April 26, 2010

Mr. Allan Timm and Ed Olson MPCA VIC Program 520 Lafayette Road St. Paul, MN 55155-4194

Re: Monthly Dual Phase Extraction System Effectiveness Report MN Bio Business Center, Rochester, MN

Dear Mr. Timm and Mr. Olson:

On behalf of the City of Rochester (City) Administration Department, Landmark Environmental, LLC (Landmark) has prepared this letter to present a status update for the dual phase extraction (DPE) system installed at the above referenced property (Property), as shown in Figure 1.

Introduction

This report documents the monthly DPE system operational and analytical data from March 25, 2010. The DPE system well locations and equipment layout are provided in Figures 2 and 3, respectively. A system operation and maintenance summary table is included as Table 1.

The DPE system has continued to operate sequentially at all of the DPE system wells after being switched from continuous operation at DPE-1 on October 15, 2009. The DPE system is programmed to operate on each well for 45 minutes before switching to the next well and takes 6 hours to complete one full cycle. The air sample collection method during sequential operation of the DPE system wells consists of a composite Summa canister utilizing a 6-hour flow control valve. Therefore, air emissions from each well are collected during the 6-hour sample collection period.

System Operational Results

The volatile organic compound (VOC) and perchloroethene (PCE) concentrations from the March 25, 2010, sampling event have continued to decrease from the high concentrations observed on January 14, 2010. During this period, the DPE system removed 34 pounds of total VOCs, including 22 pounds from PCE (see Figure 4 and Table 2). Through March 25, 2010, the DPE system has removed a total of 2,868 pounds of total VOCs and 2,275 pounds of PCE.

On March 25, 2010, the concentrations of VOCs decreased from 14,613,880 micrograms per cubic meter (ug/m³) on April 9, 2009, (the baseline emissions sampling date) to 331,284 ug/m³ of total VOCs, a decrease of 97.7 percent (See Figure 5). PCE concentrations decreased from 11,600,000 ug/m³ to 215,000 ug/m³, a decrease of 98.2 percent from the baseline concentration. Emissions analytical data is provided in Table 3 and system operational data tables and field data

sheets are provided in Attachment A. The emissions analytical reports are included in Attachment B.

The Minnesota Pollution Control Agency's (MPCA's) Remediation Risk Analysis Screening Spreadsheet (RRASS) spreadsheet was used to evaluate the emissions rates from the DPE system and air stripper stacks on the Property during the DPE system sampling event. The site specific emissions rate for PCE during the March 25, 2010, sampling event was 11,182 micrograms per second (ug/s) and was below the MPCA screening emissions rate (SER) for chronic risk of 16,300 ug/s. The site specific emissions rate for PCE was also below the MPCA SER for acute risk of 5,980,000 ug/s. The RRASS emissions rates are provided in Table 4 and the RRASS spreadsheets are provided in Attachment C.

The cumulative total VOC mass removed from the DPE system groundwater discharge during air stripper operation was 0.27 pounds on March 25, 2010. The effluent groundwater discharge concentrations were below the City's Water Reclamation Plant discharge criteria of 2,130 ug/L. The total VOC concentration in the effluent sample was greater than the influent sample because of residual VOCs from the PVC glue and cement used during installation of a secondary demister moisture separator. Mass removal data from the groundwater treatment system is provided in Table 5 and the groundwater discharge analytical data is included in Table 6. The groundwater discharge analytical reports are provided in Attachment B.

The groundwater hydrographs for the DPE wells show decreasing trends in the groundwater elevations when compared to the February 22, 2010, monitoring event (Figure 6). However, the groundwater hydrographs for the monitoring wells show increasing trends during this period (Figure 7), which may be the result of a rising regional water table from an early spring thaw. Landmark's groundwater flow interpretation provided in Figure 8 indicates that the DPE system has been effective in lowering the water table on the Property. The groundwater elevation data is provided in Table 7. Well construction information is provided in Table 8.

Conclusions

After analyzing the data from the monthly DPE system operation, maintenance, and monitoring events, the following conclusions can be made:

- The DPE system is operating as designed and has removed a significant amount of VOCs in a short period of time.
 - From June 29, 2009, through March 25, 2010, the DPE system removed 2,868 pounds of total VOCs, including 2,275 pounds of PCE from the subsurface.
 - DPE system emissions concentrations of VOCs and PCE from March 25, 2010, have decreased 97.7 percent and 98.2 percent, respectively, when compared to the baseline emissions concentrations.

- The March 25, 2010, site specific emissions rate for PCE of 11,182 ug/s was below the SER for both chronic and acute risk.
- Sequential operation of all DPE system wells has effectively lowered the water table at the Property.

Recommendations

Landmark recommends continuing sequential operation of all eight DPE wells for the next couple of months, or until a significant decrease in emissions concentrations and mass removed is observed.

Additional monthly system operational, analytical, and fluid level data will be collected to better evaluate the system's effectiveness at accomplishing remedial goals, and to make adjustments as necessary to increase effectiveness. This data will be carefully monitored and analyzed, and system adjustments will be made to maintain efficient mass recovery.

Although monthly system operational, analytical, and fluid level data collection will continue, Landmark recommends reducing the MPCA reporting requirements for this information from monthly reporting to quarterly reporting. It is Landmark's opinion that enough data has been reported on a monthly basis since DPE system start up, and that at this stage of the system's operation, quarterly reporting is sufficient.

Groundwater monitoring and reporting will continue on a quarterly basis to assist in evaluating the effect of the DPE system on VOC concentrations in the groundwater.

If you have any questions or require additional information, please feel free to contact me at <u>jskramstad@landmarkenv.com</u> and (952) 887-9601, extension 205.

Sincerely,

An D Shand

Jason D. Skramstad, P.E.

Cc: Terry Spaeth, City of Rochester

F:\PROJECTS\Crc \Monthly System Reports\20100310 DPE GW\20100422 Monthly System Report - Final

TABLE OF CONTENTS

FIGURES

FIGURE 1 PROPERTY LOCATION MAP

FIGURE 2 DPE SYSTEM LAYOUT

FIGURE 3 DPE ROOM LAYOUT

FIGURE 4 CUMULATIVE MASS REMOVED

FIGURE 5 DPE EMISSIONS CONCENTRATIONS

FIGURE 6 DPE WELL HYDROGRAPHS

FIGURE 7 MONITORING WELL AND SUMP HYDROGRAPHS

FIGURE 8 MARCH 2010 – GROUNDWATER FLOW INTERPRETATION

TABLES

TABLE 1 SYSTEM OPERATION AND MAINTENANCE SUMMARY

TABLE 2 MASS REMOVAL FROM DPE EXHAUST

TABLE 3 AIR EMISSIONS ANALYTICAL RESULTS

TABLE 4 RASS EMISSIONS RATES SUMMARY

TABLE 5 MASS REMOVAL FROM GROUNDWATER TREATMENT SYSTEM

 TABLE 6
 GROUNDWATER DISCHARGE ANALYTICAL RESULTS

TABLE 7GROUNDWATER ELEVATIONS

 TABLE 8
 WELL CONSTRUCTION SUMMARY

ATTACHMENTS

ATTACHMENT A SYSTEM DATA TABLES AND FIELD DATA SHEETS ATTACHMENT B ANALYTICAL REPORTS ATTACHMENT C RRASS SPREADSHEETS

F:\PROJECTS\Crc \Monthly System Reports\20100310 DPE GW\20100413 Monthly System Report - Final

Figures

PROPERTY LOCATION MAP 219 and 223 1ST Avenue Southwest Rochester, Minnesota

BASEMENT FLOOR PLAN

LEGEND

- DPE, Monitoring Well, or Sump Location
 - DPE Piping Location
 - Property Boundary

N

BASE DRAWINGS PROVIDED BY HGA F:/Projects/CRC/CAD/basement planview\DPE AS Layout.dwg

Rev	Date	Ву	Description	LANDMARK ENVIRONMENTAL, LLC 2042 West 98th Street Bloomington, MN 55431	FIGURE 2	Landmark Project Number: CRC			
						Drawn: JDS	Checked: JDS	Designed: JDS	
					DPE STSTEM LATOUT	Scale: .	Date: 7/9/2009	Revision:	
					221 FIRST AVENUE S.W. ROCHESTER, MINNESOTA	Drawing Number:	•	Sheet Of Sheets	

Rev	Date	Ву	Description	LANDMARK ENVIRONMENTAL, LLC 2042 West 98th Street Bloomington, MN 55431	FIGURE 3	Landmark Project Number: CRC			
ļ					DPE ROOM LAYOUT	Drawn: JDS	Checked: JDS	Designed:	JDS
						Scale: 1:3	Date: 4/13/2010	Revisio	n: .
	-				221 FIRST AVENUE S.W. ROCHESTER, MINNESOTA	Drawing Number:	•	Sheet Of	Sheets

CUMULATIVE MASS REMOVED MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

DPE EMISSIONS CONCENTRATIONS MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

F:\PROJECTS\Crc-City of Rochester\data tables\system O&M data

DPE WELL HYDROGRAPHS MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

MONITORING WELL AND SUMP HYDROGRAPHS MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

Tables

Date	Approximate Time	Sensophone Call Received?	Alarm Condition	DPE System Status	Comments
9-Apr-09	NA	NA	NA	Off	DPE system temporary startup. Sampled initial DPE groundwater discharge and air emissions. System shut down to determine if air emissions and/or groundwater treatment were necessary.
4-Jun-09	NA	NA	NA	Off	Air stripper installed. Air stripper air emissions and influent and effluent groundwater samples collected.
5-Jun-09	NA	NA	NA	Off/On	Installed temporary secondary containment around DPE room door way. DPE system left on.
6-Jun-09	19:00	Y	MS High Level	On/Off	
8-Jun-09	NA	NA	NA	Off	Landmark on site to clean MS float switch assembly. DPE system left off per client request until elevator pit drain tile sump can be connected to the air stripper, a permanent secondary containment berm can be installed, and additional floor sump alarm and conductivity meter can be installed.
19-Jun-09	NA	NA	NA	Off	Landmark onsite to monitor elevator pit sump water levels and PID readings.
23-Jun-09	NA	NA	NA	Off	Landmark, SDE, and Muska on site to install permanent secondary containment berm and sump pit flow meter.
25-Jun-09	NA	NA	NA	Off	Landmark and PLC on site to terminate switches to the control panel. Noticed lower trilevel float switch is getting caught on the site tube. PLC to replace MS trilevel float assembly. Pumped 300 gallons of water from elevator drain tile sump through the air stripper. Sump appears to be recharging with water.
29-Jun-09	NA	NA	NA	Off/On	Landmark replaced MS trilevel float assembly. Bottom float still catches on site tube; therefore, Landmark installed JB-welded washers onto float assembly. Also compared flow meter readings with handheld monitor; replaced leaking air stripper hoses; recorded all system data from gauges and control panel. System restarted for permanent operation.
9-Jul-09	NA	NA	NA	On	Landmark onsite to troubleshoot low flowrate and vacuum readings observed remotely, to collect fluid level measurements at each well, to check the vacuum influence from DPE-1 operation at each DPE well head location; collect operational data during operation of DPE-1; to conduct a groundwater recovery test a DPE-1; modified the drop tube at DPE-3; and collected operational data wile operating on DPE-3. Kept system operating on DPE-1. Sampled groundwater discharge.
18-Jul-09	NA	No	DPE Pump Motor Fault	On/Off	
20-Jul-09	NA	NA	DPE Pump Motor Fault	Off	Received a call from Paramark stating the DPE was off and there was about 1 quart of oil leaking from the DPE pump.
22-Jul-09	NA	NA	DPE Pump Motor Fault	Off	Landmark onsite to troubleshoot DPE system shut down and determine the source of the oil leak.
24-Jul-09	NA	NA	DPE Pump Motor Fault	Off	Landmark and PLC onsite to remove DPE pump and deliver to John Henry Foster for Repair.

Date	Approximate Time	Sensophone Call Received?	Alarm Condition	DPE System Status	Comments
11-Aug-09	NA	NA	DPE Pump Motor Fault	Off/On	Landmark and PLC onsite to reinstall repaired DPE pump and restart the system. Landmark installed thermometer to monitor the ambient and max temperature in the DPE room in two different locations. Landmark swept, vacuumed, and mopped the floor several times to prevent dust from passing through the vacuum relief valve and clogging the pump inlet screen. PLC fixed the sensaphone. PLC and Landmark checked flow rate readings with blower curve. DPE system was restarted.
14-Aug-09	13:17	Y	DPE Pump High Inlet Vacuum	On/Off/On	Paramark opened all of the individual DPE well bleed valves and restarted the system.
16-Aug-09	4:34	Y	DPE Pump High Outlet Temperature	On/Off	
17-Aug-09	NA	NA	DPE Pump High Outlet Temperature	Off/On	Paramark checked max room temperature readings and all were OK. Paramark could not restart the DPE system. Landmark onsite to troubleshoot the pump and determined the inlet screen was plugged. Landmark cleaned the inlet screen, replaced the moisture separator filter, and restarted the system. The system was adjusted to run with the DPE pump bleed valve open 5% and the DPE-1 bleed valve open 20%.
18-Aug-09	4:15	Y	DPE Pump High Inlet Vacuum	On/Off	Landmark tried restarting the system remotely, but the system would not operate for more than 30 seconds. A pressure drop was observed while trying to restart the system indicating the moisture separator filter or pump inlet screen was plugged.
20-Aug-09	NA	NA	DPE Pump High Inlet Vacuum	Off/On	Landmark onsite to troubleshoot system shutdown. Landmark verified the shutdown was the result of a plugged pump intake screen. The screen was cleaned with hydrochloric acid and reinstalled. Landmark installed a pipe plug in place of the vacuum relief valve to determine if the material plugging the screen is entering through the vacuum relief valve. Landmark added slits to DPE-1 drop tube to facilitate dewatering of the well. System restarted with DPE-1 bleed air valve opened 50% and pump bleed valve closed.
22-Aug-09	5:30	Y	DPE Pump High Inlet Vacuum	On/Off	
24-Aug-09	NA	NA	DPE Pump High Inlet Vacuum	Off/On	Restarted system remotely. Directed Paramark to open DPE-1 bleed valve 100%.
4-Sep-09	NA	NA	NA	On	Landmark on site to conduct monthly monitoring and sampling event , install 1 micron moisture separator filter, and install new pump intake screen.

Date	Approximate Time	Sensophone Call Received?	Alarm Condition	DPE System Status	Comments
16-Sep-09	19:26	Y	DPE Pump High Inlet Vacuum	On/Off	
17-Sep-09	NA	NA	DPE Pump High Inlet Vacuum	Off/On	Restarted system remotely. Directed Paramark to open DPE-1 bleed valve 100%.
28-Sen-09	NA	NA	NA	On	Landmark on site to conduct quarterly groundwater monitoring and sampling event , and spray aluminum pump inlet components with dry lube to prevent corrosion.
20 000 00	21:22	Y	DPE Pump High Inlet Vacuum	On/Off	
29-Sep-09	NA	NA	DPE Pump High Inlet Vacuum	Off/On	Landmark and PLC on site to troubleshoot alarm. The rubber hose between the moisture separator and the DPE pump was found to be defective. The rubber hose was replaced and the system was restarted.
	6:32	Y	MS High Level	Off	
30-Sep-09	NA	NA	MS High Level	Off/On	Landmark on site to finish quarterly groundwater monitoring and sampling event , and clean the float switches controlling the moisture separator transfer pump. The DPE system was restarted.
10/15/2009 and 10/16/09	NA	NA	NA	On	Landmark on site to conduct monthly monitoring and sampling event and modify all of the wells for sequential operation.
19-Oct-09	18:00	Y	MS High Level	On/Off	
23-Oct-09	NA	Yes	NA	Off/On	Landmark on site to clean the MS float assembly, replace MS hose with SCH 80 pipe and union, and install bleed air port on DPE-3 water level drop tube.
25-Oct-09	8:15	Y	MS High Level	On/Off	
27-Oct-09	NA	Yes	NA	Off/On	Landmark on site to clean MS float assembly, remove sediment from the MS, collect a TCLP VOC sediment sample for haz waste characterization, and modify the drop tube for DPE-3.
	14:15	Y	Hi Vacuum and Hi Inlet Vacuum	On/Off	System shut down from DPE-4's solenoid valve which was stuck in the off position.
28-Oct-09	NA	NA	Hi Vacuum and Hi Inlet Vacuum	Off/On	Under Landmark's direction, Paramark was able to get DPE-4's solenoid valve to work.
2-Nov-09	23:15	Y	Hi Vacuum and Hi Inlet Vacuum	On/Off	System shut down from high inlet vacuum while operating at DPE-8.
3-Nov-09	11:15	NA	Hi Vacuum and Hi Inlet Vacuum	Off/On	System restarted remotely by Landmark.

Date	Approximate Time	Sensophone Call Received?	Alarm Condition	DPE System Status	Comments
	11:16	Y	Hi Vacuum and Hi Inlet Vacuum	On/Off	System shut down from high inlet vacuum while operating at DPE-8.
5-Nov-09	11:36	NA	Hi Vacuum and Hi Inlet Vacuum	Off/On	System restarted remotely by Landmark. DPE-8 interval replaced by DPE-1 until Landmark is on site to modify the DPE-8's well head. Large pressure drop observed between VT1 an VT2. With Paramark's assistance, Landmark was able to determine the pressure drop was from a plugged DPE pump inlet screen.
	13:00	NA	NA	On/Off	Large pressure drop observed between VT1 an VT2 while Landmark checked the system remotely. With Paramark's assistance, Landmark was able to determine the pressure drop was from a plugged DPE pump inlet screen. System shut down by Landmark until screen could be cleaned.
6-Nov-09	NA	NA	NA	Off/On	Landmark onsite to install new inlet screen on DPE pump, tighten air stripper rods, inspect and clean inside of DPE-1 and DPE-3 aluminum solenoid valves, and restart the system.
7-Nov-09	20:15	Y	Hi Vacuum and Hi Inlet Vacuum	On/Off	System shut down from high inlet vacuum while operating at DPE-4.
9-Nov-09	10:58	NA	Hi Vacuum and Hi Inlet Vacuum	Off/On	Landmark restarted the system remotely and adjusted the high vacuum alarm setpoints to 25 in. Hg.
15-Nov-09	6:27	Y	MS High Level	On/Off	
11/16/2009 and 11/17/09	NA	NA	MS High Level	Off/On	Landmark on site to conduct monthly monitoring and sampling event and quarterly groundwater monitoring event. Removed sediment from moisture separator, and modified DPE-8 well head, and cleaned pump inlet screen.
26-Nov-09	3:45	Y	DPE Pump Hi Outlet Temperature	On/Off	
27-Nov-09	NA	NA	DPE Pump Hi Outlet Temperature	Off/On	Landmark on site to clean the pump inlet screen and restart the system.
4-Dec-09	NA	NA	NA	On/Off	Landmark on site to clean solenoid valves and apply corrosion resistant coating to valves; DPE-4 and DPE-5 well heads modified to entrain air through water level port.
7-Dec-09	NA	NA	NA	Off/On	Landmark on site to reassemble solenoid valves; raise the manifold 1 foot; clean the pump inlet screen; and restart the system.
17-Dec-09	NA	NA	NA	On	Landmark on site to conduct monthly monitoring and sampling event, replace pump inlet screen, clean moisture separator, and clean floats.
28-Dec-09	NA	NA	NA	On	Landmark on site to replace pump inlet screen after remote monitoring indicated it was about to shut down from being clogged.
11-Jan-10	NA	NA	NA	On/Off	Landmark shut down the system remotely after the remote data indicated the pump inlet screen was clogged and about to shut down the system.

Date	Approximate Time	Sensophone Call Received?	Alarm Condition	DPE System Status	Comments
14-Jan-10	NA	NA	NA	Off/On	Landmark on site to conduct monthly monitoring and sampling event, clean pump inlet screen, and clean moisture separator floats.
23-Jan-10	14:15	Y	DPE Pump High Inlet Vacuum	On/Off	
27-Jan-10	NA	NA	DPE Pump High Inlet Vacuum	Off/On	Landmark on site to clean the pump inlet screen and restart the system.
30-Jan-10	18:58	Y	MS High Level	On/Off	
3-Feb-10	NA	NA	MS High Level	Off/On	Landmark onsite to clean the transfer pump floats, clean the moisture separator, and clean the pump inlet screen.
	22:09	Y	MS High Level	On/Off	
4-Feb-10	14:50	NA	MS High Level	Off/On	Landmark directed Paramark to pour tap water through the site tube to dislodge the low level transfer pump float and restart the system.
6-Feb-10	7:22	Y	MS High Level	On/Off	
	NA	NA	MS High Level	Off/On	Landmark onsite to clean the transfer pump floats, the moisture separator, the moisture separator site tube elbow, discharge pump floats, and the pump inlet screen. Landmark also restarted the system.
10-Feb-10	16:47	Y	MS High Level	On/Off	
	18:00	NA	MS High Level	Off/On	Landmark restarted the system remotely.
	19:42	Y	MS High Level	On/Off	
11 Eab 10	10:34	NA	MS High Level	Off/On	Landmark restarted the system remotely.
II-Feb-10	12:54	Y	MS High Level	On/Off	
12-Feb-10	NA	NA	MS High Level	Off/On	Landmark onsite to troubleshoot the MS High Level alarm. Landmark performed the following tasks: checked the MS level switch configurations; ran diagnostic tests to narrow down the cause of the MS High Level alarm; replaced the check valve upstream of the MS pump; and, took apart the MS pump head to inspect and clean the internal pump parts.
16-Feb-10	NA	NA	NA	On	System is operational; however, remote monitoring of the system showed the MS transfer pump cycling every 2 minutes. Landmark onsite to replace the MS transfer pump stator, and troubleshoot the continuous cycling issue with the transfer pump.
22-Feb-10	NA	NA	NA	On	Landmark onsite to conduct monthly monitoring and sampling event, quarterly groundwater monitoring event, to disabled the sensaphone sound alarm, and remove sediment from the primary moisture separator (MS1).

SYSTEM OPERATION AND MAINTENANCE SUMMARY MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

Date	Approximate Time	Sensophone Call Received?	Alarm Condition	DPE System Status	Comments
23-Feb-10	NA	NA	NA	On/Off/On	Landmark on site to finish the quarterly groundwater monitoring event, and to provide oversight while PLC installs the secondary moisture separator (MS2). MS2 level switch was determined to be faulty; however, the DPE system was restarted.
26-Feb-10	NA	NA	NA	On	Landmark and PLC were on site to replace the faulty level switch for MS2, and replace the MS1 and MS2 filters.
7-Mar-10	18:00	Y	DPE Pump High Inlet Vacuum	On/Off	
9-Mar-10	NA	NA	DPE Pump High Inlet Vacuum	Off/On	Landmark onsite to permanently remove the DPE pump inlet screen and change the oil in the DPE pump. Oil in the DPE pump was changed after 4,472 hours of operation.
25-Mar-10	NA	NA	NA	On	Landmark on site to conduct monthly monitoring and sampling event , and clean the air stripper by adding 1 gallon of hydrochloric acid.
	5:16	Y	DPE Pump High Inlet Vacuum	On/Off/On	System shut down during operation at DPE-8. System restarted remotely by Landmark.
26-Mar-10	11:15	Y	DPE Pump High Inlet Vacuum	On/Off/On	System shut down during operation at DPE-8. System restarted by Paramark as directed by Landmark after opening the bleed valve on DPE-8's well head.
	17:15	Y	DPE Pump High Inlet Vacuum	On/Off	System shut down during operation at DPE-8.
	11:17	Y	DPE Pump High Inlet Vacuum	Off/On	System shut down during operation at DPE-8. System restarted remotely by Landmark after troubleshooting the system.
	12:36	Y	DPE Pump High Inlet Vacuum	On/Off/On	System shut down during operation at DPE-8. System restarted remotely by Landmark after troubleshooting the system.
29-Mar-10	13:41	Y	DPE Pump High Inlet Vacuum	On/Off/On	System shut down during operation at DPE-8. System restarted remotely by Landmark after troubleshooting the system.
	13:42	Y	DPE Pump High Inlet Vacuum	On/Off/On	System shut down during operation at DPE-8. System restarted remotely by Landmark after troubleshooting the system.
	13:56	Y	DPE Pump High Inlet Vacuum	On/Off/On	System shut down during operation at DPE-8. System restarted remotely by Landmark after troubleshooting the system. To prevent system shutdown's during operation of DPE-8, Landmark modified the DPE system to allow DPE-7 to operate any time that DPE-8 is operating.
30-Mar-10	NA	NA	NA	On	Landmark on site to troubleshoot DPE-8.
	NA	NA	NA	On	Landmark remote troubleshooting of DPE-8. Operated DPE-8 without DPE-7.
8-Apr-10	11:35	Y	DPE Pump High Inlet Vacuum	On/Off/On	Landmark modified Landmark modified the DPE system to allow DPE-7 to operate any time that DPE-8 is operating.

NA: Not Applicable.

Y: Yes.

N: No.

MASS REMOVAL FROM DPE EXHAUST MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

Monitoring Period						Total VOCs				PCE	
Start Date	End Date	DPE Well(s) Operating	DPE Pump Hours	Hours Per Period	Total Flow Rate (scfm)	Concentration (ug/m ³)	Pounds Per Period	Cumulative pounds	Concentration (ug/m ³)	Pounds Per Period	Cumulative Pounds
	6/29/2009		0	0	0	0	0	0	0	0	0
6/29/2009	8/15/2009	DPE-1	478.5	478.5	24.3	14,613,880	636.97	636.97	11,600,000	505.61	505.61
8/15/2009	9/4/2009	DPE-1	957	478.5	36.1	3,795,092	245.74	882.71	3,630,000	235.05	740.66
9/4/2009		DPE-1	1428	471	36.1	3,795,092	241.89	1,124.60	3,630,000	231.37	972.02
	10/15/2009	DPE-1	1899	471	31.6	494,779	27.60	1,152.21	396,000	22.09	994.12
10/16/2009		All Wells	1899	231	48.9	608,840	25.78	1,177.99	571,000	24.18	1018.30
	11/17/2009	All Wells	2361	231	48.9	453,479	19.20	1,197.19	381,000	16.13	1034.43
11/17/2009	12/17/2009	All Wells	2960	599	48.9	12,510	1.37	1,198.56	6,790	0.75	1035.17
12/17/2009	1/14/2010	All Wells	3568	608	48.9	11,403,200	1270.88	2,469.45	8,550,000	952.89	1988.07
1/14/2010	2/22/2010	All Wells	4161	593	69.4	2,364,821	364.82	2,834.27	1,720,000	265.34	2253.41
2/22/2010	3/25/2010	All Wells	4551	390	69.4	331,284	33.61	2,867.88	215,000	21.81	2275.23

Notes:

1. The initial concentrations of total VOCs and PCE used for estimating the mass removed during the first 478.5 hours of system operation, which was estimated to be from, June 29, 2009, through August 15, 2009.

2. The concentrations of total VOCs and PCE from the September 4, 2009, sampling event were used for estimating the mass removed during the remaining 478.5 hours of system operation, which was estimated to be from August 15, 2009, through September 4, 2009.

3. The DPE system was temporarily started on April 9, 2009, for baseling DPE emissions sampling and analysis. The analytical data from April 4, 2009, was used for the emissions calculations on the estimated DPE system start date of June 29, 2009.

4. The flow rate used for the 10/15/09 calculations was from operation at DPE-1.

5. The flow rates used for the 10/16/09, 11/17/09, 12/17/09, and 1/14/10 calculations was from averaging the flowrates on 11/17/09 from each well during sequential operation of all DPE wells.

AIR EMISSIONS ANALYTICAL RESULTS (micrograms per cubic meter) MN Bio Business Center 221 1st Avenue SW Rochester, MN

Sample ID	DPE EXHAUST 1316	DPE EXHAUST 1037	DPE OUTLET 1042	DPE-OUTLET 0903	DPE-OUTLET 1254
Wells Operating	All DPE Wells	All DPE Wells	All DPE Wells	All DPE Wells	All DPE Wells
Sample Collection Method	6-nr Composite	o-nr Composite	o-nr Composite	o-nr Composite	6-nr Composite
Collected Date	3/25/2010	2/22/2010	1/14/2010	12/17/2009	11/17/2009
1,1,1-Trichloroethane	30.7	61	ND	23.9	ND
1,1,2,2-Tetrachloroethane	<2.5	ND	ND	ND	ND
1,1,2-Trichloroethane	<2.0	ND	ND	ND	ND
1,1,2-1 richlorothane	115,000	644,000	2,720,000	4,440	72,100
1 1-Dichloroethene	3.0	7 66			ND
1,2,4-Trichlorobenzene	<1.8	ND	ND	ND	ND
1,2,4-Trimethylbenzene	12.8	ND	ND	ND	ND
1,2-Dibromoethane (EDB)	<2.9	ND	ND	ND	ND
1,2-Dichlorobenzene	<2.2	ND	ND	ND	ND
1,2-Dichloroethane	<1.5	ND	ND	ND ND	ND
1,2-Dichloropropane	<1.7	7.05	ND	ND	
1.3-Butadiene	<0.81	ND			
1,3-Dichlorobenzene	<2.2	ND	ND	ND	ND
1,4-Dichlorobenzene	<2.2	ND	ND	ND	ND
2-Butanone (MEK)	44.2	12.9	ND	ND	ND
2-Hexanone	<1.5	ND	ND	ND	ND
2-Propanol	19.0	NA	NA	NA	NA
4-Ethyltoluene	<4.5	ND	ND	ND ND	
	163	ND 84.5	76 800	126	116
Benzene	<1.2	ND	ND	16.2	ND
Benzyl chloride	<1.9	NA	NA	NA	NA
Bromodichloromethane	<2.5	ND	ND	ND	ND
Bromoform	<3.8	ND	ND	ND	ND
Bromomethane	<1.4	ND	ND	ND	ND
Carbon tetrachloride	<23				
Chlorobenzene	<1.7	ND	ND	ND	
Chloroethane	<0.97	ND	ND	ND	ND
Chloroform	11.3	15.4	ND	ND	ND
Chloromethane	<0.76	ND	ND	ND	ND
cis-1,2-Dichloroethene	80.2	198	ND	47.2	118
cis-1,3-Dichloropropene	<1.7	ND	ND	ND 766	ND ND
Dibromochloromethane	<3.1	14.3 ND		ND	
Dichlorodifluoromethane	11.0	ND	ND	ND	ND
Dichlorotetrafluoroethane	<2.5	ND	ND	ND	ND
Ethanol	26.1	NA	NA	NA	NA
Ethyl acetate	<1.3	ND	ND	ND	ND
Ethylbenzene	118	ND	ND ND	ND	ND
mexacilloro-1,3-butaciene	456				
Methylene Chloride	<1.3	ND	ND	270	ND
Methyl-tert-butyl ether	<1.3	ND	ND	ND	ND
Naphthalene	<4.9	NA	NA	NA	NA
n-Heptane	2.7	ND 105	ND	ND	ND
n-nexane	4.7	135			
Propylene	<0.63	ND	ND	ND	ND
Styrene	<1.6	ND	ND	ND	ND
Tetrachloroethene	215,000	1,720,000	8,550,000	6,790	381,000
Tetrahydrofuran	58.0	45.6	56,400	ND	145
trans-1 2-Dichloroothana	28.4	124	ND	9.58	ND ND
trans-1,2-Dichloropropene	<1 7				
Trichloroethene	43.7	116	ND	21.3	ND
Trichlorofluoromethane	<2.0	ND	ND	ND	ND
Vinyl acetate	8.9	ND	ND	ND	ND
Vinyl chloride	<0.94	ND	ND	ND	ND
Total VOCs	331,284	2,364,821	11,403,200	12,510	453,479

Notes: Bold: parameter detected above the reporting limit.

NA: Not Analyzed.

AIR EMISSIONS ANALYTICAL RESULTS (micrograms per cubic meter) MN Bio Business Center 221 1st Avenue SW Rochester, MN

				1
Samula ID	DPE-	DPE-	DPE -	DPE
Sample ID	EFFLUENI 524	252	OGRO	EXHAUST 842
Wells Operating		DPE-1	DPF-1	DPE-1
	6-hr	DIEI		
Sample Collection Method	Composite	Grab	Grab	Grab
Collected Date	10/16/2009	10/15/2009	9/4/2009	4/9/2009
1,1,1-Trichloroethane	81.7	4.2	127	4,450
1,1,2,2-Tetrachloroethane	<2.2	<2.1	<2.1	<2480
1,1,2-Trichloroethane	<1.7	<1.6	<1.6	<1950
1,1,2-Trichlorotrifluoroethane	172	97,900	153,000	2,940,000
1,1-Dichloroethane	<1.3	<1.2	<1.2	<1450
1,1-Dichloroethene	13.9	<1.2	15.0	<1440
1,2,4-Trichlorobenzene	<1.5	<1.5	<1.5	<1760
1,2,4-Trimethylbenzene	<3.8	<3.7	10.2	<4440
1,2-Dibromoethane (EDB)	<2.5	<2.4	<2.4	<2840
1,2-Dichlorobenzene	<1.8	<1.8	<1.8	<2130
1,2-Dichloroethane	<1.3	<1.2	<1.2	<1450
1,2-Dichloropropane	<1.4	<1.4	<1.4	<1670
1,3,5-Trimethylbenzene	<3.8	<3.7	5.0	<4440
1,3-Butadiene	<0.69	<0.67	<0.67	<798
1,3-Dichlorobenzene	<1.8	<1.8	6.0	<2130
1,4-Dichlorobenzene	<1.8	<1.8	8.6	<2130
2-Butanone (MEK)	12.2	<0.89	15.8	<1060
2-Hexanone	<1.3	<1.2	<1.2	<1470
2-Propanol	4.9	<3.7	<3.7	<4440
4-Ethyltoluene	<3.8	<3.7	6.0	<4440
4-wetnyi-2-pentanone (wiBK)	<1.3	<1.2	<1.2	<1470
Acetone	37,000	501	7,510	<002
Denzene Bonzul oblorido	1.1	6.1	2.3	<u> </u>
Bromodichloromothane	- INA 	1NA <21	NA	NA
Bromoform	<3.2	<3.1	<2.1	<2730
Bromomethane	<1.2	<1.2	<1.2	<1400
Carbon disulfide	<0.97	<0.93	59	<1120
Carbon tetrachloride	<2.0	<1.9	<1.0	<2310
Chlorobenzene	<1.0	<1.4	<1.0	<1670
Chloroethane	<0.83	<0.80	<0.80	<958
Chloroform	25.8	<1.5	21.5	<1760
Chloromethane	<0.65	<0.62	<0.62	<745
cis-1,2-Dichloroethene	257	21.5	2,620	36,300
cis-1,3-Dichloropropene	<1.4	<1.4	<1.4	<1630
Cyclohexane	<1.0	<1.0	3.5	<1210
Dibromochloromethane	<2.6	<2.5	<2.5	<3020
Dichlorodifluoromethane	<1.5	2.8	<1.5	2,230
Dichlorotetrafluoroethane	<2.2	<2.1	<2.1	3,400
Ethanol	8.9	8.4	5.7	<3370
Ethyl acetate	<1.1	<1.1	<1.1	<1300
Ethylbenzene	7.9	<1.3	<1.3	<1560
Hexachloro-1,3-butadiene	<3.4	<3.3	<3.3	<3900
m&p-Xylene	25.0	2.6	14.2	<3120
Methylene Chloride	<1.1	276	<1.1	<1260
Methyl-tert-butyl ether	<1.1	<1.1	<1.1	<1300
Naphthalene	5.6	<4.0	4.2	10,100
n-Heptane	<1.3	<1.2	2.6	<1470
n-Hexane	2.1	35.4	3.4	<1280
o-Xylene	1.5	<1.3	4.8	<1560
Propylene	<0.54	<0.52	<0.52	<621
Totrachloroothana	51.3	51.3	<1.3 3 620 000	<1540
Totrabydrofuran	371,000	330,000	3,030,000	<1080
Toluone	30.2	10.09	31.1 14.4	<1270
trans_1 2-Dichloroethono	11.0	10.3 <1.2	14.4	<1440
trans-1,2-Dichloropropopo	<1.4	<1.4	4.4	<1620
Trichloroethene	153	13.6	1 640	17 400
Trichlorofluoromethane	<17	17	2.2	<1950
Vinvl acetate	7.4	<1 1	87	<1260
Vinvl chloride	<0.80	<0.77	<0.7	<923
Total VOCs	608,840	494,779	3.795.077	14.603.780
Notae:	000,040	-17-1170	-,. 00,075	

Bold: parameter detected above the repor NA: Not Analyzed.

RASS EMISSIONS RATES SUMMARY MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

						Rates		
Date	DPE Wells Operating	Parameter	Concentration (ug/m ³)	DPE (ug per sec)	AS (ug per sec)	Site Specific (ug per sec)	SER for Chronic Risk (ug per sec)	SER for Acute Risk (ug per sec)
9/4/2009	DPE-1	Tetrachloroethylene	3,630,000	61,710	70	61,780	16,300	5,980,000
10/15/2009	DPE-1	Tetrachloroethylene	396,000	5,940	6	5,946	16,300	5,980,000
10/16/2009	All Wells	Tetrachloroethylene	571,000	8,565	6	8,571	16,300	5,980,000
11/17/2009	All Wells	Tetrachloroethylene	381,000	4,953	0.5	4,953	16,300	5,980,000
12/17/2009	All Wells	Tetrachloroethylene	6,790	197	0.5	197	16,300	5,980,000
1/14/2010	All Wells	Tetrachloroethylene	8,550,000	393,300	4	393,304	16,300	5,980,000
2/22/2010	All Wells	Tetrachloroethylene	1,720,000	82,560	1	82,561	16,300	5,980,000
3/25/2010	All Wells	Tetrachloroethylene	215,000	11,180	2	11,182	16,300	5,980,000

Notes:

SERs: MPCA Screening Emissions Rates

61,780 Emissions rate is above MPCA SER

Table 5

Mass Removal from Groundwater Treatment System MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

Monitori	ng Period							Total V	/OCs				1
Start Date ¹	End Date	Days per Period	Hours per Period	Flow Meter Reading (gallons)	Gallons Treated During Period	Average Flow Rate (gpm)	Average Flow Rate (liter/sec)	Influent Conc. (ug/L)	Effluent Conc. (ug/L)	% Reduction	Mass Removed per Period (Ibs)	Cumulative Mass Removed (lbs)	Addition to Emission Rate (Ibs/day)
4/9/2009 ²	4/9/2009	0	2	119	51	0.4	0.027	176,343	NA	NA	NA	NA	NA
6/4/2009	6/4/2009 ³	0	2	192	73	0.6	0.038	4,630	8,991	-94	NA	NA	NA
6/4/2009	7/9/2009	11	264	16,115	15,923	1.0	0.063	1,547	479	69	0.14	0.14	0.01
7/9/2009	9/4/2009	57	1368	38,299	22,184	0.3	0.017	191	20	90	0.03	0.17	0.001
9/4/2009	10/15/2009	41	984	62,643	24,344	0.4	0.026	238	0	100	0.05	0.22	0.001
10/15/2009	11/16/2009	32	768	73,800	11,157	0.2	0.015	31	0	100	0.00	0.22	0.000
11/16/2009	12/17/2009⁴	31	744	89,800	16,000	0.4	0.023	24	12	50	0.00	0.23	0.000
12/17/2009	1/14/2010	28	672	106,024	16,224	0.4	0.025	309	32	90	0.04	0.26	0.001
1/14/2010	2/22/2010	39	936	122,167	16,143	0.3	0.018	73	16	78	0.01	0.27	0.000
2/22/2010	3/25/2010 ^{5,6}	31	744	148,206	26,039	0.6	0.037	507	764	-51	-0.06	0.27	-0.002

Notes:

1. The initial reading of the transfer pump totalizer was 68 gallons.

2. Initial sampling event to determine if groundwater treatment was necessary.

3. Increase in total VOCs was from PVC glue and cement that was used during the construction of the DPE system and air stripper.

4. Based on the PCE concentrations in the AS-Influent and AS-Effluent samples, it appears as if the samples were mislabeled or mixed up at the lab. Therefore, the influent and effluent total VOC data in this table has been changed to show the highest total VOC concentration data as the influent data and the lowest total VOC concentration as the effluent data.

5. Increase in total VOCs was from PVC glue and cement that was used during installation of the secondary demister moisture separator.

6. Flow totalizer reading switched from the analog flow meter reading to the field totalizer reading for better accuracy.

GROUNDWATER DISCHARGE ANALYTICAL RESULTS (micrograms per liter) MN Bio Business Center 221 1st Avenue SW Rochester, MN

Sample ID	AS-Influent	AS-Effluent	AS-Influent	AS-Effluent	AS-Influent	AS-Effluent
Collected Date	3/25/2010 8:00	3/25/2010 8:00	2/22/2010 14:30	2/22/2010 14:45	1/14/2010 9:30	1/14/2010 9:40
1,1,1,2-Tetrachloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-Trichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Trichloroethane	<1.0	<1.0 <4.0	<1.0	<1.0	<4.0	<1.0
1,1,2-Trichlorotrifluoroethane	1.0	<1.0	2.1	<1.0	1.3	<1.0
1,1-Dichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloropropene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichloropropage	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-Trichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-Trimethylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dibromo-3-chloropropane	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1,2-Dibromoethane (EDB)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.2-Dichloropropane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-Trimethylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichloropropane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichloropenzene	<1.0	<1.0 <4.0	<1.0 <4.0	<1.0 <4.0	<1.0	<1.0 <1.0
2-Butanone (MEK)	4.9	7.5	<4.0	<4.0	7.0	<4.0
2-Chloroethylvinyl ether	<10.0	<10.0	<10.0	<10.0	<25.0	<25.0
2-Chlorotoluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Hexanone	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
2-methyinaphthalene	<5.0 <1.0	<5.0 <1.0	<5.0	<5.0 <1 0	<0.0 <1.0	<0.0 <1.0
4-Methyl-2-pentanone (MIBK)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Acetone	11.2	29.8	<10.0	<10.0	14.6	<10.0
Acrolein	<40.0	<40.0	<40.0	<40.0	<40.0	<40.0
Acrylonitrile	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Allyl chloride	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Bromobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromochloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Bromoform	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0
Bromometnane Carbon disulfide	37.3	38.0	<4.0	<4.0 <1.0	<4.0	<4.0
Carbon tetrachloride	<4.0	<4.0	<4.0	<4.0	<1.0	<1.0
Chlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroprene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-Dichloroethene	<1.0	<1.0	1.3	<1.0	1.0	<1.0
cis-1,3-Dichloropropene	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromochloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dichlorodifluoromethane	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0
Dichlorofluoromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Diethyl ether (Ethyl ether)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Ethylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Hexachloro-1,3-butadiene	<4.0	<4.0 18 9	<4.0	<4.0	<4.0	<4.0
(sopropylbenzene (Cumene)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
m&p-Xylene	<2.0	3.4	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Methyl-tert-butyl ether	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
n-Butvibenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
n-Propylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
o-Xylene	<1.0	1.6	<1.0	<1.0	<1.0	<1.0
p-lsopropyltoluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
sec-Butylbenzene	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0
tert-Butvibenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	55,5	<1.0	69.6	<1.0	157	<1.0
Tetrahydrofuran	<10.0	20.3	<10.0	15.7	29.4	<10.0
Toluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-Dichloropropene	<1.0 <4.0	<1.0 <4.0	<1.0	<1.0 <4.0	<1.0 <4 0	<1.0 <4.0
Trichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Vinyl acetate	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
vinyl chloride Xvlene (Total)	<0.40	<0.40	<0.40	<0.40	<0.40 <3.0	<0.40
Total VOC Concentration	507.2	763.5	73	15.7	308.8	31.9
	L JUIL	· Doromotor dotor		n Unait	000.0	v1.v

 Bold
 : Parameter detected above the reporting limit.

 Image: Bold
 : Total VOC Concentration is above discharge limit of 2,140 ug/L.

 *: Initial sampling event to determine if groundwater treatment was necessary.

 *: Increase in VOCs was from PVC glue and cement from construction of the DPE system and air stripper.

 3: Increase in VOCs was from PVC glue and cement from installation of the secondary demister moisture separator.

GROUNDWATER DISCHARGE ANALYTICAL RESULTS (micrograms per liter) MN Bio Business Center 221 1st Avenue SW Rochester, MN

Sample ID	AS-Influent	AS-IN Vial 2	AS-Effluent	AS-INFLUENT	AS-EFFLUENT	AS-Influent	AS-Effluent
Collected Date	12/17/2009 10:00	12/17/2009 10:00	12/17/2009 10:01	11/16/2009 10:10	11/16/2009 10:20	10/15/2009 14:50	10/15/2009 14:50
1.1.1.2-Tetrachloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.1.1-Trichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1,1,2-Trichlorotrifluoroethane	<1.0	<1.0	<1.0	<1.0	<1.0	1.4	<1.0
1,1-Dichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloropropene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichlerenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1 2 4-Trimethylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.2-Dibromo-3-chloropropane	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1.2-Dibromoethane (EDB)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropropane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-Trimethylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichloropropane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichloropropage	<1.0	<1.0	<1.0	<4.0	<4.0	<4.0	<4.0
2-Butanone (MFK)	<4.0	<4.0	<4.0	<4.0	<4.0	5.4	<4.0
2-Chloroethylvinvl ether	<25.0	<25.0	<25.0	<10.0	<10.0	<10.0	<10.0
2-Chlorotoluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Hexanone	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
2-Methylnaphthalene	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
4-Chlorotoluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Methyl-2-pentanone (MIBK)	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Acetone	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Acrolein	<40.0	<40.0	<10.0	<10.0	<10.0	<10.0	<10.0
Allyl chloride	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Benzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromobenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromochloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Bromoform	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0	<8.0
Bromomethane	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Carbon disulfide	<1.0	<1.0	<1.0	<1.0	<1,0	<1.0	<1.0
Carbon tetrachionde	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0
Chloroethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloromethane	<1.0	<1.0	1.3	<4.0	<4.0	<1.0	<1.0
Chloroprene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	1.5	<1.0
cis-1,3-Dichloropropene	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromochloromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromomethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dichlorodinuoromethane	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Diethyl ether (Ethyl ether)	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Ethylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Hexachloro-1,3-butadiene	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
lodomethane	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Isopropylbenzene (Cumene)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
m&p-Xylene	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	<4.0	<4,0	<4.0	<4.0	<4.0	<4.0	<1.0
Nethyl-tert-bulyl ether	<1.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
n-Butylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
n-Propylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
o-Xylene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
p-Isopropyltoluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
sec-Butylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Styrene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
tert-Butylbenzene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrabydrofuran	41.0	<1.U 11 F	44.1 <10.0	<10.0	<1.0 <10.0	15 7	<10.0
Toluene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1.2-Dichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-Dichloropropene	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Trichloroethene	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Vinyl acetate	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0
Vinyl chloride	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Xylene (Total)	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Total VOC Concentration	11.7	11.5	24	30.7	U	∠38	U

GROUNDWATER DISCHARGE ANALYTICAL RESULTS (micrograms per liter) MN Bio Business Center 221 1st Avenue SW Rochester, MN

Sample ID	AS-Influent	AS-Effluent	AS-INFLUENT	AS-EFFLUENT	AS INFLUENT	AS EFFLUENT ²	DPE Discharge ¹
Collected Date	9/4/2009 10:55	9/4/2009 10:55	7/9/2009 12:20	7/9/2009 12:25	06/04/2009 17:00	06/04/2009 17:25	04/09/2009 16:35
1,1,1,2-Tetrachloroethane	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
1,1,1-Trichloroethane	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	29.4
1,1,2,2-Tetrachloroethane	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
1,1,2-Trichloroethane	<4.0	<4.0	<20.0	<4.0	<200	<4.0	<20.0
1,1,2-Trichlorotrifluoroethane	1.2	<1.0	10.4	<1.0	53.7	<1.0	7860
1,1-Dichloroethane	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
1,1-Dichloroethene	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
1,1-Dichloropropene	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
1,2,3-Trichlorobenzene	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
1,2,3-Trichloropropane	<1.0	<1.0	< 5.0	<1.0	<50.0	<1.0	<5.0
1,2,4-Trimothylbonzone	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	26.0
1,2,4-Timeunyidenzene	<1.0	<1.0	<3.0	<1.0	<200	<1.0	<20.0
1 2-Dibromoethane (EDB)	<4.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
1 2-Dichlorobenzene	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
1.2-Dichloroethane	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
1.2-Dichloropropane	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
1,3,5-Trimethylbenzene	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	7.1
1,3-Dichlorobenzene	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
1,3-Dichloropropane	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
1,4-Dichlorobenzene	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	7.8
2,2-Dichloropropane	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
2-Butanone (MEK)	13.5	19.8	<20.0	82.1	<200	1670	392
2-Chloroethylvinyl ether	<10.0	<10.0	<50.0	<10.0	<1250	<25.0	<50.0
2-Chlorotoluene	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	51.0
2-Hexanone	<4.0	<4.0	<20.0	<4.0	<200	<4.0	<20.0
2-metnyinaphthalene	<5.0	<5.0	<25.0	<5.0	<250	< 5.0	<25.0
4-Methyl-2-pentanone (MIRK)	<5.0	<1.0	<25.0	<5.0	<250	<5.0	<25.0
Acetone	<10.0	<10.0	<50.0	68.7	<500	987	<50.0
Acrolein	<40.0	<40.0	<200	<40.0	<2000	<40.0	<200
Acrylonitrile	<10.0	<10.0	<50.0	<10.0	<500	<10.0	<50.0
Allyl chloride	<4.0	<4.0	<20.0	<4.0	<200	<4.0	<20.0
Benzene	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
Bromobenzene	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
Bromochloromethane	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
Bromodichloromethane	<4.0	<4.0	<20.0	<4.0	<200	<4.0	<20.0
Bromoform	<8.0	<8.0	<40.0	<8.0	<400	<8.0	<40.0
Bromomethane	<4.0	<4.0	<20.0	<4.0	<200	<4.0	<20.0
Carbon disulfide	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
Carbon tetrachioride	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
Chloroethane	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
Chloroform	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
Chloromethane	<1.0	<1.0	63.3	76.4	<50.0	<1.0	<5.0
Chloroprene	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
cis-1,2-Dichloroethene	1.5	<1.0	13.0	<1.0	62.9	<1.0	206
cis-1,3-Dichloropropene	<4.0	<4.0	<20.0	<4.0	<200	<4.0	<20.0
Dibromochloromethane	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
Dibromomethane	<1.0	<1.0	<5.0	<1.0	<50,0	<1.0	<5.0
Dichlorodifluoromethane	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
Dictioronuoronetnane Dictivi ether (Ethyl ether)	<1.0	<1.0	<5.0	<1.0	<200	<1.0	<20.0
Ethylbenzene	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
Hexachloro-1.3-butadiene	<4.0	<4.0	<20.0	<4.0	<200	<4.0	<20.0
lodomethane	<4.0	<4.0	<20.0	<4.0	<200	<4.0	<20.0
Isopropylbenzene (Cumene)	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
m&p-Xylene	<2.0	<2.0	<10.0	<2.0	<100	<2.0	<10.0
Methylene Chloride	<4.0	<4.0	<20.0	<4.0	<200	<4.0	<20.0
Methyl-tert-butyl ether	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
Naphthalene	<4.0	<4.0	<20.0	<4.0	<200	<4.0	<20.0
n-Butylbenzene	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	5.0
n-Propyidenzene	<1.0	<1.0	< 5.0	<1.0	<50.0	<1.0	<5.0
D-Aylene	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
sec-Butylhenzene	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
Styrene	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
tert-Butylbenzene	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
Tetrachloroethene	175	<1.0	1460	<1.0	3970	33.8	167000
Tetrahydrofuran	<10.0	<10.0	<50.0	252	543	6300	600
Toluene	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
trans-1,2-Dichloroethene	<1.0	<1.0	<5.0	<1.0	<50.0	<1.0	<5.0
trans-1,3-Dichloropropene	<4.0	<4.0	<20.0	<4.0	<200	<4.0	<20.0
I richloroethene	<1.0	<1.0	<5.0	<1.0	<50,0	<1.0	159
Vinyl acetate	<4.0	<4.0	<20.0	<4.U	<200	<4.U	<20.0 <100
Vinyl chloride	<0.40	<0.40	<20	<0.40	<20.0	<0.40	<2.0
Xylene (Total)	<3.0	<3.0	<15.0	<3.0	<150	<3.0	<15.0
Total VOC Concentration	191.2	19.8	1,546.7	479.2	4,566.7	8,990.8	176,338.3

		Top of	Depth to		
Well	Date	Casing	Groundwater	Groundwater	
ID	Measured	Elevation ^{1,2}	(feet)	Elevation ³	System Status
MW-14	12/3/2008	989.50	10.82	978.68	pre-system installation
MW-14	6/8/2009	989.50	12.40	977.10	pre-system startup
MW-14	7/9/2009	989.50	12.90	976.60	DPE system on DPE-1
MW-14	7/9/2009	989.50	12.51	976.99	DPE system temporarily off
MW-14	9/4/2009	989.50	12.63	976.87	DPE system on
MW-14	9/4/2009	989.50	12.57	976.93	DPE system on after replacing inlet screen
MW-14	9/4/2009	989.50	12.65	976.85	DPE system on after replacing inlet filter
MW-14	10/15/2009	989.50	12.47	977.03	DPE system on DPE-1
MW-14	10/23/2009	989.50	11.33	978.17	DPE system off
MW-14	11/16/2009	989.50	11.87	977.63	DPE System on all wells
MW-14	12/17/2009	989.50	11.66	977.84	DPE System on all wells
MW-14	1/14/2010	989.50	12.14	977.36	DPE System on all wells
MW-14	2/22/2010	989.50	12.51	976.99	DPE System on all wells
MW-14	3/25/2010	989.50	11.90	977.60	DPE System on all wells
MW-15	12/3/2008	991.50	13.11	978.39	pre-system installation
MW-15	6/8/2009	991.50	15.58	975.92	pre-system startup
MW-15	7/9/2009	991.50	15.94	975.56	DPE system on DPE-1
MW-15	7/9/2009	991.50	16.51	974.99	DPE system temporarily off
MW-15	9/4/2009	991.50	15.73	975.77	DPE system on
MW-15	9/4/2009	991.50	15.90	975.60	DPE system on after replacing inlet screen
MW-15	9/4/2009	991.50	16.01	975.49	DPE system on after replacing inlet filter
MW-15	10/15/2009	991.50	15.38	976.12	DPE system on DPE-1
MW-15	10/23/2009	991.50	14.14	977.36	DPE system off
MW-15	11/16/2009	991.50	13.78	977.72	DPE System on all wells
MW-15	12/17/2009	991.50	14.25	977.25	DPE System on all wells
MW-15	1/14/2010	991.50	14.33	977.17	DPE System on all wells
MW-15	2/22/2010	991.50	15.72	975.78	DPE System on all wells
MW-15	3/25/2010	991.50	14.57	976.93	DPE System on all wells
MW-16	12/3/2008	989.44	12.32	977.12	pre-system installation
MW-16	6/8/2009	989.44	14.82	974.62	pre-system startup
MW-16	7/9/2009	989.44	14.23	975.21	DPE system on DPE-1
MW-16	7/9/2009	989.44	13.19	976.25	DPE system temporarily off
MW-16	9/4/2009	989.44	13.70	975.74	DPE system on
MW-16	9/4/2009	989.44	14.25	975.19	DPE system on after replacing inlet screen
MW-16	9/4/2009	989.44	14.58	974.86	DPE system on after replacing inlet filter
MW-16	10/15/2009	989.44	13.61	975.83	DPE system on DPE-1
MW-16	10/23/2009	989.44	11.89	977.55	DPE system off
MW-16	11/16/2009	989.44	11.44	978.00	DPE System on all wells
MW-16	12/17/2009	989.44	14.17	975.27	DPE System on all wells
MW-16	1/14/2010	989.44	12.57	976.87	DPE System on all wells
MW-16	2/22/2010	989.44	13.68	975.76	DPE System on all wells
MW-16	3/25/2010	989.44	12.50	976.94	DPE System on all wells

		Top of	Depth to		
Well	Date	Casing	Groundwater	Groundwater	
ID	Measured	Elevation ^{1,2}	(feet)	Elevation ³	System Status
MW-17	12/3/2008	989.53	12.81	976.72	pre-system installation
MW-17	6/8/2009	989.53	13.69	975.84	pre-system startup
MW-17	7/9/2009	989.53	14.44	975.09	DPE system on DPE-1
MW-17	7/9/2009	989.53	14.35	975.18	DPE system temporarily off
MW-17	9/4/2009	989.53	14.31	975.22	DPE system on
MW-17	9/4/2009	989.53	14.33	975.20	DPE system on after replacing inlet screen
MW-17	9/4/2009	989.53	14.39	975.14	DPE system on after replacing inlet filter
MW-17	10/15/2009	989.53	14.00	975.53	DPE system on DPE-1
MW-17	10/23/2009	989.53	13.13	976.40	DPE system off
MW-17	11/16/2009	989.53	12.76	976.77	DPE System on all wells
MW-17	12/17/2009	989.53	13.04	976.49	DPE System on all wells
MW-17	1/14/2010	989.53	13.22	976.31	DPE System on all wells
MW-17	2/22/2010	989.53	14.37	975.16	DPE System on all wells
MW-17	3/25/2010	989.53	12.78	976.75	DPE System on all wells
MW-18	12/3/2008	989.50	13.82	975.68	pre-system installation
MW-18	6/8/2009	989.50	14.22	975.28	pre-system startup
MW-18	7/9/2009	989.50	16.61	972.89	DPE system on DPE-1
MW-18	7/9/2009	989.50	15.61	973.89	DPE system temporarily off
MW-18	9/4/2009	989.50	15.37	974.13	DPE system on
MW-18	9/4/2009	989.50	15.38	974.12	DPE system on after replacing inlet screen
MW-18	9/4/2009	989.50	15.40	974.10	DPE system on after replacing inlet filter
MW-18	10/15/2009	989.50	15.18	974.32	DPE system on DPE-1
MW-18	10/23/2009	989.50	14.28	975.22	DPE system off
MW-18	11/16/2009	989.50	13.83	975.67	DPE System on all wells
MW-18	12/17/2009	989.50	13.85	975.65	DPE System on all wells
MW-18	1/14/2010	989.50	13.96	975.54	DPE System on all wells
MW-18	2/22/2010	989.50	15.49	974.01	DPE System on all wells
MW-18	3/25/2010	989.50	13.24	976.26	DPE System on all wells
MW-19	12/3/2008	991.13	12.45	978.68	pre-system installation
MW-19	6/8/2009	991.13	13.40	977.73	pre-system startup
MW-19	7/9/2009	991.13	14.75	976.38	DPE system on DPE-1
MW-19	7/9/2009	991.13	14.58	976.55	DPE system temporarily off
MW-19	9/4/2009	991.13	14.68	976.45	DPE system on
MW-19	9/4/2009	991.13	14.61	976.52	DPE system on after replacing inlet screen
MW-19	9/4/2009	991.13	14.66	976.47	DPE system on after replacing inlet filter
MW-19	10/15/2009	991.13	14.47	976.66	DPE system on DPE-1
MW-19	10/23/2009	991.13	13.28	977.85	DPE system off
MW-19	11/16/2009	991.13	12.85	978.28	DPE System on all wells
MW-19	12/17/2009	991.13	13.69	977.44	DPE System on all wells
MW-19	1/14/2010	991.13	13.78	977.35	DPE System on all wells
MW-19	2/22/2010	991.13	14.62	976.51	DPE System on all wells
MW-19	3/25/2010	991.13	13.81	977.32	DPE System on all wells
					-

		Top of	Depth to		
Well	Date	Casing	Groundwater	Groundwater	
ID	Measured	Elevation ^{1,2}	(feet)	Elevation ³	System Status
MW-20	12/3/2008	991.50	12.40	979.10	pre-system installation
MW-20	6/8/2009	991.50	11.93	979.57	pre-system startup
MW-20	7/9/2009	991.50	12.19	979.31	DPE system on DPE-1
MW-20	7/9/2009	991.50	12.24	979.26	DPE system temporarily off
MW-20	9/4/2009	991.50	12.53	978.97	DPE system on
MW-20	9/4/2009	991.50	12.47	979.03	DPE system on after replacing inlet screen
MW-20	9/4/2009	991.50	12.49	979.01	DPE system on after replacing inlet filter
MW-20	10/15/2009	991.50	12.16	979.34	DPE system on DPE-1
MW-20	10/23/2009	991.50	11.33	980.17	DPE system off
MW-20	11/16/2009	991.50	11.02	980.48	DPE System on all wells
MW-20	12/17/2009	991.50	12.31	979.19	DPE System on all wells
MW-20	1/14/2010	991.50	12.34	979.16	DPE System on all wells
MW-20	2/22/2010	991.50	12.78	978.72	DPE System on all wells
MW-20	3/25/2010	991.50	12.54	978.96	DPE System on all wells
DPE-1	12/3/2008	991.46	13.66	977.80	pre-system installation
DPE-1	6/8/2009	992.40	18.78	973.62	pre-system startup
DPE-1	7/9/2009	992.40	20.51	971.89	DPE system on DPE-1
DPE-1	7/9/2009	992.40	16.38	976.02	DPE system temporarily off
DPE-1	9/4/2009	992.40	na		DPE system on DPE-1
DPE-1	9/4/2009	992.40	na		DPE-1 on after replacing inlet screen
DPE-1	9/4/2009	992.40	17.86	974.54	DPE-1 on after replacing inlet filter
DPE-1	10/15/2009	992.40	na		DPE system on DPE-1
DPE-1	10/23/2009	992.40	14.88	977.52	DPE system off
DPE-1	11/16/2009	992.40	14.45	977.95	DPE System on all wells
DPE-1	12/17/2009	992.40	15.13	977.27	DPE System on all wells
DPE-1	1/14/2010	992.40	15.53	976.87	DPE System on all wells
DPE-1	2/22/2010	992.40	12.22	980.18	DPE System on all wells
DPE-1	3/25/2010	992.40	15.72	976.68	DPE System on all wells
DPE-2	12/3/2008	991.46	13.60	977.86	pre-system installation
DPE-2	6/8/2009	992.80	17.45	975.35	pre-system startup
DPE-2	7/9/2009	992.80	17.61	975.19	DPE system on DPE-1
DPE-2	7/9/2009	992.80	16.83	975.97	DPE system temporarily off
DPE-2	9/4/2009	992.80	17.18	975.62	DPE system on DPE-1
DPE-2	9/4/2009	992.80	17.26	975.54	DPE-1 on after replacing inlet screen
DPE-2	9/4/2009	992.80	17.54	975.26	DPE-1 on after replacing inlet filter
DPE-2	10/15/2009	992.80	16.96	975.84	DPE system on DPE-1
DPE-2	10/23/2009	992.80	15.53	977.27	DPE system off
DPE-2	11/16/2009	992.80	15.19	977.61	DPE System on all wells
DPE-2	12/17/2009	992.80	15.69	977.11	DPE System on all wells
DPE-2	1/14/2010	992.80	16.04	976.76	DPE System on all wells
DPE-2	2/22/2010	992.80	14.19	978.61	DPE System on all wells
DPE-2	3/25/2010	992.80	15.50	977.30	DPE System on all wells

		Top of	Depth to		
Well	Date	Casing	Groundwater	Groundwater	
ID	Measured	Elevation ^{1,2}	(feet)	Elevation ³	System Status
DPE-3	12/3/2008	991.50	10.30	981.20	pre-system installation
DPE-3	6/8/2009	992.48	13.64	978.84	pre-system startup
DPE-3	7/9/2009	992.48	13.98	978.50	DPE system on DPE-1
DPE-3	7/9/2009	992.48	14.06	978.42	DPE system temporarily off
DPE-3	9/4/2009	992.48	14.48	978.00	DPE system on DPE-1
DPE-3	9/4/2009	992.48	14.49	977.99	DPE-1 on after replacing inlet screen
DPE-3	9/4/2009	992.48	14.50	977.98	DPE-1 on after replacing inlet filter
DPE-3	10/15/2009	992.48	14.87	977.61	DPE system on DPE-1
DPE-3	10/23/2009	992.48	14.76	977.72	DPE system off
DPE-3	11/16/2009	992.48	14.59	977.89	DPE System on all wells
DPE-3	12/17/2009	992.48	15.28	977.20	DPE System on all wells
DPE-3	1/14/2010	992.48	16.52	975.96	DPE System on all wells
DPE-3	2/22/2010	992.48	15.29	977.19	DPE System on all wells
DPE-3	3/25/2010	992.48	15.68	976.80	DPE System on all wells
DPE-4	12/3/2008	991.39	14.20	977.19	pre-system installation
DPE-4	6/8/2009	992.40	15.30	977.10	pre-system startup
DPE-4	7/9/2009	992.40	16.95	975.45	DPE system on DPE-1
DPE-4	7/9/2009	992.40	16.08	976.32	DPE system temporarily off
DPE-4	9/4/2009	992.40	15.94	976.46	DPE system on DPE-1
DPE-4	9/4/2009	992.40	15.91	976.49	DPE-1 on after replacing inlet screen
DPE-4	9/4/2009	992.40	15.99	976.41	DPE-1 on after replacing inlet filter
DPE-4	10/15/2009	992.40	15.83	976.57	DPE system on DPE-1
DPE-4	10/23/2009	992.40	14.81	977.59	DPE system off
DPE-4	11/16/2009	992.40	14.48	977.92	DPE System on all wells
DPE-4	12/17/2009	992.40	15.44	976.96	DPE System on all wells
DPE-4	1/14/2010	992.40	16.08	976.32	DPE System on all wells
DPE-4	2/22/2010	992.40	16.08	976.32	DPE System on all wells
DPE-4	3/25/2010	992.40	16.22	976.18	DPE System on all wells
DPE-5	12/3/2008	991.47	12.44	979.03	pre-system installation
DPE-5	6/8/2009	992.46	14.48	977.98	pre-system startup
DPE-5	7/9/2009	992.46	16.28	976.18	DPE system on DPE-1
DPE-5	7/9/2009	992.46	15.31	977.15	DPE system temporarily off
DPE-5	9/4/2009	992.46	15.08	977.38	DPE system on DPE-1
DPE-5	9/4/2009	992.46	15.04	977.42	DPE-1 on after replacing inlet screen
DPE-5	9/4/2009	992.46	15.03	977.43	DPE-1 on after replacing inlet filter
DPE-5	10/15/2009	992.46	14.99	977.47	DPE system on DPE-1
DPE-5	10/23/2009	992.46	13.78	978.68	DPE system off
DPE-5	11/16/2009	992.46	13.43	979.03	DPE System on all wells
DPE-5	12/17/2009	992.46			DPE System on all wells
DPE-5	1/14/2010	992.46	15.00	977.46	DPE System on all wells
DPE-5	2/22/2010	992.46	15.01	977.45	DPE System on all wells
DPE-5	3/25/2010	992.46	16.42	976.04	DPE System on all wells

		Top of	Depth to		
Well	Date	Casing	Groundwater	Groundwater	
ID	Measured	Elevation ^{1,2}	(feet)	Elevation ³	System Status
DPE-6	12/3/2008	991.44	12.93	978.51	pre-system installation
DPE-6	6/8/2009	992.40	16.19	976.21	pre-system startup
DPE-6	7/9/2009	992.40	16.54	975.86	DPE system on DPE-1
DPE-6	7/9/2009	992.40	15.92	976.48	DPE system temporarily off
DPE-6	9/4/2009	992.40	15.68	976.72	DPE system on DPE-1
DPE-6	9/4/2009	992.40	15.65	976.75	DPE-1 on after replacing inlet screen
DPE-6	9/4/2009	992.40	15.81	976.59	DPE-1 on after replacing inlet filter
DPE-6	10/15/2009	992.40	15.94	976.46	DPE system on DPE-1
DPE-6	10/23/2009	992.40	14.56	977.84	DPE system off
DPE-6	11/16/2009	992.40	14.24	978.16	DPE System on all wells
DPE-6	12/17/2009	992.40	14.89	977.51	DPE System on all wells
DPE-6	1/14/2010	992.40	15.14	977.26	DPE System on all wells
DPE-6	2/22/2010	992.40	15.61	976.79	DPE System on all wells
DPE-6	3/25/2010	992.40	15.24	977.16	DPE System on all wells
DPE-7	12/3/2008	991.47	12.96	978.51	pre-system installation
DPE-7	6/8/2009	993.48	16.78	976.70	pre-system startup
DPE-7	7/9/2009	993.48	17.76	975.72	DPE system on DPE-1
DPE-7	7/9/2009	993.48	17.16	976.32	DPE system temporarily off
DPE-7	9/4/2009	993.48	17.03	976.45	DPE system on DPE-1
DPE-7	9/4/2009	993.48	17.00	976.48	DPE-1 on after replacing inlet screen
DPE-7	9/4/2009	993.48	17.18	976.30	DPE-1 on after replacing inlet filter
DPE-7	10/15/2009	993.48	16.80	976.68	DPE system on DPE-1
DPE-7	10/23/2009	993.48	15.68	977.80	DPE system off
DPE-7	11/16/2009	993.48	15.44	978.04	DPE System on all wells
DPE-7	12/17/2009	993.48	16.03	977.45	DPE System on all wells
DPE-7	1/14/2010	993.48	16.26	977.22	DPE System on all wells
DPE-7	2/22/2010	993.48	16.98	976.50	DPE System on all wells
DPE-7	3/25/2010	993.48	16.65	976.83	DPE System on all wells
DPE-8	12/3/2008	991.48	12.56	978.92	pre-system installation
DPE-8	6/8/2009	992.84	14.50	978.34	pre-system startup
DPE-8	7/9/2009	992.84	14.57	978.27	DPE system on DPE-1
DPE-8	7/9/2009	992.84	14.49	978.35	DPE system temporarily off
DPE-8	9/4/2009	992.84	14.29	978.55	DPE system on DPE-1
DPE-8	9/4/2009	992.84	14.31	978.53	DPE-1 on after replacing inlet screen
DPE-8	9/4/2009	992.84	14.28	978.56	DPE-1 on after replacing inlet filter
DPE-8	10/15/2009	992.84	14.01	978.83	DPE system on DPE-1
DPE-8	10/23/2009	992.84	13.18	979.66	DPE system off
DPE-8	11/16/2009	992.84	13.30	979.54	DPE System on all wells
DPE-8	12/17/2009	992.84	15.31	977.53	DPE System on all wells
DPE-8	1/14/2010	992.84	16.58	976.26	DPE System on all wells
DPE-8	2/22/2010	992.84	14.19	978.65	DPE System on all wells
DPE-8	3/25/2010	992.84	15.72	977.12	DPE System on all wells
				<u> </u>	

GROUNDWATER ELEVATIONS MN Bio Business Center 221 First Avenue SW Rochester, Minnesota

		Top of	Depth to		
Well	Date	Casing	Groundwater	Groundwater	
ID	Measured	Elevation ^{1,2}	(feet)	Elevation ³	System Status
Elevator					
Draintile	6/8/2009	989.58	7.00	982.58	pre-system startup
Sump					
Elevator					
Draintile	6/25/2009	990.20	6.34	983.86	pre-system startup
Sump					
Elevator					
Draintile	7/9/2009	990.20	6.38	983.82	DPE system on DPE-1
Sump					
Elevator			6.00	000.01	
Draintile	9/4/2009	990.20	6.29	983.91	DPE system on DPE-1
Sump					
Elevator	10/15/0000	000.00	C 10	004.00	
Drainfile	10/15/2009	990.20	6.18	984.02	DPE system on DPE-1
Sump					
Elevator	10/22/2000	000.20	6.09	094.10	DBE sustem off
Draintile	10/23/2009	990.20	0.08	984.12	DPE system on
Sump Elevator					
Drointilo	11/16/2000	000.20	5 77	08/ /8	DPE System on all wells
Summ	11/10/2009	990.20	5.72	204.40	Di E System on an wens
Elevator					
Draintile	12/17/2009	990.20	6 48	983 72	DPE System on all wells
Sump	12/17/2009	550.20	0.10	505.72	
Elevator					
Draintile	1/14/2010	990.20	6.46	983.74	DPE System on all wells
Sump					
Elevator					
Draintile	2/22/2010	990.20	6.81	983.39	DPE System on all wells
Sump					Ĵ
Elevator					
Draintile	3/25/2010	990.20	6.88	983.32	DPE System on all wells
Sump					

Notes:

1. Monitoring well top of casing elevations were surveyed by Adolfson and Peterson on 4/22/08.

2. DPE well top of casing elevations changed during DPE well head installation and were estimated from a basement floor elevation of 989.5 ft and include the distance from the floor to the top of the well seal cover and the distance from the well seal cover to the top of the PVC stickup for collecting water level readings.

3. Elevations are in feet above mean sea level.

WELL CONSTRUCTION SUMMARY (elevations are in feet above mean sea level)

MN Bio Business Center 221 First Avenue SW Rochester, Minnesota

ī	<u> </u>	 T	 T		-			Depth to		
	Top of	Bacement	Top of	Top of	Top of	Bottom of	Screen	Bottom of	Bottom of	
Manitarina	1 op 01	Floor	Seal	Filter Pack	Well Screen	Well Screen	Interval	Well	Well	Well
Monitoring	Elevation ^{1,2}	Flovetion	Flevation	Elevation	Elevation	Elevation	(feet)	(feet)	Elevation	Completion
Well					084.00	974.00	10	17.5	972.00	flush-mounted
MW-14	989.50	989.50	989.50	980.00	005 50	075 50	10	18.0	973.50	stickup
MW-15	991.50	989.50	990.50	987.50	963.30	973.30	10	18.0	971 44	flush-mounted
MW-16	989.44	989.50	989.94	985.44	983.44	9/3.44		10.0	064.52	fluch-mounted
MW-17	989.53	989.50	989.03	973.53	971.53	966.53	5	25.0	904.33	flush mounted
MW-18	989.50	989.50	989.25	938.50	936.50	931.50	5	60.0	929.50	nusn-mounted
MW 10	991 13	989.50	990.63	984.13	983.13	973.13	10	20.0	971.13	stickup
	001.50	989 50	992.80	988.80	986.80	976.80	10	16.7	974.80	stickup
IVIW-20	991.50	080.50	989.53	984 53	982.53	970.53	12	21.9	970.53	stickup
DPE-1	992.40	909.50	000.28	086.28	984.28	972.28	12	20.5	972.28	stickup
DPE-2	992.80	989.50	990.20	080.42	087.42	975.42	12	17.1	975.42	stickup
DPE-3	992.48	989.50	990.42	707.42	005.07	073.07	12	193	973.07	stickup
DPE-4	992.40	989.50	990.07	987.07	985.07	975.07	12	18.1	974 32	stickun
DPE-5	992.46	989.50	990.32	987.32	986.32	974.32		10.1	072.87	stickup
DPE-6	992.40	989.50	989.87	986.87	984.87	972.87	12	19.5	912.01	stickup
DPF-7	993 48	989.50	990.32	984.32	983.32	971.32	12	22.2	9/1.32	suckup
	992.84	989 50	990.84	989.34	987.34	975.34	12	17.5	975.34	stickup
DrE-0))2.0 4	,0,								

Notes:

1. Monitoring well top of casing elevations were surveyed by Adolfson and Peterson on 4/22/08.

2. DPE well top of casing elevations changed during DPE well head installation and were estimated from a

basement floor elevation of 989.5 ft and include the distance from the floor to the top of the well seal cover and the distance from the well seal cover to the top of the PVC stickup for collecting water level readings.

Attachments
Attachment A

DPE System Operational Data MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

			1																					
Date	Time	Extraction Well	DPE Pump Hours	Hours per Period		Flo	w Rate		DPE Air Flow (scf)	Pump Inlet Vacuum (in. Ha)	Post-MS Vacuum (in Ha)	DPE Wel Vacuum	ll/Pre-MS ı (in. Hg)	Pre-Manifold Vacuum (in.	DPE Well Head/Drop Tube Vacuum	DPE Well E DP Casing Ium Vacuum (in.		np Outlet ssure	DPE Pump ((Deg	Dutlet Temp J. F)	DPE Exhaust	Extraction Well Bleed Valve %	DPE Pump Bleed Valve	Comments
					Field	Analog	Analog	Analog		(eri	((Analan	Field	ר ר ר	(in. Hg)	H ₂ O)	Analog	Field (in			PID (ppm)	Open	% Open	
					(scfm)	(scfm)	(m ³ /s)	(acfm)				Analog	Field				(psi)	H ₂ O)	Analog	Field		•		
6/29/2009	1640	DPE-1	88.0	88.0	25	20.9	0.010	134.3	6,000	25.3	NR	25.0	24.5	24	NR	NR	0	0	229	200	I NR	0	0	
9/4/2009	805	DPE-1	957.0	869.0	25	24.3	0.011	109.5	1,208,000	23.3	9.4	9.7	9.8	9.1	NR	86	0.02	0	307	310	34	100	0	DPF Pump Screen plugged
9/4/2009	946	DPE-1	957.0	0.0	40	36.1	0.017	120.5	1,209,000	21.0	21.0	20.4	21.0	20.0	NR	149	0	0	210	248	>4000	100	i õ	DPE & AS exhaust sampled
9/4/2009	1135	DPE-1	959.0	2.0	25	27.3	0.013	117.2	1,212,000	23.0	22.5	22.7	22.5	22.5	NR	>150	0	0	275	270	>4000	30	0	1 micron MS filter installed
10/15/2009	1120	DPE-1	1899.0	940.0	35	31.6	0.015	135.9	2,658,000	23.0	22.5	22.2	22.5	22.5	NR	>150	0	0	283	270	ND	20	0	Exhaust sampled
10/16/2009	621	DPE-1	1911.0	12.0	35	32.4	0.015	142.2	2,684,000	23.1	22.5	22.4	22.5	22.0	NR	>150	NR	n n	200	200	ND	100	0	6 br composite oir comple collected
10/23/2009	922	DPE-3	1924.0	13.0	70	70.6	0.033	143.0	2.715.000	15.2	14.1	14.6	14.0	13.8	NR	90	0	NP	100	100		100		o-ni composite all'sample collected
11/17/2009	1800	DPE-1	2361.0	437.0	30	28.6	0.013	144.2	3,992,000	24.0	23.5	23.0	23.5	23.0	NR	>150	<u>0</u>	0	301	300	>1000	100	<u> </u>	Characterite electronic collected
12/17/2009	907	DPE-5	2960.0	599.0	NR	62.1	0.029	177.8	6,218,000	19.5	19.0	18.7	18.9	18.9	NR	155	0	0	247	300	24000	100	0	8-hr composite air sample collected
12/28/2009	1300	DPE-2	3228.0	268.0	60	60,7	0.029	187.9	7.333.000	20.3	17.2	17.21	17.20	17.2	NR	122	0	0	247	240	650		0	6-hr composite air sample collected
1/14/2010	923	DPE-5	3568.0	340.0	100	97.8	0.046	201.1	8 769 000	15.5	14.9	14.46	NR	14.9	ND	02	0		200	200	120		0	
1/27/2010	NR	DPE-7	3789.0	221.0	75	88.6	0.042	215.3	9 633 000	17.7	18.0	16.87	16.00	14.5	ND	90	0	0	102	156	NR	NR	0	6-hr composite air sample collected
2/22/2010	800	DPE-8	4161.0	372.0	105	101.5	0.048	224.8	11 221 000	16.5	15.5	15.3	14.50	14.5		00		0	156	165	NR	NR	0	
3/9/2010	NR	DPE-8	4472.0	311.0	105	103.6	0.049	226.1	12 597 000	16.3	15.9	15.6	14.00	14.0		91	0	0	215	219	ND	NR	0	6-hr composite air sample collected
3/25/2010	742	DPF-2	4551.0	79.0	110	110.1	0.052	243.2	14 285 000	16.5	10.0	15.0	15.10	14.8					160	161	NR	NR	0	Pump inlet screen removed; DPE oil changed
0.20.2010	. 12		100110	, 0,0		110.1	0.002	293.2	14,200,000	10.0	10.1	10.7	15.10	14.9	NR	165	0	0	251	248	105	100	0	6-hr composite air sample collected
Notes:						L					L													

Notes: NR: Not recorded. NA: Not applicable.

•

Moisture Separator and Sump Operational Data MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

Date	Time	MS Vacuum Valve hours	MS pump Hours	MS Pun Totalize	np Flow er (gal)	MS Pump (gr	Flow Rate om)	MS Pump Pressure (psi)	Elevator Sump Water Flow (gal)		Comments
				Analog	Field	Analog	Field		Analog	Field	
6/29/2009	1640	49	48	8,464	8,473	NR	10.2	NR	300	NR	
9/4/2009	805	49	96	38,299	38,213	NP	12.0	21.0	300	500	
10/15/2009	1120	49	131	62,643	64,283	NP	11.8	44.0	300	500	
10/16/2009	621	49	131	62,886	NR	NP	NR	NR	300	500	
10/23/2009	922	49	132	63,113	NR	NR	NR	NR	300	500	
11/17/2009	1800	49	148	73,800	75,787	11.1	11.2	28.0	300	NR	
12/17/2009	907	49	175	89,800	92,293	NR	10.3	30.8	330	NR	
12/28/2009	1300	49	187	97,028	99,694	NR	11.0	NR	330	NR	
1/14/2010	923	49	202	106,024	108,984	NR	10.7	36.0	330	NR	
1/27/2010	NR	49	210	111,633	114,661	12.9	12.2	16.0	330	NR	
2/22/2010	8:00	49	232	122,167	128,552	12.9	12.9	14.0	330	500	
3/9/2010	NR	50	255	131,361	137,839	12.9	12.9	14.0	330	NR	
3/25/2010	742	50	270	141,405	148,206	NR	12.9	15.0	330	500	

Notes: NR: Not recorded. NP: Not pumping

Air Stripper Operational Data MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

Date	Time	AS Blower Hours	AS Discharge Pump Hours	AS Blower Pressure (in. H ₂ O)	AS Exhaust Pressure (in. H ₂ O)	AS Discharge Pump Pressure (psi)	AS Exhaust PID (ppm)	Comments
6/29/2009	1640	54	4	18	12	29	NR	
9/4/2009	805	382	34	18	11	0	2140	PID was 180 ppm late in 20 min blower cycle
9/4/2009	946	383	34	18	11	31	509	
10/15/2009	1120	649	55	18	11	NR	ND	
10/16/2009	621	651	56	18	11	NR	ND	
10/23/2009	922	654	56	NR	NR	NR	NR	
11/17/2009	1800	772	65	18	12	NR	NR	
12/17/2009	902	951	78	18	11	30	71	
12/28/2009	1300	1032	84	17	11	NR	268	
1/14/2010	1800	1133	92	17	10	24	ND	
1/27/2010	NR	1188	96	18	11	24	NR	
2/22/2010	8:00	1349	103	18	11	22	ND	
3/9/2010	NR	1436	109	18	11	26	NR	
3/25/2010	742	1544	117	18	11	28	ND	

Notes:

NR: Not recorded.

NP: Not pumping.

ND: Not detected.

DPE Well Casing Vacuum Data (in. H₂O) MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

Date	DPE-1	DPE-2	DPE-3	DPE-4	DPE-5	DPE-6	DPE-7	DPE-8
7/9/2009	129.0	2.6	0.1	0.1	0.4	1.9	2.4	0.0
8/11/2009	117.0	0.0	0.0	0.8	0.0	2.2	2.9	0.0
9/4/2009	86.0	NR						
9/4/2009	149.0	NR						
9/4/2009	>150	NR						
10/15/2009	>150	3.4	0.3	0.9	1.3	1.9	0.5	0.04
10/23/2009	0.001	0.002	90.0	0.001	0.002	0.002	0.003	0.001
11/17/2009	0.000	0.000	0.000	0.000	>150	0.000	0.000	0.000
2/22/2010	48	200	128	99	90	108	70	91
3/25/2010	51	168	125	140	86	120	64	94

Notes:

Bold indicates the current operating extraction well.

DPE Well PID Readings 221 1st Avenue SW Rochester, Minnesota

			DPE	DPE Pump
			Exhaust	Inlet
		PID	Flow Rate	Vacuum (in.
Well ID	Date	(ppm)	(scfm)	Hg)
DPE-1	27-Oct-09	37.0	45.0	18.00
DPE-2	27-Oct-09	50.6	40.0	19.00
DPE-3	27-Oct-09	15.7	73.0	15.00
DPE-4	27-Oct-09	23.9	35.0	22.00
DPE-5	27-Oct-09	3.8	40.0	22.00
DPE-6	27-Oct-09	ND	55.0	17.00
DPE-7	27-Oct-09	ND	60.0	16.00
DPE-8	27-Oct-09	ND	45.0	22.00
DPE-1	16-Nov-09	4,000.0	56.3	20.28
DPE-2	16-Nov-09	0.0	39.0	22.13
DPE-3	16-Nov-09	1,600.0	65.0	18.94
DPE-4	16-Nov-09	3.7	28.6	23.94
DPE-5	16-Nov-09	4,000.0	30.4	23.88
DPE-6	16-Nov-09	4,000.0	66.9	18.78
DPE-7	16-Nov-09	4,000.0	75.5	17.70
DPE-8	16-Nov-09	4,000.0	29.3	23.87
DPE-1	17-Dec-09	4,000.0	62.1	19.53
DPE-2	17-Dec-09	11.8	NR	NR
DPE-3	17-Dec-09	57.5	NR	NR
DPE-4	17-Dec-09	4,000.0	NR	NR
DPE-5	17-Dec-09	850.0	NR	NR
DPE-6	17-Dec-09	1,680.0	NR	NR
DPE-7	17-Dec-09	490.0	NR	NR
DPE-8	17-Dec-09	559.0	NR	NR
DPE-1	28-Dec-09	1,120.0	NR	NR
DPE-2	28-Dec-09	720.0	NR	NR
DPE-3	28-Dec-09	22.8	NR	NR
DPE-4	28-Dec-09	3.4	NR	NR
DPE-5	28-Dec-09	4,000.0	NR	NR
DPE-6	28-Dec-09	901.0	NR	NR
DPE-7	28-Dec-09	905.0	NR	NR
DPE-8	28-Dec-09	595.0	NR	NR
DPE-1	14-Jan-10	NR	NR	NR
DPE-2	14-Jan-10	NR	NR	NR
DPE-3	14-Jan-10	NR	NR	NR
DPE-4	14-Jan-10	NR	NR	NR
DPE-5	14-Jan-10	NR	NR	NR
DPE-6	14-Jan-10	NR	NR	NR
DPE-7	14-Jan-10	NR	NR	NR
DPE-8	14-Jan-10	NR	NR	NR

DPE Well PID Readings 221 1st Avenue SW Rochester, Minnesota

			DPE Exhaust	DPE Pump Inlet
		PID	Flow Rate	Vacuum (in.
Well ID	Date	(ppm)	(scfm)	Hg)
DPE-1	22-Feb-10	914.0	35.0	22.5
DPE-2	22-Feb-10	27.1	45.0	21.5
DPE-3	22-Feb-10	43.4	70.0	19.5
DPE-4	22-Feb-10	13.5	60.0	20.5
DPE-5	22-Feb-10	ND	100.0	16
DPE-6	22-Feb-10	7.1	65.0	19
DPE-7	22-Feb-10	ND	80.0	17.5
DPE-8	22-Feb-10	ND	100.0	16
DPE-1	25-Mar-10	868.0	40.0	23
DPE-2	25-Mar-10	10.5	50.0	22
DPE-3	25-Mar-10	31.4	70.0	19
DPE-4	25-Mar-10	55.3	55.0	22
DPE-5	25-Mar-10	5.7	75.0	18
DPE-6	25-Mar-10	0.0	70.0	20
DPE-7	25-Mar-10	0.0	90.0	17
DPE-8	25-Mar-10	4,000.0	105.0	16

DPE Well Water Level Readings 221 1st Avenue SW Rochester, Minnesota

Location	Date	Total Well Depth (ft below TOC)	Static Water Level (ft below TOC)	Static Water Column Thickness (ft)	Static Water Volume (gallons)	Operating Depth (ft below TOC)	Operating Water Column Thickness (ft)
DPE-1	23-Oct-09	21.9	14.88	7.02	4.6	21.8	0.1
DPE-1	27-Oct-09	21.9	14.54	7.36	4.8	21.9	0.0
DPE-1	16-Nov-09	21.9	14.45	7.45	4.9	21.9	0.0
DPE-1	17-Dec-09	21.9	15.13	6.77	4.4	21.8	0.1
DPE-1	14-Jan-10	21.9	15.53	6.37	4.2	21.0	0.9
DPE-1	22-Feb-10	21.9	12.22	9.68	6.3	21.9	0
DPE-1	25-Mar-10	21.9	15.72	6.18	4.0	20.9	1
DPE-2	23-Oct-09	20.5	15.53	4.97	3.2	19.95	0.55
DPE-2	27-Oct-09	20.5	16.35	4.15	2.7	20.51	-0.01
DPE-2	16-Nov-09	20.5	15.19	5.31	3.5	20.8	-0.3
DPE-2	17-Dec-09	20.5	15.69	4.81	3.1	20.4	0.1
DPE-2	14-Jan-10	20.5	16.04	4.46	2.9	20.15	0.35
DPE-2	22-Feb-10	20.5	14.19	6.31	4.1	20.5	0
DPE-2	25-Mar-10	20.5	15.5	5	3.3	20	0.5
DPE-3	23-Oct-09	17.1	14.76	2.34	1.5	17.5	-0.4
DPE-3	27-Oct-09	17.1	14.51	2.59	1.7	17.8	-0.7
DPE-3	16-Nov-09	17.1	14.59	2.51	1.6	17.5	-0.4
DPE-3	17-Dec-09	17.1	15.28	1.82	1.2	17.2	-0.1
DPE-3	14-Jan-10	17.1	16.52	0.58	0.4	17.1	0.0
DPE-3	22-Feb-10	17.1	15.29	1.81	1.2	17.3	-0.2
DPE-3	25-Mar-10	17.1	15.68	1.42	0.9	18.3	-1.2
DPE-4	23-Oct-09	19.3	14.81	4.49	2.9	19.71	-0.41
DPE-4	27-Oct-09	19.3	14.58	4.72	3.1	19.8	-0.5
DPE-4	16-Nov-09	19.3	14.48	4.82	3.1	19.63	-0.33
DPE-4	17-Dec-09	19.3	15.44	3.86	2.5	19.3	0.0
DPE-4	14-Jan-10	19.3	16.08	3.22	2.1	19.6	-0.3
DPE-4	22-Feb-10	19.3	16.08	3.22	2.1	19.0	0.3
DPE-4	25-Mar-10	19.3	16.22	3.08	2.0	20.05	-0.75
DPE-5	23-Oct-09	18.1	13.78	4.32	2.8	18.5	-0.4
DPE-5	27-Oct-09	18.1	13.52	4.58	3.0	18.7	-0.6
DPE-5	16-Nov-09	18.1	NR	NR	NR	18.1	0.0
DPE-5	14-Jan-10	18.1	15	3.1	2.0	19.2	-1.1
DPE-5	22-Feb-10	18.1	15.01	3.09	2.0	18.2	-0.1
DPE-5	25-Mar-10	18.1	16.42	1.68	1.1	18.7	-0.6

DPE Well Water Level Readings 221 1st Avenue SW Rochester, Minnesota

Location	Date	Total Well Depth (ft below TOC)	Static Water Level (ft below TOC)	Static Water Column Thickness (ft)	Static Water Volume (gallons)	Operating Depth (ft below TOC)	Operating Water Column Thickness (ft)
DPE-6	23-Oct-09	19.5	14.56	4.94	3.2	19.8	-0.3
DPE-6	27-Oct-09	19.5	14.31	5.19	3.4	19.5	0.0
DPE-6	16-Nov-09	19.5	14.24	5.26	3.4	19.52	-0.02
DPE-6	17-Dec-09	19.5	14.84	4.66	3.0	19.8	-0.3
DPE-6	14-Jan-10	19.5	15.14	4.36	2.8	19.8	-0.3
DPE-6	22-Feb-10	19.5	15.61	3.89	2.5	19.1	0.4
DPE-6	25-Mar-10	19.5	15.24	4.26	2.8	19.5	0
-							
DPE-7	23-Oct-09	22.2	15.68	6.52	4.3	22.2	0.0
DPE-7	27-Oct-09	22.2	15.49	6.71	4.4	22.2	0.0
DPE-7	16-Nov-09	22.2	15.44	6.76	4.4	22.17	0.03
DPE-7	17-Dec-09	22.2	16.03	6.17	4.0	22.4	-0.2
DPE-7	14-Jan-10	22.2	16.26	5.94	3.9	22.1	0.1
DPE-7	22-Feb-10	22.2	16.98	5.22	3.4	22.3	-0.1
DPE-7	25-Mar-10	22.2	16.65	5.55	3.6	22.1	0.1
DPE-8	23-Oct-09	17.5	13.18	4.32	2.8	17.3	0.2
DPE-8	27-Oct-09	17.5	13.24	4.26	2.8	17.9	-0.4
DPE-8	16-Nov-09	17.5	13.3	4.2	2.7	17.5	0.0
DPE-8	17-Dec-09	17.5	15.31	2.19	1.4	17.9	-0.4
DPE-8	14-Jan-10	17.5	16.58	0.92	0.6	17.75	-0.25
DPE-8	22-Feb-10	17.5	14.19	3.31	2.2	18.3	-0.8
DPE-8	25-Mar-10	17.5	15.72	1.78	1.2	17.8	-0.3

Maintenance Schedule MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

Maintenance Item	Sep-09	Oct-09	Nov-09	Dec-09	Jan-10	Feb-10	Mar-10	Apr-10	May-10	Jun-10	Jul-10	Aug-10	Sep-10
DPE Pump Maintenance													
- Inspect Hoses, Piping and Fittings for Oil Leaks - MONTHLY	Sep 4	Oct 15, 16	Nov 16	Dec 17	Jan 14	Feb 22	Mar 9, 25	х	х	х	x	х	х
- Check Oil Level (level should show at middle of site glass) - MONTHLY	Sep 4	Oct 15, 16	Nov 16	Dec 17	Jan 14	Feb 22	Mar 9,	x	x	х	x	х	х
- Change Oil - EVERY 5,000 OPERATING HOURS							Mar 9			-			
- Clean Pump Inlet Opening							Mar 9	x	X	X	x	X	X
- Inspect and Clean Pump Inlet Screen - EACH SITE VISIT	Sep 4	Oct 15, 16	Nov 6, 16,	Dec 4, 17,	Jan 14, 27	Feb 3,	NA	x	х	x	x	x	х
Moisture Separator Maintenance				hield		1							
- Clean Floats - MONTHLY	Sep 4	Oct 15, 16, 23, 27	Nov 16	Dec 17	Jan 14	Feb 3, 10, 16	Mar 9, 25	х	x	x	x	x	x
- Check Sediment - MONTHLY		Oct 27	Nov 16	Dec 17	Jan 14	Feb 3, 10, 22	Mar 9, 25	х	x	x	х	x	х
- Remove Sediment - AS NEEDED		Oct 27	Nov 16			Feb 3, 10, 22			-	-			
- Replace MS#1Filter (5 micron) - If Pressure Drop Occurs		-				Feb 26						X	
- Replace MS#2 Filter (1 micron) - If Pressure Drop Occurs						Feb 26						X	
- Transfer Pump (Moyno 34401 1 HP) - Inspect Hoses, Piping and Fittings	Sep 4	Oct 15, 16	Nov 16	Dec 17	Jan 14	Feb 22	Mar 9	x	x	х	х	х	х
for Water Leaks - MONTHLY										-			
- Replace Transfer Pump Stator - SEMI-ANNUALLY						Feb 16	-					x	
Air Stripper Maintenance													
- Clean Air Stripper - ANNUALLY OR AS NEEDED							Mar 25						
- Clean Floats - QUARTERLY						Feb 12			X			X	
- Discharge Pump (Meyers CT10 1 HP) - Inspect Hoses, Piping and	Sep 4	Oct 15, 16	Nov 16	Dec 17	Jan 14	Feb 22	Mar 25	х	x	х	х	x	х
Fittings for Water Leaks - MONTHLY		-											
- Blower (16N4 TBNA 3 HP) - Inspect Hoses, Piping and Fittings for	Sep 4	Oct 15, 16	Nov 16	Dec 17	Jan 14	Feb 22	Mar 25	х	х	х	х	х	х
Leaks - MONTHLY													
Solonoid Valve Maintenance			an tè it .										
- Inspect - MONTHLY	Sep 4	Oct 15, 16	Nov 16	Dec 17	Jan 14	Feb 22	Mar 9, 25	х	х	х	х	х	X
- Clean - AS NEEDED		Oct 27	Nov 6	Dec 4									
- Rebuild - AS NEEDED				Dec 7									

Notes:

Sep 4: Date task completed. X: Task to be completed during that month.

NA: Not applicable

FIELD DATA SHEET 1 of 2

			oloci	4 m	
CLIENT NAME: CITY OF ROCHESTER	_	DATE:	5125/1	<u></u>	
PROJECT ID: CRC		TIME:			
PROJECT NAME: MN BIO BUSINESS CENTER	_	RECORD	ED BY:	TFG	
	- *			~ 600 <i>P</i>	
2009 SYSTEM STARTUP INFORMATION					
Startup Date: 6/29/2009 MS Discharge	Totalizer: 68	Sump Dis	charge To	talizer: 200)
		••••••••••••••••••••••••••••••••••••••	V		
NOTES - LEAVE VACUUM RELIEF VALVES	SELECTOR SWITC	H IN OFF F	POSITION		
I EAVE AIR STRIPPER SELECTOR	R SWITCHES IN AU	TO POSIT	ION		
		S	TATIC WA	TER LEVE	LS
		•		Well	Depth to
DPE DUMP DI EED VALVE % OPEN:			Clean to	Denth	Water
DPE FOIVIF BLEED VALVE % OF LN.			Dirty	below	helow
	4- 7		Ranking	TOC (FT)	TOC (FT)
DE DIME ALE ELOW/SCENI	TF 6	M\\/_1 <i>1</i>	יגווואווע ג	17 5	11.90
			<u> </u>	18	141,02
		MIN/ 10	10	10	. 2 8 . 5
		MIN/ 17	7	25	16.00
		<u></u> ΛΛΛ/ 1Ω	6	<u>20</u> 60	17.40
DPE PUMP OUTLET TEMP (DEG. F).		N/\/_10	1	20	12 01
INS PUMP WATER FLOW (GPM).		MIN/ 20	I	16.7	17.561
TOTAL DANEL DEADINGS			15	21.0	16.3.7
TOTAL PANEL READINGS 4551			10	21.8	18 64
DPE VACUUM PUMP (HRS):	· .		13	20.0	10.30
MS PUMP (HRS):			14	10.2	15.60
MS VACUUM VALVE (HRS): 50			12	19.3	16.26
AIR STRIPPER BLOWER (HRS): 1544			9	10.1	1574
AIR STRIPPER PUMP (HRS):			<u> </u>	19.5	10167
DPE AIR FLOW (SCF): 192000			<u> </u>	17.5	16.02
MS PUMP WATER FLOW (GAL):		DPE-0	11	774	12.76
SUMP PUMP WATER FLOW (GAL): 359		Sump	1	1.14	6.25
	5		CRATING (9 i		VLLO
DPE WELL CASING VACUUM (MMI HG):			20		
DRE-WELL HEAD (DROP TUBE) VACUUM (IN. HG	$\frac{1}{1} \frac{64}{9} \frac{1}{1} \frac{1}{2} 1$		10	<u>, nn - 9</u>	<u>e v</u>
			<u> </u>	A N	<u> </u>
			10	$\frac{1}{2} \frac{2}{2}$	1.0
			-10	r pri G dar	<u> </u>
	10 10 6				/
DE DUMP OUTLET DESSURE (IN H20))	<u></u>		17.		/
DE PUMP OUTLET FRESSURE (IN. 120)).	<u> </u>	DFE-0	171	<u>o ev (</u>	
DPE POWP OUTLET TEIMP (DEG. F).	69 h			NI)
	(CPM): 17 Q			1	
MS PUMP WATER PLOWRATE (WHILE PUMPING		DACEME	ום חום דוא		NN
MS PUMP WATER PRESSURE (WHILE PUMPING)	<u>(FSI). 15</u>	DAJEINE		EADINGS.	
MS PUMP FLOW TOTALIZER READING (GAL):	NARAR		T DMMA T	EMDEDAT	
	1.5				UKE
AS EXHAUST PRESSURE (IN. H20):		CURREN	a superior and a superior	WAX.	sanna.
AS DISCHARGE PUMP PRESSURE (WHILE PUMP	$\frac{1}{10} (PSI) (24.5)$	001000	170/88 - 1	TENIALIAE	
AS BLOWER PRESSURE (IN. H20):	18	COMMEN	NIS/MAIN	IENANCE:	
AS EXHAUST PID (PPM): ND	NNN::				
	with state				
ELEVATOR DRAIN TILE SUMP FLOW TOTALIZER	(GAL): <u>) ()</u>				-

4

ų,

CLIENT NAM PROJECT ID: PROJECT NA	E: CITY OF RO CRC ME: MN BIO B	DCHESTER BUSINESS CENTER		DATE: 3/25/10 TIME: 07:30 RECORDED BY: JEG	
	PID READINGS	DPE EXHAUST FLOW RATE	DPE PUMP INLET VACUUM	WELL CASING VACUUMS	
DPE-1	868	40	-23		
DPE-2	10.5	, 50	5 5 0	- 168	
DPE-3	31.4	70		- 125	
DPE-4	55.3	Es Pro-	~ 2.2	- 140	
DPE-5	5, 7-	75	- 18	- 86	
DPE-6	Q	70	- 20	-123	
DPE-7	0	90	fea hyperson	= 64	
DPE-8	4000	105	-16	-94	-
		[69.4] A	VERACE FUDA SCFm	,	

2

MAINTENANCE CHECKLIST

MN Bio Business Center 221 1st Avenue SW Rochester, MN

Check Box

1

25/10

Date:

Field Represenative:

DPE Pump Maintenance

- Inspect Hoses, Piping and Fittings for Oil Leaks MONTHLY
- Check Oil Level (level should show at middle of site glass) MONTHLY
- Change Oil EVERY 5,000 OPERATING HOURS
- Inspect and Clean Pump Inlet Screen EACH SITE VISIT

Moisture Separator Maintenance

- Clean Floats MONTHLY
- Check Sediment MONTHLY
- Remove Sediment MONTHLY
- Replace Filter If Pressure Drop Occurs
- Transfer Pump (Moyno 34401 1 HP) Inspect Hoses, Piping and Fittings for Water Leaks MONTHLY

Air Stripper Maintenance

- Clean Air Stripper ANNUALLY OR AS NEEDED
- Discharge Pump (Meyers CT10 1 HP) Inspect Hoses, Piping and Fittings for Water Leaks MONTHLY
- Blower (16N4 TBNA 3 HP) Inspect Hoses, Piping and Fittings for Leaks - MONTHLY

Solonoid Valve Maintenance

- Inspect MONTHLY
- Clean AS NEEDED
- Rebuild AS NEEDED

IN SOKE HEA

OBSERVATIONS AND/OR

DESCRIPTION OF MAINTENANCE PERFORMED

FIELD DATA SHEET

	DATE: $3/3/10$
PROJECT ID: CRC	RECORDED BY:
PROJECT NAME: MN BIO BUSINESS CENTER	
2009 SYSTEM STARTUP INFORMATION	
Startup Date: 6/29/2009 MS Discharge Totalizer: 68	Sump Discharge Totalizer: 200
NOTES - LEAVE VACUUM RELIEF VALVE SELECTOR SWITCH	HIN OFF POSITION
LEAVE AIR STRIPPER SELECTOR SWITCHES IN AU	TO POSITION
CURRENT OPERATING WELL:	WATER LEVEL MEASUREMENTS
DPE WELL BLEED VALVE % OPEN:	Well Depth to
DPE PUMP BLEED VALVE % OPEN:	Clean to Depth Water
	Dirty below below
ANALOG PANEL READINGS	Ranking TOC (FT) TOC (FT)
DPE PUMP AIR FLOW (SCFM): (03,6 0)	MW-14 3 17.5
DPE WELL VACUUM (IN. HG): 15.64	MW-15 4 18
DPE PUMP INLET VACUUM (IN. HG): 16,21	MW-16 10 18
DPE PUMP OUTLET PRESSURE (PSI): 0	MW-17 7 25
DPE PUMP OUTLET TEMP (DEG. F): 1 (O. 4	<u>MW-18 6 60</u>
MS PUMP WATER FLOW (GPM): 12.9/	<u>MW-19 1 20</u>
	<u>MW-20 8 16.7</u>
TOTAL PANEL READINGS	DPE-1 15 21.9
DPE VACUUM PUMP (HRS): 44 + L	DPE-2 13 20.5
MS PUMP (HRS): 255	$\frac{\text{DPE-3}}{\text{DPE-4}} \xrightarrow{14} 17.7$
MS VACUUM VALVE (HRS): 50	DPE-4 12 19:3
AIR STRIPPER BLOWER (HRS): 1430	DPE-0 9 \10.1
AIR STRIPPER PUMP (HRS): 70 9	DPE-0 3 1.9.3
DPE AIR FLOW (SCF): 1259 7000	DPE-7 2 22%2
MS PUMP WATER FLOW (GAL): 131367	Sump 1 774
SUMP PUMP WATER FLOW (GAL): 3 5 0	WELL CASING PD
	VACUUMS READINGS
	DPF-2 DPF-2
DPE WELL HEAD (DROP TODE) VACOOM (IN. 110).	DPF-3 DPE-3
DRE-WANIFOLD VACOUM (IN. 110).	DPE-4 DPE-4
DOST MS VACHUM (IN HG):	DPE-5 / DPE-5
DPE PLIMP AIR FLOW (SCFM):	DPE-6 / DPE-6
DPE EXHAUST PID CONC. (PPM):	DPE-7 / DPE-7
DPF PUMP OUTLET PRESSURE (IN. H2O)):	DPE-8 DPE-8,
DPE PUMP OUTLET TEMP (DEG. F):	
	SUMP ROOM PID: /
MS PUMP WATER FLOWRATE (WHILE PUMPING) (GPM): 12.9	
MS PUMP WATER PRESSURE (WHILE PUMPING) (PSI): 14	BASEMENT PIQ READINGS:
MS PUMP FLOW TOTALIZER READING (GAL): 1378 39	
	AMBIENT ROOM TEMPERATURE
AS EXHAUST PRESSURE (IN. H20):	CURRENT: / MAX:
AS DISCHARGE PUMP PRESSURE (WHILE PUMPING) (PSI):	
AS BLOWER PRESSURE (IN. H20):	COMMENTS/MÁINTENANCE:
AS EXHAUST PID (PPM):	
FLEVATOR DRAIN TILE SUMP FLOW TOTALIZER (GAL):	

MN Bio Business Center 221 1st Avenue SW Rochester, MN

Date:

319/10

Field Represenative:

DPE Pump Maintenance

- Inspect Hoses, Piping and Fittings for Oil Leaks MONTHLY
- Check Oil Level (level should show at middle of site glass) MONTHLY
- Change Oil EVERY 5,000 OPERATING HOURS
- Inspect and Clean Pump Inlet Screen EACH SITE VISIT

Moisture Separator Maintenance

- Clean Floats MONTHLY
- Check Sediment MONTHLY
- Remove Sediment MONTHLY
- Replace Filter If Pressure Drop Occurs
- Transfer Pump (Moyno 34401 1 HP) Inspect Hoses, Piping and Fittings for Water Leaks - MONTHLY
- Replace Transfer Pump Stator SEMI-ANNUALLY

Air Stripper Maintenance

- Clean Air Stripper ANNUALLY OR AS NEEDED
- Clean Floats Quarterly
- Discharge Pump (Meyers CT10 1 HP) Inspect Hoses, Piping and Fittings for Water Leaks - MONTHLY
- Blower (16N4 TBNA 3 HP) Inspect Hoses, Piping and Fittings for Leaks - MONTHLY

Solonoid Valve Maintenance

- Inspect MONTHLY
- Clean AS NEEDED
- Rebuild AS NEEDED

	chanced	 .85% oil
>	Remarced	
		 a <u>av</u> 1 Anry 1990

OBSERVATIONS AND/OR

DESCRIPTION OF MAINTENANCE PERFORMED

 - Not croush	

Check Box

C:\Documents and Settings\egab\Local Settings\Temporary Internet Files\Content.Outlook\DK4L14B1\Maintenance Field Form.xls

Attachment B

ice Analytica www.pacelabs.com

April 02, 2010

Mr. Jason Skramstad Landmark Environmental 2042 W. 98th. St. Minneapolis, MN 55431

RE: Project: CRC City of Rochester Pace Project No.: 10125114

Dear Mr. Skramstad:

Enclosed are the analytical results for sample(s) received by the laboratory on March 26, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carolynne That

Carolynne Trout

carolynne.trout@pacelabs.com Project Manager

Enclosures

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 1 of 18

ace Analytical www.pacelabs.com

CERTIFICATIONS

Project: CRC City of Rochester Pace Project No.: 10125114

Minnesota Certification IDs

1700 Elm Street SE, Suite 200 Minneapolis, MN 55414 Alaska Certification #: UST-078 Washington Certification #: 0754 Tennessee Certification #: 02818 Pennsylvania Certification #: 68-00563 Oregon Certification #: MN20001 North Dakota Certification #: R-036 North Carolina Certification #: R-036 North Carolina Certification #: 1647 New Jersey Certification #: 11647 New Jersey Certification #: MN-002 Montana Certification #: MT CERT0092 Minnesota Certification #: 027-053-137 Michigan DEQ Certification #: 9909 Maine Certification #: 2007029 Louisiana Certification #: LA080009 Louisiana Certification #: 03086 Kansas Certification #: E-10167 Iowa Certification #: E-10167 Ilinois Certification #: 200011 Florida/NELAP Certification #: E87605 California Certification #: 01155CA Arizona Certification #: AZ-0014 Wisconsin Certification #: 999407970

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 2 of 18

^pace Analytical www.pacelabs.com

SAMPLE SUMMARY

Project:CRC City of RochesterPace Project No.:10125114

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10125114001	AS-Influent	Water	03/25/10 08:00	03/26/10 10:52
10125114002	AS-Effluent	Water	03/25/10 08:10	03/26/10 10:52

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 3 of 18

ace Analytical www.pacelabs.com

SAMPLE ANALYTE COUNT

Project:	CRC City of Rochester
Pace Project No.:	10125114

Lab ID	Sample ID	Method	Analysts	Analytes Reported
10125114001	AS-Influent	EPA 624	CNC, DRE	82
10125114002	AS-Effluent	EPA 624	CNC, DRE	82

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: CRC City of Rochester

Pace Project No.: 10125114

Sample: AS-Influent	Lab ID: 101251	14001 Collected:	Collected: 03/25/10 08:00		Received: 03/26/10 10:52 Matrix: Wate			۶r	
Parameters	Results	Units Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual	
624 MSV	Analytical Method:	EPA 624							
Acetone	11.2 ug/L		10.0	1		03/29/10 17:41	67-64-1	SS	
Acrolein	ND ug/L		40.0	1		03/29/10 17:41	107-02-8		
Acrylonitrile	ND ug/L		10.0	1		03/29/10 17:41	107-13-1		
Allyl chloride	ND ug/L		4.0	1		03/29/10 17:41	107-05-1		
Benzene	ND ug/L		1.0	1		03/29/10 17:41	71-43-2		
Bromobenzene	ND ug/L		1.0	1		03/29/10 17:41	108-86-1		
Bromochloromethane	ND ug/L		1.0	1		03/29/10 17:41	74-97-5		
Bromodichloromethane	ND ug/L		4.0	1		03/29/10 17:41	75-27-4		
Bromoform	ND ug/L		8.0	1		03/29/10 17:41	75-25-2		
Bromomethane	37.3 ug/L		4.0	1		03/29/10 17:41	74-83-9		
2-Butanone (MEK)	4.9 ug/L		4.0	1		03/29/10 17:41	78-93-3		
n-Butylbenzene	ND ug/L		1.0	1		03/29/10 17:41	104-51-8		
sec-Butylbenzene	ND ug/L		1.0	1		03/29/10 17:41	135-98-8		
tert-Butylbenzene	ND ug/L		1.0	1		03/29/10 17:41	98-06-6		
Carbon disulfide	ND ug/L		1.0	1		03/29/10 17:41	75-15-0		
Carbon tetrachloride	ND ug/L		4.0	1		03/29/10 17:41	56-23-5		
Chlorobenzene	ND ug/L		1.0	1		03/29/10 17:41	108-90-7		
Chloroethane	ND ug/L		1.0	1		03/29/10 17:41	75-00-3		
2-Chloroethylvinyl ether	ND ug/L		10.0	1		03/29/10 17:41	110-75-8		
Chloroform	ND ug/L		1.0	1		03/29/10 17:41	67-66-3		
Chloromethane	380 ug/L		20.0	5		03/30/10 17:52	74-87-3		
Chloroprene	ND ug/L		1.0	1		03/29/10 17:41	126-99-8		
2-Chlorotoluene	ND ug/L		1.0	1		03/29/10 17:41	95-49-8		
4-Chlorotoluene	ND ug/L		1.0	1		03/29/10 17:41	106-43-4		
1,2-Dibromo-3-chloropropane	ND ug/L		4.0	1		03/29/10 17:41	96-12-8		
Dibromochloromethane	ND ug/L		1.0	1		03/29/10 17:41	124-48-1		
1,2-Dibromoethane (EDB)	ND ug/L		1.0	1		03/29/10 17:41	106-93-4		
Dibromomethane	ND ug/L		1.0	1		03/29/10 17:41	74-95-3		
1,2-Dichlorobenzene	ND ug/L		1.0	1		03/29/10 17:41	95-50-1		
1,3-Dichlorobenzene	ND ug/L		1.0	1		03/29/10 17:41	541-73-1		
1,4-Dichlorobenzene	ND ug/L		1.0	1		03/29/10 17:41	106-46-7		
Dichlorodifluoromethane	ND ug/L		1.0	1		03/29/10 17:41	75-71-8	L1	
1,1-Dichloroethane	ND ug/L		1.0	1		03/29/10 17:41	75-34-3		
1,2-Dichloroethane	ND ug/L		1.0	1		03/29/10 17:41	107-06-2		
1,1-Dichloroethene	ND ug/L		1.0	1		03/29/10 17:41	75-35-4		
cis-1,2-Dichloroethene	ND ug/L		1.0	1		03/29/10 17:41	156-59-2		
trans-1,2-Dichloroethene	ND ug/L		1.0	1		03/29/10 17:41	156-60-5		
Dichlorofluoromethane	ND ug/L		1.0	1		03/29/10 17:41	75-43-4		
1,2-Dichloropropane	ND ug/L		1.0	1		03/29/10 17:41	78-87-5		
1,3-Dichloropropane	ND ug/L		1.0	1		03/29/10 17:41	142-28-9		
2,2-Dichloropropane	ND ug/L		4.0	1		03/29/10 17:41	594-20-7		
1,1-Dichloropropene	ND ug/L		1.0	1		03/29/10 17:41	563-58-6		
cis-1,3-Dichloropropene	ND ug/L		4.0	1		03/29/10 17:41	10061-01-5		
trans-1,3-Dichloropropene	ND ug/L		4.0	1		03/29/10 17:41	10061-02-6		
Diethyl ether (Ethyl ether)	ND ug/L		4.0	1		03/29/10 17:41	60-29-7		
Ethylbenzene	ND ug/L		1.0	1		03/29/10 17:41	100-41-4		
Hexachloro-1,3-butadiene	ND ua/L		4.0	1	•	03/29/10 17:41	87-68-3		

Date: 04/02/2010 03:42 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 5 of 18

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: CRC City of Rochester

Pace Project No.: 10125114

Sample: AS-Influent	Lab ID: 101251140	01 Collected: 03/25/1	Collected: 03/25/10 08:00		Received: 03/26/10 10:52 Matrix: Water		
Parameters	ResultsUn	its Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
624 MSV	Analytical Method: EF	Analytical Method: EPA 624					
2-Hexanone	ND ug/L	4.0	1		03/29/10 17:41	591-78-6	
lodomethane	17.3 ug/L	4.0	1		03/29/10 17:41	74-88-4	
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		03/29/10 17:41	98-82-8	
p-lsopropyltoluene	ND ug/L	1.0	1		03/29/10 17:41	99-87-6	
Methylene Chloride	ND ug/L	4.0	1		03/29/10 17:41	75-09-2	
2-Methylnaphthalene	ND ug/L	5.0	1		03/29/10 17:41	91-57-6	
4-Methyl-2-pentanone (MIBK)	ND ug/L	5.0	1		03/29/10 17:41	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1		03/29/10 17:41	1634-04-4	
Naphthalene	ND ug/L	4.0	1		03/29/10 17:41	91-20-3	
n-Propylbenzene	ND ug/L	1.0	1		03/29/10 17:41	103-65-1	
Styrene	ND ug/L	1.0	1		03/29/10 17:41	100-42-5	
1.1.1.2-Tetrachloroethane	ND ug/L	1.0	1		03/29/10 17:41	630-20-6	
1.1.2.2-Tetrachloroethane	ND ug/L	1.0	1		03/29/10 17:41	79-34-5	
Tetrachloroethene	55.5 ug/L	1.0	1		03/29/10 17:41	127-18-4	
Tetrahydrofuran	ND ug/L	10.0	1		03/29/10 17:41	109-99-9	
Toluene	ND ug/L	1.0	1		03/29/10 17:41	108-88-3	
1.2.3-Trichlorobenzene	ND ug/L	1.0	1		03/29/10 17:41	87-61-6	
1.2.4-Trichlorobenzene	ND ug/L	1.0	1		03/29/10 17:41	120-82-1	
1.1.1-Trichloroethane	ND ug/L	1.0	1		03/29/10 17:41	71-55-6	
1 1 2-Trichloroethane	ND ug/L	4.0	1		03/29/10 17:41	79-00-5	
Trichloroethene	ND ug/L	1.0	1		03/29/10 17:41	79-01-6	
Trichlorofluoromethane	ND ug/L	4.0	1		03/29/10 17:41	75-69-4	
1 2 3-Trichloropropane		1.0	1		03/29/10 17:41	96-18-4	
1 1 2-Trichlorotrifluoroethane	1.0 ug/l	1.0	1		03/29/10 17:41	76-13-1	CH.L1
1 2 4-Trimethylbenzene		1.0	1		03/29/10 17:41	95-63-6	
1.3.5-Trimethylbenzene		10	1		03/29/10 17:41	108-67-8	
Vinvl acetate	ND ug/L	20.0	1		03/29/10 17:41	108-05-4	
Vinyl chloride	ND ug/L	0.40	1		03/29/10 17:41	75-01-4	
Xylene (Total)		30	1		03/29/10 17:41	1330-20-7	
m&n-Xvlene		20	1		03/29/10 17:41	1330-20-7	
o-Xvlene		10	1		03/29/10 17:41	95-47-6	
Dibromofluoromethane (S)	98 %	75-125	1		03/29/10 17:41	1868-53-7	
4-Bromofluorobenzene (S)	99 %	75-125	1		03/29/10 17:41	460-00-4	
Toluene-d8 (S)	98 %	75-125	1		03/29/10 17:41	2037-26-5	
1,2-Dichloroethane-d4 (S)	104 %	75-125	1		03/29/10 17:41	17060-07-0	
Sample: AS-Effluent	Lab ID: 101251140	002 Collected: 03/25/	10 08:10	Received: 0	3/26/10 10:52 M	latrix: Water	
Parameters	Results Un	its Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
624 MSV	Analytical Method: EF	PA 624					
Acetone	29.8 ua/L	10.0	1		03/29/10 17:21	67-64-1	SS

Acetone	29.8 ug/L	10.0	1	03/29/10 17:21	67-64-1
Acrolein	ND ug/L	40.0	1	03/29/10 17:21	107-02-8
Acrylonitrile	ND ug/L	10.0	1	03/29/10 17:21	107-13-1
Allyl chloride	ND ug/L	4.0	1	03/29/10 17:21	107-05-1
Benzene	ND ug/L	1.0	1	03/29/10 17:21	71-43-2

Date: 04/02/2010 03:42 PM

REPORT OF LABORATORY ANALYSIS

Page 6 of 18

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

^pace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: CRC City of Rochester

Pace Project No.: 10125114

Sample: AS-Effluent	Lab ID: 10125114002 Collected: 03/25/10 08:1		08:10	10 Received: 03/26/10 10:52 Matrix: Water			
Parameters	Results Units	s Report Limit	DF	Prepared Analyzed	CAS No.	Qual	
624 MSV	Analytical Method: EPA	624					
Bromobenzene	ND ug/L	1.0	1	03/29/10 17:2	1 108-86-1		
Bromochloromethane	ND ug/L	1.0	1	03/29/10 17:2	1 74-97-5		
Bromodichloromethane	ND ug/L	4.0	1	03/29/10 17:2	1 75-27-4		
Bromoform	ND ug/L	8.0	1	03/29/10 17:2	1 75-25-2		
Bromomethane	38.0 ug/L	4.0	1	03/29/10 17:2	1 74-83-9	MO	
2-Butanone (MEK)	7.5 ug/L	4.0	1	03/29/10 17:2	1 78-93-3		
n-Butylbenzene	ND ug/L	1.0	1	03/29/10 17:2	1 104-51-8		
sec-Butylbenzene	ND ug/L	1.0	1	03/29/10 17:2	1 135-98-8		
tert-Butylbenzene	ND ug/L	1.0	1	03/29/10 17:2	1 98-06-6		
Carbon disulfide	ND ug/L	1.0	1	03/29/10 17:2	1 75-15-0		
Carbon tetrachloride	ND ug/L	4.0	1	03/29/10 17:2	1 56-23-5		
Chlorobenzene	ND ug/L	1.0	1	03/29/10 17:2	1 108-90-7		
Chloroethane	ND ug/L	1.0	1	03/29/10 17:2	1 75-00-3		
2-Chloroethylvinyl ether	ND ug/L	10.0	1	03/29/10 17:2	1 110-75-8	P5	
Chloroform	ND ug/L	1.0	1	03/29/10 17:2	1 67-66-3		
Chloromethane	644 ug/L	20.0	5	03/30/10 18:3	3 74-87-3	P6	
Chloroprene	ND ug/L	1.0	1	03/29/10 17:2	1 126-99-8		
2-Chlorotoluene	ND ug/L	1.0	1	03/29/10 17:2	1 95-49-8		
4-Chlorofoluene		1.0	1	03/29/10 17:2	1 106-43-4		
1 2-Dibromo-3-chloropropane	ND ug/L	4.0	1	03/29/10 17:2	1 96-12-8		
Dibromochloromethane	ND ug/l	1.0	1	03/29/10 17:2	1 124-48-1		
1 2-Dibromoethane (EDB)		1.0	1	03/29/10 17:2	1 106-93-4		
Dibromomethane	ND ug/l	1.0	1	03/29/10 17:2	1 74-95-3		
1.2-Dichlorobenzene	ND ug/L	1.0	1	03/29/10 17:2	1 95-50-1		
1.3-Dichlorobenzene		1.0	1	03/29/10 17:2	1 541-73-1		
1 4-Dichlorobenzene	ND ug/L	1.0	1	03/29/10 17:2	1 106-46-7		
Dichlorodifluoromethane	ND ug/l	1.0	1	03/29/10 17:2	1 75-71-8	L1.M0	
1 1-Dichloroethane		1.0	1	03/29/10 17:2	1 75-34-3		
1.2-Dichloroethane		10	1	03/29/10 17:2	1 107-06-2		
1 1-Dichloroethene		1.0	1	03/29/10 17:2	1 75-35-4		
cis-1 2-Dichloroethene	ND ug/L	1.0	1	03/29/10 17:2	1 156-59-2		
trans-1.2-Dichloroethene		1.0	1	03/29/10 17:2	1 156-60-5		
Dichlorofluoromethane	ND ug/l	1.0	1	03/29/10 17:2	1 75-43-4		
1 2-Dichloropropage	ND ug/l	1.0	1	03/29/10 17:2	1 78-87-5		
1.3-Dichloropropane	ND ug/l	10	1	03/29/10 17:2	1 142-28-9		
2 2-Dichloropropane		4.0	1	03/29/10 17:2	1 594-20-7		
1.1-Dichloropropene	ND ug/L	1.0	1	03/29/10 17:2	1 563-58-6		
cis_1 3-Dichloropropene	ND ug/L	4.0	1	03/29/10 17:2	1 10061-01-5		
trans 1.3 Dichloropropene	ND ug/L	4.0	1	03/29/10 17:2	1 10061-02-6		
Distbul other (Ethyl other)	ND ug/L	4.0	1	03/29/10 17:2	1 60-29-7		
Ethylbenzene	ND ug/L	0 1 0	1	03/29/10 17:2	1 100-41-4		
Hevenhoro-1 3-butediene	ND ug/L	1.0 ∡∩	1	03/29/10 17:2	1 87-68-3		
	ND ug/L	 4 0	1	03/20/10 17:2	1 591-78-6		
2-nexatione	18 0 ug/L		1	03/20/10 17:2	1 74_88_4	MO	
Isopropylbenzene (Cumono)	ND ug/L	4.0 1 A	1	03/20/10 17.2	1 98-82-8	MO	
n Isopropylbenzene (Oumene)		1.0	, 1	03/20/10 17.2	1 99-87-6		
Methylene Chloride	ND ug/L	4.0	1	03/29/10 17:2	1 75-09-2		
	ND ugre	ч.0	•	00/20/10 17.2			

Date: 04/02/2010 03:42 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 7 of 18

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: CRC City of Rochester

Pace Project No.: 10125114

Sample: AS-Effluent	Lab ID: 10125114002	Collected: 03/25/10 08	3:10 Received	: 03/26/10 10:52 N	Aatrix: Water	
Parameters	Results Units	Report Limit D	F Prepare	ed Analyzed	CAS No.	Qual
624 MSV	Analytical Method: EPA	624				
2-Methylnaphthalene	ND ug/L	5.0 1		03/29/10 17:21	91-57-6	MO
4-Methyl-2-pentanone (MIBK)	ND ug/L	5.0 1		03/29/10 17:21	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0 1		03/29/10 17:21	1634-04-4	
Naphthalene	ND ug/L	4.0 1		03/29/10 17:21	91-20-3	
n-Propylbenzene	ND ug/L	1.0 1		03/29/10 17:21	103-65-1	
Styrene	ND ug/L	1.0 1		03/29/10 17:21	100-42-5	
1,1,1,2-Tetrachloroethane	ND ug/L	1.0 1		03/29/10 17:21	630-20-6	
1,1,2,2-Tetrachloroethane	ND ug/L	1.0 1		03/29/10 17:21	79-34-5	
Tetrachloroethene	ND ug/L	1.0 1		03/29/10 17:21	127-18-4	
Tetrahydrofuran	20.3 ug/L	10.0 1		03/29/10 17:21	109-99-9	
Toluene	ND ug/L	1.0 1		03/29/10 17:21	108-88-3	
1,2,3-Trichlorobenzene	ND ug/L	1.0 1		03/29/10 17:21	87-61-6	
1,2,4-Trichlorobenzene	ND ug/L	1.0 1		03/29/10 17:21	120-82-1	
1,1,1-Trichloroethane	ND ug/L	1.0 1		03/29/10 17:21	71-55-6	
1,1,2-Trichloroethane	ND ug/L	4.0 1		03/29/10 17:21	79-00-5	
Trichloroethene	ND ug/L	1.0 1		03/29/10 17:21	79-01-6	
Trichlorofluoromethane	ND ug/L	4.0 1		03/29/10 17:21	75-69-4	
1,2,3-Trichloropropane	ND ug/L	1.0 1		03/29/10 17:21	96-18-4	
1,1,2-Trichlorotrifluoroethane	ND ug/L	1.0 1		03/29/10 17:21	76-13-1	L1
1,2,4-Trimethylbenzene	ND ug/L	1.0 1		03/29/10 17:21	95-63-6	
1,3,5-Trimethylbenzene	ND ug/L	1.0 1	}	03/29/10 17:21	108-67-8	
Vinyl acetate	ND ug/L	20.0 1		03/29/10 17:21	108-05-4	
Vinyl chloride	ND ug/L	0.40 1		03/29/10 17:21	75-01-4	
Xylene (Total)	4.9 ug/L	3.0 1		03/29/10 17:21	1330-20-7	
m&p-Xylene	3.4 ug/L	2.0 1		03/29/10 17:21	1330-20-7	
o-Xylene	1.6 ug/L	1.0 1		03/29/10 17:21	95-47-6	
Dibromofluoromethane (S)	96 %	75-125 1	l	03/29/10 17:21	1868-53-7	
4-Bromofluorobenzene (S)	100 %	75-125 1	l	03/29/10 17:21	460-00-4	
Toluene-d8 (S)	98 %	75-125 1	l	03/29/10 17:21	2037-26-5	
1,2-Dichloroethane-d4 (S)	97 %	75-125 1	l	03/29/10 17:21	17060-07-0	

Date: 04/02/2010 03:42 PM

REPORT OF LABORATORY ANALYSIS

Page 8 of 18

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

^sace Analytical www.pacelabs.com

QUALITY CONTROL DATA

Pace Project No: 10125114 QC Batch: MSV/14135 Analysis Method: EPA 624 QC Batch Method: EPA 624 Analysis Description: 624 MSV Associated Lab Samples: 10125114001, 10125114002 Matrix: Water METHOD BLANK: 765878 Matrix: Water Associated Lab Samples: 10125114001, 10125114002 Enank Reporting 1,1,2.Tertreinforcethane ug/L ND 1.0 0322410 17:00 1,1,2.Triniforiorcethane ug/L ND 1.0 0322410 17:00 1,1,2.Triniforiorcethane ug/L ND 1.0 0322410 17:00 1,1,2.Triniforiorcethane ug/L ND 1.0 0322410 17:00 1,2.Z-Triniforiorcethane ug/L ND 1.0 0322410 17:00 1,2.Z-Triniforiorcethane <t< th=""><th>Project: CRC City of R</th><th>ochester</th><th></th><th></th><th></th><th></th><th></th></t<>	Project: CRC City of R	ochester					
C Batch: MSV14135 Analysis Method: EPA 624 QG Batch Method: EPA 624 Analysis Description: 624 MSV Associated Lab Samples: 10125114001, 10125114002 Matrix: Water Analysis Description: 624 MSV Associated Lab Samples: 10125114001, 10125114002 Blank Reporting Qualifiers 1,1,1,2-Tetrachoroathane up/L ND 1.0 0322910 17:00 1.1 1,1,2-Tetrachoroathane up/L ND 1.0 0322910 17:00 1.1 1.1,2-Tetrachoroathane up/L ND 0.0 0322910 17:00 1.1,2-Tetrachoroathane up/L ND 0.0 0322910 17:00 1.1,2-Tetrachoroathane up/L ND 0.0 0322910 17:00 1.1,2-Tetrachoroathane up/L ND 1.0 0322910 17:00 1.2,2-Tetrachoroathane up/L ND 1.0 03	Pace Project No.: 10125114						
CC Bach Metho: EPA 624 Analysis Description: 624 MSV Associated Lab Samples: 10125114001, 10125114002 Mattix: Water Associated Lab Samples: 10125114001, 10125114002 Blank Reporting Qualifiers 1.1,1.2-Trickhorothane upl. ND 1.0 0.3224/10 17:00 1.12 1.1,1.2-Trickhorothane upl. ND 1.0 0.3224/10 17:00 1.12 1.1.2-Trickhorothane upl. ND 1.0 0.3224/10 17:00 1.2 1.2-Dickhorothane upl. ND 1.0 0.3224/10 17:00 1.2 <td>QC Batch: MSV/14135</td> <td></td> <td>Analysis Meth</td> <td>nod: EF</td> <td>YA 624</td> <td></td> <td></td>	QC Batch: MSV/14135		Analysis Meth	nod: EF	YA 624		
Associated Lab Samples: 10125114001, 10125114002 METHOD BLANK: 768378 Matrix: Valer Associated Lab Samples: 10125114001, 10125114002 Blank Result Reporting Limit Analyzed Analyzed Qualiflers 11,12Teintorhorethane ug/L ND 1.0 03229/10 17:00 1.1 11,12Teintoroethane ug/L ND 1.0 03229/10 17:00 1.1 1,12Teintoroethane ug/L ND 1.0 03229/10 17:00 1.1 1,12Teintoroethane ug/L ND 1.0 03229/10 17:00 1.1 1,12.Teintoroethane ug/L ND 1.0 03229/10 17:00 1.2 1,12.Teintoroethane ug/L ND 1.0 03229/10 17:00 1.2.3 1,2.3.Trinchoroptane ug/L ND 1.0 03229/10 17:00 1.2.4.1TimeByterzane ug/L ND 03229/10 17:00 1,2.4.2.TimeByterzane ug/L ND 1.0 03229/10 17:00 1.2.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	QC Batch Method: EPA 624		Analysis Des	cription: 62	4 MSV		
METHOD BLANK: 765873 Matrix: Water Associated Lab Samples: 10125114001, 10125114002 Bink Reporting Limit Analyzed Qualifiers 1,1,1,2:Totrachloroethane ug/L ND 1.0 0328/1017.00 1.1 1,1,2:Totrachloroethane ug/L ND 1.0 0328/1017.00 1.1 <t< td=""><td>Associated Lab Samples: 10125</td><td>114001, 10125114002</td><td></td><td></td><td></td><td></td><td></td></t<>	Associated Lab Samples: 10125	114001, 10125114002					
Associated Lab Samples: 10125114001, 10125114002 Blank Result Reputing Limit Analyzed Qualifiers 1.1,1.2-Trichtoroethane ug/L ND 1.0 0328/1017.00 1.0 0328/1017.00 1.1,2-Trichtoroethane ug/L ND 1.0 0328/1017.00 1.12-17:01/07:00 1.12-17:01/07:00 0328/1017.00 1.12-17:01/07:00 1.12-17:01/07:00 0328/1017:00 1.12-17:01/07:00 1.12-17:01/07:01 0328/1017:00 1.12-17:01/07:01 0328/1017:00 1.12-17:01/07:01 1.12-17:01/07:01 0328/1017:00 1.12-17:01/07:01 1.12-17:01/07:01 0328/1017:00 1.22-17:01/07:00 1.22-17:01/07:00 1.22-17:01/07:01 0328/1017:00 1.22-17:01/07:01 0328/1017:00 1.22-17:01/07:01 1.22-17:01/07:01 0328/1017:00 1.22-17:01/07:01 1.22-01/07:01 1.22-01/07:01 1.22-01/07:01 1.22-01/07:01 1.22-01/07:01 1.22-01/07:01 1.22-01/07:01 1.22-01/07:01 1.22-01/07:01 1.22-01/07:01 1.22-01/07:01 1.22-01/07:01 1.22-01/07:01 1.22-01/07:01 1.22-01/07:01 1.22-01/07:01 1.22-01/07:01 1.22-01/07:01 1.22-01/07:01 <t< td=""><td>METHOD BLANK: 765878</td><td></td><td>Matrix:</td><td>Water</td><td></td><td></td><td></td></t<>	METHOD BLANK: 765878		Matrix:	Water			
Brain term Units Result Limit Analyzed Qualifiers 1,1,1,2-Tetrachioroethane ug/L ND 1.0 03/29/10 17:00 1,1,1-Tichioroethane ug/L ND 1.0 03/29/10 17:00 1,1,2-Tichioroethane ug/L ND 4.0 03/29/10 17:00 1,1,2-Tichioroethane ug/L ND 1.0 03/29/10 17:00 1,1-Dichoroethane ug/L ND 1.0 03/29/10 17:00 1,2-Tichioroothane ug/L ND 1.0 03/29/10 17:00 1,2	Associated Lab Samples: 10125	114001, 10125114002					
Parameter Units Result Limit Analyzed Qualifiers 1,1,1,2-Tektrachiorosthane ug/L ND 1.0 03/29/10 17:00 1,1,2-Tektrachiorosthane ug/L ND 1.0 03/29/10 17:00 1,12-Tektrachiorosthane ug/L ND 1.0 03/29/10 17:00 1,12-Tichtorosthane ug/L ND 1.0 03/29/10 17:00 1,12-Tichtorosthane ug/L ND 1.0 03/29/10 17:00 1,1-Dichtorostenane ug/L ND 1.0 03/29/10 17:00 1,2,3-Tichtorostenane ug/L ND 1.0 03/29/10 17:00 1,2,3-Tichtorostenane ug/L ND 1.0 03/29/10 17:00 1,2,3-Tichtorostenane ug/L ND 1.0 03/29/10 17:00 1,2,4-Tichtorostenzene ug/L ND 1.0 03/29/10 17:00 1,2,2-Tichtorostenzene ug/L ND 1.0 03/29/10 17:00 1,2-Dichtorostenzene ug/L ND 1.0 03/29/10 17:00 1,2-Dichtoro			Blank	Reporting			
1,1,2,-Tertrachionechane ug/L ND 1.0 0.3729/10 17:00 1,1,1-Trichioroethane ug/L ND 1.0 0.3729/10 17:00 1,1,2,-Tetrachioroethane ug/L ND 4.0 0.3729/10 17:00 1,1,2-Trichioroethane ug/L ND 4.0 0.3729/10 17:00 1,1,2-Trichioroethane ug/L ND 1.0 0.3729/10 17:00 1,1-Dichioroethane ug/L ND 1.0 0.3729/10 17:00 1,1-Dichioroethane ug/L ND 1.0 0.3729/10 17:00 1,2-3-Trichiorobanzene ug/L ND 1.0 0.3729/10 17:00 1,2-3-Trichiorobanzene ug/L ND 1.0 0.3729/10 17:00 1,2-4-Trimetriybenzene ug/L ND 1.0 0.3729/10 17:00 1,2-Dibriomo-Schloropropane ug/L ND 1.0 0.3729/10 17:00 1,2-Dichiorobanzene ug/L ND 1.0 0.3729/10 17:00 1,2-Dichiorobanzene ug/L ND 1.0 0.3729/10 17:00 1,2-Dichiorobanz	Parameter	Units	Result	Limit	Analyzed	Qualifiers	
1,1-1:richloroethane ugL ND 1.0 03/29/10 1,1,2-2:richloroethane ugL ND 4.0 03/29/10 17:00 1,12-1:richloroethane ugL ND 1.0 03/29/10 17:00 1,12-1:richloroethane ugL ND 1.0 03/29/10 17:00 1,1-Dichloroethane ugL ND 1.0 03/29/10 17:00 1,2-3:Tichlorobenzene ugL ND 1.0 03/29/10 17:00 1,2-3:Tichlorobenzene ugL ND 1.0 03/29/10 17:00 1,2-4:Tichlorobenzene ugL ND 1.0 03/29/10 17:00 1,2-4:Tichlorobenzene ugL ND 1.0 03/29/10 17:00 1,2-Dichlorobenzene ugL ND 1.0 03/29/10 17:00 1,2-Dichlorobenzene ugL ND 1.0 03/29/10 17:00 1,3-Dichoroporpone ugL ND 1.0 03/29/10 17:00 1,3-Dichoroporpopane	1,1,1,2-Tetrachloroethane	ug/L	ND	1.0	03/29/10 17:00		
1,1,2.2.1*Irachiorethane ugL ND 1.0 03/29/10 17.00 1,1.2.Trichhorothinuorethane ugL ND 1.0 03/29/10 17.00 1,1.2.Trichhorothinuorethane ugL ND 1.0 03/29/10 17.00 1,1.Dichorothene ugL ND 1.0 03/29/10 17.00 1,2.3.Trichoroptopane ugL ND 1.0 03/29/10 17.00 1,2.3.Trichoroptopane ugL ND 1.0 03/29/10 17.00 1,2.4.Trimethylbenzene ugL ND 1.0 03/29/10 17.00 1,2.4.Trimethylbenzene ugL ND 1.0 03/29/10 17.00 1,2.Ditorono-S-chloroptopane ugL ND 1.0 03/29/10 17.00 1,2.Dichorobenzene ugL ND 1.0 03/29/10 17.00 1,3.Dichorobenzene ugL ND 1.0 03/29/10 17.00 1,3.Dichorobenzene ugL ND 1.0 03/29/10 17.00	1,1,1-Trichloroethane	ug/L	ND	1.0	03/29/10 17:00		
1,1,2-Trichorothane ug/L ND 4.0 03229/10 17:00 1,1,2-Trichorothane ug/L ND 1.0 03229/10 17:00 1,1-Dichorothane ug/L ND 1.0 03229/10 17:00 1,1-Dichoropropene ug/L ND 1.0 03229/10 17:00 1,2,3-Trichoropropene ug/L ND 1.0 03229/10 17:00 1,2,3-Trichoropropene ug/L ND 1.0 03229/10 17:00 1,2,3-Trichoropropane ug/L ND 1.0 03229/10 17:00 1,2-Diornos-3-chloropropane ug/L ND 1.0 03229/10 17:00 1,2-Diornoshenzone ug/L ND 1.0 03229/10 17:00 1,2-Dichorophanezone ug/L ND 1.0 03229/10 17:00 1,2-Dichorophane ug/L ND 1.0 03229/10 17:00 1,2-Dichorophypane ug/L ND 1.0 03229/10 17:00 1,3-Dichorophypane ug/L ND 1.0 03229/10 17:00 1,4-Dichorophypane ug/L <	1,1,2,2-Tetrachloroethane	ug/L	ND	1.0	03/29/10 17:00		
1,1,2-Trichlorotiflucoreshane ug/L ND 1.0 0.3229/10 17:00 1,1-Dickhoropethane ug/L ND 1.0 03229/10 17:00 1,1-Dickhoropropene ug/L ND 1.0 03229/10 17:00 1,2,3-Trichkoropropane ug/L ND 1.0 03229/10 17:00 1,2,3-Trichkoropropane ug/L ND 1.0 03229/10 17:00 1,2,4-Trichkoropropane ug/L ND 1.0 03229/10 17:00 1,2-Dichorobenzene ug/L ND 1.0 03229/10 17:00 1,2-Dichorobenzene ug/L ND 1.0 03229/10 17:00 1,2-Dichorobenzene ug/L ND 1.0 0329/10 17:00 1,2-Dichorobenzene ug/L ND 1.0 0329/10 17:00 1,3-Dichorobenzene ug/L ND 1.0 0329/10 17:00 1,3-Dichorobenzene ug/L ND 1.0 0329/10 17:00 1,3-Dichorobenzene ug/L ND 1.0 0329/10 17:00 1,4-Dichorobenzene ug/L	1,1,2-Trichloroethane	ug/L	ND	4.0	03/29/10 17:00		
1,1-Dichloroethane ug/L ND 1.0 03/29/10 17:00 1,1-Dichloroethane ug/L ND 1.0 03/29/10 17:00 1,2,3-Trichloroptopane ug/L ND 1.0 03/29/10 17:00 1,2,3-Trichloroptopane ug/L ND 1.0 03/29/10 17:00 1,2,4-Trinehrybenzene ug/L ND 1.0 03/29/10 17:00 1,2-Dichoroptane ug/L ND 1.0 03/29/10 17:00 1,2-Dichoroptopane ug/L ND 1.0 03/29/10 17:00 1,3-Dichoroptopane ug/L ND 1.0 03/29/10 17:00 1,3-Dichoroptopane ug/L ND 1.0 03/29/10 17:00 2,2-Dichorobenzene ug/L ND	1,1,2-Trichlorotrifluoroethane	ug/L	ND	1.0	03/29/10 17:00		
1,1-Dichloropropene ug/L ND 1.0 03/29/10 17:00 1,1-Dichloropropene ug/L ND 1.0 03/29/10 17:00 1,2,3-Trichloropropane ug/L ND 1.0 03/29/10 17:00 1,2,4-Trichlorobenzene ug/L ND 1.0 03/29/10 17:00 1,2,4-Trichlorobenzene ug/L ND 1.0 03/29/10 17:00 1,2-Dibromo-3-chloropropane ug/L ND 1.0 03/29/10 17:00 1,2-Dibromo-shane (EDB) ug/L ND 1.0 03/29/10 17:00 1,2-Dichorobenzene ug/L ND 1.0 03/29/10 17:00 1,2-Dichorobenzene ug/L ND 1.0 03/29/10 17:00 1,3-Dichlorobenzene ug/L ND 1.0 03/29/10 17:00 1,3-Dichloropropane ug/L ND 1.0 03/29/10 17:00 1,3-Dichlorobenzene ug/L ND 1.0 03/29/10 17:00 1,3-Dichloropropane ug/L ND 1.0 03/29/10 17:00 2,2-Dichloropropane ug/L	1,1-Dichloroethane	ug/L	ND	1.0	03/29/10 17:00		
1,1-Dickloropropene ug/L ND 1.0 03/29/10 17:00 1,2,3-Ticklorobenzene ug/L ND 1.0 03/29/10 17:00 1,2,3-Ticklorobenzene ug/L ND 1.0 03/29/10 17:00 1,2,4-Tintelytbenzene ug/L ND 1.0 03/29/10 17:00 1,2-Dicklorobenzene ug/L ND 1.0 03/29/10 17:00 1,3-Dickloropropane ug/L ND 1.0 03/29/10 17:00 1,3-Dickloropropane ug/L ND 1.0 03/29/10 17:00 1,3-Dickloropropane ug/L ND 1.0 03/29/10 17:00 2-Dickloropropane ug/L ND 4.0 03/29/10 17:00 2-Dickloropropane ug/L ND 4.0 03/29/10 17:00 2-Dickloropropane ug/L N	1,1-Dichloroethene	ug/L	ND	1.0	03/29/10 17:00		
1,2,3-Trichloroperpane ug/L ND 1.0 03/29/10 17:00 1,2,4-Trichloroperpane ug/L ND 1.0 03/29/10 17:00 1,2,4-Trichloroperpane ug/L ND 1.0 03/29/10 17:00 1,2-Ditromo-S-chloropropane ug/L ND 1.0 03/29/10 17:00 1,2-Ditromo-S-chloropropane ug/L ND 1.0 03/29/10 17:00 1,2-Ditromo-S-chloropropane ug/L ND 1.0 03/29/10 17:00 1,2-Dichoropethane ug/L ND 1.0 03/29/10 17:00 1,2-Dichoropropane ug/L ND 1.0 03/29/10 17:00 1,3-Dichoropropane ug/L ND 1.0 03/29/10 17:00 1,3-Dichoropropane ug/L ND 1.0 03/29/10 17:00 1,4-Dichoropropane ug/L ND 4.0 03/29/10 17:00 2-Ditoropropane ug/L ND 4.0 03/29/10 17:00 2-Dichorophylinyl ether ug/L ND 4.0 03/29/10 17:00 2-Dichorophylinyl ether ug/L ND 4.0 03/29/10 17:00 2-Hexanon	1,1-Dichloropropene	ug/L	ND	1.0	03/29/10 17:00		
1,2.3-Trichloropropane ug/L ND 1.0 03/29/10 17:00 1,2.4-Trinnethylbenzene ug/L ND 1.0 03/29/10 17:00 1,2-Dibromo-3-chloropropane ug/L ND 4.0 03/29/10 17:00 1,2-Dibromo-s-chloropropane ug/L ND 4.0 03/29/10 17:00 1,2-Dichlorobenzene ug/L ND 1.0 03/29/10 17:00 1,2-Dichloropropane ug/L ND 1.0 03/29/10 17:00 1,3-Dichloropropane ug/L ND 1.0 03/29/10 17:00 1,3-Dichloropropane ug/L ND 1.0 03/29/10 17:00 1,4-Dichlorobenzene ug/L ND 1.0 03/29/10 17:00 1,4-Dichlorobenzene ug/L ND 4.0 03/29/10 17:00 2,2-Dichloropropane ug/L ND 4.0 03/29/10 17:00 2,2-Dichloropropane ug/L ND 4.0 03/29/10 17:00 2,2-Dichloropropane ug/L ND 1.0 03/29/10 17:0	1,2,3-Trichlorobenzene	ug/L	ND	1.0	03/29/10 17:00		
1,2,4-Trichlorobenzene ug/L ND 1.0 03/28/10 17:00 1,2-Dibromosthane (EDB) ug/L ND 1.0 03/28/10 17:00 1,2-Dibromosthane (EDB) ug/L ND 1.0 03/28/10 17:00 1,2-Dibromosthane (EDB) ug/L ND 1.0 03/28/10 17:00 1,2-Dichlorobenzene ug/L ND 1.0 03/28/10 17:00 1,2-Dichlorobenzene ug/L ND 1.0 03/28/10 17:00 1,3-Dichlorobenzene ug/L ND 1.0 03/28/10 17:00 1,3-Dichlorobenzene ug/L ND 1.0 03/28/10 17:00 1,3-Dichlorobenzene ug/L ND 1.0 03/28/10 17:00 1,4-Dichlorobenzene ug/L ND 4.0 03/28/10 17:00 2,2-Dichorobenzene ug/L ND 4.0 03/28/10 17:00 2,2-Dichorobenzene ug/L ND 4.0 03/28/10 17:00 2,2-Dichorobenzene ug/L ND 1.0 03/28/10 17:00	1,2,3-Trichloropropane	ug/L	ND	1.0	03/29/10 17:00		
1,2,4 Trimethylbenzene ug/L ND 1.0 03/29/10 17:00 1,2-Dibromos-Achloropropane ug/L ND 1.0 03/29/10 17:00 1,2-Dibromosthane (EDB) ug/L ND 1.0 03/29/10 17:00 1,2-Dibromosthane (EDB) ug/L ND 1.0 03/29/10 17:00 1,2-Dichloropethane ug/L ND 1.0 03/29/10 17:00 1,3-Dichloropethane ug/L ND 1.0 03/29/10 17:00 1,3-Dichloropenzene ug/L ND 1.0 03/29/10 17:00 1,3-Dichloropenzene ug/L ND 1.0 03/29/10 17:00 1,4-Dichlorobenzene ug/L ND 1.0 03/29/10 17:00 2,-Dichloropropane ug/L ND 1.0 03/29/10 17:00 2,-Hexanone	1,2,4-Trichlorobenzene	ug/L	ND	1.0	03/29/10 17:00		
1.2-Dibromo-3-chloropropane ug/L ND 4.0 03/29/10 17:00 1.2-Diblorobenzene ug/L ND 1.0 03/29/10 17:00 1.2-Diblorobenzene ug/L ND 1.0 03/29/10 17:00 1.2-Dichloropopane ug/L ND 1.0 03/29/10 17:00 1.3-5-Trimethylbenzene ug/L ND 1.0 03/29/10 17:00 1.3-Dichloropopane ug/L ND 1.0 03/29/10 17:00 1.3-Dichloropopane ug/L ND 1.0 03/29/10 17:00 1.4-Dichloropopane ug/L ND 1.0 03/29/10 17:00 2.2-Dichloropropane ug/L ND 4.0 03/29/10 17:00 2.4-Dichloropropane ug/L ND 4.0 03/29/10 17:00 2.Chlorosthylivhjether ug/L ND 4.0 03/29/10 17:00 2.Chlorosthyniaphthalene ug/L ND 4.0 03/29/10 17:00 2.Methylinaphthalene ug/L ND 5.0 03/29/10 17:00 4.Chlorotoluene ug/L ND 0.0 03/29/10 17:00 Actore ug/L	1,2,4-Trimethylbenzene	ug/L	ND	1.0	03/29/10 17:00		
1.2-Dibromoethane (EDB) ug/L ND 1.0 03/29/10 17:00 1.2-Dichlorobenzene ug/L ND 1.0 03/29/10 17:00 1.2-Dichloropthane ug/L ND 1.0 03/29/10 17:00 1.3-Dichloroptopane ug/L ND 1.0 03/29/10 17:00 1.3-Dichloroptopane ug/L ND 1.0 03/29/10 17:00 1.3-Dichloroptopane ug/L ND 1.0 03/29/10 17:00 1.4-Dichlorobenzene ug/L ND 1.0 03/29/10 17:00 2.2-Dichloropropane ug/L ND 4.0 03/29/10 17:00 2.4-Dichloropropane ug/L ND 4.0 03/29/10 17:00 2.4-Dichloropropane ug/L ND 4.0 03/29/10 17:00 2.4-Dichlorobluene ug/L ND 4.0 03/29/10 17:00 2-Methylnaphtalene ug/L ND 5.0 03/29/10 17:00 4-Methyl-2-pentanone (MIBK) ug/L ND 5.0 03/29/10 17:00 <td>1,2-Dibromo-3-chloropropane</td> <td>ug/L</td> <td>ND</td> <td>4.0</td> <td>03/29/10 17:00</td> <td></td> <td></td>	1,2-Dibromo-3-chloropropane	ug/L	ND	4.0	03/29/10 17:00		
1.2-Dichlorobenzene ug/L ND 1.0 03/29/10 17:00 1.2-Dichloropropane ug/L ND 1.0 03/29/10 17:00 1.3-Dichloropropane ug/L ND 1.0 03/29/10 17:00 1.3-Dichloropropane ug/L ND 1.0 03/29/10 17:00 1.3-Dichloropropane ug/L ND 1.0 03/29/10 17:00 1.4-Dichloropropane ug/L ND 1.0 03/29/10 17:00 2.2-Dichloropropane ug/L ND 4.0 03/29/10 17:00 2.C-Inorobluene ug/L ND 1.0 03/29/10 17:00 2-Chlorobluene ug/L ND 4.0 03/29/10 17:00 2-Hexanone ug/L ND 4.0 03/29/10 17:00 2-Hexanone ug/L ND 5.0 03/29/10 17:00 2-Methylinapithalene ug/L ND 1.0 03/29/10 17:00 4-Methyl-2-pentanone (MIBK) ug/L ND 1.0 03/29/10 17:00 Aceto	1,2-Dibromoethane (EDB)	ug/L	ND	1.0	03/29/10 17:00		
1,2-Dichloroethane ug/L ND 1.0 03/29/10 17:00 1,3-Dichloropropane ug/L ND 1.0 03/29/10 17:00 1,3-Dichlorobenzene ug/L ND 1.0 03/29/10 17:00 1,3-Dichloropropane ug/L ND 1.0 03/29/10 17:00 1,4-Dichlorobenzene ug/L ND 1.0 03/29/10 17:00 2,2-Dichloropropane ug/L ND 4.0 03/29/10 17:00 2,2-Dichloropropane ug/L ND 4.0 03/29/10 17:00 2,2-Dichloropropane ug/L ND 4.0 03/29/10 17:00 2-Chorotoluene ug/L ND 1.0 03/29/10 17:00 2-Hexanone ug/L ND 4.0 03/29/10 17:00 2-Hexanone ug/L ND 1.0 03/29/10 17:00 4-Chlorotoluene ug/L ND 1.0 03/29/10 17:00 4-Chlorotoluene ug/L ND 1.0 03/29/10 17:00 Acotolein	1,2-Dichlorobenzene	ug/L	ND	1.0	03/29/10 17:00		
1,2-Dichloropropane ug/L ND 1.0 03/29/10 17:00 1,3,5-Trimethylbenzene ug/L ND 1.0 03/29/10 17:00 1,3-Dichloropenzene ug/L ND 1.0 03/29/10 17:00 1,3-Dichloropropane ug/L ND 1.0 03/29/10 17:00 2,2-Dichloropropane ug/L ND 4.0 03/29/10 17:00 2,2-Dichloropropane ug/L ND 4.0 03/29/10 17:00 2,2-Dichloropropane ug/L ND 4.0 03/29/10 17:00 2-Chlorothylvinyl ether ug/L ND 4.0 03/29/10 17:00 2-Hexanone ug/L ND 4.0 03/29/10 17:00 2-Hexanone ug/L ND 5.0 03/29/10 17:00 4-Chlorotoluene ug/L ND 5.0 03/29/10 17:00 Acetone ug/L ND 5.0 03/29/10 17:00 Acetone ug/L ND 1.0 03/29/10 17:00 Alyt chloride ug/L ND 1.0 03/29/10 17:00 Alyt chloride ug/L ND 1.0	1,2-Dichloroethane	ug/L	ND	1.0	03/29/10 17:00		
1,3.5-Trimethylbenzene ug/L ND 1.0 03/29/10 17:00 1,3-Dichlorobenzene ug/L ND 1.0 03/29/10 17:00 1,3-Dichloropropane ug/L ND 1.0 03/29/10 17:00 2,2-Dichloropropane ug/L ND 4.0 03/29/10 17:00 2,2-Dichloropropane ug/L ND 4.0 03/29/10 17:00 2-Chiorothylvinyl ether ug/L ND 1.0 03/29/10 17:00 2-Chiorothylvinyl ether ug/L ND 1.0 03/29/10 17:00 2-Chiorotoluene ug/L ND 1.0 03/29/10 17:00 2-Heaxnone ug/L ND 5.0 03/29/10 17:00 4-Chiorotoluene ug/L ND 5.0 03/29/10 17:00 4-Chiorotoluene ug/L ND 1.0 03/29/10 17:00 4-Chiorotoluene ug/L ND 1.0 03/29/10 17:00 4-Chiorotoluene ug/L ND 1.0 03/29/10 17:00 Acrot	1,2-Dichloropropane	ug/L	ND	1.0	03/29/10 17:00		
1,3-Dichlorobenzene ug/L ND 1.0 03/29/10 17:00 1,3-Dichloropropane ug/L ND 1.0 03/29/10 17:00 2,4-Dichlorobenzene ug/L ND 4.0 03/29/10 17:00 2,2-Dichloropropane ug/L ND 4.0 03/29/10 17:00 2-Chloroethylvinyl ether ug/L ND 4.0 03/29/10 17:00 2-Chlorotoluene ug/L ND 1.0 03/29/10 17:00 2-Hexanone ug/L ND 4.0 03/29/10 17:00 2-Hexanone ug/L ND 5.0 03/29/10 17:00 4-Chlorotoluene ug/L ND 5.0 03/29/10 17:00 4-Chlorotoluene ug/L ND 5.0 03/29/10 17:00 Accorea ug/L ND 1.0 03/29/10 17:00 Accorea ug/L ND 1.0 03/29/10 17:00 Acrolein ug/L ND 1.0 03/29/10 17:00 Acrolein ug/L ND<	1,3,5-Trimethylbenzene	ug/L	ND	1.0	03/29/10 17:00		
1,3-Dichloropropane ug/L ND 1.0 03/29/10 17:00 1,4-Dichlorobenzene ug/L ND 4.0 03/29/10 17:00 2,2-Dichloropropane ug/L ND 4.0 03/29/10 17:00 2-Butanone (MEK) ug/L ND 4.0 03/29/10 17:00 2-Chlorotoluene ug/L ND 1.0 03/29/10 17:00 2-Hexanone ug/L ND 4.0 03/29/10 17:00 2-Hexanone ug/L ND 4.0 03/29/10 17:00 2-Hexanone ug/L ND 5.0 03/29/10 17:00 4-Chlorotoluene ug/L ND 1.0 03/29/10 17:00 4-Chlorotoluene ug/L ND 1.0 03/29/10 17:00 4-Chlorotoluene ug/L ND 1.0 03/29/10 17:00 Acrolein ug/L ND 1.0 03/29/10 17:00 Acrolein ug/L ND 1.0 03/29/10 17:00 Benzene ug/L ND	1,3-Dichlorobenzene	ug/L	ND	1.0	03/29/10 17:00		
1,4-Dichlorobenzene ug/L ND 1.0 03/29/1017:00 2,2-Dichloropropane ug/L ND 4.0 03/29/1017:00 2-Butanone (MEK) ug/L ND 1.0 03/29/1017:00 2-Chlorotoluene ug/L ND 1.0 03/29/1017:00 2-Hexanone ug/L ND 1.0 03/29/1017:00 2-Hexanone ug/L ND 4.0 03/29/1017:00 2-Hexanone ug/L ND 5.0 03/29/1017:00 4-Chlorotoluene ug/L ND 1.0 03/29/1017:00 4-Chlorotoluene ug/L ND 5.0 03/29/1017:00 4-Chlorotoluene ug/L ND 10.0 03/29/1017:00 Aceolene ug/L ND 10.0 03/29/1017:00 Acerolein ug/L ND 10.0 03/29/1017:00 Acerolein ug/L ND 1.0 03/29/1017:00 Acerolein ug/L ND 1.0 03/29/1017:00 Bromochloromethane ug/L ND 1.0 03/29/1017:00	1,3-Dichloropropane	ug/L	ND	1.0	03/29/10 17:00		
2.2-Dichloropropane ug/L ND 4.0 03/29/10 17:00 2-Butanone (MEK) ug/L ND 1.0 03/29/10 17:00 2-Chloroethylvinyl ether ug/L ND 1.0 03/29/10 17:00 2-Chlorootluene ug/L ND 1.0 03/29/10 17:00 2-Hexanone ug/L ND 5.0 03/29/10 17:00 2-Methylnaphthalene ug/L ND 5.0 03/29/10 17:00 4-Chlorotoluene ug/L ND 5.0 03/29/10 17:00 4-Chlorotoluene ug/L ND 5.0 03/29/10 17:00 Acetone ug/L ND 1.0 03/29/10 17:00 Acetone ug/L ND 10.0 03/29/10 17:00 Acrolein ug/L ND 10.0 03/29/10 17:00 Acroloide ug/L ND 1.0 03/29/10 17:00 Bromobenzene ug/L ND 1.0 03/29/10 17:00 Bromochloromethane ug/L ND 1.0 03/29/10 17:00 Bromochloromethane ug/L ND 1.0 03/29/10 17:00	1,4-Dichlorobenzene	ug/L	ND	1.0	03/29/10 17:00		
2-Butanone (MEK) ug/L ND 4.0 03/29/10 17:00 2-Chloroethylvinyl ether ug/L ND 10.0 03/29/10 17:00 2-Chlorotoluene ug/L ND 4.0 03/29/10 17:00 2-Hexanone ug/L ND 4.0 03/29/10 17:00 2-Hexanone ug/L ND 5.0 03/29/10 17:00 4-Chlorotoluene ug/L ND 5.0 03/29/10 17:00 4-Methyl-2-pentanone (MIBK) ug/L ND 5.0 03/29/10 17:00 Acetone ug/L ND 4.0 03/29/10 17:00 Acetone ug/L ND 4.0 03/29/10 17:00 Acrylonitrile ug/L ND 4.0 03/29/10 17:00 Benzene ug/L ND 1.0 03/29/10 17:00 Bromobenzene ug/L ND 1.0 03/29/10 17:00 Bromochloromethane ug/L ND 4.0 03/29/10 17:00 Bromochloromethane ug/L ND 4.0 03/29/10 17:00 </td <td>2,2-Dichloropropane</td> <td>ug/L</td> <td>ND</td> <td>4.0</td> <td>03/29/10 17:00</td> <td></td> <td></td>	2,2-Dichloropropane	ug/L	ND	4.0	03/29/10 17:00		
2-Chloroethylvnyl ether Ug/L ND 10.0 03/29/10 17:00 2-Chlorotoluene ug/L ND 1.0 03/29/10 17:00 2-Hexanone ug/L ND 5.0 03/29/10 17:00 4-Chlorotoluene ug/L ND 5.0 03/29/10 17:00 4-Chlorotoluene ug/L ND 1.0 03/29/10 17:00 4-Methyl-2-pentanone (MIBK) ug/L ND 5.0 03/29/10 17:00 Acetone ug/L ND 10.0 03/29/10 17:00 Acrolein ug/L ND 10.0 03/29/10 17:00 Acrolein ug/L ND 10.0 03/29/10 17:00 Acrolein ug/L ND 1.0 03/29/10 17:00 Benzene ug/L ND 1.0 03/29/10 17:00 Bromochloromethane ug/L ND 1.0 03/29/10 17:00 Bromodichloromethane ug/L ND	2-Butanone (MEK)	ug/L	ND	4.0	03/29/10 17:00		
2-Chorotoluene Ug/L ND 1.0 03/29/10 17.00 2-Hexanone ug/L ND 4.0 03/29/10 17.00 4-Chlorotoluene ug/L ND 5.0 03/29/10 17.00 4-Chlorotoluene ug/L ND 1.0 03/29/10 17:00 4-Methyl-2-pentanone (MIBK) ug/L ND 10.0 03/29/10 17:00 Acetone ug/L ND 10.0 03/29/10 17:00 Acetone ug/L ND 10.0 03/29/10 17:00 Acrylonitrile ug/L ND 10.0 03/29/10 17:00 Acrylonitrile ug/L ND 10.0 03/29/10 17:00 Benzene ug/L ND 1.0 03/29/10 17:00 Bromobenzene ug/L ND 1.0 03/29/10 17:00 Bromochloromethane ug/L ND 4.0 03/29/10 17:00 Bromoform ug/L ND 8.0	2-Chloroethylvinyl ether	ug/L	ND	10.0	03/29/10 17:00		
2-Hexanone Ug/L ND 4.0 03/29/10 17:00 2-Methylnaphthalene ug/L ND 5.0 03/29/10 17:00 4-Chlorotoluene ug/L ND 1.0 03/29/10 17:00 4-Methyl-2-pentanone (MIBK) ug/L ND 5.0 03/29/10 17:00 Acetone ug/L ND 4.0 03/29/10 17:00 Acetone ug/L ND 4.0 03/29/10 17:00 Acrolein ug/L ND 4.0 03/29/10 17:00 Acrylonitrile ug/L ND 1.0 03/29/10 17:00 Benzene ug/L ND 1.0 03/29/10 17:00 Bromobenzene ug/L ND 1.0 03/29/10 17:00 Bromochloromethane ug/L ND 1.0 03/29/10 17:00 Bromoform ug/L ND 4.0 03/29/10 17:00 Bromoform ug/L ND 4.0 03/29/10 17:00 Bromoform ug/L ND 4.0 03/29/10 17:00 Carbo	2-Chlorotoluene	ug/L	ND	1.0	03/29/10 17:00		
2-Metryinaprintation Ug/L ND 1.0 0.3/29/10 17:00 4-Chlorotoluene ug/L ND 1.0 03/29/10 17:00 4-Methyl-2-pentanone (MIBK) ug/L ND 10.0 03/29/10 17:00 Acetone ug/L ND 4.0 03/29/10 17:00 Acrolein ug/L ND 4.0 03/29/10 17:00 Acrylonitrile ug/L ND 4.0 03/29/10 17:00 Allyl chloride ug/L ND 4.0 03/29/10 17:00 Benzene ug/L ND 1.0 03/29/10 17:00 Bromobenzene ug/L ND 1.0 03/29/10 17:00 Bromochloromethane ug/L ND 1.0 03/29/10 17:00 Bromodichloromethane ug/L ND 4.0 03/29/10 17:00 Bromoform ug/L ND 8.0 03/29/10 17:00 Bromoform ug/L ND 4.0 03/29/10 17:00 Carbon disulfide ug/L ND 4.0 03/29/10 17:00		ug/L	ND	4.0	03/29/10 17:00		
4-Childboluelleug/LND1.003/29/1017.004-Methyl-2-pentanone (MIBK)ug/LND5.003/29/1017:00Acetoneug/LND10.003/29/1017:00Acroleinug/LND40.003/29/1017:00Acrylonitrileug/LND10.003/29/1017:00Allyl chlorideug/LND4.003/29/1017:00Benzeneug/LND1.003/29/1017:00Bromobenzeneug/LND1.003/29/1017:00Bromochloromethaneug/LND1.003/29/1017:00Bromoformug/LND4.003/29/1017:00Bromomethaneug/LND4.003/29/1017:00Bromothfaneug/LND4.003/29/1017:00Carbon disulfideug/LND4.003/29/1017:00Carbon tetrachlorideug/LND4.003/29/1017:00Chlorobenzeneug/LND4.003/29/1017:00Chlorobenzeneug/LND1.003/29/1017:00Chlorobenzeneug/LND1.003/29/1017:00Chlorobenzeneug/LND1.003/29/1017:00Chlorobenzeneug/LND1.003/29/1017:00Chlorobenzeneug/LND1.003/29/1017:00Chlorobenzeneug/LND1.003		ug/L	ND	5.0	03/29/10 17:00		
Anietry 2-pertailorie (MIRK) ug/L ND 3.0 03/29/10 17:00 Acetone ug/L ND 40.0 03/29/10 17:00 Acrolein ug/L ND 10.0 03/29/10 17:00 Acrylonitrile ug/L ND 4.0 03/29/10 17:00 Allyl chloride ug/L ND 4.0 03/29/10 17:00 Benzene ug/L ND 1.0 03/29/10 17:00 Bromobenzene ug/L ND 1.0 03/29/10 17:00 Bromochloromethane ug/L ND 1.0 03/29/10 17:00 Bromochloromethane ug/L ND 1.0 03/29/10 17:00 Bromodichloromethane ug/L ND 1.0 03/29/10 17:00 Bromoform ug/L ND 4.0 03/29/10 17:00 Bromothane ug/L ND 4.0 03/29/10 17:00 Carbon disulfide ug/L ND 4.0 03/29/10 17:00 Carbon tetrachloride ug/L ND 1.0 03/29/10 17:00 Chlorobenzene ug/L ND 4.0 03/29/10 17:00	4-Chiorololuene	ug/L	ND	1.0	03/29/10 17:00		
Actolieug/LND10.003/29/10 17:00Acroleinug/LND10.003/29/10 17:00Acrylonitrileug/LND10.003/29/10 17:00Allyl chlorideug/LND1.003/29/10 17:00Benzeneug/LND1.003/29/10 17:00Bromobenzeneug/LND1.003/29/10 17:00Bromochloromethaneug/LND1.003/29/10 17:00Bromodichloromethaneug/LND4.003/29/10 17:00Bromodithlaromethaneug/LND4.003/29/10 17:00Bromothlaneug/LND4.003/29/10 17:00Bromothlaneug/LND4.003/29/10 17:00Carbon disulfideug/LND1.003/29/10 17:00Carbon tetrachlorideug/LND4.003/29/10 17:00Chlorobenzeneug/LND1.003/29/10 17:00Chlorobenzeneug/LND1.003/29/10 17:00Chlorobenzeneug/LND1.003/29/10 17:00Chlorobenzeneug/LND1.003/29/10 17:00Chlorobenzeneug/LND1.003/29/10 17:00Chlorobenzeneug/LND1.003/29/10 17:00Chlorobenzeneug/LND1.003/29/10 17:00		ug/L		10.0	03/29/10 17:00		
Activitientug/LND10.003/29/10 17:00Acrylonitrileug/LND10.003/29/10 17:00Allyl chlorideug/LND4.003/29/10 17:00Benzeneug/LND1.003/29/10 17:00Bromobenzeneug/LND1.003/29/10 17:00Bromochloromethaneug/LND1.003/29/10 17:00Bromodichloromethaneug/LND4.003/29/10 17:00Bromodichloromethaneug/LND4.003/29/10 17:00Bromothaneug/LND4.003/29/10 17:00Bromothaneug/LND4.003/29/10 17:00Carbon disulfideug/LND1.003/29/10 17:00Carbon tetrachlorideug/LND4.003/29/10 17:00Chlorobenzeneug/LND1.003/29/10 17:00Chlorobenzeneug/LND1.003/29/10 17:00Chlorobenzeneug/LND1.003/29/10 17:00Chlorobenzeneug/LND1.003/29/10 17:00Chlorobenzeneug/LND1.003/29/10 17:00Chlorobenzeneug/LND1.003/29/10 17:00Chlorobenzeneug/LND1.003/29/10 17:00	Aceloine	ug/L		40.0	03/29/10 17:00		
Allyl chlorideug/LND4.003/29/10 17:00Benzeneug/LND1.003/29/10 17:00Bromobenzeneug/LND1.003/29/10 17:00Bromochloromethaneug/LND1.003/29/10 17:00Bromodichloromethaneug/LND4.003/29/10 17:00Bromodichloromethaneug/LND4.003/29/10 17:00Bromodichloromethaneug/LND4.003/29/10 17:00Bromodithaneug/LND4.003/29/10 17:00Bromothaneug/LND4.003/29/10 17:00Carbon disulfideug/LND1.003/29/10 17:00Carbon tetrachlorideug/LND4.003/29/10 17:00Chlorobenzeneug/LND1.003/29/10 17:00Chloroethaneug/LND1.003/29/10 17:00Chloroethaneug/LND1.003/29/10 17:00	Acrolonitrile	ug/L.		40.0	03/29/10 17:00		
High Chloride ug/L ND 1.0 03/29/10 17:00 Benzene ug/L ND 1.0 03/29/10 17:00 Bromobenzene ug/L ND 1.0 03/29/10 17:00 Bromochloromethane ug/L ND 1.0 03/29/10 17:00 Bromodichloromethane ug/L ND 4.0 03/29/10 17:00 Bromoform ug/L ND 8.0 03/29/10 17:00 Bromothane ug/L ND 4.0 03/29/10 17:00 Bromothane ug/L ND 4.0 03/29/10 17:00 Carbon disulfide ug/L ND 1.0 03/29/10 17:00 Carbon tetrachloride ug/L ND 4.0 03/29/10 17:00 Chlorobenzene ug/L ND 4.0 03/29/10 17:00 Chloroethane ug/L ND 1.0 03/29/10 17:00	Allyl chloride	ug/L	ND	4.0	03/29/10 17:00		
Bromobenzene ug/L ND 1.0 03/29/10 17:00 Bromochloromethane ug/L ND 1.0 03/29/10 17:00 Bromodichloromethane ug/L ND 4.0 03/29/10 17:00 Bromodichloromethane ug/L ND 4.0 03/29/10 17:00 Bromoform ug/L ND 8.0 03/29/10 17:00 Bromomethane ug/L ND 4.0 03/29/10 17:00 Carbon disulfide ug/L ND 1.0 03/29/10 17:00 Carbon tetrachloride ug/L ND 4.0 03/29/10 17:00 Chlorobenzene ug/L ND 4.0 03/29/10 17:00 Chloroethane ug/L ND 1.0 03/29/10 17:00	Benzene	ug/L	ND	4.0	03/29/10 17:00		
Bromochloromethane ug/L ND 1.0 03/29/10 17:00 Bromodichloromethane ug/L ND 4.0 03/29/10 17:00 Bromoform ug/L ND 8.0 03/29/10 17:00 Bromomethane ug/L ND 4.0 03/29/10 17:00 Bromomethane ug/L ND 4.0 03/29/10 17:00 Carbon disulfide ug/L ND 1.0 03/29/10 17:00 Carbon tetrachloride ug/L ND 4.0 03/29/10 17:00 Chlorobenzene ug/L ND 4.0 03/29/10 17:00 Chloroethane ug/L ND 1.0 03/29/10 17:00	Bromobenzene	ug/L	ND	1.0	03/29/10 17:00		
Bromodichloromethane ug/L ND 4.0 03/29/10 17:00 Bromoform ug/L ND 8.0 03/29/10 17:00 Bromomethane ug/L ND 4.0 03/29/10 17:00 Bromomethane ug/L ND 4.0 03/29/10 17:00 Carbon disulfide ug/L ND 1.0 03/29/10 17:00 Carbon tetrachloride ug/L ND 4.0 03/29/10 17:00 Chlorobenzene ug/L ND 1.0 03/29/10 17:00 Chloroethane ug/L ND 1.0 03/29/10 17:00	Bromochloromethane	ug/L	ND	1.0	03/29/10 17:00		
Bromoform ug/L ND 8.0 03/29/10 17:00 Bromomethane ug/L ND 4.0 03/29/10 17:00 Carbon disulfide ug/L ND 1.0 03/29/10 17:00 Carbon tetrachloride ug/L ND 4.0 03/29/10 17:00 Carbon tetrachloride ug/L ND 4.0 03/29/10 17:00 Chlorobenzene ug/L ND 1.0 03/29/10 17:00 Chloroethane ug/L ND 1.0 03/29/10 17:00	Bromodichloromethane	ug/L	ND	4.0	03/29/10 17:00		
Bromomethane ug/L ND 4.0 03/29/10 17:00 Carbon disulfide ug/L ND 1.0 03/29/10 17:00 Carbon tetrachloride ug/L ND 4.0 03/29/10 17:00 Chlorobenzene ug/L ND 4.0 03/29/10 17:00 Chloroethane ug/L ND 1.0 03/29/10 17:00	Bromoform	ua/L	ND	8.0	03/29/10 17:00		
Carbon disulfide ug/L ND 1.0 03/29/10 17:00 Carbon tetrachloride ug/L ND 4.0 03/29/10 17:00 Chlorobenzene ug/L ND 1.0 03/29/10 17:00 Chlorobenzene ug/L ND 1.0 03/29/10 17:00 Chloroethane ug/L ND 1.0 03/29/10 17:00	Bromomethane	ua/L	ND	4.0	03/29/10 17:00		
Carbon tetrachloride ug/L ND 4.0 03/29/10 17:00 Chlorobenzene ug/L ND 1.0 03/29/10 17:00 Chloroethane ug/L ND 1.0 03/29/10 17:00	Carbon disulfide	ug/L	ND	1.0	03/29/10 17:00		
Chlorobenzene ug/L ND 1.0 03/29/10 17:00 Chloroethane ug/L ND 1.0 03/29/10 17:00	Carbon tetrachloride	ug/L	ND	4.0	03/29/10 17:00		
Chloroethane ug/L ND 1.0 03/29/10 17:00	Chlorobenzene	ug/L	ND	1.0	03/29/10 17:00		
	Chloroethane	ug/L	ND	1.0	03/29/10 17:00		

Date: 04/02/2010 03:42 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Page 9 of 18

^race Analytical www.pacelabs.com

QUALITY CONTROL DATA

Project: CRC City of Rochester 10125114

Pace Project No.:

METHOD BLANK: 765878

Matrix: Water

Associated Lab Samples: 10125114001, 10125114002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Chloroform	ug/L	ND	1.0	03/29/10 17:00	
Chloromethane	ug/L	ND	4.0	03/29/10 17:00	
Chloroprene	ug/L	ND	1.0	03/29/10 17:00	
cis-1,2-Dichloroethene	ug/L	ND	1.0	03/29/10 17:00	
cis-1,3-Dichloropropene	ug/L	ND	4.0	03/29/10 17:00	
Dibromochloromethane	ug/L	ND	1.0	03/29/10 17:00	
Dibromomethane	ug/L	ND	1.0	03/29/10 17:00	
Dichlorodifluoromethane	ug/L	ND	1.0	03/29/10 17:00	
Dichlorofluoromethane	ug/L	ND	1.0	03/29/10 17:00	
Diethyl ether (Ethyl ether)	ug/L	ND	4.0	03/29/10 17:00	
Ethylbenzene	ug/L	ND	1.0	03/29/10 17:00	
Hexachloro-1,3-butadiene	ug/L	ND	4.0	03/29/10 17:00	
lodomethane	ug/L	ND	4.0	03/29/10 17:00	
Isopropylbenzene (Cumene)	ug/L	ND	1.0	03/29/10 17:00	
m&p-Xylene	ug/L	ND	2.0	03/29/10 17:00	
Methyl-tert-butyl ether	ug/L	ND	1.0	03/29/10 17:00	
Methylene Chloride	ug/L	ND	4.0	03/29/10 17:00	
n-Butylbenzene	ug/L	ND	1.0	03/29/10 17:00	
n-Propylbenzene	ug/L	ND	1.0	03/29/10 17:00	
Naphthalene	ug/L	ND	4.0	03/29/10 17:00	
o-Xylene	ug/L	ND	1.0	03/29/10 17:00	
p-Isopropyltoluene	ug/L	ND	1.0	03/29/10 17:00	
sec-Butylbenzene	ug/L	ND	1.0	03/29/10 17:00	
Styrene	ug/L	ND	1.0	03/29/10 17:00	
tert-Butylbenzene	ug/L	ND	1.0	03/29/10 17:00	
Tetrachloroethene	ug/L	ND	1.0	03/29/10 17:00	
Tetrahydrofuran	ug/L	ND	10.0	03/29/10 17:00	
Toluene	ug/L	ND	1.0	03/29/10 17:00	
trans-1,2-Dichloroethene	ug/L	ND	1.0	03/29/10 17:00	
trans-1,3-Dichloropropene	ug/L	ND	4.0	03/29/10 17:00	
Trichloroethene	ug/L	ND	1.0	03/29/10 17:00	
Trichlorofluoromethane	ug/L	ND	4.0	03/29/10 17:00	
Vinyl acetate	ug/L	ND	20.0	03/29/10 17:00	
Vinyl chloride	ug/L	ND	0.40	03/29/10 17:00	
Xylene (Total)	ug/L	ND	3.0	03/29/10 17:00	
1,2-Dichloroethane-d4 (S)	%	106	75-125	03/29/10 17:00	
4-Bromofluorobenzene (S)	%	98	75-125	03/29/10 17:00	
Dibromofluoromethane (S)	%	100	75-125	03/29/10 17:00	
Toluene-d8 (S)	%	99	75-125	03/29/10 17:00	

LABORATORY CONTROL SAMPLE: 765879

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	50	55.4	111	75-129	
1,1,1-Trichloroethane	ug/L	50	55.3	111	73-144	

Date: 04/02/2010 03:42 PM

REPORT OF LABORATORY ANALYSIS

Page 10 of 18

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ace Analytica www.pacelabs.com

QUALITY CONTROL DATA

Project: CRC City of Rochester Pace Project No.: 10125114

LABORATORY CONTROL SAMPLE: 765879

Parameter Units Conc. Result % Result Qualifiers 1,1,2,2-Titchkoroethane ug/L 50 47.4 495 75-125 1,1,2,2-Titchkoroethane ug/L 50 74.4 149 75-132 1,1,2-Titchkoroethane ug/L 50 56.7 113 75-133 1,1,Dichkoroethane ug/L 50 56.1 112 75-131 1,2,3-Tichkoropopane ug/L 50 56.1 110 75-131 1,2,4-Tinchkorobenzene ug/L 50 56.1 110 75-131 1,2,3-Tichkoropopane ug/L 50 54.3 109 75-141 1,2,4-Tinnethylbenzene ug/L 50 54.3 108 75-125 1,2,2-Dichoropopane ug/L 50 53.8 108 75-125 1,2-Dichkoropopane ug/L 50 53.9 108 75-125 1,2-Dichkoropopane ug/L 50 53.4 107 75-125 1,2-Dichkoropopane			Spike	LCS	LCS	% Rec	
1,1,2:Tetrachloroethane ug/L 50 47.4 95 75-125 1,1,2:Trichloroethane ug/L 50 51.6 103 75-125 1,1,2:Trichloroethane ug/L 50 62.0 104 75-135 1,1-Dichloroethane ug/L 50 66.7 113 75-133 1,1-Dichloroethene ug/L 50 66.7 113 75-133 1,1-Dichlorobenzene ug/L 50 65.1 110 73-141 1,2.3:Trichlorobenzene ug/L 50 58.0 112 75-126 1,2.4:Trinchlybenzene ug/L 50 54.3 109 75-141 1,2.Dichlorobenzene ug/L 50 54.0 108 75-125 1,2.Dichlorobenzene ug/L 50 53.8 108 75-136 1,2.Dichlorobenzene ug/L 50 53.8 108 75-136 1,2.Dichlorobenzene ug/L 50 53.4 107 75-125 1,2.Dichlorobenzene ug/L 50 53.4 107 75-125 1,2.Dichlorobenz	Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1.2. Trichlorosethane ug/L 50 51.6 103 75-125 1,1.2. Trichlorosethane ug/L 50 74.4 149 75-143 CH_LO 1,1.2. Trichlorosethane ug/L 50 56.7 113 75-133 1,1.Dichloropethane ug/L 50 56.1 112 75-133 1,2.3. Trichlorosbenzene ug/L 50 55.1 110 73-144 1,2.3. Trichlorosbenzene ug/L 50 56.0 112 70-148 1,2.4. Trichlorosbenzene ug/L 50 54.3 109 75-126 1,2.4. Trichlorosbenzene ug/L 50 54.3 108 67-125 1,2.Dichlorosbenzene ug/L 50 52.8 106 75-125 1,2.Dichlorosbenzene ug/L 50 63.8 108 75-125 1,2.Dichlorosbenzene ug/L 50 64.5 109 75-141 1,3.Dichloropropane ug/L 50 63.4 107 75-125	1 1 2 2-Tetrachloroethane			47.4	95	75-125	
1.3 Trichlorocethane ugL 50 74.4 140 75-143 CH,LD 1, 1-Dichlorocethane ugL 50 52.0 104 75-135 1, 1-Dichlorocethane ugL 50 56.1 112 75-133 1, 1-Dichloroptopane ugL 50 55.1 110 73-141 12, 3-Trichloroptopane ugL 50 56.1 110 75-143 12, 3-Trichloroptopane ugL 50 56.3 109 75-144 12, 4-Trichloroptopane ugL 50 54.3 109 75-143 12, 2-Dibromethane (CDB) ugL 50 53.8 108 75-136 12, 2-Dichoroptopane ugL 50 53.8 108 75-136 12, 2-Dichoroptone ugL 50 53.8 108 75-136 13, 2-Dichoroptone ugL 50 52.2 105 75-132 12, 2-Dichoroptone ugL 50 52.5 105 75-132 12, 2-Dichoro	1 1 2-Trichloroethane	ug/L	50	51.6	103	75-125	
1,1-Dicktoreethane ug/L 50 52.0 104 75-135 1,1-Dicktorgene ug/L 50 56.7 113 75-133 1,2.3-Trichtorpopene ug/L 50 55.1 110 73-141 1,2.3-Trichtorpopane ug/L 50 56.1 112 75-136 12,4-Trichtorpopane ug/L 50 56.3 100 75-141 12,4-Trichtorpopane ug/L 50 54.3 100 75-141 12,4-Trinethylbenzene ug/L 50 54.8 108 75-125 12,-Dichorophane ug/L 50 53.8 108 75-126 12,-Dichorophane ug/L 50 53.9 108 75-125 12,-Dichorophane ug/L 50 53.9 108 75-125 12,-Dichorophane ug/L 50 53.9 108 75-125 13,5-Trimethylbenzene ug/L 50 50.7 101 58-138 2,Dichorophynylophen ug/L	1 1 2-Trichlorotrifluoroethane	ug/L	50	74.4	149	75-143	CHIO
A. Denkolochane ug/L 50 56 113 75-133 1, 1-Dickloroptopene ug/L 50 56.1 112 75-131 1, 2, 3. Trichloroptopane ug/L 50 55.1 110 73-141 1, 2, 3. Trichloroptopane ug/L 50 66.0 112 70-148 1, 2, 4. Trichloroptopane ug/L 50 64.3 109 75-141 1, 2, Dibromethane (EDB) ug/L 50 54.3 108 75-125 1, 2. Dibroropthane ug/L 50 54.5 105 75-136 1, 2. Dibroropthane ug/L 50 54.5 109 75-141 1, 3. Dichloroberzene ug/L 50 54.5 109 75-125 1, 3. Dichloroberzene ug/L 50 52.2 104 75-125 1, 3. Dichloroberzene ug/L 50 52.5 155 50-150 2. Dichloropthazene ug/L 50 52.5 155 51.5 1, 3. Dichloroberzene	1 1-Dichloroethane	ug/L	50	52.0	104	75-135	011,20
I. Dickloropropene ug/L 50 56.1 112 75-131 12,3. Trichloroppene ug/L 50 55.1 110 73-141 12,3. Trichloroporapene ug/L 50 56.0 112 77-148 12,4. Trichlorobenzene ug/L 50 56.0 112 75-141 12.0. Birohorog-achioropopane ug/L 50 54.0 108 75-125 12Dibrorobarzene ug/L 50 53.8 108 75-125 12Dibrorobarzene ug/L 50 53.8 108 75-125 12Dibrorobarzene ug/L 50 54.5 105 75-130 13.0. Trimethylbenzene ug/L 50 52.2 104 76-125 13.0. Trimethylbenzene ug/L 50 52.2 104 76-125 13.0. Trimethylbenzene ug/L 50 52.5 105 75-130 13.2. Trimethylbenzene ug/L 50 52.5 105 75-125 12Dibrorophylin	1 1-Dichloroethene	ug/L	50	56.7	113	75-133	
Hormosophological Ug/L 50 52.1 110 73-141 12,3-Trichloropropane Ug/L 50 47.7 95 75-128 12,3-Trichloropropane Ug/L 50 54.3 103 75-141 12,4-Trichloropropane Ug/L 50 54.3 103 64-135 12,2-Dibromo-scholropropane Ug/L 50 54.0 108 75-125 1,2-Dibromo-scholropropane Ug/L 50 52.8 108 75-136 1,2-Dichloropethane Ug/L 50 52.5 109 75-141 1,3-Dichlorophybenzene Ug/L 50 53.9 108 75-125 1,2-Dichlorophybenzene Ug/L 50 53.9 108 75-125 1,3-Dichlorophybenzene Ug/L 50 52.5 105 75-130 1,3-Dichlorophybenzene Ug/L 50 52.5 105 75-132 2-Dichoroethykinyl ether Ug/L 50 52.5 105 75-132 2-Dichor	1 1-Dichloropropene	ug/L	50	56.1	112	75-131	
Lab Lab <thlab< th=""> <thlab< th=""> <thlab< th=""></thlab<></thlab<></thlab<>	1.2.3-Trichlorobenzene	ug/L	50	55 1	112	73-141	
J.A.D. Fundological Ug/L So F1.1 So F1.3 1.2.4 - Trichioroberzene Ug/L 50 54.3 109 75.141 1.2.4 - Trichioroberzene Ug/L 50 54.3 103 64-135 1.2Dibrono-Schloropopane Ug/L 50 52.8 108 75-125 1.2Dichloroethane Ug/L 50 52.8 108 75-136 1.2Dichloroethane Ug/L 50 52.5 105 75-130 1.2Dichloroethane Ug/L 50 63.8 108 75-125 1.2Dichloroethane Ug/L 50 63.4 107 75-125 1.3Dichloroberzene Ug/L 50 62.5 125 50-160 1.3Dichloroberzene Ug/L 50 62.5 125 50-160 2Dichorophynik efter Ug/L 50 62.5 125 50-160 2Dichorophynik efter Ug/L 50 58.4 117 62-160 2Dichorophynik efte	1.2.3-Trichloropropage	ug/L	50	47 7	95	75-126	
I.ATiniological base Uppl. Socie Socie The Transmitty 1.2. Distrome-3-chloropropane Uppl. So Socie The Transmitty 1.2. Distrome-1-anne (EDB) Uppl. So Socie Total Total 1.2. Distrome-thrane Uppl. So Socie Total Total 1.2. Dichoropropane Uppl. So Socie Total Total 1.3. 5-Tinmethylbenzene Uppl. So Socie Total Total 1.3. Dichorobenzene Uppl. So Socie Total Total Total 1.3. Dichorobenzene Uppl. So Socie Total Total <td>1.2.4-Trichlorobenzene</td> <td>ug/L</td> <td>50</td> <td>56.0</td> <td>112</td> <td>70-148</td> <td></td>	1.2.4-Trichlorobenzene	ug/L	50	56.0	112	70-148	
J.AF. Initial Journal 1991. 50 51.3 103 64-135 1.2. Dibromos-3-chioropropane ug/L 50 54.0 108 75-125 1.2. Dibromosthare (EDB) ug/L 50 52.8 106 75-125 1.2. Dichlorobenzene ug/L 50 53.8 108 75-136 1.2. Dichlorobenzene ug/L 50 53.4 109 75-141 1.3. Dichlorobenzene ug/L 50 53.9 108 75-125 1.3. Dichloropropane ug/L 50 52.2 104 75-125 2.2. Dichloropropane ug/L 50 52.5 105 75-132 2.2. Dichloropropane ug/L 50 52.5 105 75-132 2.2. Dichloropropane ug/L 50 52.6 105 75-132 2.4 Detaxone (MEK) ug/L 50 52.6 105 75-135 2.4 Hexanone ug/L 50 53.4 117 62-160 2.4 Hexanone ug/L	1.2.4-Trimethylbenzene	ug/L	50	54.3	109	75-141	
I,2-Dick One Department Ug/L 50 51.3 103 67-133 1,2-Dick Development Ug/L 50 52.8 106 75-125 1,2-Dick Development Ug/L 50 53.8 108 75-136 1,2-Dick Development Ug/L 50 53.8 105 75-130 1,3,5-Timethylbenzene Ug/L 50 53.9 108 75-125 1,3-Dick Development Ug/L 50 53.4 107 75-125 1,3-Dick Development Ug/L 50 52.2 104 75-125 2,2-Dick Development Ug/L 50 53.4 107 75-125 2,2-Dick Development Ug/L 50 50.7 101 58-138 2-Chorotopeane Ug/L 50 51.9 104 65-132 2-Chorotopeane Ug/L 50 51.7 103 69-137 2-Dick Development Ug/L 50 53.1 106 75-132 2-Hexanone Ug/L	1,2,4- Milletrybenzene	ug/L	50	51.3	103	64 135	
1,2-Ditolitorial (EDD) Ug/L 50 54.0 105 75-125 1,2-Ditolitorobenzene Ug/L 50 53.8 108 75-136 1,2-Ditolitorobenzene Ug/L 50 54.5 109 75-141 1,3-Ditolitorobenzene Ug/L 50 54.5 109 75-141 1,3-Ditolitoropropane Ug/L 50 53.4 107 75-125 1,4-Dichlorobenzene Ug/L 50 53.4 107 75-125 2,2-Dichloropropane Ug/L 50 53.4 107 75-125 2,2-Dichloropropane Ug/L 50 52.5 105 75-133 2,2-Dichlorobenzene Ug/L 50 51.9 104 65-135 2,2-Dichlorobenzene Ug/L 50 51.7 103 69-135 2,2-Dichlorobenzene Ug/L 50 51.7 103 69-135 2,2-Dichlorobenzene Ug/L 50 51.7 103 69-135 2,-Hexanone Ug/	1.2 Dibromosthano (EDD)	ug/L	50	51.5	100	75 125	
J., -D. Malon Ober Leche Ug/L 50 52.5 105 75-125 1, 2. Dich Vororebane Ug/L 50 52.5 105 75-136 1, 2. Dich Vororebane Ug/L 50 52.5 109 75-141 1, 3. 5-Trimethylbenzene Ug/L 50 53.4 107 75-125 1, 3. Dich Vorobenzene Ug/L 50 52.5 125 50-150 2. Dichloropropane Ug/L 50 52.5 105 75-125 2. Dichloropropane Ug/L 50 52.5 105 75-132 2. Chlorotoluene Ug/L 50 52.5 105 75-132 2. Chlorotoluene Ug/L 50 52.5 105 75-132 2. Chlorotoluene Ug/L 50 52.6 105 75-132 2. Hothyn phthalene Ug/L 50 52.6 105 75-135 4. Methyl-2-pentanone (MIBK) Ug/L 50 53.3 107 75-135 Actolein Ug	1,2-Dibiomoethane (EDB)	ug/L	50	54.0	106	75-120	
1,2-Dichloropropane ug/L 50 53.6 105 75-130 1,3,5-Timethylbenzene ug/L 50 54.5 109 75-141 1,3-Dichloropropane ug/L 50 53.9 108 75-125 1,4-Dichloropopane ug/L 50 53.4 107 75-125 1,4-Dichloropopane ug/L 50 53.4 107 75-125 2,2-Dichloropopane ug/L 50 52.5 105 75-130 2,2-Dichloropopane ug/L 50 52.5 105 75-132 2,Chloropthylinyl ether ug/L 50 52.5 105 75-132 2-Chloropthylinyl ether ug/L 50 51.9 104 65-135 2-Hexanone ug/L 50 52.6 105 75-130 4-Chloroptoluene ug/L 50 53.4 117 62-160 4-Chloroptoluene ug/L 50 51.7 103 69-137 Acetone ug/L 50 <td>1,2-Dichloropenzene</td> <td>ug/L</td> <td>50</td> <td>52.0</td> <td>100</td> <td>75-120</td> <td></td>	1,2-Dichloropenzene	ug/L	50	52.0	100	75-120	
Laboration propenter Ug/L 50 52.5 10.3 75-130 1,3-Dichlorophenzene Ug/L 50 53.9 108 75-125 1,3-Dichloropropane Ug/L 50 53.4 107 75-125 2,2-Dichloropropane Ug/L 50 62.5 125 50-160 2,2-Dichloropropane Ug/L 50 62.5 105 75-125 2,Chloroethylwijl ether Ug/L 50 50.7 101 58-138 2,Chloroethylwijl ether Ug/L 50 52.5 105 75-132 2,Chloroethylwijl ether Ug/L 50 52.6 105 75-135 2,Chloroethylwijl ether Ug/L 50 52.6 105 75-135 2,Chlorothulene Ug/L 50 52.6 105 75-135 4,Chorotoluene Ug/L 50 53.7 30-150 54 4,Chorotoluene Ug/L 50 53.1 106 75-135 4,Chorotoluene Ug/L <td></td> <td>uy/L</td> <td>50</td> <td>53.0 53.5</td> <td>105</td> <td>70-130</td> <td></td>		uy/L	50	53.0 53.5	105	70-130	
i, j., minimumutation ug/L 50 54.5 10.9 7.5-141 1, 3-Dichlorobenzene ug/L 50 53.9 108 75-125 1, 3-Dichlorobenzene ug/L 50 52.2 104 75-125 1, 4-Dichlorobenzene ug/L 50 53.4 107 75-125 2-Dichloropropane ug/L 50 50.7 101 58-138 2-Dichloropropane ug/L 50 52.5 105 75-132 2-Chorotoluene ug/L 50 52.6 105 75-135 2-Hexanone ug/L 50 52.6 105 75-135 2-Hexanone ug/L 50 52.6 105 75-135 2-Hexanone ug/L 50 52.6 105 75-135 4-Methyl-2-pentanone (MIBK) ug/L 50 53.1 108 69-137 Accolein ug/L 500 489 98 75-130 Alty Ichride ug/L 50 53.1		ug/L	50	02.0 EA E	100	70-130	
i,		ug/L	50	54.5	109	70-141	
1,4-Dichlorobenzene Ug/L 50 53.4 107 75-125 2,2-Dichloropropane ug/L 50 62.5 125 50-150 2-Butanone (MEK) ug/L 50 53.4 107 75-125 2-Chlorotoluene ug/L 50 52.5 105 75-132 2-Chlorotoluene ug/L 50 52.5 105 75-132 2-Chlorotoluene ug/L 50 58.4 117 62-150 2-Chlorotoluene ug/L 50 58.4 117 62-150 4-Chlorotoluene ug/L 50 51.7 103 69-137 Acetone ug/L 50 53.3 107 75-132 Acorolein ug/L 50 53.7 103 69-137 Acetone ug/L 50 365 73 60-160 Acorolein ug/L 50 48.8 97 68-150 Benzene ug/L 50 53.1 106 75-125 Bromochloromethane ug/L 50 55.2 110 <		ug/L	50	53.9	108	70-120	
1,4-Dichlorbobenzene Ug/L 50 53.4 107 75-125 2-Dichlorporpane ug/L 50 62.5 125 50-160 2-Bichlorporpane ug/L 50 50.7 101 58-138 2-Chlorotoluene ug/L 50 52.5 105 75-132 2-Hexanone ug/L 50 58.4 117 62-160 2-Hexanone ug/L 50 58.4 117 62-160 2-Hexanone ug/L 50 58.4 117 62-160 4-Chiorotoluene ug/L 50 51.7 103 69-137 Acetone ug/L 50 51.7 103 69-137 Acetone ug/L 500 365 73 50-150 Acetone ug/L 50 48.6 97 68-150 Benzene ug/L 50 53.1 106 75-125 Bromochloromethane ug/L 50 55.2 110 75-142	1,3-Dichloropropane	ug/L	50	52.2	104	70-120	
2,2-Dichloropropane Ug/L 50 62.5 125 50-150 2-Butanone (MEK) Ug/L 50 50.7 101 58-138 2-Chloroethylvinyl ether Ug/L 50 52.5 105 75-132 2-Chlorotoluene Ug/L 50 52.5 105 75-132 2-Methylnaphthalene Ug/L 50 52.6 105 75-135 4-Methyl-2-pentanone (MIBK) Ug/L 50 51.7 103 69-137 Acctone Ug/L 500 51.7 103 69-137 Acctone Ug/L 500 51.7 103 69-137 Acctone Ug/L 500 365 73 50-150 Acrylonitrile Ug/L 500 48.9 98 75-130 Alky Ichride Ug/L 50 53.1 106 75-125 Bromochloromethane Ug/L 50 53.1 106 75-125 Bromochloromethane Ug/L 50 55.2 <td>1,4-Dichlorobenzene</td> <td>ug/L</td> <td>50</td> <td>53.4</td> <td>107</td> <td>75-125</td> <td></td>	1,4-Dichlorobenzene	ug/L	50	53.4	107	75-125	
2-butanone (MEK) ug/L 50 50.7 101 58-138 2-Choroothylvnyl ether ug/L 50 52.5 105 75-132 2-Choroothuene ug/L 50 52.5 105 75-132 2-Hexanone ug/L 50 54.9 104 65-135 2-Methylnaphthalene ug/L 50 52.6 105 75-135 4-Methyl-2-pentanone (MIBK) ug/L 50 51.7 103 69-137 Acetone ug/L 50 365 73 50-150 Acetone ug/L 500 365 73 50-150 Acrolein ug/L 500 48.6 97 68-150 Benzene ug/L 50 53.1 106 75-125 Bromochioromethane ug/L 50 53.1 106 75-129 Bromochioromethane ug/L 50 55.2 110 75-142 Bromochioromethane ug/L 50 54.8 1	2,2-Dichloropropane	ug/L	50	62.5	125	50-150	
2-Chloroethylvinyl ether ug/L 125 145 116 50-150 2-Chlorotoluene ug/L 50 52.5 105 75-132 2-Hexanone ug/L 50 51.9 104 65-135 2-Hexanone ug/L 50 58.4 117 62-150 4-Chlorotoluene ug/L 50 52.6 105 75-135 4-Methyl-2-pentanone (MIBK) ug/L 50 51.7 103 69-137 Acetone ug/L 500 365 73 50-150 Acrolein ug/L 500 486 97 68-150 Benzene ug/L 50 53.3 107 75-125 Bromobenzene ug/L 50 53.1 106 75-142 Bromochloromethane ug/L 50 55.2 110 57-142 Bromochloromethane ug/L 50 54.8 110 65-132 Bromochloromethane ug/L 50 54.8 10	2-Butanone (MEK)	ug/L	50	50.7	101	58-138	
2-Chlorotoluene ug/L 50 52.5 105 75-132 2-Hexanone ug/L 50 51.9 104 65-135 2-Methylnaphthalene ug/L 50 58.4 117 62-150 4-Methyl-2-pentanone (MIBK) ug/L 50 51.7 103 69-137 Acetone ug/L 125 139 111 52-141 SS Acrolein ug/L 500 365 73 50-150 Acrolein ug/L 500 489 98 75-130 Acylonitrile ug/L 50 48.6 97 68-150 Benzene ug/L 50 53.3 107 75-125 Bromochloromethane ug/L 50 53.1 106 75-142 Bromochloromethane ug/L 50 55.2 110 75-142 Bromochloromethane ug/L 50 58.2 116 75-148 Chlorobenzene ug/L 50 58.2	2-Chloroethylvinyl ether	ug/L	125	145	116	50-150	
2-Hexanone ug/L 50 51.9 104 65-135 2-Methylnaphtalene ug/L 50 58.4 117 62-150 4-Chlorotoluene ug/L 50 52.6 105 75-135 4-Methyl-2-pentanone (MIBK) ug/L 125 139 111 52-141 SS Acclore ug/L 500 365 73 50-150 Acrolein ug/L 500 489 98 75-130 Acrolointrile ug/L 50 48.6 97 68-150 Benzene ug/L 50 53.3 107 75-125 Bromobenzene ug/L 50 53.1 106 75-129 Bromodichloromethane ug/L 50 55.2 110 75-142 Bromodichloromethane ug/L 50 55.2 110 57-132 Bromodichloromethane ug/L 50 58.2 116 75-142 Bromodichloromethane ug/L 50 <	2-Chlorotoluene	ug/L	50	52.5	105	75-132	
2-Methylnaphthalene ug/L 50 58.4 117 62-150 4-Chlorotoluene ug/L 50 52.6 105 75-135 4-Methyl-2-pentanone (MIBK) ug/L 125 139 111 52-141 SS Acetone ug/L 500 365 73 50-150 Acrolein ug/L 500 489 98 75-130 Allyl chloride ug/L 500 48.6 97 68-150 Benzene ug/L 50 53.1 106 75-125 Bromobenzene ug/L 50 53.1 106 75-125 Bromodichloromethane ug/L 50 53.1 106 75-125 Bromoform ug/L 50 55.2 110 75-142 Bromoform ug/L 50 55.2 110 57-150 Carbon disulfide ug/L 50 54.8 110 65-132 Chlorobenzene ug/L 50 53.6	2-Hexanone	ug/L	50	51.9	104	65-135	
4-Chlorotoluene ug/L 50 52.6 105 75-135 4-Methyl-2-pentanone (MIBK) ug/L 50 51.7 103 69-137 Acetone ug/L 125 139 111 52-141 SS Acorlein ug/L 500 365 73 50-150 Acrylonitrile ug/L 500 489 98 75-130 Allyl chloride ug/L 50 48.6 97 68-150 Benzene ug/L 50 53.3 107 75-125 Bromobenzene ug/L 50 53.1 106 75-142 Bromodichloromethane ug/L 50 55.2 110 75-142 Bromoform ug/L 50 55.2 110 57-150 Carbon disulfide ug/L 50 54.8 110 65-132 Carbon disulfide ug/L 50 54.4 109 75-131 Chlorobenzene ug/L 50 54.4	2-Methylnaphthalene	ug/L	50	58.4	117	62-150	
4-Methyl-2-pentanone (MIBK) ug/L 50 51.7 103 68-137 Acetone ug/L 125 139 111 52.141 SS Acrolein ug/L 500 365 73 50-150 Acrylonitrile ug/L 500 489 98 75-130 Allyl chloride ug/L 50 53.3 107 75-125 Bromobenzene ug/L 50 53.1 106 75-125 Bromobenzene ug/L 50 53.1 106 75-125 Bromobenzene ug/L 50 55.2 110 75-142 Bromoform ug/L 100 119 119 66-135 Bromoform ug/L 50 55.2 110 57-150 Carbon disulfide ug/L 50 58.2 116 75-142 Bromoform ug/L 50 54.2 108 66-142 Chlorobenzene ug/L 50 54.4 109	4-Chlorotoluene	ug/L	50	52.6	105	75-135	
Acetone ug/L 125 139 111 52-141 SS Acrolein ug/L 500 365 73 50-150 Acrolonitrile ug/L 500 489 98 75-130 Allyl chloride ug/L 50 48.6 97 68-150 Benzene ug/L 50 53.1 106 75-125 Bromobenzene ug/L 50 53.1 106 75-125 Bromochloromethane ug/L 50 55.2 110 75-142 Bromodichloromethane ug/L 50 55.2 110 75-142 Bromomethane ug/L 50 55.2 110 57-150 Carbon disulfide ug/L 50 58.2 116 75-142 Carbon tetrachloride ug/L 50 58.2 116 75-148 Chlorobenzene ug/L 50 54.8 109 75-131 Chloroform ug/L 50 54.4 10	4-Methyl-2-pentanone (MIBK)	ug/L	50	51.7	103	69-137	
Acrolein ug/L 500 365 73 50-150 Acrylonitrile ug/L 500 489 98 75-130 Allyl choride ug/L 50 48.6 97 68-150 Benzene ug/L 50 53.3 107 75-125 Bromobenzene ug/L 50 53.1 106 75-129 Bromochloromethane ug/L 50 55.2 110 75-142 Bromothromethane ug/L 100 119 119 66-135 Bromothromethane ug/L 50 55.2 110 57-150 Carbon disulfide ug/L 50 54.8 110 65-132 Carbon tetrachloride ug/L 50 58.2 116 75-148 Chlorobenzene ug/L 50 53.6 107 75-131 Chloroform ug/L 50 54.4 109 75-131 Chloroptene ug/L 50 50.4 101 <t< td=""><td>Acetone</td><td>ug/L</td><td>125</td><td>139</td><td>111</td><td>52-141</td><td>SS</td></t<>	Acetone	ug/L	125	139	111	52-141	SS
Acrylonitrileug/L5004899875-130Allyl chlorideug/L5048.69768-150Benzeneug/L5053.310775-125Bromobenzeneug/L5053.110675-129Bromochloromethaneug/L5055.211075-142Bromodichloromethaneug/L5055.211057-150Bromodichloromethaneug/L5055.211057-150Bromodichloromethaneug/L5058.211675-142Bromodichloromethaneug/L5058.211675-143Bromodithdeug/L5058.211675-148Carbon disulfideug/L5053.610775-125Chlorobenzeneug/L5054.410975-131Chloroformug/L5050.410152-147Chloropreneug/L5055.511175-126Chloropreneug/L5055.511175-126Chloropreneug/L5055.511175-126Chloropropeneug/L5055.511175-126Cis-1,3-Dichloropropeneug/L5055.411169-150Dibromochloromethaneug/L5056.311373-138Dibromochloromethaneug/L5056.311373-138	Acrolein	ug/L	500	365	73	50-150	
Allyl chlorideug/L5048.69768-150Benzeneug/L5053.310775-125Bromobenzeneug/L5053.110675-125Bromochloromethaneug/L5053.110675-129Bromochloromethaneug/L5055.211075-142Bromodichloromethaneug/L10011911966-135Bromodithfdeug/L5055.211057-150Carbon disulfideug/L5058.211675-142Chlorobenzeneug/L5058.211675-148Chlorobenzeneug/L5054.810066-132Chlorobenzeneug/L5054.210866-142Chlorobenzeneug/L5054.410975-131Chloroformug/L5050.410152-147Chloropreneug/L5055.511175-126Chloropreneug/L5055.511175-126Cis-1,3-Dichloropropeneug/L5055.511175-126Dibromochloromethaneug/L5055.511169-150Dibromochloromethaneug/L5055.411169-150Dibromochloromethaneug/L5056.311373-138Dibromochloromethaneug/L5051.010275-127	Acrylonitrile	ug/L	500	489	98	75-130	
Benzene ug/L 50 53.3 107 75-125 Bromobenzene ug/L 50 53.1 106 75-125 Bromochloromethane ug/L 50 53.1 106 75-125 Bromochloromethane ug/L 50 53.1 106 75-129 Bromodichloromethane ug/L 50 55.2 110 75-142 Bromomethane ug/L 50 55.2 110 57-150 Bromomethane ug/L 50 55.2 110 57-150 Carbon disulfide ug/L 50 54.8 110 65-132 Carbon tetrachloride ug/L 50 58.2 116 75-148 Chlorobenzene ug/L 50 53.6 107 75-125 Chloroform ug/L 50 54.4 109 75-131 Chloroptene ug/L 50 50.4 101 52-147 Chloroptene ug/L 50 55.5 111	Allyl chloride	ug/L	50	48.6	97	68-150	
Bromobenzene ug/L 50 53.1 106 75-125 Bromochloromethane ug/L 50 53.1 106 75-129 Bromodichloromethane ug/L 50 55.2 110 75-142 Bromoform ug/L 100 119 119 66-135 Bromomethane ug/L 50 55.2 110 57-150 Carbon disulfide ug/L 50 54.8 110 65-132 Carbon tetrachloride ug/L 50 58.2 116 75-148 Chlorobenzene ug/L 50 53.6 107 75-125 Chlorotethane ug/L 50 54.2 108 66-142 Chlorotefhane ug/L 50 54.4 109 75-131 Chloroprene ug/L 50 59.7 119 71-147 Chloroprene ug/L 50 55.5 111 75-126 Cis-1,3-Dichloropropene ug/L 50 55.4 <t< td=""><td>Benzene</td><td>ug/L</td><td>50</td><td>53.3</td><td>107</td><td>75-125</td><td></td></t<>	Benzene	ug/L	50	53.3	107	75-125	
Bromochloromethane ug/L 50 53.1 106 75-129 Bromodichloromethane ug/L 50 55.2 110 75-142 Bromoform ug/L 100 119 119 66-135 Bromomethane ug/L 50 55.2 110 57-150 Carbon disulfide ug/L 50 54.8 110 65-132 Carbon tetrachloride ug/L 50 58.2 116 75-148 Chlorobenzene ug/L 50 53.6 107 75-125 Chlorothane ug/L 50 54.4 109 75-131 Chloroform ug/L 50 50.4 101 52-147 Chloroprene ug/L 50 50.4 101 52-147 Chloroprene ug/L 50 55.5 111 75-126 Cis-1,2-Dichloroethene ug/L 50 55.5 111 69-150 Dibromochloromethane ug/L 50 56.3	Bromobenzene	ug/L	50	53.1	106	75-125	
Bromodichloromethane ug/L 50 55.2 110 75-142 Bromoform ug/L 100 119 119 66-135 Bromomethane ug/L 50 55.2 110 57-150 Carbon disulfide ug/L 50 54.8 110 65-132 Carbon tetrachloride ug/L 50 58.2 116 75-148 Chlorobenzene ug/L 50 53.6 107 75-125 Chlorobenzene ug/L 50 54.4 109 75-131 Chloroform ug/L 50 50.4 101 52-147 Chloroprene ug/L 50 50.4 101 52-147 Chloroprene ug/L 50 50.7 119 71-147 Cis-1,2-Dichloroethene ug/L 50 55.5 111 75-126 cis-1,3-Dichloropropene ug/L 50 55.4 111 69-150 Dibromochloromethane ug/L 50 56.3	Bromochloromethane	ug/L	50	53.1	106	75-129	
Bromoform ug/L 100 119 119 66-135 Bromomethane ug/L 50 55.2 110 57-150 Carbon disulfide ug/L 50 54.8 110 65-132 Carbon tetrachloride ug/L 50 58.2 116 75-148 Chlorobenzene ug/L 50 53.6 107 75-125 Chloroethane ug/L 50 54.4 109 75-131 Chloroform ug/L 50 50.4 101 52-147 Chloropethane ug/L 50 50.4 101 52-147 Chloroprene ug/L 50 50.4 101 52-147 Chloroprene ug/L 50 55.5 111 75-126 cis-1,2-Dichloroethene ug/L 50 55.5 111 75-126 cis-1,3-Dichloropropene ug/L 50 55.4 111 69-150 Dibromochloromethane ug/L 50 56.3 <	Bromodichloromethane	ug/L	50	55.2	110	75-142	
Bromomethane ug/L 50 55.2 110 57-150 Carbon disulfide ug/L 50 54.8 110 65-132 Carbon tetrachloride ug/L 50 58.2 116 75-148 Chlorobenzene ug/L 50 53.6 107 75-125 Chloroethane ug/L 50 54.4 109 75-131 Chloromethane ug/L 50 50.4 101 52-147 Chloroprene ug/L 50 50.4 101 52-147 Chloroprene ug/L 50 50.4 101 52-147 Chloroprene ug/L 50 50.5 111 75-126 cis-1,2-Dichloroethene ug/L 50 55.5 111 75-126 cis-1,3-Dichloropropene ug/L 50 55.4 111 69-150 Dibromochloromethane ug/L 50 56.3 113 73-138	Bromoform	ug/L	100	119	119	66-135	
Carbon disulfide ug/L 50 54.8 110 65-132 Carbon tetrachloride ug/L 50 58.2 116 75-148 Chlorobenzene ug/L 50 53.6 107 75-125 Chloroethane ug/L 50 54.4 109 75-131 Chloroform ug/L 50 50.4 101 52-147 Chloroprene ug/L 50 50.4 101 52-147 Chloroprene ug/L 50 59.7 119 71-147 Chloroprene ug/L 50 55.5 111 75-126 cis-1,2-Dichloropropene ug/L 50 55.4 111 69-150 Dibromochloromethane ug/L 50 56.3 113 73-138 Dibromomethane ug/L 50 51.0 102 75-127	Bromomethane	ug/L	50	55.2	110	57-150	
Carbon tetrachlorideug/L5058.211675-148Chlorobenzeneug/L5053.610775-125Chloroethaneug/L5054.210866-142Chloroformug/L5054.410975-131Chloromethaneug/L5050.410152-147Chloropreneug/L5059.711971-147cis-1,2-Dichloroetheneug/L5055.511175-126cis-1,3-Dichloropropeneug/L5055.411169-150Dibromochloromethaneug/L5056.311373-138Dibromomethaneug/L5051.010275-127	Carbon disulfide	ug/L	50	54.8	110	65-132	
Chlorobenzene ug/L 50 53.6 107 75-125 Chloroethane ug/L 50 54.2 108 66-142 Chlorooform ug/L 50 54.4 109 75-131 Chloromethane ug/L 50 50.4 101 52-147 Chloroprene ug/L 50 59.7 119 71-147 cis-1,2-Dichloroethene ug/L 50 55.5 111 75-126 cis-1,3-Dichloropropene ug/L 50 55.4 111 69-150 Dibromochloromethane ug/L 50 56.3 113 73-138 Dibromomethane ug/L 50 51.0 102 75-127	Carbon tetrachloride	ug/L	50	58.2	116	75-148	
Chloroethane ug/L 50 54.2 108 66-142 Chloroform ug/L 50 54.4 109 75-131 Chloromethane ug/L 50 50.4 101 52-147 Chloroprene ug/L 50 59.7 119 71-147 cis-1,2-Dichloroethene ug/L 50 55.5 111 75-126 cis-1,3-Dichloropropene ug/L 50 55.4 111 69-150 Dibromochloromethane ug/L 50 56.3 113 73-138 Dibromomethane ug/L 50 51.0 102 75-127	Chlorobenzene	ug/L	50	53.6	107	75-125	
Chloroform ug/L 50 54.4 109 75-131 Chloromethane ug/L 50 50.4 101 52-147 Chloroprene ug/L 50 59.7 119 71-147 cis-1,2-Dichloropthene ug/L 50 55.5 111 75-126 cis-1,3-Dichloropthene ug/L 50 55.4 111 69-150 Dibromochloromethane ug/L 50 56.3 113 73-138 Dibromomethane ug/L 50 51.0 102 75-127	Chloroethane	ug/L	50	54.2	108	66-142	
Chloromethane ug/L 50 50.4 101 52-147 Chloroprene ug/L 50 59.7 119 71-147 cis-1,2-Dichloroethene ug/L 50 55.5 111 75-126 cis-1,3-Dichloropropene ug/L 50 55.4 111 69-150 Dibromochloromethane ug/L 50 56.3 113 73-138 Dibromomethane ug/L 50 51.0 102 75-127	Chloroform	ug/L	50	54.4	109	75-131	
Chloroprene ug/L 50 59.7 119 71-147 cis-1,2-Dichloroethene ug/L 50 55.5 111 75-126 cis-1,3-Dichloropropene ug/L 50 55.4 111 69-150 Dibromochloromethane ug/L 50 56.3 113 73-138 Dibromoethane ug/L 50 51.0 102 75-127	Chloromethane	ug/L	50	50.4	101	52-147	
Lois-1,2-Dichloroethene ug/L 50 55.5 111 75-126 cis-1,3-Dichloropropene ug/L 50 55.4 111 69-150 Dibromochloromethane ug/L 50 56.3 113 73-138 Dibromoethane ug/L 50 51.0 102 75-127	Chloroprene	ug/L	50	59.7	119	71-147	
cis-1,3-Dichloropropene ug/L 50 55.4 111 69-150 Dibromochloromethane ug/L 50 56.3 113 73-138 Dibromoethane ug/L 50 51.0 102 75-127	cis-1,2-Dichloroethene	ug/L	50	55.5	111	75-126	
Dibromochloromethane ug/L 50 56.3 113 73-138 Dibromomethane ug/L 50 51.0 102 75-127	cis-1,3-Dichloropropene	ug/L	50	55.4	111	69-150	
Dibromomethane ug/L 50 51.0 102 75-127	Dibromochloromethane	ug/L	50	56.3	113	73-138	
	Dibromomethane	ug/L	50	51.0	102	75-127	

Date: 04/02/2010 03:42 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Page 11 of 18

ace Analytical www.pacelabs.com

QUALITY CONTROL DATA

Project: CRC City of Rochester Pace Project No.: 10125114

LABORATORY CONTROL SAMPLE: 765879

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Dichlorodifluoromethane	ug/L	50	79.5	159	50-150	CH,L0
Dichlorofluoromethane	ug/L	50	52.1	104	75-129	
Diethyl ether (Ethyl ether)	ug/L	50	55.2	110	75-126	
Ethylbenzene	ug/L	50	54.7	109	75-132	
Hexachloro-1,3-butadiene	ug/L	50	53.7	107	75-129	
lodomethane	ug/L	50	56.8	114	73-150	
Isopropylbenzene (Cumene)	ug/L	50	56.7	113	75-142	
m&p-Xylene	ug/L	100	111	111	75-131	
Methyl-tert-butyl ether	ug/L	50	54.6	109	75-130	
Methylene Chloride	ug/L	50	50.8	102	71-125	
n-Butylbenzene	ug/L	50	54.8	110	70-148	
n-Propylbenzene	ug/L	50	52.8	106	75-136	
Naphthalene	ug/L	50	57.9	116	69-145	
o-Xylene	ug/L	50	56.7	113	75-129	
p-Isopropyltoluene	ug/L	50	55.9	112	75-132	
sec-Butylbenzene	ug/L	50	53.6	107	75-136	
Styrene	ug/L	50	56.3	113	75-125	
tert-Butylbenzene	ug/L	50	54.4	109	75-135	
Tetrachloroethene	ug/L	50	56.5	113	75-125	
Tetrahydrofuran	ug/L	500	552	110	63-144	
Toluene	ug/L	50	54.4	109	75-125	
trans-1,2-Dichloroethene	ug/L	50	54.3	109	72-135	
trans-1,3-Dichloropropene	ug/L	50	54.9	110	62-150	
Trichloroethene	ug/L	50	55.4	111	75-125	
Trichlorofluoromethane	ug/L	50	61.9	124	67-150	
Vinyl acetate	ug/L	50	46.1	92	55-150	
Vinyl chloride	ug/L	50	53.4	107	63-147	
Xylene (Total)	ug/L	150	168	112	75-130	
1,2-Dichloroethane-d4 (S)	%			94	75-125	
4-Bromofluorobenzene (S)	%			97	75-125	
Dibromofluoromethane (S)	%			101	75-125	
Toluene-d8 (S)	%			97	75-125	

MATRIX SPIKE SAMPLE:

766076

Parameter	Units	10125114002 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
1.1.1.2-Tetrachloroethane	ua/L	ND	20	21.2	106	70-136	
1,1,1-Trichloroethane	ug/L	ND	20	20.6	103	68-150	
1,1,2,2-Tetrachloroethane	ug/L	ND	20	19.1	95	75-125	
1,1,2-Trichloroethane	ug/L	ND	20	19.3	96	75-125	
1,1,2-Trichlorotrifluoroethane	ug/L	ND	20	29.3	147	75-150	СН
1,1-Dichloroethane	ug/L	ND	20	18.2	91	67-143	
1,1-Dichloroethene	ug/L	ND	20	20.8	104	75-147	
1,1-Dichloropropene	ug/L	ND	20	20.7	103	75-141	
1,2,3-Trichlorobenzene	ug/L	ND	20	24.3	122	71-141	
1,2,3-Trichloropropane	ug/L	ND	20	18.7	93	75-128	
1,2,4-Trichlorobenzene	ug/L	ND	20	23.5	118	61-148	

Date: 04/02/2010 03:42 PM

REPORT OF LABORATORY ANALYSIS

Page 12 of 18

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ace Analytical www.pacelabs.com

QUALITY CONTROL DATA

Project: CRC City of Rochester Pace Project No.: 10125114

MATRIX SPIKE SAMPLE:	766076						
		10125114002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
1 2 4-Trimethylbenzene	ug/l	ND	20	21.8	109	65-145	
1.2-Dibromo-3-chloropropane	ug/l	ND	20	20.5	103	64-135	
1.2-Dibromoethane (EDB)	ug/L	ND	20	20.2	101	75-126	
1.2-Dichlorobenzene	ug/l	ND	20	21.2	106	75-127	
1.2-Dichloroethane	ug/L	ND	20	18.5	93	70-138	
1 2-Dichloropropane	ug/L	ND	20	19.2	96	75-130	
1.3.5-Trimethylbenzene	ug/L	ND	20	21.7	109	61-150	
1.3-Dichlorobenzene	ua/L	ND	20	21.4	107	75-126	
1.3-Dichloropropane	ua/L	ND	20	19.6	98	75-125	
1.4-Dichlorobenzene	ua/L	ND	20	21.2	106	75-125	
2.2-Dichloropropane	ua/L	ND	20	24.1	120	50-150	
2-Butanone (MEK)	ua/L	7.5	20	24.6	85	50-141	
2-Chloroethylvinyl ether	ug/L	ND	50	12.1	24	50-150 I	>5
2-Chlorotoluene	ug/L	ND	20	20.9	104	75-137	
2-Hexanone	ug/L	ND	20	18.7	93	66-135	
2-Methylnaphthalene	ug/L	ND	20	35.8	179	62-150 I	M0
4-Chlorotoluene	ug/L	ND	20	20.8	104	70-144	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	20	18.6	93	62-142	
Acetone	ug/L	29.8	50	60.6	62	50-150 \$	SS
Acrolein	ug/L	ND	200	207	104	50-150	
Acrylonitrile	ug/L	ND	200	156	78	70-135	
Allyl chloride	ug/L	ND	20	18.1	90	50-150	
Benzene	ug/L	ND	20	18.9	95	75-125	
Bromobenzene	ug/L	ND	20	21.0	105	75-125	
Bromochloromethane	ug/L	ND	20	17.8	89	73-137	
Bromodichloromethane	ug/L	ND	20	20.1	100	70-142	
Bromoform	ug/L	ND	40	43.4	108	55-135	
Bromomethane	ug/L	38.0	20	79.2	206	50-150 I	VI0
Carbon disulfide	ug/L	ND	20	20.5	102	50-150	
Carbon tetrachloride	ug/L	ND	20	21.0	105	64-150	
Chlorobenzene	ug/L	ND	20	21.0	105	75-125	
Chloroethane	ug/L	ND	20	18.0	90	59-150	
Chloroform	ug/L	ND	20	18.7	93	75-132	
Chloromethane	ug/L	644	20	319	-1628	52-150 I	Ξ,Ρ6
Chloroprene	ug/L	ND	20	20.0	100	54-150	
cis-1,2-Dichloroethene	ug/L	ND	20	19.7	98	64-144	
cis-1,3-Dichloropropene	ug/L	ND	20	19.8	99	56-150	
Dibromochloromethane	ug/L	ND	20	21.0	105	60-138	
Dibromomethane	ug/L	ND	20	19.3	96	75-127	
Dichlorodifluoromethane	ug/L	ND	20	32.1	160	50-150 (CH,M0
Dichlorofluoromethane	ug/L	ND	20	18.1	90	74-142	
Diethyl ether (Ethyl ether)	ug/L	ND	20	18.2	91	75-127	
Ethylbenzene	ug/L	ND	20	22.1	107	75-134	
Hexachloro-1,3-butadiene	ug/L	ND	20	26.2	131	63-150	
lodomethane	ug/L	18.9	20	53.1	171	50-150 I	M0
Isopropylbenzene (Cumene)	ug/L	ND	20	22.1	110	69-147	
m&p-Xylene	ug/L	3.4	40	47.1	109	75-133	
Methyl-tert-butyl ether	ug/L	ND	20	18.1	91	73-131	

Date: 04/02/2010 03:42 PM

REPORT OF LABORATORY ANALYSIS

Page 13 of 18

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

^sace Analytical www.pacelabs.com

QUALITY CONTROL DATA

Project: CRC City of Rochester Pace Project No.: 10125114

MATRIX SPIKE SAMPLE:	766076						
		10125114002	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Methylene Chloride	ug/L	ND	20	17.7	88	68-126	
n-Butylbenzene	ug/L	ND	20	22.9	115	59-150	
n-Propylbenzene	ug/L	ND	20	21.4	107	72-143	
Naphthalene	ug/L	ND	20	23.8	119	57-148	
o-Xylene	ug/L	1.6	20	22.9	107	75-131	
p-Isopropyltoluene	ug/L	ND	20	22.9	114	75-137	
sec-Butylbenzene	ug/L	ND	20	22.2	111	75-144	
Styrene	ug/L	ND	20	21.2	106	75-134	
tert-Butylbenzene	ug/L	ND	20	22.2	111	68-150	
Tetrachloroethene	ug/L	ND	20	23.4	117	75-130	
Tetrahydrofuran	ug/L	20.3	200	195	87	60-148	
Toluene	ug/L	ND	20	21.4	107	75-125	
trans-1,2-Dichloroethene	ug/L	ND	20	20.5	102	75-145	
trans-1,3-Dichloropropene	ug/L	ND	20	20.9	104	50-150	
Trichloroethene	ug/L	ND	20	20.9	104	73-132	
Trichlorofluoromethane	ug/L	ND	20	23.9	119	67-150	
Vinyl acetate	ug/L	ND	20	18.7J	93	50-150	
Vinyl chloride	ug/L	ND	20	20.2	101	63-150	
Xylene (Total)	ug/L	4.9	60	70.0	108	72-138	
1,2-Dichloroethane-d4 (S)	%				99	75-125	
4-Bromofluorobenzene (S)	%				99	75-125	
Dibromofluoromethane (S)	%				91	75-125	
Toluene-d8 (S)	%				99	75-125	

SAMPLE DUPLICATE: 766075

		10125114001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD Qualifie	rs
1,1,1,2-Tetrachloroethane	ug/L	ND	ND		30	
1,1,1-Trichloroethane	ug/L	ND	ND		30	
1,1,2,2-Tetrachloroethane	ug/L	ND	ND		30	
1,1,2-Trichloroethane	ug/L	ND	ND		30	
1,1,2-Trichlorotrifluoroethane	ug/L	1.0	1.1	4	30 CH	
1,1-Dichloroethane	ug/L	ND	ND		30	
1,1-Dichloroethene	ug/L	ND	ND		30	
1,1-Dichloropropene	ug/L	ND	ND		30	
1,2,3-Trichlorobenzene	ug/L	ND	ND		30	
1,2,3-Trichloropropane	ug/L	ND	ND		30	
1,2,4-Trichlorobenzene	ug/L	ND	ND		30	
1,2,4-Trimethylbenzene	ug/L	ND	ND		30	
1,2-Dibromo-3-chloropropane	ug/L	ND	ND		30	
1,2-Dibromoethane (EDB)	ug/L	ND	ND		30	
1,2-Dichlorobenzene	ug/L	ND	ND		30	
1,2-Dichloroethane	ug/L	ND	ND		30	
1,2-Dichloropropane	ug/L	ND	ND		30	
1,3,5-Trimethylbenzene	ug/L	ND	ND		30	
1,3-Dichlorobenzene	ug/L	ND	ND		30	
1,3-Dichloropropane	ug/L	ND	ND		30	

Date: 04/02/2010 03:42 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Page 14 of 18

ace Analytical www.pacelabs.com

QUALITY CONTROL DATA

Project: CRC City of Rochester Pace Project No.: 10125114

SAMPLE DUPLICATE: 766075

		10125114001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1.4-Dichlorobenzene	 ua/L		ND			
2,2-Dichloropropane	ug/L	ND	ND		30	
2-Butanone (MEK)	ug/L	4.9	6.6	29	30	
2-Chloroethylvinyl ether	ug/L	ND	ND		30	
2-Chlorotoluene	ug/L	ND	ND		30	
2-Hexanone	ug/L	ND	ND		30	
2-Methylnaphthalene	ug/L	ND	ND		30	
4-Chlorotoluene	ua/L	ND	ND		30	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	ND		30	
Acetone	ug/L	11.2	12.1	7	30 8	S
Acrolein	ug/L	ND	ND		30	
Acrylonitrile	ug/L	ND	ND		30	
Allyl chloride	ug/L	ND	ND		30	
Benzene	ug/L	ND	ND		30	
Bromobenzene	ug/L	ND	ND		30	
Bromochloromethane	ug/L	ND	ND		30	
Bromodichloromethane	ug/L	ND	ND		30	
Bromoform	ug/L	ND	ND		30	
Bromomethane	ua/L	37.3	ND		30	
Carbon disulfide	ua/L	ND	ND		30	
Carbon tetrachloride	ua/L	ND	ND		30	
Chlorobenzene	ua/L	ND	ND		30	
Chloroethane	ua/L	ND	ND		30	
Chloroform	ug/L	ND	ND		30	
Chloromethane	ua/L	380	372	2	30	
Chloroprene	ua/L	ND	ND		30	
cis-1.2-Dichloroethene	ua/L	ND	.55J		30	
cis-1.3-Dichloropropene	ua/L	ND	ND		30	
Dibromochloromethane	<u>-</u>	ND	ND		30	
Dibromomethane	ug/L	ND	ND		30	
Dichlorodifluoromethane	ua/L	ND	ND		30	
Dichlorofluoromethane	ug/L	ND	ND		30	
Diethyl ether (Ethyl ether)	ug/L	ND	ND		30	
Ethylbenzene	ug/L	ND	ND		30	
Hexachloro-1.3-butadiene	ua/L	ND	ND		30	
lodomethane	ug/L	17.3	13.9	22	30	
Isopropylbenzene (Cumene)	ua/L	ND	ND		30	
m&p-Xvlene	ua/L	ND	1.1J		30	
Methyl-tert-butyl ether	ua/L	ND	ND		30	
Methylene Chloride	ua/L	ND	ND		30	
n-Butvlbenzene	ua/L	ND	ND		30	
n-Propylbenzene	ua/L	ND	ND		30	
Naphthalene	ug/L	ND	ND		30	
o-Xvlene	ug/L	ND	ND		30	
p-lsopropyltoluene	ug/L	ND	ND		30	
sec-Butylbenzene	ug/l	ND	ND		30	
Styrene	ug/L	ND	ND		30	
tert-Butylbenzene	ug/L	ND	ND		30	
	~g, _					

Date: 04/02/2010 03:42 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Page 15 of 18

ace Analytical www.pacelabs.com

QUALITY CONTROL DATA

Project: CRC City of Rochester Pace Project No.: 10125114

SAMPLE DUPLICATE: 766075

		10125114001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Tetrachloroethene	ug/L	55.5	55.2	1	30	
Tetrahydrofuran	ug/L	ND	6.6J		30	
Toluene	ug/L	ND	ND		30	
trans-1,2-Dichloroethene	ug/L	ND	ND		30	
trans-1,3-Dichloropropene	ug/L	ND	ND		30	
Trichloroethene	ug/L	ND	ND		30	
Trichlorofluoromethane	ug/L	ND	ND		30	
Vinyl acetate	ug/L	ND	ND		30	
Vinyl chloride	ug/L	ND	ND		30	
Xylene (Total)	ug/L	ND	1.6J		30	
1,2-Dichloroethane-d4 (S)	%	104	101	2		
4-Bromofluorobenzene (S)	%	99	100	1		
Dibromofluoromethane (S)	%	98	98	0		
Toluene-d8 (S)	%	98	98	0		

Date: 04/02/2010 03:42 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 16 of 18

'ace Analytica www.pacelabs.com

QUALIFIERS

Project:	CRC City of Rochester
Pace Project No.:	10125114

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

U - Indicates the compound was analyzed for, but not detected.

ANALYTE QUALIFIERS

- CH The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased high.
- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- L0 Analyte recovery in the laboratory control sample (LCS) was outside QC limits.
- L1 Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results may be biased high.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- P5 The EPA or method required sample preservation degrades this compound, therefore acceptable recoveries may not be achieved in sample matrix spikes.
- P6 Matrix spike recovery was outside laboratory control limits due to a parent sample concentration notably higher than the spike level.
- SS This analyte did not meet the secondary source verification criteria for the initial calibration. The reported result should be considered an estimated value.

REPORT OF LABORATORY ANALYSIS

Page 17 of 18

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ace Analytical www.pacelabs.com

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:CRCCity of RochesterPace Project No.:10125114

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10125114001 10125114002	AS-Influent AS-Effluent	EPA 624 EPA 624	MSV/14135 MSV/14135		

Date: 04/02/2010 03:42 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 18 of 18

Pace Analytical"

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

E-File,(ALL Q020rev.3,31Mar05), 13Jun2005

F:\PROJECTS\Crc-City of Rochester\Analytical Reports\coc 3-25-10 system.XLS

Pace Analytical Client Name	nple Conditio	n Upon Receipt MAR Project #/0/2////
Courier: C Fed Ex C UPS C USPS C Clie Tracking #:	ont E Commercia	Pace Other Other
Custody Seal on Cooler/Box Present: U yes	no Sea	
Packing Material: D Bubble Wrap Bubble	Bage D None	U Other Temp Blank: Yes No
Thermometer Used 80344042 or (179425	Type of Ice: (We	t Blue None L Samples on ice, cooling process has begun
Cooler Temperature X.D. Temp should be above freezing to 6°C	Biological Tissu	contents:
Chain of Custody Present:		1.
Chain of Custody Filled Out:	DYes DNo / DND	¥ 2.
Chain of Custody Relinguished:	ZIVes UNO UN/	3.
Sampler Name & Signature on COC:	Cares Elno Eln/	4.
Samples Arrived within Hold Time:	Cives Ono Cin/	6.
Short Hold Time Analysis (<72hr):		6.
Rush Turn Around Time Requested:	UYes DING DIN/	7.
Sufficient Volume:		8.
Correct Containers Used:	EYes DNO DNA	9.
-Pace Containers Used:	DYES DNO DNA	
Containers Intact:		10.
Filtered volume received for Dissolved tests	OYes ONO DAVA	11.
Sample Labels match COC:	DY63 DNO DNA	12.
-includes date/time/ID/Analysis Matrix:	<u>w7</u>	
All containers needing ack/base preservation have been checked. Noncompliance are noted in 13.		
All containers needing preservation are found to be in compliance with EPA recommendation.		Samp # ~
Exceptions, VOA coliform, TOC, Oil and Grease, WI-DBO (water	PYes DNo	Initial when Lot # of added
Samples chacked for dechlorination:		114.
Headenace in VOA Vials (>6mm):	VIVES LINO LINA	15. "Enf (Ivial) (-Ff / 3vials
Trip Blank Present:		18.
Trip Blank Custody Seals Present		
Pace Trip Blank Lot # (if purchased):	_	
Bercon Contected	Deta/	rieki Data Required? T / N Timo:
Comments/ Besolution:		
	<u>٣</u>	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>
	- Mananima (1997) - 1994 (1994) - 1994 (1997) - 1995 (1995) - 1995 (1995) - 1995	
	<u></u>	
Project Manager Review: Date:		

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the Renth Calylinal SEMMES, inc. F-L213Rev.00, 05Aug2009 1700 Elm Street SE, Suite 200, Minneapolis, MN 55414
www.pacelabs.com

April 06, 2010

Mr. Jason Skramstad Landmark Environmental 2042 W. 98th. St. Minneapolis, MN 55431

RE: Project: CRC City of Rochester Pace Project No.: 10125090

Dear Mr. Skramstad:

Enclosed are the analytical results for sample(s) received by the laboratory on March 26, 2010. The results relate only to the samples included in this report. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Carolynne Tract

Carolynne Trout

carolynne.trout@pacelabs.com Project Manager

Enclosures

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 1 of 12

ace Analytical www.pacelabs.com

CERTIFICATIONS

Project: CRC City of Rochester Pace Project No.: 10125090

Minnesota Certification IDs

1700 Elm Street SE, Suite 200 Minneapolis, MN 55414 Alaska Certification #: UST-078 Washington Certification #: 0754 Tennessee Certification #: 02818 Pennsylvania Certification #: 68-00563 Oregon Certification #: MN200001 North Dakota Certification #: R-036 North Carolina Certification #: R-036 North Carolina Certification #: 11647 New Jersey Certification #: 11647 New Jersey Certification #: MN-002 Montana Certification #: MT CERT0092 Minnesota Certification #: 027-053-137 Michigan DEQ Certification #: 9909 Maine Certification #: 2007029 Louisiana Certification #: LA080009 Louisiana Certification #: 03086 Kansas Certification #: 368 Illinois Certification #: 368 Illinois Certification #: 200011 Florida/NELAP Certification #: E87605 California Certification #: 01155CA Arizona Certification #: AZ-0014 Wisconsin Certification #: 999407970

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 2 of 12

ace Analytical www.pacelabs.com

SAMPLE SUMMARY

Project: Pace Project No.:	CRC City of Rochester 10125090			
Lab ID	Sample ID	Matrix	Date Collected	Date Received
10125090001	DPE-EXHAUST-1316	Air	03/25/10 13:42	03/26/10 10:52

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

^yace Analytical www.pacelabs.com

10125090001

DPE-EXHAUST-1316

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

61

SAMPLE ANALYTE COUNT

Project:	CRC City of Rochester			
Pace Project No.:	10125090			
				Analytes
Lab ID	Sample ID	Method	Analysts	Reported

TO-15

LCW

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 4 of 12

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: CRC City of Rochester

10125090

Pace Project No .:

Sample: DPE-EXHAUST-1316	Lab ID: 1012	25090001	Collected:	03/25/1	10 13:42	Received:	03/26/10 10:52 N	latrix: Air	
Parameters	Results	Units	Report	t Limit	DF	Prepared	Analyzed	CAS No.	Qual
TO15 MSV AIR	Analytical Meth	nod: TO-15							
Acetone	163 ug/	/m3		0.86	1.8		04/01/10 21:27	67-64-1	Е
Benzene	ND ug/	/m3		1.2	1.8		04/01/10 21:27	71-43-2	
Benzyl chloride	ND ug/	/m3		1.9	1.8		04/01/10 21:27	100-44-7	
Bromodichloromethane	ND ug/	/m3		2.5	1.8		04/01/10 21:27	75-27-4	
Bromoform	ND ug/	/m3		3.8	1.8		04/01/10 21:27	75-25-2	
Bromomethane	ND ug/	/m3		1.4	1.8		04/01/10 21:27	74-83-9	
1,3-Butadiene	ND ug/	/m3		0.81	1.8		04/01/10 21:27	106-99-0	
2-Butanone (MEK)	44.2 ug/	/m3		1.1	1.8		04/01/10 21:27	78-93-3	
Carbon disulfide	1.3 ug/	/m3		1.1	1.8		04/01/10 21:27	75-15-0	
Carbon tetrachloride	ND ug/	/m3		2.3	1.8		04/01/10 21:27	56-23-5	
Chlorobenzene	ND ug	/m3		1.7	1.8		04/01/10 21:27	108-90-7	
Chloroethane	ND ug	/m3		0.97	1.8		04/01/10 21:27	75-00-3	
Chloroform	11.3 ug/	/m3		1.8	1.8		04/01/10 21:27	67-66-3	
Chloromethane	ND ug	/m3		0.76	1.8		04/01/10 21:27	74-87-3	
Cyclohexane	2.2 ug	/m3		1.2	1.8		04/01/10 21:27	110-82-7	
Dibromochloromethane	ND ug	/m3		3.1	1.8		04/01/10 21:27	124-48-1	
1,2-Dibromoethane (EDB)	ND ug	/m3		2.9	1.8		04/01/10 21:27	106-93-4	
1,2-Dichlorobenzene	ND ug	/m3		2.2	1.8		04/01/10 21:27	95-50-1	
1,3-Dichlorobenzene	ND ug	/m3		2.2	1.8		04/01/10 21:27	541-73-1	
1,4-Dichlorobenzene	ND ug	/m3		2.2	1.8		04/01/10 21:27	106-46-7	
Dichlorodifluoromethane	11.0 ug	/m3		1.8	1.8		04/01/10 21:27	75-71-8	
1,1-Dichloroethane	ND ug	/m3		1.5	1.8		04/01/10 21:27	75-34-3	
1,2-Dichloroethane	ND ug	/m3		1.5	1.8		04/01/10 21:27	107-06-2	
1,1-Dichloroethene	3.0 ug	/m3		1.5	1.8		04/01/10 21:27	75-35-4	
cis-1,2-Dichloroethene	80.2 ug	/m3		1.5	1.8		04/01/10 21:27	156-59-2	
trans-1,2-Dichloroethene	ND ug	/m3		1.5	1.8		04/01/10 21:27	156-60-5	
1,2-Dichloropropane	ND ug	/m3		1.7	1.8		04/01/10 21:27	78-87-5	
cis-1,3-Dichloropropene	ND ug	/m3		1.7	1.8		04/01/10 21:27	10061-01-5	
trans-1,3-Dichloropropene	ND ug	/m3		1.7	1.8		04/01/10 21:27	10061-02-6	
Dichlorotetrafluoroethane	ND ug	/m3		2.5	1.8		04/01/10 21:27	76-14-2	
Ethanol	26.1 ug	/m3		3.4	1.8		04/01/10 21:27	64-17-5	
Ethyl acetate	ND ug	/m3		1.3	1.8		04/01/10 21:27	141-78-6	
Ethylbenzene	118 ug	/m3		1.6	1.8		04/01/10 21:27	100-41-4	
4-Ethyltoluene	ND ug	/m3		4.5	1.8		04/01/10 21:27	622-96-8	
n-Heptane	2.7 ug	/m3		1.5	1.8		04/01/10 21:27	142-82-5	
Hexachloro-1,3-butadiene	ND ug	/m3		4.0	1.8		04/01/10 21:27	87-68-3	
n-Hexane	4.7 ug	/m3		1.3	1.8		04/01/10 21:27	110-54-3	
2-Hexanone	ND ug	/m3		1.5	1.8		04/01/10 21:27	591-78-6	
Methylene Chloride	ND ug	/m3		1.3	1.8		04/01/10 21:27	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug	/m3		1.5	1.8		04/01/10 21:27	108-10-1	
Methyl-tert-butyl ether	ND ug	/m3		1.3	1.8		04/01/10 21:27	1634-04-4	
Naphthalene	ND ug	/m3		4.9	1.8		04/01/10 21:27	91-20-3	
2-Propanol	19.0 ug	/m3		4.5	1.8		04/01/10 21:27	67-63-0	
Propylene	ND ug	/m3		0.63	1.8		04/01/10 21:27	115-07-1	
Styrene	ND ug	/m3		1.6	1.8		04/01/10 21:27	100-42-5	
1,1,2,2-Tetrachloroethane	ND ug	/m3		2.5	1.8		04/01/10 21:27	79-34-5	
Tetrachloroethene	215000 ug	/m3		6450	4608		04/03/10 00:31	127-18-4	A3

Date: 04/06/2010 03:09 PM

REPORT OF LABORATORY ANALYSIS

Page 5 of 12

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

nelac

ace Analytical www.pacelabs.com

ANALYTICAL RESULTS

Project: CRC City of Rochester

Pace Project No.: 10125090

Sample: DPE-EXHAUST-1316	Lab ID: 1012509000	1 Collected: 03/25/1	Collected: 03/25/10 13:42		Received: 03/26/10 10:52 M		Matrix: Air	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual	
TO15 MSV AIR	Analytical Method: TO-1	15						
Tetrahydrofuran	58.0 ug/m3	1.1	1.8		04/01/10 21:27	109-99-9		
Toluene	28.4 ug/m3	1.4	1.8		04/01/10 21:27	108-88-3		
1,2,4-Trichlorobenzene	ND ug/m3	1.8	1.8		04/01/10 21:27	120-82-1		
1,1,1-Trichloroethane	30.7 ug/m3	2.0	1.8		04/01/10 21:27	71-55-6		
1,1,2-Trichloroethane	ND ug/m3	2.0	1.8		04/01/10 21:27	79-00-5		
Trichloroethene	43.7 ug/m3	2.0	1.8		04/01/10 21:27	79-01-6		
Trichlorofluoromethane	ND ug/m3	2.0	1.8		04/01/10 21:27	75-69-4		
1,1,2-Trichlorotrifluoroethane	115000 ug/m3	7370	4608		04/03/10 00:31	76-13-1	A3	
1,2,4-Trimethylbenzene	12.8 ug/m3	4.5	1.8		04/01/10 21:27	95-63-6		
1,3,5-Trimethylbenzene	ND ug/m3	4.5	1.8		04/01/10 21:27	108-67-8		
Vinyl acetate	8.9 ug/m3	1.3	1.8		04/01/10 21:27	108-05-4		
Vinyl chloride	ND ug/m3	0.94	1.8		04/01/10 21:27	75-01-4		
m&p-Xylene	456 ug/m3	3.2	1.8		04/01/10 21:27	1330-20-7		
o-Xylene	159 ug/m3	1.6	1.8		04/01/10 21:27	95-47-6		

Date: 04/06/2010 03:09 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 6 of 12

ace Analytical www.pacelabs.com

QUALITY CONTROL DATA

Project: CRC City	/ of Rochester					
Pace Project No.: 10125090)			×		
QC Batch: AIR/100	102	Analysis Meth	nod: IC)-15		
QC Batch Method: TO-15		Analysis Des	cription: TC	015 MSV AIR Low L	_evel	
Associated Lab Samples: 1	0125090001					
		Matrix	Air			
Accession of the later of the second	0105000001	Watrix.	<u>7</u> 11			
Associated Lab Samples: 1	0125090001	D 1 1	Densitien			
Parameter	Units	Blank Result	Limit	Analyzed	Qualifiers	
1,1,1-Trichloroethane	ug/m3	ND	1.1	04/01/10 12:15		
1,1,2,2-Tetrachloroethane	ug/m3	ND	1.4	04/01/10 12:15		
1,1,2-Trichloroethane	ug/m3	ND	1.1	04/01/10 12:15		
1,1,2-Trichlorotrifluoroethane	ug/m3	ND	1.6	04/01/10 12:15		
1,1-Dichloroethane	ug/m3	ND	0.82	04/01/10 12:15		
1,1-Dichloroethene	ug/m3	ND	0.81	04/01/10 12:15		
1,2,4-Trichlorobenzene	ug/m3	ND	0.99	04/01/10 12:15		
1,2,4-Trimethylbenzene	ug/m3	ND	2.5	04/01/10 12:15		
1,2-Dibromoethane (EDB)	ug/m3	ND	1.6	04/01/10 12:15		
1,2-Dichlorobenzene	ug/m3	ND	1.2	04/01/10 12:15		
1,2-Dichloroethane	ug/m3	ND	0.82	04/01/10 12:15		
1,2-Dichloropropane	ug/m3	ND	0.94	04/01/10 12:15	•	
1,3,5-Trimethylbenzene	ug/m3	ND	2.5	04/01/10 12:15		
1,3-Butadiene	ug/m3	ND	0.45	04/01/10 12:15		
1,3-Dichlorobenzene	ug/m3	ND	1.2	04/01/10 12:15		
1,4-Dichlorobenzene	ug/m3	ND	1.2	04/01/10 12:15		
2-Butanone (MEK)	ug/m3	ND	0.60	04/01/10 12:15		
	ug/m3		0.03	04/01/10 12:15		
4-Ethylloluene	ug/m3		2.0	04/01/10 12:15		
4-metryi-z-pentanone (mibr)	ug/m3		0.03	04/01/10 12:15		
Represe	ug/m3		0.40	04/01/10 12:15		
Bromodichloromethane	ug/m3	ND	14	04/01/10 12:15		
Bromoform	ug/m3	ND	21	04/01/10 12:15		
Bromomethane	ug/m3	ND	0.79	04/01/10 12:15		
Carbon disulfide	ug/m3	ND	0.63	04/01/10 12:15		
Carbon tetrachloride	ua/m3	ND	1.3	04/01/10 12:15		
Chlorobenzene	ug/m3	ND	0.94	04/01/10 12:15		
Chloroethane	ug/m3	ND	0.54	04/01/10 12:15		
Chloroform	ug/m3	ND	0.99	04/01/10 12:15		
Chloromethane	ug/m3	ND	0.42	04/01/10 12:15		
cis-1,2-Dichloroethene	ug/m3	ND	0.81	04/01/10 12:15		
cis-1,3-Dichloropropene	ug/m3	ND	0.92	04/01/10 12:15		
Cyclohexane	ug/m3	ND	0.68	04/01/10 12:15		
Dibromochloromethane	ug/m3	ND	1.7	04/01/10 12:15		
Dichlorodifluoromethane	ug/m3	ND	1.0	04/01/10 12:15		
Dichlorotetrafluoroethane	ug/m3	ND	1.4	04/01/10 12:15		
Ethyl acetate	ug/m3	ND	0.73	04/01/10 12:15		
Ethylbenzene	ug/m3	ND	0.88	04/01/10 12:15		
Hexachloro-1,3-butadiene	ug/m3	ND	2.2	04/01/10 12:15		
m&p-Xylene	ug/m3	ND	1.8	04/01/10 12:15		
Methyl-tert-butyl ether	ug/m3	ND	0.73	04/01/10 12:15		
Methylene Chloride	ug/m3	ND	0.71	04/01/10 12:15		

Date: 04/06/2010 03:09 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

^pace Analytical www.pacelabs.com

QUALITY CONTROL DATA

CRC City of Rochester Project: 10125090

Pace Project No.:

_

METHOD BLANK: 767815

Matrix: Air

Associated Lab Samples: 10125090001

		Diank	Depending		
Parameter	Linite	Biarik	Limit	Analyzed	Qualifiers
Farameter	OIIIIS				Quanners
n-Heptane	ug/m3	ND	0.83	04/01/10 12:15	
n-Hexane	ug/m3	ND	0.72	04/01/10 12:15	
o-Xylene	ug/m3	ND	0.88	04/01/10 12:15	
Propylene	ug/m3	ND	0.35	04/01/10 12:15	
Styrene	ug/m3	ND	0.87	04/01/10 12:15	
Tetrachioroethene	ug/m3	ND	1.4	04/01/10 12:15	
Tetrahydrofuran	ug/m3	ND	0.60	04/01/10 12:15	
Toluene	ug/m3	ND	0.77	04/01/10 12:15	
trans-1,2-Dichloroethene	ug/m3	ND	0.81	04/01/10 12:15	
trans-1,3-Dichloropropene	ug/m3	ND	0.92	04/01/10 12:15	
Trichloroethene	ug/m3	ND	1.1	04/01/10 12:15	
Trichlorofluoromethane	ug/m3	ND	1.1	04/01/10 12:15	
Vinyl acetate	ug/m3	ND	0.71	04/01/10 12:15	
Vinyl chloride	ug/m3	ND	0.52	04/01/10 12:15	

LABORATORY CONTROL SAMPLE: 767816

	2. 101010					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	ug/m3	55.5	48.0	86	55-127	
1,1,2,2-Tetrachloroethane	ug/m3	69.8	69.8	100	58-128	
1,1,2-Trichloroethane	ug/m3	55.5	48.2	87	58-126	
1,1,2-Trichlorotrifluoroethane	ug/m3	77.9	67.4	86	49-134	
1,1-Dichloroethane	ug/m3	41.2	37.9	92	52-129	
1,1-Dichloroethene	ug/m3	40.3	37.4	93	50-130	
1,2,4-Trichlorobenzene	ug/m3	75.5	91.7	121	30-150	
1,2,4-Trimethylbenzene	ug/m3	50	51.9	104	53-144	
1,2-Dibromoethane (EDB)	ug/m3	78.1	73.9	95	57-137	
1,2-Dichlorobenzene	ug/m3	61.2	66.6	109	65-140	
1,2-Dichloroethane	ug/m3	41.2	39.6	96	54-125	
1,2-Dichloropropane	ug/m3	47	39.9	85	60-125	
1,3,5-Trimethylbenzene	ug/m3	50	48.3	97	54-139	
1,3-Butadiene	ug/m3	22.5	19.4	86	54-125	
1,3-Dichlorobenzene	ug/m3	61.2	61.3	100	62-140	
1,4-Dichlorobenzene	ug/m3	61.2	62.5	102	61-139	
2-Butanone (MEK)	ug/m3	30	29.1	97	47-138	
2-Hexanone	ug/m3	41.7	50.6	122	40-143	
4-Ethyltoluene	ug/m3	50	53.5	107	57-139	
4-Methyl-2-pentanone (MIBK)	ug/m3	41.7	43.5	104	54-132	
Acetone	ug/m3	24.2	19.7	82	44-147	
Benzene	ug/m3	32.5	27.8	85	60-125	
Bromodichloromethane	ug/m3	68.2	60.3	89	53-130	
Bromoform	ug/m3	105	105	100	55-125	
Bromomethane	ug/m3	39.5	34.7	88	53-132	
Carbon disulfide	ug/m3	31.7	28.0	88	57-150	
Carbon tetrachloride	ug/m3	64	54.3	85	53-125	

Date: 04/06/2010 03:09 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

8 of 18

inelac"

^eace Analytical www.pacelabs.com

QUALITY CONTROL DATA

Project:CRCCity of RochesterPace Project No.:10125090

LABORATORY CONTROL SAMPLE: 767816

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Chlorobenzene	ug/m3	46.8	44.1	94	50-136	
Chloroethane	ug/m3	26.8	23.1	86	55-130	
Chloroform	ug/m3	49.7	44.4	89	56-125	
Chloromethane	ug/m3	21	18.0	86	49-127	
cis-1,2-Dichloroethene	ug/m3	40.3	36.7	91	58-127	
cis-1,3-Dichloropropene	ug/m3	46.2	44.5	96	62-135	
Cyclohexane	ug/m3	35	28.3	81	56-135	
Dibromochloromethane	ug/m3	86.6	81.0	93	48-132	
Dichlorodifluoromethane	ug/m3	50.3	42.6	85	54-130	
Dichlorotetrafluoroethane	ug/m3	71.1	59.9	84	50-125	
Ethyl acetate	ug/m3	36.6	36.6	100	70-141	
Ethylbenzene	ug/m3	44.2	42.2	96	57-135	
Hexachloro-1,3-butadiene	ug/m3	108	169	156	30-150	L3
m&p-Xylene	ug/m3	88.3	84.8	96	61-135	
Methyl-tert-butyl ether	ug/m3	36.7	34.6	94	56-130	
Methylene Chloride	ug/m3	35.3	29.6	84	49-127	
n-Heptane	ug/m3	41.7	36.7	88	57-133	
n-Hexane	ug/m3	35.8	33.6	94	55-135	
o-Xylene	ug/m3	44.2	42.8	97	60-134	
Propylene	ug/m3	17.5	14.3	82	63-147	
Styrene	ug/m3	43.3	43.7	101	58-142	
Tetrachloroethene	ug/m3	69	61.7	89	61-132	
Tetrahydrofuran	ug/m3	30	29.7	99	67-134	
Toluene	ug/m3	38.3	31.2	81	56-132	
trans-1,2-Dichloroethene	ug/m3	40.3	37.2	92	52-131	
trans-1,3-Dichloropropene	ug/m3	46.2	46.6	101	62-131	
Trichloroethene	ug/m3	54.6	46.4	85	68-150	
Trichlorofluoromethane	ug/m3	57.1	51.2	90	. 52-142	
Vinyl acetate	ug/m3	35.8	36.7	103	53-136	
Vinyl chloride	ug/m3	26	23.1	89	57-132	

SAMPLE DUPLICATE: 768172

Parameter	Lipite	5035778002 Bosult	Dup Bogult	חסם	Max	Qualifiera
Parameter	UTILS	Result		RPD		
1,1,1-Trichloroethane	ug/m3	ND	ND		2	5
1,1,2,2-Tetrachloroethane	ug/m3	ND	ND		2	5
1,1,2-Trichloroethane	ug/m3	ND	ND		2	5
1,1,2-Trichlorotrifluoroethane	ug/m3	ND	ND		2	5
1,1-Dichloroethane	ug/m3	ND	ND		2	5
1,1-Dichloroethene	ug/m3	ND	ND		2	5
1,2,4-Trichlorobenzene	ug/m3	ND	ND		2	5
1,2,4-Trimethylbenzene	ug/m3	ND	ND		2	5
1,2-Dibromoethane (EDB)	ug/m3	ND	ND		2	5
1,2-Dichlorobenzene	ug/m3	ND	ND		2	5
1,2-Dichloroethane	ug/m3	ND	ND		2	5
1,2-Dichloropropane	ug/m3	ND	ND		2	5
1,3,5-Trimethylbenzene	ug/m3	ND	ND		2	5

Date: 04/06/2010 03:09 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full,

without the written consent of Pace Analytical Services, Inc..

Page 9 of 12

ace Analytical www.pacelabs.com

QUALITY CONTROL DATA

Project: CRC City of Rochester Pace Project No.: 10125090

SAMPLE DUPLICATE: 768172

		5035778002	Dup		Max
Parameter	Units	Result	Result	RPD	RPD Qualifiers
1,3-Butadiene	 ug/m3				25
1.3-Dichlorobenzene	ua/m3	ND	ND		25
1,4-Dichlorobenzene	ug/m3	ND	ND		25
2-Butanone (MEK)	ug/m3	ND	ND		25
2-Hexanone	ug/m3	ND	ND		25
2-Propanol	ug/m3	ND	ND		25
4-Ethyltoluene	ug/m3	ND	ND		25
4-Methyl-2-pentanone (MIBK)	ug/m3	ND	ND		25
Acetone	ug/m3	ND	ND		25
Benzene	ug/m3	ND	ND		25
Benzyl chloride	ug/m3	ND	ND		25
Bromodichloromethane	ug/m3	ND	ND		25
Bromoform	ug/m3	ND	ND		25
Bromomethane	ug/m3	ND	ND		25
Carbon disulfide	ug/m3	ND	ND		25
Carbon tetrachloride	ug/m3	ND	ND		25
Chlorobenzene	ug/m3	ND	ND		25
Chloroethane	ug/m3	ND	ND		25
Chloroform	ug/m3	ND	ND		25
Chloromethane	ug/m3	ND	ND		25
cis-1,2-Dichloroethene	ug/m3	ND	ND		25
cis-1,3-Dichloropropene	ug/m3	ND	ND		25
Cyclohexane	ug/m3	ND	ND		25
Dibromochloromethane	ug/m3	ND	ND		25
Dichlorodifluoromethane	ug/m3	ND	ND		25
Dichlorotetrafluoroethane	ug/m3	ND	ND		25
Ethanol	ug/m3	ND	ND		25
Ethyl acetate	ug/m3	ND	ND		25
Ethylbenzene	ug/m3	ND	ND		25
Hexachloro-1,3-butadiene	ug/m3	ND	ND		25
m&p-Xylene	ug/m3	ND	ND		25
Methyl-tert-butyl ether	ug/m3	ND	ND		25
Methylene Chloride	ug/m3	ND	ND		25
n-Heptane	ug/m3	ND	ND		25
n-Hexane	ug/m3	ND	ND		25
Naphthalene	ug/m3	ND	ND		25
o-Xylene	ug/m3	ND	ND		25
Propylene	ug/m3	ND	ND		25
Styrene	ug/m3	ND	ND		25
Tetrachloroethene	ug/m3	ND	ND		25
Tetrahydrofuran	ug/m3	ND	ND		25
Toluene	ug/m3	ND	ND		25
trans-1,2-Dichloroethene	ug/m3	ND	ND		25
trans-1,3-Dichloropropene	ug/m3	ND	ND		25
Trichloroethene	ug/m3	ND	ND		25
Trichlorofluoromethane	ug/m3	ND	ND		25
Vinyl acetate	ug/m3	ND	ND		25
Vinyl chloride	ug/m3	ND	ND		25

Date: 04/06/2010 03:09 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

Page 10 of 12

ce Analvtic www.pacelabs.com

QUALIFIERS

Project:	CRC City of Rochester
Pace Project No.:	10125090

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

Pace Analytical is NELAP accredited. Contact your Pace PM for the current list of accredited analytes.

U - Indicates the compound was analyzed for, but not detected.

SAMPLE QUALIFIERS

Sample: 10125090001

[1] The Total Hydrocarbon (THC) pattern occured in the second half of the chromatogram (after toluene).

ANALYTE QUALIFIERS

A3 The sample was analyzed by serial dilution.

- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- L3 Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.

REPORT OF LABORATORY ANALYSIS

Page 11 of 12

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

ace Analytical www.pacelabs.com

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:CRCCity of RochesterPace Project No.:10125090

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10125090001	DPE-EXHAUST-1316	TO-15	AIR/10002		

Date: 04/06/2010 03:09 PM

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

12 of 18

Page 12 of 12

Data File: \\192.168.10.12\chem\10air7.i\040110.b\09117.D Report Date: 02-Apr-2010 08:56

Pace Analytical Services

TENTATIVELY IDENTIFIED COMPOUNDS

Client SDG: 040110.b

Client Name: Lab Smp Id: 10125090001 Operator : LCW Sample Location: Sample Matrix: AIR Analysis Type: VOA Inj Date: 01-APR-2010 21:27

Sample Date: Sample Point: Date Received: Level: LOW

CONCENTRATION UNITS: (ug/L or ug/KG) ppbv

				1
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		=======		
1.	Unknown	4.133	9.92	
2.	Unknown	9.849	14.0	_J
3. 55429-29-3	Arsenous acid, tris(trimeth	10.177	19.6	NJ
4. 95-47-6	Benzene, 1,2-dimethyl-	11.757	165	NJ
5.	Unknown	12.183	5.09	
6. 556-67-2	Cyclotetrasiloxane, octamet	13.892	26.5	NJ
7. 611-14-3	Benzene, 1-ethyl-2-methyl-	14.217	3.05	NJ
8. 124-18-5	Decane	14.315	6.30	NJ
9. 5989-27-5	D-Limonene	15.187	7.42	NJ
10. 1120-21-4	Undecane	16.181	2.77	NJ
l				

Number TICs found: 10

Data File: \\192.168.10.12\chem\10air7.i\040110.b\09117.D Report Date: 02-Apr-2010 08:56

Pace Analytical Services

TO15 Analysis (UNIX) Data file : \\192.168.10.12\chem\10air7.i\040110.b\09117.D Lab Smp Id: 10125090001 Inj Date : 01-APR-2010 21:27 Operator : LCW Inst ID: 10air7.i Smp Info : Sample 0 Misc Info : Comment : Volatile Organic COMPOUNDS in Air Method : \\192.168.10.12\chem\10air7.i\040110.b\T015_089-10.m Meth Date : 01-Apr-2010 11:09 lweinkauf Quant Type: ISTD Cal Date : 30-MAR-2010 15:34 Cal File: 08910.D Als bottle: 10 Dil Factor: 1.80000 Integrator: HP RTE Compound Sublist: all.sub Target Version: 4.14 Processing Host: AIRGROUP

Concentration Formula: Amt * DF * Uf * CpndVariable

Name	Value	Description
DF Uf Cpnd Variable	1.800 1.000	Dilution Factor ng unit correction factor Local Compound Variable

IS	TD	RT	AREA	AMOUNT
==			=====	
*	36 1,4-Difluorobenzene	7.350	4489522	10.000
*	53 Chlorobenzene - d5	11.265	3055653	10.000

	CONCEN	ITRATIONS		QUA	ANT	
RT AF	REA ON-COL(ppbv)	FINAL (ppbv)	QUAL	LIBRARY	LIB ENTRY	CPND #

			63 6 4			
Unknown			CAS #:			
4.133 2473	644 5.50981509	9.92	0		0	36
Unknown			CAS #:			
9.849 2369	0174 7.75341359	14.0	0		0	53
Arsenous acid.	tris(trimethylsil	.vl) este	CAS #:	55429-29-3	3	
10.177 3318	873 10.8614186	19.6	72	NBS75K.1	48300	53
Benzene, 1,2-di	methyl-		CAS #:	95-47-6		
11.757 28066	929 91.8524693	165	97	NBS75K.1	63707	53
Unknown			CAS #:			
12.183 864	298 2.82852225	5.09	0		0	53

Data File: \\192.168.10.12\chem\10air7.i\040110.b\09117.D Report Date: 02-Apr-2010 08:56

		CONCENT	RATIONS		QU	JANT	
RT	AREA	ON-COL(ppbv)	FINAL(ppbv)	QUAL	LIBRARY	LIB ENTRY	CPND #
			* ===========		******	ESEBELLES	
Cycloteta	asiloxane	. octamethyl-		CAS	#: 556-67-2		
13.892	4500650	14.7289288	26.5	78	NBS75K.1	41966	53
Benzene.	1-ethvl-2-	-methvl-		CAS	#: 611-14-3		
14.217	518480	1,69678879	3.05	92	NB\$75K.1	64560	53
Decane				CAS	#: 124-18-5		
14.315	1069240	3.49921981	6.30	95	NBS75K.1	66205	53
D-Limonen	e			CAS	#: 5989-27-5		
15,187	1260124	4.12390932	7.42	93	NBS75K.1	6664	53
Undecane				CAS	#: 1120-21-4		
16.181	470078	1.53838652	2.77	90	NBS75K.1	67318	53

Pace Analytical"

CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

WWW.pacetaus.com																	
Section A Berniced Client Information	Section B	Sec	tion C									1010	K U	Ś	Page:	1 of	
	Required Project Information:	Invoi	ce Informa	tion:								20	52	Ś			
Company. Landmark Environmental	Report To: Jason Skramstad	Atter	tion: Jast	n Skramst	ad								REGUL	ΑΤΟΡΥ	AGENCY		
Address: 2042 W. 98th Street	Copy To: Eric Gabrielson	Com	pany Nam	e: Landma	k Environme	intal, LLC					۶ L	DES D	GROUND	WATER	DRINK	NG WATE	ά
Bloomington, MN 55431		Addr	ess: 2042	W. 98th St	. Bloomingto	n, MN 55	431				о Ц	L to	RCRA				
Email To: jskramstad@landmarkenv.com	Purchase Order No.:	Pace	Quote Re	ference:							S	- 11	E C		Z	Ľ	
Phone: 952-887-9601, Fax: 952-887-9605 ext 205	Project Name: City of Rochester	Pace	Project N	lanager: Ca	Irolynne Trou	12						ATION	ь Г	о С	י ב ז ב	OTHER	
Requested Due Date/TAT: Normal	Project Number: CRC	Pace	Profile #:								Filtered	(NIX)					
Section D Required Client Information	Valid Matrix Codes 1 MATRIX CODE 081485604776 101 101 101 101 101 101 101 10	ам Е	ö	OLLECTE	A	TA	SF	Ľ	reservativ	es	Reques	pa	$\left\{ \right\}$		$\left\{ \right\}$	$\left \right $	1
SAMPLE ID One Character per box.		PLE TYPI				, emet e, Lection	IJNIATNO	pe			Ané		\geq	\geq			
Samples IDs MUST BE UNIQUE	WIPE & A	MAS 471D+	OSITE START	composi	E END/GRAB	COL 19MPI	OF CC	+ NJƏSI		ioni O ₃						Pace	Project
etti I	TISSUE	<u>о</u>	T 1	ME DA	TE TIME	/s	D#	-UNI- OS ^z F	490H 40H	sdieň s ^{ze} v						-	lumber ab LD
D P E - E X H A U S T	- 1 3 1 6 A	C 3/2	5/10 7	:42 3/2	5/10 13:42			1	4	v v		\vdash			2/4/	STAN S	14
2																	2
3					 	<u> </u>											
4																	
																	Ī
						<u> </u>											
Additional Comments:	Rel	NQUISHE) BY / AFF	ILIATION	DATE		ACCEPT	ED BY //	AFFILIATI	NO		DATE	TIME	SAMF	LE CON	DITIONS	
17							AC	AN A	HA HA		Z	1/92/6	25010	1919			M
' of							. <u>0</u> . /			•					N/A	↓ N/A	N/A
18															N/A	N/A	N/A
															N/A	N/A	N/A
			SA	MPLER N. IT Name of S ⁴	AME AND S MPLER:		ų,		1					O° nì q	ce ived on	tody tody	tosini se
			000	IATURE of SP	MPLER)))	DAT	Signed (MA	midal			meT	l BoeЯ	suD Sealed)dweg
										and				•		•	;

E-File, (ALLQ020rev.3,31Mar05), 13Jun2005

F:\PROJECTS\Crc-City of Rochester\Analytical Reports\coc air 2-22-10.XLS

Pace Analytical Cli	ent Name:	LAND	MARK	Projec	et # <i>1012_5090</i>	
Courier: Fed Ex UPS U Custody Seal on Cooler/Box Prese Packing Material: Bubble Wrap	SPS Client SPS Client Solution Client Solu	Commercial no Seal	Pace Other_ intact: yes Other	no		
Tracking #:			Comments:		Date and initials of person exami contents: 3.26.10 4	ning
Chain of Custody Present:	Keyes		1.	<u> </u>		
Chain of Custody Filled Out:	Yes		2.	******	annannan ann an ann an ann an ann an ann an a	
Chain of Custody Relinquished:	∕ □Yes		3.			
Sampler Name & Signature on COC:	∆ Yes		4.			
Samples Arrived within Hold Time:	Yes		5.			
Short Hold Time Analysis (<72hr):	□Yes		6.			
Rush Turn Around Time Requested	l: 🛛 Yes	KANO □N/A	7.	ésteriste a termente a serie de companya de companya de companya de companya de companya de companya de company		
Sufficient Volume:	Yes	⊡N₀ □N/A	8.			
Correct Containers Used:	Yes		9.			
-Pace Containers Used:	MYes.					
Containers Intact:	Myes_		10.			
Media: <u>HAR(</u>	LAN)		11.	Powertur Publication and a second	INTERNAL PROTOCOLOGICAL AND A CONTRACT OF	
Sample Labels match COC:	Yes		12.		2014/09/2014/09/2014 1 8 - 0	
Samples Received: 1C	AN, IFC				1	
Canisters	Flow Contro	ollers	Stand Alor		Tedlar Bags	
DPE 1316	Sample Number	174	Sample Number	Gan ID	Sample Number Can ID	
			-			
				157		
	-					
		·		•••		
			- C + C			
Antional and Advances for Advances (1998)	<u> </u>					
Client Notification/ Resolution: Person Contacted: Comments/ Resolution:		Date/1	-ime:	Field	Data Required? Y / N	
Dislast Manager Partieur					- 2 h 9/m	

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers) A106 Rev.01 (22May2009)

Attachment C

Site Data Entry Worksheet for Soil Vapor Extraction Systems Enter site data for up to 5 SVE stacks in yellow cells.

Project Name:		Enter Height of Stack#1 (meters):	Enter Distance from Stack#1 to Nearest Receptor or Property Boundary (in meters, minimum 10):	Enter Measured Gas Flow Rate through Vent Stack#1 (m ³ /sec):				
MN Bio Business Center		8	10	0.05				
Date of Emission Test:				STACK 1				
03/25/10		ENTER	EMISSION CONC	ENTRATIONS FOR	STACK#1 in Col	umn C		
Chemical Name	CAS or MPCA#	Emission concentration stack#1	Gas flow rate through vent stack#1	Emission rate stack#1	Emission rate stack#1	Emission rate stack#1	Total Annual Emissions	Cumulative Emission Rate
		ug/m³	m³/sec	ug/sec	lb/hr	tons/year	(tons/year)	(ug/sec)
Acetone	67-64-1	163	5.2000E-02	8.4760E+00	6.7271E-05	2.9465E-04	2.9465E-04	8.4760E+00
Carbon disulfide	75-15-0	1.3	5.2000E-02	6.7600E-02	5.3652E-07	2.3499E-06	2.3499E-06	6.7600E-02
Chloroform	67-66-3	11.3	5.2000E-02	5.8760E-01	4.6636E-06	2.0426E-05	2.0426E-05	5.8760E-01
Cyclohexane	110-82-7	2.2	5.2000E-02	1.1440E-01	9.0795E-07	3.9768E-06	3.9768E-06	1.1440E-01
Dichlorodifluoromethane (CFC-12)	75-71-8	11	5.2000E-02	5.7200E-01	4.5398E-06	1.9884E-05	1.9884E-05	5.7200E-01
Ethanol	64-17-5	26.1	5.2000E-02	1.3572E+00	1.0772E-05	4.7180E-05	4.7180E-05	1.3572E+00
Ethyl benzene	100-41-4	118	5.2000E-02	6.1360E+00	4.8699E-05	2.1330E-04	2.1330E-04	6.1360E+00
Hexane	110-54-3	4.7	5.2000E-02	2.4440E-01	1.9397E-06	8.4960E-06	8.4960E-06	2.4440E-01
Methyl ethyl ketone (2-Butanone)	78-93-3	44.2	5.2000E-02	2.2984E+00	1.8242E-05	7.9898E-05	7.9898E-05	2.2984E+00
Tetrachloroethylene (Perchloroethylene)	127-18-4	215000	5.2000E-02	1.1180E+04	8.8732E-02	3.8864E-01	3.8864E-01	1.1180E+04
Toluene	108-88-3	28.4	5.2000E-02	1.4768E+00	1.1721E-05	5.1337E-05	5.1337E-05	1.4768E+00
Trichloro-1,2,2-trifluoroethane, 1,1,2- (Freon 113)	/6-13-1	115000	5.2000E-02	5.9800E+03	4.7461E-02	2.0788E-01	2.0788E-01	5.9800E+03
Trichloroethylene	79-01-6	43.7	5.2000E-02	2.2724E+00	1.8035E-05	7.8994E-05	7.8994E-05	2.2724E+00
Trimethylbenzene, 1,2,4-	95-63-6	12.8	5.2000E-02	6.6560E-01	5.2826E-06	2.3138E-05	2.3138E-05	6.6560E-01
Vinyi acetate	108-05-4	8.9	5.2000E-02	4.6280E-01	3.6731E-06	1.6088E-05	1.6088E-05	4.6280E-01
Xylenes	1330-20-7	456	5.2000E-02	2.3712E+01	1.8819E-04	8.2429E-04	8.2429E-04	2.3712E+01
Xylenes, o-	95-47-6	159	5.2000E-02	8.2680E+00	6.5620E-05	2.8742E-04	2.8742E-04	8.2680E+00
							5.9850E-01	

Site Data Entry Worksheet for Air Stripper Systems Enter Site Data for up to 5 air strippers in vellow cells.

Site/Project Name: Emission Test Date:	MN Bio Business Center 3/25/2010						
		Enter Height of Stack: (meters)	Enter Distance from Stack to Nearest Receptor or Property Boundary: (in meters, minimum 10)	Air Stripper#1 influent flow rate [IFR] (liter/sec)			
		8	10	0.04			
		Air Stripper #1					
Chemical Name	CAS or MPCA#	Influent Groundwater Concentration [IGC] (ug/L)	Effluent Groundwater Concentration [EGC] (ug/L)	Removal Factor [RF] (dimension less)	Cumulative Emission Rate (ug/sec)	Total Annual Emissions (lbs/hr)	Total Annual Emissions (tons/year)
Acetone	67-64-1	1.12E+01	2.98E+01	-1.66	-6.88E-01	-5.46E-06	-2.39E-05
Methyl ethyl ketone (2-Butanone)	78-93-3	4.90E+00	7.50E+00	-0.53	-9.62E-02	-7.64E-07	-3.34E-06
Tetrachloroethylene (Perchloroethylene)	127-18-4	5.55E+01	0.00E+00	1.00	2.05E+00	1.63E-05	7.14E-05
Trichloro-1,2,2-trifluoroethane, 1,1,2- (Freon 113)	76-13-1	1.00E+00	0.00E+00	1.00	3.70E-02	2.94E-07	1.29E-06
Xylenes	1330-20-7	0.00E+00	4.90E+00	#DIV/0!	#DIV/0!	0.00E+00	0.00E+00

Screening Emission Rates (SERs) and Chronic Risk Summary Based on site inputs provided on Soil Venting Worksheet and Air Stripper Worksheet

Site/Project Name:

MN Bio Business Center

Emission Test Date: 3/25/2010

Chemical Name	CAS # or MPCA #	Chronic Noncancer tox value (ug/m3)	Chronic Cancer tox value (ug/m3)	Annual Disp. Factor ((ug/m3)/g/s)	SER for Chronic Risk (ug/s)	Site Specific Emission Rate (ug/s)	Calculated Conc at Receptor for Chronic Risk (ug/m3)	Site HQ (Noncancer)	ELCR (Cancer)
Acetone	67-64-1	3.00E+04		1230	2.44E+07	8.48E+00	1.04E-02	0.0	
Carbon disulfide	75-15-0	7.00E+02		1230	5.69E+05	6.76E-02	8.31E-05	0.0	
Chloroform	67-66-3	1.00E+02		1230	8.13E+04	5.88E-01	7.23E-04	0.0	
Cyclohexane	110-82-7	6.00E+03		1230	4.88E+06	1.14E-01	1.41E-04	0.0	
Dichlorodifluoromethane (CFC-12)	75-71-8	2.00E+02		1230	1.63E+05	5.72E-01	7.04E-04	0.0	
Ethanol	64-17-5	1.50E+04		1230	1.22E+07	1.36E+00	1.67E-03	0.0	
Ethyl benzene	100-41-4	1.00E+03		1230	8.13E+05	6.14E+00	7.55E-03	0.0	
Hexane	110-54-3	2.00E+03		1230	1.63E+06	2.44E-01	3.01E-04	0.0	
Methyl ethyl ketone (2-Butanone)	78-93-3	5.00E+03		1230	4.07E+06	2.30E+00	2.83E-03	0.0	
Tetrachloroethylene (Perchloroethylene)	127-18-4	1.00E+02	2.00E+01	1230	1.63E+04	1.12E+04	1.38E+01	0.1	6.9E-06
Toluene	108-88-3	5.00E+03		1230	4.07E+06	1.48E+00	1.82E-03	0.0	
Trichloro-1,2,2-trifluoroethane, 1,1,2- (Freon 113)	76-13-1			1230		5.98E+03	7.36E+00		
Trichloroethylene	79-01-6	6.00E+02	3.03E+00	1230	2.46E+03	2.27E+00	2.80E-03	0.0	9.2E-09
Trimethylbenzene, 1,2,4-	95-63-6	7.00E+00		1230	5.69E+03	6.66E-01	8.19E-04	0.0	
Vinyl acetate	108-05-4	2.00E+02		1230	1.63E+05	4.63E-01	5.69E-04	0.0	
Xylenes	1330-20-7	1.00E+02		1230	8.13E+04	2.37E+01	2.92E-02	0.0	
Xylenes, o-	95-47-6	1.00E+02		1230	8.13E+04	8.27E+00	1.02E-02	0.0	
						Additive Risk:		0.1	6.9E-06

Screening Emission Rates (SERs) and Acute Risk Summary Based on site inputs provided on Soil Venting Worksheet and Air Stripper Worksheet

Site/Project Name:

MN Bio Business Center

Emission Test Date: 3/25/2010

*Bolded chemicals are developmental toxicants. The acute toxic values are ceiling values that should not be exceeded.

Chemical Name	CAS # or MPCA #	Acute toxcity value (ug/m3)	1-hr Disp. Factor ((ug/m3)/g/s)	SER [acute risk] (ug/s)	Site Emission Rate (ug/s)	Calculated Conc at Receptor for Acute Risk (ug/m3)	Site HQ (Noncancer) for acute risk
Acetone	67-64-1		3343	1	8.48E+00	1.24E-01	
Carbon disulfide	75-15-0	6000	3343	1.79E+06	6.76E-02	9.90E-04	0.0
Chloroform	67-66-3	150	3343	4.49E+04	5.88E-01	8.60E-03	0.0
Cyclohexane	110-82-7	1	3343		1.14E-01	1.68E-03	
Dichlorodifluoromethane (CFC-							
12)	75-71-8		3343		5.72E-01	8.38E-03	
Ethanol	64-17-5	180000	3343	5.38E+07	1.36E+00	1.99E-02	0.0
Ethoxyethanol, 2- (ethylene	110-80-5	400	85665	4 675±03			
Ethyl acetate	141-78-6	40000	85665	4.675±05			
Ethyl benzene	100-41-4	10000	3343	2 995+06	6 1/E+00	0 005 02	
Hevane	110-54-3	10000	3343	2.996700	2 44E 01	2 505-02	0.0
Methyl ethyl ketone (2-	110-54-5		5545		2.446-01	3.362-03	
Butanone)	78-93-3	10000	3343	2.99E+06	2.30E+00	3.37E-02	0.0
Tetrachloroethylene							
(Perchloroethylene)	127-18-4	20000	3343	5.98E+06	1.12E+04	1.64E+02	0.0
Toluene	108-88-3	37000	3343	1.11E+07	1.48E+00	2.16E-02	0.0
Trichloro-1,2,2-trifluoroethane, 1,1,2- (Freon 113)	76-13-1		3343		5.98E+03	8.76E+01	
Trichloroethylene	79-01-6	2000	3343	5.98E+05	2.27E+00	3.33E-02	0.0
Trimethylbenzene, 1,2,4-	95-63-6		85665		6.66E-01	9.75E-03	
Vinyl acetate	108-05-4		3343		4.63E-01	6.78E-03	
Xylenes	1330-20-7	43000	3343	1.29E+07	2.37E+01	3.47E-01	0.0
Xylenes, o-	95-47-6	43000	3343	1.29E+07	8.27E+00	1.21E-01	0.0
					Additive Risk:		0.0

Risk Evaluation Summary

RASS Version Used: RASS version number = 20060829 - RASS

This worksheet provides a summary of the results of the chronic and acute risk calculations based on site inputs from the Soil Venting and the Air Stripper worksheets. For both chronic and acute risk, an unacceptable risk is indicated in red if the Hazard Index exceeds 1. For chronic risk, an unacceptable risk is also indicated in red if the additive ELCR exceeds 10-5. This worksheet also indicates if levels of any acute developmental toxicants (which are considered ceiling values and should never be exceeded) pose an unacceptable risk.

CHRONIC RISK SUMMARY	
Number of Compounds with Hazard Quotient >1:	0
Number of Compounds with Cancer Risk > 10^{-5}	
Noncancer Hazard Index:	0.1
Excess Lifetime Cancer Risk (ELCR):	6.9E-06

ACUTE RISK SUMMARY	a en active de la secondition	an a
Number of Compounds with Hazard Quotient >1:		14 and 14 and 10
Hazard Index:		0.0

Ceiling Values Exceeded?		
Arsenic	NO	
Benzene deserves	NO	
Carbon disulfide	NO	
Carbon tetrachloride	NO	
Cellosolve Acetate	NO	
Chloroform	NO	
Ethoxyethanol, 2-	NO	
Ethylbenzene	NO	
Ethyl chloride	NO	
Mercury	NO Sec	
Methoxyethanol, 2-	< NO test	
Propylene oxide	NO	
Trichloroethylene	NO	