. Results of Soil Gas Sampling for Vapor Intrusion Screening
	Table 21. LNAPL Recovery Test

Table 1 **Tank Information**

Tank #	Tank Material ¹	UST or AST	Capacity (gallons)	Contents (product type)	Year Installed	Tank Status ²	Tank Condition
001		UST	1,000	Diesel Fuel	Unknown	Removed	Good
002		UST	5,000	Gasoline	Unknown	Removed	Good
003		UST	5,000	Gasoline	Unknown	Removed	Good

¹ "F" for fiberglass or "S" for Steel
 ² Indicate: removed (date), abandoned in place (date), or currently in use. Add additional rows as needed.

Depth		Soil Boring ID												
(Ît)	1	2	3	4	5	6	7	8	9	10				
4														
5	80	6.0			210		170							
6						0.0		150						
8														
9														
11	1000+	5.0	5.0	0.0	310	4.0	160	180						
12									66	450				
15							135							
16					400	50		160	32	12				
17			5.0	0.0										
18	1000+	68												
20	1000+		7.5	0.0					1000+	1000+				
21					200	30	140	130						
26					240	0.5	5.0	250						
29	5.0													
					G 41 D	· 10								
Depth	11	10	12	14	Soil Bo	-	1.	10	10	20				
(ft)	11	12	13	14	15	16	17	18	19	20				
4	0.5	1.0	5.0	9.5										
5 6														
0	0.0	0.5	1000	26										
8 9	0.0	0.5	1000+	36		0.0	0.0	0.0	0.0					
			1000+		200	0.0	0.0	0.0	0.0					
11	0.0	0.0	500	2.10	390									
12	0.0	0.0	580	240										
15	0.5	0.0	1000	550	1000									
16		0.0	1000+	550	1000+									
17										260				
18		0.0	1000	1000	1000	105	126	0.0	400	360				
20		9.0	1000+	1000+	1000+	105	136	0.0	480					
21														
26														
29														

Table 2Results of Soil Headspace Screening

Depth		Soil Boring ID										
(ft)	21	22	23	24	25							
4												
5			1999	1999	5.0							
6												
8												
9			1999	1999	5.0							
11												
12												
15			1999	1999	5.4							
16												
17												
18	360											
20		698										

Table 2Results of Soil Headspace Screening

		Soil Boring ID								
Depth	MW-7	LGP-1-	MW-8	MW-9	MW-10	MW-11				
(ft)		12								
0-2	0									
0-2.5		0.5								
0-5			0.9	1.9	3.2	3.2				
2.5-5		0.5								
5-7	39.4									
5-7.5		1.0								
5-10			2.4	1.2	4.1	5.0				
7.5-10		1.2								
10-12	127									
10-12.5		10.2								
10-15			177.4	3.3	5.9	6.7				
12.5-15		6.4								
12.5-	1035									
14.5										
15-17.5		9.6								
15-20			894	1511	5.8	5.0				
15-17	1494									
15-17.5										
17-19	1598									
17.5-20		3.6								
20-22.5		1.5								
20-25			124		863					
22.5-25		26.7								
25-27.5		2.1								
27.5-30		1.7								

List instruments used and discuss field methods and procedures in Section 6. Add additional rows as needed, and copy the entire table if more columns are needed. Notes:

Boring	Sampled Depth	Date			Ethyl-					Lab
ID	(ft)	Sampled	Benzene	Toluene	benzene	Xylenes	MTBE	GRO	DRO	Type ²
TH-1	17.5-19.5	4/19/95	< 0.05	0.078	< 0.05	< 0.15		<10*	334	Fix
TH-1	28-30	4/19/95	4.97	52	45.9	322		2140	<10	Fix
TH-2	17.5-19.5	4/19/95	< 0.05	0.101	< 0.05	0.159		<10	<10	Fix
TH-3	17.5-19.5	4/19/95	< 0.05	< 0.05	< 0.05	< 0.15		<10	<10	Fix
TH-4	18.5-20.5	4/19/95	< 0.05	0.069	< 0.05	< 0.15		<10	<10	Fix
TH-6	15-16.5	6/27/95	< 0.05	< 0.05	< 0.05	< 0.15		<10	<10	Fix
TH-7	5-6.5	6/27/95	< 0.05	< 0.145	0.109	< 0.15		86.6	155	Fix
TH-7	25-26.5	6/27/95	< 0.05	0.089	< 0.05	< 0.15		<10	<10	Fix
TH-8	5-6.5	6/27/95	326	794	183	955		14700	3470	Fix

Table 3 Analytical Results of Soil Samples¹

¹Report results in mg/kg. Use less than symbols to show detection limit. ² Indicate "mobile" or "fixed" in the lab type column.

Add additional rows as needed.

Monitoring Report Page 6

 Table 4

 Other Contaminants Detected in Soils (Petroleum or Non-petroleum Derived)¹

Boring ID	Sampled Depth (ft)	Date Sampled				Lab Type ²

¹Report results in mg/kg. Use less than symbols to show detection limit.

² Indicate "mobile" or "fixed" in the lab type column.

Indicate other contaminants (either petroleum or non-petroleum derived) detected in soil collected from borings. Add additional rows as needed, and copy the entire table if more columns are needed.

Table 5 Contaminated Surface Soil Results

Sample ID	Headspace 10 ppm or Greater ¹ (Y/N)	Petroleum Saturated (Y/N)

¹ As measured with a photoionization detector (PID). Add additional rows as needed.

Notes:

Table 6 Water Level Measurements and Depths of Water Samples Collected from Borings

		Soil Boring									
	1	2	3	4	5	6	7	8	9	10	
Static Water											
Level Depth ¹ (ft)											
Sampled											
Sampled Depth (ft)											
Sampling Method ²											
Method ²											

¹Describe the methods used to measure water levels in borings in Section 6.

 2 Refer to Guidance Document 4-05 for acceptable ground water sampling methods.

Boring ID	Date Sampled	Sampled Depth (ft)	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	GRO	DRO	Lab Type ²
TH-1	4/19/95	(1,080	1,520	943	9,000		5,840		Fixed
TH-9	8/01/95	20	129	133	38.5	68.7		3,200	1,500	Fixed
TH-10	8/01/95	20	318	314	49.9	295		15,100	,	Fixed
TH-11	8/01/95	20	<1.0	<1.0	<1.0	<3.0		<100		Fixed
TH-12	8/01/95	20	1.1	1.9	1.1	3.1		<100		Fixed
TH-13	8/01/95	20	130,000	349,000	162,000	244,000		9,100,000		Fixed
TH-14	8/01/95	20	19,600	37,200	11,200	66,200		1,660,000		Fixed
TH-15	8/01/95	20	10,100	20,500	5,160	23,100		597,000		Fixed
TH-16	8/01/95	20	2,130	5,210	1,230	5,910		135,000		Fixed
TH-17	11/28/95	20	3.6	< 0.4	< 0.4	< 0.5		<100	300	Fixed
TH-18	11/28/95	20	< 0.5	< 0.4	< 0.4	< 0.5		<100	<100	Fixed
TH-19	11/28/95	20	1,900	5,470	3,350	25,730		57,900	7,300	Fixed
TH-20	11/28/95	20	1,450	85.6	75.1	494.7		10,900	1,500	Fixed
TH-21	11/28/95	22	328	55.5	377	910		12,900		Fixed
TH-22	11/28/95	22	122	69.9	17.1	99.6		1,100	100	Fixed
TH-23	6/23/97	20-24	1,346	11,900	990	6,590		49,880		Fixed
TH-24	6/23/97	20-24	1,310	2,650	674	4,200		26,930		Fixed
TH-25	6/23/97	20-24	<1.0	2.1	<1.0	<3.0		<100		Fixed
TH-26	6/23/97	20-24	1.0	3.4	<1.0	<3.0		<100		Fixed
TH-27	6/23/97	22-26	2,260	899	774	1,540		13,100		Fixed
TH-28	6/23/97	22-26	4,160	2,520	538	2,880		22,800		Fixed
TH-29	6/23/97	22	11.3	3.3	<1.0	<3.0		180		Fixed
TH-30	6/23/97	22	<1.0	<1.0	<1.0	<3.0		<100		Fixed
TH-31	6/24/97	22-26	88.2	3.1	<1.0	7.1		730		Fixed
TH-32	6/24/97	22-26	2,550	9,080	1,350	7,190		33,000		Fixed
TH-33	6/24/97	22-26	3,340	5,230	1,980	9,320		50,200		Fixed
TH-34	6/24/97	22-26	28.5	39.5	43.2	209		1,380		Fixed
TH-35	6/24/97	20-22	3,540	9,690	1,370	8,380		37,600		Fixed
TH-36	6/24/97	22-26	1,720	298	294	754		8,360		Fixed
TH-37	7/21/97	24-25	313	3.5	2.2	10.8		1,800		Fixed
TH-38	7/21/97	22-26	209	<1.0	1.2	8.8		700		Fixed
TH-39	7/21/97	28-32	147	<1.0	<1.0	<3.0		500		Fixed
TH-40	7/21/97	24-28	42	<1.0	<1.0	1.8		100		Fixed
TH-41	7/21/97	24-28	<1.0	<1.0	<1.0	<3.0		<100		Fixed
TH-42	8/02/97	24-26	<1.0	<1.0	<1.0	<3.0		<100		Fixed
TH-43	7/23/97	21-26	291	<1.0	1.1	5.3		670		Fixed
TH-44	7/23/97	24-26	36	<1.0	<1.0	<3.0		<100		Fixed
TH-45	7/23/97	26-28	4.9	<1.0	<1.0	<3.0		<100		Fixed
GP-1	1/21/2010	24-29	895	613	508	2,200	<25	10,200	3.6	Fixed
GP-2	1/21/2010	25-30	10.4	3.5	<1.0	8.6	5.7	1,240	0.42	Fixed
Trip Blank	1/21/2010		<1.0	<1.0	<1.0	<1.0	<5.0	<100		Fixed
Equip. Blank										
Lab Blank										
HRL^3			10	200	50	300		200		

 Table 7

 Analytical Results of Water Samples Collected from Borings¹

Monitoring Report Page 9

¹ Report results in μg/L. Use less than symbols to show detection limit.
² Indicate "mobile" or "fixed" in the lab type column.
³ See <u>http://www.health.state.mn.us/divs/eh/groundwater/hrltable.html</u> for list of current HRLs. Add additional rows as needed. Notes:

Table 8 **Other Contaminants Detected in Water Samples** Collected from Borings (Petroleum or Non-petroleum Derived)¹

		Sampled										Tert-	10.1	q				
Boring ID	Date Sampled	Depth (ft)	Asstons	Methylethyl	1,2-di- chloroethane	Methyl	1,2- Dibromoothono	Chlorobongono	Isomeonvilhongono	N-	1,3,5- TMB	Butylbenzen	1,2,4- TMB	Sec- Butylbenzene	p- Isopropyltoluene	n-butylbenzene	Napthalene	Lab Type ²
	•		Acetone	ketone		isobutylethane	Dibromoethane	Chlorobenzene	Isopropylbenzene	propylbenzene		e						Туре
TH-17	20	11/20/1995	4.5	<2.8	< 0.3	<0.7	< 0.8	< 0.4	< 0.7	< 0.8	< 0.2	< 0.6	< 0.7	< 0.5	< 0.4	< 0.3	<0.7	1
TH-18	20	11/20/1995	< 0.3	<2.8	< 0.3	< 0.7	< 0.8	< 0.4	<0.7	< 0.8	< 0.2	<0.6	< 0.7	< 0.5	< 0.4	< 0.3	< 0.7	
TH-19	20	11/20/1995	820	52,200	< 0.3	< 0.7	< 0.8	< 0.4	7,780	3,010	3,680	1,430	10,200	2,110	968	5,330	2,200	
TH-20	20	11/21/1995	52.3	529	41.9	12	15.9	< 0.4	19.4	2.2	70.1	<0.6	375	< 0.5	< 0.4	28.7	172	
TH-21	22	11/21/1995	56.8	1630	24	< 0.7	< 0.8	112	302	384	491	120	1500	224	77.5	505	361	
TH-22	22	11/21/1995	29	63	< 0.3	< 0.7	< 0.8	< 0.4	4.1	0.9	4.6	<0.6	20.7	< 0.5	< 0.4	4.8	5.8	
GP-1											113		413					
GP-2	25-30	1/21/2010											1.1					
Trip Blank																		
Equip. Blank																		
Lab Blank																		
HRL^{3}																		

¹ Report results in μg/L. Use less than symbols to show detection limit. ² Indicate "mobile" or "fixed" in the lab type column. ³ See <u>http://www.health.state.mn.us/divs/eh/groundwater/hrltable.html</u> for list of current HRLs.

Indicate other contaminants (either petroleum or non-petroleum derived) detected in water samples collected from soil borings and temporary wells. Add additional rows as needed, and copy the entire table if more columns are needed. Notes:

Well	MDH Unique Well	Date	Surface	Top of Casing	Bottom of Well	Screen Interval	Total Well Depth from Surface
Number	Number	Installed	Elevation	Elevation	Elevation	(Elev Elev.)	(ft)
MW-1	554377	6/15/1995	963.07	963.10	939.07	939.07–949.07	24
MW-2	554378	6/15/1995	963.67	963.37	939.67	939.67–949.67	24
MW-3	554379	6/15/1995	961.97	963.72	934.97	934.97–944.97	27
MW-4	617207	9/01/1998	964.87	964.62	935.87	935.87–945.87	29
MW-5	617205	9/02/1998	963.84	963.68	934.84	934.84–944.84	29
MW-5A	617206	9/02/1998	963.81	963.62	919.81	919.81–929.81	44
MW-6	617203	9/02/1998	963.94	963.93	934.94	934.94–944.94	29
MW-6A	617204	9/02/1998	963.76	963.73	922.76	922.76-932.76	41
MW-7	731591	9/19/2005	963.27	963.29	939.29	939.29–949.29	24

Table 9 (Previous Data) Monitoring Well Completion Information¹

¹ Include well construction diagrams and MDH well logs in Section 6. Add additional rows as needed.

Notes: (location and elevation of benchmark)

Well Number	MDH Unique Well Number	Date Installed	Surface Elevation	Top of Casing Elevation	Bottom of Well Elevation	Screen Interval (Elev Elev.)	Total Well Depth from Surface (ft)
MW-1	554377	6/15/1995	962.92	963.00	938.92	938.92–948.92	24
MW-2	554378	6/15/1995	Unknown	Unknown	Unknown	Unknown	24
MW-3	554379	6/15/1995	962.18	961.59	935.18	935.18–945.18	27
MW-4	617207	9/01/1998	Unknown	Unknown	Unknown	Unknown	29
MW-5	617205	9/02/1998	Unknown	Unknown	Unknown	Unknown	29
MW-5A	617206	9/02/1998	Unknown	Unknown	Unknown	Unknown	44
MW-6	617203	9/02/1998	962.61	962.41	933.61	933.61-943.61	29
MW-6A	617204	9/02/1998	962.65	962.46	921.65	921.65-931.65	41
MW-7	731591	9/19/2005	962.01	961.91	938.01	938.01-948.01	24
MW-8	792988	12/11/2012	962.54	962.60	936.54	936.54-951.54	26
MW-9	792989	12/12/2012	961.89	961.85	935.89	935.89-950.89	26
MW-10	792990	12/13/2012	963.94	963.94	935.94	935.94-945.94	28
MW-11	792991	12/11/2012	962.13	964.46	937.13	937.13-947.13	25

Table 9 (January 2013 Resurveyed Data)Monitoring Well Completion Information1

¹ Include well construction diagrams and MDH well logs in Section 6.

Add additional rows as needed.

Notes: (location and elevation of benchmark)

Well Number	Date Sampled	Depth to Water from Top of Riser	Product Thickness	Depth to Water Below Grade	Relative Groundwater Elevation	Water Level Above Screen (Y/N)
MW-1	1/11/2002	NR	NR	NR	NR	NR
	6/24/2002	NR	ND	NR	NR	Ν
	9/13/2002	18.21	ND	18.18	944.89	Ν
	12/26/2002	17.73	ND	17.70	945.37	Ν
	4/14/2003	18.18	ND	18.15	944.92	Ν
	7/7/2003	17.74	ND	17.71	945.36	Ν
	10/10/2003	17.42	ND	17.39	945.68	Ν
	2/6/2004	18.20	ND	18.17	944.9	Ν
	3/18/2004	18.48	ND	18.45	944.62	Ν
	6/18/2004	NR	ND	NR	NR	NR
	9/7/2004	18.17	ND	18.14	944.93	Ν
	9/14/2004	NR	ND	NR	NR	NR
	12/20/2004	18.32	ND	18.29	944.78	Ν
	2/23/2005	NR	ND	NR	NR	NR
	3/10/2005	18.51	ND	18.48	944.59	Ν
	4/11/2005	18.79	ND	18.76	944.31	Ν
	6/9/2005	18.93	ND	18.90	944.17	Ν
	8/4/2005	18.77	ND	18.74	944.33	Ν
	11/1/2005	17.16	ND	17.13	945.94	Ν
	3/1/2006	18.13	ND	18.1	944.97	Ν
	7/13/2006	Dry	ND	NR	NR	Ν
	10/4/2006	18.67	ND	18.64	944.43	Ν
	3/9/2007	NS Covered w snow pile	NA	NR	NR	NA
	7/24/2007	19.28	ND	19.25	943.82	Ν
	1/20/2010	19.95	ND	19.92	943.15	Ν
	1/12/2011	18.96	0.15	18.93	944.14	Ν
	3/21/2011	19.16	ND	19.13	943.94	Ν
	6/7/2011	18.59	ND	18.56	944.51	Ν
	10/4/2011	17.03	ND	17.00	946.07	N
	01/10/2013	18.21	ND	18.13	944.79	Ν
	05/3/2013	18.87	ND	18.79	944.13	Ν
	2/3/14	19.97	ND	19.89	943.03	Ν
MW-3	10/10/2003	18.11	ND	16.36	945.61	Y
	2/6/2004	20.19	1.3'	18.44	943.53	Ν
	3/18/2004	20.21	1.3	18.46	943.51	N
	6/18/2004	19.65	0.56	17.90	944.07	Ν
	9/7/2004	18.97	ND	17.22	944.75	Ν

Table 10Water Level Measurements in Wells1

Well Number	Date Sampled	Depth to Water from Top of Riser	Product Thickness	Depth to Water Below Grade	Relative Groundwater Elevation	Water Level Above Screen (Y/N)
	9/14/2004	18.82	NR	17.07	944.90	Ν
	12/20/2004	19.13	0.05	17.38	944.59	Ν
	2/23/2005	10.94	0.77	9.19	952.78	Ν
	3/10/2005	19.61	0.47	17.86	944.11	Y
	4/11/2005	20.13	0.86	18.38	943.59	Ν
	6/9/2005	20.46	1.03	18.71	943.26	Ν
	7/12/2005	20.22	0.82	18.47	943.50	Ν
	8/4/2005	20.15	0.79	18.4	943.57	Ν
	9/28/2005	N/R	N/R	NR	NR	
	10/5/2005	16.76	0.3	15.01	946.96	Y
	11/1/2005	17.44	0	15.69	946.28	Y
	3/1/2006	17.65	ND	15.9	946.07	Y
	7/13/2006	18.34	.52'	16.59	945.38	Y
	10/4/2006	18.92	ND	17.17	944.8	Ν
	3/9/2007	19.98	5.5"	18.23	943.74	Ν
	7/24/2007	NA	0.8"	NR	NR	Ν
	1/20/2010	TOC Broken	4"	NR	NR	Ν
	3/21/2011	17.89	ND	16.14	945.83	Y
	6/7/2011	17.29	ND	15.54	946.43	Y
	10/4/2011	15.77	ND	14.02	947.95	Y
	01/10/2013	NA	7"	NA	NA	NA
	05/3/2013	NA	5"	NA	NA	NA
	2/3/2014	18.04	0.52' (6.24 '')	17.45	943.55	N
	3/6/2014	18.12	0.53'	17.53	943.63	
MW-6	1/11/2002	20.21	ND	20.22	943.72	Ν
	6/24/2002	NR	ND	NR	NR	Ν
	9/13/2002	19.57	ND	19.58	944.36	Ν
	12/26/2002	18.58	ND	18.59	945.35	Y
	4/14/2003	18.85	ND	18.86	945.08	Y
	7/7/2003	18.65	ND	18.66	945.28	Y
	10/10/2003	18.21	ND	18.22	945.72	Y
	2/6/2004	19.41	ND	19.42	944.52	Ν
	3/18/2004	19.14	ND	19.15	944.79	N
	6/18/2004	NR	ND	NR	NR	NR
	9/7/2004	19.02	ND	19.03	944.91	N
	9/14/2004	NR	ND	NR	NR	N
	12/20/2004	19.1	ND	19.11	944.83	N
	2/23/2005	NR	ND	NR	NR	NR

Table 10Water Level Measurements in Wells1

Well Number	Date Sampled	Depth to Water from Top of Riser	Product Thickness	Depth to Water Below Grade	Relative Groundwater Elevation	Water Level Above Screen (Y/N)
	3/10/2005	19.13	ND	19.14	944.80	Ν
	4/11/2005	20.59	ND	20.60	943.34	Ν
	6/9/2005	19.65	ND	19.66	944.28	Ν
	8/4/2005	19.71	ND	19.72	944.22	N
	11/1/2005	19.22	ND	19.23	944.71	Ν
	3/1/2006	19.74	ND	19.75	944.19	Ν
	7/13/2006	19.51	ND	19.52	944.42	Ν
	10/4/2006	19.59	ND	19.60	944.34	Ν
	3/9/2007	19.87	ND	19.88	944.06	Ν
	7/24/2007	20.12	ND	20.13	943.81	N
	1/20/2010	20.67	ND	20.68	943.26	N
	1/12/2011	19.73	ND	19.74	944.2	N
	3/21/2011	19.83	ND	19.84	944.1	N
	6/7/2011	19.52	ND	19.53	944.41	N
	10/4/2011	17.98	ND	17.99	945.95	Y
	01/10/2013	18.86	ND	19.06	943.55	N
	05/3/2013	19.50	ND	19.70	942.91	Ν
	2/3/14	19.61	ND	19.81	942.8	Ν
MW-6A	1/11/2002	20.13	ND	20.16	943.6	Y
	6/24/2002	NR	ND	NR	NR	Y
	6/24/2002	NR	ND	NR	NR	Y
	9/13/2002	19.48	ND	19.51	944.25	Y
	12/26/2002	18.61	ND	18.64	945.12	Y
	4/14/2003	18.96	ND	18.99	944.77	Y
	7/7/2003	18.79	ND	18.82	944.94	Y
	10/10/2003	20.19	ND	20.22	943.54	Y
	2/6/2004	19.46	ND	19.49	944.27	Y
	3/18/2004	19.19	ND	19.22	944.54	Y
	6/18/2004	NR	ND	NR	NR	NR
	9/7/2004	19.83	ND	19.86	943.9	Y
	9/14/2004	NR	ND	NR	NR	NR
	12/20/2004	19.18	ND	19.21	944.55	Y
	2/23/2005	NR	ND	NR	NR	NR
	3/10/2005	19.21	ND	19.24	944.52	Y
	4/11/2005	19.44	ND	19.47	944.29	Y
	6/9/2005	20.06	ND	20.09	943.67	Y
	8/4/2005	21.11	ND	21.14	942.62	Y
	11/1/2005	21.51	ND	21.54	942.22	Y
	3/1/2006	19.13	ND	19.16	944.6	Y

Table 10Water Level Measurements in Wells1

Well Number	Date Sampled	Depth to Water from Top of Riser	Product Thickness	Depth to Water Below Grade	Relative Groundwater Elevation	Water Level Above Screen (Y/N)
	7/13/2006	21.19	ND	21.22	942.54	Y
	10/4/2006	20.05	ND	20.08	943.68	Y
	3/9/2007	20.31	ND	20.34	943.42	Y
	7/24/2007	20.16	ND	20.19	943.57	Y
	1/20/2010	20.70	ND	20.73	943.03	Y
	1/12/2011	19.78	ND	19.81	943.95	Y
	3/21/2011	19.87	ND	19.9	943.86	Y
	6/7/2011	19.56	ND	19.59	944.17	Y
	10/4/2011	18.03	ND	18.06	945.7	Y
	01/10/2013	18.53	ND	18.72	943.93	Y
	05/3/2013	19.55	ND	19.74	942.91	Y
MW-7	9/16/2005	17.00	ND	16.98	946.29	Ν
	11/1/2005	17.72	ND	17.70	945.57	Ν
	3/1/2006	17.81	ND	17.79	945.48	Ν
	7/13/2006	18.14	ND	18.12	945.15	Ν
	10/4/2006	18.20	ND	18.18	945.09	Ν
	3/9/2007	18.60	ND	18.58	944.69	Ν
	7/24/2007	18.83	ND	18.81	944.46	Ν
	1/20/2010	20.45	16"	20.43	942.84	Ν
	1/21/2011	18.50	0.15	18.48	944.79	Ν
	3/21/2011	18.8	0.15	18.78	944.49	Ν
	6/7/2011	18.13	ND	18.11	945.16	Ν
	10/4/2011	16.53	ND	16.51	946.76	Ν
	01/10/2013	17.63	0.06'	17.73	944.28	Ν
	05/3/2013	18.31	0.06'	18.41	943.50	Ν
	2/3/14	18.30	0.02'	18.40	943.61	Ν
	3/6/2014	18.35	0.03'	18.45	943.66	Ν
MW-8	01/10/2013	18.44	ND	18.38	944.16	Ν
	05/3/2013	19.14	1/16"	19.08	943.46	Ν
	2/3/2014	Buried by snow	w bank, soil	pile and constru	uction equipment	
	3/6/2014			_	uction equipment	
MW-9	01/10/2013	17.79	ND	17.83	944.06	Ν
	05/3/2013	18.44	ND	18.48	943.41	Ν
	2/3/2014	18.45	ND	18.49	943.40	Ν
	3/6/2014	18.46	ND	18.46	943.41	N
MW-10	01/10/2013	21.18	ND	21.18	942.76	N
	05/3/2013	21.81	ND	21.81	942.13	Ν
	2/3/2014	22.92	ND	22.92	941.02	Ν
MW-11	01/10/2013	19.87	ND	17.54	944.59	Ν

Table 10Water Level Measurements in Wells1

Table 10
Water Level Measurements in Wells ¹

Well	Date Sampled	Depth to Water	Product	Depth to Water	Relative Groundwater	Water Level Above
Number		from Top of Riser	Thickness	Below Grade	Elevation	Screen (Y/N)
	05/3/2013	20.54	ND	18.21	943.92	Ν

¹ Describe the methods used to measure water levels in Section 6. Add additional rows as needed.

Well Number	Date Sampled	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	GRO	DRO	Lab Type ²
MW-1	1/11/2002	NS	NS	NS	NS	NS	NS	NS	Fixed
	6/24/2002	<1.0	<1.0	2.6	26/15	<1.0	200	NA	Fixed
	9/13/2002	<1.0	5.6	14	240	NA	610 H	NA	Fixed
	12/26/2002	<1.0	<1.0	<1.0	67	NA	110	NA	Fixed
	4/14/2003	<1.0	2.1	4.1	131	<1.0	1,900	NA	Fixed
	7/7/2003	<1.0	17	8	2,100	<1.0	4,300	NA	Fixed
	10/10/2003	<1.0	10	19	580	<1.0	2,500	NA	Fixed
	2/6/2004	ND	2.1	9.1	192	ND	240	NS	Fixed
	3/18/2004	ND	14	63	1120	ND	2,300	NA	Fixed
	9/7/2004	ND	32	220	2400	ND	6,800	NA	Fixed
	12/20/2004	ND	51.9	300	4660	ND	8,940	NA	Fixed
	3/10/2005	ND	ND	72.8	2940	ND	11,500	NA	Fixed
	6/9/2005	ND	ND	16.4	905	ND	2,220	NA	Fixed
	8/4/2005	3.8	ND	94	2100	ND	4,300	NA	Fixed
	11/9/2005	< 0.50	ND	ND	100	ND	9,400	NA	Fixed
	3/1/2006	<1.0	<5.0	110	3,900	NS	10,000	NA	Fixed
	7/13/2006	Well	NS	NS	NS	NS	NS	NS	Fixed
	10/4/2006	dry <0.05	<5.0	2.7	100	<1.0	190	680	Fixed
_	3/9/2007	NS	NS	NS	NS	NS	NS	NS	Fixed
	7/24/2007	< 0.5	< 0.5	0.55	1.93	<1.0	<100	NS	Fixed
	1/20/2010	<1.0	<1.0	<1.0	<3.0	<5.0	<100	180	Fixed
	1/12/2011	<1.0	<1.0	<1.0	23.4	<5.0	<100	2600	Fixed
	3/23/2011	<1.0	<1.0	<1.0	4.7	<5.0	<100	1610	Fixed
	6/8/2011	<1.0	<1.0	1.5	59.2	<5.0	218	2230	Fixed
	10/4/2011	<1.0	<1.0	8.6	272	<5.0	838	1960	Fixed
	01/10/2013	<1.0	<1.0	55.2	1,270	<5.0	3,390	1,450	Fixed
	05/3/2013	<1.0	<1.0	28.9	573	<5.0	2,050	831	Fixed
	2/3/2014	2.2	<1.0	20.8	434	NS	1,430	1,300	Fixed
MW-3	3/1/2006	1,600	<5,000	<1,000	5,100	NS	260,000	NA	Fixed
	3/23/2011	159	209	46.9	777	ND	8,320	8270	Fixed
	6/8/2011	493	521	71.8	2,900	<50	15,600	12800	Fixed
	10/5/2011	2,420	1780	156	6,800	<50	22,600	7630	Fixed
	01/10/2013	NS	NS	NS	NS	NS	NS	NS	Fixed
	05/3/2013	NS	NS	NS	NS	NS	NS	NS	Fixed

 Table 11

 Analytical Results of Water Samples Collected from Wells1

Guidance Document c-prp4-08: September 2008 Petroleum Remediation Program Minnesota Pollution Control Agency

	Date	D	T 1	Ethyl-	X 1	MADE	CDO	DBO	Lab
Well Number MW-3	Sampled 2/3/2014	Benzene NS	Toluene Product	benzene	Xylenes	MTBE	GRO	DRO	Type ²
				690	1 200/400	<1.0	10.000	NLA	Einad
MW-6	1/11/2002	3,600	3,100	680	1,200/490	<1.0	19,000	NA	Fixed
	6/24/2002	5,800	5,800	1,200	3,100/1,10 0	<50	27,000	NA	Fixed
	9/13/2002	1,600	1,100	360	1,100	NA	8,400 H	NA	Fixed
	12/26/2002	2,800	750	3,200	2,800	NA	16,000	NA	Fixed
	4/14/2003	3,500	2,600	830	2,800	<20	18,000	NA	Fixed
	7/7/2003	2,300	2,000	660	1,940	<50	16,000	NA	Fixed
	10/10/2003	1,500	1,600	450	1,940	<50	10,000	NA	Fixed
	2/6/2004	2700	2,200	1,000	2,540	ND	17,000	NA	Fixed
	3/18/2004	3,200	2,200	830	2,340	ND	17,000	NA	Fixed
	9/7/2004	3,200	2,000	1,200	4,130	ND	21,000	NA	Fixed
	12/20/2004	3,000	6,110	1,200	5,040	ND	25,200	NA	Fixed
	3/10/2005	4,030	7,650	1,470	6,340	ND	23,200	NA	Fixed
	6/9/2005	4,030	5,800	1,010	5,310	ND	25,800	NA	Fixed
	8/4/2005	4,900	2,400	950	2,870	420	18,000	NA	Fixed
	11/9/2005	4,900	4,400	970	100	ND	27,000	NA	Fixed
	3/1/2006	2,500	1,300	<100	3,500	NS	22,000	NA	Fixed
	7/13/2006	2,500	<500	<50	1,100	<100	<10,000	5,100	Fixed
	10/4/2006	2,300	2,100	1,100	2,260	350	18,000	4,300	Fixed
	3/9/2007	4,000	2,700	350	3,540	780	19,000	5,100	Fixed
	7/24/2007	740	480	72	730	<10	5,200	NS	Fixed
	1/20/2010	3,010	1,430	578	1,510	<50	13,700	4,600	Fixed
	1/12/2011	2,200	2,280	725	2,690	<50	13,700	2,670	Fixed
	3/23/2011	2,200	1,670	490	1,320	13.6	13,600	3,850	Fixed
	6/8/2011	1,890	484	272	748	<50	7,060	3,830	Fixed
	10/4/2011	2,810	3,500	913	4,110	<50	18,100		Fixed
	01/10/2013	2,810	3,300	1090	4,110	<50	16,000	4,250 3,750	Fixed
	05/3/2013		3620	1090	4290			, i	
	2/3/2014	2660 2,480				<50	26,000 20,700	4,350	Fixed
MW-6A	1/11/2002	<1.0	1,710 <1.0	1,260	4,170 <2.0/<1.0	NS 3.4	<100	7,200 NA	Fixed Fixed
WIW-0A	6/24/2002	<1.0	<1.0	<1.0	<2.0/<1.0	<1.0	<100	NA	Fixed
	9/13/2002	<1.0	<1.0	<1.0	<1.0 total	<1.0	<100	NA	Fixed
	9/13/2002	<1.0	<1.0	<1.0	<1.0 total	<1.0	<100	NA	Fixed
	4/14/2003	<1.0	<1.0	<1.0	<1.0 total	<1.0	<60	NA	Fixed
	7/7/2003	<1.0	<1.0	<1.0	<2.0/<1.0	<1.0	<60	NA	Fixed
	10/10/2003	<1.0	<1.0	<1.0	<2.0/<1.0	<1.0	<60	NA	
									Fixed
	2/6/2004	ND	ND	ND	ND	ND	ND	NA	Fixed

 Table 11

 Analytical Results of Water Samples Collected from Wells¹

Guidance Document c-prp4-08: September 2008 Petroleum Remediation Program Minnesota Pollution Control Agency

Wall Name or	Date	Donmono	Tolesono	Ethyl-	Valorios	MTDE	CBO	DBO	
Well Number	Sampled 3/18/2004	Benzene <0.5	Toluene <1.0	benzene <1.0	Xylenes <0.50/<0.	MTBE <1.0	GRO ND	DRO NA	Type ²
	5/18/2004	<0.5	<1.0	<1.0	<0.30/<0. 50	<1.0	ND	INA	Fixed
	9/7/2004	ND	ND	ND	ND	ND	ND	NA	Fixed
	12/20/2004	ND	ND	ND	ND	ND	ND	NA	Fixed
	3/10/2005	ND	ND	ND	ND	ND	ND	NA	Fixed
	6/9/2005	ND	ND	ND	ND	ND	ND	NA	Fixed
	8/4/2005	ND	ND	ND	ND	ND	ND	NA	Fixed
	11/9/2005	ND	ND	ND	ND	ND	ND	NA	Fixed
	3/1/2006	<1.0	<5.0	<1.0	<3.0	NS	<100	NA	Fixed
	7/13/2006	< 0.5	<5.0	< 0.5	<1.0	<10.0	<100	140	Fixed
	10/4/2006	< 0.5	<5.0	< 0.5	<1.0	<10.0	<100	190	Fixed
	3/9/2007	< 0.5	<5.0	< 0.5	<1.0	<10.0	<100	170	Fixed
	7/24/2007	< 0.5	<5.0	< 0.5	<1.0	<10.0	<100	NS	Fixed
	1/20/2010	<1.0	<1.0	<1.0	<3.0	<5.0	<100	170	Fixed
	1/12/2011	<1.0	<1.0	<1.0	<3.0	<5.0	<100	126	Fixed
	3/23/2011	<1.0	<1.0	<1.0	<3.0	<5.0	<100	125	Fixed
	6/8/2011	<1.0	<1.0	<1.0	<3.0	<5.0	<100	312	Fixed
	10/4/2011	<1.0	<1.0	<1.0	<3.0	<5.0	<100	146	Fixed
	01/10/2013	<1.0	<1.0	<1.0	<3.0	<1.0	<100	124	Fixed
	05/3/2013	<1.0	<1.0	<1.0	<3.0	<1.0	<100	123	Fixed
MW-7	11/9/2005	3900	8600	1200	7800	ND	37000	NA	Fixed
	3/1/2006	5,200	<12,000	<2,500	8,200	<2,500	42,000	NA	Fixed
	7/13/2006	2,200	6,000	1,400	7,700	<1.0	NA	6,900	Fixed
	10/4/2006	3,300	6,000	1,900	8,300	<50	NA	9,100	Fixed
	3/9/2007	3,900	7,300	1,500	7,000	<10	43,000	10,000	Fixed
	7/24/2007	3,700	7,600	1,700	8,600	1,300	<100,000	8,600	Fixed
	10/4/2011	4,540	8,050	1,910	10,200	572	10200	14,200	Fixed
	01/10/2013	NS	NS	NS	NS	NS	NS	NS	Fixed
	05/3/2013	NS	NS	NS	NS	NS	NS	NS	Fixed
	2/3/2014	NS	Product						
MW-8	01/10/2013	2,590	4,670	1,490	6,840	<20	26,200	27,800	Fixed
	05/3/2013	NS	NS	NS	NS	NS	NS	NS	Fixed
	2/3/14	NS	Buried u	nder snow	bank, constr	ruction ec	uipment		•
MW-9	01/10/2013	6,690	7,210	1,840	8,950	<20	30,500	16,000	Fixed
	05/3/2013	7,110	7,330	1,950	9,140	<25	47,000	787	Fixed
	2/3/2014	3,950	6,030	1,460	6,860	NS	35,600	6,200	Fixed
MW-10	01/10/2013	375	207	551	2,750	<10	12,500	14,700	Fixed
	05/3/2013	327	431	427	2,080	<100	17,700	8,960	Fixed

 Table 11

 Analytical Results of Water Samples Collected from Wells¹

Well Number	Date Sampled	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	GRO	DRO	Lab Type ²
MW-10	2/3/2014	249	313	364	1,730	NS	12,000	7,500	Fixed
MW-11	01/10/2013	<1.0	<1.0	<1.0	<3.0	<1.0	<100	<105	Fixed
	05/3/2013	<1.0	<1.0	<1.0	<3.0	<1.0	<100	<104	Fixed
Lab Blank	1/11/2002	ND	ND	ND	ND	NA	ND	NA	Fixed
	6/24/2002	ND	ND	ND	ND	NA	ND	NA	Fixed
	9/13/2002	ND	ND	ND	ND	NA	ND	NA	Fixed
	12/26/2002	ND	ND	ND	ND	NA	ND	NA	Fixed
	4/14/2003	ND	ND	ND	ND	NA	ND	NA	Fixed
	7/7/2003	ND	ND	ND	ND	NA	ND	NA	Fixed
	10/10/2003	ND	ND	ND	ND	NA	ND	NA	Fixed
	2/6/2004	ND	ND	ND	ND	NA	ND	NA	Fixed
	3/18/2004	ND	ND	ND	ND	NA	ND	NA	Fixed
	9/7/2004	ND	ND	ND	ND	NA	ND	NA	Fixed
	12/20/2004	ND	ND	ND	ND	NA	ND	NA	Fixed
	3/10/2005	ND	ND	ND	ND	NA	ND	NA	Fixed
	6/9/2005	ND	ND	ND	ND	NA	ND	NA	Fixed
	8/4/2005	ND	ND	ND	ND	NA	ND	NA	Fixed
	11/9/2005	ND	ND	ND	ND	NA	ND	NA	Fixed
	3/1/2006	ND	ND	ND	ND	NA	ND	NA	Fixed
	7/13/2006	ND	ND	ND	ND	ND	ND	NA	Fixed
	10/4/2006	ND	ND	ND	ND	ND	ND	NA	Fixed
	1/12/2011	ND	ND	ND	ND	ND	ND	NA	Fixed
	3/23/2011	ND	ND	ND	ND	ND	ND	NA	Fixed
	6/8/2011	ND	ND	ND	ND	ND	ND	NA	Fixed
	10/4/2011	ND	ND	ND	ND	ND	ND	NA	Fixed
	01/10/2013	ND	ND	ND	ND	ND	ND	NA	Fixed
	05/3/2013	ND	ND	ND	ND	ND	ND	NA	Fixed
	2/3/2014	Lab blan	k froze						
HRL(ug/L)		10	1000	700	10000				

Table 11 Analytical Results of Water Samples Collected from Wells¹

¹ Report results in µg/L. Use less than symbols to show detection limit.
² Indicate "mobile" or "fixed" in the lab type column.
³ See <u>http://www.health.state.mn.us/divs/eh/groundwater/hrltable.html</u> for list of current HRLs.

Add additional rows as needed.

Notes:

NS = not sampled

	Other VOCs										
Well Number	MW-8	MW-9	MW-9	MW-10	HRL	Lab Type ²					
Date Sampled	1/10/13	1/10/13	5/3/13	1/10/13		-J F -					
Acetone	523	<500	<500	<250	4,000	Fixed					
n-Butylbenzene	43.7	60.9	<25	40.3	NE	Fixed					
Sec-Butylbenzene	22.8	31.7	<25	24.3	NE	Fixed					
Cyclohexane	881	600	NA	1,030	NE	Fixed					
1,2-	<20	53.7	74.6	<10	4	Fixed					
Dichloroethane											
Cumene	115	122	81.1	119	300	Fixed					
p-	28.6	37.9	<25	40.5	NE	Fixed					
Isopropyltoluene											
Naphthalene	438	550	428	274	300	Fixed					
n-Propylbenzene	234	315	193	225	NE	Fixed					
1,2,4-	1,540	2,080	1,270	1,890	100	Fixed					
Trimethylbenzene											
1,3,5-	401	523	320	557	100	Fixed					
Trimethylbenzene											
Trip Blank											
Equip. Blank											
Lab Blank											

Table 12

¹ Report results in µg/L. Use less than symbols to show detection limit.
 ² Indicate "mobile" or "fixed" in the lab type column.
 ³ See <u>http://www.health.state.mn.us/divs/eh/groundwater/hrltable.html</u> for list of current HRLs.

Indicate other contaminants (either petroleum or non-petroleum derived) detected in water samples collected from wells. Add additional rows as needed, and copy the entire table if more columns are needed.

Notes: NA = Not Analyzed; NE = Not Established

Table 13
Natural Attenuation Parameters

Well Number	Sample Date	Temp. °C	рН	Dissolved Oxygen (mg/L)	Nitrate (mg/L)	(Fe II) (mg/L)	(H ₂ S, HS ⁻) (mg/L)
MW-1							
MW-2							
MW-3							
MW-4							

Describe the methods and procedures used in Section 6. Add additional rows as needed Notes:

Table 14 **Free Product Recovery**

		Pı	e-Recover	y Measureme	ents			rent overy ³		ılative very ⁴	
Recovery		Depth	Depth	FP	FP						
Location	Recovery	to FP ¹	to GW ²	Thickness	Volume	Recovery	FP	GW	FP	GW	
ID	Date	(ft)	(ft)	(ft)	(gal)	Method	(gal)	(gal)	(gal)	(gal)	Comments
MW-3	2/3/14	17.52	18.04	.52'	.08	No recovery	0	0	0	0	
	3/6/14	17.59	18.12	.53'	.08	required at this	0	0	0	0	
MW-7	2/3/14	18.28	18.30	0.02'	.004	time	0	0	0	0	
	3/6/14	18.32	18.35	0.03'	.004		0	0	0	0	
MW-9	2/3/14	NA	18.46	NA	0		0	0	0	0	
	3/6/14	NA	18.46	NA	0		0	0	0	0	
MW-8	2/3/14	NS					0	0	0	0	Not accessible, covered by snow/soil pile
	3/6/14	NS					0	0	0	0	Not accessible, covered by snow/soil pile

¹ FP = Free Product

² GW = Ground Water
³ Volume recovered during individual recovery event for that location.
⁴ Cumulative volume recovered at each recovery location (i.e., keep a running total for each recovery point).

Describe the methods and procedures used in Section 6. Add additional rows as needed.

Notes:

NA – Not applicable – no product

NS – not sampled

Table 15								
Properties Located within 500 feet of the Release Source								

		Distance		Water Supply	Well		ic Water upply			Possible	
Prop ID ¹	Property Address	From Site (ft)	Well Present (Y/N)	How Determined ²	Well Use ³	Utilized (Y/N)	Confirmed by City (Y/N)	Base- ment (Y/N)	Sump (Y/N)	Petroleum Sources (Y/N)	Comments (including property use)
1											
2									-		
3											
4											
5											
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											
16			1								
17										ľ	
18											
19											
20											

¹ Property IDs should correspond to labeled properties in the Potential Receptor Map.
 ² For example, visual observation, personal contact, telephone, returned postcard, assumed (i.e., no postcard returned).
 ³ For example, domestic, industrial, municipal, livestock, lawn/gardening, irrigation.

Add additional rows as needed.

Notes:

Guidance Document c-prp4-08: September 2008 Petroleum Remediation Program Minnesota Pollution Control Agency

Table 16Water Supply Wells Located within 500 feet of theRelease Source and Municipal or Industrial Wells within ½ mile

Property ID ¹	MDH Unique Well Number	Ground Elevation	Total Depth (ft)	Base of Casing (ft)	Static Elevation	Aquifer	Use	Owner	Distance and Direction from Source (ft)
1_									

¹ Property IDs should correspond to properties listed in Table 15 and labeled properties in the Potential Receptor Map if known or applicable.

Add additional rows as needed.

 Table 17

 Surface Water Receptor Information

Map ID ¹	Name and Type ²	Distance and Direction from Plume Edge (ft)	Clean Boring/Well Between? ³ (Y or N)

¹ Map ID should correspond to a surface water feature ID on the Potential Receptor Map.

² Type includes, but is not limited to, lake, retention pond, infiltration pond, ditch, intermittent stream, river, creek, rain garden, etc.

³ If the surface water feature is upgradient or cross-gradient from the site, indicate so with "NA" for not applicable. Add additional rows as needed.

Table 18Utility Receptor Information

		Construction	Depth to Top of	D: (Flow Direction	Year	Backfill	Distance to Water
Utility ID ¹	Description	Material	Structure	Diameter	(for liquids)	Installed	Material	Table
	Sanitary sewer main beneath S.					2001		
	Buchanan Street between 1 st					2001-		
1	Ave. E. and 2^{nd} Ave SE	PVC	10'	21 inches	South	2002	Native soil	8'
	Water main beneath S.							
	Buchanan Street between 1 st					2001-		
2	Ave. E. and 2^{nd} Ave SE	Ductile Iron	7-8'	16 inches	North	2002	Native soil	10'
	Storm sewer beneath S.							
	Buchanan Street between 1 st							
3	Ave. E. and 2^{nd} Ave SE	Concrete	4.5-5' ft	21 inches	South	unknown	Native soil	13'
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								

¹ ID should correspond to an identified utility line on the Potential Receptor Map. Add more rows as needed.

Notes:

Name, title, and telephone number for public entity contacted to obtain information or other source of information
As built drawings provided by utility locator with City of Cambridge.

¹ IDs should correspond to the same IDs in the above table.

Add more rows as needed.

Table 19 **Vapor Survey Results**

Location ID ¹	Description ²	Monitoring Date	PID Reading (ppm)	Percent of the LEL ³
1	Storm Sewer catch basin	3/23/11	0	0
2	Storm Sewer manhole	3/23/11	0	0
3	Storm Sewer catch basin	3/23/11	0	0
4	Storm Sewer manhole	3/23/11	0	0
5	Storm Sewer catch basin	3/23/11	0	0
6	Storm Sewer catch basin	3/23/11	0	0
7	Storm Sewer catch basin	3/23/11	0	0
8	Storm Sewer manhole	3/23/11	0	0
9	Legion basement ambient	3/23/11	0	0

¹ Location IDs must match labeled locations on the Vapor Survey Map. ² Provide a brief description of the monitoring point (e.g., sump, basement corner, sanitary sewer manhole, storm sewer basin, etc.).

 3 LEL = Lower Explosive Limit. Add additional rows as needed.

Sample ID ²	Vapo	r Pt 1	Vapo	r Pt 2	Vapo	r Pt 3	Subs	lab-1			
Date	1/21/	/2010	1/21/	2010	1/21/	2010	3/22/	2011			
Depth (feet)											D
PID (ppm)											Residential Intrusion
COMPOUNDS	Result	Report Limit	Result	Report Limit	Result	Report Limit	Result	Report Limit	Result	Report Limit	Screening Value ³
Acetone	< 0.64	0.64	83.6	0.64	< 0.64	0.64	64.4	0.86			<mark>31,000</mark>
Benzene	< 0.87	0.87	<mark>84.6</mark>	0.87	< 0.87	0.87	1.5	1.2			<mark>4.5</mark>
2-Butanone (MEK)							5.1	1.1			<mark>5000</mark>
1,3-Butadiene	<0.6	0.6	<mark>64.5</mark>	0.6	< 0.6	0.6	< 0.81	0.81			<mark>0.3</mark>
Carbon Disulfide	< 0.84	0.84	3.7	0.84	< 0.84	0.84	<1.1	1.1			<mark>700</mark>
Chloroform							10.2	1.8			<mark>100</mark>
Cyclohexane	< 0.91	0.91	12.8	0.91	< 0.91	0.91	3.2	1.2			<mark>6,000</mark>
Dichlorodifluoromethane							14.5	1.8			<mark>200</mark>
Ethanol	<2.5	2.5	15.0	2.5	<2.5	2.5	341	3.4			<mark>15,000</mark>
Ethylbenzene	<1.2	1.2	42.1	1.2	<1.2	1.2	5.7	1.6			<mark>1,000</mark>
4-Ethyltoluene	<3.4	3.4	7.4	3.4	<3.4	3.4	<4.5	4.5			<mark>NA</mark>
n-Heptane	<1.1	1.1	78	1.1	< 0.96	0.96	4.5	1.5			NA
n-Hexane							12.2	1.3			<mark>2000</mark>
Methylene Chloride							13.8	1.3			<mark>20</mark>
2-Propanol							18.1	4.5			<mark>7000</mark>
Propylene							2.7	0.63			<mark>3000</mark>
Styrene	<1.2	1.2	44.7	1.2	<1.2	1.2	<1.6	1.6			<mark>1,000</mark>
Tolunene	<1.0	1.0	132	1.0	<1.0	1.0	22	1.4			<mark>5,000</mark>
1,2,4-Trimethylbenzene	<1.3	1.3	9.3	3.4	<3.4	3.4	<1.8	1.8			<mark>4</mark>
M&p-Xylene	<2.4	2.4	88.9	2.4	<2.4	2.4	24.8	3.2			<mark>100</mark>
o-Xylene	<1.2	1.2	27	1.2	<1.2	1.2	5.1	1.6			<mark>100</mark>

Table 20 Results of Soil Gas Sampling for Vapor Intrusion Screening¹

¹ Report results in $\mu g/m^3$.

 ² Sample IDs should correspond to labeled locations on the Vapor Intrusion Assessment Map.
 ³ The Intrusion Screening Values can be found in Guidance Document 4-01a Vapor Intrusion Assessments Performed during Site Investigations.

Add additional rows as needed, and copy the entire table if more columns are needed. Notes:

Appendix B

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

February 11, 2014

Katie Miller Wenck Associates, Inc 1800 Pioneer Creek Center P.O. BOX 249 Maple Plain, MN 55359

RE: Project: 3228-01 Former Union 76 Pace Project No.: 10256707

Dear Katie Miller:

Enclosed are the analytical results for sample(s) received by the laboratory on February 03, 2014. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kabon Xiong

Kabor Xiong kabor.xiong@pacelabs.com Project Manager

Enclosures

cc: Adam P. Zobel, Wenck Associates, Inc

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

Project: 3228-01 Former Union 76 Pace Project No.: 10256707

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414 A2LA Certification #: 2926.01 Alabama Dept of Environmental Management #40770 Alaska Certification #: UST-078 Alaska Certification #MN00064 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: Pace EPA Region 5 #WD-15J Florida/NELAP Certification #: E87605 Georgia Certification #: 959 Hawaii Certification #Pace Idaho Certification #: MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167 Kentucky Dept of Envi. Protection - DW #90062 Louisiana Certification #: 03086 Louisiana Certification #: LA080009 Maine Certification #: 2007029 Maryland Certification #: 322

Michigan DEQ Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT CERT0092 Nebraska Certification #: Pace Nevada Certification #: MN_00064 New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Tennessee Certification #: 02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Virginia/DCLS Certification #: 002521 Virginia/VELAP Certification #: 460163 Washington Certification #: C754 West Virginia Certification #: 382 Wisconsin Certification #: 999407970

Project: 3228-01 Former Union 76

Pace Project No.: 10256707

Sample: MW-1	Lab ID: 102567070	01 Collected: 02/03/	14 11:25	Received: 02	2/03/14 17:34	Matrix: Water	
Parameters	Results Un	its Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical Method: W	MOD DRO Preparation	n Method	: WI MOD DRO			
Diesel Range Organics Surrogates	1.3 mg/L	0.11	1	02/04/14 07:12	02/05/14 11:39)	T7
n-Triacontane (S)	91 %.	50-150	1	02/04/14 07:12	02/05/14 11:39	638-68-6	
WIGRO GCV	Analytical Method: W	MOD GRO					
Benzene	2.2 ug/L	1.0	1		02/07/14 04:20) 71-43-2	
Ethylbenzene	20.8 ug/L	1.0	1		02/07/14 04:20) 100-41-4	
Gasoline Range Organics	1430 ug/L	100	1		02/07/14 04:20)	
Toluene	ND ug/L	1.0	1		02/07/14 04:20) 108-88-3	
Xylene (Total) <i>Surrogates</i>	434 ug/L	3.0	1		02/07/14 04:20	1330-20-7	
a,a,a-Trifluorotoluene (S)	96 %.	80-125	1		02/07/14 04:20	98-08-8	

Project: 3228-01 Former Union 76

Pace Project No.: 10256707

Sample: MW-6	Lab ID: 1025670700	2 Collected: 02/03/	14 13:20	Received: 02	2/03/14 17:34	Matrix: Water	
Parameters	Results Unit	s Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical Method: WI	MOD DRO Preparation	Method	I: WI MOD DRO			
Diesel Range Organics Surrogates	7.2 mg/L	0.51	5	02/04/14 07:12	02/05/14 13:07	7	T7
n-Triacontane (S)	87 %.	50-150	5	02/04/14 07:12	02/05/14 13:07	638-68-6	
WIGRO GCV	Analytical Method: WI	MOD GRO					
Benzene	2480 ug/L	10.0	10		02/07/14 04:40) 71-43-2	
Ethylbenzene	1260 ug/L	10.0	10		02/07/14 04:40) 100-41-4	
Gasoline Range Organics	20700 ug/L	1000	10		02/07/14 04:40)	
Toluene	1710 ug/L	10.0	10		02/07/14 04:40	0 108-88-3	
Xylene (Total) <i>Surrogates</i>	4170 ug/L	30.0	10		02/07/14 04:40) 1330-20-7	
a,a,a-Trifluorotoluene (S)	107 %.	80-125	10		02/07/14 04:40	98-08-8	

Project: 3228-01 Former Union 76

Pace Project No.: 10256707

Sample: MW-9	Lab ID: 102567070	03 Collected: 02/03/	14 13:00	Received: 02	2/03/14 17:34	Matrix: Water	
Parameters	Results Uni	ts Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical Method: WI	MOD DRO Preparation	Method	: WI MOD DRO			
Diesel Range Organics Surrogates	6.2 mg/L	0.54	5	02/04/14 07:12	02/05/14 13:23	3	T7
n-Triacontane (S)	87 %.	50-150	5	02/04/14 07:12	02/05/14 13:23	3 638-68-6	
WIGRO GCV	Analytical Method: WI	MOD GRO					
Benzene	3950 ug/L	10.0	10		02/07/14 04:59	9 71-43-2	
Ethylbenzene	1460 ug/L	10.0	10		02/07/14 04:59	9 100-41-4	
Gasoline Range Organics	35600 ug/L	5000	50		02/11/14 00:44	Ļ	
Toluene	6030 ug/L	50.0	50		02/11/14 00:44	108-88-3	
Xylene (Total) <i>Surrogates</i>	6860 ug/L	30.0	10		02/07/14 04:59	9 1330-20-7	
a,a,a-Trifluorotoluene (S)	92 %.	80-125	10		02/07/14 04:59	98-08-8	

Project: 3228-01 Former Union 76

Pace Project No.: 10256707

Sample: MW-10	Lab ID: 102567070	004 Collected: 02/03/	14 14:30	Received: 02	2/03/14 17:34	Matrix: Water	
Parameters	Results Un	its Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical Method: W	I MOD DRO Preparation	Method	I: WI MOD DRO			
Diesel Range Organics Surrogates	7.5 mg/L	0.55	5	02/04/14 07:12	02/05/14 13:15	5	T7
n-Triacontane (S)	91 %.	50-150	5	02/04/14 07:12	02/05/14 13:15	5 638-68-6	
WIGRO GCV	Analytical Method: W	I MOD GRO					
Benzene	249 ug/L	10.0	10		02/07/14 05:18	3 71-43-2	
Ethylbenzene	364 ug/L	10.0	10		02/07/14 05:18	3 100-41-4	
Gasoline Range Organics	12000 ug/L	1000	10		02/07/14 05:18	3	
Toluene	313 ug/L	10.0	10		02/07/14 05:18	3 108-88-3	
Xylene (Total) Surrogates	1730 ug/L	30.0	10		02/07/14 05:18	3 1330-20-7	
a,a,a-Trifluorotoluene (S)	95 %.	80-125	10		02/07/14 05:18	3 98-08-8	

Project: 3228-01 Former Union 76

Pace Project No.: 10256707

Sample: Duplicate-1	Lab ID: 1025670700	5 Collected: 02/03/	14 00:00	Received: 02	2/03/14 17:34	Matrix: Water	
Parameters	Results Units	s Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical Method: WI	MOD DRO Preparation	Method	: WI MOD DRO			
Diesel Range Organics Surrogates	5.9 mg/L	0.55	5	02/04/14 07:12	02/05/14 13:3	I	T7
n-Triacontane (S)	88 %.	50-150	5	02/04/14 07:12	02/05/14 13:37	638-68-6	
WIGRO GCV	Analytical Method: WI	MOD GRO					
Benzene	2760 ug/L	10.0	10		02/07/14 05:38	3 71-43-2	
Ethylbenzene	1330 ug/L	10.0	10		02/07/14 05:38	3 100-41-4	
Gasoline Range Organics	30100 ug/L	1000	10		02/07/14 05:38	3	
Toluene	4800 ug/L	10.0	10		02/07/14 05:38	3 108-88-3	
Xylene (Total) <i>Surrogates</i>	6420 ug/L	30.0	10		02/07/14 05:38	3 1330-20-7	
a,a,a-Trifluorotoluene (S)	92 %.	80-125	10		02/07/14 05:38	3 98-08-8	

QUALITY CONTROL DATA

Analysis Method:

Matrix: Water

ND

ND

100

Project: 3228-01 Former Union 76

Pace Project No.: 10256707

Toluene

Xylene (Total)

a,a,a-Trifluorotoluene (S)

QC Batch:	GCV	/11655
QC Batch Method:	WI N	10D GRO
Associated Lab Sam	ples:	10256707001

 DD GRO
 Analysis Description:
 WIGRO GCV Water

 10256707001, 10256707002, 10256707003, 10256707004, 10256707005

WI MOD GRO

1.0 02/06/14 21:35

3.0 02/06/14 21:35

80-125 02/06/14 21:35

METHOD BLANK: 1620278

Associated Lab Samples:	10256707001, 10256707002,	10256707003, 1	0256707004, 10	0256707005	
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	02/06/14 21:35	
Ethylbenzene	ug/L	ND	1.0	02/06/14 21:35	
Gasoline Range Organics	ug/L	ND	100	02/06/14 21:35	

LABORATORY CONTROL SAMPLE & LCSD:	1620279		1	620280
		- ··		

ug/L

ug/L

%.

Parameter	Units	Spike Conc.	LCS Result	LCSD Result	LCS % Rec	LCSD % Rec	% Rec Limits	RPD	Max RPD	Qualifiers
Benzene	ug/L	100	95.0	100	95	100	80-120	5	20	
Ethylbenzene	ug/L	100	97.6	102	98	102	80-120	5	20	
Gasoline Range Organics	ug/L	1000	987	1010	99	101	80-120	3	20	
Toluene	ug/L	100	96.7	101	97	101	80-120	5	20	
Xylene (Total)	ug/L	300	297	317	99	106	80-120	7	20	
a,a,a-Trifluorotoluene (S)	%.				98	98	80-125			

MATRIX SPIKE SAMPLE:	1622019						
		10256928009	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/L	ND	100	107	107	80-120	
Ethylbenzene	ug/L	ND	100	111	111	80-120	
Gasoline Range Organics	ug/L	ND	1000	1100	110	80-120	
Toluene	ug/L	ND	100	109	109	80-120	
Xylene (Total)	ug/L	ND	300	335	112	80-120	
a,a,a-Trifluorotoluene (S)	%.				97	80-125	

SAMPLE DUPLICATE: 1622020

		10256928010	Dup		
Parameter	Units	Result	Result	RPD	Qualifiers
Benzene	ug/L	ND	ND		
Ethylbenzene	ug/L	ND	ND		
Gasoline Range Organics	ug/L	ND	ND		
Toluene	ug/L	ND	ND		
Xylene (Total)	ug/L	ND	ND		
a,a,a-Trifluorotoluene (S)	%.	102	100	2	2

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project:	3228-01 Former U	Jnion 76									
Pace Project No.:	10256707										
QC Batch:	OEXT/24289		Analys	is Method:	W	MOD D	RO				
QC Batch Method:	WI MOD DRO		Analys	is Descriptio	on: Wi	DRO G	CS				
Associated Lab Sar	nples: 10256707	7001, 10256707002,	10256707	003, 10256 ⁻	707004, 10	256707	005				
METHOD BLANK:	1618946		Ν	latrix: Wate	er						
Associated Lab Sar	nples: 10256707	7001, 10256707002,	10256707	003, 10256 ⁻	707004, 10	256707	005				
			Blank	Re	porting						
Parar	neter	Units	Result	t l	Limit	Ana	lyzed	Qualif	iers		
Diesel Range Organ	nics	mg/L		ND	0.10	02/05/	14 11:15				
n-Triacontane (S)		%.		88	50-150	02/05/	14 11:15				
LABORATORY CO	NTROL SAMPLE &	LCSD: 1618947		16	618948						
			Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Paran	neter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Diesel Range Organ n-Triacontane (S)	nics	 mg/L %.	2	1.6	1.7	81 87	84 89	75-115 50-150	:	3 20	

QUALIFIERS

Project: 3228-01 Former Union 76

Pace Project No.: 10256707

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

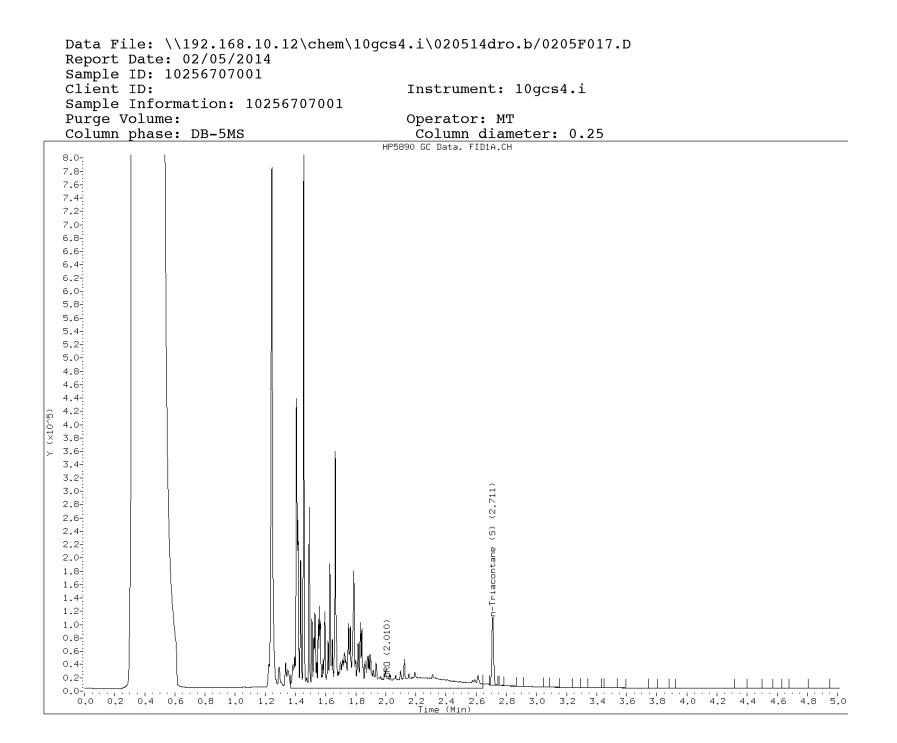
Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

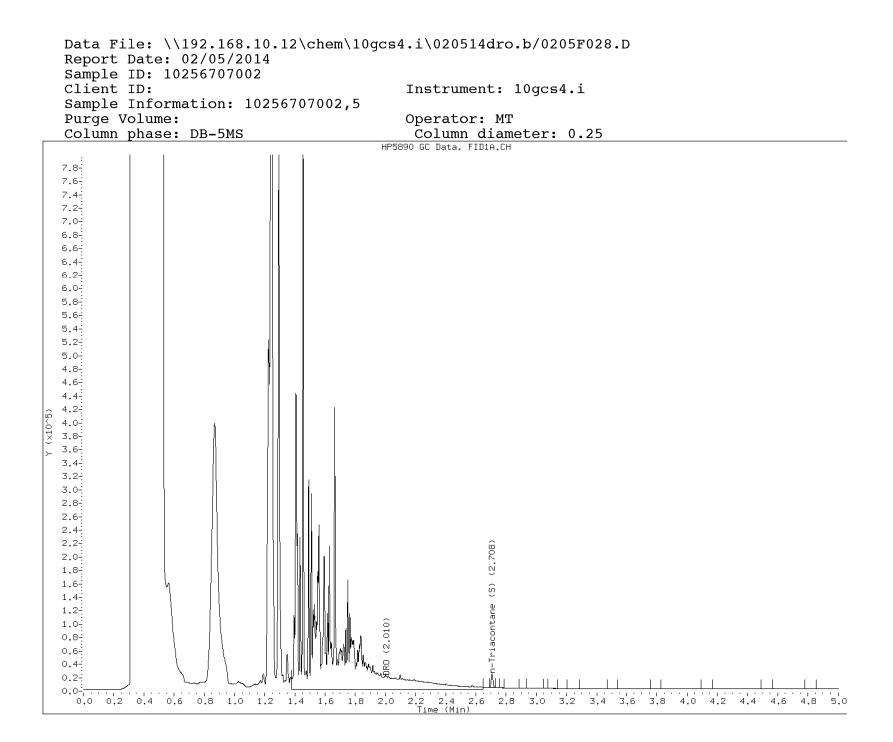
TNI - The NELAC Institute.

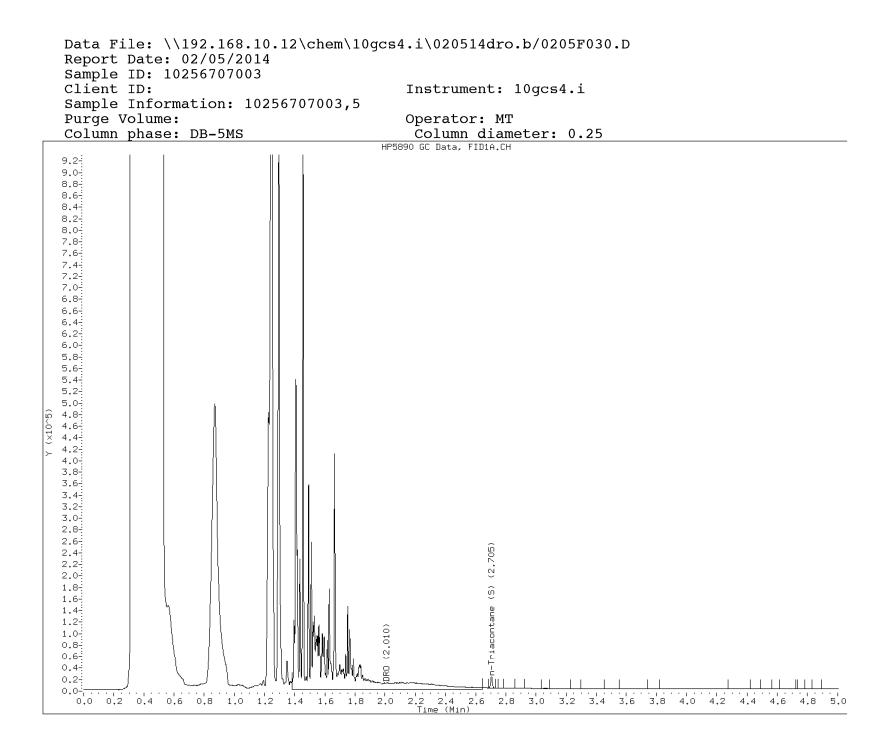
ANALYTE QUALIFIERS

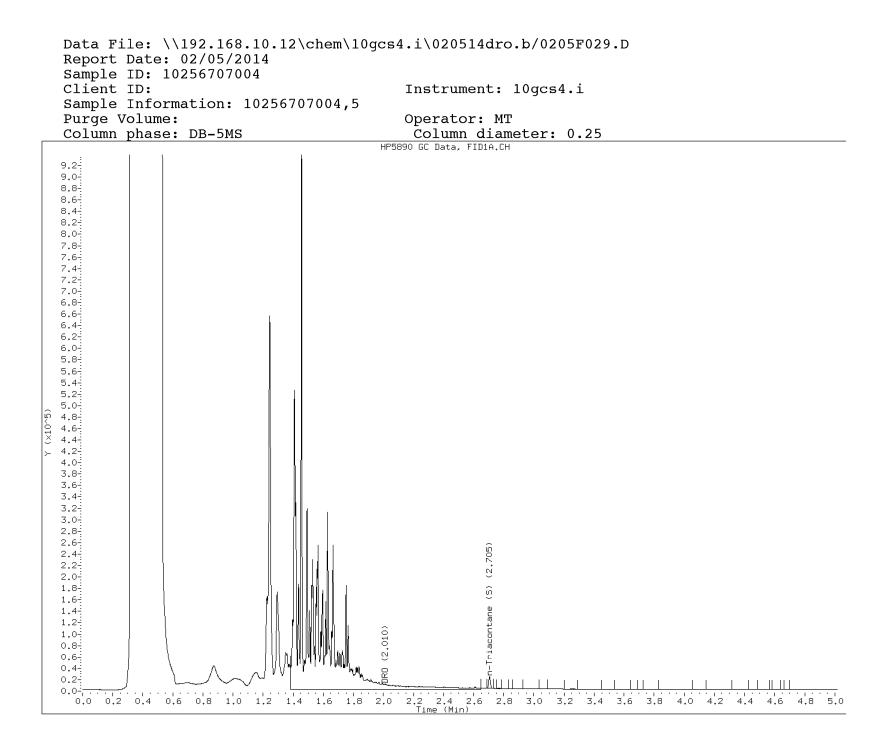
T7 Low boiling point hydrocarbons are present in the sample.

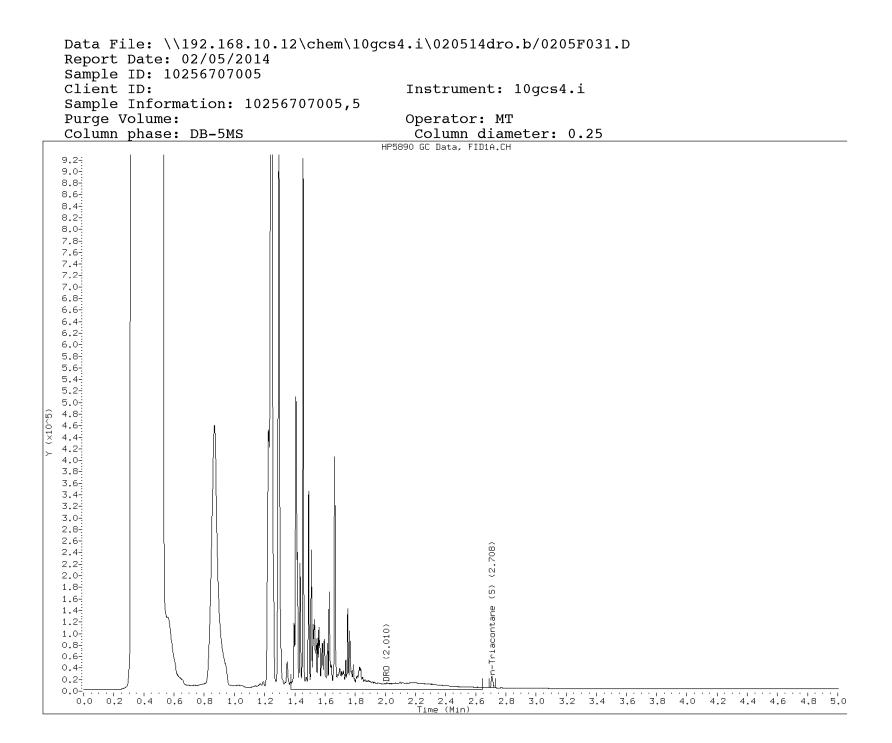
QUALITY CONTROL DATA CROSS REFERENCE TABLE


 Project:
 3228-01 Former Union 76


 Pace Project No.:
 10256707


Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10256707001	MW-1	WI MOD DRO	OEXT/24289	WI MOD DRO	GCSV/12786
10256707002	MW-6	WI MOD DRO	OEXT/24289	WI MOD DRO	GCSV/12786
10256707003	MW-9	WI MOD DRO	OEXT/24289	WI MOD DRO	GCSV/12786
10256707004	MW-10	WI MOD DRO	OEXT/24289	WI MOD DRO	GCSV/12786
10256707005	Duplicate-1	WI MOD DRO	OEXT/24289	WI MOD DRO	GCSV/12786
10256707001	MW-1	WI MOD GRO	GCV/11655		
10256707002	MW-6	WI MOD GRO	GCV/11655		
10256707003	MW-9	WI MOD GRO	GCV/11655		
10256707004	MW-10	WI MOD GRO	GCV/11655		
10256707005	Duplicate-1	WI MOD GRO	GCV/11655		


10256707	Page: of]	1693633	AGENCY	K GROUND WATER	RCRA CONTRACTOR OTHER	Cam pridig	M.V.	ed (Y/N)		(N/A) eninolifa le	ୁର୍ଗdu ସେହେ Project No./ Lab I.D.	10020295801				RTCV ANILY					TIME SAMPLE CONDITIONS, IN WAY	N X I X X I X X X	19 0 10	(V/Y) tody (V/V)	Temp Recei lce Cus Sealed (Y	F-ALL-Q-020rev.07, 15-May-2007
ument accurately.			REGULATORY AGENCY	NPDES	UST	Site Location	STATE:	nalysis Filtere														DATE	234			212114	
CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.		Attention: Accounts Payolle	tssociates	20	¢9		1e#:	Requested Analysis Filtered (Y/N)	Preservatives ≥ Z Z		3 lo 1et Test ₽	Ofher Methand Na ₂ S ₂ O HCI HCO H ² SO4 Drprese										TIME ACCEPTED BY / AFFILIATION	18:00 AMPaue		4	DATE Signed	invoices not paid within 30 days.
f-Custody is a LE	Ő	Att	CON CON	0		Pac					TEMP AT CO					14:30						DATE	213/14	D SIGNATURE	DRINT Name of SAMPLER.	SIGNATURE of SAMPLER:	of 1.5% per month fo
CHAIN. The Chain-of	Section B	Fmiller @ Nenck.	a zobel @ wenck.		Purchase Order No.:	Project Name: For Mark 1 Mich 7 L	-01		(itel (ХІЯТАМ Элямаг Пал Наг	r G 213/14/11:25 213/14	213/14 13:20 213/14	213/14	Q 2/3/14 14:30 213/14	G 215/4 -	WT - 215/14 - 215/14				RELINQUISHED BY / AFFILIATION		SAMPLER NAME AND SIGNATURE		ORIGINAL	"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any
Pace Analytical www.pacelats.com		Company: Kent Intornation: Company: Kent Intornation:	1 X	Suite 100, Woodburn MN SSI2S		ax: 2-479-4720			Section D Matrix Codes Required Client Information MATRIX / CODE	D V V	Sol/Solid SAMPLE ID (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE Tissue	**/M T	- WW - 1			4 MW - 10	s Duplicate-1	· TribBlank	· lact line -	8 6	10	 ILA ADDITIONAL COMMENTS		Pag		01HO 2 of 3	


		ocument Name:		Document Revised: 07Nov2013 Page 1 of 1	
Pace Analytical*	the second se	dition Upon Rec	eipt Form	Issuing Authority:	
1 doorningstour		Document No.: MN-L-213-rev.08		Pace Minnesota Quality Office	
nple Condition Jpon Receipt	ociates	Project	*: WOĦ	: 10256707	
Courier: Fed Ex UPS	USPS	Client			
Commercial Pace	Other:		102567	07	
stody Seal on Cooler/Box Present?	No	Seals Intact?	Yes No	Optional: Proj. Due Date: Proj. Name	2:
and the second se	ble Bags	ne Other:_		Temp Blank?	٧o
B8884	912167504 Ty	pe of Ice:	/et Blue	None Samples on ice, cooling process has	s beg
[]/233/080 []B88A:	9132521491 '' emp Corrected (°	#.1	B	ological Tissue Frozen? Yes No.	-1N/
		TMZ D		of Person Examining Contents: 2314	4
ip should be above meeting to b c		<u> </u>		Comments:	
Chain of Custody Present?	Yes		1.		
Chain of Custody Filed Out?	Yes		2.		
Chain of Custody Relinquished?	Yes		3.	· · · · · · · · · · · · · · · · · · ·	
Sampler Name and/or Signature on COC?	Yes		4.		
Samples Arrived within Hold Time?	Yes		5.		
Short Hold Time Analysis (<72 hr)?	Yes				
Rush Turn Around Time Requested?	Yes				
Sufficient Volume?	Yes				
	Yes			· · ·	
Correct Containers Used?	TYes				
-Pace Containers Used?	Yes			n trip buncs	
Containers Intact?			20 C		
Filtered Volume Received for Dissolved Tests?			12 2 12	um Trip Blanks	
Sample Labels Match COC?	□Yes W T		12. 000		
-Includes Date/Time/ID/Analysis Matrix: All containers needing acid/base preservation ha			4	HNO3 H2SO4 NaOH	Шн
been checked? Noncompliances are noted in 13	Yes			HNO3 H2SO4 NaOH	
All containers needing preservation are found to compliance with EPA recommendation?			Sample #		
(HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>12)					
Exceptions: VOA, Coliform, TOC, Oil and Grease, WI-PRO (water) DOC	Yes	No	Initial when	Lot # of added completed: INV preservative:	
Headspace in VOA Vials (>6mm)?	Yes	DNO DN/	A 14.		
Trip Blank Present?	Yes		A 15. BN	Trip Blames were broken.	,
Trip Blank Custody Seals Present?	Yes		A		
Pace Trip Blank Lot # (if purchased):					
LIENT NOTIFICATION/RESOLUTION				Field Data Required?	
Person Contacted:			Date/Time:		
Comments/Resolution:					
Comments/Resolution.	Notified (Stoud ah	at broke	en trip blanks.	
	VATINCA C	nary nar	and the USBA	and a state of the second s	
					6.44-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
					No. of Concession, Name
		er			

Data File: \\192.168.10.12\chem\10gcv3.i\020614b-1.b/G1-03742.d

Report Date: 02/08/2014

Sample ID: 10256707001

Client ID: 10256707001

		e Informa			7001	ŕ	ANDI G1-03			ment:]	<u>.ogcv</u>				
		Volume:					Operato	or: MJ	H S		11				
	7.0- Column	n phase:	DB-624				Columr	ı diam	eter	0.53	00 00 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
	6.6- 6.4-								di M	5		י ק ט			
	6.2- 6.0-										e s L	-			
	5.8- 5.6-										c				
	5.4- 5.2-														
	5.0- 4.8-										<u>_</u>				
	4.6-										1.227				
	4.4- 4.2-										ne (1				
i i	n 4.0- 3.8- 3.6-										3.5-Trimethylbenzene (11.227)				
:	3.6- 3.4-										ethy 11				
	3.2- 3.0-										-Trime				
	2.8- 2.6-				2)						, 3, 5- , 3		(02)		
	2.4- 2.2-		-		(5,667)			2					(13.5		
	2.0-		(2,383)		(2)			(8.787)	â				lene		
	1.6-				luene					62			Naphthalene (13.570)		
	1.4- 1.2-		l ether	â	oroto		ô	in ado	ene	(10.127)					
	1.0- 0.8-		-buty.	(4.323)	rifluorotoluene		(7,200)	fluor	Ethy Ibenzene			 h1			
	0.6- 0.4-			Benzene	a, a-Tr			.Chlorofluorobenzene	=Ethy 	o-Xylene		L I M W			
	0.2- 0.0-		┍┽┺╤┧╺┧╼┥╼┥┧╼┯╴┙			╷┤╷┝╴╷	<u> </u>		∭لبب	<u>Ari Ar</u>	<u>, Mini</u>		MMMM		
	0	1 2	3	4	5	6	7 Time (Mir	8	9	10	11	12	13 :	14	15

Data File: \\192.168.10.12\chem\10gcv3.i\020614b-2.b/G1-03742.d

Report Date: 02/08/2014

Sample ID: 10256707001

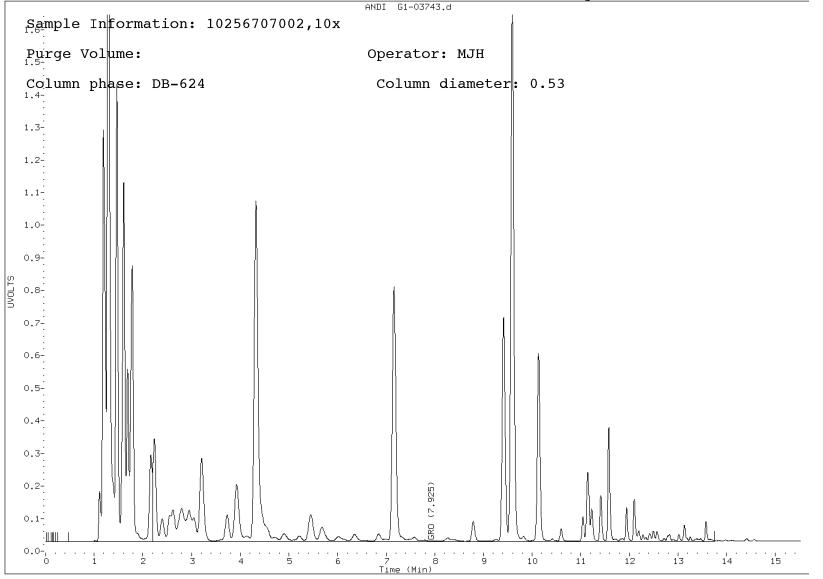
	Sample In	formation: 10256707001	ANDI G1-03742.d	
	P <u>u</u> rge Volu		Operator: MJH	
	Çolumn pha	ase: DB-624	Column diameter	c: 0.53
	1.6-			
	1.5-			
	1.4-			
	1.3-			
	1.2-			
	1.1-			
UVOLTS	1.0-			
5	0.9-			
	0.8-			
	0.7-			
	0.5-			
	0.4-			
	0.3-			
	0.2-		a (7.925)	
	0.1-		E A A	
	<u>- JV</u> 0.0- 0 1			10 11 12 13 14 15

Data File: \\192.168.10.12\chem\10gcv3.i\020614b-1.b/G1-03743.d

Report Date: 02/08/2014

Sample ID: 10256707002

Client ID: 10256707002

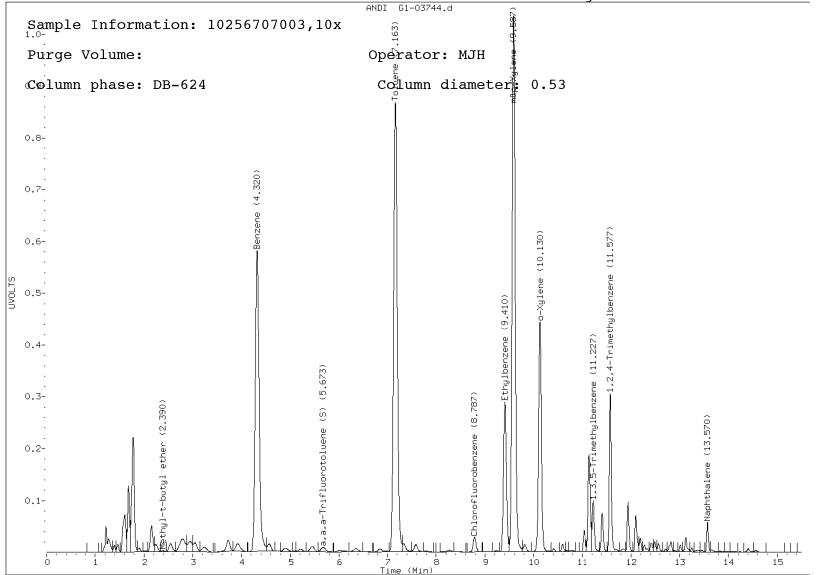

ANDI G1-03743.d
6.6-
Purge Volume: Operator: MJH
6.2
Column phase: DB-624 Column diameter: 0.53
5.8-
5.6-
5.4-
5.2-
5.0- 4.8-
4.6- 4.4- 4.4-
3.41 2.41 <td< td=""></td<>
3.0-1 3.0-1 3.0-1 3.0-1
fluorotoluene (S) (5.673) fluorotoluene (S) (5.673)
(5.673)
(5) (5) (5, 1, 2, 4-T
1.8- -
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time (Min)

Data File: \\192.168.10.12\chem\10gcv3.i\020614b-2.b/G1-03743.d

Report Date: 02/08/2014

Sample ID: 10256707002

Client ID: 10256707002



Data File: \\192.168.10.12\chem\10gcv3.i\020614b-1.b/G1-03744.d

Report Date: 02/11/2014

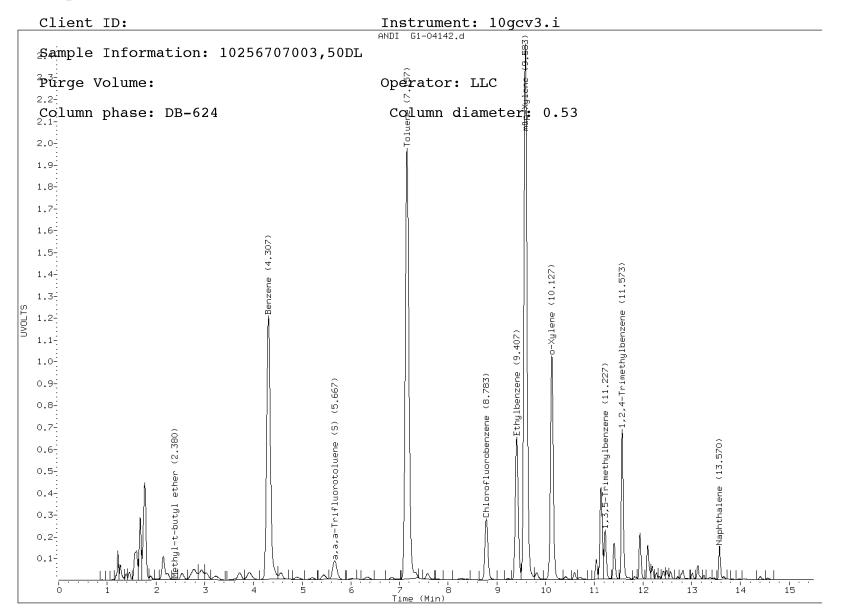
Sample ID: 10256707003

Client ID: 10256707003

Data File: \\192.168.10.12\chem\10gcv3.i\0)20614b-2.b/G1-03744.d
--	------------------------

Report Date: 02/11/2014

Sample ID: 10256707003


Client ID: 10256707003

	olume:	Operator: MJH
.8- ¢olumn	phase: DB-624	Column diameter: 0.53
.6- .5-		
.4- .3-		
.2- .1-		
.0-		
8-		
7- 6-		
5- 4-		
3-		
2- 1-		
.0- .9-		
8- 7-		
6- 5-		
4-		
3- 2-		
.1- .0-		
9- 8-		
.7-		
6- 5-		
4- 3-		
.2- .1-		$\sim \sim $

Data File: \\192.168.10.12\chem\10gcv3.i\021014b-1.b/G1-04142.d

Report Date: 02/11/2014

Sample ID: 10256707003

Data File: \\192.168.10.12\chem\10gcv3.i\021014b-2.b/G1-04142.d

Report Date: 02/11/2014

Sample ID: 10256707003

	Sample Inf	ormation:	10256707003,50DL	ANUI 61-04	142.d				
	4.1- APwrge Volu			Operat	or: LLC				
	3.9-								
	Column pha	se: DB-62	2.4	Colum	n diameter	: 0.53			
	3.6- 3.5-								
	3.4- 3.3-								
	3.2-								
	3.1- 3.0-								
	2.9- 2.8-								
	2.7-								
	2.6- 2.5-								
	2.4-								
UVOLTS	2,2-								
IN IN									
	1.9- 1.8-								
	1.7- 1.6-								
	1.5 1.4								
	1.3								
	1.2- 1.1-								
	1.0- 0.9-								
	0.8- 0.7-								
	0.6-			6		,			
	0.5-			l.	(7,925)	ļ			
	0.3-	da a	Å			1			
	0.1	<u> </u>	<u> </u>		<u>e, , N</u>	<u>L /L</u>	Mr.A.m.		
	0 1	2 3	4 5 6	7 Time (Min	່ 8 ່ 9 າ)	10	11 12	13 14	15

Data File: \\192.168.10.12\chem\10gcv3.i\020614b-1.b/G1-03745.d

Report Date: 02/08/2014

Sample ID: 10256707004

Client ID: 10256707004

						ANDI G1-0374	5.d	â		ŕ	
			ation: 1	02567070	04,10x			Ŭ.		с г ц	
	2.7- Purge Vo	olume:				Operator	: MJH	lene (
	Column p	phase:	DB-624			Column	diamete	r	0.53	ן ו נ	
	2.4-							۴ ۴		1	
	2.3-									Ì	
	2,2-									, F	- - -
	2.1-									c	n. J.
	2.0-									230	"
	1.9-									(11,230)	
	1.8-									aua	
	1.7-									enze	
	1.6- 1.5-									Буlb	
۳	1.0-									<u>3,5-Trimethylbenzene</u>	
UVOLTS	1.3-									in T-i	
	1.2-						ć	<u>_</u>		1.5.	
	1.1-						7	(9,410)			
	1.0-				73)				30)		
	0.9-				(5,673)		Chlorofluorobenzene (8.790)	Ethy Ibenzene	(10.130)		
	: 0.8-		ô) (S)	(7.160)	е (9				73)
	0.7-		(2,390)	~			L L L L L L	E L L	-Xylene		(13.573)
	0.6-			(4.317)	otoluene	oluene	obe		х́-		
	0.5-		ether		rrote	Tol	.luor	NI.		1	ar
	0.4-		- [ŋ]	Benzene	fluc	1	orof				Naphthalene
	0.3-		-but	L B B M	-Tri	1	TH I	'[]]			
	0.2-	,	yl-t	A	ά Λά		<u> </u>				S BAB WU A AU A
	0.1-	แม่มู่ไป	~ Methyl-t-butyl					$\left\ \left\{ \right\} \right\ $			
	0.0	1 2	<u> </u>	4 4		7 8 Time (Min)	, <u>124 - 12 - 14 - 1</u> 2 3 9		10 1	1	12 13 14 15
						Time (Min)					

Data File: \\192.168.10.12\chem\10gcv3.i\020614b-2.b/G1-03745.d

Report Date: 02/08/2014

Sample ID: 10256707004

Client ID: 10256707004

	ANDI G1-03745.d
Sample Information: 10256707004,10x	
purge Volume:	Operator: MJH
$\overset{6}{\underset{6,0}{\sim}}$ Lumn phase: DB-624	Column diameter: 0.53
5.8 -	
5.6	
5.4-	
5.2	
5.0-	
4.8-	
4.6 - 4.4-	
4.2-	
4.0-	
3.8	
<u>۳</u> 3.6-	
Ω 3.6-	
3.0-	
2.6-	
2.4	
2.2	
2.0-	
	1 ~ ~ ~ me / V h. V h. V W h. V W W W W h.
0.2- 0.0- 	
0 1 2 3 4 5 6	7 8 9 10 11 12 13 14 15 Time (Min)

Data File: \\192.168.10.12\chem\10gcv3.i\020614b-1.b/G1-03746.d

Report Date: 02/08/2014

Sample ID: 10256707005

Client ID: 10256707005

		ANDI G1-03746.d	
	Sample Information: 10256707005,10x		
	9.3- Purge Volume:	ę.	
	Purge Volume:	Operator: MJH	
	^{8.7-} Column phase: DB-624	Column diameter	0 53
	•		0.55
	8.1-	- Ine	
	7.8-	Ľ	
	7.5-		
	7.2-		
	6.9 -		
	6.6- 6.3-		
	6.0-		
	5.7-		2
	-		.0.130)
	5 1_ M		
IIVULTS	4.8-		e
	4.5- 0 N	ô	J er J er
	4.2-	(9.410)	o-Xylene yllbenzer
	3.9-		
	3.6-	87) Ethylbenzene	(11.227) 4-Trimet
	3.3- 3.0- 		2 4
	3.0-	(2 4)	
	2.7- .: 👷 🗍 🙃	(8.787)	
			11 n 20
			imethylb (13.570)
			_ _ i ⊆
	7.1 1.2- <	Chlorofluorobenzene	aphthalene
		<u>┥╷╢╤╽╢╶┾┥┝┽╴╎┤╼┞╶╢╲╎┤╶┝╢┾╹</u>	
	0 1 2 3 4 5 6	7 8 9 Time (Min)	10 11 12 13 14 15

Data File: \\192.168.10.12\chem\10gcv3.i\020614b-2.b/G1-03746.d

Report Date: 02/08/2014

Sample ID: 10256707005

Client ID: 10256707005

	ANDI G1-03746.d
Sample Information: 10256707005,10x	
Purge Volume:	Operator: MJH
Column phase: DB-624	Column diameter: 0.53
2.0-	
1.9-	
1.8-	
1.7	
1.6-	
1.5-	
1.3- on	
0.9-	
0.8-	
0.7-	
0.6-	
0.5-	
0.4	
0.3-	
0.2	
	7 8 9 10 11 12 13 14 15 Time (Min)

Wenck

Project Name: Former Union 76 Address: 102 Main Street, Cambridge, MN SSU08 Weather Conditions: 7°F Sunny Wind Ymph Field Technician(s): KEM, AZ Date: 2/3/14

Well Number:	MW-10	MW-3
MN Unique Well Number		
Top of Casing Elev. (ft above MSL)		
Depth to Water (ft)	22.92	Product 17.52 Water - 18.04
Depth to Bottom of Well (ft)	22.92	Water - 18,04
Groundwater Elev. (ft above MSL)		
Top of Screen Elev. (ft above MSL)		
Bottom of Screen Elev. (ft above MSL)		
Volume of Water in Casing (gals)	\sim	
3 Well Volumes (gals)	~ 3	
Purging Device	Bailer	
Purge Start Time	14.00	
Purge Stop Time	14:20	
Average Purge Rate (gals/min)		
Volume Purged (gals)		
Purged Dry (Y/N)	N	
Sampling Device	Bailer	
Time Sample Collected	14:30	
Sample Field Filtered (Y/N)	N	
Color	Grey - cloudy	
Odor	N Grey-cloudy Petro oder	
Well Capped & Locked (Y/N)	Ý	
Damage to Well? (Y/N)	N	

bailer in well

No Sangle - produt line up w/ tore in boulevoid + black drain tile comig down Side of building

Wenck

Project Name: Former Union 76 Address: 102 Main Street, Cambridge, MN SSOB3 Weather Conditions: 7°F Sunny wind 4 Mph Field Technician(s): EEM, AZ Date: 213/14

Well Number:	MW-9	MW-6
MN Unique Well Number		
Top of Casing Elev. (ft above MSL)		
Depth to Water (ft)	18.45 1	19.61
Depth to Bottom of Well (ft)	18.45 1 26.391	19.61' 26.40'
Groundwater Elev. (ft above MSL)		
Top of Screen Elev. (ft above MSL)		
Bottom of Screen Elev. (ft above MSL)		
Volume of Water in Casing (gals)	1.29	1.1
3 Well Volumes (gals)	1.29 Ny grae Bailer	3.5
Purging Device	Bailer	3.5 Bailer
Purge Start Time	12:35	12:45
Purge Stop Time	12:53	13:10
Average Purge Rate (gals/min)		
Volume Purged (gals)	\$	
Purged Dry (Y/N)	N	
Sampling Device	Bailer	Bailer
Time Sample Collected	1:00	1:20
Sample Field Filtered (Y/N)	N	N
Color	N	N
Odor	strong petro. odor	Slight petro odor
Well Capped & Locked (Y/N)	Y	Y
Damage to Well? (Y/N)	N	N
Dup-1 taken @ MW.	-9	bailer in the well

mw-4

Wenck

Project Name: Union 76,010 Address: 102 Main Street, Cambridge, MN 55083 Weather Conditions: 7°F Sunny wind Juph Field Technician(s): KEM/AZ Date: 213/14

19.97 waterlavel

Well Number:	MW-SI	MW-7
MN Unique Well Number		
Top of Casing Elev. (ft above MSL)		
Depth to Water (ft)	19.97'	18.30 Product@18.28
Depth to Bottom of Well (ft)	23.891	23.85'
Groundwater Elev. (ft above MSL)		
Top of Screen Elev. (ft above MSL)		
Bottom of Screen Elev. (ft above MSL)		
Volume of Water in Casing (gals)	0.64	
3 Well Volumes (gals)	~ 2	
Purging Device	Bailer 11 am	
Purge Start Time	llam	
Purge Stop Time	11:21 am	
Average Purge Rate (gals/min)		
Volume Purged (gals)	2gal	
Purged Dry (Y/N)	N	
Sampling Device	bailer	
Time Sample Collected	11:25	NO sample
Sample Field Filtered (Y/N)	N	
Color	Red-rust-brown	
Odor	strong petrosmell	
Well Capped & Locked (Y/N)	Ý	
Damage to Well? (Y/N)	Ý	

MW-1

villwater interlace meter used, meter didn't detect free product / 101 - 7 Free 18,28 - Produt 18,30 - H20 /

3.92

1.0 Groundwater Sampling Procedure

1.1 GENERAL

To collect representative groundwater samples, groundwater wells must be adequately purged prior to sampling. Purging will require the removal of at least three volumes of standing water in rapidly recharging wells, and at least one volume from wells with slow recharge rates. Shallow wells in which the screen intersects the water table should require a minimum amount of purging since the groundwater would flow through the screen and not be entrapped in the casing. Sampling will commence as soon as adequate recharge has occurred.

The samples will be labeled and shipped following standard corporate-wide procedures, and analyzed according to the analytical program outlined in the Work Plan.

1.2 WATER-LEVEL MEASUREMENTS

Prior to any well evacuation or sampling, initial static water levels will be measured and recorded for all wells. This is done to facilitate selection of the proper pump intake depths for purging and sampling and calculation of the ground water flow direction.

Field personnel will make water-level measurements at all applicable site monitoring wells and piezometers within the shortest time interval practical to provide comparable numbers by which to calculate the ground water gradient (typically within one hour).

Water level probes will be decontaminated by rinsing with clean control water and drying with a clean cloth before use in each well. Water levels will be measured with an electric water level sensor probe that records to the nearest 0.01 foot. The electric water level sensor probe will be lowered down the well until the meter sounds indicating contact of the probe with the water surface.

The depth-to-water will be referenced to the measuring point marked at the top of the innermost well casing. Where a measuring point has not been marked at the top of the casing, the measuring point will be assumed to be at the top of the innermost casing on the north side of the casing. When reporting absolute water level elevation, this measurement will be converted to water level elevation ("MSL") from the surveyed elevation of the top of the well casing. Data will be entered in field book.

1.3 GROUNDWATER SAMPLE COLLECTION FOR LABORATORY ANALYSIS

1.3.1 Objectives and Considerations

During sampling, primary objectives and considerations include minimizing sample disturbance, avoiding sample exposure to air and extraneous contamination, and preserving sample integrity throughout collection.

1.3.2 Sample Collection Procedures

Groundwater sample collection procedures are as follows:

- Well sampling will be performed within 24 hours of purging. If a well does not yield sufficient volume for all required laboratory analytical testing (including quality control), then a decision will be made to prioritize analyses. If a well takes longer than 24 hours to recharge, then a decision will be made to prioritize analyses. If a well takes longer than 24 hours to recharge, then a decision will be made to prioritize analyses. If a well takes longer than 24 hours to recharge, then a decision will be made to prioritize analyses. If a well takes longer than 24 hours to recharge, then a decision will be made after consultation with MPCA whether or not the sample will be considered valid.
- All sample bottles will be labeled in the field using a waterproof permanent marker. Labels will include:
 - Site name
 - Sample identification code
 - Project number
 - Date/time
 - Sampler's initials
 - Preservation added (if any)
 - Analysis to be performed
- Before opening and filling sample containers, check the sampling area for potential sources of extraneous contamination. Remove any possible sources of contamination, including engine exhaust, blowing dust and organic fumes (e.g., gas cans) prior to sample collection. During sample collection, Wenck personnel will wear clean, disposable gloves. The gloves will be replaced for each sampling location or when the gloves are soiled or torn. Samples will be collected into lab-provided containers (containing required preservatives) and placed on ice in coolers for shipment to the analytical laboratory (discussed in Section 4.5.5). Once the first sample is collected the chain of custody (COC) will be initiated. COC procedures are discussed in Section 4.6.2.5.
- Sample containers shall remain closed until it is time to fill them. Immediately after opening the container add preservative (if required), fill the container, replace the cap,

label, and immediately place on ice in a cooler. Sample preservation is discussed in Section 4.6.2.4

1.3.2.1 Order of Filling Sample Containers

Field staff will collect sample parameters in the following order:

- Metals
- VOCs
- GRO
- Other non-volatile organics.

1.3.2.2 Trip Blanks, Field Blanks, and Field Duplicates

Sample blanks, will be collected to detect background or method contamination. Duplicate samples will be collected to evaluate variability in analytical methods. QA/QC samples will be collected at sampling points suspected to have relatively higher levels of contamination to provide meaningful information for blank or duplicate sample evaluation. All QA/QC samples will be collected in the same type of container as the corresponding primary samples. All QA/QC samples will be assigned identification aliases on the sample bottle label and on the chain of custody sheet to avoid alerting laboratories that the sample is a blank or duplicate sample. The true identity of the QA/QC samples will be recorded in the field book. The collection schedule for QA/QC samples will be as follows:

- one (1) trip blank (composed of a minimum of one {1} replicate vial) for each cooler of VOC samples. Trip blanks will be provided by laboratory.
- one (1) field (equipment) blank will be collected each day by field personnel (or one field blank for every ten {10} samples collected).
- one (1) duplicate set for every ten sets of samples collected

1.3.2.3 Sample Preservation

Samples will be preserved as shown in the above table. All Chemical preservatives, added to containers in the laboratory or field will be produced and controlled within the laboratory's QA/QC program. Field supplies of preservatives and sample containers with pre-dosed preservatives will be discarded and replaced with fresh preservatives no later than 14 days after receipt from the laboratory. All samples will be thermally preserved in the field immediately after sample collection by placing the samples in an insulated ice chest containing uncontaminated ice cubes. The ice will be placed inside uncontaminated leak proof plastic containers and the COC record will be placed inside a plastic bag. The ice chest temperature will be checked by measuring the temperature of the water within the temperature blank container at the laboratory to verify whether or not samples were kept refrigerated at approximately 4 degrees C. Temperature will be noted on the COC.

1.4 SAMPLE METHODOLOGY

Analyte	Method	Sample Container	Field Preservation	Hold Time
Total RCRA Metals	Method 6010/7470	250 ml plastic	Nitric Acid	180 days
Diss. RCRA Metals	Method 6010/7470	250 ml plastic	None	180 days
PCBs	Method 8082	1 liter glass	None	7 days
PAHs	Method 8270	1 liter glass	None	7 days
DRO	WI Modified	1 liter glass	Hydrochloric Acid	7 days
GRO	WI Modified	(3) 40 ml glass	Hydrochloric Acid	14 days
Oil & Grease,				
Hydrocarbons	Method 418.1	1 liter glass	Hydrochloric Acid	28 days
			Sodium thiosulfate +	
Herbicides	Method 8151	1 liter glass	hydrochloric acid	7 days
Pesticides				
(organophosphate				
compounds)	Method 8141	1 liter glass	None	7 days
Pesticides	Method 8081	1 liter glass	None	7 days
Total Organic Carbon	Method 415.1/9060	125 ml amber glass	Sulfuric Acid	28 days
Dissolved Solids	Method 161.1	250 ml plastic	None	7 days
Nitrate, Nitrite,				
Nitrate + Nitrite	Method 353.2	125 ml plastic	Sulfuric Acid	28 days
VOCs	Method 8260 465F	(3) 40 ml glass	Hydrochloric Acid	14 days

1.5 GROUNDWATER SAMPLING EQUIPMENT DECONTAMINATION PROCEDURES

All groundwater sampling equipment including pumps, flow-through cells, probes, etc. that come in contact with groundwater collected for laboratory analysis will be decontaminated prior to reuse using the following procedures:

- 1. Wash device/equipment in a bucket/tub filled with Alconox and water solution.
- 2. Rinse device/equipment in a bucket of potable water.
- 3. Rinse device/equipment in a second bucket of water.

Appendix C

Life Cycle Cost Sheet - SVE/Air Sparge

Description	Quantity	Price	Unit	Total
Access Agreements	4	\$1,210	per property	\$4,840
Pilot test work plan	1	\$6,000	report	\$6,000
Pilot test equipment	1	\$3,000	equipment	\$3,000
Pilot test holes for radius of influence	12	\$1,000	per pilot hole	\$12,000
Pilot test observation	5	\$1,000	per day	\$5,000
Pilot test report	1	\$6,000	report	\$6,000
Corrective Action Design	1	\$6,000	report	\$6,000
SVE/Sparge well install	24	\$1,500	per well	\$36,000
Well Installation Oversight	10	\$1,000	per day	\$10,000
Blower/skid fabrication, delivery Trenching, electrical,	2	\$24,000	system	\$48,000
construction	2	\$45,000	lump sum	\$90,000
Construction Oversight	10	\$1,000	day	\$10,000
Start-up/optimization	5	\$1,000	day	\$5,000
Start-up sampling	10	\$250	per sample	\$2,500
Installation Report	1	\$6,000	report	\$6,000
TOTAL CAPITOL				\$250,340
Annual Monitoring (LIF sampling, monitoring well sampling, vent sampling)	3	\$50,000	per year	\$150,000
Annual Operation (Electrical, maintenance)	3	\$5,000	lump sum	\$15,000
TOTAL ANNUAL				\$165,000
System shut-down oversight	10	\$1,000	dav	\$10,000
		ψ1,000	uy	φ10,000
Well sealing	24	\$1,500	per well	\$36,000
				\$46,000
20% Contingency				\$83,068
Total				\$544,408

Life Cycle Cost Sheet - Dual Phase

Description	Quantity	Price	Unit	Total
Access Agreements	4	\$1,210	per property	\$4,840
Pilot test work plan	1	\$6,000	report	\$6,000
Pilot test equipment	1	\$3,000	equipment	\$3,000
Pilot test holes for radius of influence	12	\$1,000	per pilot hole	\$12,000
Pilot test observation	5		per day	\$5,000
Pilot test report	1	\$6,000	report	\$6,000
Corrective Action Design	1	\$6,000		\$6,000
SVE/Extraction well install	24	\$1,500	per well	\$36,000
Well Installation Oversight	10	\$1,000	per day	\$10,000
Blower/skid fabrication, delivery Trenching, electrical,	2	\$24,000	system	\$48,000
construction	2	\$45,000	lump sum	\$90,000
Construction Oversight	10	\$1,000	day	\$10,000
Start-up/optimization	5	\$1,000	day	\$5,000
Start-up sampling	10	\$250	per sample	\$2,500
Installation Report	1	\$6,000	report	\$6,000
TOTAL CAPITOL				\$250,340
Annual Monitoring (LIF sampling, monitoring well sampling, montlhy adjustments of stinger tubes, vent sampling)	3	\$65,000	per year	\$195,000
Water recovery/disposal from system	1	\$10,000	lump sum	\$10,000
Annual Operation (Electrical, maintenance)	3	\$5,000	lump sum	\$15,000
TOTAL ANNUAL				\$220,000
System shut-down oversight	10	\$1,000	day	\$10,000
Well sealing	24	\$1,500	per well	\$36,000
TOTAL SHUT-DOWN				\$46,000
20% Contingency				\$94,068
Total				\$610,408

Life Cycle Cost Sheet

Excavation - Source area to water table

Description	Quantity	Price	Unit	Total
Soil trucking and disposal	6,650	\$40	per ton	\$266,000
Trucking and Backfill	6,650	\$20	per ton	\$133,000
Excavation Contractor	10	\$1,000	per day	\$10,000
Seal MW-3	1	\$1,500	each	\$1,500
Install new MW-3	1	\$2,500	each	\$2,500
Excavation Oversight	10	\$1,500		\$15,000
Evenuetion completenelysis	10	¢cr	per confirmation sample set	¢0.000
Excavation sample analysis	40		(DRO/GRO/BTEX)	\$2,600
Reporting	1	\$5,000		\$5,000
Quarterly sampling/monitoring with monthly LNAPL checks and annual report	3	\$25,000	annual follow-up monitoring	\$75,000
20% Contingency				\$102,120
Total				\$612,720