November 6, 2014 Sent Via Email

Mr. Allan Timm and Ed Olson MPCA VIC Program 520 Lafayette Road St. Paul, MN 55155-4194

Re: Soil Vapor and Groundwater Monitoring Report MN Bio Business Center, Rochester, MN

Dear Mr. Timm and Mr. Olson:

On behalf of the City of Rochester (City), Landmark Environmental, LLC (Landmark) has prepared this letter report (Report) to present quarterly groundwater and semiannual soil vapor monitoring results from the above referenced property (Property), shown in **Figure 1**. This Report documents the groundwater monitoring results from February 17, April 20, and August 21, 2014, and the soil vapor monitoring results from February 18, March 14, and August 22, 2014.

Introduction

Groundwater monitoring at the Property has been required by the Minnesota Pollution Control Agency (MPCA) since 2009 for evaluating the effectiveness of the dual phase extraction (DPE) system, which was originally started up on June 29, 2009. During DPE system operation, the operational configuration was adjusted based on its effect on groundwater volatile organic compound (VOC) concentrations at the DPE wells, the emissions concentrations of VOCs, and photo-ionization detector readings collected from each DPE well during monthly monitoring and sampling events. As recommended in the July 31, 2013, *Quarterly Groundwater Monitoring and Dual Phase Extraction System Effectiveness Report* prepared by Landmark, the DPE system was shut down on August 26, 2013. DPE system shut down for one year was approved by the MPCA with modifications to the MPCA's approval in the December 11, 2013, *Quarterly Groundwater Monitoring and Dual Phase Extraction System Effectiveness Report*.

"Landmark and the City will decommission and remove the DPE system from the building, per MPCA's approval, if the soil vapor and groundwater concentrations do not exceed the following levels after one year of monitoring with the DPE system off (through August 2014):

if the soil vapor monitoring concentrations at LSG-7 (the south monitoring location beneath Dolittle's restaurant) increase to levels exceeding the ten times (10X) the industrial intrusion screening value (IISV) of 600 micrograms per cubic meter (ug/m³); or,

- if the concentrations at LSG-8, LSG-9, or LSG-10 (the locations bordering the west alley, the north portion of the Property which has a vapor barrier and venting system, and the sidewalk and street to the east) increase to levels exceeding one hundred times (100X) the IISV of 6,000 ug/m³; or,
- if groundwater concentrations at downgradient and sidegradient monitoring wells MW-14, MW-15, and MW-19 exceed 10X the health risk limit (HRL) for tetrachloroethene (PCE) of 70 micrograms per liter (ug/L).

The City will continue quarterly groundwater sampling and semiannual soil gas sampling through August 2014."

In an email dated January 15, 2014, the MPCA approved, with modifications, Landmark's recommendation to monitor groundwater and soil gas for one year. The data in this report summarizes data from the final three quarterly groundwater monitoring events and the two semiannual soil vapor monitoring events since the DPE system was shut down on August 26, 2013.

On July 28, 2014, the MPCA implemented and interim ISV for PCE, which has lowered the applicable 10X IISV from 600 ug/m³ to 300 ug/m³. The Minnesota Department of Health (MDH) also recently lowered the HRL for PCE to from 7 ug/L to 5 ug/L. Therefore, the site specific screening values for PCE approved by the MPCA in the January 15, 2014, email have changed to include 300 ug/m³ as the applicable 10X IISV for LSG-7, 3,000 ug/m³ as the applicable 10X IISV for LSG-8, LSG-9, and LSG-10, and 50 ug/L as the 10X HRL.

Groundwater Monitoring Results

The DPE well groundwater hydrographs from February 17, April 20, and August 21, 2014, (**Figure 2**) all showed a three to four foot increase in groundwater elevation resulting from the DPE system shut down from August 26, 2013, through April 20, 2014, when compared to elevations during system operation. From April 20, 2014, through August 21, 2014, groundwater elevations decreased back to levels observed prior to DPE system shutdown on August 26, 2013. Similar groundwater elevation trends were observed in the monitoring well hydrographs shown in **Figure 3**. Groundwater flow interpretations are provided in **Figures 4A through 4C and 5A through 5C**. The groundwater elevation data is provided in **Table 1**. Well construction information is provided in **Table 2**.

Per the MPCA's approval, analysis of the following natural attenuation parameters has been discontinued: dissolved calcium, dissolved organic carbon, dissolved iron, dissolved magnesium, methane, nitrate as nitrogen, sulfate, and sulfide. The natural attenuation data collected prior to the MPCA's approval is provided in **Table 3**. The following field parameter data is still collected at each well on a quarterly basis: temperature, conductivity, pH, oxidation reduction potential, and dissolved oxygen (**See Table 4**).

After approximately four and a half years of DPE system operation, the PCE concentrations decreased at all of the monitoring and DPE wells as shown in **Figures 6A** and **6B**, and **Table 5**. Groundwater VOC concentrations have also decreased significantly from the historical highs observed from the 25.6 inches of precipitation which fell in Rochester from April 1 through June 30, 2013. After the August 26, 2013, DPE system shut down, PCE concentrations at the following wells rebounded: DPE-1, DPE-2, DPE-3, DPE-4, DPE-5, DPE-6, DPE-7, DPE-8, MW-16, MW-17, and MW-20. Despite the rebound in PCE concentrations at these wells, the average concentrations of PCE from the 4 monitoring events after DPE system shut down on August 26, 2013, were 2.9 ug/L at MW-14, < 1 ug/L at MW-15, 5.5 ug/L at MW-18, and 5.6 ug/L at MW-19.

The associated percent decrease of PCE concentration at each well through August 21, 2014, when compared to baseline groundwater concentrations, is listed as follows: MW-14 (95.4%), MW-15 (100%), MW-16 (87.4%), MW-17 (41.9%), MW-18 (98.8%), MW-19 (54.2%), MW-20 (97.9%), DPE-1 (96.5%), DPE-2 (80.8%), DPE-3 (86.1%), DPE-4 (72.8%), DPE-6 (68.5%), DPE-7 (98.2%) and DPE-8 (92%). The PCE concentration at DPE-5 increased 24.6%. **Figures 7A through 7C** show the iso-concentration contour map for PCE during these reporting periods monitoring events. The groundwater analytical results are included in **Table 6** and the groundwater analytical reports are included in **Attachment A**. Groundwater monitoring field data sheets are included in **Attachment B**.

Soil Vapor Monitoring Results

Permanent soil vapor sampling ports, LSG-7 through LSG-10, were installed during the December 21, 2012, soil vapor sampling event. These sampling ports were installed by coring 1inch holes through the foundation walls near the basement ceiling. The samples collected at LSG-7 and LSG-9 were representative of sub-slab soil vapor samples because they were collected below the Property building slab. LSG-7, which was near the former SG-1 sampling location, was collected beneath the slab of Dooley's Pub. LSG-9, the north sampling location, was collected beneath the slab on grade section of the Property building. These two sample locations are representative of sub-slab samples collected within 1 foot below the bottom of the slab per MPCA requirements. Soil vapor samples, which are not considered "sub-slab" soil vapor samples because they were not located beneath a building slab, were collected at LSG-8 located on the east side of the Property building beneath the sidewalk and LSG-10 located on the west side of the Property building beneath the alley. The soil vapor sample from LSG-8 was collected approximately 6 inches below the concrete surface of the sidewalk. The soil vapor sample LSG-10 was collected approximately 3 feet beneath the concrete surface of the alley. In addition to collecting soil vapor samples at locations LSG-7 through LSG-10, Landmark also collected grab headspace samples from storm sewer sumps SP-1 and SP-2 located in the basement of the Property building.

During the February 18 (LSG-7 through LSG-10 only), March 14 (SP-1 and SP-2 only), and August 21, 2014, monitoring events, soil vapor samples were collected from 4 interior soil vapor sampling ports (LSG-7 through LSG-10) and air samples were collected from the headspace of each of the two stormwater sumps (SP-1 and SP-2) located in the basement of the Property building (see **Figures 8 and 9**). These soil vapor and headspace air samples were collected after the DPE system was shut down on August 26, 2013, to evaluate the potential contaminant rebound concentrations in the soil vapor.

As shown in the attached analytical summary **Table 7**, all of the detected parameters from the February 18, March 14, and August 22, were below the MPCA's applicable 10X IISVs, except for PCE at LSG-7 (440 ug/m³), LSG-8 (1,300 ug/m³), LSG-10 (970 ug/m³) on February 18, 2014, and at SP-2 (480 ug/m³) on August 22, 2014, and 1,2,4-trimethylbenzene LSG-8 (288 ug/m³). The interim 10X IISVs are 300 ug/m3 for PCE and 200 ug/m³ for 1,2,4-trimethylbenzene. The analytical laboratory reports from Legend Technical Services, Inc. (Legend) and Pace Analytical (Pace) are included in **Attachment A**.

The soil vapor samples were collected in an evacuated, 1 liter Summa canister equipped with a dedicated pneumatic flow controller. Prior to collecting the soil gas samples, at a minimum, two volumes of air were purged from the sampling train using a hand-operated syringe. The sampling line (1/4-inch outer diameter [O.D.] Teflon tubing) was attached to the canister inlet using a Swagelok nut and set of stainless steel ferrules. The sampling line was attached to the tubing in the soil void created (approximately 1-inch O.D.) using new small length of inert tubing. The pneumatic flow controller was pre-set by the laboratory so that the canister fills at a rate in no less than 10 minutes. The Summa canister was equipped with a pressure gauge to monitor vacuum. The sump pit samples were grab samples collected over approximately 10 minutes. The Summa canisters were submitted to Legend or Pace for analysis of VOCs using U.S. Environmental Protection Agency Method TO-15.

Contingency Issues

A month after the DPE system was shut down on August 26, 2013, the DPE system operational configuration was changed to operate at each DPE well for a period of 5 minutes per day. This operational configuration change was made to prevent the solenoid valves and other DPE system components from deteriorating/corroding during the one year system shutdown period. However, the DPE system would not restart after being off for approximately one month. After a site visit by Landmark to troubleshoot the system, it was determined that the DPE blower had malfunctioned. The City chose not to make the repairs to the DPE pump at that time in case the groundwater and soil vapor rebound sampling results were at levels that would justify permanently shutting down the DPE system. Therefore, the DPE system is currently inoperable.

Conclusions

After analyzing the soil vapor and groundwater data from this reporting period and the previous reporting period (AFTER the DPE system was shut down on August 26, 2013), the following

conclusions can be made:

- The groundwater PCE concentrations have decreased at the following wells when compared to baseline groundwater concentrations MW-14 (95.4%), MW-15 (100%), MW-16 (87.4%), MW-17 (41.9%), MW-18 (98.8%), MW-19 (54.2%), MW-20 (97.9%), DPE-1 (96.5%), DPE-2 (80.8%), DPE-3 (86.1%), DPE-4 (72.8%), DPE-6 (68.5%), DPE-7 (98.2%) and DPE-8 (92%). The PCE concentration at DPE-5 increased 24.6%.
- Despite the rebound in PCE concentrations at some of the wells, the average concentrations from the 4 quarterly monitoring events after DPE system shut down on August 26, 2013, were 2.9 micrograms per liter (ug/L) at MW-14, < 1 ug/L at MW-15, 5.5 ug/L at MW-18, and 5.6 at MW-19; therefore, the extent of groundwater contamination did not increase vertically, as shown by the MW-18 results, or downgradient or sidegradient, as shown by the MW-14, MW-15, and MW-19 results.
- After the DPE system was shut down on August 26, 2013, the groundwater concentrations at downgradient and sidegradient monitoring wells MW-14, MW-15, and MW-19 did NOT exceed the 10X HRL for PCE of 50 ug/L, the MPCA-approved site specific screening value, during the following four quarterly groundwater sampling events on December 10, 2013, February 17, 2014, May 20, 2014, and August 21, 2014.
- After the DPE system was shut down on August 26, 2013, the soil vapor concentrations of PCE at LSG-7 (the south monitoring location beneath Dolittle's restaurant) did NOT exceed the 10X IISV of 300 ug/m³ during October 18 (18 ug/m³), 2013, and August 22 (21 ug/m³), 2014, semiannual soil vapor monitoring events. The only exceedance of the 10X IISV of 300 ug/m³ at LSG-7 was on February 18 (440 ug/m³), 2014.
- After the DPE system was shut down on August 26, 2013, the soil vapor concentrations of PCE at LSG-8 (bordering the sidewalk and street to the east), LSG-9 (the north portion of the Property which has a vapor barrier and venting system), or LSG-10 (bordering the west alley) did NOT exceed the 100X IISV of 3,000 ug/m³ during the semiannual soil vapor monitoring events on October 18, 2013, February 18, 2014, and August 22, 2014.

Recommendations

The post DPE system shutdown groundwater and soil vapor results support the permanent shutdown of the DPE system and show that contaminated soil remediation and DPE system operation Response Actions (RAs) completed to date at the Property have continued to effectively reduce the soil vapor concentrations on the Property and on adjacent properties. Except for the one soil vapor sampling event at LSG-7 on February 18, 2014, the PCE soil vapor and groundwater concentrations were below the MPCA-approved site specific screening values.

On behalf of the City, based on the results summarized in this Report and taking into account the presence of the MPCA-approved vapor barrier and venting system under the building and the

lack of groundwater receptors in the vicinity of the Property, Landmark requests approval to permanently shut down and decommission the DPE system at the Property. Landmark recommends one additional year of quarterly groundwater monitoring and semiannual soil vapor monitoring.

If you have any questions or require additional information, please feel free to contact me at <u>jskramstad@landmarkenv.com</u> and (952) 887-9601, extension 205.

Sincerely,

An D Shand

Jason D. Skramstad, P.E.

Cc: Terry Spaeth, City of Rochester

F:\PROJECTS\Crc-City of Rochester\Monthly System Reports\20131107\20141106 Soil Vapor and Groundwater Monitoring Report.doc

Figures

Source: Rochester, Minnesota Topographic Quadrangle, 7.5-Minute Series

FIGURE 1

PROPERTY LOCATION MAP 219 and 223 1ST Avenue Southwest Rochester, Minnesota

FIGURE 2

DPE WELL HYDROGRAPHS MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

F:\PROJECTS\Crc-City of Rochester\data tables\Elevation Data

FIGURE 3

MONITORING WELL AND SUMP HYDROGRAPHS MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

FIGURE 5A

3D GROUNDWATER FLOW INTERPRETATION February 17, 2014

FIGURE 5B

3D GROUNDWATER FLOW INTERPRETATION May 20, 2014

LEGEND

DPE and Monitoring Well Location

(976) Groundwater Elevation (feet above mean sea level)

980.6 980.4 980.2 980.2 979.8 979.2 978.8 978.6 978.4 978.5 978.5

1. MW-17 and 18 are not shallow wells; therefore, the data from these wells was not used in the contouring calculations.

FIGURE 5C

3D GROUNDWATER FLOW INTERPRETATION August 21, 2014

DPE and Monitoring Well Location

(976) Groundwater Elevation (feet above mean sea level)

979.6 979.4 979.2 978.6 978.6 978.6 977.6 977.6 977.2 977.2 976.6 976.6

1. MW-17 and 18 are not shallow wells; therefore, the data from these wells was not used in the contouring calculations.

FIGURE 6A

PCE CONCENTRATIONS IN GROUNDWATER December 2008 to Present MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

Date

F:\PROJECTS\Crc-City of Rochester\data tables\GW Analytical Data

FIGURE 6B

PCE CONCENTRATIONS IN GROUNDWATER May 2010 to Present MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

F:\PROJECTS\Crc-City of Rochester\data tables\GW Analytical Data

FIGURE 8 - FEB. 18, 2014 SOIL VAPOR SAMPLING LOCATIONS AND PCE RESULTS

LAYOUT AND MATERIALS PLAN * 427 ° ° ° ° TLEE L101

FIGURE 9 - AUG. 22, 2014 SOIL VAPOR SAMPLING LOCATIONS AND PCE RESULTS

LAYOUT AND MATERIALS PLAN × 427 ° ° ° ° TLEE L101

Tables

		Top of	Depth to		
Well	Date	Casing	Groundwater	Groundwater	
D	Measured	Elevation ^{1,2}	(feet)	Elevation ³	System Status
MW-14	12/3/2008	989.50	10.82	978.68	pre-system installation
MW-14	6/8/2009	989.50	12.40	977.10	pre-system startup
MW-14	7/9/2009	989.50	12.90	976.60	DPE system on DPE-1
MW-14	7/9/2009	989.50	12.51	976.99	DPE system temporarily off
MW-14	9/4/2009	989.50	12.63	976.87	DPE system on
MW-14	9/4/2009	989.50	12.57	976.93	DPE system on after replacing inlet screen
MW-14	9/4/2009	989.50	12.65	976.85	DPE system on after replacing inlet filter
MW-14	10/15/2009	989.50	12.47	977.03	DPE system on DPE-1
MW-14	10/23/2009	989.50	11.33	978.17	DPE system off
MW-14	11/16/2009	989.50	11.87	977.63	DPE System on all wells
MW-14	12/17/2009	989.50	11.66	977.84	DPE System on all wells
MW-14	1/14/2010	989.50	12.14	977.36	DPE System on all wells
MW-14	2/22/2010	989.50	12.51	976.99	DPE System on all wells
MW-14	3/25/2010	989.50	11.90	977.60	DPE System on all wells
MW-14	4/16/2010	989.50	12.21	977.29	DPE System on all wells
MW-14	5/12/2010	989.50	12.68	970.82	DEE System on all wells
MW-14	0/1//2010	989.50	13.01	970.49	DPE System on all wells
MW-14	8/18/2010	989.50	13.28	970.22	DEE System on all wells
MW-14	9/2//2010	787.50	10.85	9/8.03	DEE System not operating
1VI VV-14 MIW7 14	12/22/2010	909.30	11.10	978.34	DPE System restarted
1VI V/-14 MW-14	1/6/2010	980 50	10.82	978.68	DPE System on all wells
MW-14	1/20/2011	989.50	11.02	978 30	DPE System on all wells
MW-14	2/28/2011	989.50	11.18	978 32	DPE System on all wells
MW-14	3/7/2011	989.50	11.10	977.90	DPE System on all wells
MW-14	3/18/2011	989.50	11.00	978.03	DPE System on all wells
MW-14	3/23/2011	989.50	10.84	978.66	DPE System on all wells
MW-14	4/22/2011	989.50	12.70	976.80	DPE System on all wells
MW-14	5/19/2011	989.50	10.96	978.54	DPE System on all wells
MW-14	6/16/2011	989.50	11.13	978.37	DPE System on all wells
MW-14	7/25/2011	989.50	10.72	978.78	DPE System on all wells
MW-14	8/28/2011	989.50	12.11	977.39	DPE System on all wells
MW-14	9/29/2011	989.50	12.26	977.24	DPE-1,2,3,4
MW-14	10/18/2011	989.50	11.18	978.32	DPE-1,2,3,4
MW-14	10/27/2011	989.50	12.30	977.20	DPE-1,2,3,4
MW-14	11/21/2011	989.50	12.77	976.73	DPE-1,2,3,4
MW-14	1/20/2012	989.50	12.29	977.21	DPE-1,2,3,4
MW-14	1/27/2012	989.50	13.06	976.44	DPE-1,2,3,4
MW-14	2/16/2012	989.50	13.14	976.36	DPE-1,2,3,4
MW-14	3/16/2012	989.50	13.56	975.94	DPE-1,2,3,4
MW-14	3/27/2012	989.50	12.46	977.04	DPE-1,2,3,4
MW-14	4/17/2012	989.50	13.00	976.50	DPE-1,2,3,4
IVIW-14	5/1//2012	989.50	12.88	976.62	DFE-1,2,3,4
W+14	5/31/2012	989.50	12.64	976.80	Dre-1,2,3,4
IVI W +14	7/10/2012	989.30	13.33	970.13	DFE-1,2,3,4
MW-14	8/23/2012	909.30	13.80	975.70	DPE-3
1V1 VV-14 MXV/14	0/25/2012	909.50	13.20	976.30	DPE-3
MW 14	10/26/2012	969.30	13.47	976.03	DPE-3
MW-14	12/19/2012	989.50	12.53	976.07	DPF-3: Before restarting the system
MW-14	12/21/2012	989.50	13.20	976.21	DPF-3: After restarting the system
MW-14	1/30/2012	989.50	13.42	976.08	DPF-1 2 3 4
MW-14	2/26/2013	989 50	13.41	976.09	DPE-1.2.3.4
MW-14	3/21/2013	989.50	13.47	976.03	DPE-1.2.3.4
MW-14	5/23/2013	989.50	8.56	980.94	DPE-1.2.3.4
MW-14	6/26/2013	989.50	10.01	979.49	DPE-1,2,3,4
MW-14	8/26/2013	989.50	11.54	977.96	DPE-1,2,3,4
MW-14	12/10/2013	989.50	11.26	978.24	System Off
MW-14	2/17/2014	989.50	11.66	977.84	System Off
MW-14	4/20/2014	989.50	10.52	978.98	System Off
MW-14	8/21/2014	989.50	11.67	977.83	System Off

GROUNDWATER ELEVATIONS MN Bio Business Center 221 First Avenue SW Rochester, Minnesota

		Top of	Depth to		
Well	Date	Casing	Groundwater	Groundwater	
ID	Measured	Elevation ^{1,2}	(feet)	Elevation ³	System Status
MW-16	12/3/2008	989,44	12.32	977.12	pre-system installation
MW-16	6/8/2009	989.44	14.82	974.62	pre-system startup
MW-16	7/9/2009	989.44	14.23	975.21	DPE system on DPE-1
MW-16	7/9/2009	989.44	13.19	976.25	DPE system temporarily off
MW-16	9/4/2009	989.44	13.70	975.74	DPE system on
MW-16	9/4/2009	989.44	14.25	975.19	DPE system on after replacing inlet screen
MW-16	9/4/2009	989.44	14.58	974.86	DPE system on after replacing inlet filter
MW/12	10/15/2009	989.44	11.80	913.83	DPE system off
MW-16	11/16/2009	989 44	11.09	978.00	DPE System on all wells
MW-16	12/17/2009	989.44	14.17	975.27	DPE System on all wells
MW-16	1/14/2010	989.44	12.57	976.87	DPE System on all wells
MW-16	2/22/2010	989.44	13.68	975.76	DPE System on all wells
MW-16	3/25/2010	989.44	12.50	976.94	DPE System on all wells
MW-16	4/16/2010	989.44	12.72	976.72	DPE System on all wells
MW-16	5/12/2010	989.44	13.41	976.03	DPE System on all wells
MW-16	6/17/2010	989.44	13.96	975.48	DPE System on all wells
MW-16	8/18/2010	989.44	13.91	975.53	DPE System on all wells
MW-16	9/27/2010	989.44	11.37	978.07	DPE System on all wells
MW-16	11/18/2010	989.44	11.61	977.83	DPE System not operating
MW-16	12/22/2010	989.44	12.63	976.81	DPE System restarted
MW-16	1/6/2011	989.44	11.30	978.14	DPE System on all wells
MW-16	1/20/2011	989.44	11.91	977.53	DPE System on all wells
MW-16	2/28/2011	289.44	11.77	9/1.0/	DPE System on all wells
MW-16	3/18/2011	980 11	12.27	977.06	DPE System on all wells
MW-16	3/23/2011	980 14	12.30	978.31	DPE System on all wells
MW-16	4/22/2011	989.44	11.15	977.52	DPE System on all wells
MW-16	5/19/2011	989.44	11.88	977.56	DPE System on all wells
MW-16	6/16/2011	989.44	11.97	977.47	DPE System on all wells
MW-16	7/25/2011	989.44	11.31	978.13	DPE System on all wells
MW-16	8/28/2011	989.44	12.59	976.85	DPE System on all wells
MW-16	9/29/2011	989.44	13.09	976.35	DPE-1,2,3,4
MW-16	10/18/2011	989.44	11.59	977.85	DPE-1,2,3,4
MW-16	10/27/2011	989.44	12.88	976.56	DPE-1,2,3,4
MW-16	11/21/2011	989.44	13.68	975.76	DPE-1,2,3,4
<u>MW-16</u>	1/20/212	989.44	12.73	976.71	DPE-1,2,3,4
MW-16	1/2//2012	989.44	13.88	975.56	DPE-1,2,3,4
MW-16	2/16/2012	989.44	13.99	9/5.45	DEE 1 2 2 4
MW-10 MW 12	3/10/2012	909.44	14.14	975.30	DFE-1,2,3,4 DEE 1 2 2 4
MW 16	<u> </u>	909.44	13.34	970.10	DFE-1,2,3,4
MW-16	5/17/2012	989.44	13.80	975.64	DPE-1 2 3 4
MW-16	5/31/2012	989.44	13.26	976.18	DPE-1.2.3.4
MW-16	6/14/2012	989.44	14.21	975.23	DPE-1,2,3,4
MW-16	7/19/2012	989.44	14.51	974.93	DPE-3
MW-16	8/23/2012	989.44	13.99	975.45	DPE-3
MW-16	9/26/2012	989.44	14.32	975.12	DPE-3
MW-16	10/26/2012	989.44	14.16	975.28	DPE-3
MW-16	12/19/2012	989.44	13.02	976.42	DPE-3; Before restarting the system
MW-16	12/21/2012	989.44	14.12	975.32	DPE-3; After restarting the system
MW-16	1/30/2013	989.44	14.46	974.98	DPE-1,2,3,4
MW-16	2/26/2013	989.44	14.04	975.40	DPE-1,2,3,4
MW-16	3/21/2013	989.44	14.69	974.75	DPE-1,2,3,4
MW-16	5/23/2013	989.44	8.92	980.52	DPE-1,2,3,4
MW-16	6/26/2013	989.44	10.91	978.53	DPE-1,2,3,4
MW-16	8/26/2013	989.44	12.54	976.90	DrE-1,2,3,4 Sustem Off
MW-10	2/17/2013	989.44	11./3	9//./1	System Off
MW 16	4/20/2014	709.44 080 11	10.86	979.50	System Off
	8/21/2014	989.44	11.00	977 50	System Off
	014114014	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		211.00	System On
-	1	A			L

•

		Top of	Depth to		
Well	Date	Casing	Groundwater	Groundwater	
ID	Measured	Elevation ^{1,2}	(feet)	Elevation ³	System Status
MW-18	12/3/2008	989.50	13.82	975.68	pre-system installation
MW-18	6/8/2009	989.50	14.22	975.28	pre-system startup
MW-18	7/9/2009	989.50	16.61	972.89	DPE system on DPE-1
MW-18	7/9/2009	989.50	15.61	973.89	DPE system temporarily off
MW-18	9/4/2009	989.50	15.37	974.13	DPE system on
MW-18	9/4/2009	989.50	15.38	974.12	DPE system on after replacing inlet screen
MW-18	9/4/2009	989.50	15.40	9/4.10	DPE system on atter replacing inlet filter
MW 18	10/13/2009	989.50	13.18	974.32	DPE system off
MW-18	11/16/2009	989.50	13.83	975.22	DPE System on all wells
	12/17/2009	989.50	13.85	975.65	DPE System on all wells
MW-18	1/14/2010	989.50	13.96	975.54	DPE System on all wells
MW-18	2/22/2010	989.50	15.49	974.01	DPE System on all wells
MW-18	3/25/2010	989.50	13.24	976.26	DPE System on all wells
MW-18	4/16/2010	989.50	13.83	975.67	DPE System on all wells
MW-18	5/12/2010	989.50	14.60	974.90	DPE System on all wells
MW-18	6/17/2010	989.50	15.14	974.36	DPE System on all wells
MW-18	8/18/2010	989.50	16.53	972.97	DPE System on all wells
MW-18	9/27/2010	989.50	13.79	975.71	DPE System on all wells
MW-18	11/18/2010	989.50	13.54	975.96	DPE System not operating
MW-18	12/22/2010	989.50	13.20	976.30	DPE System restarted
MW-18	1/6/2011	989.50	13.03	976.47	DPE System on all wells
MW-18	1/20/2011	989.50	12,88	976.62	DPE System on all wells
IVI W~18	2/28/2011	989.50	12,79	9/0./1	DPE System on all wells
MW-18	3/18/2011	989.30	13.21	976.29	DPE System on all wells
MW-19	3/23/2011	989.50	12.99	977 42	DPE System on all wells
	4/22/2011	989.50	12.00	977.23	DPE System on all wells
MW-18	5/19/2011	989.50	12.80	976.70	DPE System on all wells
MW-18	6/16/2011	989.50	13.19	976.31	DPE System on all wells
MW-18	7/25/2011	989.50	13.00	976.50	DPE System on all wells
MW-18	8/28/2011	989.50	14.52	974.98	DPE System on all wells
MW-18	9/29/2011	989.50	13.67	975.83	DPE-1,2,3,4
MW-18	10/18/2011	989.50	13.44	976.06	DPE-1,2,3,4
MW-18	10/27/2011	989.50	13.56	975.94	DPE-1,2,3,4
MW-18	11/21/2011	989.50	13.88	975.62	DPE-1,2,3,4
MW-18	1/20/2012	989.50	14.42	975.08	DPE-1,2,3,4
MW-18	1/27/2012	989.50	14.53	974.97	DPE-1,2,3,4
MW-18	2/16/2012	989.50	14.63	974.87	DPE-1,2,3,4
IVI W-18	3/10/2012	989.50	14.71	9/4./9	DFE-1,2,3,4 DDE 1.2.3.4
1V1 VY-18 MW-18	<u> </u>	980 50	14.22	975.28	DPE-1234
MW-18	5/17/2012	989.50	14.20	974 62	DPF-1 2 3 4
MW-18	5/31/2012	989.50	14.96	974.54	DPE-1,2,3,4
MW-18	6/14/2012	989.50	15.47	974.03	DPE-1,2,3,4
MW-18	7/19/2012	989.50	16.70	972.80	DPE-3
MW-18	8/23/2012	989.50	16.02	973.48	DPE-3
MW-18	9/26/2012	989.50	16.06	973.44	DPE-3
MW-18	10/26/2012	989.50	15.82	973.68	DPE-3
MW-18	12/19/2012	989.50	14.53	974.97	DPE-3; Before restarting the system
MW-18	12/21/2012	989.50	14.80	974.70	DPE-3; After restarting the system
MW-18	1/30/2013	989.50	14.25	975.25	DPE-1,2,3,4
MW-18	2/26/2013	989.50	14.84	974.66	DPE-1,2,3,4
MW-18	3/21/2013	989.50	14.83	974.67	DPE-1,2,3,4
<u>MW-18</u>	5/23/2013	989.50	11.09	978.41	DPE-1,2,3,4
MW-18	6/26/2013	989.50	11.34	978.16	DPE-1,2,3,4
MW-18	8/26/2013	989.50	13.39	976.11	DrE-1,2,3,4
IVI W-18 NW 19	2/17/2013	909.50	13.38	976.12	System Off
MW-18	4/20/2014	080 50	13.33	076.99	System Off
MW-18	8/21/2014	989.50	14 10	975.40	System Off
101 11 11 10	0/21/2014	707.50	1-7.10	575.40	bystom On
			·	1	1

		Top of	Depth to		
Well	Date	Casing	Groundwater	Groundwater	
D	Measured	Elevation ^{1,2}	(feet)	Elevation ³	System Status
MW-20	12/3/2008	991 50	12.40	979 10	pre-system installation
MW-20	6/8/2009	991.50	11.93	979.57	pre-system startup
MW-20	7/9/2009	991.50	12.19	979.31	DPE system on DPE-1
MW-20	7/9/2009	991.50	12.24	979.26	DPE system temporarily off
MW-20	9/4/2009	991.50	12.53	978.97	DPE system on
MW-20	9/4/2009	991 50	12.00	979.03	DPE system on after replacing inlet screen
MW-20	9/4/2009	991.50	12.11	979.01	DPE system on after replacing inlet filter
MW-20	10/15/2009	991.50	12.15	979.34	DPE system on DPE-1
MW-20	10/23/2009	991.50	11 33	980.17	DPE system off
MW-20	11/16/2009	991.50	11.02	980.48	DPE System on all wells
MW-20	12/17/2009	991.50	12 31	979.19	DPE System on all wells
MW-20	1/14/2010	991.50	12.31	979.16	DPE System on all wells
MW-20	2/22/2010	991.50	12.31	978 72	DPE System on all wells
MW-20	3/25/2010	991.50	12.70	978.96	DPF System on all wells
MW-20	4/16/2010	991.50	12.51	978 74	DPE System on all wells
MW-20	5/12/2010	991.50	13.18	978 32	DPE System on all wells
MW-20	6/17/2010	991.50	12.99	978.51	DPE System on all wells
MW-20	8/18/2010	991.50	12.55	978 79	DPE System on all wells
MW-20	9/27/2010	991.50	10.17	981 33	DPE System on all wells
	11/18/2010	991.50	11.68	979.82	DPE System of an wens
MW-20	12/22/2010	991.50	12.15	979.35	DPE System restarted
MW-20	1/6/2011	991.50	11.00	070.53	DPE System on all wells
MW-20	1/20/2011	991.50	12.45	979.51	DPE System on all wells
MW 20	2/28/2011	001.50	12.45	078.81	DPE System on all wells
MW-20	3/7/2011	991.50	12.09	978.81	DPE System on all wells
MW-20	3/18/2011	991.50	12.20	978.88	DPF System on all wells
MW.20	3/23/2011	991.50	11.02	978.88	DPE System on all wells
	4/22/2011	991.50	11.19	980.31	DPE System on all wells
	5/10/2011	991.50	11.22	980.28	DPE System on all wells
	6/16/2011	991.50	11.20	070.24	DPE System on all wells
	7/25/2011	991.50	10.13	081 37	DPE System on all wells
	8/28/2011	991.50	12.22	981,57	DPE System on all wells
	9/29/2011	991.50	12.52	979.02	DPF-1 2 3 4
	10/18/2011	991.50	12.40	979.19	$DPE_{-1,2,3,4}$
	10/27/2011	991.50	12.51	978.52	$DPE_{-1,2,3,4}$
	11/21/2011	991.50	13.46	978.04	$DPE_{-1,2,3,4}$
	1/20/2012	991.50	13.40	077.70	$DPE_{-1,2,3,4}$
	1/20/2012	991.50	13.96	977.54	$DPE_{-1,2,3,4}$
MW-20	2/16/2012	991.50	14.08	977.34	$DPF_{-1,2,3,4}$
MW-20	3/16/2012	991.50	14.00	977.30	DPE-1 2 3 4
MW.20	3/27/2012	991.50	13.64	977.86	$DPE_{-1,2,3,4}$
MW-20	A/17/2012	991.50	14.03	977.47	DPE-1 2 3 4
MW-20	5/17/2012	991.50	13.59	977.91	DPE-1 2 3 4
MW-20	5/31/2012	991.50	13 38	978 12	DPE-1.2.3.4
MW-20	6/14/2012	991 50	13.81	977 69	DPE-1,2,3,4
MW-20	7/19/2012	991 50	13.71	977 79	DPE-3
MW-20	8/23/2012	991.50	13.13	978.37	DPE-3
MW-20	9/26/2012	991 50	13.88	977 62	DPE-3
MW-20	10/26/2012	991.50	14 09	977.41	DPE-3
MW-20	12/19/2012	991.50	13.79	977.71	DPE-3: Before restarting the system
MW-20	12/21/2012	991 50	13.84	977.66	DPE-3: After restarting the system
MW-20	1/30/2013	991 50	14 09	977 41	DPE-1.2.3.4
MW-20	2/26/2013	991 50	14 26	977 24	DPE-1.2.3.4
MW-20	3/21/2013	991 50	13.83	977.67	DPE-1.2.3.4
MW-20	5/23/2013	991.50	7 39	984 11	DPE-1.2.3.4
MW-20	6/26/2013	991.50	9.62	981.88	DPE-1 2 3 4
MW-20	8/26/2013	991 50	11 70	979.80	DPE-1.2.3.4
MW-20	12/10/2013	991.50	12 71	978 79	System Off
MW-20	2/17/2014	991.50	13 33	978 17	System Off
MW-20	4/20/2014	991.50	10.94	980.56	System Off
MW-20	8/21/2014	991.50	12.06	979.44	System Off
111 11-20	0/21/2014	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12,00	7,7,77	
L	1. <u> </u>	L	l		_I

-		Top of	Depth to		
Well	Date	Casing	Groundwater	Groundwater	
ID	Measured	Elevation ^{1,2}	(feet)	Elevation ³	System Status
DPE-2	12/3/2008	991.46	13.60	977.86	pre-system installation
DPE-2	6/8/2009	992.80	17.45	975.35	pre-system startup
DPE-2	7/9/2009	992.80	17.61	975.19	DPE system on DPE-1
DPE-2	7/9/2009	992.80	16.83	975.97	DPE system temporarily off
DPE-2	9/4/2009	992.80	17.18	975.62	DPE system on DPE-1
DPE-2	9/4/2009	992.80	17.26	975.54	DPE-1 on after replacing inlet screen
DPE-2	9/4/2009	992.80	17.54	975.26	DPE-1 on after replacing inlet filter
DPE-2	10/15/2009	992.80	10.90	9/3.84	DPE system off
DFE-2 DPF-2	11/16/2009	992.80	15.55	977.61	DPF System on all wells
DPE-2	12/17/2009	992.80	15.69	977 11	DPE System on all wells
DPE-2	1/14/2010	992.80	16.04	976.76	DPE System on all wells
DPE-2	2/22/2010	992.80	14.19	978.61	DPE System on all wells
DPE-2	3/25/2010	992.80	15.50	977.30	DPE System on all wells
DPE-2	4/16/2010	992.80	16.31	976.49	DPE System on all wells
DPE-2	5/12/2010	992.80	16.31	976.49	DPE System on all wells
DPE-2	6/17/2010	992.80	17.09	975.71	DPE System on all wells
DPE-2	8/18/2010	992.80	17.58	975.22	DPE System on all wells
DPE-2	9/27/2010	992.80	14.92	977.88	DPE System on all wells
DPE-2	11/18/2010	992.80	14.79	978.01	DPE System not operating
DPE-2	12/22/2010	992.80	15.72	977.08	DPE System restarted
DPE-2	1/6/2011	992.80	14.42	978.38	DPE System on all wells
DPE-2	1/20/2011	992.80	14.98	977.82	DPE System on all wells
DPE-2	2/28/2011	992,80	14.88	911.92	DPE System on all wells
DFE-2	3/18/2011	992.00	15.22	977 20	DPE System on all wells
DPF-2	3/23/2011	992.80	13.62	979.18	DPE System on all wells
DPE-2	4/22/2011	992.80	14.51	978.29	DPE System on all wells
DPE-2	5/19/2011	992.80	14.78	978.02	DPE System on all wells
DPE-2	6/16/2011	992.80	15.00	977.80	DPE System on all wells
DPE-2	7/25/2011	992.80	14.83	977.97	DPE System on all wells
DPE-2	8/28/2011	992.80	17.81	974.99	DPE System on all wells
DPE-2	9/29/2011	992.80	15.78	977.02	DPE-1,2,3,4
DPE-2	10/18/2011	992.80	14.78	978.02	DPE-1,2,3,4
DPE-2	10/27/2011	992.80	15.94	976.86	DPE-1,2,3,4
DPE-2	11/21/2011	992.80	16.49	976.31	DPE-1,2,3,4
DPE-2	1/20/2012	992.80	15.94	9/6.86	DFE-1,2,3,4
DPE-2	2/16/2012	992.80	10.98	975.82	DFE-1,2,3,4 DPE-1 2 3 4
DFE-2	3/16/2012	992.80	17.00	975.74	DPE-1 2 3 4
DPE-2	3/27/2012	992.80	16.29	976 51	DPE-1,2,3,4
DPE-2	4/17/2012	992.80	16.76	976.04	DPE-1,2,3,4
DPE-2	5/17/2012	992.80	16.63	976.17	DPE-1,2,3,4
DPE-2	5/31/2012	992.80	16.34	976.46	DPE-1,2,3,4
DPE-2	6/14/2012	992.80	17.10	975.70	DPE-1,2,3,4
DPE-2	7/19/2012	992.80	17.79	975.01	DPE-3
DPE-2	8/23/2012	992.80	16.90	975.90	DPE-3
DPE-2	9/26/2012	992.80	16.99	975.81	DPE-3
DPE-2	10/26/2012	992.80	17.01	975.79	DPE-3
DPE-2	12/19/2012	992.80	16.13	976.67	DPE-3; Before restarting the system
DPE-2	12/21/2012	992.80	18.80	974.00	DPE-3; After restarting the system
DPE-2	1/30/2013	992.80	17.41	975.39	DFE-1,2,3,4
DPE-2	2/20/2013	992.80	17.20	9/3.60	DFE-1,2,3,4
DPE-2	5/21/2013	992.80	12.15	9/0.4/	DFE-1234
DPE-2	6/26/2013	992.80	12.15	900.00	DFE-1 2 3 4
DPE-2	8/26/2013	992.00	15.01	977 38	DPF-1 2 3 4
DPE-2	12/10/2013	992.80	14 90	977.90	System Off
DPE-2	2/17/2014	992.80	15.14	977.66	System Off
DPE-2	4/20/2014	992.80	13.96	978.84	System Off
DPE-2	8/21/2014	992.80	15.56	977.24	System Off

GROUNDWATER ELEVATIONS MN Bio Business Center 221 First Avenue SW Rochester, Minnesota

		Top of	Depth to		
Well	Date	Casing	Groundwater	Groundwater	
D	Measured	Elevation ^{1,2}	(feet)	Elevation ³	System Status
DPF-4	12/3/2008	991 39	14 20	977 19	pre-system installation
DPE-4	6/8/2009	992.40	15.30	977.10	pre-system startup
DPE-4	7/9/2009	992.40	16.95	975.45	DPE system on DPE-1
DPE-4	7/9/2009	992.40	16.08	976.32	DPE system temporarily off
DPE-4	9/4/2009	992.40	15,94	976.46	DPE system on DPE-1
DPE-4	9/4/2009	992.40	15.91	976.49	DPE-1 on after replacing inlet screen
DPE-4	9/4/2009	992.40	15.99	976.41	DPE-1 on after replacing inlet filter
DPE-4	10/15/2009	992.40	15.83	976.57	DPE system on DPE-1
DPE-4	10/23/2009	992.40	14.81	977.59	DPE system off
DPE-4	11/16/2009	992.40	14.48	977.92	DPE System on all wells
DPE-4	12/17/2009	992.40	15.44	976.96	DPE System on all wells
DPE-4	1/14/2010	992.40	16.08	976.32	DPE System on all wells
DPE-4	2/22/2010	992.40	16.08	976.32	DPE System on all wells
DPE-4	3/25/2010	992.40	16.22	976.18	DPE System on all wells
DPE-4	4/16/2010	992.40	16.21	976.19	DPE System on all wells
DPE-4	5/12/2010	992.40	16.86	975.54	DPE System on all wells
DPE-4	6/17/2010	992.40	16.83	975.57	DPE System on all wells
DPE-4	8/18/2010	992.40	16.74	975.66	DPE System on all wells
DPE-4	9/27/2010	992.40	14.74	977.66	DPE System on all wells
DPE-4	11/18/2010	992.40	14.93	977.47	DPE System not operating
DPE-4	12/22/2010	992.40	14.89	977.51	DPE System restarted
DPE-4	1/6/2011	992.40	14.61	977.79	DPE System on all wells
DPE-4	1/20/2011	992.40	15.15	977.25	DPE System on all wells
DPE-4	2/28/2011	992.40	15.30	977.10	DPE System on all wells
DPE-4	3/7/2011	992.40	15.62	976.78	DPE System on all wells
DPE-4	3/18/2011	992.40	15.62	976.78	DPE System on all wells
DPE-4	3/23/2011	992.40	14.04	978.36	DPE System on all wells
DPE-4	4/22/2011	992.40	14.64	9/1.76	DE System on all wells
DPE-4	5/19/2011	992.40	15.80	976.60	DPE System on all wells
DPE 4	7/20/2011	992,40	15.02	977.01	DE System on all wells
DPE 4	8/28/2011	992.40	14.49	977.91	DEE System on all wells
DPE 4	0/20/2011	992.40	16.38	913.82	DPE-1 2 3 4
	10/18/2011	992.40	10.42	977.70	DPF_1 2 3 4
DPF-4	10/27/2011	992.40	16.64	975 76	DPE-1 2 3 4
DPF-4	11/21/2011	992.40	17.11	975.70	DPE-1 2 3 4
DPF-4	1/20/2012	992.40	16.08	976 32	DPE-1 2 3 4
DPE-4	1/27/2012	992.40	17.49	974.91	DPE-1,2,3,4
DPE-4	2/16/2012	992.40	17.76	974.64	DPE-1,2,3,4
DPE-4	3/16/2012	992.40	17.70	974.70	DPE-1.2.3.4
DPE-4	3/27/2012	992.40	16.29	976.11	DPE-1.2.3.4
DPE-4	4/17/2012	992.40	17.61	974.79	DPE-1.2.3.4
DPE-4	5/17/2012	992.40	18.44	973.96	DPE-1,2,3,4
DPE-4	5/31/2012	992.40	17.71	974.69	DPE-1,2,3,4
DPE-4	6/14/2012	992.40	18.41	973.99	DPE-1,2,3,4
DPE-4	7/19/2012	992.40	18.08	974.32	DPE-3
DPE-4	8/23/2012	992.40	17.12	975.28	DPE-3
DPE-4	9/26/2012	992.40	17.14	975.26	DPE-3
DPE-4	10/26/2012	992.40	17.24	975.16	DPE-3
DPE-4	12/19/2012	992.40	16.38	976.02	DPE-3; Before restarting the system
DPE-4	12/21/2012	992.40	17.54	974.86	DPE-3; After restarting the system
DPE-4	1/30/2013	992.40	17.73	974.67	DPE-1,2,3,4
DPE-4	2/26/2013	992.40	17.69	974.71	DPE-1,2,3,4
DPE-4	3/21/2013	992.40	17.76	974.64	DPE-1,2,3,4
DPE-4	5/23/2013	992.40	12.22	980.18	DPE-1,2,3,4
DPE-4	6/26/2013	992.40	14.46	977.94	DPE-1,2,3,4
DPE-4	8/26/2013	992.40	15.59	976.81	DPE-1,2,3,4
DPE-4	12/10/2013	992.40	15.07	977.33	System Off
DPE-4	2/17/2014	992.40	15.46	976.94	System Off
DPE-4	4/20/2014	992.40	14.22	978.18	System Off
DPE-4	8/21/2014	992.40	15.44	976.96	System Off

lī

		Top of	Depth to		
Well	Date	Casing	Groundwater	Groundwater	
ID	Measured	Elevation ^{1,2}	(feet)	Elevation ³	System Status
DPE-6	12/3/2008	991.44	12.93	978.51	pre-system installation
DPE-6	6/8/2009	992.40	16.19	976.21	pre-system startup
DPE-6	7/9/2009	992.40	16.54	975.86	DPE system on DPE-1
DPE-6	7/9/2009	992.40	15.92	976.48	DPE system temporarily off
DPE-6	9/4/2009	992.40	15.68	976.72	DPE system on DPE-1
DPE-6	9/4/2009	992.40	15.65	976.75	DPE-1 on after replacing inlet screen
DPE-6	9/4/2009	992.40	15.81	976.59	DPE-1 on after replacing inlet filter
DPE-6	10/15/2009	992.40	15.94	976,46	DPE system on DPE-1
DPE-6	10/23/2009	992.40	14.56	977.84	DPE system off
DPE-6	11/16/2009	992.40	14.24	978.16	DPE System on all wells
DPE-6	12/17/2009	992.40	14.89	977.51	DPE System on all wells
DPE-6	1/14/2010	992.40	15.14	977.26	DPE System on all wells
DPE-6	2/22/2010	992.40	15.61	976.79	DPE System on all wells
DPE-6	3/25/2010	992.40	15.24	977.16	DPE System on all wells
DPE-6	4/16/2010	992.40	15.48	976.92	DPE System on all wells
DPE-6	5/12/2010	992.40	16.02	976.38	DPE System on all wells
DPE-6	6/17/2010	992.40	15.98	976.42	DPE System on all wells
DPE-6	8/18/2010	992.40	16.56	975.84	DPE System on all wells
DPE-6	9/27/2010	992.40	13.98	978.42	DPE System on all wells
DPE-6	11/18/2010	992.40	14.24	978.16	DPE System not operating
DPE-6	12/22/2010	992.40	14.89	977.51	DPE System restarted
DPE-6	1/6/2011	992.40	13,96	978.44	DPE System on all wells
DPE-6	1/20/2011	992.40	14.20	978.20	DPE System on all wells
DPE-6	2/28/2011	992.40	14.51	978.09	DPE System on all wells
DPE-0	3/ //2011	992.40	14.80	977.60	DPE System on all wells
DPE-0	3/18/2011	992.40	14.8/	977.33	DE System on all wells
DPE-0	3/23/2011 4/22/2011	992.40	13.57	9/0.32	DPE System on all wells
DPE-6	5/19/2011	992.40	13.32	978.31	DPE System on all wells
DFE-0	6/16/2011	992.40	14.09	978.31	DPE System on all wells
DPF-6	7/25/2011	992.40	14 64	977.76	DPE System on all wells
DPE-6	8/28/2011	992.40	15 38	977.02	DPF System on all wells
DPE-6	9/29/2011	992.40	15.50	976.83	DPE-1 2 3 4
DPE-6	10/18/2011	992.40	14.20	978.20	DPE-1.2.3.4
DPE-6	10/27/2011	992.40	15.64	976.76	DPE-1.2.3.4
DPE-6	11/21/2011	992.40	15.81	976.59	DPE-1,2,3,4
DPE-6	1/20/2012	992.40	15.39	977.01	DPE-1,2,3,4
DPE-6	1/27/2012	992.40	16.29	976.11	DPE-1,2,3,4
DPE-6	2/16/2012	992.40	16.28	976.12	DPE-1,2,3,4
DPE-6	3/16/2012	992.40	16.40	976.00	DPE-1,2,3,4
DPE-6	3/27/2012	992.40	15.68	976.72	DPE-1,2,3,4
DPE-6	4/17/2012	992.40	16.19	976.21	DPE-1,2,3,4
DPE-6	5/17/2012	992.40	16.09	976.31	DPE-1,2,3,4
DPE-6	5/31/2012	992.40	15.56	976.84	DPE-1,2,3,4
DPE-6	6/14/2012	992.40	16.51	975.89	DPE-1,2,3,4
DPE-6	7/19/2012	992.40	16.96	975.44	DPE-3
DPE-6	8/23/2012	992.40	16.51	975.89	DPE-3
DPE-6	9/26/2012	992.40	16.36	976.04	DPE-3
DPE-6	10/26/2012	992.40	16.42	975.98	DPE-3
DPE-6	12/19/2012	992.40	15.66	976.74	DPE-3; Before restarting the system
DPE-6	12/21/2012	992.40	16.00	976.40	DPE-3; After restarting the system
DPE-6	1/30/2013	992.40	16.63	975.77	DPE-1,2,3,4
DPE-6	2/26/2013	992.40	16.59	975.81	DPE-1,2,3,4
DPE-6	3/21/2013	992.40	16.61	975.79	DPE-1,2,3,4
DPE-6	5/23/2013	992.40	11.44	980.96	DPE-1,2,3,4
DPE-6	6/26/2013	992.40	13.18	979.22	DPE-1,2,3,4
DPE-6	8/26/2013	992.40	14.86	977.54	DPE-1,2,3,4
DPE-6	12/10/2013	992.40	14.39	978.01	System Off
DPE-6	2/17/2014	992.40	14.81	9/7.59	System Off
DPE-6	4/20/2014	992.40	13.59	978.81	System Off
DPE-6	8/21/2014	992.40	15.04	977.36	System Off
L	L		l	1	

		Top of	Depth to		
Well	Date	Casing	Groundwater	Groundwater	
ID	Measured	Elevation ^{1,2}	(feet)	Elevation ³	System Status
DPE-8	12/3/2008	991.48	12,56	978.92	pre-system installation
DPE-8	6/8/2009	992.84	14.50	978.34	pre-system startup
DPE-8	7/9/2009	992.84	14.57	978.27	DPE system on DPE-1
DPE-8	7/9/2009	992.84	14.49	978.35	DPE system temporarily off
DPE-8	9/4/2009	992.84	14.29	978.55	DPE system on DPE-1
DPE-8	9/4/2009	992.84	14.31	978.53	DPE-1 on after replacing inlet screen
DPE-8	9/4/2009	992.84	14.28	978.56	DPE-1 on after replacing inlet filter
DPE-8	10/15/2009	992.84	14.01	978.83	DPE system on DPE-1
DPE-8	10/23/2009	992.84	13.18	979.66	DPE system off
DPE-8	11/16/2009	992.84	13.30	979.54	DPE System on all wells
DPE-8	12/17/2009	992.84	15.31	977.53	DPE System on all wells
DPE-8	1/14/2010	992.84	16.58	976.26	DPE System on all wells
DPE-8	2/22/2010	992.84	14.19	9/8.65	DPE System on all wells
DPE-8	3/23/2010	992,84	15./2	977.12	DPE System on all wells
DPE 9	5/12/2010	002 04	10.20	970.04	DEE System on all wells
DPE-0	6/17/2010	992,84	16.02	970.23	DEE System on all wells
DPE-0	8/18/2010	772.04	10.92	913.92	DE System on all walls
DPE 9	9/27/2010	972.04	1/.21	973.03	DE System on all wells
DPF-8	11/18/2010	992.04	14./3	977 17	DPE System not operating
DPE-8	12/22/2010	992.04	15.57	977 44	DPE System restarted
DPE-8	1/6/2011	992.84	15.40	977.66	DPE System on all wells
DPE-8	1/20/2011	992.84	16.15	976.69	DPE System on all wells
DPE-8	2/28/2011	992.84	16.78	976.06	DPE System on all wells
DPE-8	3/7/2011	992.84	15.81	977.03	DPE System on all wells
DPE-8	3/18/2011	992.84	15.71	977.13	DPE System on all wells
DPE-8	3/23/2011	992.84	14.20	978.64	DPE System on all wells
DPE-8	4/22/2011	992.84	14.61	978.23	DPE System on all wells
DPE-8	5/19/2011	992.84	15.18	977.66	DPE System on all wells
DPE-8	6/16/2011	992.84	15.48	977.36	DPE System on all wells
DPE-8	7/25/2011	992.84	14.41	978.43	DPE System on all wells
DPE-8	8/28/2011	992.84	16.91	975.93	DPE System on all wells
DPE-8	9/29/2011	992.84	16.37	976.47	DPE-1,2,3,4
DPE-8	10/18/2011	992.84	15.41	977.43	DPE-1,2,3,4
DPE-8	10/27/2011	992.84	16.82	976.02	DPE-1,2,3,4
DPE-8	11/21/2011	992.84	17.11	975.73	DPE-1,2,3,4
DPE-8	1/20/2012	992.84	16.74	976.10	DPE-1,2,3,4
DPE-8	1/27/2012	992.84	17.43	975.41	DPE-1,2,3,4
DPE-8	2/16/2012	992.84	DRY	NA	DPE-1,2,3,4
DPE-8	3/16/2012	992.84	17.50	975.34	DPE-1,2,3,4
DPE-8	3/27/2012	992.84	16.78	976.06	DPE-1,2,3,4
DPE-8	4/17/2012	992.84	17.49	975.35	DPE-1,2,3,4
DPE-8	5/17/2012	992.84	DRY	NA 075.05	DPE-1,2,3,4
DPE-8	5/31/2012	992.84	16.99	975.85	DPE-1,2,3,4
DPE-8	7/10/2012	992.84			DrE-1,2,3,4
DPE-8	8/02/0012	772.84		NA NA	DFE-3
DPE 9	0/25/2012	992.84		INA NA	DFE-3
DPE-8	10/26/2012	992.84		INA NA	DE 3
DPE-0	12/10/2012	002.04	17.02	075.02	DIE 3: Refore restarting the system
DPE-0	12/21/2012	002.04		973.02 NA	DPE-3: A flar restarting the system
DPE-0	1/30/2012	992.04	DRI	NA NA	DPF_1 2 3 4
DPF-8	2/26/2013	992.04	DRV	NA NA	DPF-1 2 3 4
DPF-8	3/21/2013	992.84	DRV	NA	$DPF_{-1} 2 3 4$
DPE-8	5/23/2013	992.84	12 19	980.65	DPF-1 2 3 4
DPE-8	6/26/2013	992.84	14.00	978.84	DPE-1,2,3,4
DPE-8	8/26/2013	992.84	15 49	977 35	DPE-1,2,3,4
DPE-8	12/10/2013	992.84	15.62	977.22	System Off
DPE-8	2/17/2014	992.84	16.00	976.84	System Off
DPE-8	4/20/2014	992.84	14.46	978.38	System Off
DPE-8	8/21/2014	992.84	16.00	976.84	System Off

		Top of	Depth to		
Well	Date	Casing	Groundwater	Groundwater	
ID	Messured	Flevation ^{1,2}	(feet)	Elevation ³	System Status
	wieasureu	Lievation	(Icci)	Elevation	System Status
Elevator					
Draintile	1/20/2011	990.20	6.84	983.36	DPE System on all wells
Sump					
Elevator					
Draintile	2/28/2011	990.20	7.03	983.17	DPE System on all wells
Sump					
Elevator					
Draintile	3/7/2011	990.20	6.91	983.29	DPE System on all wells
Sump					
Elevator					
Draintile	3/18/2011	990.20	6.97	983.23	DPE System on all wells
Sumn		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0127	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Elevator					
Draintile	3/23/2011	000.20	676	083.44	DPE System on all wells
Sump	5/25/2011	JJ0.20	0.70	202.44	DI E System on an wens
Flevetor					
Dreintile	1020011	000.20	6.50	002.60	DBE Sustem on oll walls
Diamine	4/22/2011	990.20	0.52	965.08	DFE System on an wens
Sump					
Elevator	- 110 10011		<pre></pre>		
Drainfile	5/19/2011	990.20	6.27	983.93	DPE System on all wells
Sump					
Elevator					
Draintile	6/16/2011	990.20	6.52	983.68	DPE System on all wells
Sump					
Elevator					
Draintile	7/25/2011	990.20	5.58	984.62	DPE System on all wells
Sump					
Elevator					
Draintile	8/28/2011	990.20	6.56	983.64	DPE System on all wells
Sump					
Elevator			-		
Draintile	9/29/2011	990.20	6.97	083.23	DPE-1234
Sump	7/27/2011	550.20	0.77	705.25	D1 L-1,2,3,4
Flauster					
Elevator	10/10/2011	000.00	6.60	000 50	
Draintile	10/18/2011	990.20	6.68	983.52	DPE-1,2,3,4
Sump					
Elevator					
Draintile	10/27/2011	990.20	7.01	983.19	DPE-1,2,3,4
Sump					
Elevator					
Draintile	11/21/2011	990.20	7.31	982.89	DPE-1,2,3,4
Sump					
Elevator					
Draintile	1/20/2012	990.20	7 33	982.87	DPE-1 2 3 4
Sump			1.55	202101	212 1,4,5,1
Elevator					
Drožetilo	1/07/2012	000.00	7.20	002.02	DDE 1 2 2 4
Chamme	1/2//2012	990,20	1.38	902.02	DED-1,2,3,4
Sump	·	l			
Elevator					
Draintile	2/16/2012	990.20	7.44	982.76	DPE-1,2,3,4
Sump					
Elevator					
Draintile	3/16/2012	990.20	7.61	982.59	DPE-1,2,3,4
Sump					
Elevator		1			
Draintile	4/17/2012	990.20	7.97	982.23	DPE-1.2.3.4
Sump		1	1		

WELL CONSTRUCTION SUMMARY (elevations are in feet above mean sea level)

MN Bio Business Center 221 First Avenue SW Rochester, Minnesota

								Depth to		
	Top of	Basement	Top of	Top of	Top of	Bottom of	Screen	Bottom of	Bottom of	
Monitoring	Casing	Floor	Seal	Filter Pack	Well Screen	Well Screen	Interval	Well	Well	Well
Well	Elevation ^{1,2}	Elevation	Elevation	Elevation	Elevation	Elevation	(feet)	(feet)	Elevation	Completion
MW-14	989.50	989.50	989.50	986.00	984.00	974.00	10	17.5	972.00	flush-mounted
MW-15	991.50	989.50	990.50	987.50	985.50	975.50	10	18.0	973.50	stickup
MW-16	989.44	989.50	989.94	985.44	983.44	973.44	10	18.0	971.44	flush-mounted
MW-17	989.53	989.50	989.03	973.53	971.53	966.53	5	25.0	964.53	flush-mounted
MW-18	989.50	989.50	989.25	938.50	936.50	931.50	5	60.0	929.50	flush-mounted
MW-19	991.13	989.50	990.63	984.13	983.13	973.13	10	20.0	971.13	stickup
MW-20	991.50	989.50	992.80	988.80	986.80	976.80	10	16.7	974.80	stickup
DPE-1	992.40	989.50	989.53	984.53	982.53	970.53	12	21.9	970.53	stickup
DPE-2	992.80	989.50	990.28	986.28	984.28	972.28	12	20.5	972.28	stickup
DPE-3	992.48	989.50	990.42	989.42	987.42	975.42	12	17.1	975.42	stickup
DPE-4	992.40	989.50	990.07	987.07	985.07	973.07	12	19.3	973.07	stickup
DPE-5	992.46	989.50	990.32	987.32	986.32	974.32	12	18.1	974.32	stickup
DPE-6	992.40	989.50	989.87	986.87	984.87	972.87	12	19.5	972.87	stickup
DPE-7	993.48	989.50	990.32	984.32	983.32	971.32	12	22.2	971.32	stickup
DPE-8	992.84	989.50	990.84	989.34	987.34	975.34	12	17.5	975.34	stickup

Notes:

1. Monitoring well top of casing elevations were surveyed by Adolfson and Peterson on 4/22/08.

2. DPE well top of casing elevations changed during DPE well head installation and were estimated from a basement floor elevation of 989.5 ft and include the distance from the floor to the top of the well seal cover and the distance from the well seal cover to the top of the PVC stickup for collecting water level readings.

NATURAL ATTENUATION ANALYTICAL RESULTS (ug/L) MN Bio Business Center 221 First Avenue SW Rochester, Minnesota

Sample ID	DPE-1	DPE-1	DPE-2	DPE-2	DPE-3	DPE-3	DPE-4	DPE-4	DPE-5	DPE-5
	09/28/2009	12/10/2008	09/28/2009	12/10/2008	09/28/200	12/10/2008	09/28/2009	12/10/2008	12/10/2008	09/24/2009
Collected Date	12:52	13:50	14:22	11:45	9 15:25	10:57	10:13	11:20	16:45	04:00
Calcium, Dissolved	NA*	149,000	NA*	181,000	NA*	556,000	NA*	258,000	75,400	NA*
Dissolved Organic Carbon	<2000	4,800	2,000	2,800	3,700	6,900	<2000	2700	4700	<2000
Iron, Dissolved	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0
Magnesium, Dissolved	NA*	33,400	NA*	47,600	NA*	103,000	NA*	73,400	86,200	NA*
Methane	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Nitrate as N	5,900	6,400	4,900	7,800	7,100	9,800	11,000	26,800	5,500	5,500
Sulfate	157,000	250,000	174,000	182,000	296,000	436,000	168,000	235,000	468,000	281,000
Sulfide	<5000	<5000	<5000	<5000	<5000	<5000	<5000	<5000	<5000	<5000

Notes:

Bold: Parameter detected above laboratory reporting limit

NA*: Not Analyzed

NATURAL ATTENUATION ANALYTICAL RESULTS (ug/L) MN Bio Business Center 221 First Avenue SW Rochester, Minnesota

Sample ID	DPE-6	DPE-6	DPE-7	DPE-7	DPE-8	DPE-8	MW14	MW-14
	12/10/2008	09/24/2009	12/10/2008	09/24/2009	12/10/2008	09/24/2009	10/01/2009	12/03/2008
Collected Date	14:29	04:30	13:15	05:00	09:30	05:30	04:00	16:20
Calcium, Dissolved	70,800	NA*	123,000	NA*	189,000	NA*	NA*	114,000
Dissolved Organic Carbon	2500	<2000	3,300	<2000	4,000	3,000	69,200	2,400
Iron, Dissolved	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0
Magnesium, Dissolved	17,700	NA*	23,400	NA*	36,800	NA*	NA*	30,400
Methane	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	10.1	<10.0
Nitrate as N	3,000	1,500	7,900	1,900	9,800	4,300	1,600	3,700
Sulfate	159,000	67,600	275,000	85,600	262,000	149,000	146,000	131,000
Sulfide	<5000	<5000	<5000	<5000	<5000	<5000	<5000	<5000

Notes:

Bold: Parameter detected above laboratory reporting limit NA*: Not Analyzed
NATURAL ATTENUATION ANALYTICAL RESULTS (ug/L) MN Bio Business Center 221 First Avenue SW Rochester, Minnesota

Sample ID	MW15	MW15	MW16	MW-16	MW17	MW-17	MW18	MW-18
	10/01/2009	12/10/2008	10/01/2009	12/03/2008	10/01/2009	12/03/2008	10/01/2009	12/03/2008
Collected Date	04:20	12:15	04:25	12:35	05:20	13:10	05:46	14:26
Calcium, Dissolved	NA*	67,700	NA*	194,000	NA*	76,300	NA*	99,000
Dissolved Organic Carbon	15,700	<2000	49,100	3,500	9,100	7,500	5,400	8,500
Iron, Dissolved	<50.0	<50.0	<50.0	<50.0	<50.0	50.1	88.3	4,190
Magnesium, Dissolved	NA*	18,700	NA*	70,200	NA*	29,100	NA*	52,600
Methane	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Nitrate as N	580	2,200	16,200	NA*	3,900	NA*	<400	NA*
Sulfate	99,900	87,500	258,000	253,000	159,000	199,000	110,000	115,000
Sulfide	<5000	<5000	<5000	<5000	<5000	<5000	<5000	<5000

Notes:

Bold: Parameter detected above laboratory reporting limit

NA*: Not Analyzed

NATURAL ATTENUATION ANALYTICAL RESULTS (ug/L) MN Bio Business Center 221 First Avenue SW Rochester, Minnesota

Sample ID	MW-19	MW-19	MW20	MW20
Calls stad Data	09/24/2009	12/03/2008	10/01/2009	12/10/2008
Collected Date	11:40	16:59	06:00	10:30
Calcium, Dissolved	NA*	245,000	NA*	260,000
Dissolved Organic Carbon	<2000	3,100	20,300	2,700
Iron, Dissolved	<50.0	<50.0	<50.0	<50.0
Magnesium, Dissolved	NA*	71,100	NA*	65,900
Methane	10.7	<10.0	274	17.0
Nitrate as N	16,800	NA*	8900	10,900
Sulfate	156,000	187,000	139,000	203,000
Sulfide	<5000	<5000	<5000	<5000

Notes:

Bold: Parameter detected

above laboratory reporting

limit

NA*: Not Analyzed

GROUNDWATER FIELD DATA MN Bio Business Center 221 First Avenue SW Rochester, Minnesota

		_	Conductivity		Redox		Head
Monitoring Well	Date Measured	Temp (Deg. C)	@ 25 deg. C (uS/cm)	pH	Potential (Eh)	Dissolved Oxygen	Space (ppm)
MW-14 MW-14	12/3/2008	15.1 18.8	735	7.41	228	2.6	1.752 NR
MW-14	11/16/2009	19.22	1747	6.74	47.5	3.48	NR
MW-14 MW-14	2/23/2010 5/12/2010	18.51	1693	7.54 7.5	186 379	2.8 5.2	NR NR
MW-14	8/18/2010	19.16	1088	8.24	285	5.51	NR.
MW-14 MW-14	3/1/2010	19.54	996	6.95 6.2	-42 4.3	3.49	NR NR
MW-14	5/19/2011	19.38	984	7.61	-19.1	2.57	NR
MW-14 MW-14	8/28/2011 11/21/2011	19.5 19.7	1711 1123	5.59 6.92	148 -14.2	3.21 3.99	NR NR
MW-14	2/15/2012	19.3	1174	7.44	-44.9	4.58	NR
MW-14 MW-14	9/26/2012	9.9 19.4	1062	7.07	-17 -23	6.36	NR NR
MW-14	12/19/2012	19.8	1119	7.42	-36	1.33	NR
MW-14 MW-14	5/23/2013	19.4	701	7.17	-11.6 -61	4.4 4.4	NR NR
MW-14	8/26/2013	19.41	1266	7.54	58.2	1.59	NR
MW-14 MW-14	2/17/2014	19,51	1596	7.74	-20.8	1.88	NR
MW-14 MW-14	4/20/2014	19.34	1411	7.78	-36.6	1.95	NR NR
WIW-14	0/21/2014	19,9	1009	0.92	-1	4.00	AN.
MW-15 MW-15	12/3/2008	13.4 18.4	735 920	8.18 8.08	87 167	3.8 5.22	279 NR
MW-15	11/16/2009	19.6	1155	7.35	200	4.53	NR
MW-15 MW-15	2/22/2010 5/12/2010	19.5	1506	7.82	916 84.9	4.27 6.97	NR NR
MW-15	8/18/2010	21.3	1593	10.6	166	6.04	NR
MW-15 MW-15	3/1/2011	19.7	936	6,14 7,41	25.8	4.86	NR NR
MW-15	5/19/2011	15.4	1314	8.08	-42	2.91	NR
MW-15 MW-15	11/21/2011	19.9	14	6.65 7.38	-37	5.15 97,3	NR NR
MW-15	2/15/2012	18.4	841	7.61	-53	4.21	NR
MW-15 MW-15	9/26/2012	9.9 19.2	1223	7.49	-20	6.3	NR NR
MW-15	12/19/2012	20.4	1130	7.49	-40	1.97	NR
MW-15 MW-15	5/23/2013	20.7	5007	7.53	-23	3.36	NR
MW-15	8/26/2013	20.31	3002	7.48	33.4	2,39	NR.
MW-15 MW-15	2/17/2013	20.31	967	7.95	-32.3	2.26	NR
MW-15	4/20/2014	19.83	2281	7.74	-35.7	2.82	NR NR
1111-15	100000	20.2		7.15		10	40
MW-16	10/1/2009	14.5	1182	7.46	214	9.68	NR NR
MW-16	11/16/2009	18.82	4048	6.91	170	3.67	NR NR
MW-16	5/12/2010	18.52	3240	7.46	209	6.29	NR
MW-16 MW-16	8/18/2010	19.21	2695	10.3	49	6.26	NR NR
MW-16	3/1/2011	18.93	1862	7.22	-23	1.94	NR
MW-16 MW-16	5/19/2011 8/28/2011	19.2	2476	7.76	-26	2.54	NR NR
MW-16	11/21/2011	19.7	2535	7.17	-26	3.35	NR
MW-16 MW-16	2/15/2012	18.9	1492	7.68	-57	4.25	NR NR
MW-16	9/26/2012	18.9	1126	7.4	-16	6.21	NR
MW-16 MW-16	2/25/2013	19,6 19,4	2177	7.39	-10	3.61	NR NR
MW-16	5/23/2013	19,1	2161	7.02	-19	1.92	NR
MW-16 MW-16	8/26/2013	19.69	2058 2319	7.29	-2.5	6.12	NR NR
MW-16	2/17/2014	19.76	2391	7.71	-19.2	4.19	NR
MW-16 MW-16	4/20/2014 8/21/2014	19.24	3415	7.01	92.6	3.43	NR
MW-17	12/3/2008	14.8	735	8.99	-99	2.6	1.3
MW-17	10/1/2009	17.8	1428	8.6	175	1.99	NR NP
MW-17	2/22/2010	18.25	16.08	7.66	-163	2.02	NR
MW-17	5/12/2010	18.05	1707	7.21	-82	1,96	NR
MW-17	11/18/2010	18.47	2102	7.43	-62	2.23	NR
MW-17 MW-17	3/1/2011	18.5	1425	7.21	-76	1.21	NR
MW-17	8/28/2011	19.1	2206	6.96	-116	4.1	NR
MW-17 MW-17	11/21/2011	19.81	1927	7.26	-31	0.83	NR NR
MW-17	5/17/2012	9.9	1000	7.54	-39	1.09	NR
MW-17 MW-17	9/26/2012	18.2	753	7.03	2,1	3.02	NR NR
MW-17	2/25/2013	19.2	1361	7.32	-19.3	1.6	NR
MW-17 MW-17	5/23/2013	19.2	1396	7.92	-58	1.62	NR NR
MW-17	12/10/2013	20.15	1480	7.41	-48	2.77	NR
MW-17 MW-17	4/20/2014	19.59	1311	7.79	-23.5 -26.3	0.97	NR NR
MW-17	8/21/2014	19.65	640	7.5	22.3	1.28	NR

GROUNDWATER FIELD DATA MN Bio Business Center 221 First Avenue SW Rochester, Minnesota

r							
			Conductivity		Redox		Head
Monitoring	Date	Temp	@ 25 deg. C	pH	Potential	Dissolved	Space
weit	ivieasured	(Deg. C)	(uS/cm)		(En)	Oxygen	(ppm)
DPE-2	12/3/2008	14.4	735	7.83	109	1.9	2000
DPE-2	9/28/2009	18.2	2440	8	81	7.82	NR
DPE-2	11/17/2009	18.15	4523	6.86	114	5,43	NR
DPE-2	2/22/2010	17.5	2751	7.75	283	4.57	NR
DPE-Z	5/13/2010	18.1	2900	7.25	268	5.59	NR
DPE-2	8/18/2010	18.7	4401	10.4	258	5.07	NK
DPE-2	2/1/2011	17.0	902	7.09	-42	216	2.8
DPE-2	5/1/2011	18.0	1980	7.21	118	3,10	15,1
DPE-2	3/19/2011	16.4	1972	8	-38	2.75	NK
DPE-2	6/26/2011	18.2	3408	7.04	-62	3.0	NK
DPE-2	2/1/2011	18.5	2/0/	7.56	-46	2.02	NK
DPE-2	2/16/2012	18.6	1931	7.56	-51	2.37	NR
DPE-2	3/1//2012	16.9	2106	1.74	-01	4.37	NK
DPE-Z	9/26/2012	19.2	943	7.9	-42	3.8	NR
DPE-2	12/19/2012	18.7	2440	7.7	-51	5.03	NK
DPE-2	2/26/2013	16.4	1062	7.10	-62	4.2	NK
DPE-2	5/23/2013	10.8	2181	7.52	-40	4.87	NK
DPE-2	0/20/2013	20.24	2245	7.49	134	4.41	NK
DPE-2	12/10/2013	19,00	538/	7.56	-57.2	0.2	NK
DPE-2	2/17/2014	19,09	4705	8.13	-41.4	3.66	NR
DPE-2	4/20/2014	19.03	6497	7.72	-34.4	4.09	NR
DPE-2	8/21/2014	19,48	7389	7.76	138.2	4.13	NK
DBF 1	12/2/20000	12.1	725		100	2.2	
DPE-3	12/3/2008	13,4	130	1.90	12/	2.3	1084
DPE-3	3/20/2009	17.3	1199	7.95	108	7.05	NK
DPE-3	2/22/2010	17.43	4442	7.1	208	3.52	NK
DPE 2	5/13/2010	171	4/0/	7.57	270	7.39	NP
DPE 7	8/18/2010	19.4	4404	10.5	270	6.30	NP
DPE-3	12/22/2010	16.4	4992	10.5	2/7	0.51	1YK
DPE-3	3/1/2011	10.2	3922	7.15	1/	10.23	28.2
DPE-3	5/10/2011	16.0	4947	7.19	-0,0	2.01	23.5
DPE-3	9/2011	17.2 ND	404/	0.12	-44	5.70	NK
DPE 2	11/21/2011	17.4	3074	7.01	-41	2.2	NR
DPE-3	2/16/2012	17.0	3012	7.54	-43	2.1	NR
DPE-3	5/10/2012	17.92	4034	7.07	-23	4.60	NK
DPE-3	0/26/2012	9.9	4363	1.45	-40	7.1	NR
DPE-3	12/10/2012	19.2	2///	0.5	-0.3	7,1	NR
DPE-3	2/26/2012	18.2	4467	7.14	-21	2.07	NR
DPE 1	5/23/2013	19.5	7742	7.11	-51	3.5	ND
DPE-1	8/26/2013	10.4	5979	6.09	156	3.12	ND
DPE-3	12/10/2013	19,39	3070 ND+	0.98 ND#	1.50	3.47 NP#	NK
DPE-1	2/17/2013	18 58	6975	7 25	0	1.11	ND
DPE-3	4/20/2014	10.23	7780	7.55	12	2.26	
DPE-3	8/21/2014	19.23	7017	7.07	-1.2	2.20	NR
D11-5	0/21/2014	17.47	////	7.14	105.7	2.97	INK
DPE-4	12/3/2008	13.5	735	7.84	114	1.9	2000
DPE-4	9/28/2009	17.14	3230	8.25	87.4	8.22	NR
DPE-4	11/17/2009	17.49	4057	7.16	285	5.2	NR
DPE-4	2/22/2010	17.4	2899	7.11	198	7.64	NR
DPE-4	5/13/2010	17.6	3362	7.88	242	8.61	NR
DPE-4	8/18/2010	18.3	3296	10.6	252	6.9	NR
DPE-4	12/23/2010	17.1	3227	7.46	3.9	NR	23.1
DPE-4	3/1/2011	18.8	874	7.18	144	1.9	11.5
DPE-4	5/19/2011	18.8	2168	8.21	-49	4.37	NR
DPE-4	8/28/2011	18.6	3318	7.63	-48	5.4	NR
DPE-4	11/21/2011	17.8	2265	7.38	-42	2.09	NR
DPE-4	2/16/2012	18.2	2692	7.5	-47	4.18	NR
DPE-4	5/17/2012	19.2	2579	7.45	-18	6.33	NR
DPE-4	9/26/2012	18.5	1891	8.1	-56	5.9	NR
DPE-4	12/19/2012	19.6	3637	6.62	-158	2.76	NR
DPE-4	2/26/2013	18.4	951	7.62	-46	4.4	NR
DPE-4	5/23/2013	19	4272	6.34	-73	1.78	NR
DPE-4	8/26/2013	20.05	3719	7.01	135	3.12	NR
DPE-4	12/10/2013	19,93	4120	6.75	-11.5	3.86	NR
DPE-4	2/17/2014	19.79	4102	6.98	19.2	1.76	NR
DPE-4	4/20/2014	19.32	4794	6.52	26.8	1.21	NR
DPE-4	8/21/2014	19.77	5364	7.05	11.3	3.11	NR
DDE 5	12/2/2000	14.2	775	0.26	11	0.5	1.2
DPE S	0/29/2008	14,5	155	7.20	13	0.5	1.3
DPG-5	11/17/2009	18 00	2004	7 40	204	415	NR
DPR-5	2/22/2010	16.02	3271	7.30	204	61	NIC
DPE-5	5/13/2010	17.1	3115	7.40	231	7 54	ND
DPF-5	8/18/2010	18.1	2007	10.5	241	3.65	NR
DPF-5	12/23/2010	17.4	2216	7 12	_12	10.2	17.7
DPE-5	3/1/2011	18.5	776	7.21	22	2.87	0
DPE-5	5/19/2011	18.6	1008	815	_36	2.91	NR
DPE-5	8/28/2011	18.6	3219	6.69	-44	59	NR
DPE-5	11/21/2011	18.5	2939	7.76	-56	4.77	NR
DPE-5	2/16/2012	18.19	2280	7.95	-72	5.11	NR
DPE-5	5/17/2012	9.9	1767	7.85	-15	1 09	NR
DPE-5	9/26/2012	18.3	1972	8.5	_73	7.2	NR
DPE-5	12/19/2012	18.9	1886	9.28	-134	0.91	NR
DPE-5	2/26/2013	19.2	1801	7.21	-44	4.6	NR
DPE-5	5/23/2013	18.85	1528	7.91	-60	1.57	NR
DPE-5	8/26/2013	19.99	2163	7.07	174	2.97	NR
DPE-5	12/10/2013	19.56	1468	8.14	-89	2.79	NR
DPE-5	2/17/2014	19.12	1508	8.26	-49.2	0.92	NR
DPE-5	4/20/2014	19.05	2290	7.92	-45.2	1.44	NR
DPE-5	8/21/2014	19.34	3428	8.37	85.9	2.21	NR
1	1	1	1	1	1	I i	1

PCE GROUNDWATER CONCENTRATION DATA MN Bio Business Center 221 First Avenue SW Rochester, Minnesota

Sample ID	Date	PGE Conc. (ug/L)	% Change
MW-14	12/3/2008	30.6	
	6/29/2009	30.6	
	10/1/2009	4.2	-86.3
	11/16/2009	7.1	-76.8
	2/23/2010	3.0	-90.2
	8/18/2010	1.8	-09.9
	11/18/2010	6.6	-78.4
	3/1/2011	4.8	-84.3
	5/19/2011	5.0	-83.7
	8/28/2011	1.5	-95.1
	11/21/2011	1.5	-95.1
	2/16/2012	<1.0	-100.0
Ì	5/17/2012	<1.0	-100.0
	9/20/2012	<1.0	-100.0
	2/25/2012	1.3	-90.0
	5/23/2013	22	-92.8
	8/26/2013	1.2	-96.1
	12/10/2013	1.5	-95.1
	2/17/2014	3.1	-89.9
	5/20/2014	5.7	-81.4
	8/21/2014	1.4	-95.4
MW-15	12/10/2008	104	
	6/29/2009	104	040
	10/1/2009	15.7	-84.9
	2/22/2010	57	-94.5
	5/12/2010	2.8	-97.3
	8/18/2010	1.3	-98.8
	11/18/2010	3.3	-96.8
	3/1/2011	<1.0	-100.0
	5/19/2011	<1.0	-100.0
	8/28/2011	1.2	-98.8
	2/15/2011	<1.0	-100.0
	5/17/2012	<1.0	-100.0
	9/26/2012	<1.1	-99.0
	12/19/2012	<1.0	-100.0
	2/25/2013	<1.0	-100.0
	5/23/2013	3.9	-96.3
	8/26/2013	<1.0	-100.0
	12/10/2013	<1.0	-100.0
	5/20/2014	<1.0	-100.0
	8/21/2014	<1.0	-30.5
	0/21/2014	0.1.	-100.0
MW-16	12/3/2008	14,100	
	10/1/2009	6 800	-51.1
	11/16/2009	21.000	48.9
	2/22/2010	4,390	-68.9
	5/12/2010	815	-94.2
	8/18/2010	696	-95.1
	11/18/2010	2,120	-85.0
	3/1/2011	322	-97.7
	5/19/2011	1,310	-90.7
	8/28/2011	590	-95.8
	2/15/2011	161	-99.5
	5/17/2012	7.8	-99.9
	9/26/2012	21.8	-99.8
	12/19/2012	128.0	-99.1
	2/25/2013	8.0	-99.9
	5/23/2013	7,450.0	-47.2
	8/26/2013	469.0	-96.7
	12/10/2013	432.0	-96.9
	2/17/2014	413.0	-97.1
	8/21/2014	2,030.0	-82.1
	072172014	1,780.0	-07.4
	<u> </u>	I	

1 of 5

~

PCE GROUNDWATER CONCENTRATION DATA MN Bio Business Center 221 First Avenue SW Rochester, Minnesota

	_	PCE	
Sample ID	Date	Conc. (ug/L)	% Change
MW-20	12/10/2008	599	
	6/29/2009	599	40.0
	10/1/2009	307	-48.7
	2/23/2010	402	-32.9
	5/12/2010	194	-67.6
	8/18/2010	74.7	-87.5
	11/18/2010	50.9 211	-91.5
	5/19/2011	16.8	-04.8
	8/28/2011	12.2	-98.0
	11/21/2011	32.5	-94.6
	2/15/2012	41.8	-93.0
	9/26/2012	20.7	-95.2
	12/19/2012	40.8	-93.2
	2/25/2013	50.2	-91.6
	5/23/2013	198	-66.9
	8/26/2013	45.5	-92.4
	2/17/2014	106	-82.3
	5/20/2014	46.9	-92.2
	8/21/2014	12.7	-97.9
DPE-1	8/7/2008	157,000	
	12/10/2008	161,000	
	6/29/2009	161,000	-05.8
	11/16/2009	3,330	-95.0
	2/22/2010	2,610	-98.4
	5/13/2010	1,700	-98.9
	8/18/2010	965	-99.4
	3/1/2011	101	-99.9
	5/19/2011	185	-99.9
	8/28/2011	309	-99.8
	11/21/2011	99	-99.9
	5/17/2012	20.4	-100.0
	9/26/2012	82.2	-99.9
	12/19/2012	505.0	-99.7
	2/26/2013	171.0	-99.9
	8/26/2013	9,640.0 265.0	-93.9
	12/10/2013	1,270.0	-99.2
	2/17/2014	2,400.0	-98.5
	5/20/2014	1,550.0	-99.0
	8/21/2014	5,620.0	-96.5
DPE-2	12/10/2008	38,200	
	9/28/2009	32,000	-16.2
	11/17/2009	10,600	-72.3
	2/22/2010	2,710	-92.9
	5/13/2010	5,800	-84.8
	12/22/2010	4 690	-68.3
	3/1/2011	2,990	-92.2
	5/19/2011	1,680	-95.6
	8/28/2011	2,080	-94.6
	2/16/2012	511	-97.7
	5/17/2012	206	-99.5
	9/26/2012	39	-99.9
	12/19/2012	746	-98.0
	2/26/2013	140	-99.6
	8/26/2013	184	-01.4
	12/10/2013	1,720	-95.5
	2/17/2014	1,840	-95.2
	5/20/2014	6,800	-82.2
	8/21/2014	7,330	-80.8
L	<u>)</u>	J	1

PCE GROUNDWATER CONCENTRATION DATA MN Bio Business Center

	221 First Ave Rochester, Mi	nue SW innesota	
Sample ID	Date	PCE Conc. (ug/L)	% Change
DPE-6	12/10/2008 6/29/2009	188 188	
	9/24/2009	79.3	-57.8
	11/17/2009	104	-44.7
	2/22/2010	57.8	-69.3
	5/13/2010	14.6	-92.2
	8/18/2010	21.7	-88.5
	12/22/2010	77.1	-59.0
	3/1/2011	3.9	-97.9
	5/19/2011	23.4	-87.6
	8/28/2011	7.7	-95.9
	11/21/2011	1.9	-99.0
	2/16/2012	44.8	-76.2
	5/17/2012	<1.0	-100.0
	9/26/2012	4.6	-97.6
	12/19/2012	10.9	-94.2
	2/26/2013	19.8	-89.5
	5/23/2013	6.2	-96.7
	8/26/2013	4	-97.9
	12/10/2013	107	-43.1
	2/17/2014	12.9	-93.1
	5/20/2014	17.4	-90.7
	8/21/2014	25	-68.5
DPE-7	12/10/2008	22.3	
	0/29/2009	22.3	707
	9/24/2009	5.2	-/0./
	11/17/2009	72	67.0
	5/13/2010	257	-07.3
	9/19/2010	190	747 5
	12/22/2010	23.2	40
	3/1/2011	71	-68.2
	5/10/2011	159	-00.2
	8/28/2011	26.9	20.6
	11/21/2011	<1.0	_100.0
	2/16/2012	27.8	24.7
	5/17/2012	<10	-100.0
	9/26/2012	<10	-100.0
	12/19/2012	3.7	-83.4

7.84.79.32.59.07.69.07.69.07.69.07.69.07.69.07.69.59.07.69.29.57.93.13.10.78.5DP 6.7 7.5 7.3 5.2 7.5 .0 8.2 8.7 0.6 00.0 4.7 00.0 00.0 3.4 2/26/2013 8 -64.1 5/23/2013 1.6 -92.8 8/26/2013 <0.4 -100.0 12/10/2013 2 -91.0 2/17/2014 5/20/2014 5.8 -74.0 6.9 -69.1 8/21/2014 44.2 98.2 DPE-8 12/10/2008 14,200 6/29/2009 14,200 9/24/2009 -87.0 1,850 11/17/2009 1,480 -89.6 -99.4 2/22/2010 5/13/2010 90.3 66.9 -99.5 8/18/2010 131.0 -99.1 12/22/2010 262.0 -98.2 3/1/2011 415.0 -97.1 5/19/2011 698.0 -95.1 5/19/2011 8/28/2011 11/21/2011 2/16/2012 5/17/2012 700.0 -95.1 389.0 -97.3 NS NS NS NS 9/26/2012 NS NS 12/19/2012 NS NS 2/26/2013 NS NS 5/23/2013 4,240.0 -70.1 8/26/2013 291.0 -98.0 2,450.0 2,390.0 5,610.0 1,130.0 12/10/2013 -82.7 -83.2 2/17/2014 5/20/2014 -60.5 8/21/2014 -92.0

Notes: NS - Not Sampled

GROUNDWATER ANALYTICAL RESULTS (ug/L) MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

Sample ID	MDH Health	DPE-1	DPE-1	DPE-1	DPE-1	DPE-1	DPE-1	DPE-1	DPE-1	DPE-1	DPE-1	DPE-1
Collected Date and Time	Risk Limits 5/09	8/21/2014	5/20/2014	12/10/2013	1 2 /10/2013	8/26/2013	5/23/2013	2/25/2013	12/19/2012	9/26/2012	5/17/2012	2/16/2012
1,1,1,2-Tetrachloroethane	70	<10.0	<1.0	<10.0	<2.0	<1.0	1.6	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-Trichloroethane	9000	<10.0	<1.0	<10.0	<2.0	<1.0	6.4	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	2	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-I richloroethane	300000	<10.0	<1.0	<10.0	<2.0	<1.0	1.2	<1.0	<1.0	<1.0	<1.0	<1.0
1 1-Dichloroethane	200000	<10.0	<1.0	<10.0	9.0 <2.0	<10	<u> 145 </u> <1.0	<1.9	<u> </u>	<1.0	<1.0	<1.0
1 1-Dichloroethene	6	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.1-Dichloropropene	NL	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichlorobenzene	NL	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichloropropane	40	<40.0	<4.0	<40.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1,2,4-Trichlorobenzene	NL	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-Trimethylbenzene	NL	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dibromo-3-chioropropane		<40.0	<4.0	<40.0	< 8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1 2-Dichlorobenzene	.004	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.2-Dichloroethane	4	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.2-Dichloropropane	5	<40.0	<4.0	<40.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1,3,5-Trimethylbenzene	100	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene	NL	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichloropropane	NL	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichlorobenzene	10	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,2-Dichloropropane	NL 4000	<40.0	<4.0	<40.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
2-Butanone (IVIEK)	4000 NI	<50.0	< 5.0	<50.0	<10.0	<5.0	< 5.0	<4.0	<4.0	<4.0	<4.0	<4.0
4-Chlorotoluene		<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Methyl-2-pentanone (MIBK)	300	<50.0	<5.0	<50.0	<10.0	<5.0	<5.0	<4.0	<4.0	<4.0	<4.0	<4.0
Acetone	700	<200	<20.0	<200	<40.0	<20.0	<20.0	<25.0	<25.0	<25.0	<25.0	<25.0
Allyl chloride	30	<40.0	<4.0	<40.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Benzene	2	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	· <1.0	<1.0	<1.0	<1.0
Bromobenzene	NL	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromochloromethane	NL	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodicnioromethane	40	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromomethane	10	<40.0	<4.0	<40.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0 <4.0
Carbon tetrachloride	3	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobenzene	100	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	300	<40.0	<1.0	<10.0	<2.0	<1.0	<4.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	30	<10.0	<1.0	<10.0	<2.0	1.1	3.5	<1.0	<1.0	<1.0	<1.0	<1.0
Chloromethane	NL	<40.0	<4.0	<40.0	<8.0	10.6	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
cis-1,2-Dichloroethene	50	<10.0	5.8] <10.0	8.8	1.8	89.7	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane	10	<40.0	<4.0	<40.0	< 2.0	<4.0	<4.0 <1.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromomethane	NL	<40.0	<4.0	<40.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dichlorodifluoromethane	1000	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dichlorofluoromethane	NL	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Diethyl ether (Ethyl ether)	1000	<40.0	<4.0	<40.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Ethylbenzene	700	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Hexachloro-1,3-butadiene	1 200	<10.0	<1.0	<10.0	<2.0	<1.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
m&n-Xviene	500 NI	×10.0 MA	<1.0 NA	< 10.0 NA	<2.0 ΝΔ	<1.0 NA	<1.0 NA	< 2.0	<2.0	<1.0	<1.0	<1.0
Methylene Chloride	5	<40.0	<4.0	<40.0	<8.0	<4.0	<10	<4.0	<4.0	<4.0	<4.0	<10
Methyl-tert-butyl ether	70	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Naphthalene	300	<40.0	<4.0	<40.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
n-Butylbenzene	NL	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
n-Propylbenzene	NL	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
o-Xylene	NL	NA	NA	NA	NA	NA	NA	<1.0	<1.0	<1.0	<1.0	<1.0
p-isopropyltoluene		<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Styrene		<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0	<1.0
tert-Butvibenzene		<10.0	<1.0	<10.0	~2.0 <2 N	<1.0 <1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	5	5620	1550	2400	1270	265	9840	171	505	82.2	38.8	26.4
Tetrahydrofuran	100	<100	<10.0	<100	<20.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Toluene	1000	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-Dichloroethene	100	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-Dichloropropene	NL	<40.0	<4.0	<40.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Trichloroethene	5	5.4	2.9	<4.0	3.1	0.84	25.9	<1.0	<1.0	<1.0	<1.0	<1.0
I richlorofluoromethane	2000	<10.0	<1.0	<10.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Villyi chionae Xvlene (Total)	10000	<4.0	<1.0	<4.0	<0.80	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40 ~2.0	<0.40
	10000	- JU.U	-0.0	~00.0	-0,0	~0.0	-0.0	-0.0	-0.0	-0.0	-0.0	-0.0

Notes: NL: No Limit

NA*: Not Analyzed NS: Not Sampled

 1,620
 Parameter detected above laboratory reporting limit

 5.2
 Parameter detected above MDH Health Risk Limit

GROUNDWATER ANALYTICAL RESULTS (ug/L) **MN Bio Business Center** 221 1st Avenue SW Rochester, Minnesota

Sample ID	MDH Health	DPE-2	DPE-2	DPE-2	DPE-2	DPE-2	DPE-2	DPE-2	DPE-2	DPE-2	DPE-2	DPE-2
Collected Date and Time	Risk Limits	08/21/14	05/20/14	02/17/14	12/10/13	08/26/13	05/23/13	02/25/13	12/19/12	09/26/12	05/17/12	02/16/12
	5/09	400	00/20/14		12/10/10		00/20/10	02/20/10				
1,1,1,2-I etrachioroethane	70	<100	<1.0 1.6	<20.0	<2.0	<1.0	1.3	<1.0 <1.0	<1.0 <1.0	<1.0	<2.0	<5.0 <5.0
1.1.2.2-Tetrachloroethane	2	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
1,1,2-Trichloroethane	3	<100	<1.0	<20.0	<2.0	<1.0	1.3	<1.0	<1.0	<1.0	<2.0	<5.0
1,1,2-Trichlorotrifluoroethane	200000	302	328	41.8	87.9	25.6	136	16.0	43.5	3.1	23.8	41.5
1,1-Dichloroethane	70	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
1,1-Dichloroethene	6	<100	1.4	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
1,1-Dichloropropene	NL	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
1,2,3-Trichlorpropage	40	00</td <td><1.0</td> <td><80.0</td> <td><2.0 <8.0</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td><4.0</td> <td><2.0</td> <td><0.0 <20.0</td>	<1.0	<80.0	<2.0 <8.0	<1.0	<1.0	<1.0	<1.0	<4.0	<2.0	<0.0 <20.0
1.2.4-Trichlorobenzene	NL	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
1,2,4-Trimethylbenzene	NL	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
1,2-Dibromo-3-chloropropane	NL	<400	<4.0	<80.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<8.0	<20.0
1,2-Dibromoethane (EDB)	.004	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
1,2-Dichlorobenzene	600	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
1,2-Dichloroethane	4	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	~2.0	< 5.0
1.3.5-Trimethylbenzene	100	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<10	<1.0	<1.0	<2.0	<5.0
1.3-Dichlorobenzene	NL	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
1,3-Dichloropropane	NL	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
1,4-Dichlorobenzene	10	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
2,2-Dichloropropane	NL	<400	<4.0	<80.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<8.0	<20.0
2-Butanone (MEK)	4000 NI	<500 <100	<5.0 <1.0	<100 <20.0	<10.0 <2.0	<5.0 <1.0	<5.0 <1.0	<4.0 <1.0	<4.0 <1 0	<4.0 <1 0	<8.0 <2.0	<20.0 <5.0
4-Chlorotoluene		<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
4-Methyl-2-pentanone (MIBK)	300	<500	<5.0	<100	<10.0	<5.0	<5.0	<4.0	<4.0	<4.0	<8.0	<20.0
Acetone	700	<2000	<20.0	<400	<40.0	<20.0	<20.0	<25.0	<25.0	<25.0	<50.0	<125
Allyl chloride	30	<400	<4.0	<80.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<8.0	<20.0
Benzene	2	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
Bromochloromethane		<100	<1.0	<20.0	<2.0	<1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<2.0	<5.0 <5.0
Bromodichloromethane	6	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0 <5.0
Bromoform	40	<400	<4.0	<80.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<8.0	<20.0
Bromomethane	10	<400	<4.0	<80.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<8.0	<20.0
Carbon tetrachloride	3	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
Chlorobenzene	100	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
Chloroform	30	<100	<1.0	<20.0	<2.0	<1.0	3.8	<1.0 <1.0	<1.0	<1.0	<2.0	<5.0 <5.0
Chloromethane	NL	<400	<4.0	<80.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<8.0	<20.0
cis-1,2-Dichloroethene	50	<100	11.0	<20.0	2.5	<1.0	67.8	<1.0	1.8	<1.0	<2.0	<5.0
cis-1,3-Dichloropropene	NL	<400	<4.0	<80.0	<8.0	< 4.0	<4.0	<4.0	<4.0	4 .0	<8.0	<20.0
Dibromochloromethane	10	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
Dibromomethane	NL 1000	<400	<4.0	<80.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<8.0	<20.0
Dichlorofluoromethane		<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	< 5.0
Diethyl ether (Ethyl ether)	1000	<400	<4.0	<80.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<8.0	<20.0
Ethylbenzene	700	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
Hexachloro-1,3-butadiene	1	<100	<1.0	<20.0	<2.0	<1.0	<5.0	<5.0	<5.0	<5.0	<10.0	<25.0
Isopropylbenzene (Cumene)	300	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
m&p-Xylene	NL	NA	NA	NA 100.0	NA 10.0	NA	NA	<2.0	<2.0	<2.0	<4.0	<10.0
Methylene Chloride	5	<400	<4.0	<80.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<8.0	<20.0
Naphthalene	300	<400	<4.0	<80.0	<2.0 <8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<2.0 <8.0	<20.0
n-Butylbenzene	NL	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
n-Propylbenzene	NL	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
o-Xylene	NL	NA	NA	NA	NA	NA	NA	<1.0	<1.0	<1.0	<2.0	<5.0
p-Isopropyltoluene	NL	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
sec-butyibenzene		<100	<1.0	<20.0 <20.0	<2.0 <2.0	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<2.0	<0.U <5.0
tert-Butvibenzene	NL	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
Tetrachloroethene	5	7330	6800	1840	1720	184	7100	140	746	39.0	206	511
Tetrahydrofuran	100	<1000	<10.0	<200	<20.0	<10.0	<10.0	<10.0	<10.0	<10.0	<20.0	<50.0
Toluene	1000	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
trans-1,2-Dichloroethene	100	<100	<1.0	<20.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<2.0	<5.0
trans-1,3-Dichloropropene	NL -	<400	<4.0	<80.0	<8.0	<4.0	<4.0	<4.0 1	<4.0	<4.0	<8.0	<20.0
Trichlorofluoromethane	2000	<40.0	<u>6.1</u>	J <8.0 <20.0	<u> </u>	<u> 0.45</u> <1.0	<u> </u>	l <1.0 <1.0	1.6 <1.0	_ <1.0 <1.0	<2.0 <2.0	<5.U <5.0
Vinvl chloride	0.2	<40.0	<1.0	<8.0	<0.80	<0.40	<0.40	<0.40	<0.40	<0.40	<0.80	<2.0
Xylene (Total)	10000	<300	<3.0	<60.0	<6.0	<3.0	<3.0	<3.0	<3.0	<3.0	<6.0	<15.0

Notes: NL: No Limit NA*: Not Analyzed NS: Not Sampled

 1,620
 Parameter detected above laboratory reporting limit

 5.2
 Parameter detected above MDH Health Risk Limit

Ł

GROUNDWATER ANALYTICAL RESULTS (ug/L) MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

Sample ID MDH Health DPE-3 DPE-3 DPE-3 DPE-3	DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3
Collected Date and Time Risk Limits 08/21/14 05/20/14 02/17/14 12/10/13	3 08/26/13 05/23/13 02/25/13 12/19/12 09/26/12 05/17/12 02/16/12
1,1,1,2-Tetrachloroethane 70 <100 5.5 <100 <50.0	<50.0 4.9 <1.0 <1.0 <1.0 <20.0 <10.0
1,1,1-Trichloroethane 9000 <100 33.7 <100 <50.0	<50.0 38.7 <1.0 4.2 <1.0 <20.0 <10.0
1,1,2,2-Tetrachloroethane 2 <100 <1.0 <100 <50.0	<50.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0
1,1,2-Trichloroethane 3 <100 <1.0 <100 <50.0	<u><50.0</u> 2.1 <1.0 <1.0 <1.0 <20.0 <10.0
1,1,2-Trichlorotrifluoroethane 200000 2040 3650 1330 664	686 6020 15.8 232 2.7 414 251
1,1-Dichloroethane /0 <100 1.0 <100 <50.0	
11 Dichloroethene 6 <100 13.5 <100 <50.0	
1.2.3-Trichlorobenzene NL <100 <1.0 <100 <50.0	
1.2.3-Trichloropropage $40 < 400 < 40 < 200$	<pre><00.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0 </pre>
1.2.4-Trichlorobenzene NL <100 <1.0 <100 <50.0	<50.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0
1,2,4-Trimethylbenzene NL <100 <1.0 <100 <50.0	<50.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0
1,2-Dibromo-3-chloropropane NL <400 <4.0 <400 <200	<200 <8.0 <4.0 <4.0 <4.0 <40.0 <40.0
1,2-Dibromoethane (EDB) .004 <100 <1.0 <100 <50.0	<50.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0
1,2-Dichlorobenzene 600 <100 <100 <50.0	<50.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0
1,2-Dichloroethane 4 <100 <1.0 <100 <50.0	<50.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0
1,2-Dichloropropane 5 <400 11.3 <400 <200	<200 10.0 <4.0 <4.0 <4.0 <80.0 <40.0
1,3,5-Trimethylbenzene 100 <100 <1.0 <100 <50.0	<50.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0
1,3-Dichlorobenzene NL <100 <1.0 <100 <50.0	<50.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0
1,3-Dichloropropane NL <100 <1.0 <100 <50.0	
2 2-Dichloropropage NI <400 <400 <200	<pre><30.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10,0 <20.0 <20.0 <10,0 <20.0 <20.0 <20.0 <10,0 </pre>
2-Butanone (MEK) 4000 <500 <5.0 <500 <250	<pre><200 <0.0 <4.0 <4.0 <4.0 <0.0 <40.0 <4</pre>
2-Chlorotoluene NL <100 2.3 <100 <50.0	<50.0 4.2 <1.0 <1.0 <1.0 <20.0 <10.0
4-Chlorotoluene NL <100 <1.0 <100 <50.0	<50.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0
4-Methyl-2-pentanone (MIBK) 300 <500 <5.0 <500 <250	<250 <10.0 <4.0 <4.0 <4.0 <40.0 <40.0
Acetone 700 <2000 <2000 <1000	<pre><1000 <40.0 104 <25.0 <25.0 <500 <250</pre>
Allyl chloride 30 <400 <4.0 <200	<200 <8.0 <4.0 <4.0 <4.0 <80.0 <40.0
Benzene 2 <100 <1.0 <100 <50.0	<50.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0
Bromobenzene NL <100 <1.0 <100 <50.0	
Bromochiorometriane NL <100 <1.0 <100 <50.0	
Bromoform $40 < 400 < 40 < 200$	<30.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0 <20.0 <8.0 <4.0 <4.0 <4.0 <80.0 <40.0
Bromomethane 10 <400 <4.0 <200	<200 <8.0 <4.0 <4.0 <4.0 <80.0 <40.0
Carbon tetrachloride 3 <100 <1.0 <100 <50.0	<50.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0
Chlorobenzene 100 <100 <1.0 <100 <50.0	<50.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0
Chloroethane 300 <400 <1.0 <100 <50.0	<50.0 <u><8.0</u> <1.0 <u><1.0</u> <1.0 <20.0 <10.0
Chloroform 30 <100 15.7 <100 <50.0	<u><50.0</u> 14.6 <1.0 2.6 <1.0 <20.0 <10.0
Chloromethane NL <400 <400 <200	272 <8.0 <4.0 <4.0 <4.0 <40.0 <40.0
cis-1,2-Dichloroethene 50 <100 124 <100 <50.0	<50.0 90.2 <1.0 25.0 <1.0 <20.0 <10.0
CIS-1,3-Dichloropropene NL <400 <4.0 <200	<200 <8.0 <4.0 <4.0 <4.0 <80.0 <40.0
Dibromocniorometriane 10 <100 <1.0 <100 <50.0	
Dichlorodifluoromethane $1000 < 100 < 100 < 500$	<200 <200 <200 <10 <10 <10 <10 <10 <10 <10
Dichlorofluoromethane NL <100 <1.0 <100 <50.0	<50.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0
Diethyl ether (Ethyl ether) 1000 <400 <4.0 <400 <200	<200 <8.0 <4.0 <4.0 <4.0 <40.0 <40.0
Ethylbenzene 700 <100 <1.0 <100 <50.0	<50.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0
Hexachloro-1,3-butadiene 1 <100 <1.0 <100 <50.0	<50.0 <10.0 <5.0 <5.0 <5.0 <100 <50.0
Isopropylbenzene (Cumene) 300 <100 <1.0 <100 <50.0	<pre><50.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0</pre>
M&p-Xylene NL NA NA NA NA	NA NA <2.0 <2.0 <2.0 <40.0 <20.0
Methylene Chloride 5 <400 <4.0 <200	<200 <8.0 <4.0 <4.0 <4.0 <40.0 <40.0
Methyl-tert-butyl ether 70 <100 <1.0 <100 <50.0	0 <50.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0
n Butyloonzono NII <10 <10 <500	<200 <8.0 <4.0 <4.0 <4.0 <4.0 <80.0 <40.0
n -Propylbenzene NL <100 <1.0 <100 <50.0	(-50.0) (-2.0) (-1.0) (-1.0) (-1.0) (-20.0) (-10.0)
o-Xvlene NI NA NA NA	NA NA <1.0 <1.0 <1.0 <20.0 <10.0
p-lsopropyltoluene NL <100 <1.0 <100 <50.0	o <50.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0
sec-Butylbenzene NL <100 <1.0 <100 <50.0) <50.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0
Styrene NL <100 <1.0 <100 <50.0	0 <50.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0
tert-Butylbenzene NL <100 <1.0 <100 <50.0) <50.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0
Tetrachloroethene 5 21200 53800 20000 10200	0 6980 61800 264 5670 74.8 3690 1010
Tetrahydrofuran 100 <1000 <10.0 <1000 <500	<500 <20.0 <10.0 <10.0 <10.0 <200 <100
Toluene 1000 <100 <1.0 <100 <50.0) <50.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0
trans-1,2-Dichloroethene 100 <100 <1.0 <100 <50.0	0 <50.0 <2.0 <1.0 <1.0 <1.0 <20.0 <10.0
Trans-1, 3-Dichloropropene NL <400 <4.0 <400 <200	< 200 < 8.0 < 4.0 < 4.0 < 4.0 < 80.0 < 40.0
Trichlorofluoromethane D <40.0 <20.0 Trichlorofluoromethane 2000 <100	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Vinvl chloride 0.2 <40.0 <1.0 <100 <50.0	$\sim \sim $
Xylene (Total) 10000 <300 <3.0 <300 <150	<150 <6.0 <3.0 <3.0 <3.0 <60.0 <30.0

Notes:

NL: No Limit NA*: Not Analyzed NS: Not Sampled

 1,620
 Parameter detected above laboratory reporting limit

 5.2
 Parameter detected above MDH Health Risk Limit

GROUNDWATER ANALYTICAL RESULTS (ug/L) MN Bio Business Center 221 1st Avenue SW

Rochester, Minnesota Sample ID MDH Health DPE-4 **Risk Limits** Collected Date and Time 08/21/04 05/20/14 02/17/14 12/10/13 08/26/13 05/23/13 02/25/13 12/19/12 09/26/12 05/17/12 02/16/12 5/09 1 1 1 2-Tetrachloroethane <50.0 <50.0 <5.0 70 <50.0 <10.0 <10.0 <20 <10 <10 <10 <20 1.1.1-Trichloroethane 9000 <50.0 < 50.0<50.0 <10.0 <10.0 7.6 <1.0 1.1 <1.0 <2.0 <5.0 1 1 2 2-Tetrachloroethane 2 <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 1,1,2-Trichloroethane 3 <50.0 <50.0 <50.0 <10.0 <10.0 <1.0 <1.0 <2.0 <2.0 <1.0 <5.0 1,1,2-Trichlorotrifluoroethane 200000 541 342 355 234 144 449 28.8 141 9.7 9.5 54.4 70 1.1-Dichloroethane <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <2.0 <1.0 <1.0 <5.0 1,1-Dichloroethene 6 <50.0 <50.0 <10.0 <50.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 1.1-Dichloropropene NL. <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 1.2.3-Trichlorohenzene NI <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <10 <1.0 < 1.0<2 0 <5 0 1.2.3-Trichloropropane 40 <200 <200 <200 <40.0<40.0<8.0 <4.0 <4.0 <40 <8.0 <20.0 NI 1.2.4-Trichlorobenzene <50.0 <50.0 <50.0 <10.0 <10.0<2.0 <10 <1.0 <10 <2.0 <5.0 1,2,4-Trimethylbenzene NL <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 1.2-Dibromo-3-chloropropane NI <200 <200 <200 <40.0 <40.0 <8.0 <4.0 <4.0 <4.0 <8.0 <20.0 1,2-Dibromoethane (EDB) .004 <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 1,2-Dichlorobenzene 600 <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 1,2-Dichloroethane 4 <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 1,2-Dichloropropane 5 <200 <200 <200 <40.0 <40.0 <8.0 <20.0 <4.0 <4.0 <4.0 <8.0 100 1,3,5-Trimethylbenzene <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 1.3-Dichlorobenzene NL <50.0 <50.0 <50.0 < 10.0< 10.0<2.0 <1 0 <1 0 <1.0 <2.0 <5.0 NL <50.0 <50.0 <50.0 1.3-Dichloropropane <10.0 <10.0 <2.0 <1.0 <1.0 <10 <2.0 <5.0 1.4-Dichlorobenzene 10 <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <10 <2.0 < 5.02.2-Dichloropropane NL <200 <200 <200 <40.0 <40.0 <8.0 <4.0 <4.0 <4.0 <8.0 <20.0 2-Butanone (MEK) 4000 <250 <250 <250 <50.0 <50.0 <10.0 <4.0 <4.0 <4.0 <8.0 <20.0 2-Chlorotoluene NL <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 4-Chlorotoluene <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <2.0 NL <1.0 <5.0 4-Methyl-2-pentanone (MIBK) 300 <250 <250 <250 <50.0 <50.0 <10.0 <4.0 <4.0 <4.0 <8.0 <20.0 Acetone 700 <1000 <1000 <1000 <200 <200 <40.0 40.9 <25.0 <25.0 <50.0 <125 Allyl chloride 30 <200 <40.0 <200 <200 <40.0 <8.0 <4.0 <4.0 <4.0 <8.0 <20.0 Benzene 2 <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 NL Bromobenzene <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 Bromochloromethane NL <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 Bromodichloromethane 6 <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 Bromoform 40 <200 <200 <200 <40.0 <40.0 <8.0 <4.0 <4.0 <4.0 <8.0 <20.0 Bromomethane 10 <200 <200 <200 <40.0 <40.0 <8.0 <4.0 <4.0 <4.0 <8.0 <20.0 Carbon tetrachloride <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <10 <1.0 <10 <2.0 3 <5.0 100 Chlorobenzene <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 Chloroethane 300 <200 <50.0 <50.0 <10.0 <10.0 <20 <2 በ < 1.0<1.0 < 1.0<5.0 Chloroform 30 <50.0 <50.0 < 50.0< 10.0<1.0 <10.07.1 1.3 < 1.0<20 <5.0 Chloromethane NL <200 <200 <200 <40.0 451 < 8.0<4.0 <4.0 <4 0 <8.0 <20.0 cis-1,2-Dichloroethene 50 <50.0 <50.0 <50.0 <10.0 <10.0 24.4 <1.0 5.1 <1.0 <2.0 <5.0 cis-1,3-Dichloropropene NL <200 <200 <200 <40.0 <40.0 <8.0 <4.0 <4.0 <4.0 <8.0 <20.0 Dibromochloromethane 10 <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 Dibromomethane NL <200 <200 <200 <40.0 <40.0 <8.0 <4.0 <4.0 <4.0 <8.0 <20.0 Dichlorodifluoromethane 1000 <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 Dichlorofluoromethane NI <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 Diethyl ether (Ethyl ether) 1000 <200 <200 <200 <40.0 <40.0 <8.0 <4.0 <4.0 <4.0 <8.0 <20.0 Ethylbenzene 700 <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <2.0 <1.0 < 5.0 Hexachloro-1,3-butadiene <50.0 <50.0 <50.0 <10.0 <10.0 <10.0 <5.0 <5.0 <5.0 <10.0 <25.0 1 Isopropylbenzene (Curnene) 300 <50.0 <50.0 <50.0 <10.0 <10.0 <2 0 < 1.0< 1.0< 1.0<20 <5.0 m&p-Xvlene NA NI NA NA NA NA NA <2.0 <2.0 <2.0 <4.0 <10.0 Methylene Chloride 5 <200 <200 <200 <40.0 <40.0 <8.0 <4.0 <4.0 <4.0 <8.0 <20.0 Methyl-tert-butyl ether 70 <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 Naphthalene 300 <200 <200 <200 <40.0 <40.0 <8.0 <4.0 <4.0 <4.0 <8.0 <20.0 n-Butylbenzene NL <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 n-Propylbenzene NL <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 o-Xylene NL NA NA <1.0 <2.0 NA NA NA NA <1.0 <1.0 <5.0 p-Isopropyltoluene NL <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 sec-Butvlbenzene NL <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <2.0 <5.0 <1.0 NL <50.0 <50.0 <10.0 Styrene <50.0 <10.0<2 0 <1.0 <1.0 <10 <20 <5.0 <50.0 tert-Butylbenzene NL <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 Tetrachloroethene 5 9670 8320 8860 6850 982 13700 219 1410 187 223 830 Tetrahydrofuran 100 <500 <500 <500 <100 <100 <20.0 <10.0 <10.0 <10.0 <20.0 <50.0 Toluene 1000 <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 trans-1,2-Dichloroethene 100 <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <5.0 <2.0 NL <200 <200 <200 trans-1.3-Dichloropropene <40.0 <40.0 <8.0 <4.0 <8.0 <4.0 <4.0 <20.0 Trichloroethene 5 <20.0 <50.0 <20.0 5.4 <4.0 19.5 <1.0 2.2 <1.0 <2.0 <5.0 Trichlorofluoromethane 2000 <50.0 <50.0 <50.0 <10.0 <10.0 <2.0 <1.0 <1.0 <1.0 <2.0 <5.0 Vinyl chloride 0.2 <20.0 <50.0 <20.0 <4.0 <4.0 <0.80 <0.40 <0.40 <0.40 <0.80 <2.0 10000 Xylene (Total) <150 <150 <150 <30.0 <30.0 <6.0 <3.0 <3.0 <3.0 <6.0 <15.0 Notes

NL: No Limit

1,620 Parameter detected above laboratory reporting limit

5.2 Parameter detected above MDH Health Risk Limit

NA*: Not Analyzed NS: Not Sampled 1,620 Parameter detected above laboratory reporting im

GROUNDWATER ANALYTICAL RESULTS (ug/L) MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

Sample ID	MDH Health	DPE-5	DPE-5	DPE-5	DPE-5	DPE-5	DPE-5	DPE-5	DPE-5	DPE-5	DPE-5	DPE-5
Collected Date and Time	Risk Limits 5/09	08/21/14	05/20/14	02/17/14	12/10/13	08/26/13	05/23/13	02/25/13	12/19/12	09/26/12	05/17/12	02/16/12
1,1,1,2-Tetrachloroethane	70	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-Trichloroethane	9000	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	< 1 .0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	2	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	3	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichlorotrifluoroethane	200000	19.4	30.2	9.9	37.4	7.0	48.0	<1.0	13.4	1.2	<1.0	2.2
1,1-Dichloroethane	70	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroetnene	0 NI	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloropene		<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.2.3-Trichloropropane	40	<8.0	<4.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1.2.4-Trichlorobenzene	NL NL	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-Trimethylbenzene	NL	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dibromo-3-chloropropane	NL	<8.0	<4.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1,2-Dibromoethane (EDB)	.004	<2.0	<1.0	<2.0	<1.0	<1 .0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	600	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloroethane	4	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropropane	5	<8.0	<4.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1,3,5-Trimethylbenzene	100	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene	NL	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichloropropane	NL 10	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichloropropapo		<2.0	<1.0	<2.0	<1.0	<4.0	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0
2-Butanone (MEK)	4000	<10.0	<5.0	<10.0	<5.0	<4.0 <5.0	<4.0 <5.0	<4.0	<4.0	<4.0	<4.0	<4.0
2-Chlorotoluene	NI	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Chlorotoluene	NL	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Methyl-2-pentanone (MIBK)	300	<10.0	<5.0	<10.0	<5.0	<5.0	<5.0	<4.0	<4.0	<4.0	<4.0	<4.0
Acetone	700	<40.0	<20.0	<40.0	<20.0	<20.0	<20.0	107	<25.0	<25.0	<25.0	<25.0
Allyl chloride	30	<8.0	<4.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Benzene	2	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromobenzene	NL	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromochloromethane	NL	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichioromethane	6	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromomothano	40	28.0	<4.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Carbon tetrachloride	3	<20	<10	<8.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10
Chlorobenzene	100	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	300	<8.0	<1.0	<2.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	30	2.9	<1.0	<2.0	2.5] <1.0	1.7	<1.0	1.5	<1.0	<1.0	<1.0
Chloromethane	NL	16.4	<4.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
cis-1,2-Dichloroethene	50	55.4	<1.0	<2.0	1.8	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-Dichloropropene	NL	<8.0	<4.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromochloromethane	10	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromomethane	NL 1000	<8.0	<4.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dichlorofluoromethane		<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Diethyl ether (Ethyl ether)	1000	<8.0	<4.0	<2.0 <8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Ethylbenzene	700	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Hexachloro-1.3-butadiene	1	<2.0	<1.0	<2.0	<1.0	<1.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
isopropylbenzene (Cumene)	300	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
m&p-Xylene	NL	NA	NA	NA	NA	NA	NA	<2.0	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5	<8.0	<4.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Methyl-tert-butyl ether	70	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Naphthalene	300	<8.0	<4.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
n-Butylbenzene	NL	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
n-Propylbenzene	NL	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
			NA ~1.0	NA <2.0	NA <1.0	NA _<1.0	NA ~1.0	<1.0	<1.0	<1.0	<1.0	<1.0
p-isopropyiloidene		~2.0	<1.0	~2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Styrepe	NI	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
tert-Butylbenzene	N	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	5	1670	135	209	740	29.5	405	30.9	74.1	16.4	11.1	69.5
Tetrahydrofuran	100	<20.0	<10.0	<20.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Toluene	1000	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-Dichloroethene	100	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-Dichloropropene	NL	<8.0	<4.0	<8.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Trichloroethene	5	7.2	<1.0	<0.80	1.8	<0.40	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane	2000	<2.0	<1.0	<2.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	0.2	<0.80	<1.0	<0.80	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Xylene (Total)	10000	<6.0	<3.0	<6.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0

Notes: NL: No Limit NA*: Not Analyzed NS: Not Sampled

 1,620
 Parameter detected above laboratory reporting limit

 5.2
 Parameter detected above MDH Health Risk Limit

GROUNDWATER ANALYTICAL RESULTS (ug/L) MN Bio Business Center 221 1st Avenue SW

Rochester, Minnesota

Sample ID	MDH Health	DPE-6	DPE-6	DPE-6	DPE-6	DPE-6	DPE-6	DPE-6	DPE-6	DPE-6	DPE-6	DPE-6
Collected Date and Time	Risk Limits 5/09	08/21/14	04/20/14	02/17/14	12/10/13	08/26/13	05/23/13	02/25/13	12/19/12	09/26/12	05/17/12	02/16/12
1,1,1,2-Tetrachloroethane	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-Trichloroethane	9000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2~I richlorotrifluoroethane	200000	11	<1.0	<1.0	24	<1.0 <1.0		<1.0	<1.0	<1.0	<1.0	<1.0
1.1-Dichloroetbane	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.1-Dichloroethene	6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloropropene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichlorobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichloropropane	40	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1,2,4-Trichlorobenzene	NL	<1.0	<1 .0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-Trimethylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dibromo-3-chloropropane	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1,2-Dibromoetnane (EDB)	.004	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.2-Dichloroethane	4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1 2-Dichloropropane	5	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1.3.5-Trimethylbenzene	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichloropropane	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichlorobenzene	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,2-Dichloropropane	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
2-Butanone (MEK)	4000	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<4:0	<4.0	<4.0	<4.0	<4.0
2-Chlorotoluene	i NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Chiorotoluene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	700	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<25.0	<25.0	<25.0	<25.0	<25.0
Allyl chloride	30	<4.0	<4.0	<4 0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Benzene	2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromochloromethane	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1 .0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromoform	40	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Bromomethane	10	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Carbon tetrachionde	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	300	<4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	30	1.1	1 <1.0	<1.0	<1.0	1.3	1.6	<1.0	<1.0	<1.0	<1.0	<1.0
Chloromethane	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
cis-1,2-Dichloroethene	50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-Dichloropropene	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromochloromethane	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromomethane	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dichlorodifluoromethane	1000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dichlorofluoromethane	1000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbonzono	700	<4.0	<4.0	<1.0	<4.0	<4.0	<4.0	<4.0	<1.0	<1.0	<1.0	<1.0
Hexachloro-1 3-butadiene	1	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Isopropylbenzene (Cumene)	300	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
m&p-Xylene	NL	NA	NA	NA	NA	NA	NA	<2.0	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Methyl-tert-butyl ether	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Naphthalene	300	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
n-Butylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
n-Propylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
o-Xylene		NA 10	NA <1.0	NA <1.0	NA <1.0	_NA ∠1.0	NA <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
p-isopropyiloiuene		21.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Styrene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
tert-Butylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	5	25.0	17.4	12.9	107	4.0	6.2	19.8	10.9	4.6	<1.0	44.8
Tetrahydrofuran	100	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Toluene	1000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-Dichloroethene	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-Dichloropropene	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Trichloroethene	5	<0.40	<1.0	<0.40	<0.40	<0.40	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane	2000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	0.2	<0.40	<1.0	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Ayiene (Total)	10000	<3.0	<3.0	<3.0	<3,0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
NULES:		1 690	Domma	or dotooto	d abova lab	oratorium	nortina limi	+				
		1,020		or detected	a above idt	oratory re	porting infli	L I				

 1,620
 Parameter detected above laboratory reporting limit

 5.2
 Parameter detected above MDH Health Risk Limit

NA*: Not Analyzed NS: Not Sampled

F:\PROJECTS\Crc-City of Rochester\data tables\GW Analytical Data

GROUNDWATER ANALYTICAL RESULTS (ug/L) MN Bio Business Center 221 1st Avenue SW

Rochester, Minnesota

Sample ID	MDH Health	DPE-7	DPE-7	DPE-7	DPE-7	DPE-7	DPE-7	DPE-7	DPE-7	DPE-7	DPE-7	DPE-7
Collected Date and Time	Risk Limits	08/21/14	05/20/14	02/17/14	12/10/13	08/26/13	05/23/13	02/25/13	12/19/12	09/26/12	05/17/12	02/16/12
Conected Date and Time	5/09	00/21/14	03/20/14	02/11/14	12/10/15	00/20/13	00120/10	02125/15	12/10/12	05/20/12	03/1//12	02/10/12
1,1,1,2-Tetrachloroethane	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-1 richloroethane	9000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-1 etrachioroethane	2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0
1 1 2-Trichlorotrifluoroethane	200000	48	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.1-Dichloroethane	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.1-Dichloroethene	6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloropropene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichlorobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichloropropane	40	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1,2,4-Trichlorobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-Trimethylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1 2 Dibromoothana (EDB)		<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1 2-Dichlorobenzene	600	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloroethane	4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.2-Dichloropropane	5	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1,3,5-Trimethylbenzene	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichloropropane	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichlorobenzene	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,2-Dichloropropane	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
2-Butanone (MEK)	4000	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<4.0	<4.0	<4.0	<4.0	<4.0
2-Chiorotoluene			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Methyl-2-pentanone (MIBK)	300	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<4.0	<4.0	<4.0	<4.0	<4.0
Acetone	700	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<25.0	<25.0	<25.0	<25.0	<25.0
Allyl chloride	30	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Benzene	2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1 .0
Bromochloromethane	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromotorm	40	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Carbon tetrachloride	10	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Chlorobenzene	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	300	<4.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	30	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloromethane	NL.	8.1	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
cis-1,2-Dichloroethene	50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-Dichloropropene	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromochloromethane	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromomethane	NL 1000	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dichlorofluoromethane	NI	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Diethyl ether (Ethyl ether)	1000	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Ethylbenzene	700	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Hexachloro-1,3-butadiene	1	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Isopropylbenzene (Cumene)	300	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
m&p-Xylene	NL	NA	NA	NA	NA	NA	NA	<2.0	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Methyl-tert-butyl ether	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
naphthaiene	300	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
n-Pronylbenzene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
o-Xvlene	NI	NA	NA	NA NA	NA	NA	NA	<1.0	<1.0	<1.0	<1.0	<1.0
p-Isopropyitoluene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
sec-Butylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Styrene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
tert-Butylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	5	44.2	6.9	5.8	2.0	<1.0	1.6	8.0	3.7	<1.0	<1.0	27.8
Tetrahydrofuran	100	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
I oluene	1000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans 1.3 Dichloroptnene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroothons		~4.0	~4.0	~4.0	~4.0	~4.0	~4.0	~4.0	~4.0	~4.0	~4.0	~4.0
Trichlorofluoromethane	2000	<1 0	<1.0	<0.40 <1 0	<1.0	~0.40 <1 ∩	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	0.2	<0.40	<1.0	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Xylene (Total)	10000	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0

 1,620
 Parameter detected above laboratory reporting limit

 5.2
 Parameter detected above MDH Health Risk Limit

Notes: NL: No Limit NA*: Not Analyzed NS: Not Sampled

F:\PROJECTS\Crc-City of Rochester\data tables\GW Analytical Data

13 of 16

GROUNDWATER ANALYTICAL RESULTS (ug/L) MN Bio Business Center 221 1st Avenue SW

Rochester, Minnesota

Sample ID	MDH Health	DPE-8	DPE-8	DPE-8	DPE-8	DPE-8	DPE-8	DPE-8	DPE-8	DPE-8	DPE-8	DPE-8
Collected Date and Time	Risk Limits 5/09	08/21/14	05/20/14	02/ 1 7/14	12/10/13	08/26/13	05/23/13	02/25/13	12/19/12	09/26/12	05/1 7/12	02/16/12
1,1,1,2-Tetrachloroethane	70	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
1,1,1-Trichloroethane	9000	<1.0	1.5	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
1,1,2,2-Tetrachloroethane	2	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
1,1,2-Trichloroethane	3	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS NO	NS	NS	NS	NS
1,1,2-I richlorotrifiuoroetnane	200000	141	235	267	104	36.4	23/		NS	NS	NS NC	NS NC
1,1-Dichloroothone	70 6	<1.0	<1.0	~20.0	<25.0	~2.0	<5.0	NS	NS	NS	NS	NS
1,1-Dichloropropene	NI	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
1.2.3-Trichlorobenzene	NL	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
1.2.3-Tricbloropropane	40	<4.0	<4.0	<80.0	<100	<8.0	<20.0	NS	NS	NS	NS	NS
1,2,4-Trichlorobenzene	NL	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
1,2,4-Trimethylbenzene	NL	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
1,2-Dibromo-3-chloropropane	NL	<4.0	<4.0	<80.0	<100	<8.0	<20.0	NS	NS	NS	NS	NS
1,2-Dibromoethane (EDB)	.004	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
1,2-Dichlorobenzene	600	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
1,2-Dichloroethane	4	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
1,2-Dichloropropane	5	<4.0	<4.0	<80.0	<100	<8.0	<20.0	NS	NS	NS	NS	NS
1,3,5-1 rimethylbenzene	100	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
		<1.0	<1.0	<20.0	<25.0	<2.0	<5,0	NS NC	INS NC	NC	NS NC	NS
1,3-Dichloropropane	10	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	ON NS	NS	ON NS	NS	NS
2 2-Dichloropropage	NI	<4.0	<4.0	<80.0	<100	<8.0	<20.0	NS	NS	NS	NS	NS
2-Butanone (MEK)	4000	<5.0	<5.0	<100	<125	<10.0	<25.0	NS	NS	NS	NS	NS
2-Chlorotoluene	NL	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
4-Chlorotoluene	NL	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
4-Methyl-2-pentanone (MIBK)	300	<5.0	<5.0	<100	<125	<10.0	<25.0	NS	NS	NS	NS	NS
Acetone	700	<20.0	<20.0	<400	<500	<40.0	<100	NS	NS	NS	NS	NS
Allyl chloride	30	<4.0	<4.0	<80.0	<100	<8.0	<20.0	NS	NS	NS	NS	NS
Benzene	2	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
Bromobenzene		<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
Bromochloromethane		<1.0	<1.0	<20.0	<25.0	<2.0	< 5.0	NS	NS	NS	NS	NS
Bromodicniorometnane	0	<1.0	<1.0	<20.0	<25.0	<2.0	< 20.0	NS				NS
Bromomethane	10	<4.0	<4.0	<00.0 <80.0	<100	<8.0	<20.0	NS	NS	NS	NS .	NS
Carbon tetrachloride	3	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
Chlorobenzene	100	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
Chloroethane	300	<4.0	<1.0	<20.0	<100	<2.0	<20.0	NS	NS	NS	NS	NS
Chloroform	30	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
Chloromethane	NL	15.4	<4.0	<80.0	<100	<8.0	<20.0	NS	NS	NS	NS	NS
cis-1,2-Dichloroethene	50	1.7	1.7	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
cis-1,3-Dichloropropene	NL	<4.0	<4.0	<80.0	<100	<8.0	<20.0	NS	NS	NS	NS	NS
Dibromochloromethane	10	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
Dipromomethane		<4.0	<4.0	<80.0	<100	<8.0	<20.0	INS NC		NS NC		NO
Dichlorofluoromethane		<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	
Diethyl ether (Ethyl ether)	1000	<4.0	<4.0	<80.0	<100	<8.0	<20.0	NS	NS	NS	NS	NS
Ethylbenzene	700	<1.0	<1.0	<20.0	<25.0	<2.0	< 5.0	NS	NS	NS	NS	NS
Hexachloro-1,3-butadiene	1	<1.0	<1.0	<20.0	<25.0	<2.0	<25.0	NS	NS	NS	NS	NS
Isopropylbenzene (Cumene)	300	<1.0	<1 .0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
m&p-Xylene	NL	NA	NA	NA	NA	NA	NA	NS	NS	NS	NS	NS
Methylene Chloride	5	<4.0	<4.0	<80.0	<100	<8.0	<20.0	NS	NS	NS	NS	NS
Methyl-tert-butyl ether	70	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
Naphthalene	300	<4.0	<4.0	<80.0	<100	<8.0	<20.0	NS	NS	NS	NS	NS
n-Butylbenzene		<1.0	<1.0	<20.0	<25.0	<2.0	< 5.0	NS	NS	NS	NS	NS
n-Propyidenzene		<1.0 NA	<1.0 NA	<20.0	<25.0	<2.0	<5.U	NS	ND			NS NC
		<10	<10	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
sec-Butylbenzene	NI	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
Styrene	NL	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
tert-Butvlbenzene	NL	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
Tetrachloroethene	5	1130	5610	2390	2450	291	4240	NS	NS	NS	NS	NS
Tetrahydrofuran	100	<10.0	17.4	<200	<250	<20.0	112	NS	NS	NS	NS	NS
Toluene	1000	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	- NS	NS	NS	NS	NS
trans-1,2-Dichloroethene	100	<1.0	<1 .0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
trans-1,3-Dichloropropene	NL	<4.0	<4.0	<80.0	<1 00	<8.0	<20.0	NS	NS	NS	NS	NS
Trichloroethene	5	2.0	4.1	<8.0	<25.0	<0.80	<5.0	NS	NS	NS	NS	NS
Trichlorofluoromethane	2000	<1.0	<1.0	<20.0	<25.0	<2.0	<5.0	NS	NS	NS	NS	NS
Vinyl chloride	0.2	<0.40	<1.0	<8.0	<10.0	<0.80	<2.0	NS	NS	NS	NS	NS
Xylene (Total)	1 10000	<3.0	<3.0	<60.0	<75.0	<6.0	<15.0	NS	NS	NS	NS	NS
NUES.		1 620	Dommet	ar dotooto	t abova la	horatoo	norting lin	nit				
NE. NO LINIL		1,020		ei nerecret	a above la	bulatory fe	shorand ill	in,				

 1,620
 Parameter detected above laboratory reporting limit

 5.2
 Parameter detected above MDH Health Risk Limit

NA*: Not Analyzed NS: Not Sampled

F:\PROJECTS\Crc-City of Rochester\data tables\GW Analytical Data

GROUNDWATER ANALYTICAL RESULTS (ug/L) **MN Bio Business Center** 221 1st Avenue SW Rochester, Minnesota

Sample ID	MDH Health	MW-14	MW-14	MW-14	MW-14	MW-14	MW-14	MW-14	MW-14	MW-14	MW-14	MW-14
Collected Date and Time	Risk Limits 5/09	8/21/2014	4/20/2014	2/17/2014	12/10/2013	08/26/13	05/23/13	02/25/13	12/21/12	09/26/12	05/17/12	02/16/12
1,1,1,2-Tetrachloroethane	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 1 .0	<1.0	<1.0	<1.0	<1.0
1,1,1-Trichloroethane	9000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-I richloroethane	300000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1 1-Dichloroethane	200000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.1-Dichloroethene	6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloropropene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichlorobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichloropropane	40	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1,2,4-Trichlorobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-1 rimetnyibenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.2-Dibromoethane (EDB)	.004	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0 <1.0
1,2-Dichlorobenzene	600	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloroethane	4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropropane	5	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1,3,5-Trimethylbenzene	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,0-Dichloropropane	NL 10	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0 <1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0 <1.0	<1.0
2.2-Dichloropropane	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
2-Butanone (MEK)	4000	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<4.0	<4.0	<4.0	<4.0
2-Chlorotoluene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Chlorotoluene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Methyl-2-pentanone (MIBK)	300	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<4.0	<4.0	<4.0	<4.0
Acetone	700	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<25.0	<25.0	<25.0	<25.0
Allyl chionde Benzene	30	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0 <1.0	<4.0 <1.0	<4.0 <1.0	<4.0
Bromobenzene	NI	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromochloromethane	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	6	<1.0	<1.0	<1.0	<1.0	<1.0	1.5	<1.0	<1.0	<1.0	<1.0	<1.0
Bromoform	40	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Bromomethane	10	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Carbon tetrachioride	3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	300	<4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	30	1.5	1.9	2.2	1.6	2.3	3.5	2.0	2.1	1.6	1.4	1.2
Chloromethane	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4,0	<4.0	<4.0	<4.0	<4.0	<4.0
cis-1,2-Dichloroethene	50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-Dichloropropene	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromochloromethane	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromomethane	NL 1000	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dichlorofluoromethane	1000 NI	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Diethyl ether (Ethyl ether)	1000	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Ethylbenzene	700	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Hexachloro-1,3-butadiene	1	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Isopropylbenzene (Cumene)	300	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
m&p-Xylene		NA	NA	NA	NA	NA	NA	<4.0	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<1.0	<4.0	<4.0	<4.0	<4.0
Nanhthalene	70	<1.0	<1.0	<1.0 <1.0	<1.0 <1.0	<1.0	<1.0	NA 0</td <td><1.0</td> <td><1.0</td> <td><1.0 ∠4.0</td> <td><1.U</td>	<1.0	<1.0	<1.0 ∠4.0	<1.U
n-Butvlbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0 <1.0	<4.0 <1.0	<1.0	~4.0 <1.0
n-Propylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
o-Xylene	NL	NA	NA	NA	NA	NA	NA	NA	<1.0	<1.0	<1.0	<1.0
p-Isopropyltoluene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
sec-Butylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Styrene	NL NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
		<1.0	<1.0 E7	<1.0	<1.0	<1.0	<1.0	<1.0 1 <1 0	<1.0	<1.0 7 -10	<1.0	<1.0
Tetrahydrofuran	100	<10.0	<10.0	<u> </u>	1.0 <10.0	<10.0	<10.0	J ∖1.0 <10.0	<10.0		<10.0	<10.0
Toluene	1000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-Dichloroethene	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-Dichloropropene	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Trichloroethene	5	<0.40	<1.0	<0.40	<0.40	<0.40	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane	2000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	0.2	<0.40	<1.0	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Xylene (Total)	10000	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0

 1,620
 Parameter detected above laboratory reporting limit

 5.2
 Parameter detected above MDH Health Risk Limit

Notes: NL: No Limit NA*: Not Analyzed NS: Not Sampled

GROUNDWATER ANALYTICAL RESULTS (ug/L) MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

Sample ID	MDH Health	MW-15	MW-15	MW-15	MW-15	MW-15	MW-15	MW-15	MW-15	MW-15	MW-15	MW-15
Collected Date and Time	Risk Limits	08/21/14	05/20/14	02/17/14	12/10/13	08/26/13	05/23/13	02/25/13	12/19/12	09/26/12	05/17/12	02/16/12
	5/09	00/21/14	14.0	14.0	12/10/13			02/25/15	12/10/12			14.0
1,1,1,2-l etrachloroethane	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1 1 2 2-Tetrachloroethane	9000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.1.2-Trichloroethane	3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.1.2-Trichlorotrifluoroethane	200000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethane	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethene	6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloropropene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichlorobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichloropropane	40	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1,2,4-Trichlorobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-1 rimetnyibenzene			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1 2-Dibromoethane (EDB)	004	<1.0	<4.0 <1.0	<1.0	<1.0	<1.0	<10	<1.0	<10	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	600	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.2-Dichloroethane	4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropropane	5	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1,3,5-Trimethylbenzene	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichloropropane	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1 .0	<1.0	<1.0	<1.0
1,4-Dichlorobenzene	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,2-Dichloropropane	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
2-Butanone (MEK)	4000	<5.0	<5.0	<5.0	<5.0	<5.0	< 5.0	< 5.0	<4.0	<4.0	<4.0	<4.0
2-Chiorotoluene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Chiorotoluene 4-Methyl-2-pentapone (MIBK)	300	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<10	<1.0	<1.0	<10
Acetone	700	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<25.0	<25.0	<25.0	<25.0
Allvi chloride	30	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Benzene	2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromochloromethane	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromoform	40	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Bromomethane	10	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Carbon tetrachioride	3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	300	<1.0	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	30	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloromethane	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
cis-1.2-Dichloroethene	50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-Dichloropropene	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromochloromethane	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromomethane	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dichlorodifluoromethane	1000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dichlorofluoromethane	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Diethyl ether (Ethyl ether)	1000	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Ethylbenzene	700	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Isopropylbenzene (Cumene)	300	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0
m&n-Xylene	NI	NA	NA	NA NA	NA	NA	NA	<4.0	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<1.0	<4.0	<4.0	<4.0	<4.0
Methyl-tert-butyl ether	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NA	<1.0	<1.0	<1.0	<1.0
Naphthalene	300	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
n-Butylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
n-Propylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
o-Xylene	NL	NA	NA	NA	NA	NA	NA	NA	<1.0	<1.0	<1.0	<1.0
p-Isopropyltoluene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
sec-Butylbenzene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Styrene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tetreblemethere		<1.0	<1.0	<1.0 -1.0	<1.0	<1.0	20	71.0	<1.0	<1.0	<1.0	<1.0 <1.0
Tetrabudzofurze	100	<10.0	210.0		<1.0	<1.0 <10.0	<u></u>		<1.0	<1.0	<1.0	<1.0 <10.0
	1000	<10.0	<10.0 <1 0	<10.0	<10.0	<10.0	<10.0	<1.0	<10.0	<10.0	<10.0	<1.0
trans-1.2-Dichloroethene	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-Dichloropropene	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Trichloroethene	5	<0.40	<1.0	<0.40	<0.40	<0.40	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane	2000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyi chloride	0.2	<0.40	<1.0	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Xylene (Total)	10000	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0

Notes:

NL: No Limit NA*: Not Analyzed NS: Not Sampled

 1,620
 Parameter detected above laboratory reporting limit

 5.2
 Parameter detected above MDH Health Risk Limit

GROUNDWATER ANALYTICAL RESULTS (ug/L) MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

Sample ID	MDH Health	MW-16	MW-16	MW-16	MW-16	MW-16	MW-16	MW-16	MW-16	MW-16	MW-16	MW-16
Collected Date and Time	Risk Limits 5/09	08/21/14	05/20/14	02/17/1 4	12/10/13	08/26/13	05/23/13	02/25/13	12/19/12	09/26/12	05/17/12	02/16/12
1.1.1.2-Tetrachloroethane	70	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-Trichloroethane	9000	<5.0	<1.0	<5.0	<5.0	<5.0	10.7	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	2	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	3	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichlorotrifluoroethane	200000	382	78.9	28.1	25.6	33.0	1050	<1.0	7.3	1.3	<1.0	<1.0
1,1-Dichloroethane	70	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethene	6	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloropropene	NL	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichlorobenzene	NL	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichloropropane	40	<20.0	<4.0	<20.0	<20.0	<20.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1,2,4-Trichlorobenzene	NL	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-Trimethylbenzene	NL.	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dibromo-3-chloropropane	NL	<20.0	<4.0	<20.0	<20.0	<20.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1,2-Dibromoethane (EDB)	.004	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	600	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloroethane	4	< 5.0	<1.0	< 5.0	< 5.0	< 5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropropane	5	<20.0	<4.0	<20.0	<20.0	<20.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1,3,5-1 rimethylbenzene	100	<5.0	<1.0	< 5.0	< 5.0	<0.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.3-Dichloropenano		<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.4 Diablorobonzono	10	~5.0	<1.0	~5.0	<5.0	<5.0	~1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2.2 Dichloropropago	NI	<20.0	<10	<20.0	<20.0	<20.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0
2-Butanono (MEK)	4000	<25.0	<5.0	<20.0	<20.0	<25.0	<5.0	<5.0	<4.0	<4.0	<4.0	<4.0
2-Chlorotoluene	4000 NI	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0
A-Chlorotoluene		<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Methyl-2-pentanone (MIBK)	300	<25.0	<5.0	<25.0	<25.0	<25.0	<5.0	<5.0	<4.0	<4.0	<4.0	<4.0
Acetone	700	<100	<20.0	<100	<100	<100	<20.0	<20.0	<25.0	<25.0	<25.0	<25.0
Allyl chloride	30	<20.0	<4.0	<20.0	<20.0	<20.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Benzene	2	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromobenzene	NL	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromochloromethane	NL	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	6	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromoform	40	<20.0	<4.0	<20.0	<20.0	<20.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Bromomethane	10	<20.0	<4.0	<20.0	<20.0	<20.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Carbon tetrachloride	3	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobenzene	100	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	300	<20.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	30	<5.0	<1.0	<5.0	<5.0	<5.0	4.5	1.0	<1.0	<1.0	<1.0	<1.0
Chloromethane	NL	<20.0	<4.0	<20.0	<20.0	456	<4.0	<4.0		<4.0	<4.0	<4.0
cis-1,2-Dichloroethene	50	11.2	6.2	<5.0	<5.0	<5.0	91.8	<1.0	1.7	<1.0	<1.0	<1.0
cis-1,3-Dichloropropene	NL	<20.0	<4.0	<20.0	<20.0	<20.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromochloromethane	10	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromomethane	NL	<20.0	<4.0	<20.0	<20.0	<20.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dichlorodifluoromethane	1000	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dichlorofluoromethane	NL	< 5.0	<1.0	< 5.0	< 5.0	< 5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dietnyl etner (Etnyl etner)	1000	<20.0	<4.0	<20.0	<20.0	<20.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Ethylbenzene	700	< 5.0	<1.0	< 5.0	< 5.0	< 5.U	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Hexachioro-1,3-buladiene	200	<5.0	<1.0	<5.0	<5.0	<5.0	<0.0	< 1.0	<0.0	< 1.0	< 1.0	< 1.0
men Yulono	500	NA	► 1.0	~0.U	NA	~0.0	NA	<1.0	<2.0	<2.0	<2.0	<2.0
Mathylana Chlorida		200.0	<10	<20.0	<00.0	<20.0	~10	<1.0	~2.0	~2.0	~2.0	~2.0
Methyl fort butyl other	70	~20.0	<4.0	~20.0	~20.0	~20.0	~4.0	NIA	<4.0	~4.0	~4.0	<4.0
Nanhthalene	300	<20.0	<1.0	<20.0	<20.0	<20.0	<10	<10	<1.0	<1.0	<1.0	<1.0
n-Butylbenzene	NI	<5.0	<10	<5.0	<5.0	<5.0	<10	<1.0	<10	<1.0	<1.0	<10
n-Propylbenzene	NI	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
o-Xvlene	N	NA	NA	NA	NA	NA	NA	NA	<1.0	<1.0	<1.0	<1.0
p-Isopropyltoluene	NI	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
sec-Butylbenzene	NL	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Styrepe	NL	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
tert-Butylbenzene	NL.	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	5	1780	2530	413	432	469	7450	8.0	128	21.8	7.8	16.1
Tetrahydrofuran	100	<50.0	<10.0	<50.0	<50.0	<50.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Toluene	1000	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-Dichloroethene	100	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-Dichloropropene	NL	<20.0	<4.0	<20.0	<20.0	<20.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Trichloroethene	5	3.9	3.4	<2.0	<2.0	<2.0	25.1	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane	2000	<5.0	<1.0	<5.0	<5.0	<5.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	0.2	<2.0	<1.0	<2.0	<2.0	<2.0	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Xylene (Total)	10000	<15.0	<3.0	<15.0	<15.0	<15.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0

Notes:

NL: No Limit NA*: Not Analyzed NS: Not Sampled

 1,620
 Parameter detected above laboratory reporting limit

 5.2
 Parameter detected above MDH Health Risk Limit

GROUNDWATER ANALYTICAL RESULTS (ug/L) MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

Sample ID	MDH Health	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17	MW-17
Collected Date and Time	Risk Limits	08/21/14	05/20/14	02/17/14	12/10/13	08/26/13	05/23/12	02/25/13	12/19/12	09/26/12	05/17/12	02/16/12
	5/09	14.0		110	12/10/10		44.0		12/10/12			4.0
1,1,1,2-l etrachloroethane	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-Trichloroethane	9000		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1 1 2-Trichloroethane	3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.1.2-Trichlorotrifluoroethane	200000	23.7	13.4	5.5	4.2	10.8	32.8	7.0	<1.0	2.0	6.3	6.6
1,1-Dichloroethane	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethene	6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloropropene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichlorobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichloropropane	40	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1,2,4- I richlorobenzene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-1 (intelligiberizetie		<1.0	<1.0	<1.0	<4.0	<1.0	<4.0	<1.0	<4.0	<4.0	<4.0	<10
1.2-Dibromoethane (EDB)	.004	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.2-Dichlorobenzene	600	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloroethane	4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropropane	5	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1,3,5-Trimethylbenzene	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1 .0
1,3-Dichlorobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichloropropane	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichloropenzene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Rutanone (MEK)		<5.0	<4.0 <5.0	<5.0 <5.0	<u>~4.0</u> <5.0	<5.0 <5.0	<4.0 <5.0	<4.0 <5.0	~4.0 <∕ 1 ∩	~4.0 <∕L ∩	~4.0 ∩</td <td>~4.0 <⊿ ∩</td>	~4.0 <⊿ ∩
2-Chlorotoluene	NI	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Chlorotoluene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Methyl-2-pentanone (MIBK)	300	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<4.0	<4.0	<4.0	<4.0
Acetone	700	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<25.0	<25.0	<25.0	< 2 5.0
Allyl chloride	30	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Benzene	2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromochloromethane		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromotorm	40	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Bromomethane	10	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Carbon tetrachloride	3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobenzene	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	300	<4.0	<1.0	<1.0	<1.0	<1.0	<4.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	30	1.3	<1.0	1.3	1.2	2.0	1.2	1.3	1.1	1.1	1.6	1.2
Chloromethane	NL	<4.0	<4.0	<4.0	<4.0	6.1	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
cis-1,2-Dichloroethene	50	3.7	<1.0	<1.0	<1.0	<1.0	2.5	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-Dichloropropene	NL 10	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromomethane		-10	<1.0	<4.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0
Dichlorodifluoromethane	1000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dichlorofluoromethane	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Diethyl ether (Ethyl ether)	1000	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Ethylbenzene	700	<1.0	<1.0	< 1 .0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Hexachloro-1,3-butadiene	1	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Isopropylbenzene (Cumene)	300	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
m&p-Xylene	NL	NA	NA	NA	NA	NA	NA	<4.0	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<1.0	<4.0	<4.0	<4.0	<4.0
Methyl-tert-butyl ether	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NA ~1.0	<1.0	<1.0	<1.0	<1.0
naprinaiene In Butylbonzone	500 NI	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
n-Pronvibenzene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
o-Xvlene	NL	NA	NA	NA	NA	NA	NA	NA	<1.0	<1.0	<1.0	<1.0
p-Isopropyitoluene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
sec-Butylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Styrene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	< 1 .0	<1.0	<1.0
tert-Butylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	5	244	94.7	54.8	69.9	95.5	215	49.9	22.0	23.3	37.1	47.1
Tetrahydrofuran	100	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
I oluene	1000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-Dichloroethene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.U	<1.0	<1.0	<1.0	<1.0
Trichloroothone			<4.0 1 <1 0	<4.0	<4.U	<u>\$4.0</u>		~4.0	<4.0 21.0	<4.0	~4.0	<4.0 <1.0
Trichlorofluoromethane	2000	<10	J ∼1.0 <1.0	~0.40 <1 ∩	<0.40 <1 ∩	<10	_	<1.0	<1.0 <1.0	<1.0	<1.0	<1.0 <1.0
Vinvi chloride	0.2	<0.40	<1.0	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Xylene (Total)	10000	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0
Notes:												

 1,620
 Parameter detected above laboratory reporting limit

 5.2
 Parameter detected above MDH Health Risk Limit

NL: No Limit NA*: Not Analyzed NS: Not Sampled

GROUNDWATER ANALYTICAL RESULTS (ug/L) MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

Callesca Date and Time Risk Limits View 10 - 202174 02174 02174	Sample ID	MDH Health	MW-18	MW-18	MW-18	MW-18	MW-18	MW-18	MW-18	MW-18	MW-18	MW-18	MW-18
1,1,2 1,1,1,1 1,1,1 <	Collected Date and Time	Risk Limits 5/09	08/21/14	05/20/14	02/17/14	12/10/13	08/26/13	05/23/13	02/25/13	12/19/12	09/26/12	05/17/12	02/16/12
11,1-Tacheroshorehme 2 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <td>1,1,1,2-Tetrachloroethane</td> <td>70</td> <td><1.0</td>	1,1,1,2-Tetrachloroethane	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
11.2.2-fr. 11.2.2-	1,1,1-Trichloroethane	9000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
11,2-17:hichordinations frame 3 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10<	1,1,2,2-Tetrachloroethane	2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
11,2-infinitediminance image 200000 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	1,1,2-Trichloroethane	3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Disklompingen 1/0	1,1,2-Trichlorotrifluoroethane	200000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.1.bitionsemble N.L. <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	1,1-Dichloroethane	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
13.3 Trichlorepropana NL 10 -10	1,1-Dichloroethene	ь NI	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
nu nu<	1, 1-Dichloropene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
12.4.Trinityberghenzame NL <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1 2 3-Trichloropropane	40	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
12.4 Frime NL <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1.2.4-Trichlorobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
12-Dibrono-Schlaropopane NL <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.	1,2,4-Trimethylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
12-Dibinomethane (EDB) 0.004 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1	1,2-Dibromo-3-chloropropane	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
12-Dichloroberizene 600 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <td>1,2-Dibromoethane (EDB)</td> <td>.004</td> <td><1.0</td>	1,2-Dibromoethane (EDB)	.004	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.2-Dichlorgorhane 4	1,2-Dichlorobenzene	600	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloroprogene 5 4.0	1,2-Dichloroethane	4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.3.b Individenzame 100 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	1,2-Dichloropropane	5	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1.3.Dichloroporpane NL <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <td>1,3,5- I rimethylbenzene</td> <td>100</td> <td><1.0</td>	1,3,5- I rimethylbenzene	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
n-2-dimologingane NL <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0<	1,3-Dichlorobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Table Tot Tot </td <td>1,3-Dichloropropane</td> <td>10</td> <td></td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td>~1.0</td> <td>~1.0</td> <td><1.0</td> <td><1.0</td> <td><1.0</td>	1,3-Dichloropropane	10		<1.0	<1.0	<1.0	<1.0	<1.0	~1.0	~1.0	<1.0	<1.0	<1.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.2-Dichloropropage	NI	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	10</td <td><10</td> <td><1.0</td> <td><4.0</td> <td><!-- 0</td--></td>	<10	<1.0	<4.0	0</td
Definition NL <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <	2-Butanone (MEK)	4000	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<4.0	<4.0	<4.0	<4.0
AChtorobunne NL <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	2-Chlorotoluene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4:Methyl-2-pentanona (MIBK) 300 <50 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0 <5.0	4-Chlorotoluene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Acetome 700 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <20.0 <th< td=""><td>4-Methyl-2-pentanone (MIBK)</td><td>300</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><5.0</td><td><4.0</td><td><4.0</td><td><4.0</td><td><4.0</td></th<>	4-Methyl-2-pentanone (MIBK)	300	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<4.0	<4.0	<4.0	<4.0
Ally icholode 30 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0 < 4.0	Acetone	700	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<25.0	<25.0	<25.0	<25.0
Benzene 2 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <th< td=""><td>Allyl chloride</td><td>30</td><td><4.0</td><td><4.0</td><td><4.0</td><td><4.0</td><td><4.0</td><td><4.0</td><td><4.0</td><td><4.0</td><td><4.0</td><td><4.0</td><td><4.0</td></th<>	Allyl chloride	30	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Bromobilization NL <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Benzene	2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromochloromethane NL <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Bromobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodicinity organization of the structure 6 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <td>Bromochloromethane</td> <td>NL</td> <td><1.0</td>	Bromochloromethane	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromomethane 10 c4,0 cc1,0 c1,0 c1,0 c1,0 c1,0	Bromodichloromethane	6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Distributing Distributing<	Bromonothano	40	<4.0	~4.0	~4.0	~4.0	~4.0	<4.0	<4.0	<4.0	<4.0	~4.0	<4.0
Chiorobenzare 100 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Carbon tetrachloride	3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane 300 c4.0 c1.0	Chlorobenzene	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chioroform 30 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Chloroethane	300	<4.0	<1.0	<1.0	<1.0	<1.0	20.9] <1.0	<1.0	<1.0	<1.0	<1.0
Choromethane NL <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0	Chloroform	30	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,2-Dichloroethene 50 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0<	Chloromethane	NL	<4.0	<4.0	<4.0	<4.0	5.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
cls-1,3-Dichloropropene NL <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0	cis-1,2-Dichloroethene	50	<1.0	<1.0	<1.0	<1.0	<1.0	~ <1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromochloromethane 10 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <td>cis-1,3-Dichloropropene</td> <td>NL</td> <td><4.0</td>	cis-1,3-Dichloropropene	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromomethane NL <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Dibromochloromethane	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dichlorodifiuoromethane 1000 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1	Dibromomethane	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dichlorofiluoromethane NL <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0<	Dichlorodifluoromethane	1000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
	Dichlorofluoromethane	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethypenzene 700 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Diethyl ether (Ethyl ether)	1000	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Terms and the Loss of the Loss	Etnyibenzene	700	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Back polytical called (cline) Store Store <t< td=""><td>Reserve viborzono (Cumono)</td><td>300</td><td></td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td></t<>	Reserve viborzono (Cumono)	300		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	m&n-Xvlene	NI		<1.0 N∆	NA	NA	NA	NA	<4.0	<20	<20	<2.0	<2.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Methylene Chloride	5	<40	<4.0	<4.0	<4.0	<4.0	<4.0	<1.0	<4.0	<4.0	<4.0	<4.0
Naphthalene n-Butylbenzene300410 <t< td=""><td>Methyl-tert-butyl ether</td><td>70</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td>NA</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td></t<>	Methyl-tert-butyl ether	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NA	<1.0	<1.0	<1.0	<1.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Naphthalene	300	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	n-Butylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
o-Xylene NL NA <	n-Propylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	o-Xylene	NL	NA	NA	NA	NA	NA	NA	NA	<1.0	<1.0	<1.0	<1.0
sec-Butylbenzene NL <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	p-Isopropyltoluene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Styrene NL <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <t< td=""><td>sec-Butylbenzene</td><td>NL</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td><td><1.0</td></t<>	sec-Butylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Styrene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	tert-Butylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
I etranydroturan 100 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0 <10.0	Tetrachloroethene	5	3.0	15.7	2.0	1.6	1.5	1.2	2.3	<1.0	1.8	1.5	2.9
1 ouuene 1000 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Tetrahydrofuran	100	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Trans-1,2-Dictionobeniene 100 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <	Toluene	1000		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethene NL <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0	trans-1,2-Dichloroethene	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.U
Trichlorofluoromethane 5 <0.40 <1.0 <0.40 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Trichlersethen		<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.U	<4.U
Vinyl chloride 0.2 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Trichlorofluoromothene	2000	<1.0	~1.0	~0.40	~0.40	~0.40	~1.0	~1.0	~1.0	~1.0	~1.0	~1.0
Xylene (Total) 10000 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0 <3.0	Vinvi chloride	Δ000 0.2	<0.40	<1.0	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
	Xvlene (Total)	10000	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0

Notes:

 1,620
 Parameter detected above laboratory reporting limit

 5.2
 Parameter detected above MDH Health Risk Limit

NL: No Limit NA*: Not Analyzed NS: Not Sampled

GROUNDWATER ANALYTICAL RESULTS (ug/L) MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

Sample ID	MDH Health	MW-19	MW-19	MW-19	MW-19							
Collected Date and Time	Risk Limits 5/09	08/21/14	05/20/14	02/17/14	12/10/13	08/26/13	05/23/13	02/25/13	12/19/12	09/26/12	05/17/12	02/16/12
1,1,1,2-Tetrachloroethane	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-Trichloroethane	9000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	2	<1.0	<1.0	<1.0	<1,0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichlorotrifluoroethane	200000	<1.0	1.2	2.3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethane	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethene	6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloropropene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichlorobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichloropropane	40	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1,2,4-Trichlorobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-1 rimethylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dibromo-3-chioropropane	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1,2-Dibromoethane (EDB)	.004	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	600	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloroethane	4		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropiopane	100	<4.0	~4.0	~4.0	~4.0	~4.0	~4.0	~4.0	~4.0	<4.0	<4.0	<4.0
1.3-Dicblorobenzene		21.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1 3-Dichloropropage		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1 4-Dichlorobenzene	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2.2-Dichloropropane	NI	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
2-Butanone (MEK)	4000	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<4.0	<4.0	<4.0	<4.0
2-Chlorotoluene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Chlorotoluene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Methyl-2-pentanone (MIBK)	300	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<4.0	<4.0	<4.0	<4.0
Acetone	700	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<20.0	<25.0	<25.0	<25.0	<25.0
Allyl chloride	30	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Benzene	2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromochloromethane	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromoform	40	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Bromomethane	10	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Carbon tetrachloride	3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobenzene	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	300	<4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	30	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloromethane	NL	<4.0	<4.0	<4.0	<4.0	4.3] <4.0	<4.0	<4.0	<4.0	<4.0	<4.0
cis-1,2-Dichloroethene	50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-Dichloropropene	NL 10	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromocniorometnane	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Diploredifueremethane	1000	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	~4.0	<4.0	<4.0
Dichlorofluoromethane	NI	<1.0	~1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Diethyl ether (Ethyl ether)	1000	24.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<10	<1.0	<1.0	<1.0
Ethylbenzene	700	<1.0	<1.0	<1.0	<1.0	<1.0	<10	<1.0	<1.0	<1.0	<1.0	<1.0
Hexachloro-1.3-butadiene	1	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Isopronylbenzene (Cumene)	300	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
m&p-Xvlene	NL	NA	NA	NA	NA	NA	NA	<4.0	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<1.0	<4.0	<4.0	<4.0	<4.0
Methyl-tert-butyl ether	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NA	<1.0	<1.0	<1.0	<1.0
Naphthalene	300	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
n-Butvibenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
n-Propylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
o-Xylene	NL	NA	<1.0	<1.0	<1.0	<1.0						
p-Isopropyltoluene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
sec-Butylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Styrene	NL.	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
tert-Butylbenzene	. NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	5	3.7	4.7	11.7	2.1	1.7	3.0	<1.0	1.4	<1.0	1.1	2.2
Tetrahydrofuran	100	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Toluene	1000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-Dichloroethene	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-Dichloropropene	NL.	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Trichloroethene	5	<0.40	<1.0	<0.40	<0.40	<0.40	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane	2000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1 .0	<1.0	<1.0	<1.0
Vinyl chloride	0.2	<0.40	<1.0	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
[Xylene (Total)	10000	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0

 1,620
 Parameter detected above laboratory reporting limit

 5.2
 Parameter detected above MDH Health Risk Limit

Notes: NL: No Limit NA*: Not Analyzed NS: Not Sampled

GROUNDWATER ANALYTICAL RESULTS (ug/L) MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

Sample ID	MDH Health	MW-20	MW-20	MW-20	MW-20	MW-20	MW-20	MW-20	MW-20	MW-20	MW-20	MW-20
Collected Date and Time	Risk Limits 5/09	08/21/14	05/20/14	02/17/14	12/10/13	08/26/13	05/23/13	02/25/13	12/19/12	09/26/12	05/17/12	02/16/12
1,1,1,2-Tetrachloroethane	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-Trichloroethane	9000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachioroethane	2	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1 .0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichlorotrifluoroethane	200000	2.5	6.5	9.1	6.4	9.3	18.0	1.4	1.3	1.3	1.5	2.1
1,1-Dichloroethane	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethene	6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloropropene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichloropropage	NL 40		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Thchloropenzene	40	21.0	<10	<1.0	~1.0	~4.0	<1.0	<1.0	<1.0	<4.0	~4.0	<4.0
1.2.4-Trimethylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1.2-Dibromo-3-chloropropage	NI	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1.2-Dibromoethane (EDB)	.004	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	600	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloroethane	4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropropane	5	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
1,3,5-Trimethylbenzene	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichloropropane	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichlorobenzene	10	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,2-Dichloropropane	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
2-Butanone (MEK)	4000	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<4.0	<4.0	<4.0	<4.0
2-Chlorotoluene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0		<1.0	<1.0
4-Chlorotoluene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
4-Methyl-2-pentanone (MIBK)	300	<5.0	<5.0	< 5.0	<5.0	< 5.0	< 5.0	<5.0	<4.0	<4.0	<4.0	<4.0
Allul ablanda	700	<20.0	<20.0	~20.0	<20.0	<20.0	<20.0	<20.0	<25.0	~25.0	<20.0	<20.0
Benzene	2	<1.0	<10	<10	<10	<1.0	<10	<10	<10	<10	<10	<10
Bromobenzene	NI.	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromochloromethane	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromoform	40	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Bromomethane	10	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Carbon tetrachloride	3	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobenzene	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	300	<4.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroform	30	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloromethane	NL	<4.0	<4.0	<4.0	<4.0	21.9	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
cis-1,2-Dichloroethene	50	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-Dichloropropene	NL 10	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Dibromocniorometnarie		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dichlorodifluoromathana	1000	<4.0	<4.0	<4.0	~4.0	<4.0	<4.0	~1.0	~4.0	<4.0	~4.0	<4.0
Dichlorofluoromethane	NI	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Diethvl ether (Ethvl ether)	1000	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Ethylbenzene	700	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Hexachloro-1,3-butadiene	1	<1.0	<1.0	<1.0	<1.0	<1.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Isopropylbenzene (Cumene)	300	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
m&p-Xylene	NL	NA	NA	NA	NA	NA	NA	<4.0	<2.0	<2.0	<2.0	<2.0
Methylene Chloride	5	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<1.0	<4.0	<4.0	<4.0	<4.0
Methyl-tert-butyl ether	70	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	NA	<1.0	<1.0	<1.0	<1.0
Naphthalene	300	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
n-Butylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
n-Propylbenzene	NL	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
o-Xylene	NL	NA	NA 11.0	NA	NA	NA	NA	NA	<1.0	<1.0	<1.0	<1.0
p-isopropyitoluene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Sec-Bulyidenzene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
tert-Butylbenzene		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene	5	127	48.0	106	81.0	45.5	108	50.2	40.8	17.4	29.7	<u>41 8</u>
Tetrahydrofuran	100	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.2	<10.0	<10.0	<10.0	<10.0
Toluene	1000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-Dichloroethene	100	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-Dichloropropene	NL	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
Trichloroethene	5	<0.40	<1.0	<0.40	<0.40	<0.40	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichlorofluoromethane	2000	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl chloride	0.2	<0.40	<1.0	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40
Xylene (Total)	10000	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0

Notes:

NL: No Limit NA*: Not Analyzed NS: Not Sampled

1,620 Parameter detected above MDH Health Risk Limit 5.2 Parameter detected above MDH Health Risk Limit

13 of 14

Table 7 Soil Vapor Sampling Results MN Bio Business Center Rochester, MN (ug/m³)

	MPCA	MPCA	LSG-7	LSG-7	LSG-7	LSG-7	LSG-8	LSG-8	LSG-8	LSG-8	LSG-9	L5G-9	LSG-9	LSG-9	L5G-10	LSG-10	LSG-10	LSG-10	SP-1	SP-1	5P-1	SP-1	SP-2	SP-2	5P-2	SP-2
	Commercial	Residential	8/22/2014	2/18/2014	10/18/2013	12/21/2012	8/22/2014	2/18/2014	10/18/2013	12/21/2012	8/22/2014	2/18/2014	10/18/2013	12/21/2012	8/22/2014	2/18/2014	10/18/2013	12/21/2012	8/22/2014	3/14/2014	10/18/2013	12/21/2012	8/22/2014	3/14/2014	10/18/2013	12/21/2012
Parameter	10X ISV	10X ISV	Pace	Legend	Legend	Legend	Pace	Legend	Legend	Legend	Pace	Legend	Legend	Legend	Pace	Legend	Legend	Legend	Pace	Legend	Legend	Legend	Pace	Legend	Legend	Legend
1,1,1-Trichloroethane	100000	50000	<2.3	<2.7	<2.7	<2.7	<2.8	<2.7	<2.7	<2.7	<3.5	<2.7	<2.7	<2.7	<2.5	<2.7	<2.7	<2.7	<2.5	<2.7	<2.7	<2.7	<3.3	3.3	<2.7	<2.7
1,1,2,2-Tetrachloroethane	10	2	<1.5	<3.4	<3.4	<3.4	<1.8	<3.4	<3.4	<3.4	<2.2	<3.4	<3.4	<3.4	<1.6	<3.4	<3.4	<3.4	<1.6	<3.4	<3.4	<3.4	<2.1	<3.4	<3.4	<3.4
1,1,2-I richloroethane	20	6	<1.2	<2.7	<2.7	<2.7	<1.4	<2.7	<2.7	<2.7	<1.7	<2.7	<2.7	<2.7	<1.3	<2.7	<2.7	<2.7	<1.3	<2.7	<2.7	<2.7	<1.6	<2.7	<2.7	<2.7
1,1-Dichloroethane	10000	5000	<1.7	<2.0	<2.0	<2.0	<2.1	<2.0	<2.0	<2.0	<2.6	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	<2.4	<2.0	<2.0	<2.0
1,1-Dichloroethene	100	2000	<1.7	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.6	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	<2.4	<2.0	<2.0	<2.0
	200	40	3.6	11	11	61	299	<1.0	12	5.7	<4.8 Λ E	21	<1.0	1.5	25	1 1	<3.7	3.7	4.9	4.6	<1.0	<0.99	<4.5	19	<1.0	<0.09
1,2,4-11 metry benzene	200	,0	-2.2	-2.0	-2.0	-2 0	<200	<1.0	-3.0	2.2	4.5	2.1	<1.0	-2.0		1.1	<1.0	-2.0	4.0	4.0	<2.0	<0.56	<1.6	4.0	<1.0	<0.56
1,2-Digitomoethane	6000	2000	<3.5	<3.0	<3.0	<3.0	<3.5	<3.0	<3.0	<3.0	<3.9	(3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.0	<3.8	<3.0	<3.0	<3.0	<3.6	(3.0	<3.0	<3.0
1,2-Dichloroethane	10	2000	<0.86	<2.0	<2.0	<2.0	<10	<2.0	<2.0	<2.0	<1.3	<2.0	<2.0	<2.0	<0.94	<2.0	<2.0	<2.0	<0.94	<2.0	<2.0	<2.0	<1.2	<2.0	<3.0	<2.0
1.2-Dichloropropage	100	40	<2.0	<2.3	<2.3	<2.3	<2.4	<2.3	<2.3	<2.3	<3.0	<2.3	<2.3	<2.0	<2.2	<2.3	<23	<2.0	<2.2	<2.3	<2.0	<2.3	<2.8	<2.3	<73	<2.3
1.3.5-Trimethylbenzene	200	60	2.9	<1.0	<1.0	2.1	98.5	<1.0	<1.0	2.1	4	<1.0	<1.0	<0.98	3.2	<1.0	<1.0	1.4	3.5	1.2	<1.0	<0.98	<3.0	<1.0	<1.0	<0.98
1,3-Butadiene	10	3	<0.94	<1,1	<1.1	<1.1	<1.1	<1.1	<1,1	<1.1	<1.4	<1.1	<1.1	<1.1	<1.0	<1.1	<1.1	<1.1	<1.0	<1.1	<1.1	<1.1	<1.3	<1.1	<1.1	<1.1
1,3-Dichlorobenzene	NA	NA	<2.6	<3.0	<3.0	<3.0	<3.1	<3.0	<3.0	<3.0	<3.9	<3.0	<3.0	<3.0	<2.8	<3.0	<3.0	<3.0	<2.8	<3.0	<3.0	<3.0	<3.6	<3.0	<3.0	<3,0
1,4-Dichlorobenzene	2000	600	<2.6	8.3	<3.0	<3.0	<3.1	7	<3.0	<3.0	<3.9	<3.0	<3.0	<3.0	<2.8	8.1	<3.0	<3.0	<2.8	<3.0	<3.0	<3.0	<3.6	<3.0	<3.0	<3.0
2-Butanone	100000	50000	2.3	1.6	<1.5	5.4	42.7	<1.5	<1.5	5.4	3.6	8.3	1.7	6.1	<1.4	1.7	3.2	11	3	6.3	<1.5	<1.5	7.5	8.4	2.3	3.1
4-Ethyltoluene	NA	NA	3.8	<2.5	<2.5	3.1	97.7	<2.5	<2.5	2.8	<3.2	<2.5	<2.5	<2.5	3.8	<2.5	<2.5	<2.5	4.3	<2.5	<2.5	<2.5	<3.0	<2.5	<2.5	<2.5
Acetone	870000	310000	<5.1	15	7.8	55	176	8.4	13	49	32.8	97	8.6	35	25.1	13	32	390	17.5	32	23	5.3	17.7	45	35	4.7
Benzene	130	45	1.2	0.85	2	<0.64	19.8	<0.64	<0.64	<0.64	1.2	1.1	<0.64	<0.64	<0.74	<0.64	<0.64	0.72	0.96	1.2	<0.64	<0.64	<0.97	1.2	<0.64	0.73
Benzyl chloride	30	10	<2.2	<2.6	<2.6	<2.6	<2.6	<2.6	<2.6	<2.6	<3.3	<2.6	<2.6	<2.6	<2.4	<2.6	<2.6	<2.6	<2.4	<2.6	<2.6	<2.6	<3.1	<2.6	<2.6	<2.6
Bromodichloromethane	NA	NA	<2.9	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<4.3	<3.4	<3.4	<3.4	<3.1	<3.4	<3.4	<3.4	<3.1	<3.4	<3.4	<3.4	<4.0	<3.4	<3.4	<3,4
Bromoform	300	90	<11.0	<5.2	<5.2	<5.2	<13.2	<5.2	<5.2	<5.2	<16.6	<5.2	<5.2	<5.2	<12.0	<5.2	<5.2	<5.2	<12.0	<5.2	<5.2	<5.2	<15.6	<5.2	<5.2	<5.2
Bromomethane	100	50	<1.7	<1.9	<1.9	<1.9	<2.0	<1.9	<1.9	<1.9	<2.5	<1.9	<1.9	<1.9	<1.8	<1.9	<1.9	<1.9	<1.8	<1.9	<1.9	<1.9	<2.3	<1.9	<1.9	<1.9
Carbon disulfide	20000	7000	<1.3	<1.6	<1,6	<1,6	2.2	<1.6	<1.6	<1,6	<2.0	<1.6	<1.6	<1.6	<1.4	<1.6	<1.6	<1.6	<1.4	<1.6	<1.6	<1.6	<1.9	<1.6	<1.6	<1.6
Carbon tetrachloride	20	1 500	<1.3	<3,1	<3.1	<3.1	<1.6	<3.1	<3.1	<3.1	<2.0	<3.1	<3.1	<3.1	<1.5	<3.1	<3.1	<3.1	<1.5	<3.1	<3.1	<3.1	<1.9	<3,1	<3.1	<3.1
Chlorosthana	300000	100000	<2.0	<2.3	<2.3	<2.3	<2.4	<2.3	<2.5	<2.3	<3.0	<2.3	<2.3	<2.3	<2.2	<2.3	<2.3	<2.3	<2.2	<2.3	<2.3	<2.3	<2.8	<2.3	<2.3	<2.3
Chloroform	3000	100000	13	<1.5	<2.4	<2.4	<1.4	<7.4	<2.4	<1.3	<1.7	<1.3	<2.4	<1.5	<1.2	<1.3	<1.3	<1.3	<1.2	25	<1.5	<1.3	<1.0	<2.4	<1.3	<1.5
Chloromethane	3000	900	<0.88	<1.0	<1.0	<1.0	<1.1	<1.0	<1.0	<1.0	<1.3	<1.0	<1.0	<1.0	<0.96	<1.0	<1.0	<1.0	<0.96	<1.0	<1.0	<1.0	<1.2	<1.0	<1.0	<1.0
cis-1.2-Dichloroethene	NA	NA	<1.7	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.6	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	<1.9	2.4	<2.0	<2.0	<2.4	7	<2.0	<2.0
cis-1.3-Dichloropropene	600	200	<4.8	<2.3	<2.3	<2.3	<5.8	<2.3	<2.3	<2,3	<7.3	<2.3	<2.3	<2.3	<5.3	<2.3	<2.3	<2.3	<5.3	<2.3	<2.3	<2.3	<6.8	<2.3	<2.3	<2.3
Cyclohexane	200000	60000	<3.7	<1.7	1.8	14	231	<1.7	<1.7	7.9	<5.5	10	<1.7	11	14.5	1.8	11	47	<4.0	<1.7	<1.7	<1.7	<5.2	<1.7	<1.7	<1.7
Dibromochloromethane	NA	NA	<3.6	<4.3	<4.3	<4.3	<4.4	<4.3	<4.3	<4.3	<5.5	<4.3	<4.3	<4.3	<4.0	<4.3	<4.3	<4.3	<4.0	<4.3	<4.3	<4.3	<5.1	<4.3	<4.3	<4.3
Dichlorodifluoromethane	6000	2000	<5.3	<2.5	<2.5	<2.5	<6.3	<2.5	<2.5	<2.5	<7.9	<2.5	<2.5	<2.5	<5.7	<2.5	<2.5	<2.5	<5.7	2.6	<2.5	<2.5	<7.5	2.6	<2.5	<2.5
Dichlorotetrafluoroethane	NA	NA	<3.0	<3.5	<3.5	<3.5	<3.6	<3.5	<3.5	<3.5	<4.5	<3.5	<3.5	<3.5	<3.3	<3.5	<3.5	<3.5	<3.3	<3.5	<3.5	<3.5	<4.2	<3.5	<3.5	<3,5
Ethanoi	420000	150000	24.9	97	24	490	23.7	180	36	470	4.5	310	35	240	22.8	120	85	1700	6	180	230	7.9	16.2	220	130	12
Ethyl acetate	80000	30000	<1.5	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<1.8	<2.3	6.9	<1.8	<1.8	<1.7	<1.8	<1.8	<1.8	<1.7	<1.8	<1.8	<1.8	4.1	2.1	<1.8	<1.8
Ethylbenzene	30000	10000	2.5	2.2	<0.87	4.5	91.3	1.2	<0.87	4	3.7	2.5	<0.87	0.96	2.8	1.6	<0.87	3.2	2.8	3.9	<0.87	<0.87	<2.6	2.6	<0.87	<0.87
Hexachlorobutadiene	10	5	<4.6	< 5.3	<5.3	<5.3	<5.5	<5.3	<5.3	<5.3	<7.0	<5.3	<5.3	<5.3	<5.0	<5.3	<5.3	<5.3	<5.0	<5.3	<5.3	<5.3	<6.5	<5.3	<5.3	<5.3
Isopropyl alcohol	200000	70000	66.6	14	21	13	33.9	14	29	18	9	76	40	20	37.8	11	80	26	26.9	420	240	3.8	<3.7	/90	1/0	4.8
Mathyl hutyl katona		1000	4.5	-20	<20	3.0	67	4.5	<1.7	<20	-26		<1.7	<1.7	-1.0	-2.0	<1.7	3.2	0.5	21	<1.7	<1.7	(3.2		<1.7	<1.7
Methyl isobutyl ketone	80000	30000	<17	<2.0	<2.0	<2.1	7.7	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	2.5	<1.9	4 3	<2.0	<2.0	<2.5	~2.U 5	<2.0	<2.0
Methyl tert-butyl ether	80000	30000	<1.5	<1.8	<1.8	<1.8	12.6	<1.8	<1.8	<1.8	<2.3	<1.8	<1.8	<1.8	<1.7	<1.8	<1.8	<1.8	<1.7	<1.8	<1.8	<1.8	2.7	<1.8	<1.8	<1.8
Methylene chloride	600	200	<7.4	<1.7	3.3	4	76.2	<1.7	6.3	<1.7	<11.2	9.3	<1.7	2.6	22.8	<1.7	<1.7	2.1	<8.1	<1.7	2.6	2.6	18.1	<1.7	2.1	2.2
Naphthalene	300	90	<5.6	<2.6	<2.6	<2.6	36.3	<2.6	<2.6	<2.6	<8.4	<2.6	<2.6	<2.6	<6.1	<2.6	<2.6	<2.6	<6.1	3.1	<2.6	<2.6	<7.9	3.3	<2.6	<2.6
n-Heptane	NA	NA	<1.7	<2.0	<2.0	<2.0	32.3	<2.0	<2.0	<2.0	<2,6	2.1	<2.0	<2.0	1.9	<2.0	<2.0	<2.0	<1.9	4.3	<2.0	<2.0	<2.5	<2.0	<2.0	<2.0
n-Hexane	60000	20000	3.3	2.8	4.2	38	63.6	<1.8	2.2	8.3	6.8	32	<1.8	4.6	43.2	2.5	37	220	2.2	2.1	<1.8	<1.8	5.9	<1.8	<1.8	2.8
o-Xylene	3000	1000	2.7	4.1	<0.87	1.8	33.7	1.3	<0.87	<0.87	4.1	<0.87	<0.87	<0.87	3.2	2.1	<0.87	1.6	3.2	6.9	<0.87	<0.87	<2.6	3.1	<0.87	<0.87
Propylene	80000	30000	<1.8	<0.86	<0.86	<0.86	4.6	<0.86	<0.86	<0.86	<2.8	<0.86	< 0 .86	<0.86	<2.0	<0.86	<0.86	<0.86	<2.0	<0.86	<0.86	<0.86	<2.6	<0.86	<0.86	<0.86
Styrene	30000	10000	<4.5	<2.1	<2.1	14	<5.4	<2.1	<2.1	23	<6.8	7.3	<2.1	<2.1	<4.9	<2.1	<2.1	6.8	<4.9	<2.1	<2.1	<2.1	<6.4	<2.1	<2.1	<2.1
Tetrachloroethene	300'	20'	21.2	440	18	26	17.1	1300	17	20	85.3	11	31	150	35.7	970	21	36	14.9	250	9	47	480	120	100 00	39
Tetrahydrofuran	NA	NA	<1.3	<1.5	3.4	3.8	<1.5	<1.5	4 .4	3.5	<1.9	5.1	6.1	6.9	<1.4	<1.5	6.9	3.7	<1.4	6	3.9	<1.5	4.2	7.6	<1.5	2.1
Toluene	100000	50000	38.5	15	94	390 0	55.2	3.4	49	970	18.3	200	1.7	21	175	6.4	110	390 0	6.1	13	1.8	<0.75	2.7	8.3	1.2	1.2
trans-1,2-Dichloroethene	2000	600	<1.7	<2.0	<2.0	<2.0	10.4	<2.0	6.5	<2.0	<2.6	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	<1.9	<2.0	<2.0	<2.0	<2.4	<2.0	<2.0	<2.0
trans-1,3-Dichloropropene	600	200	<4.8	<2.3	<2.3	<2.3	<5.8	<2.3	<2.3	<2.3	<7.3	<2.3	<2,3	<2.3	<5.3	<2.3	<2,3	<2.3	<5.3	<2.3	<2.3	<2.3	<6.8	<2.3	< <u>2.3</u>	<2.3
Trichloroethene	08	30	<1.2	<1.1	27	<2./	<1.4	1.6	1	<2./	<1./	3.2	<1.1	<2./	<1.3	1.4	<1.1	<2.7	<1.3	1.9	<1.1	<2.7	<1.6	1.8	3.3	<2.7
Trichlorotrifluoroathana	20000	20000	< <u><.4</u>	<2.8	<2.8	<2.8	<2.9	2700	<2.8	<2.8	<3.0 27	<2.8	<2.8	<2.8	<2.0	<2.8	<2.8	<2.8		<2.8 0E	<2.8	<2.8 7E	<3.4	<2.8 1600	< <u>2.8</u>	<2.8 c
Vinvl acetate	00000	2000	<1.5	21.8	<1.0	<u>م.د</u> ۲ ۶	<pre><4.0</pre>	21.8	<1.2	<1 8	- 32 - 27 3	<1.0	~3.0 71 g	21.8	<1.6	42 <1 9	<1.2	0.9 <1.2	4.1	21 Q	< 3.0	/3 <1 8	- <u>200</u> - <u>-</u> - <u>-</u> - <u>-</u> - <u>-</u> 200	<1 S	<u>500</u>	۵ ۲۶
Vinyl declare	30	10	<0.55	<0.51	<0.51	<1.3	<0.66	<0.51	<0.51	<1.0	<0.87	<0.51	<0.51	<1.3	<0.60	<0 51	<0.51	<13	<0.60	<0.51	<0.51	<1 3	<0.77	<0.51	<0.51	<1 3
Lange anonac		1				.1.0		.0.01	.0.01			.0.01		1 110	.0,00						-0.51	1 113		-0.01		

Notes: BOLD: exceeds laboratory method detection.

exceeds applicable MPCA 10X Commercial/Industrial ISV.

¹ Interim 10X ISV's for PCE effective July 28, 2014.

Attachment A

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

September 02, 2014

Mr. Jason Skramstad Landmark Environmental 2042 W. 98th. St. Minneapolis, MN 55431

RE: Project: CRC Clty Of Rochester Pace Project No.: 10279027

Dear Mr. Skramstad:

Enclosed are the analytical results for sample(s) received by the laboratory on August 25, 2014. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Oard Daug

Carol Davy carol.davy@pacelabs.com Project Manager

Enclosures

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project:	CRC Clty Of Rochester
Pace Project No.:	10279027

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10279027001	MW-14	Water	08/21/14 17:21	08/25/14 10:13
10279027002	MW-15	Water	08/21/14 1 7 :40	08/25/14 10:13
10279027003	MW-16	Water	08/21/14 18:50	08/25/14 10:13
10279027004	MW-17	Water	08/21/14 17:45	08/25/14 10:13
10279027005	MW-18	Water	08/21/14 19:30	08/25/14 10:13
10279027006	MW-19	Water	08/21/14 17:49	08/25/14 10:13
10279027007	MW-20	Water	08/21/14 18:09	08/25/14 10:13
10279027008	DPE-1	Water	08/22/14 10:3 7	08/25/14 10:13
10279027009	DPE-2	Water	08/22/14 10:28	08/25/14 10:13
10279027010	DPE-3	Water	08/22/14 10:20	08/25/14 10:13
10279027011	DPE-4	Water	08/22/14 10:09	08/25/14 10:13
10279027012	DPE-5	Water	08/22/14 09:4 7	08/25/14 1 0:13
10279027013	DPE-6	Water	08/22/14 09:38	08/25/14 1 0:13
10279027014	DPE-7	Water	08/22/14 09:25	08/25/14 10:13
10279027015	DPE-8	Water	08/22/14 10:00	08/25/14 10:13

REPORT OF LABORATORY ANALYSIS

Project: CRC Clty Of Rochester

Pace Project No.:

10279027

Sample: MW-14	Lab ID: 10279027001	Collected: 08/21/14 1	7:21 Rece	ived: 08/25/14 10:13	Matrix: Water	
Parameters	Results Units	Report Limit D	F Pre	pared Analyzed	CAS No.	Qual
8260 VOC	Analytical Method: EPA	8260				
Acetone	ND ug/L	20.0 1		08/30/14 00:	32 67-64-1	
Allyl chloride	ND ug/L	4.0 1		08/30/14 00:	32 107-05-1	
Benzene	ND ug/L	1.0 1		08/30/14 00:	32 71-43-2	
Bromobenzene	ND ug/L	1.0 1		08/30/14 00;	32 108-86-1	
Bromochloromethane	ND ug/L	1.0 1		08/30/14 00:	32 74-97-5	
Bromodichloromethane	ND ug/L	1.0 1		08/30/14 00:	32 75-27-4	
Bromoform	ND ug/L	4.0 1		08/30/14 00:	32 75-25-2	
Bromomethane	ND ug/L	4.0 1		08/30/14 00:	32 74-83-9	CI
2-Butanone (MEK)	ND ug/L	5.0 1		08/30/14 00:	32 78-93-3	02
n-Butylbenzene	ND ug/L	1.0 1		08/30/14 00	32 104-51-8	
sec-Butylbenzene	ND ug/L	1.0 1		08/30/14 00:	32 135-98-8	
tert-Butylbenzene	ND ug/L	1.0 1		08/30/14 00	32 98-06-6	
Carbon tetrachloride	ND ug/L	1.0 1		08/30/14 00:	32 56-23-5	
Chlorobenzene	ND ug/L	1.0 1		08/30/14 00:	32 108-90-7	
Chloroethane	ND ug/L	4.0 1		08/30/14 00:	32 75-00-3	
Chloroform	1.5 ug/L	10 1		08/30/14 00:	32 67-66-3	
Chloromethane	ND ug/L	40 1		08/30/14 00:	32 74-87-3	
2-Chlorotoluene	ND ug/l	1.0		08/30/14 00:	32 95-49-8	
4-Chlorotoluene	ND ug/l	10 1		08/30/14 00:	32 106-43-4	
1.2-Dibromo-3-chloropropane	ND ug/l	4.0 1		08/30/14 00:	32 96-12-8	
Dibromochloromethane	ND ug/L	10 1		08/30/14 00:	32 124-48-1	
1.2-Dibromoethane (EDB)	ND ug/L	1.0		08/30/14 00:	32 124-40-1	
Dibromomethane	ND ug/L	4.0 1		08/30/14 00:	32 74-05-3	
1.2-Dichlorobenzene	ND ug/l	10 1		08/30/14 00:	32 95-50-1	
1.3-Dichlorobenzene	ND ug/I	1.0		08/30/14 00:	32 5/1.73.1	
1.4-Dichlorobenzene	ND ug/l	1.0		08/30/14 00:	32 106-46-7	
Dichlorodifluoromethane	ND ug/L	1.0		08/30/14 00:	32 75-71-8	
1.1-Dichloroethane	ND ug/L	1.0		08/30/14 00:	32 75-34-3	
1.2-Dichloroethane	ND ug/L	1.0		08/30/14 00:	32 107.06.2	
1.1-Dichloroethene	ND ug/l	1.0		08/30/14 00:	32 75 25 4	
cis-1.2-Dichloroethene		1.0		08/30/14 00:	32 156 50 2	
trans-1 2-Dichloroethene		1.0		08/30/14 00:	32 156 60 5	
Dichlorofluoromethane		1.0		08/30/14 00.	32 75 43 4	
1.2-Dichloropropane		4.0		08/30/14 00.	32 73-43-4	
1 3-Dichloropropane	ND ug/L	4.0 1 0		08/30/14 00:	32 10-01-0	
2 2-Dichloropropane	ND ug/L	1.0		08/30/14 00.	32 142-20-9	
1 1-Dichloropropene	ND ug/	4.0		08/30/14 00.	32 394-20-7	
cis-1.3-Dichloropropene	ND ug/L	1.0		08/30/14 00.	32 303-30-0	
trans-1 3-Dichloropropene	ND ug/L	4.0		00/30/14 00.	32 10001-01-0	
Diethyl ether (Ethyl ether)	ND ug/L	4.0		00/30/14 00:	32 10001-02-0	
Ethylbenzene		4.0		08/30/14 00:	32 60-29-7	
Heyachloro-1.3-butadiono		1.0	1	08/30/14 00:	32 100-41-4	
Isopropylhenzene (Cumono)		1.0		08/30/14 00:	32 87-68-3	
nopropyloenzene (Cumene)		1.0	l I	08/30/14 00:	32 98-82-8	
p-isopiopyiloluene Mothylopo Chlorido		1.0		08/30/14 00:	32 99-87-6	
Methyl 2 pontonone (MIRIC)		4.0	l	08/30/14 00:	32 75-09-2	
4-ivieti iyi-z-pentanone (MIBK)	ND Ug/L	5.0		08/30/14 00:	32 108-10-1	
weinyi-tert-butyi ether	ND ug/L	1.0	l	08/30/14 00:	.32 1634-04-4	

REPORT OF LABORATORY ANALYSIS

Date: 09/02/2014 05:48 PM

Qual

ANALYTICAL RESULTS

Project: CRC CIty Of Rochester

Pace Project No.:

-

10279027 Sample: MW-15 Lab ID: 10279027002 Collected: 08/21/14 17:40 Received: 08/25/14 10:13 Matrix: Water Parameters Results Units Report Limit DF Prepared Analyzed CAS No. 8260 VOC Analytical Method: EPA 8260 ND ug/L Acetone 20.0 1 08/30/14 00:46 67-64-1 Allyl chloride ND ug/L 4.0 08/30/14 00:46 107-05-1 1 Benzene ND ug/L 1.0 1 08/30/14 00:46 71-43-2 Bromobenzene ND ug/L 1.0 08/30/14 00:46 108-86-1 1 Bromochloromethane ND ug/L 1.0 1 08/30/14 00:46 74-97-5 modioble MD

Bromodicnioromethane	ND ug/L	1.0	1	08/30/14 00:46	75-27-4
Bromoform	ND ug/L	4.0	1	08/30/14 00:46	75-25-2
Bromomethane	ND ug/L	4.0	1	08/30/14 00:46	74-83-9 CL
2-Butanone (MEK)	ND ug/L	5.0	1	08/30/14 00:46	78-93-3
n-Butylbenzene	ND ug/L	1.0	1	08/30/14 00:46	104-51-8
sec-Butylbenzene	ND ug/L	1.0	1	08/30/14 00:46	135-98-8
tert-Butylbenzene	ND ug/L	1.0	1	08/30/14 00:46	98-06-6
Carbon tetrachloride	ND ug/L	1.0	1	08/30/14 00:46	56-23-5
Chlorobenzene	ND ug/L	1.0	1	08/30/14 00:46	108-90-7
Chloroethane	ND ug/L	4.0	1	08/30/14 00:46	75-00-3
Chloroform	ND ug/L	1.0	1	08/30/14 00:46	67 - 66-3
Chloromethane	ND ug/L	4.0	1	08/30/14 00:46	74-87-3
2-Chlorotoluene	ND ug/L	1.0	1	08/30/14 00:46	95-49-8
4-Chlorotoluene	ND ug/L	1.0	1	08/30/14 00:46	106-43-4
1,2-Dibromo-3-chloropropane	ND ug/L	4.0	1	08/30/14 00:46	96-12-8
Dibromochloromethane	ND ug/L	1.0	1	08/30/14 00:46	124-48-1
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1	08/30/14 00:46	106-93-4
Dibromomethane	ND ug/L	4.0	1	08/30/14 00:46	7 4-95-3
1,2-Dichlorobenzene	ND ug/L	1.0	1	08/30/14 00:46	95-50-1
1,3-Dichlorobenzene	ND ug/L	1.0	1	08/30/14 00:46	541 - 73-1
1,4-Dichlorobenzene	ND ug/L	1.0	1	08/30/14 00:46	106-46-7
Dichlorodifluoromethane	ND ug/L	1.0	1	08/30/14 00:46	75-71-8
1,1-Dichloroethane	ND ug/L	1.0	1	08/30/14 00:46	75-34-3
1,2-Dichloroethane	ND ug/L	1.0	1	08/30/14 00:46	107-06-2
1,1-Dichloroethene	ND ug/L	1.0	1	08/30/14 00:46	75-35-4
cis-1,2-Dichloroethene	ND ug/L	1.0	1	08/30/14 00:46	156-59-2
trans-1,2-Dichloroethene	ND ug/L	1.0	1	08/30/14 00:46	156-60-5
Dichlorofluoromethane	ND ug/L	1.0	1	08/30/14 00:46	75-43-4
1,2-Dichloropropane	ND ug/L	4.0	1	08/30/14 00:46	78-87-5
1,3-Dichloropropane	ND ug/L	1.0	1	08/30/14 00:46	142-28-9
2,2-Dichloropropane	ND ug/L	4.0	1	08/30/14 00:46	594 - 20-7
1,1-Dichloropropene	ND ug/L	1.0	1	08/30/14 00:46	563-58-6
cis-1,3-Dichloropropene	ND ug/L	4.0	1	08/30/14 00:46	10061-01-5
trans-1,3-Dichloropropene	ND ug/L	4.0	1	08/30/14 00:46	10061-02-6
Diethyl ether (Ethyl ether)	ND ug/L	4.0	1	08/30/14 00:46	60-29-7
Ethylbenzene	ND ug/L	1.0	1	08/30/14 00:46	100-41-4
Hexachloro-1,3-butadiene	ND ug/L	1.0	1	08/30/14 00:46	87-68-3
Isopropylbenzene (Cumene)	ND ug/L	1.0	1	08/30/14 00:46	98-82-8
p-lsopropyltoluene	ND ug/L	1.0	1	08/30/14 00:46	99-87-6
Methylene Chloride	ND ug/L	4.0	1	08/30/14 00:46	75-09-2
4-Methyl-2-pentanone (MIBK)	ND ug/L	5.0	1	08/30/14 00:46	108-10-1
Methyl-tert-butyl ether	ND ug/L	1.0	1	08/30/14 00:46	1634-04-4
	č		-		

REPORT OF LABORATORY ANALYSIS

Project: CRC City Of Rochester

Pace Project No.: 10279027

mle: MW-16

Sample: MW-16	Lab ID: 1027	9027003	Collected: 08/21/1	4 18:50	Received: 0	B/25/14 10:13 M	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 VOC	Analytical Metho	od: EPA 82	60					
Acetone	ND ug/L	_	100	5		08/30/14 03:40	67-64-1	
Allyl chloride	ND ug/L	_	20.0	5		08/30/14 03:40	107-05-1	
Benzene	ND ug/L	_	5.0	5		08/30/14 03:40	71-43-2	
Bromobenzene	ND ug/L	_	5.0	5		08/30/14 03:40	108-86-1	
Bromochloromethane	ND ug/l	<u> </u>	5.0	5		08/30/14 03:40	74-97-5	
Bromodichloromethane	ND ug/L	_	5.0	5		08/30/14 03:40	75-27-4	
Bromoform	ND ug/L	_	20.0	5		08/30/14 03:40	75-25-2	
Bromomethane	ND ug/L	_	20.0	5		08/30/14 03:40	74-83-9	CL
2-Butanone (MEK)	ND ug/L	_	25.0	5		08/30/14 03:40	78-93-3	
n-Butylbenzene	ND ug/L	_	5.0	5		08/30/14 03:40	104 - 51-8	
sec-Butylbenzene	ND ug/l	_	5.0	5		08/30/14 03:40	135-98-8	
tert-Butylbenzene	ND ug/L	_	5.0	5		08/30/14 03:40	98-06-6	
Carbon tetrachloride	ND ug/L	_	5.0	5		08/30/14 03:40	56-23-5	
Chlorobenzene	ND ug/L	_	5.0	5		08/30/14 03:40	108-90-7	
Chloroethane	ND ug/L	_	20.0	5		08/30/14 03:40	75-00-3	
Chloroform	ND ug/L	_	5.0	5		08/30/14 03:40	67-66-3	
Chloromethane	ND ug/L	_	20.0	5		08/30/14 03:40	74-87 - 3	
2-Chiorotoluene	ND ug/l	_	5.0	5		08/30/14 03:40	95-49-8	
4-Chlorotoluene	ND ug/L	_	5.0	5		08/30/14 03:40	106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	_	20.0	5		08/30/14 03:40	96-12 - 8	
Dibromochloromethane	ND ug/l	-	5.0	5		08/30/14 03:40	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	_	5.0	5		08/30/14 03:40	106-93-4	
Dibromomethane	ND ug/L	-	20.0	5		08/30/14 03:40	74-95-3	
1,2-Dichlorobenzene	ND ug/L	-	5.0	5		08/30/14 03:40	95-50-1	
1,3-Dichlorobenzene	ND ug/L	-	5.0	5		08/30/14 03:40	541-73-1	
1,4-Dichlorobenzene	ND ug/l	-	5.0	5		08/30/14 03:40	106-46-7	
Dichlorodifluoromethane	ND ug/L	-	5.0	5		08/30/14 03:40	75-71-8	
1,1-Dichloroethane	ND ug/L	-	5.0	5		08/30/14 03:40	75-34-3	
1,2-Dichloroethane	ND ug/I	_	5.0	5		08/30/14 03:40	107-06-2	
1,1-Dichloroethene	ND ug/l	_	5.0	5		08/30/14 03:40	75-35-4	
cis-1,2-Dichloroethene	11.2 ug/l	-	5.0	5		08/30/14 03:40	156-59-2	
trans-1,2-Dichloroethene	ND ug/I	-	5.0	5		08/30/14 03:40	156-60-5	
Dichlorofluoromethane	ND ug/l	_	5.0	5		08/30/14 03:40	75-43-4	
1,2-Dichloropropane	ND ug/l	-	20.0	5		08/30/14 03:40	78-87-5	
1,3-Dichloropropane	ND ug/l	-	5.0	5		08/30/14 03:40	142-28-9	
2,2-Dichloropropane	ND ug/I	-	20.0	5		08/30/14 03:40	594-20-7	
1,1-Dichloropropene	ND ug/I	-	5.0	5		08/30/14 03:40	563-58-6	
cis-1,3-Dichloropropene	ND ug/I	-	20.0	5		08/30/14 03:40	10061-01-5	
trans-1,3-Dichloropropene	ND ug/I	-	20.0	5		08/30/14 03:40	10061-02-6	
Diethyl ether (Ethyl ether)	ND ug/l	_	20.0	5		08/30/14 03:40	60-29-7	
Ethylbenzene	ND ug/I	-	5.0	5		08/30/14 03:40	100-4 1- 4	
Hexachloro-1,3-butadiene	ND ug/I	-	5.0	5		08/30/14 03:40	87-68-3	
Isopropylbenzene (Cumene)	ND ug/i	-	5.0	5		08/30/14 03:40	98-82-8	
p-IsopropyItoluene	ND ug/I	-	5.0	5		08/30/14 03:40	99-87-6	
Methylene Chloride	ND ug/i	-	20.0	5		08/30/14 03:40	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/I	L	25.0	5		08/30/14 03:40	108-10-1	
Methyl-tert-butyl ether	ND ug/l	-	5.0	5		08/30/14 03:40	1634-04-4	

REPORT OF LABORATORY ANALYSIS

Date: 09/02/2014 05:48 PM

Project: CRC Clty Of Roche

Sample: MW-17	Lab ID: 1027902700	4 Collected: 08/21/1	4 17:45	Received: 08/25/14 10:13	Matrix: Water	
Parameters	Results Units	s Report Limit	DF	Prepared Analyzed	CAS No.	Qua
8260 VOC	Analytical Method: EPA	8260				
Acetone	ND ug/L	20.0	1	08/30/14 01:1	5 67-64-1	
Allyl chloride	ND ug/L	4.0	1	08/30/14 01:1	5 107-05-1	
Benzene	ND ug/L	1.0	1	08/30/14 01:1	5 71-43-2	
Bromobenzene	ND ug/L	1.0	1	08/30/14 01:1	5 108-86-1	
Bromochloromethane	ND ug/L	1.0	1	08/30/14 01:1	5 74-97-5	
Bromodichloromethane	ND ug/L	1.0	1	08/30/14 01:1	5 75-27-4	
Bromoform	ND ug/L	4.0	1	08/30/14 01:1	5 75-25-2	
Bromomethane	ND ug/L	4.0	1	08/30/14 01:1	5 74-83-9	CL
2-Butanone (MEK)	ND ug/L	5.0	1	08/30/14 01:1	5 78-93-3	
n-Butylbenzene	ND ug/L	1.0	1	08/30/14 01:1	5 104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1	08/30/14 01:1	5 135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1	08/30/14 01:1	5 98-06-6	
Carbon tetrachloride	ND ug/L	1.0	1	08/30/14 01:1	5 56-23-5	
Chlorobenzene	ND ug/L	1.0	1	08/30/14 01:1	5 108-90-7	
Chloroethane	ND ug/L	4.0	1	08/30/14 01:1	5 75-00-3	
Chloroform	1.3 ug/L	1.0	1	08/30/14 01:1	5 67-66-3	
Chloromethane	ND ug/L	4.0	1	08/30/14 01:1	5 74-87-3	
2-Chlorotoluene	ND ug/L	1.0	1	08/30/14 01:1	5 95-49-8	
4-Chlorotoluene	ND ug/L	1.0	1	08/30/14 01:1	5 106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	4.0	1	08/30/14 01:1	5 96-12-8	
Dibromochloromethane	ND ug/L	1.0	1	08/30/14 01:1	5 124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1	08/30/14 01:1	5 106-93-4	
Dibromomethane	ND ug/L	4.0	1	08/30/14 01:1	5 74-95-3	
1,2-Dichlorobenzene	ND ug/L	1.0	1	08/30/14 01:1	5 95-50-1	
1,3-Dichlorobenzene	ND ug/L	1.0	1	08/30/14 01:1	5 541-73-1	
1,4-Dichlorobenzene	ND ug/L	1.0	1	08/30/14 01:1	5 106-46-7	
Dichlorodifluoromethane	ND ug/L	10	1	08/30/14 01:1	5 75-71-8	
1.1-Dichloroethane	ND ug/L	1.0	1	08/30/14 01:1	5 75-34-3	
1,2-Dichloroethane	ND ug/L	10	1	08/30/14 01:1	5 107-06-2	
1.1-Dichloroethene	ND ug/l	10	1	08/30/14 01:1	5 75-35-4	
cis-1,2-Dichloroethene	3.7 ua/l	1.0	1	08/30/14 01:1	5 156-50-2	
trans-1.2-Dichloroethene	ND ug/l	1.0	1	08/30/14 01:1	5 156-60-5	
Dichlorofluoromethane		1.0	1	08/30/14 01:1	5 75_/2_/	
1.2-Dichloropropane	ND ug/L	1.0 4 O	1	08/30/14 01.1	5 78_87.5	
1.3-Dichloropropane	ND ug/L	4.0	1	00/30/14 01.1	5 1/2 20 0	
2.2-Dichloropropane		1.0	1	08/30/14 01.1	5 504 20 7	
1.1-Dichloropropene		+.0	1		5 562 50 6	

REPORT OF LABORATORY ANALYSIS

4.0 1

4.0 1

1.0 1

1.0 1

1

1

1

1

1

4.0 1

1.0

1.0

4.0

5.0

1.0

ND ug/L

Date: 09/02/2014 05:48 PM

cis-1,3-Dichloropropene

trans-1,3-Dichloropropene

Diethyl ether (Ethyl ether)

Hexachloro-1,3-butadiene

Isopropylbenzene (Cumene)

4-Methyl-2-pentanone (MIBK)

Ethylbenzene

p-Isopropyltoluene

Methylene Chloride

Methyl-tert-butyl ether

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

08/30/14 01:15 10061-01-5

08/30/14 01:15 10061-02-6

08/30/14 01:15 60-29-7

08/30/14 01:15 100-41-4

08/30/14 01:15 87-68-3

08/30/14 01:15 98-82-8

08/30/14 01:15 99-87-6

08/30/14 01:15 75-09-2

08/30/14 01:15 108-10-1

08/30/14 01:15 1634-04-4

Project: CRC Clty Of F Pace Project No.: 10279027	Rochester					
Sample: MW-18	Lab ID: 102790270	05 Collected: 08/21/14	19:30	Received: 08/25/14 10:	13 Matrix: Water	
Parameters	Results Uni	its Report Limit	DF	Prepared Analy	zed CAS No.	Qual
8260 VOC	Analytical Method: EP	A 8260				
Acetone	ND ug/L	20.0	1	08/30/14	17:27 67-64-1	L3
Allyl chloride	ND ug/L	4.0	1	08/30/14	17:27 107-05-1	
Benzene	ND ug/L	1.0	1	08/30/14	17:27 71-43-2	
Bromobenzene	ND ug/L	1.0	1	08/30/14	17:27 108-86-1	
Bromochloromethane	ND ug/L	1.0	1	08/30/14	17:27 74-97-5	
Bromodichloromethane	ND ug/L	1.0	1	08/30/14	17:27 75-27-4	
Bromoform	ND ug/L	4.0	1	08/30/14	17:27 75-25-2	
Bromomethane	ND ug/L	4.0	1	08/30/14	17:27 74-83-9	
2-Butanone (MEK)	ND ug/L	5.0	1	08/30/14	17:27 78-93-3	
n-Butylbenzene	ND ug/L	1.0	1	08/30/14	17:27 104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1	08/30/14	17:27 135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1	08/30/14	17:27 98-06-6	
Carbon tetrachloride	ND ug/L	1.0	1	08/30/14	17:27 56-23-5	
Chlorobenzene	ND ug/L	1.0	1	08/30/14	17:27 108-90-7	
Chloroethane	ND ug/L	4.0	1	08/30/14	17:27 75-00-3	
Chloroform	ND ug/L	1.0	1	08/30/14	17:27 67-66-3	
Chloromethane	ND ug/L	4.0	1	08/30/14	17:27 74-87-3	
2-Chlorotoluene	ND ug/L	1.0	1	08/30/14	17:27 95-49-8	
4-Chlorotoluene	ND ug/L	1.0	1	08/30/14	17:27 106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	4.0	1	08/30/14	17:27 96-12-8	
Dibromochloromethane	ND ug/L	1.0	1	08/30/14	17:27 124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1	08/30/14	17:27 106-93-4	
Dibromomethane	ND ug/L	4.0	1	08/30/14	17:27 74-95-3	
1,2-Dichlorobenzene	ND ug/L	1.0	1	08/30/14	17:27 95-50-1	
1,3-Dichlorobenzene	ND ug/L	1.0	1	08/30/14	17:27 541-73-1	
1,4-Dichlorobenzene	ND ug/L	1.0	1	08/30/14	17:27 106-46-7	
Dichlorodifluoromethane	ND ug/L	1.0	1	08/30/14	17:27 75-71-8	
1,1-Dichloroethane	ND ug/L	1.0	1	08/30/14	17:27 75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	1	08/30/14	17:27 107-06-2	
1,1-Dichloroethene	ND ug/L	1.0	1	08/30/14	17:27 75-35-4	
cis-1,2-Dichloroethene	ND ug/L	1.0	1	08/30/14	17:27 156-59-2	
trans-1,2-Dichloroethene	ND ug/L	1.0	1	08/30/14	17:27 156-60-5	
Dichlorofluoromethane	ND ug/L	1.0	1	08/30/14	17:27 75-43-4	
1,2-Dichloropropane	ND ug/L	4,0	1	08/30/14	17:27 78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1	08/30/14	17:27 142-28-9	
2,2-Dichloropropane	ND ug/L	4.0	1	08/30/14	17:27 594-20-7	
1,1-Dichloropropene	ND ua/L	1.0	1	08/30/14	17:27 563-58-6	
cis-1,3-Dichloropropene	ND ua/L	4.0	1	08/30/14	17:27 10061-01-4	5
trans-1,3-Dichloropropene	ND ua/L	4.0	1	08/30/14	17:27 10061-02-6	2 3
Diethyl ether (Ethyl ether)	ND ug/L	4.0	1	08/30/14	17:27 60-29-7	

REPORT OF LABORATORY ANALYSIS

1.0 1

1.0 1

1.0 1

1.0 1

4.0

5.0

1.0

1

1

1

ND ug/L

Hexachioro-1,3-butadiene

Isopropylbenzene (Cumene)

4-Methyl-2-pentanone (MIBK)

Ethylbenzene

p-Isopropyltoluene

Methylene Chloride

Methyl-tert-butyl ether

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc.. 08/30/14 17:27 100-41-4

08/30/14 17:27 87-68-3

08/30/14 17:27 98-82-8

08/30/14 17:27 99-87-6

08/30/14 17:27 75-09-2

08/30/14 17:27 108-10-1

08/30/14 17:27 1634-04-4

Project: CRC Clty Of Rochester

Pace Project No .:

ct No.: 10279027

Sample: MW-19	Lab ID: 10279027006	Collected: 08/21/14	4 17:49	Received:	08/25/14 10:13	Matrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 VOC	Analytical Method: EPA	8260					
Acetone	ND ug/L	20.0	1		08/30/14 01:4	4 67-64-1	
Allyl chloride	ND ug/L	4.0	1		08/30/14 01:4	4 107-05-1	
Benzene	ND ug/L	1.0	1		08/30/14 01:4	4 71-43-2	
Bromobenzene	ND ug/L	1.0	1		08/30/14 01:4	4 108-86-1	
Bromochloromethane	ND ug/L	1.0	1		08/30/14 01:4	4 74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		08/30/14 01:4	4 75-27-4	
Bromoform	ND ug/L	4.0	1		08/30/14 01:4	4 75-25-2	
Bromomethane	ND ug/L	4.0	1		08/30/14 01:4	4 74-83-9	CL
2-Butanone (MEK)	ND ug/L	5.0	1		08/30/14 01:4	4 78-93-3	01
n-Butylbenzene	ND ug/L	1.0	1		08/30/14 01:4	4 104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1		08/30/14 01:4	4 135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1		08/30/14 01:4	4 98-06-6	
Carbon tetrachloride	ND ug/L	1.0	1		08/30/14 01:4	4 56-23-5	
Chlorobenzene	ND ug/L	1.0	1		08/30/14 01:4	4 108-90-7	
Chloroethane	ND ug/L	4.0	1		08/30/14 01:4	4 75-00-3	
Chloroform	ND ug/L	1.0	1		08/30/14 01:4	4 67-66-3	
Chloromethane	ND ug/L	4.0	1		08/30/14 01:4	4 74-87-3	
2-Chlorotoluene	ND ug/L	1.0	1		08/30/14 01:4	4 95-49-8	
4-Chlorotoluene	ND ug/L	1.0	1		08/30/14 01:4	4 106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	4.0	1		08/30/14 01:4	4 96-12-8	
Dibromochloromethane	ND ug/l	1.0	1		08/30/14 01:4	4 124-48-1	
1.2-Dibromoethane (EDB)	ND ug/L	10	1		08/30/14 01:4	4 106-93-4	
Dibromomethane	ND ug/l	4.0	1		08/30/14 01:4	4 7/-05-3	
1.2-Dichlorobenzene	ND ug/l	1.0	1		08/30/14 01:4	4 95-50-1	
1.3-Dichlorobenzene	ND ug/L	1.0	1		08/30/14 01:4	4 541-73-1	
1,4-Dichlorobenzene	ND ug/L	1.0	1		08/30/14 01:4	4 106-46-7	
Dichlorodifluoromethane	ND ug/L	1.0	1		08/30/14 01:4	4 75-71-8	
1.1-Dichloroethane	ND ug/L	10	1		08/30/14 01:4	4 75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	1		08/30/14 01:4	4 107-06-2	
1.1-Dichloroethene	ND ug/l	1.0	1		08/30/14 01:4	4 75-35-4	
cis-1.2-Dichloroethene	ND ug/L	1.0	1		08/30/14 01:4	4 156-50-2	
trans-1.2-Dichloroethene	ND ug/l	1.0	1		08/30/14 01:4	4 156-60-5	
Dichlorofluoromethane	ND ug/l	1.0	1		08/30/14 01:4	4 75-43-4	
1.2-Dichloropropane	ND ug/L	4.0	1		08/30/14 01:4	4 78-87-5	
1.3-Dichloropropane		1.0	1		08/30/14 01:4	1 1/2 29 0	
2.2-Dichloropropane		4.0	1		08/30/14 01:4	4 594.20 7	
1.1-Dichloropropene		-4.0	1		08/30/14 01:4	4 562 59 6	
cis-1.3-Dichloropropene		4.0	1		08/30/14 01:4	4 10061 01 5	
trans-1.3-Dichloropropene		4.0	1		09/30/14 01:4	4 10061-01-5	
Diethyl ether (Ethyl ether)		4.0	1		09/30/14 01.4	4 60 20 7	
Ethylbenzene		4.0	1		08/30/14 01:4	4 400-29-7	
Hexachloro-1.3-hutadiene		1.0	1		08/30/14 01:4	4 07 60 2	
Isopropylhenzene (Cumene)		1.0	1		00/30/14 01:4	+ 01-00-0	
n-Isopropyltoluene		1.0	1		00/30/14 01:4	+ 90-02-0 4 00 97 0	
Methylene Chloride		1.0	1		00/30/14 01:4	+ 99-87-6	
4-Methyl-2-pentanone (MIRK)		4.0	1		08/30/14 01:4	4 100 10 1	
Methyl-tert-hutyl ether		5.0	1		08/30/14 01:4	+ 108-10-1	
Mennyelertebutyi ettiet	ND Ug/L	1.0	1		08/30/14 01:4	4 1634-04-4	

REPORT OF LABORATORY ANALYSIS

Date: 09/02/2014 05:48 PM

Project: CRC Clty Of Rochester

Pace Project No.: 10279027

Sample: MW-20	Lab ID: 10279	027007	Collected: 08/21/1	4 18:09	Received: 08	B/25/14 10:13 N	latrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 VOC	Analytical Metho	d: EPA 82	260					
Acetone	ND ug/L		20.0	1		08/30/14 01:59	67-64 -1	
Allyl chloride	ND ug/L		4.0	1		08/30/14 01:59	107-05-1	
Benzene	ND ug/L		1.0	1		08/30/14 01:59	71-43-2	
Bromobenzene	ND ug/L		1.0	1		08/30/14 01:59	108-86-1	
Bromochloromethane	ND ug/L		1.0	1		08/30/14 01:59	74-97-5	
Bromodichloromethane	ND ug/L		1.0	1		08/30/14 01:59	75-27-4	
Bromoform	ND ug/L		4.0	1		08/30/14 01:59	75-25-2	
Bromomethane	ND ug/L		4.0	1		08/30/14 01:59	74-83-9	CL
2-Butanone (MEK)	ND ug/L		5.0	1		08/30/14 01:59	78-93-3	
n-Butylbenzene	ND ug/L		1.0	1		08/30/14 01:59	104-51-8	
sec-Butylbenzene	ND ug/L		1.0	1		08/30/14 01:59	135-98-8	
tert-Butylbenzene	ND ug/L		1.0	1		08/30/14 01:59	98-06-6	
Carbon tetrachloride	ND ug/L		1.0	1		08/30/14 01:59	56-23-5	
Chlorobenzene	ND ug/L		1.0	1		08/30/14 01:59	108-90-7	
Chloroethane	ND ug/L		4.0	1		08/30/14 01:59	75-00-3	
Chloroform	ND ug/L		1.0	1		08/30/14 01:59	67-66-3	
Chloromethane	ND ug/L		4.0	1		08/30/14 01:59	74-87-3	
2-Chlorotoluene	ND ug/L		1.0	1		08/30/14 01:59	95-49-8	
4-Chlorotoluene	ND ug/L		1.0	1		08/30/14 01:59	106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L		4.0	1		08/30/14 01:59	96-12-8	
Dibromochloromethane	ND ug/L		1.0	1		08/30/14 01:59	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L		1.0	1		08/30/14 01:59	106-93-4	
Dibromomethane	ND ug/L		4.0	1		08/30/14 01:59	74-95-3	
1,2-Dichlorobenzene	ND ug/L		1.0	1		08/30/14 01:59	95-50-1	
1,3-Dichlorobenzene	ND ug/L		1.0	1		08/30/14 01:59	541-73-1	
1,4-Dichlorobenzene	ND ug/L		1.0	1		08/30/14 01:59	106-46-7	
Dichlorodifluoromethane	ND ug/L		1.0	1		08/30/14 01:59	75-71-8	
1,1-Dichloroethane	ND ug/L		1.0	1		08/30/14 01:59	75-34-3	
1,2-Dichloroethane	ND ug/L		1.0	1		08/30/14 01:59	107-06-2	
1,1-Dichloroethene	ND ug/L		1.0	1		08/30/14 01:59	75-35-4	
cis-1,2-Dichloroethene	ND ug/L		1.0	1		08/30/14 01:59	156-59-2	
trans-1,2-Dichloroethene	ND ug/L		1.0	1		08/30/14 01:59	156-60-5	
Dichlorofluoromethane	ND ug/L		1.0	1		08/30/14 01:59	75-43-4	
1,2-Dichloropropane	ND ug/L		4.0	1		08/30/14 01:59	78-87-5	
1,3-Dichloropropane	ND ug/L		1.0	1		08/30/14 01:59	142-28-9	
2,2-Dichloropropane	ND ug/L		4.0	1		08/30/14 01:59	594-20-7	
1,1-Dichloropropene	ND ug/L		1.0	1		08/30/14 01:59	563-58-6	
cis-1,3-Dichloropropene	ND ug/L		4.0	1		08/30/14 01:59	10061-01-5	
trans-1,3-Dichloropropene	ND ug/L		4.0	1		08/30/14 01:59	10061-02-6	
Diethyl ether (Ethyl ether)	ND ug/L		4.0	1		08/30/14 01:59	60-29-7	
Ethylbenzene	ND ug/L		1.0	1		08/30/14 01:59	100-41-4	
Hexachloro-1,3-butadiene	ND ug/L		1.0	1		08/30/14 01:59	87-68-3	
Isopropylbenzene (Cumene)	ND ug/L		1.0	1		08/30/14 01:59	98-82-8	
p-lsopropyltoluene	ND ua/L		1.0	1		08/30/14 01:59	99-87-6	
Methylene Chloride	ND ua/l		4.0	1		08/30/14 01:59	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ua/l		5.0	1		08/30/14 01:59	108-10-1	
Methyl-tert-butyl ether	ND ua/l		1.0	1		08/30/14 01:59	1634-04-4	
			1.0	•		50,00,1401.00	10010111	

REPORT OF LABORATORY ANALYSIS

Date: 09/02/2014 05:48 PM

Project: CRC Clty Of Rochester

Pace Project No.:

10279027

Sample: DPE-1	Lab ID: 10279027008	B Collected: 08/22/1	4 10:37	Received: 0	08/25/14 10:13 N	/latrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 VOC	Analytical Method: EPA	8260					
Acetone	ND ua/L	200	10		08/30/14 03:54	67-64-1	
Allyl chloride	ND ug/L	40.0	10		08/30/14 03:54	107-05-1	
Benzene	ND ug/L	10.0	10		08/30/14 03:54	71-43-2	
Bromobenzene	ND ua/L	10.0	10		08/30/14 03:54	108-86-1	
Bromochloromethane	ND ug/L	10.0	10		08/30/14 03:54	74-97-5	
Bromodichloromethane	ND ug/L	10.0	10		08/30/14 03:54	75-27-4	
Bromoform	ND ug/L	40.0	10		08/30/14 03:54	75-25-2	
Bromomethane	ND ug/L	40.0	10		08/30/14 03:54	74-83-9 \	CI
2-Butanone (MEK)	ND ug/L	50.0	10		08/30/14 03:54	78-93-3	0L
n-Butylbenzene	ND ug/L	10.0	10		08/30/14 03:54	104-51-8	
sec-Butylbenzene	ND ug/L	10.0	10		08/30/14 03:54	135-98-8	
tert-Butvlbenzene	ND ug/l	10.0	10		08/30/14 03:54	98-06-6	
Carbon tetrachloride	ND ug/L	10.0	10		08/30/14 03:54	56-23-5	
Chlorobenzene	ND ug/l	10.0	10		08/30/14 03:54	108-90-7	
Chloroethane	ND ug/l	40.0	10		08/30/14 03:54	75-00-3	
Chloroform	ND ug/L	10.0	10		08/30/14 03:54	67-66-3	
Chloromethane	ND ug/L	40.0	10		08/30/14 03:54	74-87-3	
2-Chlorotoluene	ND ug/L	10.0	10		08/30/14 03:54	95-49-8	
4-Chlorotoluene	ND ug/l	10.0	10		08/30/14 03:54	106-43-4	
1.2-Dibromo-3-chloropropane	ND ug/L	40.0	10		08/30/14 03:54	96-12-8	
Dibromochloromethane	ND ug/L	10.0	10		08/30/14 03:54	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	10.0	10		08/30/14 03:54	106-93-4	
Dibromomethane	ND ug/L	40.0	10		08/30/14 03:54	74-95-3	
1.2-Dichlorobenzene	ND ug/l	10.0	10		08/30/14 03:54	95-50-1	
1.3-Dichlorobenzene	ND ug/L	10.0	10		08/30/14 03:54	541-73-1	
1,4-Dichlorobenzene	ND ug/L	10.0	10		08/30/14 03:54	106-46-7	
Dichlorodifluoromethane	ND ug/l	10.0	10		08/30/14 03:54	75-71-8	
1.1-Dichloroethane	ND ug/L	10.0	10		08/30/14 03:54	75-34-3	
1.2-Dichloroethane	ND ug/L	10.0	10		08/30/14 03:54	107-06-2	
1.1-Dichloroethene	ND ug/L	10.0	10		08/30/14 03:54	75-35-4	
cis-1.2-Dichloroethene	ND ug/L	10.0	10		08/30/14 03:54	156-59-2	
trans-1,2-Dichloroethene	ND ug/L	10.0	10		08/30/14 03:54	156-60-5	
Dichlorofluoromethane	ND ug/L	10.0	10		08/30/14 03:54	75-43-4	
1,2-Dichloropropane	ND ug/L	40.0	10		08/30/14 03:54	78-87-5	
1,3-Dichloropropane	ND ug/L	10.0	10		08/30/14 03:54	142-28-9	
2.2-Dichloropropane	ND ug/L	40.0	10		08/30/14 03:54	594-20-7	
1,1-Dichloropropene	ND ug/L	10.0	10		08/30/14 03:54	563-58-6	
cis-1.3-Dichloropropene	ND ug/l	40.0	10		08/30/14 03:54	10061-01-5	
trans-1.3-Dichloropropene	ND ug/L	40.0	10		08/30/14 03:54	10061-02-6	
Diethyl ether (Ethyl ether)	ND ug/L	40.0	10		08/30/14 03:54	60-29-7	
Ethylbenzene	ND ug/l	10.0	10		08/30/14 03:54	100-41-4	
Hexachloro-1.3-butadiene	ND ug/l	10.0	10		08/30/14 03:54	87-68-3	
isopropylbenzene (Cumene)	ND ug/L	10.0	10		08/30/14 03:54	98-82-8	
p-lsopropyltoluene	ND ua/L	10.0	10		08/30/14 03:54	99-87-6	
Methylene Chloride	ND ug/L	40.0	10		08/30/14 03:54	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ua/L	50.0	10		08/30/14 03:54	108-10-1	
Methyl-tert-butyl ether	ND ug/L	10.0	10		08/30/14 03:54	1634-04-4	

REPORT OF LABORATORY ANALYSIS

Date: 09/02/2014 05:48 PM

Sample: DPE-2	Lab ID: 10279027009	Collected: 08/22/14 10:28	Received: 08/25/14 10:13 Matrix: Water	
Parameters	Results Units	Report Limit DF	Prepared Analyzed CAS No.	Qual
8260 VOC	Analytical Method: EPA	3260		
Acetone	ND ug/L	2000 100	09/02/14 12:43 67-64-1	
Allyl chloride	ND ug/L	400 100	09/02/14 12:43 107-05-1	
Benzene	ND ug/L	100 100	09/02/14 12:43 71-43-2	
Bromobenzene	ND ug/L	100 100	09/02/14 12:43 108-86-1	
Bromochloromethane	ND ug/L	100 100	09/02/14 12:43 74-97-5	
Bromodichloromethane	ND ug/L	100 100	09/02/14 12:43 75-27-4	
Bromoform	ND ug/L	400 100	09/02/14 12:43 75-25-2	
Bromomethane	ND ug/L	400 100	09/02/14 12:43 74-83-9	
2-Butanone (MEK)	ND ug/l	500 100	09/02/14 12:43 78-93-3	
n-Butvlbenzene	ND ug/l	100 100	09/02/14 12:43 10/-51-8	
sec-Butylbenzene		100 100	09/02/14 12:43 135-98-8	
tert-Butylbenzene	ND ug/L	100 100	09/02/14 12:43 08-06 6	
Carbon tetrachloride	ND ug/L	100 100	09/02/14 12:43 56 22 5	
Chlorobenzene		100 100	09/02/14 12:43 30-23-3	
Chloroethane	ND ug/L	400 100	09/02/14 12:43 100-30-7	
Chloroform		100 100	09/02/14 12:43 67-66-3	
Chloromethane	ND ug/L	400 100	09/02/14 12:43 07-00-3	
2-Chlorotoluene	ND ug/L	100 100	09/02/14 12:43 05-40-8	
4-Chlorotoluene	ND ug/l	100 100	00/02/14 12:43 106 43 4	
1.2-Dibromo-3-chloropropane	ND ug/L	400 100	09/02/14 12:43 100-43-4	
Dibromochloromethane	ND ug/L	100 100	09/02/14 12:43 90-12-0	
1.2-Dibromoethane (EDB)		100 100	09/02/14 12:43 106.03 4	
Dibromomethane		400 100	09/02/14 12:43 74.95-3	
1.2-Dichlorobenzene		100 100	09/02/14 12:43 95-50-1	
1.3-Dichlorobenzene		100 100	09/02/14 12:43 5/1-73-1	
1.4-Dichlorobenzene		100 100	09/02/14 12:43 106.46 7	
Dichlorodifiuoromethane		100 100	09/02/14 12:43 100-40-7	
1.1-Dichloroethane	ND ug/L	100 100	09/02/14 12:43 75-34-3	
1.2-Dichloroethane	ND ug/I	100 100		
1.1-Dichloroethene	ND ug/L	100 100	09/02/14 12:43 107-08-2	
cis-1.2-Dichloroethene	ND ug/L	100 100	09/02/14 12:43 156-50-2	
trans-1.2-Dichloroethene	ND ug/l	100 100	09/02/14 12:43 156-60-5	
Dichlorofluoromethane	ND ug/L	100 100	09/02/14 12:43 75-43-4	
1.2-Dichloropropane	ND ug/L	400 100	09/02/14 12:43 73-43-4	
1.3-Dichloropropane	ND ug/l	100 100	09/02/14 12:43 142-28.9	
2.2-Dichloropropane	ND ug/L	400 100	09/02/14 12:43 142-20-3	
1.1-Dichloropropene	ND ug/L	100 100	09/02/14 12:43 563 58 6	
cis-1.3-Dichloropropene	ND ug/L	400 100	09/02/14 12:43 303-38-0	
trans-1.3-Dichloropropene	ND ug/L	400 100	00/02/14 12.43 10001-01-0 00/02/14 12:43 10061 02 6	
Diethyl ether (Ethyl ether)		400 100	00/02/14 12:43 10001-02-0 00/02/14 12:43 60 20 7	,
Ethylbenzene		100 100	00/02/14 12:43 00-29-7	
Hexachloro-1.3-butadiene		100 100	00/02/14 12.43 100-41-4 00/02/14 12:43 07 60 3	
Isopropylbenzene (Cumene)		100 100	00/02/14 12.43 07-00-3	
p-lsopropyltoluene	ND ug/L	100 100	00/02/14 12.43 90-02-8 00/02/14 12:43 00 07 0	
Methylene Chloride		400 400	00/02/14 12.43 33-07-0	
	ND ug/L	400 100	05/02/14 12.43 / 0-09-2	

REPORT OF LABORATORY ANALYSIS

500

100

100

100

ND ug/L

ND ug/L

4-Methyl-2-pentanone (MIBK)

Methyl-tert-butyl ether

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

09/02/14 12:43 108-10-1

09/02/14 12:43 1634-04-4

Project: CRC Clty Of Rocheste

Sample: DPE-3	Lab ID: 10279027010	Collected: 08/22/14 10:20	Received: 08/25/14 10:13 Matrix: Water
Parameters	Results Units	Report Limit DF	Prepared Analyzed CAS No. C
8260 VOC	Analytical Method: EPA 82	260	
Acetone	ND ug/L	2000 100	08/30/14 04:53 67-64-1
Allyl chloride	ND ug/L	400 100	08/30/14 04:53 107-05-1
Benzene	ND ug/L	100 100	08/30/14 04:53 71-43-2
Bromobenzene	ND ug/L	100 100	08/30/14 04:53 108-86-1
Bromochloromethane	ND ug/L	100 100	08/30/14 04:53 74-97-5
Bromodichloromethane	ND ug/L	100 1 00	08/30/14 04:53 7 5-27-4
Bromoform	ND ug/L	400 100	08/30/14 04:53 75-25-2
Bromomethane	ND ug/L	400 100	08/30/14 04:53 74-83-9 CL
2-Butanone (MEK)	ND ug/L	500 100	08/30/14 04:53 78-93-3
n-Butylbenzene	ND ug/L	100 100	08/30/14 04:53 104-51-8
sec-Butylbenzene	ND ug/L	100 100	08/30/14 04:53 135-98-8
tert-Butylbenzene	ND ug/L	100 100	08/30/14 04:53 98-06-6
Carbon tetrachloride	ND ug/L	100 100	08/30/14 04:53 56-23-5
Chlorobenzene	ND ug/L	100 100	08/30/14 04:53 108-90-7
Chloroethane	ND ug/L	400 100	08/30/14 04:53 75-00-3
Chloroform	ND ug/L	100 100	08/30/14 04:53 67-66-3
Chloromethane	ND ug/L	400 100	08/30/14 04:53 74-87-3
2-Chlorotoluene	ND ug/L	100 100	08/30/14 04:53 95-49-8
4-Chlorotoluene	ND ug/L	100 100	08/30/14 04:53 106-43-4
1.2-Dibromo-3-chloropropane	ND ug/L	400 100	08/30/14 04:53 96-12-8
Dibromochloromethane	ND ug/L	100 100	08/30/14 04:53 124-48-1
1.2-Dibromoethane (EDB)	ND ug/L	100 100	08/30/14 04:53 106-93-4
Dibromomethane	ND ug/L	400 100	08/30/14 04:53 74-95-3
1,2-Dichlorobenzene	ND ug/L	100 100	08/30/14 04:53 95-50-1
1.3-Dichlorobenzene	ND ug/L	100 100	08/30/14 04:53 541-73-1
1.4-Dichlorobenzene	ND ug/L	100 100	08/30/14 04:53 106-46-7
Dichlorodifluoromethane	ND ug/L	100 100	08/30/14 04:53 75-71-8
1.1-Dichloroethane	ND ug/L	100 100	08/30/14 04:53 75-34-3
1.2-Dichloroethane	ND ug/L	100 100	08/30/14 04:53 107-06-2
1.1-Dichloroethene	ND ug/L	100 100	08/30/14 04:53 75-35-4
cis-1.2-Dichloroethene		100 100	08/30/14 04:53 156-59-2
trans-1.2-Dichloroethene	ND ug/L	100 100	08/30/14 04:53 156-60-5
Dichlorofluoromethane	ND ug/L	100 100	08/30/14 04:53 75-43-4
1.2-Dichloropropane	ND ug/L	400 100	08/30/14 04:53 78-87-5
1.3-Dichloropropane		100 100	08/30/14 04:53 142-28-9
2.2-Dichloropropane		400 100	08/30/14 04:53 594-20-7
1 1-Dichloropropene		100 100	08/30/14 04:53 563-58-6
cis-1 3-Dichloropropene		400 100	08/30/14 04:53 10061-01-5
trans-1.3-Dichloropropene		400 100	08/30/14 04:53 10061-07-6
Diethyl ether (Ethyl ether)		400 100	08/30/14 04:53 60-29.7
Ethylbenzene		100 100	08/30/14 04:53 100.41 4
Hexachloro-1 3-butadiana		100 100	00/30/14 04.33 100-41-4
		100 100	00/30/14 04:33 0/-00-3
		100 100	00/20/14 04:23 98-82-8
p-isopiopyiloidene Mothylona Chlorida		400 400	00/20/14 04:53 99-87-6
		400 100	08/30/14 04:53 /5-09-2
4-ivietnyi-2-pentanone (MIBK)	ND ug/L	500 100	08/30/14 04:53 108-10-1

REPORT OF LABORATORY ANALYSIS

100 100

ND ug/L

Date: 09/02/2014 05:48 PM

Methyl-tert-butyl ether

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

08/30/14 04:53 1634-04-4

ANALYTICAL RESULTS

Project: CRC Clty Of Rochester

Pace Project No.: 10279027							
Sample: DPE-4	Lab ID: 102790270	011 Collected: 08/22/1	4 10:09	Received: 0	8/25/14 10:13 M	latrix: Water	
Parameters	ResultsUn	its Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 VOC	Analytical Method: EF	PA 8260					
Acetone	ND ug/L	1000	50		08/30/14 04:24	67-64-1	
Allyl chloride	ND ug/L	200	50		08/30/14 04:24	107-05-1	
Benzene	ND ug/L	50.0	50		08/30/14 04:24	71-43-2	
Bromobenzene	ND ug/L	50.0	50		08/30/14 04:24	108-86-1	
Bromochloromethane	ND ug/L	50.0	50		08/30/14 04:24	74-97-5	
Bromodichloromethane	ND ug/L	50.0	50		08/30/14 04:24	75-27-4	
Bromoform	ND ug/L	200	50		08/30/14 04:24	75-25 - 2	
Bromomethane	ND ug/L	200	50		08/30/14 04:24	74-83-9	CL
2-Butanone (MEK)	ND ug/L	250	50		08/30/14 04:24	78-93-3	
n-Butylbenzene	ND ug/L	50.0	50		08/30/14 04:24	104-51-8	
sec-Butylbenzene	ND ug/L	50.0	50		08/30/14 04:24	135-98-8	
tert-Butylbenzene	ND ug/L	50.0	50		08/30/14 04:24	98-06-6	
Carbon tetrachloride	ND ug/L	50.0	50		08/30/14 04:24	56-23-5	
Chlorobenzene	ND ug/L	50.0	50		08/30/14 04:24	108-90-7	
Chloroethane	ND ug/L	200	50		08/30/14 04:24	75-00-3	
Chloroform	ND ug/L	50.0	50		08/30/14 04:24	67-66-3	
Chloromethane	ND ug/L	200	50		08/30/14 04:24	74-87-3	
2-Chlorotoluene	ND ug/L	50.0	50		08/30/14 04:24	95-49-8	
4-Chlorotoluene	ND ug/L	50.0	50		08/30/14 04:24	106-43-4	
1.2-Dibromo-3-chloropropane	ND ug/L	200	50		08/30/14 04:24	96-12-8	
Dibromochloromethane	ND ug/L	50.0	50		08/30/14 04:24	124-48-1	
1.2-Dibromoethane (EDB)	ND ug/L	50.0	50		08/30/14 04:24	106-93-4	
Dibromomethane		200	50		08/30/14 04.24	74-95-3	
1.2-Dichlorobenzene	ND ug/L	50.0	50		08/30/14 04:24	95-50-1	
1.3-Dichlorobenzene	ND ug/L	50.0	50		08/30/14 04:24	541-73-1	
1.4-Dichlorobenzene	ND ug/L	50.0	50		08/30/14 04:24	106-46-7	
Dichlorodifluoromethane	ND ug/L	50.0	50		08/30/14 04:24	75-71-8	
1.1-Dichloroethane	ND ua/L	50.0	50		08/30/14 04:24	75-34-3	
1.2-Dichloroethane	ND ug/L	50.0	50		08/30/14 04:24	107-06-2	
1.1-Dichloroethene	ND ug/L	50.0	50		08/30/14 04:24	75-35-4	
cis-1.2-Dichloroethene	ND ug/L	50.0	50		08/30/14 04:24	156-59-2	
trans-1.2-Dichloroethene	ND ug/L	50.0	50		08/30/14 04:24	156-60-5	
Dichlorofluoromethane	ND ug/L	50.0	50		08/30/14 04:24	75-43-4	
1.2-Dichloropropane	ND ug/L	200	50		08/30/14 04:24	78-87-5	
1.3-Dichloropropane	ND ua/L	50.0	50		08/30/14 04:24	142-28-9	
2.2-Dichloropropane	ND ug/L	200	50		08/30/14 04:24	594-20-7	
1.1-Dichloropropene		50.0	50		08/30/14 04:24	563-58-6	
cis-1.3-Dichloropropene	ND ua/L	200	50		08/30/14 04:24	10061-01-5	
trans-1.3-Dichloropropene	ND ug/L	200	50		08/30/14 04:24	10061-02-6	
Diethyl ether (Ethyl ether)		200	50		08/30/14 04:24	60-29-7	
Ethylbenzene	ND ug/L	50.0	50		08/30/14 04:24	100-41-4	
Hexachloro-1.3-butadiene	ND ug/L	50.0	50		08/30/14 04:24	87-68-3	
Isopropylbenzene (Cumene)	ND ug/l	50.0	50		08/30/14 04:24	98-82-8	
p-lsopropyltoluene	ND ug/L	50.0	50		08/30/14 04:24	99-87-6	
Methylene Chloride		200	50		08/30/14 04.24	75-09-2	
4-Methyl-2-pentanone (MIRK)		200	50		08/30/14 04:24	108_10_1	
Methyl-tert-butyl ether	ND ug/L	50 0	50		08/30/14 04:24	1634-04-4	
	The age	00.0			00,00,14 04,24	1001044	

REPORT OF LABORATORY ANALYSIS

Date: 09/02/2014 05:48 PM

Project: CRC Clty Of Rochester

Pace Project No.: 10279027

Sample: DPE-5	Lab ID: 1027	9027012	Collected: 08/22/1	14 09:47	Received: 0	Received: 08/25/14 10:13 Matrix: Water		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 VOC	Analytical Meth	od: EPA 82	260					
Acetone	ND ug/	L	40.0	2		08/30/14 03:25	67-64-1	
Allyl chloride	ND ug/	L	8.0	2		08/30/14 03:25	107-05-1	
Benzene	ND ug/	L	2.0	2		08/30/14 03:25	71-43-2	
Bromobenzene	ND ug/	L	2.0	2		08/30/14 03:25	108-86-1	
Bromochloromethane	ND ug/	L	2.0	2		08/30/14 03:25	74-97-5	
Bromodichloromethane	ND ug/	L	2.0	2		08/30/14 03:25	75-27-4	
Bromoform	ND ug/	L	8.0	2		08/30/14 03:25	75-25-2	
Bromomethane	ND ug/	L	8.0	2		08/30/14 03:25	74-83-9	CL
2-Butanone (MEK)	ND ug/	L	10.0	2		08/30/14 03:25	78-93-3	
n-Butylbenzene	ND ug/	L	2.0	2		08/30/14 03:25	104-5 1- 8	
sec-Butylbenzene	ND ug/	L	2.0	2		08/30/14 03:25	135-98-8	
tert-Butylbenzene	ND ug/	L	2.0	2		08/30/14 03:25	98-06-6	
Carbon tetrachloride	ND ug/	L	2.0	2		08/30/14 03:25	56-23-5	
Chlorobenzene	ND ug/	L	2.0	2		08/30/14 03:25	108-90-7	
Chloroethane	ND ug/	L	8.0	2		08/30/14 03:25	75-00-3	
Chloroform	2.9 ug/	L	2.0	2		08/30/14 03:25	67-66-3	
Chloromethane	16.4 ug/	L	8.0	2		08/30/14 03:25	74-87-3	
2-Chlorotoluene	ND ug/	L	2.0	2		08/30/14 03:25	95-49-8	
4-Chlorotoluene	ND ug/	L	2.0	2		08/30/14 03:25	106 - 43-4	
1,2-Dibromo-3-chloropropane	ND ug/	L	8.0	2		08/30/14 03:25	96-12-8	
Dibromochloromethane	ND ug/	L	2.0	2		08/30/14 03:25	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/	L	2.0	2		08/30/14 03:25	106-93-4	
Dibromomethane	ND ug/	L	8.0	2		08/30/14 03:25	74-95-3	
1,2-Dichlorobenzene	ND ug/	L	2.0	2		08/30/14 03:25	95 - 50-1	
1,3-Dichlorobenzene	ND ug/	L	2.0	2		08/30/14 03:25	541-73-1	
1,4-Dichlorobenzene	ND ug/	Ľ	2.0	2		08/30/14 03:25	106-46-7	
Dichlorodifluoromethane	ND ug/	Ľ	2.0	2		08/30/14 03:25	75-71-8	
1,1-Dichloroethane	ND ug/	L	2.0	2		08/30/14 03:25	75-34-3	
1,2-Dichloroethane	ND ug/	Ľ	2.0	2		08/30/14 03:25	107-06-2	
1.1-Dichloroethene	ND ua/	Ľ	2.0	2		08/30/14 03:25	75-35-4	
cis-1,2-Dichloroethene	55.4 ua/	Ľ	2.0	2		08/30/14 03:25	156-59-2	
trans-1,2-Dichloroethene	ND ug/	۲L	2.0	2		08/30/14 03:25	156-60-5	
Dichlorofluoromethane	ND ug/	۲L	2.0	2		08/30/14 03:25	75-43-4	
1.2-Dichloropropane	ND ua/	- 'L	8.0	2		08/30/14 03:25	78-87-5	
1.3-Dichloropropane	ND ug	ſL	2.0	2		08/30/14 03:25	142-28-9	
2.2-Dichloropropane	ND ua	_ /L	8.0	2		08/30/14 03:25	594-20-7	
1.1-Dichloropropene	ND ug	_ /L	2.0	2		08/30/14 03:25	563-58-6	
cis-1.3-Dichloropropene	ND ug	– /L	8.0	2		08/30/14 03:25	10061-01-5	
trans-1.3-Dichloropropene	ND ug	_ /L	8.0	2		08/30/14 03:25	10061-02-6	
Diethyl ether (Ethyl ether)	ND ug	4	8.0	2		08/30/14 03:25	60-29-7	
Ethylbenzene	ND ug	/1	2.0	2		08/30/14 03:25	100-41-4	
Hexachloro-1 3-hutadiene	ND ug	4	2.0	2		08/30/14 03:25	87-68-3	
Isopropylbenzene (Cumene)	ND ug	- //	2.0	2		08/30/14 03:25	98-82-8	
p-lsopropylfoluene		- //	2.0	2		08/30/14 03:25	99_87_6	
Methylene Chloride	ND ug	4	2.0 8.0	2		08/30/14 03:25	75-09-2	
4-Methyl-2-pentanone (MIRK)	ND to	/	10.0	2		08/30/14 03:25	108-10-1	
Methyl-tert-butyl ether	ND ug	_ /L	2.0	2		08/30/14 03:25	1634-04-4	

REPORT OF LABORATORY ANALYSIS

Date: 09/02/2014 05:48 PM

Project: CRC Clty Of Rochester

Pace Project No.: 10279027

Sample: DPE-6	Lab ID: 1027902701	3 Collected: 08/22/14 0	9:38 Recei	ived: 08/25/14 10:13	Matrix: Water	
Parameters	Results Units	Report Limit	F Pre	pared Analyzed	CAS No.	Qual
8260 VOC	Analytical Method: EPA	8260				
Acetone	ND ug/L	20.0	1	08/30/14 02:13	8 67-64-1	
Allyl chloride	ND ug/L	4.0	1	08/30/14 02:13	3 107-05-1	
Benzene	ND ug/L	1.0	1	08/30/14 02:13	3 71-43-2	
Bromobenzene	ND ug/L	1.0	1	08/30/14 02:13	3 108-86-1	
Bromochloromethane	ND ug/L	1.0	1	08/30/14 02:13	3 74-97-5	
Bromodichloromethane	ND ug/L	1.0	1	08/30/14 02:13	3 75-27-4	
Bromoform	ND ug/L	4.0	1	08/30/14 02:13	3 75-25-2	
Bromomethane	ND ug/L	4.0	1	08/30/14 02:13	3 74-83-9	CL
2-Butanone (MEK)	ND ug/L	5.0	1	08/30/14 02:13	3 78-93-3	
n-Butylbenzene	ND ug/L	1.0	1	08/30/14 02:13	3 1 04-51 - 8	
sec-Butylbenzene	ND ug/L	1.0	1	08/30/14 02:13	3 135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1	08/30/14 02:13	3 98-06-6	
Carbon tetrachloride	ND ug/L	1.0	1	08/30/14 02:13	3 56-23-5	
Chlorobenzene	ND ug/L	1.0	1	08/30/14 02:13	3 108-90-7	
Chloroethane	ND ug/L	4.0	1	08/30/14 02:13	3 75-00-3	
Chloroform	1.1 ug/L	1.0	1	08/30/14 02:13	3 67-66-3	
Chloromethane	ND ug/L	4.0	1	08/30/14 02:13	3 74-87-3	
2-Chlorotoluene	ND ug/L	1.0	1	08/30/14 02:13	3 95-49-8	
4-Chlorotoluene	ND ug/L	1.0	1	08/30/14 02:13	3 106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	4.0	1	08/30/14 02:13	3 96-12-8	
Dibromochloromethane	ND ug/L	1.0	1	08/30/14 02:1:	3 124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1	08/30/14 02:13	3 106-93-4	
Dibromomethane	ND ug/L	4.0	1	08/30/14 02:13	3 74-95-3	
1,2-Dichlorobenzene	ND ug/L	1.0	1	08/30/14 02:13	3 95-50-1	
1,3-Dichlorobenzene	ND ug/L	1.0	1	08/30/14 02:1	3 541-73-1	
1,4-Dichlorobenzene	ND ug/L	1.0	1	08/30/14 02:1	3 106-46-7	
Dichlorodifluoromethane	ND ug/L	1.0	1	08/30/14 02:1	3 75-71-8	
1,1-Dichloroethane	ND ug/L	1.0	1	08/30/14 02:1	3 75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	1	08/30/14 02:1	3 107-06-2	
1,1-Dichloroethene	ND ug/L	1.0	1	08/30/14 02:1	3 75-35-4	
cis-1,2-Dichloroethene	ND ug/L	1.0	1	08/30/14 02:1	3 156-59-2	
trans-1,2-Dichloroethene	ND ug/L	1.0	1	08/30/14 02:1	3 156-60-5	
Dichlorofluoromethane	ND ug/L	1.0	1	08/30/14 02:1	3 75-43-4	
1,2-Dichloropropane	ND ug/L	4.0	1	08/30/14 02:1	3 78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1	08/30/14 02:1	3 142-28-9	
2,2-Dichloropropane	ND ug/L	4.0	1	08/30/14 02:1	3 594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1	08/30/14 02:1	3 563-58-6	
cis-1.3-Dichloropropene	ND ug/L	4.0	1	08/30/14 02:1	3 10061-01-5	
trans-1.3-Dichloropropene	ND ug/L	4.0	1	08/30/14 02:1	3 10061-02-6	
Diethyl ether (Ethyl ether)	ND ug/L	4.0	1	08/30/14 02:1	3 60-29-7	
Ethylbenzene	ND ug/L	1,0	1	08/30/14 02:1	3 100-41-4	
Hexachloro-1.3-butadiene	ND ug/L	1.0	1	08/30/14 02:1	3 87-68-3	
Isopropylbenzene (Cumene)	ND ug/L	1.0	1	08/30/14 02:1	3 98-82-8	
p-lsopropylloluene	ND ug/L	1.0	1	08/30/14 02:1	3 99-87-6	
Methylene Chloride	ND ua/L	4.0	1	08/30/14 02:1	3 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	5.0	1	08/30/14 02:1	3 108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1	08/30/14 02:1	3 1634-04-4	

REPORT OF LABORATORY ANALYSIS

Date: 09/02/2014 05:48 PM

Project: CRC City Of Rocheste

Sample: DPE-7	Lab ID: 10279027014	Collected: 08/22/14 09:2	5 Received: 08/25/14 10:1	3 Matrix: Water	
Parameters	Results Units	Report Limit DF	Prepared Analyz	ed CAS No.	Qua
8260 VOC	Analytical Method: EPA 82	260			
Acetone	ND ug/L	20.0 1	08/30/14 0	2:27 67-64-1	
Allyl chloride	ND ug/L	4.0 1	08/30/14 (2:27 107-05-1	
Benzene	ND ug/L	1.0 1	08/30/14 (2:27 71-43-2	
Bromobenzene	ND ug/L	1.0 1	08/30/14 (2:27 108-86-1	
Bromochloromethane	ND ug/L	1.0 1	08/30/14 (2:27 74-97-5	
Bromodichloromethane	ND ug/L	1.0 1	08/30/14 0	2:27 75-27-4	
Bromoform	ND ug/L	4.0 1	08/30/14 (2:27 75-25-2	
Bromomethane	ND ug/L	4.0 1	08/30/14 ()2:27 74-83-9 CL	L.
2-Butanone (MEK)	ND ug/L	5.0 1	08/30/14 (2:27 78-93-3	
n-Butvibenzene	ND ug/L	1.0 1	08/30/14 (2:27 104-51-8	
sec-Butvlbenzene	ND ug/L	1.0 1	08/30/14 (2:27 135-98-8	
tert-Butylbenzene	ND ug/L	10 1	08/30/14 (2.27 98-06-6	
Carbon tetrachloride	ND ug/I	10 1	08/30/14 (2.27 56-23-5	
Chlorobenzene		10 1	08/30/14 (2.27 108-90-7	
Chloroethane	ND ug/L	4.0 1	08/30/14 (12:27 75-00-3	
Chloroform	ND ug/L	10 1	08/30/14 (12:27 67-66-3	
Chloromethane	81 ug/L	40 1	08/30/14 (12.27 74_87_3	
2-Chlorotoluene		4.0 I 10 1	08/30/14 (2.27 05 40 9	
4-Chlorotoluene	ND ug/L	1.0 1	08/30/14 (12.27 30-43-0	
1 2-Dibromo-3-chloropropape	ND ug/L	1.0 1	08/30/14 (12.27 100-43-4	
Dibromochloromothano		4.0 1	08/30/14 (12.27 90-12-0	
1.2 Dibromosthana (EDR)		1.0 1	08/30/14 (2.27 124-40-1	
		1.0 1	08/30/14 (JZ.Z/ 100-93-4	
		4.0 1	08/30/14	32.27 $74-90-0$	
	ND ug/L	1.0 1	08/30/14	02.27 90-00-1	
		1.0 1	08/30/14	JZ.Z/ 341-/3-1	
Dieblere diffueremethene		1.0 1	08/30/14 0	JZ:Z7 100-40-7	
		1.0 1	00/30/14	JZ:Z/ / 0-/ 1-0	
1,1-Dichloroethane		1.0 1	08/30/14 0	JZ:27 75-34-3	
1,2-Dichloroethane		1.0 1	08/30/14	JZ:27 107-06-2	
		1.0 1	08/30/14	J2:27 75-35-4	
cis-1,2-Dichloroethene	ND ug/L	1.0 1	08/30/14	JZ:27 156-59-2	
trans-1,2-Dicnioroetnene	ND Ug/L	1.0 1	08/30/14	J2:27 156-60-5	
Dichlorofluoromethane	ND ug/L	1.0 1	08/30/14	J2:27 75-43-4	
1,2-Dichloropropane	ND ug/L	4.0 1	08/30/14	02:27 78-87-5	
1,3-Dichloropropane	ND ug/L	1.0 1	08/30/14	02:27 142-28-9	
2,2-Dichloropropane	ND ug/L	4.0 1	08/30/14	02:27 594-20-7	
1,1-Dichloropropene	ND ug/L	1.0 1	08/30/14	02:27 563-58-6	
cis-1,3-Dichloropropene	ND ug/L	4.0 1	08/30/14	02:27 10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	4.0 1	08/30/14	02:27 10061-02-6	
Diethyl ether (Ethyl ether)	ND ug/L	4.0 1	08/30/14	02:27 60-29-7	
Ethylbenzene	ND ug/L	1.0 1	08/30/14	02:27 100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	1.0 1	08/30/14	02:27 87-68-3	
Isopropylbenzene (Cumene)	ND ug/L	1.0 1	08/30/14	02:27 98-82-8	
p-lsopropyltoluene	ND ug/L	1.0 1	08/30/14	02:27 99-87-6	
Methylene Chloride	ND ug/L	4.0 1	08/30/14	02:27 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	5.0 1	08/30/14	02:27 108-10-1	

REPORT OF LABORATORY ANALYSIS

1.0 1

ND ug/L

Date: 09/02/2014 05:48 PM

Methyl-tert-butyl ether

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

08/30/14 02:27 1634-04-4

Project: CRC Clty Of Rochester

Pace Project No.: 10279027

Sample: DPE-8	Lab ID: 1027902701	5 Collected: 08/22/14 10:00	0 Received: 08/25/14 10:13 Matrix: Wa	iter
Parameters	ResultsUnits	Report Limit DF	Prepared Analyzed CAS I	No. Qual
8260 VOC	Analytical Method: EPA	8260		
Acetone	ND ug/L	20.0 1	08/30/14 02:42 67-64-1	
Allyl chloride	ND ug/L	4.0 1	08/30/14 02:42 107-05-	1
Benzene	ND ug/L	1.0 1	08/30/14 02:42 71-43-2	
Bromobenzene	ND ug/L	1.0 1	08/30/14 02:42 108-86-	1
Bromochloromethane	ND ug/L	1.0 1	08/30/14 02:42 74-97-5	
Bromodichloromethane	ND ug/L	1.0 1	08/30/14 02:42 75-27-4	
Bromoform	ND ug/L	4.0 1	08/30/14 02:42 75-25-2	
Bromomethane	ND ug/L	4.0 1	08/30/14 02:42 74-83-9	CL
2-Butanone (MEK)	ND ug/L	5.0 1	08/30/14 02:42 78-93-3	
n-Butylbenzene	ND ug/L	1.0 1	08/30/14 02:42 104-51-	8
sec-Butylbenzene	ND ug/L	1.0 1	08/30/14 02:42 135-98-	8
tert-Butylbenzene	ND ug/L	1.0 1	08/30/14 02:42 98-06-6	
Carbon tetrachloride	ND ug/L	1.0 1	08/30/14 02:42 56-23-5	
Chlorobenzene	ND ug/L	1.0 1	08/30/14 02:42 108-90-	7
Chloroethane	ND ug/L	4.0 1	08/30/14 02:42 75-00-3	
Chloroform	ND ug/L	1.0 1	08/30/14 02:42 67-66-3	
Chloromethane	15. 4 ug/L	4.0 1	08/30/14 02:42 74-87-3	
2-Chlorotoluene	ND ug/L	1.0 1	08/30/14 02:42 95-49-8	
4-Chlorotoluene	ND ug/L	1.0 1	08/30/14 02:42 106-43-	4
1,2-Dibromo-3-chloropropane	ND ug/L	4.0 1	08/30/14 02:42 96-12-8	
Dibromochloromethane	ND ug/L	1.0 1	08/30/14 02:42 124-48-	1
1,2-Dibromoethane (EDB)	ND ug/L	1.0 1	08/30/14 02:42 106-93-	4
Dibromomethane	ND ug/L	4.0 1	08/30/14 02:42 74-95-3	I.
1,2-Dichlorobenzene	ND ug/L	1.0 1	08/30/14 02:42 95-50-1	
1,3-Dichlorobenzene	ND ug/L	1.0 1	08/30/14 02:42 541-73-	.1
1,4-Dichlorobenzene	ND ug/L	1.0 1	08/30/14 02:42 106-46-	7
Dichlorodifluoromethane	ND ug/L	1.0 1	08/30/14 02:42 75-71-8	i
1,1-Dichloroethane	ND ug/L	1.0 1	08/30/14 02:42 75-34-3	j.
1,2-Dichloroethane	ND ug/L	1.0 1	08/30/14 02:42 107-06-	-2
1,1-Dichloroethene	ND ug/L	1.0 1	08/30/14 02:42 75-35-4	
cis-1,2-Dichloroethene	1.7 ug/L	1.0 1	08/30/14 02:42 156-59-	-2
trans-1,2-Dichloroethene	ND ug/L	1.0 1	08/30/14 02:42 156-60-	-5
Dichlorofluoromethane	ND ug/L	1.0 1	08/30/14 02:42 75-43-4	ŀ
1,2-Dichloropropane	ND ug/L	4.0 1	08/30/14 02:42 78-87-5	;
1,3-Dichloropropane	ND ug/L	1.0 1	08/30/14 02:42 142-28	.9
2,2-Dichloropropane	ND ug/L	4.0 1	08/30/14 02:42 594-20-	-7
1,1-Dichloropropene	ND ug/L	1.0 1	08/30/14 02:42 563-58	-6
cis-1,3-Dichloropropene	ND ug/L	4.0 1	08/30/14 02:42 10061-	J1-5
trans-1,3-Dichloropropene	ND ug/L	4.0 1	08/30/14 02:42 10061-	02-6
Diethyl ether (Ethyl ether)	ND ug/L	4.0 1	08/30/14 02:42 60-29-7	,
Ethylbenzene	ND ug/L	1.0 1	08/30/14 02:42 100-41	-4
Hexachloro-1,3-butadiene	ND ug/L	1.0 1	08/30/14 02:42 87-68-3	3
Isopropylbenzene (Cumene)	ND ug/L	1.0 1	08/30/14 02:42 98-82-8	3
p-lsopropyltoluene	ND ug/L	1.0 1	08/30/14 02:42 99-87-6	3
Methylene Chloride	ND ug/L	4.0 1	08/30/14 02:42 75-09-2	2
4-Methyl-2-pentanone (MIBK)	ND ug/L	5.0 1	08/30/14 02:42 108-10	-1
Methyl-tert-butyl ether	ND ug/L	1.0 1	08/30/14 02:42 1634-0	4-4

REPORT OF LABORATORY ANALYSIS

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

June 02, 2014

Mr. Jason Skramstad Landmark Environmental 2042 W. 98th. St. Minneapolis, MN 55431

RE: Project: City of Rochester Pace Project No.: 10268039

Dear Mr. Skramstad:

Enclosed are the analytical results for sample(s) received by the laboratory on May 21, 2014. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Oard Davy-

Carol Davy carol.davy@pacelabs.com Project Manager

Enclosures

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project:City of RochesterPace Project No.:10268039

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10268039001	DPE 1	Water	05/20/14 10:00	05/21/14 10:14
10268039002	DPE 2	Water	05/20/14 10:30	05/21/14 10:14
10268039003	DPE 3	Water	05/20/14 11:00	05/21/14 10:14
10268039004	DPE 4	Water	05/20/14 11:30	05/21/14 10:14
10268039005	DPE 5	Water	05/20/14 12:00	05/21/14 10:14
10268039006	DPE 6	Water	05/20/14 12:30	05/21/14 10:14
10268039007	DPE 7	Water	05/20/14 13:00	05/21/14 10:14
10268039008	DPE 8	Water	05/20/14 13:30	05/21/14 10:14
10268039009	MW14	Water	05/20/14 14:00	05/21/14 10:14
10268039010	MW15	Water	05/20/14 14:30	05/21/14 10:1 4
10268039011	MW16	Water	05/20/14 15:00	05/21/14 10:14
10268039012	MW17	Water	05/20/14 15:30	05/21/14 10:14
10268039013	MW18	Water	05/20/14 16:00	05/21/14 10:14
10268039014	MW19	Water	05/20/1 4 16:30	05/21/14 10:14
10268039015	MW20	Water	05/20/14 17:00	05/21/14 1 0:14

REPORT OF LABORATORY ANALYSIS

Project: City of Rochester

Pace Project No.: 10268039

Sample: DPE 1	Lab ID: 10268	039001	Collected: 05/20/	14 10:00	Received:	05/21/14 10:14	Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 VOC	Analytical Method	d: EPA 82	60					
Acetone	ND ug/L		20.0	1		05/30/14 00:48	8 67-64-1	
Allyl chloride	ND ug/L		4.0	1		05/30/14 00:48	3 107-05-1	
Benzene	ND ug/L		1.0	1		05/30/14 00:48	3 71-43-2	
Bromobenzene	ND ug/L		1.0	1		05/30/14 00:48	3 108-86-1	
Bromochloromethane	ND ug/L		1.0	1		05/30/14 00:48	3 74-97-5	
Bromodichloromethane	ND ug/L		1.0	1		05/30/14 00:48	3 75-27-4	
Bromoform	ND ug/L		4.0	1		05/30/14 00:48	3 75-25-2	
Bromomethane	ND ug/L		4.0	1		05/30/14 00:48	3 74-83-9	
2-Butanone (MEK)	ND ug/L		5.0	1		05/30/14 00:48	3 78-93-3	
n-Butylbenzene	ND ug/L		1.0	1		05/30/14 00:48	3 104-51-8	
sec-Butylbenzene	ND ug/L		1.0	1		05/30/14 00:48	3 135-98-8	
tert-Butylbenzene	ND ug/L		1.0	1		05/30/14 00:48	3 98-06-6	
Carbon tetrachloride	ND ug/L		1.0	1		05/30/14 00:48	3 56-23-5	
Chlorobenzene	ND ug/L		1.0	1		05/30/14 00:48	3 108-90-7	
Chloroethane	ND ug/L		1.0	1		05/30/14 00:48	3 75-00-3	
Chloroform	ND ug/L		1.0	1		05/30/14 00:48	3 67 - 66-3	
Chloromethane	ND ug/L		4.0	1		05/30/14 00:48	3 74-87-3	
2-Chlorotoluene	ND ug/L		1.0	1		05/30/14 00:48	3 95-49-8	
4-Chiorotoluene	ND ug/L		1.0	1		05/30/14 00:48	3 106-43 - 4	
1,2-Dibromo-3-chloropropane	ND ug/L		4.0	1		05/30/14 00:48	3 96-12-8	
Dibromochloromethane	ND ug/L		1.0	1		05/30/14 00:48	3 124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L		1.0	1		05/30/14 00:48	3 106-93-4	
Dibromomethane	ND ug/L		4.0	1		05/30/14 00:48	3 74-95-3	
1,2-Dichlorobenzene	ND ug/L		1.0	1		05/30/14 00:48	3 95-50-1	
1,3-Dichlorobenzene	ND ug/L		1.0	1		05/30/14 00:48	3 541-73-1	
1,4-Dichlorobenzene	ND ug/L		1.0	1		05/30/14 00:48	3 106-46-7	
Dichlorodifluoromethane	ND ug/L		1.0	1		05/30/14 00:48	3 75-71 - 8	
1,1-Dichloroethane	ND ug/L		1.0	1		05/30/14 00:48	3 75-34-3	
1,2-Dichloroethane	ND ug/L		1.0	1		05/30/14 00:48	3 107-06-2	
1,1-Dichloroethene	ND ug/L		1.0	1		05/30/14 00:48	3 75-35-4	
cis-1,2-Dichloroethene	5.8 ug/L		1.0	1		05/30/14 00:48	3 156-59-2	
trans-1,2-Dichloroethene	ND ug/L		1.0	1		05/30/14 00:48	3 156-60-5	
Dichlorofluoromethane	ND ug/L		1.0	1		05/30/14 00:4	3 75-43-4	
1,2-Dichloropropane	ND ug/L		4.0	1		05/30/14 00:4	3 78-87-5	
1,3-Dichloropropane	ND ug/L		1.0	1		05/30/14 00:4	3 142-28-9	
2,2-Dichloropropane	ND ug/L		4.0	1		05/30/14 00:4	3 594-20-7	
1,1-Dichloropropene	ND ug/L		1.0	1		05/30/14 00:4	3 563-58-6	
cis-1,3-Dichloropropene	ND ug/L		4.0	1		05/30/14 00:4	B 10061-01-5	
trans-1,3-Dichloropropene	ND ug/L		4.0	1		05/30/14 00:4	3 10061-02-6	
Diethyl ether (Ethyl ether)	ND ug/L		4.0	1		05/30/14 00:4	8 60-29-7	
Ethylbenzene	ND ug/L		1.0	1		05/30/14 00:4	8 100-41-4	
Hexachloro-1,3-butadiene	ND ug/L		1.0	1		05/30/14 00:4	8 87-68-3	
Isopropylbenzene (Cumene)	ND ug/L		1.0	1		05/30/14 00:4	8 98-82-8	
p-lsopropyltoluene	ND ug/L		1.0	1		05/30/14 00:4	8 99-87-6	
Methylene Chloride	ND ug/L		4.0	1		05/30/14 00:4	8 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L		5.0	1		05/30/14 00:4	8 108-10-1	
Methyl-tert-butyl ether	ND ug/L		1.0	1		05/30/14 00:4	8 1634-04-4	

REPORT OF LABORATORY ANALYSIS

Project: City of Rochester

Pace Project No.: 10268039

Sample: DPE 2	Lab ID: 102680390	02 Collected: 05/20/1-	4 10:30	Received: 0	5/21/14 10:14 M	latrix: Water	
Parameters	Results Uni	ts Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 VOC	Analytical Method: EP	A 8260					
Acetone	ND ug/L	20.0	1		05/30/14 01:1 1	67-64-1	
Allyl chloride	ND ug/L	4.0	1		05/30/14 01:11	107-05-1	
Benzene	ND ug/L	1.0	1		05/30/14 01:11	71-43-2	
Bromobenzene	ND ug/L	1.0	1		05/30/14 01:11	108-86-1	
Bromochloromethane	ND ug/L	1.0	1		05/30/14 01:11	74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		05/30/14 01:11	75-27-4	
Bromoform	ND ug/L	4.0	1		05/30/14 01:11	75-25-2	
Bromomethane	ND ug/L	4.0	1		05/30/14 01:11	74-83-9	
2-Butanone (MEK)	ND ug/L	5.0	1		05/30/14 01:11	78-93-3	
n-Butylbenzene	ND ug/L	1.0	1		05/30/14 01:11	104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1		05/30/14 01:11	135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1		05/30/14 01:11	98-06-6	
Carbon tetrachloride	ND ug/L	1.0	1		05/30/14 01:11	56-23-5	
Chlorobenzene	ND ug/L	1.0	1		05/30/14 01:11	108-90-7	
Chloroethane	ND ug/L	1.0	1		05/30/14 01:11	75-00-3	
Chloroform	ND ug/L	1.0	1		05/30/14 01:11	67-66-3	
Chloromethane	ND ug/L	4.0	1		05/30/14 01:11	74-87-3	
2-Chlorotoluene	ND ug/L	1.0	1		05/30/14 01:11	95-49-8	
4-Chlorotoluene	ND ug/L	1.0	1		05/30/14 01:11	106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	4.0	1		05/30/14 01:11	96-12-8	
Dibromochloromethane	ND ug/L	1.0	1		05/30/14 01:11	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		05/30/14 01:11	106-93-4	
Dibromomethane	ND ug/L	4.0	1		05/30/14 01:11	74-95-3	
1,2-Dichlorobenzene	ND ug/L	1.0	1		05/30/14 01:11	95-50-1	
1,3-Dichlorobenzene	ND ug/L	1.0	1		05/30/14 01:11	541-73-1	
1,4-Dichlorobenzene	ND ug/L	1.0	1		05/30/14 01:11	106-46-7	
Dichlorodifluoromethane	ND ug/L	1.0	1		05/30/14 01:11	75-71-8	
1,1-Dichloroethane	ND ug/L	1.0	1		05/30/14 01:11	75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	1		05/30/14 01:11	107-06-2	
1,1-Dichloroethene	1.4 ug/L	1.0	1		05/30/14 01:11	75-35-4	
cis-1,2-Dichloroethene	1 1.0 ug/L	1.0	1		05/30/14 01:11	156-59-2	
trans-1,2-Dichloroethene	ND ug/L	1.0	1		05/30/14 01:11	156-60-5	
Dichlorofluoromethane	ND ug/L	1.0	1		05/30/14 01:11	75-43-4	
1,2-Dichloropropane	ND ug/L	4.0	1		05/30/14 01:11	78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1		05/30/14 01:11	142-28-9	
2,2-Dichloropropane	ND ug/L	4.0	1		05/30/14 01:11	594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1		05/30/14 01:11	563-58-6	
cis-1,3-Dichloropropene	ND ug/L	4.0	1		05/30/14 01:11	10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	4.0	1		05/30/14 01:11	10061-02-6	
Diethyl ether (Ethyl ether)	ND ug/L	4.0	1		05/30/14 01:11	60-29-7	
Ethylbenzene	ND ug/L	1.0	1		05/30/14 01:11	100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		05/30/14 01:11	87-68-3	
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		05/30/14 01: 11	98-82-8	
p-Isopropyltoluene	ND ug/L	1.0	1		05/30/14 01:1 1	99-87-6	
Methylene Chloride	ND ug/L	4.0	1		05/30/14 01:1 1	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	5.0	1		05/30/14 01:11	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1		05/30/14 01:11	1634-04-4	

REPORT OF LABORATORY ANALYSIS

Date: 06/02/2014 05:11 PM

Project: City of Rochester

Pace Project No.: 10268039

Sample: DPE 3	Lab ID: 102680	39003	Collected: 05/20/1	4 11:00	Received: 0	5/21/14 10:14 M	atrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 VOC	Analytical Method	: EPA 82	60					
Acetone	ND ug/L		20.0	1		05/30/14 02:45	67-64-1	
Allyl chloride	ND ug/L		4.0	1		05/30/14 02:45	107-05-1	
Benzene	ND ug/L		1.0	1		05/30/14 02:45	71-43-2	
Bromobenzene	ND ug/L		1.0	1		05/30/14 02:45	108-86-1	
Bromochloromethane	ND ug/L		1.0	1		05/30/14 02:45	74-97-5	
Bromodichloromethane	ND ug/L		1.0	1		05/30/14 02:45	75-27-4	
Bromoform	ND ug/L		4.0	1		05/30/14 02:45	75-25-2	
Bromomethane	ND ug/L		4.0	1		05/30/14 02:45	74-83-9	
2-Butanone (MEK)	ND ug/L		5.0	1		05/30/14 02:45	78-93-3	
n-Butylbenzene	ND ug/L		1.0	1		05/30/14 02:45	104-51-8	
sec-Butylbenzene	ND ug/L		1.0	1		05/30/14 02:45	135-98-8	
tert-Butylbenzene	ND ug/L		1.0	1		05/30/14 02:45	98-06-6	
Carbon tetrachloride	ND ug/L		1.0	1		05/30/14 02:45	56-23-5	
Chlorobenzene	ND ug/L		1.0	1		05/30/14 02:45	108-90-7	
Chloroethane	ND ug/L		1.0	1		05/30/14 02:45	75-00-3	
Chloroform	15.7 ug/L		1.0	1		05/30/14 02:45	67-66-3	
Chloromethane	ND ug/L		4.0	1		05/30/14 02:45	74-87-3	
2-Chlorotoluene	2.3 ug/L		1.0	1		05/30/14 02:45	95-49-8	
4-Chlorotoluene	ND ug/L		1.0	1		05/30/14 02:45	106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L		4.0	1		05/30/14 02:45	96-12-8	
Dibromochloromethane	ND ug/L		1.0	1		05/30/14 02:45	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L		1.0	1		05/30/14 02:45	106-93-4	
Dibromomethane	ND ug/L		4.0	1		05/30/14 02:45	74-95-3	
1,2-Dichlorobenzene	ND ug/L		1.0	1		05/30/14 02:45	95-50-1	
1,3-Dichlorobenzene	ND ug/L		1.0	1		05/30/14 02:45	541-73-1	
1,4-Dichlorobenzene	ND ug/L		1.0	1		05/30/14 02:45	106-46-7	
Dichlorodifluoromethane	ND ug/L		1.0	1		05/30/14 02:45	75-71-8	
1,1-Dichloroethane	1.0 ug/L		1.0	1		05/30/14 02:45	75-34-3	
1,2-Dichloroethane	ND ug/L		1.0	1		05/30/14 02:45	107-06-2	
1,1-Dichloroethene	13.5 ug/L		1.0	1		05/30/14 02:45	75-35-4	
cis-1,2-Dichloroethene	124 ug/L		1.0	1		05/30/14 02:45	156-59-2	
trans-1,2-Dichloroethene	ND ug/L		1.0	1		05/30/14 02:45	156-60-5	
Dichlorofluoromethane	ND ug/L		1.0	1		05/30/14 02:45	75-43-4	
1,2-Dichloropropane	11.3 ug/L		4.0	1		05/30/14 02:45	78-87-5	
1,3-Dichloropropane	ND ug/L		1.0	1		05/30/14 02:45	142-28-9	
2,2-Dichloropropane	ND ug/L		4.0	1		05/30/14 02:45	594-20-7	
1,1-Dichloropropene	ND ug/L		1.0	1		05/30/14 02:45	563-58-6	
cis-1,3-Dichloropropene	ND ug/L		4.0	1		05/30/14 02:45	10061-01-5	
trans-1,3-Dichloropropene	ND ug/L		4.0	1		05/30/14 02:45	10061-02-6	
Diethyl ether (Ethyl ether)	ND ug/L		4.0	1		05/30/14 02:45	60-29-7	
Ethylbenzene	ND ug/L		1.0	1		05/30/14 02:45	100-41-4	
Hexachloro-1,3-butadiene	ND ug/L		1.0	1		05/30/14 02:45	87-68-3	
Isopropylbenzene (Cumene)	ND ua/L		1.0	1		05/30/14 02:45	98-82-8	
p-lsopropyltoluene	ND ua/L		1.0	1		05/30/14 02:45	99-87-6	
Methylene Chloride	ND ua/L		4.0	1		05/30/14 02:45	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L		5.0	1		05/30/14 02:45	108-10-1	
Methyl-tert-butyl ether	ND ug/L		1.0	1		05/30/14 02:45	1634-04-4	

REPORT OF LABORATORY ANALYSIS

Project: City of Rochester

Pace Project No.: 10268039

Sample: DPE 4	Lab ID: 1026803900	4 Collected: 05/20/14	11:30	Received: 05/21/14 10:14 Ma	atrix: Water
Parameters	Results Units	Report Limit	DF	Prepared Analyzed	CAS No. Qual
8260 VOC	Analytical Method: EPA	8260			
Acetone	ND ug/L	1000	50	05/30/14 19:23	67-64-1
Allyl chloride	ND ug/L	200	50	05/30/14 19:23	107-05-1
Benzene	ND ug/L	50.0	50	05/30/14 19:23	71-43-2
Bromobenzene	ND ug/L	50.0	50	05/30/14 19:23	108-86-1
Bromochloromethane	ND ug/L	50.0	50	05/30/14 19:23	74-97-5
Bromodichloromethane	ND ug/L	50.0	50	05/30/14 19:23	75-27-4
Bromoform	ND ug/L	200	50	05/30/14 19:23	75-25 - 2
Bromomethane	ND ug/L	200	50	05/30/14 19:23	74-83-9
2-Butanone (MEK)	ND ug/L	250	50	05/30/14 19:23	78-93-3
n-Butylbenzene	ND ug/L	50.0	50	05/30/14 19:23	104-51-8
sec-Butylbenzene	ND ug/L	50.0	50	05/30/14 19:23	135-98-8
tert-Butylbenzene	ND ug/L	50.0	50	05/30/14 19:23	98-06-6
Carbon tetrachloride	ND ug/L	50.0	50	05/30/14 19:23	56-23-5
Chlorobenzene	ND ug/L	50.0	50	05/30/14 19:23	108-90-7
Chloroethane	ND ug/L	50.0	50	05/30/14 19:23	75-00-3
Chloroform	ND ug/L	50.0	50	05/30/14 19:23	67-66-3
Chloromethane	ND ug/L	200	50	05/30/14 19:23	74-87-3
2-Chlorotoluene	ND ug/L	50.0	50	05/30/14 19:23	95-49-8
4-Chlorotoluene	ND ug/L	50.0	50	05/30/14 19:23	106-43-4
1,2-Dibromo-3-chloropropane	ND ug/L	200	50	05/30/14 19:23	96-12-8
Dibromochloromethane	ND ug/L	50.0	50	05/30/14 19:23	124-48-1
1,2-Dibromoethane (EDB)	ND ug/L	50.0	50	05/30/14 19:23	106-93-4
Dibromomethane	ND ug/L	200	50	05/30/14 19:23	74-95-3
1,2-Dichlorobenzene	ND ug/L	50.0	50	05/30/14 19:23	95-50-1
1,3-Dichlorobenzene	ND ug/L	50.0	50	05/30/14 19:23	541-73-1
1,4-Dichlorobenzene	ND ug/L	50.0	50	05/30/14 19:23	106-46-7
Dichlorodifluoromethane	ND ug/L	50.0	50	05/30/14 19:23	75-71-8
1,1-Dichloroethane	NĐ ug/L	50.0	50	05/30/14 19:23	75-34-3
1,2-Dichloroethane	ND ug/L	50.0	50	05/30/14 19:23	107-06 - 2
1,1-Dichloroethene	ND ug/L	50.0	50	05/30/14 19:23	75-35-4
cis-1,2-Dichloroethene	ND ug/L	50.0	50	05/30/14 19:23	156-59-2
trans-1,2-Dichloroethene	ND ug/L	50.0	50	05/30/14 19:23	156-60-5
Dichlorofluoromethane	ND ug/L	50.0	50	05/30/14 19:23	75-43-4
1,2-Dichloropropane	ND ug/L	200	50	05/30/14 19:23	78-87-5
1,3-Dichloropropane	ND ug/L	50.0	50	05/30/14 19:23	142-28-9
2,2-Dichloropropane	ND ug/L	200	50	05/30/14 19:23	594-20-7
1,1-Dichloropropene	ND ug/L	50.0	50	05/30/14 19:23	563-58-6
cis-1,3-Dichloropropene	ND ug/L	200	50	05/30/14 19:23	10061-01-5
trans-1,3-Dichloropropene	ND ug/L	200	50	05/30/14 19:23	10061-02 - 6
Diethyl ether (Ethyl ether)	ND ug/L	200	50	05/30/14 19:23	60-29-7
Ethylbenzene	ND ug/L	50.0	50	05/30/14 19:23	100-41-4
Hexachloro-1,3-butadiene	ND ug/L	50.0	50	05/30/14 19:23	87-68-3
Isopropylbenzene (Cumene)	ND ug/L	50.0	50	05/30/14 19:23	98-82-8
p-isopropyltoluene	ND ug/L	50.0	50	05/30/14 19:23	99-87-6
Methylene Chloride	ND ug/L	200	50	05/30/14 19:23	75-09-2
4-ivietnyi-2-pentanone (MIBK)	ND ug/L	250	50	05/30/14 19:23	108-10-1
ivietnyi-tert-butyi ether	ND ug/L	50.0	50	05/30/14 19:23	1634-04-4

REPORT OF LABORATORY ANALYSIS

Date: 06/02/2014 05:11 PM

.

Project: City of Rochester

Pace Project No.: 10268039

Sample: DPE 5	Lab ID: 1	Lab ID: 10268039005 Collected: 05/20/14 12:00		Received: 05/21/14 10:14 Matrix: Water					
Parameters	Results	Units	Rep	oort Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 VOC	Analytical M	1ethod: EPA 82	60						
Acetone	ND	ug/L		20.0	1		05/30/14 13:50	67-64-1	
Allyl chloride	ND	ug/L		4.0	1		05/30/14 13:50	107-05-1	
Benzene	ND	ug/L		1.0	1		05/30/14 13:50	71-43-2	
Bromobenzene	ND	ug/L		1.0	1		05/30/14 13:50	108-86-1	
Bromochloromethane	ND	ug/L		1.0	1		05/30/14 13:50	74-97-5	
Bromodichloromethane	ND	ug/L		1.0	1		05/30/14 13:50	75-27-4	
Bromoform	ND	ug/L		4.0	1		05/30/14 13:50	75-25-2	
Bromomethane	ND	ug/L		4.0	1		05/30/14 13:50	74-83-9	
2-Butanone (MEK)	ND	ug/L		5.0	1		05/30/14 13:50	78-93-3	
n-Butylbenzene	ND	ug/L		1.0	1		05/30/14 13:50	104-51 - 8	
sec-Butylbenzene	ND	ug/L		1.0	1		05/30/14 13:50	135-98-8	
tert-Butylbenzene	ND	ug/L		1.0	1		05/30/14 13:50	98-06-6	
Carbon tetrachloride	ND	ug/L		1.0	1		05/30/14 13:50	56-23-5	
Chlorobenzene	ND	ug/L		1.0	1		05/30/14 13:50	108-90-7	
Chloroethane	ND	ug/L		1.0	1		05/30/14 13:50	75-00-3	
Chloroform	ND	ug/L		1.0	1		05/30/14 13:50	67-66-3	
Chloromethane	ND	ug/L		4.0	1		05/30/14 13:50	74-87-3	
2-Chlorotoluene	ND	ug/L		1.0	1		05/30/14 13:50	95-49-8	
4-Chlorotoluene	ND	ug/L		1.0	1		05/30/14 13:50	106-43-4	
1,2-Dibromo-3-chloropropane	ND	ug/L		4.0	1		05/30/14 13:50	96-12-8	
Dibromochloromethane	ND	ug/L		1.0	1		05/30/14 13:50	124-48-1	
1,2-Dibromoethane (EDB)	ND	ug/L		1.0	1		05/30/14 13:50	106-93-4	
Dibromomethane	ND	ug/L		4.0	1		05/30/14 13:50	74-95-3	
1,2-Dichlorobenzene	ND	ug/L		1.0	1		05/30/14 13:50	95-50-1	
1,3-Dichlorobenzene	ND	ug/L		1.0	1		05/30/14 13:50	541-73-1	
1,4-Dichlorobenzene	ND	ug/L		1.0	1		05/30/14 13:50	106-46-7	
Dichlorodifluoromethane	ND	ug/L		1.0	1		05/30/14 13:50	75-71-8	
1,1-Dichloroethane	ND	ug/L		1.0	1		05/30/14 13:50	75-34-3	
1,2-Dichloroethane	ND	ug/L		1.0	1		05/30/14 13:50	107-06-2	
1,1-Dichloroethene	ND	ug/L		1.0	1		05/30/14 13:50	75-35-4	
cis-1,2-Dichloroethene	ND	ug/L		1.0	1		05/30/14 13:50	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L		1.0	1		05/30/14 13:50	156-60-5	
Dichlorofluoromethane	ND	ug/L		1.0	1		05/30/14 13:50	75-43-4	
1,2-Dichloropropane	ND	ug/L		4.0	1		05/30/14 13:50	78-87-5	
1,3-Dichloropropane	ND	ug/L		1.0	1		05/30/14 13:50	142-28-9	
2,2-Dichloropropane	ND	ug/L		4.0	1		05/30/14 13:50	594-20 - 7	
1,1-Dichloropropene	ND	ug/L		1.0	1		05/30/14 13:50	563-58-6	
cis-1,3-Dichloropropene	ND	ug/L		4.0	1		05/30/14 13:50	10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L		4.0	1		05/30/14 13:50	10061-02-6	
Diethyl ether (Ethyl ether)	ND	ug/L		4.0	1		05/30/14 13:50	60-29-7	
Ethylbenzene	ND	ug/L		1.0	1		05/30/14 13:50	100-41-4	
Hexachloro-1,3-butadiene	ND	ug/L		1.0	1		05/30/14 13:50	87-68-3	
Isopropylbenzene (Cumene)	ND	ug/L		1.0	1		05/30/14 13:50	98-82-8	
p-Isopropyitoluene	ND	ug/L		1.0	1		05/30/14 13:50	99-87-6	
Methylene Chloride	ND	ug/L		4.0	1		05/30/14 13:50	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L		5.0	1		05/30/14 13:50	108-10-1	
Methyl-tert-butyl ether	ND	ug/L		1.0	1		05/30/14 13:50	1634-04-4	

REPORT OF LABORATORY ANALYSIS

,

ANALYTICAL RESULTS

Project: City of Rochester

Pace Project No.: 10268039

Sample: DPE 6	Lab ID: 1026803900	6 Collected: 05/20/14 12:3	0 Received: 05/21/14 10:14 Matrix: Water
Parameters	Results Units	Report Limit DF	Prepared Analyzed CAS No. Qual
8260 VOC	Analytical Method: EPA	8260	
Acetone	ND ug/L	20.0 1	05/30/14 14:14 67-64-1
Allyl chloride	ND ug/L	4.0 1	05/30/14 14:14 107-05-1
Benzene	ND ug/L	1.0 1	05/30/14 14:14 71-43-2
Bromobenzene	ND ug/L	1.0 1	05/30/14 14:14 108-86-1
Bromochloromethane	ND ug/L	1.0 1	05/30/14 14:14 74-97-5
Bromodichloromethane	ND ug/L	1.0 1	05/30/14 14:14 75-27-4
Bromoform	ND ug/L	4.0 1	05/30/14 14:14 75-25-2
Bromomethane	ND ug/L	4.0 1	05/30/14 14:14 74-83-9
2-Butanone (MEK)	ND ug/L	5.0 1	05/30/14 14:14 78-93-3
n-Butylbenzene	ND ug/L	1.0 1	05/30/14 14:14 104-51-8
sec-Butylbenzene	ND ug/L	1.0 1	05/30/14 14:14 135-98-8
tert-Butylbenzene	ND ug/L	1.0 1	05/30/14 14:14 98-06-6
Carbon tetrachloride	ND ug/L	1.0 1	05/30/14 14:14 56-23-5
Chlorobenzene	ND ug/L	1.0 1	05/30/14 14:14 108-90-7
Chloroethane	ND ug/L	1.0 1	05/30/14 14:14 75-00-3
Chloroform	ND ug/L	1.0 1	05/30/14 14:14 67-66-3
Chloromethane	ND ug/L	4.0 1	05/30/14 14:14 74-87-3
2-Chlorotoluene	ND ug/L	1.0 1	05/30/14 14:14 95-49-8
4-Chlorotoluene	ND ug/L	1.0 1	05/30/14 14:14 106-43-4
1,2-Dibromo-3-chloropropane	ND ug/L	4.0 1	05/30/14 14:14 96-12-8
Dibromochloromethane	ND ug/L	1.0 1	05/30/14 14:14 124-48-1
1,2-Dibromoethane (EDB)	ND ug/L	1.0 1	05/30/14 14:14 106-93-4
Dibromomethane	ND ug/L	4.0 1	05/30/14 14:14 74-95-3
1,2-Dichlorobenzene	ND ug/L	1.0 1	05/30/14 14:14 95-50-1
1,3-Dichlorobenzene	ND ug/L	1.0 1	05/30/14 14:14 541-73-1
1,4-Dichlorobenzene	ND ug/L	1.0 1	05/30/14 14:14 106-46-7
Dichlorodifluoromethane	ND ug/L	1.0 1	05/30/14 14:14 75-71-8
1,1-Dichloroethane	ND ug/L	1.0 1	05/30/14 14:14 75-34-3
1,2-Dichloroethane	ND ug/L	1.0 1	05/30/14 14:14 107-06-2
1,1-Dichloroethene	ND ug/L	1.0 1	05/30/14 14:14 75-35-4
cis-1,2-Dichloroethene	ND ug/L	1.0 1	05/30/14 14:14 156-59-2
trans-1,2-Dichloroethene	ND ug/L	1.0 1	05/30/14 14:14 156-60-5
Dichlorofluoromethane	ND ug/L	1.0 1	05/30/14 14:14 75-43-4
1,2-Dichloropropane	ND ug/L	4.0 1	05/30/14 14:14 78-87-5
1,3-Dichloropropane	ND ug/L	1.0 1	05/30/14 14:14 142-28-9
2,2-Dichloropropane	ND ug/L	4.0 1	05/30/14 14:14 594-20-7
1,1-Dichloropropene	ND ug/L	1.0 1	05/30/14 14:14 563-58-6
cis-1,3-Dichloropropene	ND ug/L	4.0 1	05/30/14 14:14 10061-01-5
trans-1,3-Dichloropropene	ND ug/L	4.0 1	05/30/14 14:14 10061-02-6
Diethyl ether (Ethyl ether)	ND ug/L	4.0 1	05/30/14 14:14 60-29-7
Ethylbenzene	ND ug/L	1.0 1	05/30/14 14:14 100-41-4
Hexachloro-1,3-butadiene	ND ug/L	1.0 1	05/30/14 14:14 87-68-3
Isopropylbenzene (Cumene)	ND ug/L	1.0 1	05/30/14 14:14 98-82-8
p-lsopropyltoluene	ND ug/L	1.0 1	05/30/14 14:14 99-87-6
Methylene Chloride	ND ug/L	4.0 1	05/30/14 14:14 75-09-2
4-Methyl-2-pentanone (MIBK)	ND ug/L	5.0 1	05/30/14 14:14 108-10-1
Methyl-tert-butyl ether	ND ug/L	1.0 1	05/30/14 14:14 1634-04-4

REPORT OF LABORATORY ANALYSIS

Project: City of Rochester

1 10,000.	ony of Rooncator
Pace Project No.:	10268039

Sample: DPE 7	Lab ID: 1026803900	7 Collected: 05/20/1	Collected: 05/20/14 13:00		Received: 05/21/14 10:14 Matrix: Wate		
Parameters	Results Unit	s Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 VOC	Analytical Method: EPA	8260					
Acetone	ND ua/L	20.0	1		05/30/14 14:37	67-64-1	
Allvl chloride	ND ug/L	4.0	1		05/30/14 14:37	107-05-1	
Benzene	ND ug/l	1.0	1		05/30/14 14 37	71-43-2	
Bromobenzene	ND ug/	1.0	1		05/30/14 14:37	108-86-1	
Bromochloromethane		10	1		05/30/14 14:37	74-97-5	
Bromodichloromethane	ND ug/L	10	1		05/30/14 14:37	75-27-4	
Bromoform		4.0	1		05/30/14 14:37	75-25-2	
Bromomethane	ND ug/l	4.0	1		05/30/14 14:37	74-83-9	
2-Butanone (MEK)	ND ug/	4.0 5.0	1		05/30/14 14:37	78-93-3	
p-Butylbenzene	ND ug/L	1.0	1		05/30/14 14:37	104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1		05/30/14 14:37	135-08-8	
tert-Butylbenzene	ND ug/L	1.0	1		05/30/14 14:37	98-06-6	
Carbon tetrachloride	ND ug/L	1.0	1		05/30/14 14:37	56-23-5	
Chlorobenzene	ND ug/L	1.0	1		05/30/14 14:37	108.00.7	
Chloroethane	ND ug/L	1.0	1		05/30/14 14:37	75-00-3	
Chloroform		1.0	1		05/30/14 14:37	67 66 3	
Chloromothana		1.0	1		05/30/14 14.37	74 97 2	
		4.0	1		05/30/14 14.37	14-01-3	
4 Chlorotoluono		1.0	1		05/30/14 14.37	90-49-0 106 42 4	
4 - Childrono Coluene		1.0	1		05/30/14 14.37	100-43-4	
Dibromochloromothono		4.0	1		05/30/14 14.37	90-12-0	
1.2 Dibromochloromethane (FDP)		1.0	1		05/30/14 14:37	124-48-1	
Disconcernations		1.0	1		05/30/14 14:37	74.05.2	
		4.0	1		05/30/14 14:37	74-95-3	
1,2-Dichlorobenzene		1.0	1		05/30/14 14:37	90-00-1	
		1.0	1		05/30/14 14:37	541-73-1	
	ND ug/L	1.0	1		05/30/14 14:37	106-46-7	
Dicniorodifiuoromethane	ND ug/L	1.0	1		05/30/14 14:37	/5-/1-8	
1,1-Dichloroethane	ND ug/L	1.0	1		05/30/14 14:37	75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	1		05/30/14 14:37	107-06-2	
1,1-Dichloroethene	ND ug/L	1.0	1		05/30/14 14:37	75-35-4	
cis-1,2-Dichloroethene	ND ug/L	1.0	1		05/30/14 14:37	156-59 - 2	
trans-1,2-Dichloroethene	ND ug/L	1.0	1		05/30/14 14:37	156-60-5	
Dichlorofluoromethane	ND ug/L	1.0	1		05/30/14 14:37	75-43-4	
1,2-Dichloropropane	ND ug/L	4.0	1		05/30/14 14:37	78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1		05/30/14 14:37	142-28-9	
2,2-Dichloropropane	ND ug/L	4.0	1		05/30/14 14:37	594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1		05/30/14 14:37	563-58-6	
cis-1,3-Dichloropropene	ND ug/L	4.0	1		05/30/14 14:37	10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	4.0	1		05/30/14 14:37	10061-02-6	
Diethyl ether (Ethyl ether)	ND ug/L	4.0	1		05/30/14 14:37	60-29-7	
Ethylbenzene	ND ug/L	1.0	1		05/30/14 14:37	100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		05/30/14 14:37	87-68-3	
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		05/30/14 14:37	98-82-8	
p-lsopropyltoluene	ND ug/L	1.0	1		05/30/14 14:37	99-87-6	
Methylene Chloride	ND ug/L	4.0	1		05/30/14 14:37	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	5.0	1		05/30/14 14:37	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1		05/30/14 14:37	1634-04-4	

REPORT OF LABORATORY ANALYSIS

Project: City of Rochester

Pace Project No.: 10268039

Sample: DPE 8	Lab ID: 102680390	08 Collected: 05/20/14 13	3:30 Received: 05/21/14 10:14 Matrix: Water
Parameters	Results Uni	ts Report Limit DF	F Prepared Analyzed CAS No. Qual
8260 VOC	Analytical Method: EP	A 8260	
Acetone	ND ug/L	20.0 1	05/30/14 04:42 67-64-1
Allyl chloride	ND ug/L	4.0 1	05/30/14 04:42 107-05-1
Benzene	ND ug/L	1.0 1	05/30/14 04:42 71-43-2
Bromobenzene	ND ug/L	1.0 1	05/30/14 04:42 108-86-1
Bromochloromethane	ND ug/L	1.0 1	05/30/14 04:42 74-97-5
Bromodichloromethane	ND ug/L	1.0 1	05/30/14 04:42 75-27-4
Bromoform	ND ug/L	4.0 1	05/30/14 04:42 75-25-2
Bromomethane	ND ug/L	4.0 1	05/30/14 04:42 74-83-9
2-Butanone (MEK)	ND ug/L	5.0 1	05/30/14 04:42 78-93-3
n-Butylbenzene	ND ug/L	1,0 1	05/30/14 04:42 104-51-8
sec-Butylbenzene	ND ug/L	1.0 1	05/30/14 04:42 135-98-8
tert-Butylbenzene	ND ug/L	1.0 1	05/30/14 04:42 98-06-6
Carbon tetrachloride	ND ug/L	1.0 1	05/30/14 04:42 56-23-5
Chlorobenzene	ND ug/L	1.0 1	05/30/14 04:42 108-90-7
Chloroethane	ND ug/L	1.0 1	05/30/14 04:42 75-00-3
Chloroform	ND ug/L	1.0 1	05/30/14 04:42 67-66-3
Chloromethane	ND ug/L	4.0 1	05/30/14 04:42 74-87-3
2-Chlorotoluene	ND ug/L	· 1.0 1	1 05/30/14 04:42 95-49-8
4-Chlorotoluene	ND ug/L	1.0 1	1 05/30/14 04:42 106-43-4
1,2-Dibromo-3-chloropropane	ND ug/L	4.0 1	05/30/14 04:42 96-12-8
Dibromochloromethane	ND ug/L	1.0 1	1 05/30/14 04:42 124-48-1
1,2-Dibromoethane (EDB)	ND ug/L	1.0 1	1 05/30/14 04:42 106-93-4
Dibromomethane	ND ug/L	4.0 1	1 05/30/14 04:42 74-95-3
1,2-Dichlorobenzene	ND ug/L	1.0 1	1 05/30/14 04:42 95-50-1
1,3-Dichlorobenzene	ND ug/L	1.0 1	1 05/30/14 04:42 541-73-1
1,4-Dichlorobenzene	ND ug/L	1.0 1	1 05/30/14 04:42 106-46-7
Dichlorodifluoromethane	ND ug/L	1.0 1	1 05/30/14 04:42 75-71-8
1,1-Dichloroethane	ND ug/L	1.0 1	1 05/30/14 04:42 75-34-3
1,2-Dichloroethane	ND ug/L	1.0 1	1 05/30/14 04:42 107-06-2
1,1-Dichloroethene	ND ug/L	1.0 1	1 05/30/14 04:42 75-35-4
cis-1,2-Dichloroethene	1.7 ug/L	1.0 1	1 05/30/14 04:42 156-59-2
trans-1,2-Dichloroethene	ND ug/L	1.0 1	1 05/30/14 04:42 156-60-5
Dichlorofluoromethane	ND ug/L	1.0 1	1 05/30/14 04:42 75-43-4
1,2-Dichloropropane	ND ug/L	4.0 1	1 05/30/14 04:42 78-87-5
1,3-Dichloropropane	ND ug/L	1.0 1	1 05/30/14 04:42 142-28-9
2,2-Dichloropropane	ND ug/L	4.0 1	1 05/30/14 04:42 594-20-7
1,1-Dichloropropene	ND ug/L	1.0 1	1 05/30/14 04:42 563-58-6
cis-1,3-Dichloropropene	ND ug/L	4.0 1	1 05/30/14 04:42 10061-01-5
trans-1,3-Dichloropropene	ND ug/L	4.0 1	1 05/30/14 04:42 10061-02-6
Diethyl ether (Ethyl ether)	ND ug/L	4.0 1	1 05/30/14 04:42 60-29-7
Ethylbenzene	ND ug/L	1.0 1	1 05/30/14 04:42 100-41-4
Hexachloro-1,3-butadiene	ND ug/L	1 .0 1	1 05/30/14 04:42 87-68-3
Isopropylbenzene (Cumene)	ND ug/L	1.0 1	1 05/30/14 04:42 98-82-8
p-lsopropyltoluene	ND ug/L	1.0 1	1 05/30/14 04:42 99-87-6
Methylene Chloride	ND ug/L	4.0 1	1 05/30/14 04:42 75-09-2
4-Methyl-2-pentanone (MIBK)	ND ug/L	5.0 1	1 05/30/14 04:42 108-10-1
Methyl-tert-butyl ether	ND ug/L	1.0 1	1 05/30/14 04:42 1634-04-4

REPORT OF LABORATORY ANALYSIS

Project: City of Rochester

Pace Project No.: 10268039					
Sample: MW14	Lab ID: 10268039009	Collected: 05/20/14 14:00	Received: 05/21/14 10:14 M	atrix: Water	
Parameters	Results Units	Report Limit DF	Prepared Analyzed	CAS No. Qual	
8260 VOC	Analytical Method: EPA	3260			
Acetone	ND ug/L	20.0 1	05/30/14 15:01	67-64-1	
Allyl chloride	ND ug/L	4.0 1	05/30/14 15:01	107-05-1	
Benzene	ND ug/L	1.0 1	05/30/14 15:01	71-43-2	
Bromobenzene	ND ug/L	1.0 1	05/30/14 15:01	108-86-1	
Bromochloromethane	ND ug/L	1.0 1	05/30/14 15:01	74-97-5	
Bromodichloromethane	ND ug/L	1.0 1	05/30/14 15:01	75-27-4	
Bromoform	ND ug/L	4.0 1	05/30/14 15:01	75-25-2	
Bromomethane	ND ug/L	4.0 1	05/30/14 15:01	74-83-9	
2-Butanone (MEK)	ND ug/L	5.0 1	05/30/14 15:01	78-93-3	
n-Butylbenzene	ND ug/L	1.0 1	05/30/14 15:01	104-51-8	
sec-Butylbenzene	ND ug/L	1.0 1	05/30/14 15:01	135-98-8	
tert-Butylbenzene	ND ug/L	1.0 1	05/30/14 15:01	98-06-6	
Carbon tetrachloride	ND ug/L	1.0 1	05/30/14 15:01	56-23-5	
Chlorobenzene	ND ug/L	1.0 1	05/30/14 15:01	108-90-7	
Chloroethane	ND ug/L	1.0 1	05/30/14 15:01	75-00-3	
Chloroform	1.9 ug/L	1.0 1	05/30/14 15:01	67-66-3	
Chloromethane	ND ug/L	4.0 1	05/30/14 15:01	74-87-3	
2-Chlorotoluene	ND ug/L	1.0 1	05/30/14 15:01	95-49-8	
4-Chlorotoluene	ND ug/L	1.0 1	05/30/14 15:01	106-43-4	
1.2-Dibromo-3-chloropropane	ND ug/L	4.0 1	05/30/14 15:01	96-12-8	
Dibromochloromethane	ND ug/L	1.0 1	05/30/14 15:01	124-48-1	
1.2-Dibromoethane (EDB)	ND ug/L	1.0 1	05/30/14 15:01	106-93-4	
Dibromomethane	ND ug/L	4.0 1	05/30/14 15:01	74-95-3	
1.2-Dichlorobenzene	ND ug/L	1.0 1	05/30/14 15:01	95-50-1	
1.3-Dichlorobenzene	ND ug/L	1.0 1	05/30/14 15:01	541-73-1	
1.4-Dichlorobenzene	ND ug/L	1.0 1	05/30/14 15:01	106-46-7	
Dichlorodifluoromethane	ND ug/l	1.0 1	05/30/14 15:01	75-71-8	
1.1-Dichloroethane	ND ug/L	1.0 1	05/30/14 15:01	75-34-3	
1 2-Dichloroethane	ND ug/L	10 1	05/30/14 15:01	107-06-2	
1.1-Dichloroethene	ND ug/l	1.0 1	05/30/14 15:01	75-35-4	
cis-1 2-Dichloroethene		10 1	05/30/14 15:01	156-59-2	
trans-1 2-Dichloroethene		1.0 1	05/30/14 15:01	156-60-5	
Dichlorofluoromethane		1.0 1	05/30/14 15:01	75-43-4	
1.2-Dichloropropane	ND ug/L	40 1	05/30/14 15:01	78-87-5	
1.3-Dichloropropane	ND ug/L	10 1	05/30/14 15:01	142-28-9	
2 2-Dichloropropane		40 1	05/30/14 15:01	594-20-7	
1 1-Dichloropropene		10 1	05/30/14 15:01	563-58-6	
cis-1.3-Dichloropropene	ND ug/L	40 1	05/30/14 15:01	10061-01-5	
trans-1.3-Dichloropropene		4.0 1	05/30/14 15:01	10061-02-6	
Diethyl ether (Ethyl ether)	ND ug/L	4.0 1	05/30/14 15:01	60-29-7	
Ethylbenzene	ND ug/L	4.0 7	05/30/14 15:01	100-41-4	
Hexachloro-1 3-butadiene	ND ug/L	1.0 1	05/30/14 15:01	87-68-3	
Isopropylbenzene (Cumene)		1.0 1	05/30/14 15:01	08-82-8	
p-lsopropylbonzone (oumene)		1.0 1	05/30/14 15:01	99-87-6	
Methylene Chloride			05/30/14 15:01	75-00-2	
A.Methyl-2-pentapone (MIRK)		4.0 I 5.0 1	05/30/14 15:01	108-10-1	
Methyl-tert-butyl ether	ND ug/L	10 1	05/30/14 15:01	1634-04-4	
Mony-ton-butyr culor	ND Ugre		00/00/14 10:01		

REPORT OF LABORATORY ANALYSIS

Project: City of Rochester

Pace Project No.: 10268039

Sample: MW15	Lab ID: 102680	39010 Collected: 05/20/	14 14:30	Received: 05	5/21/14 10:14 M	atrix: Water	
Parameters	Results	Units Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 VOC	Analytical Method:	EPA 8260					
Acetone	ND ug/L	20.0	1		05/30/14 15:24	67-64-1	
Allyl chloride	ND ug/L	4.0	1		05/30/14 15:24	107-05-1	
Benzene	ND ug/L	1.0	1		05/30/14 15:24	71-43-2	
Bromobenzene	ND ug/L	1.0	1		05/30/14 15:24	108-86-1	
Bromochloromethane	ND ug/L	1.0	1		05/30/14 15:24	74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		05/30/14 15:24	75-27-4	
Bromoform	ND ug/L	4.0	1		05/30/14 15:24	75-25-2	
Bromomethane	ND ug/L	4.0	1		05/30/14 15:24	74-83-9	
2-Butanone (MEK)	ND ug/L	5.0	1		05/30/14 15:24	78-93-3	
n-Butylbenzene	ND ug/L	1.0	1		05/30/14 15:24	104-5 1- 8	
sec-Butylbenzene	ND ug/L	1.0	1		05/30/14 15:24	135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1		05/30/14 15:24	98-06-6	
Carbon tetrachloride	ND ug/L	1.0	1		05/30/14 15:24	56-23-5	
Chlorobenzene	ND ug/L	1.0	1		05/30/14 15:24	108-90-7	
Chloroethane	ND ug/L	1.0	1		05/30/14 15:24	75 - 00-3	
Chloroform	ND ug/L	1.0	1		05/30/14 15:24	67-66-3	
Chloromethane	ND ug/L	4.0	1		05/30/14 15:24	74-87-3	
2-Chlorotoluene	ND ug/L	1.0	1		05/30/14 15:24	95-49-8	
4-Chlorotoluene	ND ug/L	1.0	1		05/30/14 15:24	106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	4.0	1		05/30/14 15:24	96-12-8	
Dibromochloromethane	ND ug/L	1.0	1		05/30/14 15:24	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		05/30/14 15:24	106-93-4	
Dibromomethane	ND ug/L	4.0	1		05/30/14 15:24	74-95-3	
1,2-Dichlorobenzene	ND ug/L	1.0	1		05/30/14 15:24	95-50-1	
1,3-Dichlorobenzene	ND ug/L	1.0	1		05/30/14 15:24	541-73-1	
1,4-Dichlorobenzene	ND ug/L	1.0	1		05/30/14 15:24	106-46-7	
Dichlorodifluoromethane	ND ug/L	1.0	1		05/30/14 15:24	75-71-8	
1,1-Dichloroethane	ND ug/L	1.0	1		05/30/14 15:24	75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	1		05/30/14 15:24	107-06-2	
1,1-Dichloroethene	ND ug/L	1.0	1		05/30/14 15:24	75-35-4	
cis-1,2-Dichloroethene	ND ug/L	1.0	1		05/30/14 15:24	156-59-2	
trans-1,2-Dichloroethene	ND ug/L	1.0	1		05/30/14 15:24	156-60-5	
Dichlorofluoromethane	ND ug/L	1.0	1		05/30/14 15:24	75-43-4	
1,2-Dichloropropane	ND ug/L	4.0	1		05/30/14 15:24	78-87-5	
1,3-Dichloropropane	ND ug/L	1.0	1		05/30/14 15:24	142-28-9	
2,2-Dichloropropane	ND ug/L	4.0	1		05/30/14 15:24	594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1		05/30/14 15:24	563-58-6	
cis-1,3-Dichloropropene	ND ug/L	4.0	1		05/30/14 15:24	10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	4.0	1		05/30/14 15:24	10061-02-6	
Diethyl ether (Ethyl ether)	ND ug/L	4.0	1		05/30/14 15:24	60-29-7	
Ethylbenzene	ND ug/L	1.0	1		05/30/14 15:24	100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		05/30/14 15:24	87-68-3	
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		05/30/14 15:24	98-82-8	
p-Isopropyltoluene	ND ug/L	1.0	1		05/30/14 15:24	99-87-6	
Methylene Chloride	ND ug/L	4.0	1		05/30/14 15:24	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	5.0	1		05/30/14 15:24	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1		05/30/14 15:24	1634-04-4	

REPORT OF LABORATORY ANALYSIS

Project:

City of Rochester Pace Project No.: 10268039

Sample: MW16	Lab ID: 1020	68039011	Collected: 05/20/1	4 15:00	Received: 0	5/21/14 10:14 M	atrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 VOC	Analytical Meth	nod: EPA 82	260					
Acetone	ND ug	/L	20.0	1		05/30/14 05:53	67-64-1	
Allyl chloride	ND ug	/L	4.0	1		05/30/14 05:53	107-05-1	
Benzene	ND ug	/L	1.0	1		05/30/14 05:53	71-43-2	
Bromobenzene	ND ug	/L	1.0	1		05/30/14 05:53	108-86-1	
Bromochloromethane	ND ug	/L	1.0	1		05/30/14 05:53	74-97-5	
Bromodichloromethane	ND ug	/L	1.0	1		05/30/14 05:53	75-27-4	
Bromoform	ND ug	/L	4.0	1		05/30/14 05:53	75-25-2	
Bromomethane	ND ug	/L	4.0	1		05/30/14 05:53	74-83-9	
2-Butanone (MEK)	ND ug	/L	5.0	1		05/30/14 05:53	78-93-3	
n-Butylbenzene	ND ug	/L	1.0	1		05/30/14 05:53	104-51-8	
sec-Butylbenzene	ND ug	/L	1.0	1		05/30/14 05:53	135-98-8	
tert-Butylbenzene	ND ug	/L	1.0	1		05/30/14 05:53	98-06-6	
Carbon tetrachloride	ND ug	/L	1.0	1		05/30/14 05:53	56-23-5	
Chlorobenzene	ND ug	/L	1.0	1		05/30/14 05:53	108-90-7	
Chloroethane	ND ua	/L	1.0	1		05/30/14 05:53	75-00-3	
Chloroform	ND ug	/L	1.0	1		05/30/14 05:53	67-66-3	
Chloromethane	ND ug	/L	4.0	1		05/30/14 05:53	74-87-3	
2-Chlorotoluene	ND ug	/L	1.0	1		05/30/14 05:53	95-49-8	
4-Chlorotoluene	ND ua	/L	1.0	1		05/30/14 05:53	106-43-4	
1.2-Dibromo-3-chloropropane	ND ua	/L	4.0	1		05/30/14 05:53	96-12-8	
Dibromochloromethane	ND ug	/L	1.0	1		05/30/14 05:53	124-48-1	
1,2-Dibromoethane (EDB)	ND ug	/L	1.0	1		05/30/14 05:53	106-93-4	
Dibromomethane	ND ug	/L	4.0	1		05/30/14 05:53	74-95-3	
1.2-Dichlorobenzene	ND ug	/L	1.0	1		05/30/14 05:53	95-50-1	
1.3-Dichlorobenzene	ND ug	/L	1.0	1		05/30/14 05:53	541-73-1	
1,4-Dichlorobenzene	ND ug	/L	1.0	1		05/30/14 05:53	106-46-7	
Dichlorodifluoromethane	ND ug	i/L	1.0	1		05/30/14 05:53	75-71-8	
1.1-Dichloroethane	ND uc		1.0	1		05/30/14 05:53	75-34-3	
1,2-Dichloroethane	ND ug	I/L	1,0	1		05/30/14 05:53	107-06-2	
1,1-Dichloroethene	ND uc	 I/L	1.0	1		05/30/14 05:53	75-35-4	
cis-1.2-Dichloroethene	6.2 uc	I/L	1.0	1		05/30/14 05:53	156-59-2	
trans-1,2-Dichloroethene	ND uc	ı/L	1.0	1		05/30/14 05:53	156-60-5	
Dichlorofluoromethane	ND uc	, 1/L	1.0	1		05/30/14 05:53	75-43-4	
1,2-Dichloropropane	ND uc	, 1/L	4.0	1		05/30/14 05:53	78-87-5	
1.3-Dichloropropane	ND uc	ı/L	1.0	1		05/30/14 05:53	142-28-9	
2.2-Dichloropropane	ND uc	1/L	4.0	1		05/30/14 05:53	594-20-7	
1.1-Dichloropropene	ND uc	, 1/L	1.0	1		05/30/14 05:53	563-58-6	
cis-1.3-Dichloropropene	ND uc	1/L	4.0	1		05/30/14 05:53	10061-01-5	
trans-1.3-Dichloropropene	ND uc	, ∎/L	4.0	1		05/30/14 05:53	10061-02-6	
Diethyl ether (Ethyl ether)	ND uc	ı, ı/L.	4.0	1		05/30/14 05:53	60-29-7	
Ethylbenzene	ND uc	1/L	1.0	1		05/30/14 05:53	100-41-4	
Hexachloro-1,3-butadiene	ND uc	, _ 1/L	1.0	1		05/30/14 05:53	87-68-3	
Isopropylbenzene (Cumene)	ND up	, 1/L	1.0	1		05/30/14 05:53	98-82-8	
p-lsopropyltoluene	ND up	, 1/L	1.0	1		05/30/14 05:53	99-87-6	
Methylene Chloride		» 1/L	4.0	1		05/30/14 05:53	75-09-2	
4-Methyl-2-pentanone (MIBK)		» — v/L	5.0	1		05/30/14 05:53	108-10-1	
Methyl-tert-butyl ether	ND ug	g/L	1.0	, 1		05/30/14 05:53	1634-04-4	

REPORT OF LABORATORY ANALYSIS

Project: City of Rochester

Pace Project No.: 10268039

Sample: MW17	Lab ID: 1026803901	2 Collected: 05/20/14 15:3	0 Received: 05/21/14 10:14 Matrix: Water	
Parameters	Results Unit	s Report Limit DF	Prepared Analyzed CAS No.	Qual
8260 VOC	Analytical Method: EPA	8260		
Acetone	ND ug/L	20.0 1	05/30/14 15:47 67-64-1	
Allyl chloride	ND ug/L	4.0 1	05/30/14 15:47 107-05-1	
Benzene	ND ug/L	1.0 1	05/30/14 15:47 71-43-2	
Bromobenzene	ND ug/L	1.0 1	05/30/14 15:47 108-86-1	
Bromochloromethane	ND ug/L	1.0 1	05/30/14 15:47 74-97-5	
Bromodichloromethane	ND ug/L	1.0 1	05/30/14 15:47 75-27-4	
Bromoform	ND ug/L	4.0 1	05/30/14 15:47 75-25-2	
Bromomethane	ND ug/L	4.0 1	05/30/14 15:47 74-83-9	
2-Butanone (MEK)	ND ug/L	5.0 1	05/30/14 15:47 78-93-3	
n-Butylbenzene	ND ug/L	1.0 1	05/30/14 15:47 104-51-8	
sec-Butylbenzene	ND ug/L	1.0 1	05/30/14 15:47 135-98-8	
tert-Butylbenzene	ND ug/L	1.0 1	05/30/14 15:47 98-06-6	
Carbon tetrachloride	ND ug/L	1.0 1	05/30/14 15:47 56-23-5	
Chlorobenzene	ND ug/L	1.0 1	05/30/14 15:47 108-90-7	
Chloroethane	ND ug/L	1.0 1	05/30/14 15:47 75-00-3	
Chloroform	ND ug/L	1.0 1	05/30/14 15:47 67-66-3	
Chloromethane	ND ug/L	4.0 1	05/30/14 15:47 74-87-3	
2-Chlorotoluene	ND ug/L	1.0 1	05/30/14 15:47 95-49-8	
4-Chlorotoluene	ND ug/L	1 .0 1	05/30/14 15:47 106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	4.0 1	05/30/14 15:47 96-12-8	
Dibromochloromethane	ND ug/L	1.0 1	05/30/14 15:47 124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0 1	05/30/14 15:47 106-93-4	
Dibromomethane	ND ug/L	4.0 1	05/30/14 15:47 74-95-3	
1,2-Dichlorobenzene	ND ug/L	1.0 1	05/30/14 15:47 95-50-1	
1,3-Dichlorobenzene	ND ug/L	1.0 1	05/30/14 15:47 541-73-1	
1,4-Dichlorobenzene	ND ug/L	1.0 1	05/30/14 15:47 106-46-7	
Dichlorodifluoromethane	ND ug/L	1.0 1	05/30/14 15:47 75-71-8	
1,1-Dichloroethane	ND ug/L	1.0 1	05/30/14 15:47 75-34-3	
1,2-Dichloroethane	ND ug/L	1.0 1	05/30/14 15:47 107-06-2	
1,1-Dichloroethene	ND ug/L	1.0 1	05/30/14 15:47 75-35-4	
cis-1,2-Dichloroethene	ND ug/L	1.0 1	05/30/14 15:47 156-59-2	
trans-1,2-Dichloroethene	ND ug/L	1.0 1	05/30/14 15:47 156-60-5	
Dichlorofluoromethane	ND ug/L	1 .0 1	05/30/14 15:47 75-43-4	
1,2-Dichloropropane	ND ug/L	4.0 1	05/30/14 15:47 78-87-5	
1,3-Dichloropropane	ND ug/L	1.0 1	05/30/14 15:47 142-28-9	
2,2-Dichloropropane	ND ug/L	4.0 1	05/30/14 15:47 594-20-7	
1,1-Dichloropropene	ND ug/L	1.0 1	05/30/14 15:47 563-58-6	
cis-1,3-Dichloropropene	ND ug/L	4.0 1	05/30/14 15:47 10061-01-5	
trans-1,3-Dichloropropene	ND ug/L	4.0 1	05/30/14 15:47 10061-02-6	
Diethyl ether (Ethyl ether)	ND ug/L	4.0 1	05/30/14 15:47 60-29-7	
Ethylbenzene	ND ug/L	1.0 1	05/30/14 15:47 100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	1.0 1	05/30/14 15:47 87-68-3	
Isopropylbenzene (Cumene)	ND ug/L	1.0 1	05/30/14 15:47 98-82-8	
p-Isopropyltoluene	ND ug/L	1.0 1	05/30/14 15:47 99-87-6	
Methylene Chloride	ND ug/L	4.0 1	05/30/14 15:47 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	5.0 1	05/30/14 15:47 108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0 1	05/30/14 15:47 1634-04-4	

REPORT OF LABORATORY ANALYSIS

Date: 06/02/2014 05:11 PM

Project: City of Rochester

Pace Project No.: 10268039

Sample: MW18	Lab ID: 1026803901	3 Collected: 05/20/1	4 16:00	Received: 05	5/21/14 10:14 M	atrix: Water	
Parameters	Results Unit	s Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 VOC	Analytical Method: EPA	8260					
Acetone	ND ug/L	20.0	1		05/30/14 16:11	67-64-1	
Allyl chloride	ND ug/L	4.0	1		05/30/14 16:11	107-05-1	
Benzene	ND ug/L	1.0	1		05/30/14 16:11	71-43-2	
Bromobenzene	ND ug/L	1.0	1		05/30/14 16:11	108-86-1	
Bromochloromethane	ND ug/L	1.0	1		05/30/14 16:11	74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		05/30/14 16:11	75-27-4	
Bromoform	ND ug/L	4.0	1		05/30/14 16:11	75-25-2	
Bromomethane	ND ug/L	4.0	1		05/30/14 16:11	74-83-9	
2-Butanone (MEK)	ND ug/L	5.0	1		05/30/14 16:11	78-93-3	
n-Butylbenzene	ND ug/L	1.0	1		05/30/14 16:11	104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1		05/30/14 16:11	135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1		05/30/14 16:11	98-06-6	
Carbon tetrachloride	ND ug/L	1.0	1		05/30/14 16:11	56-23-5	
Chlorobenzene	ND ug/L	1.0	1		05/30/14 16:11	108-90-7	
Chloroethane	ND ug/L	1.0	1		05/30/14 16:11	75-00-3	
Chloroform	ND ug/L	1.0	1		05/30/14 16:11	67-66-3	
Chloromethane	ND ug/L	4.0	1		05/30/14 16:11	74-87-3	
2-Chlorotoluene	ND ug/L	1.0	1		05/30/14 16:11	95-49-8	
4-Chlorotoluene	ND ug/L	1.0	1		05/30/14 16:11	106-43-4	
1,2-Dibromo-3-chloropropane	ND ug/L	4.0	1		05/30/14 16:11	96-12-8	
Dibromochloromethane	ND ug/L	1.0	1		05/30/14 16:11	124-48-1	
1,2-Dibromoethane (EDB)	ND ug/L	1.0	1		05/30/14 16:11	106-93-4	
Dibromomethane	ND ug/L	. 4.0	1		05/30/14 16:11	74-95-3	
1,2-Dichlorobenzene	ND ug/L	1.0	1		05/30/14 16:11	95-50-1	
1,3-Dichlorobenzene	ND ug/L	1.0	1		05/30/14 16:11	541-73 -1	
1,4-Dichlorobenzene	ND ug/L	1.0	1		05/30/14 16:11	106-46 - 7	
Dichlorodifluoromethane	ND ug/L	1.0	1		05/30/14 16:11	75-71-8	
1,1-Dichloroethane	ND ug/L	1.0	1		05/30/14 16:11	75-34-3	
1,2-Dichloroethane	ND ug/L	1.0	1		05/30/14 16:11	107 - 06-2	
1,1-Dichloroethene	ND ug/L	1.0	1		05/30/14 16:11	75-35-4	
cis-1,2-Dichloroethene	ND ug/L	1.0	1		05/30/14 16:11	156-59-2	
trans-1,2-Dichloroethene	ND ug/L	1.0	1		05/30/14 16:11	156-60-5	
Dichlorofluoromethane	ND ug/L	1.0	1		05/30/14 16:11	75-43-4	
1,2-Dichloropropane	ND ug/L	4.0	1		05/30/14 16:11	78-87 - 5	
1,3-Dichloropropane	ND ug/L	1.0	1		05/30/14 16:11	142-28-9	
2,2-Dichloropropane	ND ug/L	4.0	1		05/30/14 16:11	594-20-7	
1,1-Dichloropropene	ND ug/L	1.0	1		05/30/14 16:11	563-58-6	
cis-1,3-Dichloropropene	ND ug/L	4.0	1		05/30/14 16:11	10061-01 - 5	
trans-1,3-Dichloropropene	ND ug/L	4.0	1		05/30/14 16:11	10061-02-6	
Diethyl ether (Ethyl ether)	ND ug/L	4.0	1		05/30/14 16:11	60-29-7	
Ethylbenzene	ND ug/L	1.0	1		05/30/14 16:11	100-41-4	
Hexachloro-1,3-butadiene	ND ug/L	1.0	1		05/30/14 16:11	87-68-3	
Isopropylbenzene (Cumene)	ND ug/L	1.0	1		05/30/14 16:11	98-82-8	
p-lsopropyltoluene	ND ug/L	1.0	1		05/30/14 16:11	99-87-6	
Methylene Chloride	ND ug/L	4.0	1		05/30/14 16:11	75-09-2	
4-Methyl-2-pentanone (MIBK)	ND ug/L	5.0	1		05/30/14 16:11	108-10-1	
Methyl-tert-butyl ether	ND ug/L	1.0	1		05/30/14 16:11	1634-04-4	

REPORT OF LABORATORY ANALYSIS

Project: City of Rochester

Pace Project No.: 1026

Sample: MW19	Lab ID: 10268039014	Collected: 05/20/14	Collected: 05/20/14 16:30		Received: 05/21/14 10:14 Matrix: V		
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 VOC	Analytical Method: EPA	8260					
Acetone	ND ug/L	20.0	1		05/30/14 16:34	67-64-1	
Allyl chloride	ND ug/L	4.0	1		05/30/14 16:34	107 - 05-1	
Benzene	ND ug/L	1.0	1		05/30/14 16:34	71-43-2	
Bromobenzene	ND ug/L	1.0	1		05/30/14 16:34	108-86-1	
Bromochloromethane	ND ug/L	1.0	1		05/30/14 16:34	74-97-5	
Bromodichloromethane	ND ug/L	1.0	1		05/30/14 16:34	75-27-4	
Bromoform	ND ug/L	4.0	1		05/30/14 16:34	75-25-2	
Bromomethane	ND ug/L	4.0	1		05/30/14 16:34	74-83-9	
2-Butanone (MEK)	ND ug/L	5.0	1		05/30/14 16:34	78-93-3	
n-Butvlbenzene	ND ug/L	1.0	1		05/30/14 16:34	104-51-8	
sec-Butylbenzene	ND ug/L	1.0	1		05/30/14 16:34	135-98-8	
tert-Butylbenzene	ND ug/L	1.0	1		05/30/14 16:34	98-06-6	
Carbon tetrachloride	ND ug/L	1.0	1		05/30/14 16:34	56-23-5	
Chlorobenzene	ND ug/L	1.0	1		05/30/14 16:34	108-90-7	
Chloroethane	ND ug/L	1.0	1		05/30/14 16:34	75-00-3	
Chloroform	ND ug/L	1.0	1		05/30/14 16:34	67-66-3	
Chloromethane	ND ug/L	4.0	1		05/30/14 16:34	74-87-3	
2-Chlorotoluene	ND ug/L	1.0	1		05/30/14 16:34	95-49-8	
4-Chlorotoluene	ND ug/L	1.0	1		05/30/14 16:34	106-43-4	
1.2-Dibromo-3-chloropropane	ND ug/L	4.0	1		05/30/14 16:34	96-12-8	
Dibromochloromethane	ND ug/L	1.0	1		05/30/14 16:34	124-48-1	
1.2-Dibromoethane (EDB)	ND ug/L	1.0	1		05/30/14 16:34	106-93-4	
Dibromomethane	ND ug/L	4.0	1		05/30/14 16:34	74-95-3	
1 2-Dichlorobenzene	ND ug/	1.0	1		05/30/14 16:34	95-50-1	
1.3-Dichlorobenzene	ND ug/l	1.0	1		05/30/14 16:34	541-73-1	
1 4-Dichlorobenzene		10	1		05/30/14 16:34	106-46-7	
Dichlorodifluoromethane		1.0	1		05/30/14 16:34	75-71-8	
1 1-Dichloroethane		1.0	1		05/30/14 16:34	75-34-3	
1.2-Dichloroethane		10	1		05/30/14 16:34	107-06-2	
1 1-Dichloroethene		1.0	1		05/30/14 16:34	75-35-4	
cis-1 2-Dichloroethene		10	1		05/30/14 16:34	156-59-2	
trans-1 2-Dichloroethene		1.0	1		05/30/14 16:34	156-60-5	
Dichlorofluoromethane	ND ug/L	1.0	1		05/30/14 16:34	75-43-4	
1 2-Dichloropropage	ND ug/L	4.0	1		05/30/14 16:34	78-87-5	
1.3-Dichloropropane	ND ug/L	1.0	1		05/30/14 16:34	142-28-9	
2 2-Dichloropropane	ND ug/L	4.0	1		05/30/14 16:34	594-20-7	
1 1-Dichloropropene	ND ug/L	4.0	1		05/30/14 16:34	563-58-6	
cis-1 3-Dichloropropene		4.0	1		05/30/14 16:34	10061-01-5	
trans-1.3-Dichloropropene		4.0	1		05/30/14 16:34	10061-07-6	
Diethyl ether (Ethyl ether)		4.0	1		05/30/14 16:34	60-29-7	
		4.0	1		05/30/14 16:34	100-23-7	
Hoveeblore 1.2 butediene		1.0	1		05/30/14 10:34	87 69 2	
		1.0	1		05/30/14 10.34	01-00-3	
n Isopropylteluere		1.0	1		05/30/14 10.34	00 87 6	
P-isopropyiloiderile Mathylana Chlorida		1.0	1		05/30/14 10:34	75 00 0	
Methyl 2 pontanana (MIDIA)		4.0	1		05/30/14 10:34	100 10 4	
4-methyl-z-pentanone (MIBK)		5.0	1		05/30/14 10:34	100-10-1	
weinyi-tert-dutyi ether	ND UG/L	1.0	Т		05/30/14 16:34	1034-04-4	

REPORT OF LABORATORY ANALYSIS

Project: City of Rochester

	e , ee
Pace Project No.:	10268039

Sample: MW20	Lab ID: 10268039015	Collected: 05/20/14 17:00	Received: 05/21/14 10:14 Matrix: Water
Parameters	Results Units	Report Limit DF	Prepared Analyzed CAS No. Quai
8260 VOC	Analytical Method: EPA 8	260	
Acetone	ND ug/L	20.0 1	05/30/14 07:26 67-64-1
Allyl chloride	ND ug/L	4.0 1	05/30/14 07:26 107-05-1
Benzene	ND ug/L	1.0 1	05/30/14 07:26 71-43-2
Bromobenzene	ND ug/L	1.0 1	05/30/14 07:26 108-86-1
Bromochloromethane	ND ug/L	1.0 1	05/30/14 07:26 74-97-5
Bromodichloromethane	ND ug/L	1.0 1	05/30/14 07:26 75-27-4
Bromoform	ND ug/L	4.0 1	05/30/14 07:26 75-25-2
Bromomethane	ND ug/L	4.0 1	05/30/14 07:26 74-83-9
2-Butanone (MEK)	ND ug/L	5.0 1	05/30/14 07:26 78-93-3
n-Butylbenzene	ND ug/L	1.0 1	05/30/14 07:26 104-51-8
sec-Butylbenzene	ND ug/L	1.0 1	05/30/14 07:26 135-98-8
tert-Butylbenzene	ND ug/L	1.0 1	05/30/14 07:26 98-06-6
Carbon tetrachloride	ND ug/L	1.0 1	05/30/14 07:26 56-23-5
Chlorobenzene	ND ug/L	1.0 1	05/30/14 07:26 108-90-7
Chloroethane	ND ug/L	1.0 1	05/30/14 07:26 75-00-3
Chloroform	ND ug/L	1.0 1	05/30/14 07:26 67-66-3
Chloromethane	ND ug/L	4.0 1	05/30/14 07:26 74-87-3
2-Chlorotoluene	ND ug/L	1.0 1	05/30/14 07:26 95-49-8
4-Chlorotoluene	ND ug/L	1.0 1	05/30/14 07:26 106-43-4
1,2-Dibromo-3-chloropropane	ND ug/L	4.0 1	05/30/14 07:26 96-12-8
Dibromochloromethane	ND ug/L	1.0 1	05/30/14 07:26 124-48-1
1,2-Dibromoethane (EDB)	ND ug/L	1.0 1	05/30/14 07:26 106-93-4
Dibromomethane	ND ug/L	4.0 1	05/30/14 07:26 74-95-3
1,2-Dichlorobenzene	ND ug/L	1.0 1	05/30/14 07:26 95-50-1
1,3-Dichlorobenzene	ND ug/L	1.0 1	05/30/14 07:26 541-73-1
1,4-Dichlorobenzene	ND ug/L	1.0 1	05/30/14 07:26 106-46-7
Dichlorodifluoromethane	ND ug/L	1.0 1	05/30/14 07:26 75-71-8
1,1-Dichloroethane	ND ug/L	1.0 1	05/30/14 07:26 75-34-3
1,2-Dichloroethane	ND ug/L	1.0 1	05/30/14 07:26 107-06-2
1,1-Dichloroethene	ND ug/L	1.0 1	05/30/14 07:26 75-35-4
cis-1,2-Dichloroethene	ND ug/L	1.0 1	05/30/14 07:26 156-59-2
trans-1,2-Dichloroethene	ND ug/L	1.0 1	05/30/14 07:26 156-60-5
Dichlorofluoromethane	ND ug/L	1.0 1	05/30/14 07:26 75-43-4
1,2-Dichloropropane	ND ug/L	4.0 1	05/30/14 07:26 78-87-5
1,3-Dichloropropane	ND ug/L	1.0 1	05/30/14 07:26 142-28-9
2,2-Dichloropropane	ND ug/L	4.0 1	05/30/14 07:26 594-20-7
1,1-Dichloropropene	ND ug/L	1.0 1	05/30/14 07:26 563-58-6
cis-1,3-Dichloropropene	ND ug/L	4.0 1	05/30/14 07:26 10061-01-5
trans-1,3-Dichloropropene	ND ug/L	4.0 1	05/30/14 07:26 10061-02-6
Diethyl ether (Ethyl ether)	ND ug/L	4.0 1	05/30/14 07:26 60-29-7
Ethylbenzene	ND ug/L	1.0 1	05/30/14 07:26 100-41-4
Hexachloro-1,3-butadiene	ND ug/L	1.0 1	05/30/14 07:26 87-68-3
Isopropylbenzene (Cumene)	ND ug/L	1.0 1	05/30/14 07:26 98-82-8
p-lsopropyltoluene	ND ug/L	1.0 1	05/30/14 07:26 99-87-6
Methylene Chloride	ND ug/L	4.0 1	05/30/14 07:26 75-09-2
4-Methyl-2-pentanone (MIBK)	ND ug/L	5.0 1	05/30/14 07:26 108-10-1
Methyl-tert-butyl ether	ND ug/L	1.0 1	05/30/14 07:26 1634-04-4

REPORT OF LABORATORY ANALYSIS

FIELD DATA SHEET 1 of 2 (REVISED 4/13/10)

CLIENT NAME: CITY OF ROCHE	STER	DATE:	8/21/14		
PROJECT ID: CRC		TIME: 4;	iz em		
PROJECT NAME: MN BIO BUSI	NESS CENTER	RECORD	ED BY:	AOK	
2009 SYSTEM STARTUP INFORMA	TION				
Startup Date: 6/29/2009	MS Discharge Totalizer: 68	Sump Dis	charge To	talizer: 20	0
		· · ·			mann r
NOTES - LEAVE VACUUM R	ELIEF VALVE SELECTOR SWIT	CH IN OFF	POSITIO	N	
LEAVE AIR STRIPF	PER SELECTOR SWITCHES IN A	UTO POS	ITION		
	А				
CURRENT OPERATING WELL:		S	TATIC WA	TER LEVI	ELS
DPE WELL BLEED VALVE % OPEN	•			Well	Depth to
DPE PUMP BLEED VALVE % OPEN	:		Clean to	Depth	Water
			Dirty	below	below
ANALOG PANEL READINGS			Ranking	TOC (FT)	TOC (FT)
DPE PUMP AIR FLOW (SCFM):		MW-14	3	17.5	11.67
DPE WELL VACUUM (IN. HG):	<u></u>	MW-15	4	18	14.49
DPE PUMP INLET VACUUM (IN. HG):	MW-16	10	18	11.94
DPE PUMP OUTLET PRESSURE (P	SI):	MW-17	7	25	13.13
DPE PUMP OUTLET TEMP (DEG. F)):	MW-18	6	60	14.10 -
MS PUMP WATER FLOW (GPM):		MW-19	1	20	14.1
		MW-20	8	16.7	12.06
TOTAL PANEL READINGS		DPE-1	15	21.9	15.BO
DPE VACUUM PUMP (HRS):		DPE-2	13	20.5	15.56
MS PUMP (HRS):		DPE-3	14	17.1	15.33
MS VACUUM VALVE (HRS):		DPE-4	12	19.3	15.44
AIR STRIPPER BLOWER (HRS):		DPE-5	9	18.1	14.91
AIR STRIPPER PUMP (HRS):		DPE-6	5	19.5	15.04
DPE AIR FLOW (SCF):	ž	DPE-7	2	22.2	15.71
MS PUMP WATER FLOW (GAL):		DPE-8	11	17.5	16.00
SUMP PUMP WATER FLOW (GAL):		Sump	1	7.74	7.71
			RATING		
	по).				
PRE-MANIFOLD VACOUM (IN. HG):				. <u></u>	
DE WELL (PRE-MS-T) VACUUM (II	N.NO).			· · · · · · · · · · · · · · · · · · ·	<u> </u>
DE FUMPAIR FLOW (SUFM):					
DPE EXHAUST PID CONC. (PPM):					
DPE PUMP OUTLET PRESSURE (II	N. H2U)):	UPE-8			
DPE PUMP OUTLET TEMP (DEG. F):				
		SUMP R		<u>-</u>	
MS PUMP WATER FLOWRATE (WE	TILE PUMPING) (GPM):	D 4 A C I			٠
MS PUMP WATER PRESSURE (WH	IILE PUMPING) (PSI):	BASEME	ENT PID F	CEADINGS)]

COMMENTS/MAINTENANCE:

MS PUMP WATER PRESSURE (WHILE PUMPING) (PSI): MS PUMP FLOW TOTALIZER READING (GAL):

AS EXHAUST PRESSURE (IN. H20):

AS DISCHARGE PUMP PRESSURE (WHILE PUMPING) (PSI): AS BLOWER PRESSURE (IN. H20): AS EXHAUST PID (PPM):

ELEVATOR DRAIN TILE SUMP FLOW TOTALIZER (GAL):

Field Inf	ormation	Data S	hee	et		VITOI	line	nual,	
Client Name:	City of Roch	ester – Sec	cond	Qua	rter Samp	ling			Ø
Project Name:	CRC			Project Number:			CRC	2-14	
Location: MW-	14			Date	e:	Aug			
Station:				Sam	ple time:		17:2		
					a 1				-
Casing diameter:	2"	Volume	Te	mp	$\bigcirc 25$	pН	Eh	D.O.	Turb.
Total well depth:	17.5	Volume							
Static water level:	001		10	<u>i</u> 9	1009	6.92	- <u>1</u>	4.56	
Water depth ¹ :	5,9					· · · · ·			
Well volume (gal):	.9			.1		-, ,			
Purge method:	Ded								
Sample Method:	Bei/					· •.			
Start time:									
Stop time:									
Duration (min.):		Odor:							
Rate, gpm:		Purge appearan	ice:		1 30	nllor	5.9	9	
Volume purged:		Sample appearan	ice:						
Duplicate collected?		Commer	its:			,			
Sampled by:									

Landmark

. .

Others present:

VOC

Analysis:

MW:gw monitoring well WS:water supply well SW:surface water SE:sediment other: ¹ Measurements are referenced from top of riser pipe, unless otherwise indicated.

filtered metal

Well Condition

ml filter in-line filter

others:

Field	Information	Data	Sheet
I ICIU	111101 mation	Data	SHOUL

Landmark Environmental, LLC

Client Name: (City of Roch	ester – Sec	cond Ou	uarter Same	ling			∂
Project Name: (CRC		Pro	oject Numb	er:	CRC	-14	
Location: MW-1	15		Da	ite:	Aug	August 22, 2014		
Station:			Sa	Sample time: 17			· · · · · · · · · · · · · · · · · · ·	
Casing diameter:	2"	Time/	Temp °C	Cond @ 25	pН	Eh	D.O.	Turb. NTU
Total well depth: Static water level:	18 14.94		20.2	2451	7.15	63.9	3.03	
Water depth ¹ :	3.06	-					,	
Well volume (gal):	0.5							
Purge method:	Ded							
Sample Method:	Bo:1							
Start time:								
Stop time:								
Duration (min.):		Odor:						
Rate, gpm:		Purge appearan	ce:	•5	gall	'ur d	ry	
Volume purged:		Sample appearan	ice:					
Duplicate collected?		Commen	ıts:					
Sampled by:								
				W 11 C	1.4.	_		
Others present:	NOC	C*1, 1	. 1		ndition	 ~1,	- 41 -	
Analysis:	VOC	filtered me	tal	ml filter	ın-lıne f	ilter	others:	

MW:gw monitoring well WS:water supply well SW:surface water SE:sediment other: ¹ Measurements are referenced from top of riser pipe, unless otherwise indicated.

Landmark Environmental, LLC

Client Name:	City of Roch	y of Rochester – Second Quarter Sampling									
Project Name:	CRC		Proj	ect Numl	-14						
Location: <u>MW</u>	-16		Date	e:	2014						
Station:			Sam	ple time:	l	8:15					
Casing diameter:	2"	Time/	Temp	Cond	pH	Eh	D.O.	Turb.			
Total well depth:	18	Volume	°C	@ 25				NIU			
Static water level:	11.94	_	19.89	3415	7.10	92.6	3.70				
Water depth ¹ :	6,36										
Well volume (gal)	: 1.0							ļ			
Purge method:	Del							<u> </u>			
Sample Method:	Buil	ui l									
Start time:											
Stop time:											
Duration (min.):		Odor:				-					
Rate, gpm:		Purge appearan	ice:	drig	F 1.	gelle.	G-4				
Volume purged:		Sample appearar	ice:								
Duplicate collected?		Commer	nts:								
Sampled by:											
Others present:				Well Co	ondition						
Analysis:	VOC	filtered me	tal	ml filter	in-line f	ilter	others:				

Field Inf	ormation	Data S	heet	La En	ndm viro	ark nme	ntal,	LLC	
Client Name:	City of Roch	ester – Sec	cond Qua	rter Samp	ling		(Z	
Project Name:	CRC		Proj	ect Numb	er:	CRC	-14		
Location: MW-1	17		Jate	e:	Aug	ust 22,	2014		
Station: _25	j		Sam	ple time:	17	:45	· · · · · · · · · · · · · · · · · · ·		
Casing diameter:	2"	Time/ Volume	Temp °C	Cond @, 25	pН	Eh	D.O.	Turb. NTU	
Static water level	13.13		19.65	640	7.50	723	1.28		
Water depth ¹ :	11.87		1.1.0.		,	00.9		<u> </u>	
Well volume (gal):	1.9								
Purge method:	2"546								
Sample Method:	Dig								
Start time:							_		
Stop time:									
Duration (min.):	-	Odor:							
Rate, gpm:		Purge appearan	ice:	Purse	ż	10 50	allor	S	
Volume purged:		Sample appearan	ice:						
Duplicate collected?		Commer	its:						
Sampled by:									
Others present:				Well Co	ndition		·		
Analysis:	VOC	filtered me	tal 1	ml filter	in-line f	ilter	others:		
MW:gw monitoring	g well WS:wa	ater supply	well SV	V:surface v	vater SI	E:sedim	ent othe	r:	
¹ Measurements are	e referenced fr	om top of r	iser pipe,	unless oth	erwise i	ndicated	•		

Field Inf	ormation	Data S	he	et	La En	ndm viro	ark nmei	ntal,	LLC
Client Name:	City of Roche	ester – Sec	cond	l Qua	rter Samp	ling		Ũ	D
Project Name:	CRC			Proj	ect Numb	er:	CRC-	·14	
Location: MW-	18			Date	e:	Aug	gust 22,	2014	
Station:		·		Sam	ple time:		9730		<u>.</u>
Casing diameter:	2"	Time/	Те	mp	Cond	pH	Eh	D.O.	Turb.
Total well depth:	60	Volume	°C		@ 25				NTU
Static water level:	0994/14.1	023	19	.59	2341	7.47	-224	0.68	
Water depth ¹ :	45.9	30							
Well volume (gal):	7.5	37				-			
Purge method:	2" 545								
Sample Method:	Ded Buil								
Start time:	· · · · · · · · · · · · · · · · · · ·								
Stop time:									
Duration (min.):		Odor:							
Rate, gpm:		Purge appearan	ice:	ų ·	Purs	ed 3	7 5a	llon	5
Volume purged:		Sample appearan	ice:						
Duplicate collected?		Commen	its:						
Sampled by:									
Others present:					Well Co	ndition			
Analysis:	VOC	filtered me	etal		ml filter	in-line f	ilter	others:	
¥	J								

MW:gw monitoring well WS:water supply well SW:surface water SE:sediment other: ¹ Measurements are referenced from top of riser pipe, unless otherwise indicated.

Field	Information	Data	Sheet
r iviu	Into manon	Data	SHUCL

Landmark Environmental, LLC

Client Name:	City of Roch	ty of Rochester – Second Quarter Sampling									
Project Name:	CRC		Proj	ject Numb	er:	CRC-	14				
Location: MW-1	9		Dat	Date: Augu			2014				
Station:			San	nple time:		7:49					
Casing diameter:	2"	Time/	Temp	Cond	рН	Eh	D.O.	Turb.			
Total well depth:	20	volume		@ 25				NIU			
Static water level:	14.11		17.6	6939	6.44	111.2	3.69				
Water depth ¹ :	5,89										
Well volume (gal):	1.0										
Purge method:											
Sample Method:											
Start time:								Ъ			
Stop time:											
Duration (min.):		Odor:									
Rate, gpm:		Purge appearan	ice:	1.5	gallo	rr di	¥ .				
Volume purged:		Sample appearan	ice:								
Duplicate collected?		Commer	nts:								
Sampled by:											
Others present:				Well Co	ndition						
Analysis:	VOC	filtered me	etal	ml filter	in-line fi	ilter	others:				
MW:gw monitoring well WS:water supply well SW:surface water SE:sediment other:											

Field Inf	ormation	Data S	hee	t	La En	ndm iviror	ark 1mei	ntal,	LLC
Client Name:	City of Roch	ester – Sec	cond	Quar	ter Samp	oling		Ä	>
Project Name:	CRC]	Proje	ect Numb	er:	CRC	-14	
Location: MW-2	20]	Date	:	Aug	ust 22,	2014	
Station:				Samp	ple time:	18	1209		
Casing diameter:	2"	Time/	Tem	ıp	Cond	pН	Eh	D.O.	Turb.
Total well depth:	16.7	Volume	°C		@ 25				NTU
Static water level:	12.06		19.5	5	9361	6.68	252	4.26	
Water depth ¹ :	4.64								
Well volume (gal):	0.75								
Purge method:									
Sample Method:									
Start time:									
Stop time:									
Duration (min.):		Odor:							
Rate, gpm:		Purge appearan	ice:		.5	5 gal	lear s	(12	
Volume purged:		Sample appearan	ice:						
Duplicate collected?		Commen	its:						
Sampled by:	. *								
Others present:					Well Co	ondition			
Analysis:	VOC	filtered me	tal	n	nl filter	in-line fi	ilter	others:	

MW:gw monitoring well WS:water supply well SW:surface water SE:sediment other: ¹ Measurements are referenced from top of riser pipe, unless otherwise indicated.

Landmark Environmental, LLC

	Client Name: City of Rochester – Third Quarter Sampling											
	Project Name:	CRC		Proje	ect Numb	er:	CRC-	14				
	Location: M	ultiple Location		Date	:	Aug	ust 22, 2	2014				
	Station:		Sample time:									
	Multiple Sampli Log:	ing	Time/ Volume	Temp ⁰C	Cond @ 25	pН	Eh	D.O.				
10:37 3	DPE-1:			19.23	6093	7.69	138.2	4.41				
10:28 (4)	DPE-2:			19.48	7389	7.76	108.2	4.13				
10:20 3	DPE-3:			19.47	7917	7.14	103.7	2.97				
10:09(8)	DPE-4:			19,77	5364	7.05	11.3	3.11				
9:47 (7)	DPE-5:			19.34	3428	8,37	85.9	2,12				
9:38 6	DPE-6:			19.51	879	7.84	130.1	3.65				
9:25 B	DPE-7:			20.33	1655	7.77	95.3	3.51				
10:00 0	DPE-8:			19.37	6741	7.17	165.2	3.48				
• "''''''''''''''''''''''''''''''''''''	Rate, gpm:											
	Volume purged	•										
	Duplicate collected?											
	Sampled by:				r		(
	Others present:				Well Cor	ndition						
	Analysis:	VOC 1	filtered me	tal n	nl filter i	n-line fi	lter o	others:				
	3.6337	11 11/0	, 1	11 (11)	, c		1.	1				

MW:gw monitoring well WS:water supply well SW:surface water SE:sediment other: ¹ Measurements are referenced from top of riser pipe, unless otherwise indicated.

ł

Landmark Environmental, LLC

1

Client Name: City of Rochester – Second Quarter Sampling											
Project Name:	CRC		Proje	ect Numb	er:	CRC-	12				
Location: <u>MW-1</u>	4		Date	•	May	20, 201	4				
Station:			Sam	ple time:	× <u>14</u>	1:00	••••••••••••••••••••••••••••••••••••••				
Casing diameter) "	Time/	Time/ Temp Cond pH Eh D.O. Ti								
Total well depth:	17.5	Volume	°C	@ 25	hrr	1711	D.O.	NTU			
Static water level:	10.52		19.34	1411	7,78	- Ja. 6	1.95	*			
Water depth ¹ :	6.98		12								
Well volume (gal):	1.1										
Purge method:	Modified										
Sample Method:	Bailding										
Start time:	Providence and and and a second se										
Stop time:	NGRONAL MARKAGE AND										
Duration (min.):		Odor:	No	1	****						
Rate, gpm:		Purge appearan	ice:	thigh in S	Sedimu	n t					
Volume purged:		Sample appearan	ice:								
Duplicate collected?		Commer	nts: Dry O	1 gallo	n						
Sampled by:											
Others present:	KAD+JEG Well Condition										
Analysis:	VOC	filtered me	otal 1	nl filter	in-line f	ilter	others:				
MW:gw monitoring	MW:gw monitoring well WS:water supply well SW:surface water SE:sediment other:										

MW:gw monitoring well WS:water supply well SW:surface water SE:sediment other: ¹Measurements are referenced from top of riser pipe, unless otherwise indicated.

.

Landmark Environmental, LLC

Client Name:	City of Rochester – Second Quarter Sampling							
Project Name:	CRC	Project Number:	:	CRC-12				
Location: <u>MW</u>	-15	Date:	May 2	20, 2014				
Station:		Sample time:	p	1:30				

	Prof	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Casing diameter:	2"	Time/	Temp	Cond	pH	Eh	D.O.	Turb.
Total well depth:	18	Volume	e °C	@ 25				NTU
Static water level:	12.92		19.83	228	7.94	-35.7	2.82	Pa.
Water depth ¹ :	5.08							
Well volume (gal):	0.8							
Purge method:	Modifyd							
Sample Method:	Baller							
Start time:	-	-						
Stop time:	WILLING DESCRIPTION							
Duration (min.):	State of the American State of the State of	Odor:						
Rate, gpm:	Street and a state of the state	Purge appearan	ice:					
Volume purged:		Sample appearan	ice:					
Duplicate collected?		Comments:						
Sampled by:								
Others present:		<u> </u>		Well Co	ndition			
Analysis:	VOC	filtered me	etal 1	nl filter	in-line f	ilter	others:	
MW ow monitoring well WS water supply well SW surface water SE so diment of how								

MW:gw monitoring well WS:water supply well SW:surface water SE:sediment other: ¹ Measurements are referenced from top of riser pipe, unless otherwise indicated.

Landmark Environmental, LLC

Client Name:	City of Rochester – Second Quarter Sampling					
Project Name:	CRC	Project Number:	CRC-12			
Location: <u>MW</u>	-17	Date:	May 20, 2014			
Station:	25	Sample time:	15:30			

Casing diameter:	2"	Time/	Temp	Cond	pH	Eh	D.O.	Turb.
Total well depth:	25	Volume	°C	@ 25				NTU
Static water level:	11.34		19.46	1861	7.56	-26,3	1.54	
Water depth ¹ :	13.16							
Well volume (gal):	2.1							
Purge method:	2" sub	·						
Sample Method:	Bailer	jët.						
Start time:	12:00	8×*						
Stop time:	12:05							
Duration (min.):	5	Odor:				<u></u>		
Rate, gpm:	7-	Purge appearan	ce:					
Volume purged:	39	Sample appearan	ice:					
Duplicate collected?		Commer	ıts:					
Sampled by:		-						
Others present:	1	I	*****	Well Co	ondition			***************************************
Analysis:	VOC	filtered me	tal 1	nl filter	in-line f	ilter	others:	
MW:gw monitoring well WS:water supply well SW:surface water SE:sediment other:								

^T Measurements are referenced from top of riser pipe, unless otherwise indicated.

۱

Landmark Environmental, LLC

Client Name:	City of Rochester – Second Quarter Sampling						
Project Name:	CRC	Project Number:	CRC-12				
Location: <u>MW</u>	-18	Date:	May 20, 2014				
Station:		Sample time:	16:00				

Casing diameter:	2"	Time/	Temp	Cond	pН	Eh	D.O.	Turb.
Total well depth:	60	Volume	°C	@ 25				NTU
Static water level:	12.62		19.36	2280	7.46	-21.0	0.30	
Water depth ¹ :	47.3		·	-				
Well volume (gal):	7.7							
Purge method:	2" 546							
Sample Method:	Ballon							
Start time:	11:35							
Stop time:	11:55							
Duration (min.):	20	Odor:	<u> </u>	·····				
Rate, gpm:	₫ 7 -	Purge appearan	ice:					
Volume purged:	141	Sample appearar	nce:					
Duplicate collected?	No	Comments:						
Sampled by:	JEG							
Others present:				Well Co	ndition			
Analysis:	VOC	VOC filtered metal ml filter in-line filter others:						
MW:gw monitoring well WS:water supply well SW:surface water SE:sediment other:								

MW:gw monitoring well WS:water supply well SW:surface water SE:sediment other: ¹ Measurements are referenced from top of riser pipe, unless otherwise indicated.

Landmark Environmental, LLC

Client Name:	City of Rochester – Second Quarter Sampling							
Project Name:	CRC	Project Number:	CRC-12					
Location: MW	-19	Date:	May 20, 2014					
Station:		Sample time:	16:30					

					·······	**********		
Casing diameter:	2"	Time/	Temp	Cond	pH	Eh	D.O.	Turb.
Total well depth:	20	Volume	°C	@ 25				NTU
Static water level:	12.52		17.63	5684	6.89	7.9	2,53	
Water depth ¹ :	7.48							
Well volume (gal):	1.2							
Purge method:	Moditist							
Sample Method:								
Start time:								
Stop time:								
Duration (min.):		Odor:						
Rate, gpm:		Purge appearan	ice:				· .	
Volume purged:		Sample appearan	ice:					
Duplicate collected?		Comments:						
Sampled by:								
Others present:		1		Well Co	ondition			
Analysis:	VOC	filtered me	etal	ml filter	in-line f	ilter	others:	
MW:gw monitoring well WS:water supply well SW:surface water SE:sediment other:								
Landmark Environmental, LLC

Client Name:	City of Rochester – Second Quarter Sampling						
Project Name:	CRC	Project Number:	CRC-12				
Location: MW	-20	Date:	May 20, 2014				
Station:		Sample time:	17:00				

Casing diameter:	2"	Time/	Temp	Cond	pH	Eh	D.O.	Turb.
Total well depth:	16.7	Volume	°C	@ 25				NTU
Static water level:	10.94		19.24	9599	7.0	1.9	3.43	
Water depth ¹ :	5,76							
Well volume (gal):	0.94							
Purge method:	Mod: Fred							
Sample Method:	Baire							
Start time:								
Stop time:								
Duration (min.):		Odor:						
Rate, gpm:		Purge appearan	ice:		· .		· .	
Volume purged:		Sample appearan	ice:					
Duplicate collected?		Commer	nts:					
Sampled by:								
Others present:				Well Co	ndition			•••••••••••••••••••••••••••••••••••••••
Analysis:	VOC	filtered me	etal 1	ml filter	in-line f	ilter	others:	
MW:gw monitoring	well WS:wa	ter supply	well SV	V:surface y	vater SF	Redime	ent other	-*

Landmark Environmental, LLC

Client Name:	City of Rochester - Second	Quarter Samplin	g
Project Name:	CRC	Project Number:	CRC-12
Location: <u>MW-</u>	-16	Date:	May 20, 2014
Station:	````	Sample time:	15:00

***************************************	1					r		
Casing diameter:	2"	Time/	Temp	Cond	pH	Eh	D.O.	Turb.
Total well depth:	18	Volume	°C	@ 25		,	\sim	NTU
Static water level:	10.86		19.72	3220	7.41	-18.7	3.25	
Water depth ¹ :	7.14							
Well volume (gal):	1.1							
Purge method:	MONERED							
Sample Method:	Beil-en							
Start time:								
Stop time:								
Duration (min.):		Odor:						
Rate, gpm:		Purge appearan	ice:					
Volume purged:		Sample appearan	ice:					
Duplicate collected?		Commen	nts:					
Sampled by:								
						T		
Others present:				Well Co	ndition			
Analysis:	VOC	filtered me	tal 1	nl filter	in-line f	ilter	others:	
MXX monitoring		1		7	, ar		1	

MW:gw monitoring well WS:water supply well SW:surface water SE:sediment other: ¹ Measurements are referenced from top of riser pipe, unless otherwise indicated.

[•] Measurements are referenced from top of riser pipe, unless otherwise indicated.

Landmark Environmental, LLC

÷

Client Name:	City of Roche	ity of Rochester – Third Quarter Sampling							
Project Name:	CRC		Proje	ect Numb	er:	CRC-13			
Location: Multig	ole Location		Date	:	May	20, 2014			
Station:			Sam	ple time:					
Multiple Sampling Log:	Dept (A)	Time/ Volume	Temp ℃	Cond @ 25	pН	Eh	D.O.		
Location:									
DPE-1:	13.54	10:00	18.86	4150	7.89	-43.1	3.62		
DPE-2:	13.96	10:30	19.03	6497	7.72	-34.4	4.09		
DPE-3:	14,00	11:00	19,23	7780	7,07	-1.2	2.26		
DPE-4:	14.22	1):30	19.32	4797	6.52	26.8	1.21		
DPE-5:	13.61	12:00	19.05	2290	7.92	-45.2	1.44		
DPE-6:	13.59	12:30	19.60	706	6.95	4.7	3.28		
DPE-7:	14.84	13:00	19.36	1133	7,65	-31.3	3.61		
DPE-8:	14.46	13:30	DP	1-	******	je poževa desečka sa titečke korpi	\$27 17.000000//15/0-76/90/10/16/63/5/56	ne výti fyllar ternetere en fylla	
Rate, gpm:				/					
Volume purged:									
Duplicate collected?									
Sampled by:									
Others present:				Well Co	ndition				
Analysis:	VOC DI	filtered me	tal r	nl filter	in-line fi	lter d	others:		
MW:gw monitoring	well WS:wa	ter supply	well SW	surface v	vater SE	sedime	nt other	:	
Kate, gpm: Volume purged: Volume purged: Duplicate Duplicate Sampled by: Others present: Well Condition Analysis: VOC filtered metal ml filter MW:gw monitoring well WS:water supply well SW:surface Water SE:sediment									

Measurements are referenced from top of riser pipe, unless otherwise indicated.

SSD SYSTEM ADVANCED DIAGNOSTIC TESTING

LOCATION:

DATE:

FIELD PERSONNEL:

BUILDING #:

	1		1	1	<u> </u>		1	T		
			,	-						
WC)					·					
INGS (IN									• .	
JRE READ										
INT PRESSU	·	~					-			
ORING PO										
APOR MONIT										
>	·									
	Verth	25.4	10.86	11.84	12.62	12:52	lo.99	10.52	5.62	•
	EXHAUST PID (PPM)						,			
	DIFFERENTIAL LINE PRESSURE (IN WC)									
	STATIC LINE PRESSURE (IN WC)		×						-	
	EXHAUST TEMP (DEG F)									
	SP "WELL HEAD PRESSURE (IN. WC)									
	# OF FANS								×	
	TIME	ñ	9	t.	00	a	2	2	Chy	به 🗌

NOTES:

.

Client Name:	City of Roche	ity of Rochester – Third Quarter Sampling								
Project Name:	CRC		Proj	ect Number: CRC-1			13			
Location: Mult	iple Location		Date		February 17, 2014					
Station:	· ·		Sam	ple time:						
Multiple Sampling Log:	;	Time/ Volume	Temp ⁰C	Cond @ 25	pН	Eh	D.O.	-		
Location:										
DPE-1: 🕑	14.90		18.88	1.910	8.30	-49,9	3.39			
DPE-2: 🕑	15.15		19.09	4.705	8.13	-41.4	3.66			
DPE-3: (6)	15,41		18.58	6.85	7.35	0.0	1.1			
$_{\mathrm{DPE-4:}} \Theta$	15.46		19.79	4.102	6.98	19.2	1.76			
DPE-5: 3	14.99		19.12	1.508	8.26	-49.2	0.92			
DPE-6: ①	14.81		19.62	472	7.24	-4.9			-2.50	
DPE-7: Ø	16.04		19,11	885	7.95	-31.9	1.3.4	5		
DPE-8: 🗐	16,00									
Rate, gpm:									· ·	
Volume purged:										
Duplicate collected?					•					
Sampled by:				.						
Others present:				Well Co	ndition					
Analysis:	VOC	filtered me	tal 1	ml filter	in-line f	ilter	others:		-	

Landmark Environmental, LLC

Client Name:	City of Roche	ster – Sec	cond Qua	rter Samp	oling				
Project Name:	CRC		Proj	ject Numł	er:	CRC-	CRC-12		
Location: <u>MW-</u>	.14		Date	Date: Feb			oruary 17, 2014		
Station:			San	ple time:					
					T		r	[]	
Casing diameter:	2"	Time/	Temp	Cond	pH	Eh	D.O.	Turb.	
Total well depth:	17.5	Volume	<u>°C</u>	@ 25				NTU	
Static water level:	11.66		19.51	1.596	7.24	-20.8	1.88		
Water depth ¹ :	5,84								
Well volume (gal):	1.0								
Purge method:	Line I chavi	7 6100-							
Sample Method:	Ped								
Start time:									
Stop time:						1			
Duration (min.):		Odor:			- 11				
Rate, gpm:		Purge appearan	ice:						
Volume purged:		Sample appearar	nce:						
Duplicate collected?		Commer	nts:						
Sampled by:									
Others present:				Well C	ondition				
Analysis:	VOC	filtered me	ətal	ml filter	in-line f	ilter	others:		
MW:gw monitorir	ig well WS:wa	ter supply	well S	W:surface	water SI	E:sedime	ent othe	r:	

¹ Measurements are referenced from top of riser pipe, unless otherwise indicated.

Landmark Environmental, LLC

Client Name:	City of Rochester - Second	City of Rochester – Second Quarter Sampling								
Project Name:	CRC	Project Number	CRC-12							
Location: <u>MW</u>	-15	Date:	February 17, 2014							
Station:		Sample time:								

Casing diameter:	2"	Time/	Temp	Cond	pH	Eh	D.O.	Turb.
Total well depth:	18	Volume	°C	@ 25				NTU
Static water level:	14.11		20.14	967	7.95	-323	2,26)
Water depth ¹ :	3.89							
Well volume (gal):	Ò.60							
Purge method:	Line + Chick							
Sample Method:	ded							
Start time:	free and the second sec							
Stop time:								
Duration (min.):		Odor:						
Rate, gpm:		Purge appearan	ice:					
Volume purged:		Sample appearar	nce:					
Duplicate collected?		Commer	nts:			-		
Sampled by:								
Others present:		<u> </u>		Well Co	ondition			
Analysis:	VOC	filtered me	etal 1	nl filter	in-line f	ilter	others:	
MW'ow monitoring	well WS.ws	ter supply	well SV	Jourface y	water SI	Zigedime	ent othe	p+

Landmark Environmental, LLC

Client Name:	t Name: City of Rochester – Second Quarter Sampling							
Project Name:	CRC	Project Number	:CRC-12					
Location: <u>MW</u>	-16	Date:	February 17, 2014					
Station:		Sample time:						

a 1 11 .		reat 1		~ 1			D O	
Casing diameter:	2"	Time/ Volume	Temp ℃	Cond @.25	pH	Eh	D.O.	Turb. NTU
Total well depth:	18				,			
Static water level:	12.09		19.76	2,391	7.71	-19.2	4-19	
Water depth ¹ :	5.91							
Well volume (gal):	1.0							
Purge method:	Uneldnell							
Sample Method:	Ded							
Start time:								
Stop time:								
Duration (min.):		Odor:						
Rate, gpm:		Purge appearar	ice:					
Volume purged:		Sample appearar	ice:					
Duplicate collected?		Commer	nts:					
Sampled by:								
Otherra present:				Wall C	ndition			
Others present:				I WELL CO				
Analysis:	VOC	filtered me	etal	ml filter	in-line f	ilter	others:	
MW:gw monitoring	g well WS:wa	ater supply	well SV	V:surface	water Sl	E:sedime	ent othe	r:

¹ Measurements are referenced from top of riser pipe, unless otherwise indicated.

Landmark Environmental, LLC

Client Name: City of Rochester – Second Quarter Sampling									
Project Name:	CRC Project Number				ber:	CRC-12			
Location: <u>MW-1</u>	17		Date	Date: Febr			uary 17, 2014		
Station: 25		Sample time:							
Casing diameter:	2"	Time/	Temp	Cond	pH	Eh	D.O.	Turb.	
Total well depth:	25	Volume	°C	@ 25				NTU	
Static water level:	12.86		19.59	1. 311	7.74	-23,5	0.97		
Water depth ¹ :	12.4				· · · · ·				
Well volume (gal):	2.0								
Purge method:	Line Charle			-					
Sample Method:	Del						, · · · ·		
Start time:									
Stop time:									
Duration (min.):	- 180-19-18-19-18-18-18-18-18-18-18-18-18-18-18-18-18-	Odor:							
Rate, gpm:		Purge appearar	nce:						
Volume purged:		Sample appearar	nce:						
Duplicate collected?		Commer	nts:						
Sampled by:									
Others present:		- I		Well C	ondition			···	
Analysis:	VOC filtered metal ml filter in-line filter others:								
MW:gw monitoring well WS:water supply well SW:surface water SE:sediment other:									

Landmark Environmental, LLC

Client Name:	Name: City of Rochester – Second Quarter Sampling							
Project Name:	CRC	Project Number	CRC-12					
Location: <u>MW</u>	-18	Date:	February 17, 2014					
Station:	·.	Sample time:						

Casing diameter:	2"	Time/	me/ Temp olume °C	Cond] @ 25	pН	Eh	D.O.	Turb.
Total well depth:	60	Volume						NTU
Static water level:	13.35		19.58	2.669	7,41)	-3.4	0.62	
Water depth ¹ :	46.65							
Well volume (gal):	7.4 7.6							
Purge method:	Line Check							
Sample Method:	Dud							
Start time:							}	
Stop time:				L				L
Duration (min.):		Odor:						
Rate, gpm:		Purge appearan	ice:					
Volume purged:		Sample appearar	ice:				-	
Duplicate collected?		Commer	nts:					
Sampled by:								
Others present:		<u> </u>		Well Co	ndition			• ·
Analysis:	VOC	filtered me	etal 1	nl filter	in-line f	ilter	others:	

.

Landmark Environmental, LLC

Client Name: City of Rochester – Second Quarter Sampling							
Project Name:	CRC	Project Number	: <u>CRC-12</u>				
Location: <u>MW</u>	-19	Date:	February 17, 2014				
Station:		Sample time:					

Casing diameter:	2"	Time/	Temp	Cond	pH	Eh	D.O.	Turb.
Total well depth:	20	Volume	°C	@ 25	-			NTU
Static water level:	13.\$98		17.38	6.328	7,17	9.2	2.10	
Water depth ¹ :	6.02							
Well volume (gal):	1.0							
Purge method:	Line Icheck	-		/				
Sample Method:	Pcd							
Start time:								
Stop time:								
Duration (min.):		Odor:						
Rate, gpm:		Purge appearan	ice:					
Volume purged:		Sample appearar	ice:					
Duplicate collected?		Commer	nts:					
Sampled by:								
Others present:		.L		Well Co	ondition			
Analysis:	VOC	filtered me	etal	ml filter	in-line f	ilter	others:	
MW:gw monitoring well WS:water supply well SW:surface water SE:sediment other:								

Landmark Environmental, LLC

ł

Client Name: City of Rochester – Second Quarter Sampling							
Project Name:	CRC	Project Number	CRC-12				
Location: <u>MW</u>	-20	Date:	February 17, 2014				
Station:		Sample time:					

							· · · · · · · · · · · · · · · · · · ·	
Casing diameter:	2"	Time/	Temp	Cond	pН	Eh	D.O.	Turb.
Total well depth:	16.7	Volume	ıe °C	@ 25				NTU
Static water level:	13.33		18:72	6.67	7.14	10.9	0,60	
Water depth ¹ :	3.37		••••					
Well volume (gal):	.₅5							
Purge method:	Linc lacd							
Sample Method:	creck							
Start time:								
Stop time:							<u> </u>	
Duration (min.):		Odor:						
Rate, gpm:		Purge appearar	nce:					
Volume purged:		Sample	nce:					
Duplicate collected?		Comme	nts:					
Sampled by:								
Others present:		<u> </u>		Well Co	ondition			
Analysis:	VOC	filtered m	etal	ml filter	in-line f	ilter	others:	
MW:gw monitorin	MW:gw monitoring well WS:water supply well SW:surface water SE:sediment other:							