#### Landmark Environmental, LLC



2042 West 98th Street Bloomington, MN 55431 Phone: 952-666-2444 www.landmarkenv.com

October 4, 2016 Sent via Email

Mr. Allan Timm and Ed Olson MPCA VIC Program 520 Lafayette Road St. Paul, MN 55155-4194

Re: Soil Vapor, Groundwater, Active VMS and DPE System Monitoring Report MN Bio Business Center, Rochester, MN

Dear Mr. Timm and Mr. Olson:

On behalf of the City of Rochester (City), Landmark Environmental, LLC (Landmark) has prepared this letter report (Report) to present quarterly groundwater and semiannual soil vapor monitoring results, and monthly dual phase extraction (DPE) system monitoring from the above referenced property (Property), shown in **Figure 1**. This Report documents quarterly groundwater monitoring results from sampling events on December 14, 2015, January 11 and February 24, 2016, and May 18, 2016; and semiannual soil vapor monitoring results from sampling events on January 12 and February 24, 2016, and June 23, 2016.

After approximately two years of monitoring the groundwater and soil vapor following shut off of the DPE system, on December 14, 2015, Landmark re-started the DPE system. DPE system maintenance, monitoring, and/or sampling events were completed on December 14, 2015 and in 2016 on January 11, 12, February 23 and 24, March 21 and 30, April 20, May 17, and June 16, 20, 23, and 29.

After observing some rebound in soil vapor concentrations while the DPE system was not operating, the vapor mitigation system (VMS) was converted from a passive to an active system. The active VMS first began operating on September 8, 2015, and continued operating through December 15, 2015, at which point it was turned off. The active VMS began operating again on May 17, 2016 and it remains operational.

#### **Background**

The Minnesota Pollution Control Agency (MPCA) has requested groundwater monitoring at the Property since 2009, to evaluate the effectiveness of the dual phase extraction (DPE) system, which originally started up on June 29, 2009. During its operation, the configuration of the DPE system was adjusted based on groundwater volatile organic compound (VOC) concentrations in the DPE wells, DPE VOC emissions concentrations, and DPE well photo-ionization detector readings collected during monthly monitoring and sampling events. In its Quarterly Groundwater Monitoring and Dual Phase Extraction System Effectiveness Report dated July 31, 2013, Landmark recommended shutdown of the DPE system.



The MPCA approved DPE system shut down in an email dated October 7, 2013. That email requested the following modifications to Landmark's proposal:

- Regarding the recommendation for permanent shut down shut down is approved however, the DPE system installation should be maintained so that it can be restarted in the event that groundwater and/or vapor monitoring concentrations significantly rebound.
- Regarding discontinued sampling of certain monitoring wells staff recommends the
  groundwater sampling of the entire monitoring well network, in order to determine the effects
  of discontinued DPE system operation. (After obtaining quarterly data after shut-down, staff
  may approve the recommendation for reducing the monitoring well network and/or sampling
  frequency.)
- Due to the PCE groundwater concentration fluctuations associated with changing groundwater elevations, staff requests that the Voluntary Party investigate alternative technologies to address the residual or source area contamination. For example, the application of an enhanced biodegradation agent(s) using the existing DPE ports and wells.

In the December 11, 2013, Quarterly Groundwater Monitoring and Dual Phase Extraction System Effectiveness Report Landmark recommended the following:

"Landmark and the City will decommission and remove the DPE system from the building, per MPCA's approval, if the soil vapor and groundwater concentrations do not exceed the following levels after one year of monitoring with the DPE system off (through August 2014):

- $\circ$  Ten times (10X) the industrial intrusion screening value (IISV) of 600 micrograms per cubic meter ( $\mu$ g/m³) at LSG-7 (the south monitoring location beneath Dolittle's restaurant); or,
- One hundred times (100X) the IISV of 6,000 μg/m³ at LSG-8 (bordering the east sidewalk and street), LSG-9 (beneath the north slab-on-grade section of the building which has a vapor barrier and venting system), and LSG-10 (bordering the west alley); or,
- $\circ$  10X the health risk limit (HRL) for tetrachloroethene (PCE) of 70 micrograms per liter ( $\mu$ g/L) at downgradient and sidegradient monitoring wells MW-14, MW-15, and MW-19.
- The City will continue quarterly groundwater sampling and semiannual soil gas sampling through August 2014."

In an email dated January 15, 2014, the MPCA approved these recommendations with the following comments:

Approve the current report



- The high concentrations of PCE in the groundwater in the area of the elevator shaft and sump SP-2 are a source of the PCE vapors in the sump and drain tile system. The PCE vapor concentrations are high enough that the sub-slab ventilation system may need to be active rather than passive.
- Continued vapor monitoring is needed in this area to determine if additional remediation of the source area is needed.
- Agree with Landmarks recommendation to monitor groundwater and soil gas for one year. After one year the MPCA will re-evaluate the groundwater and soil gas concentration trends and make a determination regarding:
  - Will natural attenuation and passive sub-slab vapor mitigation be adequate at the site?
  - Should the remediation system be restarted to further reduce concentration in the groundwater?
  - Should alternative technologies such as in-situ enhanced bio-degradation or chemical oxidization be used to further reduce PCE concentrations in the source area? These may be used in conjunction with the DPE system.
- At this time the highest PCE concentration was 6,980 ug/l at DPE-3, which is approximately 1,400 times the HRL of 5, ug/l. (The report incorrectly states that the HRL is 7 ug/l.) There are no wells located to the north of DPE-3 to help define the extent of the groundwater contamination.
- Because the impacted groundwater is in a karst aquifer, it is difficult to determine where the
  impacted groundwater from the source area is migrating. Therefore the extent of the
  contamination may not be adequately determined and the contamination may have to be
  remediated to a lower level than it is currently at.
- The significant fluctuations in PCE concentrations when the groundwater elevations increased during the spring of 2013 indicate that significant contamination may be remaining in the fractures and pore spaces in the bedrock at the site.

Following shutdown of the DPE system on August 26, 2013, some rebound in VOC concentrations, was observed in the groundwater and soil vapor on the Property. Therefore, a meeting with Landmark, MPCA, and the City was held on March 17, 2015, to discuss the next steps for the Property. MPCA requested additional groundwater response actions including repairing and restarting the DPE system, operating the DPE system for one to six months, and applying an in-situ groundwater injection remediation technology at select DPE wells to remediate residual VOC contamination in the fractured bedrock. In addition, the MPCA-requested additional soil vapor response actions, which included converting the passive venting system to an active VMS in the summer of 2015.

On May 25, 2016, the MPCA adopted interim ISVs for select contaminants, including PCE. The interim ISV for PCE, raised the applicable 10X IISV from 300  $\mu$ g/m³ to 330  $\mu$ g/m³. The Minnesota Department of Health (MDH) also lowered the HRL for PCE from 7  $\mu$ g/L to 5  $\mu$ g/L. Therefore, the site specific



screening values for PCE approved by the MPCA in January 15, 2014, would be 330  $\mu$ g/m³ as the applicable 10X IISV for LSG-7; 3,300  $\mu$ g/m³ as the applicable 100X IISV for LSG-8, LSG-9, and LSG-10; and 50  $\mu$ g/L as the 10X HRL.

#### **Groundwater Monitoring Results**

The DPE well groundwater hydrographs through May 17, 2016 (**Figure 2**) show a one to two foot fluctuation in groundwater elevation between the DPE system shut down in August 26, 2013 and DPE system restart on December 15, 2015. Similar groundwater elevation trends were observed in the monitoring well hydrographs shown in **Figure 3**. Groundwater flow interpretations are provided in **Figures 4 through 9**. The groundwater elevation data is provided in **Table 1**. Well construction information is provided in **Table 2**.

Per the MPCA's approval in an email dated December 14, 2009, analysis of the following natural attenuation parameters has been discontinued: dissolved calcium, dissolved organic carbon, dissolved iron, dissolved magnesium, methane, nitrate as nitrogen, sulfate, and sulfide. The prior natural attenuation data is provided in **Table 3**. The following field parameter data is collected at each well on a quarterly basis and is provided in **Table 4**: temperature, conductivity, pH, oxidation reduction potential, and dissolved oxygen.

After approximately four and a half years of DPE system operation, PCE concentrations decreased in all of the monitoring and DPE wells, as shown in **Table 5** and **Figures 10A-10B**. Groundwater VOC concentrations also decreased significantly from historical highs observed April 1 through June 30, 2013, following a 25.6 inch precipitation event. Following shutdown of the DPE system on August 26, 2013, PCE concentrations rebounded to some degree in the DPE and monitoring wells. After restarting the DPE system on December 15, 2015, within a few months concentrations of PCE in the wells decreased. **Figures 11, 12** and **13** show the iso-concentration contour map for PCE during the December 14, 2015, February 23, 2016 and May 17, 2016 monitoring events, respectively. The groundwater analytical results are included in **Table's 6A-6B** and the groundwater analytical reports are included in **Attachment A**. Groundwater monitoring field data sheets are included in **Attachment B**.

#### **Venting System and Soil Vapor Monitoring Results**

As mentioned previously, the active VMS began operating on September 8, 2015, and was shut down on December 15, 2015, when the DPE system was restarted. to After testing simultaneous operation of the active VMS and DPEs system showed that both systems could operate effectively, the active VMS was re-started on May 17, 2016. Post-mitigation monitoring results to date are included in **Table 7** along with pre-mitigation diagnostic testing results from March 23, 2015, for comparison.

In May 2016, low pressure readings from the basement (LSG-10 and V-2) and at the digital manometer readout panel for VMS-3 indicated the fan at VMS-3 was not operating properly. The problem was diagnosed and the fan was repaired on June 23, 2016after which the pressure readings associated with VMS-3 returned to normal.

The locations and installation information for the permanent soil vapor sampling ports, LSG-7 through LSG-10, which were installed during the December 21, 2012, is summarized below. These sampling



ports were installed by coring 1-inch holes through the foundation walls near the basement ceiling. The samples collected at LSG-7 and LSG-9 are representative of sub-slab soil vapor samples because they are collected below the building slab. LSG-7, which is near the former SG-1 sampling location, is utilized to collect a sub-slab vapor sample beneath Dooley's Pub west of the basement. LSG-9, the north sampling location, is utilized to collect a sub-slab soil vapor sample beneath the slab on grade section of the Property building north of the basement. These two sample locations are representative of sub-slab samples collected within 1 foot below the bottom of the slab per MPCA requirements. Soil vapor samples, which are not considered "sub-slab" soil vapor samples because they are not located beneath a building slab, are collected at LSG-8 located on the east side of the Property building beneath the sidewalk and LSG-10 located on the west side of the Property building beneath the alley. Soil vapor samples from LSG-8 are collected approximately 6 inches below the concrete surface of the sidewalk. The soil vapor samples from LSG-10 are collected approximately 3 feet beneath the concrete surface of the alley. In addition to collecting soil vapor samples at locations LSG-7 through LSG-10, Landmark also collects grab headspace samples from storm sewer sumps SP-1 and SP-2 located in the basement of the Property building.

During the January 12, 2015 and February 24, and June 23, 2016 monitoring events, soil vapor samples were collected from LSG-7 through LSG-10 and air samples were collected from the headspace of each of the two stormwater sumps (SP-1 and SP-2) located in the basement of the Property building. These soil vapor and headspace air samples were collected with the DPE system running.

As shown in **Figure 14**, **15** and **16**, and **Table 8**, all of the detected parameters from the January 12<sup>th</sup>, February 24<sup>th</sup>, and June 23<sup>rd</sup> sampling events were below the MPCA's applicable 10X IISVs, except for PCE at LSG-8 (880 µg/m³) from the February 24<sup>th</sup> sampling event and PCE at SP-2 (360 µg/m³) from the June 23<sup>rd</sup> sampling event. Field data including PID readings are included in **Table 9**. The analytical laboratory reports from Legend Technical Services, Inc. (Legend) and Pace Analytical (Pace) are included in **Attachment A**.

The soil vapor samples were collected in an evacuated, 1 liter Summa canister equipped with a dedicated pneumatic flow controller. Prior to collecting the soil gas samples, at a minimum, two volumes of air were purged from the sampling train using a hand-operated syringe. The sampling line (1/4-inch outer diameter [O.D.] Teflon tubing) was attached to the canister inlet using a Swagelok nut and set of stainless steel ferrules. The sampling line was attached to the tubing in the soil void created (approximately 1-inch O.D.) using new small length of inert tubing. The pneumatic flow controller was pre-set by the laboratory so that the canister fills at a rate in no less than 10 minutes. The Summa canister was equipped with a pressure gauge to monitor vacuum. The sump pit samples were grab samples collected over approximately 10 minutes. The Summa canisters were submitted to Legend or Pace for analysis of VOCs using U.S. Environmental Protection Agency Method TO-15.

#### **DPE System Operation and Maintenance**

Monthly maintenance checks were completed through June 2016 after restarting the DPE system on December 14, 2015. The DPE system was shut down temporarily from January 26, through February 23, 2016, due to air stripper maintenance issues. The DPE system operation and maintenance summary is provided in **Table 10**.



Groundwater influent and effluent samples for the air stripper were collected on January 11, February 24, March 30, April 20, and May 18, 2016, to verify the groundwater discharge to the sanitary sewer was below the permit criteria. Acute emissions risk sampling was completed on January 12, February 24, March 30, April 20, May 18, and June 23, 2016 for the 6-hour sampling period. The DPE system was operated at each well for 45 minutes for a total of six hours while a composite emissions air sample was collected from a Summa canister equipped with an 8-hour flow controller.

When comparing the March 30, 2016 concentrations to the baseline emissions data from April 9, 2009, the total volatile organic compound (VOC) concentration has decreased from 14,613,880  $\mu$ g/m³ to 26,073  $\mu$ g/m³, a decrease of 99.8 percent (See **Table 11** and **Figures 17A** and **17B**). Subsequently, VOC concentrations during the June 23, 2016 sampling event were only 2,699  $\mu$ g/m³, which is a decrease of 99.98 percent from the baseline emissions data from April 9, 2009. PCE concentrations decreased from 11,600,000  $\mu$ g/m³ to 19,000  $\mu$ g/m³ during the March 30, 2016 sampling event which is a decrease of 99.8 percent from the baseline concentration (See **Table 11** and **Figures 17A** and **17B**). PCE concentrations decreased from 11,600,000  $\mu$ g/m³ to 230  $\mu$ g/m³ during the June 23, 2016 sampling event, which is a decrease of 99.99 percent.

The DPE system removed approximately 11.40 pounds of total VOCs, including approximately 6.57 pounds of PCE, from December 15, 2015 through May 17, 2016 (see **Figure 18** and **Table 11**). Through May 17, 2016, the DPE system has removed a total of 3,708.92 pounds of total VOCs and 2,794.92 pounds of PCE. Emissions analytical data is provided in **Table 12** and system operational data tables and field data sheets are provided in **Attachment C**. The emissions analytical reports are included in **Attachment A**.

The MPCA's Petroleum Remediation (PR) Program spreadsheet was used to evaluate the emissions rates from the DPE system and air stripper stacks on the Property during the DPE system sampling events. The site specific emissions rates for PCE from January 12, February 24, March 30, April 20 May 18 and June 23, 2016, were below the MPCA screening emissions rate (SER) for chronic risk of 16,300 micrograms per second ( $\mu$ g/s), and for acute risk of 5,980,000  $\mu$ g/s. The PR emissions rates are provided in **Table 13** and the PR spreadsheets are provided in **Attachment D**.

The cumulative total VOC mass removed from the DPE system groundwater discharge during air stripper operation through May 18, 2016, was 0.65 pounds. The effluent groundwater discharge concentrations were below the City's Water Reclamation Plant discharge criteria of 2,130  $\mu$ g/L. Mass removal data from the groundwater treatment system is provided in **Table 14** and the groundwater discharge analytical data is included in **Table 15**. The groundwater discharge analytical reports are provided in **Attachment A**.

#### Conclusions

After analyzing the soil vapor, groundwater, VMS, and DPE system data from this reporting period, the following conclusions can be made:



- The DPE and monitoring well groundwater hydrographs through February 23, 2016, show a one
  to two foot fluctuation in groundwater elevation based on whether the DPE system is operating or
  not.
- After restarting the DPE system on December 15, 2015, concentrations of PCE at the monitoring and DPE wells have decreased significantly in just a few months.
- All of the detected parameters from the January 12<sup>th</sup>, February 24<sup>th</sup>, and June 23<sup>rd</sup> soil vapor sampling events were below the MPCA's applicable 10X IISVs, except for PCE at LSG-8 (880 μg/m³) from the February 24<sup>th</sup> sampling event. The February 24, 2016 sampling event occurred, after the VMS fans had been shut down for a period of over two months. After restarting the VMS fans on May 17, 2016, the soil vapor concentrations for PCE were either not detected, or were detected below the applicable 10X IISV, at all soil vapor sampling locations.
- The DPE system removed approximately 11.40 pounds of total VOCs, including approximately 6.57 pounds of PCE, from December 15, 2015 through May 17, 2016. Through May 17, 2016, the DPE system has removed a total of 3,708.92 pounds of total VOCs and 2,794.92 pounds of PCE.

#### Recommendations

Based on the rebound of PCE in the soil vapor above the 10X IISV at LSG-8 (880  $\mu$ g/m³), during the February 24, 2016, soil vapor sampling event, Landmark recommends continuous operation of the active VMS.

Landmark recommends operating the DPE system until the Minnesota Department of Health approves a groundwater injection variance to conduct an enhanced bioremediation and bioaugmentation groundwater remediation response action. Once the variance is approved, Landmark requests approval from the MPCA to implement the enhanced bioremediation and bioaugmentation groundwater remediation event. One week prior to implementing the enhanced bioremediation and bioaugmentation groundwater remediation event, Landmark recommends shutting down the DPE system to allow groundwater levels to return to steady state conditions.

If you have any questions or require additional information, please feel free to contact me at jskramstad@landmarkenv.com and (952) 887-9601, extension 205.

Sincerely,

Jason D. Skramstad, P.E.

CC: Terry Spaeth, City of Rochester



F:\PROJECTS\Crc-City of Rochester\Monthly System Reports\20160718 Semi-Annual\20160720 Draft Soil Vapor and Groundwater Monitoring Report.docx

#### **Figures**

Figure 1: Property Location Map

Figure 2: DPE Well Hydrographs

Figure 3: Monitoring Well and Sump Hydrographs

Figure 4: Groundwater Flow Interpretation-December 14, 2015

Figure 5: 3D Groundwater Flow Interpretation- December 14, 2015

Figure 6: Groundwater Flow Interpretation-February 23, 2016

Figure 7: 3D Groundwater Flow Interpretation- February 23, 2016

Figure 8: Groundwater Flow Interpretation-May 17, 2016

Figure 9: 3D Groundwater Flow Interpretation- May 17, 2016

Figure 10A: PCE Concentrations in Groundwater-December 2008 to Present

Figure 10B: PCE Concentrations in Groundwater- May 2010 to Present

Figure 11: Shallow PCE Groundwater Concentration Interpretation- December 14, 2015

Figure 12: Shallow PCE Groundwater Concentration Interpretation-February 23, 2016

Figure 13: Shallow PCE Groundwater Concentration Interpretation- May 17, 2016

Figure 14: Soil Vapor Sampling Locations and PCE Results-January 12, 2016

Figure 15: Soil Vapor Sampling Locations and PCE Results-February 24, 2016

Figure 16: Soil Vapor Sampling Locations and PCE Results-June 23, 2016

Figure 17A: DPE Emissions Concentrations-June 2009 to Present

Figure 17B: DPE Emissions Concentrations-July 2010 to Present

Figure 18: Cumulative Mass Removed

#### **Tables**

Table 1: Groundwater Elevations

**Table 2: Well Construction Summary** 

Table 3: Natural Attenuation Analytical Results

Table 4: Groundwater Field Data

Table 5: PCE Groundwater Concentration Data

Table 6A: DPE Well Groundwater Analytical Results

Table 6B: Monitoring Well Groundwater Analytical Results

Table 7: Vapor Mitigation System Monitoring Results

**Table 8: Soil Vapor Sampling Results** 

Table 9: Soil Vapor and Venting System Monitoring Results

Table 10: System Operation and Maintenance Summary

Table 11: Mass Removal from DPE Exhaust

Table 12: Air Emissions Analytical Results

Table 13: Emissions Rate Summary

Table 14: Mass Removal from Groundwater Treatment System

Table 15: Groundwater Discharge Analytical Results

#### **Attachments**

Attachment A: Laboratory Analytical Reports



Attachment B: Groundwater Monitoring Field Data Sheets

Attachment C: System Operational Data Tables

Attachment D: PR Spreadsheets

### Figures



Source: Rochester, Minnesota Topographic Quadrangle, 7.5-Minute Series



#### FIGURE 2

# DPE WELL HYDROGRAPHS MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota



#### FIGURE 3

# MONITORING WELL AND SUMP HYDROGRAPHS MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota



Date Sampled



# FIGURE 5 3D GROUNDWATER FLOW INTERPRETATION December 14, 2015



#### NOTES:

<sup>1.</sup> MW-17 and 18 are not shallow wells; therefore, the data from these wells was not used in the contouring calculations.



#### FIGURE 7 3D GROUNDWATER FLOW INTERPRETATION February 23, 2016

MN Bio Business Center 221 First Avenue S.W. Rochester, Minnesota



1. MW-17 and 18 are not shallow wells; therefore, the data from these wells was not used in the contouring calculations.



FIGURE 9 3D GROUNDWATER FLOW INTERPRETATION May 17, 2016



#### NOTES:

<sup>1.</sup> MW-17 and 18 are not shallow wells; therefore, the data from these wells was not used in the contouring calculations.

#### PCE CONCENTRATIONS IN GROUNDWATER

December 2008 to Present MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota



Date

#### PCE CONCENTRATIONS IN GROUNDWATER

May 2010 to Present
MN Bio Business Center
221 1st Avenue SW
Rochester, Minnesota



Date

PCE Concentration (ug/L)









FIGURE 14 - Jan. 12, 2016 SOIL VAPOR SAMPLING LOCATIONS AND PCE RESULTS



FIGURE 15 - Feb. 24, 2016 SOIL VAPOR SAMPLING LOCATIONS AND PCE RESULTS



FIGURE 16 - June 23, 2016 SOIL VAPOR SAMPLING LOCATIONS AND PCE RESULTS

#### **FIGURE 17A**

## DPE EMISSIONS CONCENTRATIONS-JUNE 2009 TO PRESENT MN Bio Business Center 221 1st Avenue SW

Rochester, Minnesota



#### FIGURE 17B

# DPE EMISSIONS CONCENTRATIONS - JULY 2010 TO PRESENT MN Bio Business Center 221 1st Avenue SW



FIGURE 18

#### CUMULATIVE MASS REMOVED MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota



### Tables

#### GROUNDWATER ELEVATIONS MN Bio Business Center

221 First Avenue SW Rochester, Minnesota

|                | 1                       | ТС                       | Donath to               |                        |                                                                |
|----------------|-------------------------|--------------------------|-------------------------|------------------------|----------------------------------------------------------------|
| Well           | Date                    | Top of<br>Casing         | Depth to<br>Groundwater | Groundwater            |                                                                |
| ID             | Measured                | Elevation <sup>1,2</sup> | (feet)                  | Elevation <sup>3</sup> | System Status                                                  |
| MW-14          | 12/3/2008               | 989.50                   | 10.82                   | 978.68                 | pre-system installation                                        |
| MW-14          | 6/8/2009                | 989.50                   | 12.40                   | 977.10                 | pre-system startup                                             |
| MW-14          | 7/9/2009                | 989.50                   | 12.90                   | 976.60                 | DPE system on DPE-1                                            |
| MW-14          | 7/9/2009                | 989.50                   | 12.51                   | 976.99                 | DPE system temporarily off                                     |
| MW-14          | 9/4/2009                | 989.50                   | 12.63                   | 976.87                 | DPE system on                                                  |
| MW-14          | 9/4/2009                | 989.50                   | 12.57                   | 976.93                 | DPE system on after replacing inlet screen                     |
| MW-14<br>MW-14 | 9/4/2009<br>10/15/2009  | 989.50<br>989.50         | 12.65<br>12.47          | 976.85<br>977.03       | DPE system on after replacing inlet filter DPE system on DPE-1 |
| MW-14          | 10/13/2009              | 989.50                   | 11.33                   | 977.03                 | DPE system off                                                 |
| MW-14          | 11/16/2009              | 989.50                   | 11.87                   | 977.63                 | DPE System on all wells                                        |
| MW-14          | 12/17/2009              | 989.50                   | 11.66                   | 977.84                 | DPE System on all wells                                        |
| MW-14          | 1/14/2010               | 989.50                   | 12.14                   | 977.36                 | DPE System on all wells                                        |
| MW-14          | 2/22/2010               | 989.50                   | 12.51                   | 976.99                 | DPE System on all wells                                        |
| MW-14          | 3/25/2010               | 989.50                   | 11.90                   | 977.60                 | DPE System on all wells                                        |
| MW-14<br>MW-14 | 4/16/2010<br>5/12/2010  | 989.50<br>989.50         | 12.21<br>12.68          | 977.29<br>976.82       | DPE System on all wells DPE System on all wells                |
| MW-14          | 6/17/2010               | 989.50                   | 13.01                   | 976.82                 | DPE System on all wells                                        |
| MW-14          | 8/18/2010               | 989.50                   | 13.28                   | 976.22                 | DPE System on all wells                                        |
| MW-14          | 9/27/2010               | 989.50                   | 10.85                   | 978.65                 | DPE System on all wells                                        |
| MW-14          | 11/18/2010              | 989.50                   | 11.16                   | 978.34                 | DPE System not operating                                       |
| MW-14          | 12/22/2010              | 989.50                   | 11.56                   | 977.94                 | DPE System restarted                                           |
| MW-14          | 1/6/2011                | 989.50                   | 10.82                   | 978.68                 | DPE System on all wells                                        |
| MW-14          | 1/20/2011               | 989.50                   | 11.18                   | 978.32                 | DPE System on all wells                                        |
| MW-14<br>MW-14 | 2/28/2011<br>3/7/2011   | 989.50<br>989.50         | 11.18<br>11.60          | 978.32<br>977.90       | DPE System on all wells DPE System on all wells                |
| MW-14          | 3/18/2011               | 989.50                   | 11.47                   | 978.03                 | DPE System on all wells                                        |
| MW-14          | 3/23/2011               | 989.50                   | 10.84                   | 978.66                 | DPE System on all wells                                        |
| MW-14          | 4/22/2011               | 989.50                   | 12.70                   | 976.80                 | DPE System on all wells                                        |
| MW-14          | 5/19/2011               | 989.50                   | 10.96                   | 978.54                 | DPE System on all wells                                        |
| MW-14          | 6/16/2011               | 989.50                   | 11.13                   | 978.37                 | DPE System on all wells                                        |
| MW-14          | 7/25/2011               | 989.50                   | 10.72                   | 978.78                 | DPE System on all wells DPE System on all wells                |
| MW-14<br>MW-14 | 8/28/2011<br>9/29/2011  | 989.50<br>989.50         | 12.11<br>12.26          | 977.39<br>977.24       | DPE-1,2,3,4                                                    |
| MW-14          | 10/18/2011              | 989.50                   | 11.18                   | 978.32                 | DPE-1,2,3,4<br>DPE-1,2,3,4                                     |
| MW-14          | 10/27/2011              | 989.50                   | 12.30                   | 977.20                 | DPE-1,2,3,4                                                    |
| MW-14          | 11/21/2011              | 989.50                   | 12.77                   | 976.73                 | DPE-1,2,3,4                                                    |
| MW-14          | 1/20/2012               | 989.50                   | 12.29                   | 977.21                 | DPE-1,2,3,4                                                    |
| MW-14          | 1/27/2012               | 989.50                   | 13.06                   | 976.44                 | DPE-1,2,3,4                                                    |
| MW-14<br>MW-14 | 2/16/2012<br>3/16/2012  | 989.50<br>989.50         | 13.14<br>13.56          | 976.36<br>975.94       | DPE-1,2,3,4<br>DPE-1,2,3,4                                     |
| MW-14          | 3/27/2012               | 989.50                   | 12.46                   | 977.04                 | DPE-1,2,3,4                                                    |
| MW-14          | 4/17/2012               | 989.50                   | 13.00                   | 976.50                 | DPE-1,2,3,4                                                    |
| MW-14          | 5/17/2012               | 989.50                   | 12.88                   | 976.62                 | DPE-1,2,3,4                                                    |
| MW-14          | 5/31/2012               | 989.50                   | 12.64                   | 976.86                 | DPE-1,2,3,4                                                    |
| MW-14          | 6/14/2012               | 989.50                   | 13.35                   | 976.15                 | DPE-1,2,3,4                                                    |
| MW-14          | 7/19/2012               | 989.50                   | 13.80                   | 975.70                 | DPE-3                                                          |
| MW-14<br>MW-14 | 8/23/2012<br>9/26/2012  | 989.50<br>989.50         | 13.20<br>13.47          | 976.30<br>976.03       | DPE-3<br>DPE-3                                                 |
| MW-14          | 10/26/2012              | 989.50                   | 13.43                   | 976.03                 | DPE-3                                                          |
| MW-14          | 12/19/2012              | 989.50                   | 12.53                   | 976.97                 | DPE-3; Before restarting the system                            |
| MW-14          | 12/21/2012              | 989.50                   | 13.29                   | 976.21                 | DPE-3; After restarting the system                             |
| MW-14          | 1/30/2013               | 989.50                   | 13.42                   | 976.08                 | DPE-1,2,3,4                                                    |
| MW-14          | 2/26/2013               | 989.50                   | 13.41                   | 976.09                 | DPE-1,2,3,4                                                    |
| MW-14<br>MW-14 | 3/21/2013<br>5/23/2013  | 989.50<br>989.50         | 13.47<br>8.56           | 976.03<br>980.94       | DPE-1,2,3,4<br>DPE-1,2,3,4                                     |
| MW-14          | 6/26/2013               | 989.50                   | 10.01                   | 979.49                 | DPE-1,2,3,4<br>DPE-1,2,3,4                                     |
| MW-14          | 8/26/2013               | 989.50                   | 11.54                   | 977.96                 | DPE-1,2,3,4                                                    |
| MW-14          | 12/10/2013              | 989.50                   | 11.26                   | 978.24                 | System Off                                                     |
| MW-14          | 2/17/2014               | 989.50                   | 11.66                   | 977.84                 | System Off                                                     |
| MW-14          | 4/20/2014               | 989.50                   | 10.52                   | 978.98                 | System Off                                                     |
| MW-14          | 8/21/2014               | 989.50                   | 11.67                   | 977.83                 | System Off                                                     |
| MW-14<br>MW-14 | 11/19/2014<br>2/25/2015 | 989.50<br>989.50         | 10.91<br>11.79          | 978.59<br>977.71       | System Off System Off                                          |
| MW-14          | 6/15/2015               | 989.50                   | 10.70                   | 977.71                 | System Off                                                     |
| MW-14          | 8/17/2015               | 989.50                   | 11.74                   | 977.76                 | System Off                                                     |
| MW-14          | 9/10/2015               | 989.50                   | 11.51                   | 977.99                 | System Off                                                     |
| MW-14          | 10/12/2015              | 989.50                   | 13.27                   | 976.23                 | System Off                                                     |
| MW-14          | 12/14/2015              | 989.50                   | 11.30                   | 978.20                 | DPE System on all wells                                        |
| MW-14          | 1/11/2016               | 989.50                   | 11.60                   | 977.90                 | DPE System on all wells DPE System on all wells                |
| MW-14<br>MW-14 | 2/23/2016<br>4/20/2016  | 989.50<br>989.50         | 10.97<br>10.89          | 978.53<br>978.61       | DPE System on all wells DPE System on all wells                |
| MW-14          | 5/17/2016               | 989.50                   | 10.89                   | 978.59                 | DPE System on all wells                                        |
|                |                         |                          |                         |                        | * ***                                                          |
|                |                         |                          |                         |                        |                                                                |

## GROUNDWATER ELEVATIONS MN Bio Business Center

221 First Avenue SW Rochester, Minnesota

| XX 11          | ъ.                      | Top of                             | Depth to       |                                       |                                                 |
|----------------|-------------------------|------------------------------------|----------------|---------------------------------------|-------------------------------------------------|
| Well           | Date                    | Casing<br>Elevation <sup>1,2</sup> | Groundwater    | Groundwater<br>Elevation <sup>3</sup> |                                                 |
| ID             | Measured                |                                    | (feet)         |                                       | System Status                                   |
| MW-15          | 12/3/2008               | 991.50                             | 13.11          | 978.39                                | pre-system installation                         |
| MW-15          | 6/8/2009<br>7/9/2009    | 991.50<br>991.50                   | 15.58<br>15.94 | 975.92<br>975.56                      | pre-system startup DPE system on DPE-1          |
| MW-15<br>MW-15 | 7/9/2009                | 991.50                             | 16.51          | 973.36                                | DPE system temporarily off                      |
| MW-15          | 9/4/2009                | 991.50                             | 15.73          | 975.77                                | DPE system on                                   |
| MW-15          | 9/4/2009                | 991.50                             | 15.90          | 975.60                                | DPE system on after replacing inlet screen      |
| MW-15          | 9/4/2009                | 991.50                             | 16.01          | 975.49                                | DPE system on after replacing inlet filter      |
| MW-15          | 10/15/2009              | 991.50                             | 15.38          | 976.12                                | DPE system on DPE-1                             |
| MW-15          | 10/23/2009              | 991.50                             | 14.14          | 977.36                                | DPE system off                                  |
| MW-15          | 11/16/2009              | 991.50                             | 13.78          | 977.72                                | DPE System on all wells                         |
| MW-15          | 12/17/2009              | 991.50                             | 14.25          | 977.25                                | DPE System on all wells                         |
| MW-15          | 1/14/2010               | 991.50                             | 14.33          | 977.17                                | DPE System on all wells                         |
| MW-15          | 2/22/2010               | 991.50                             | 15.72          | 975.78                                | DPE System on all wells                         |
| MW-15          | 3/25/2010               | 991.50<br>991.50                   | 14.57<br>14.72 | 976.93<br>976.78                      | DPE System on all wells                         |
| MW-15<br>MW-15 | 4/16/2010<br>5/12/2010  | 991.50                             | 15.44          | 976.78                                | DPE System on all wells DPE System on all wells |
| MW-15          | 6/17/2010               | 991.50                             | 16.28          | 976.06                                | DPE System on all wells                         |
| MW-15          | 8/18/2010               | 991.50                             | 16.24          | 975.26                                | DPE System on all wells                         |
| MW-15          | 9/27/2010               | 991.50                             | 13.68          | 977.82                                | DPE System on all wells                         |
| MW-15          | 11/18/2010              | 991.50                             | 13.79          | 977.71                                | DPE System not operating                        |
| MW-15          | 12/22/2010              | 991.50                             | 14.03          | 977.47                                | DPE System restarted                            |
| MW-15          | 1/6/2011                | 991.50                             | 13.53          | 977.97                                | DPE System on all wells                         |
| MW-15          | 1/20/2011               | 991.50                             | 13.55          | 977.95                                | DPE System on all wells                         |
| MW-15          | 2/28/2011               | 991.50                             | 13.71          | 977.79                                | DPE System on all wells                         |
| MW-15          | 3/7/2011                | 991.50                             | 14.01          | 977.49                                | DPE System on all wells                         |
| MW-15          | 3/18/2011               | 991.50                             | 14.08          | 977.42                                | DPE System on all wells                         |
| MW-15          | 3/23/2011               | 991.50                             | 12.79          | 978.71                                | DPE System on all wells                         |
| MW-15          | 4/22/2011               | 991.50                             | 13.40          | 978.10                                | DPE System on all wells                         |
| MW-15          | 5/19/2011               | 991.50<br>991.50                   | 13.38          | 978.12<br>977.88                      | DPE System on all wells DPE System on all wells |
| MW-15<br>MW-15 | 6/16/2011<br>7/25/2011  | 991.50                             | 13.62<br>13.08 | 977.88                                | DPE System on all wells                         |
| MW-15          | 8/28/2011               | 991.50                             | 14.76          | 976.42                                | DPE System on all wells                         |
| MW-15          | 9/29/2011               | 991.50                             | 15.28          | 976.22                                | DPE-1,2,3,4                                     |
| MW-15          | 10/18/2011              | 991.50                             | 13.79          | 977.71                                | DPE-1,2,3,4                                     |
| MW-15          | 10/27/2011              | 991.50                             | 15.56          | 975.94                                | DPE-1,2,3,4                                     |
| MW-15          | 11/21/2011              | 991.50                             | 15.89          | 975.61                                | DPE-1,2,3,4                                     |
| MW-15          | 1/20/2012               | 991.50                             | 14.92          | 976.58                                | DPE-1,2,3,4                                     |
| MW-15          | 1/27/2012               | 991.50                             | 15.91          | 975.59                                | DPE-1,2,3,4                                     |
| MW-15          | 2/16/2012               | 991.50                             | 15.78          | 975.72                                | DPE-1,2,3,4                                     |
| MW-15          | 3/16/2012               | 991.50                             | 15.81          | 975.69                                | DPE-1,2,3,4                                     |
| MW-15          | 3/27/2012               | 991.50                             | 15.19          | 976.31                                | DPE-1,2,3,4                                     |
| MW-15          | 4/17/2012               | 991.50                             | 15.49          | 976.01                                | DPE-1,2,3,4                                     |
| MW-15          | 5/17/2012<br>5/31/2012  | 991.50<br>991.50                   | 15.90          | 975.60                                | DPE-1,2,3,4                                     |
| MW-15<br>MW-15 | 6/14/2012               | 991.50                             | 15.26<br>15.93 | 976.24<br>975.57                      | DPE-1,2,3,4<br>DPE-1,2,3,4                      |
| MW-15          | 7/19/2012               | 991.50                             | 16.63          | 974.87                                | DPE-3                                           |
| MW-15          | 8/23/2012               | 991.50                             | 16.04          | 975.46                                | DPE-3                                           |
| MW-15          | 9/26/2012               | 991.50                             | 16.32          | 975.18                                | DPE-3                                           |
| MW-15          | 10/26/2012              | 991.50                             | 16.26          | 975.24                                | DPE-3                                           |
| MW-15          | 12/19/2012              | 991.50                             | 15.14          | 976.36                                | DPE-3; Before restarting the system             |
| MW-15          | 12/21/2012              | 991.50                             | 16.42          | 975.08                                | DPE-3; After restarting the system              |
| MW-15          | 1/30/2013               | 991.50                             | 16.72          | 974.78                                | DPE-1,2,3,4                                     |
| MW-15          | 2/26/2013               | 991.50                             | 15.96          | 975.54                                | DPE-1,2,3,4                                     |
| MW-15          | 3/21/2013               | 991.50                             | 16.79          | 974.71                                | DPE-1,2,3,4                                     |
| MW-15          | 5/23/2013               | 991.50                             | 11.07          | 980.43                                | DPE-1,2,3,4                                     |
| MW-15          | 6/26/2013               | 991.50                             | 12.37          | 979.13                                | DPE-1,2,3,4                                     |
| MW-15          | 8/26/2013               | 991.50                             | 14.06          | 977.44                                | DPE-1,2,3,4                                     |
| MW-15<br>MW-15 | 12/10/2013<br>2/17/2014 | 991.50<br>991.50                   | 13.80<br>14.11 | 977.70<br>977.39                      | System Off System Off                           |
| MW-15<br>MW-15 | 4/20/2014               | 991.50                             | 14.11          | 977.39                                | System Off System Off                           |
| MW-15          | 8/21/2014               | 991.50                             | 14.49          | 977.01                                | System Off                                      |
| MW-15          | 11/19/2014              | 991.50                             | 13.54          | 977.96                                | System Off                                      |
| MW-15          | 2/25/2015               | 991.50                             | 14.20          | 977.30                                | System Off                                      |
| MW-15          | 6/15/2015               | 991.50                             | 12.69          | 978.81                                | System Off                                      |
| MW-15          | 8/17/2015               | 991.50                             | 14.19          | 977.31                                | System Off                                      |
| MW-15          | 9/10/2015               | 991.50                             | 13.91          | 977.59                                | System Off                                      |
| MW-15          | 10/12/2015              | 991.50                             | 15.42          | 976.08                                | System Off                                      |
| MW-15          | 12/14/2015              | 991.50                             | 13.65          | 977.85                                | DPE System on all wells                         |
| MW-15          | 1/11/2016               | 991.50                             | 13.81          | 977.69                                | DPE System on all wells                         |
| MW-15          | 2/23/2016               | 991.50                             | 13.29          | 978.21                                | DPE System on all wells                         |
| MW-15          | 4/20/2016               | 991.50                             | 13.64          | 977.86                                | DPE System on all wells                         |
| MW-15          | 5/17/2016               | 991.50                             | 13.04          | 978.46                                | DPE System on all wells                         |

### GROUNDWATER ELEVATIONS MN Bio Business Center 221 First Avenue SW Rochester, Minnesota

| XX - 11        | Dete                    | Top of                             | Depth to       | C1                                    |                                                 |
|----------------|-------------------------|------------------------------------|----------------|---------------------------------------|-------------------------------------------------|
| Well           | Date                    | Casing<br>Elevation <sup>1,2</sup> | Groundwater    | Groundwater<br>Elevation <sup>3</sup> |                                                 |
| ID NOW 16      | Measured                |                                    | (feet)         |                                       | System Status                                   |
| MW-16          | 12/3/2008               | 989.44<br>989.44                   | 12.32<br>14.82 | 977.12                                | pre-system installation<br>pre-system startup   |
| MW-16<br>MW-16 | 6/8/2009<br>7/9/2009    | 989.44                             | 14.82          | 974.62<br>975.21                      | DPE system on DPE-1                             |
| MW-16          | 7/9/2009                | 989.44                             | 13.19          | 976.25                                | DPE system temporarily off                      |
| MW-16          | 9/4/2009                | 989.44                             | 13.70          | 975.74                                | DPE system on                                   |
| MW-16          | 9/4/2009                | 989.44                             | 14.25          | 975.19                                | DPE system on after replacing inlet screen      |
| MW-16          | 9/4/2009                | 989.44                             | 14.58          | 974.86                                | DPE system on after replacing inlet filter      |
| MW-16          | 10/15/2009              | 989.44                             | 13.61          | 975.83                                | DPE system on DPE-1                             |
| MW-16          | 10/23/2009              | 989.44                             | 11.89          | 977.55                                | DPE system off                                  |
| MW-16          | 11/16/2009              | 989.44                             | 11.44          | 978.00                                | DPE System on all wells                         |
| MW-16          | 12/17/2009              | 989.44                             | 14.17          | 975.27                                | DPE System on all wells                         |
| MW-16          | 1/14/2010               | 989.44                             | 12.57          | 976.87                                | DPE System on all wells                         |
| MW-16          | 2/22/2010               | 989.44                             | 13.68          | 975.76                                | DPE System on all wells                         |
| MW-16          | 3/25/2010               | 989.44                             | 12.50          | 976.94                                | DPE System on all wells                         |
| MW-16          | 4/16/2010               | 989.44                             | 12.72          | 976.72                                | DPE System on all wells                         |
| MW-16          | 5/12/2010               | 989.44<br>989.44                   | 13.41          | 976.03<br>975.48                      | DPE System on all wells DPE System on all wells |
| MW-16<br>MW-16 | 6/17/2010<br>8/18/2010  | 989.44                             | 13.96<br>13.91 | 975.53                                | DPE System on all wells                         |
| MW-16          | 9/27/2010               | 989.44                             | 11.37          | 973.33                                | DPE System on all wells                         |
| MW-16          | 11/18/2010              | 989.44                             | 11.61          | 977.83                                | DPE System on an wens  DPE System not operating |
| MW-16          | 12/22/2010              | 989.44                             | 12.63          | 976.81                                | DPE System restarted                            |
| MW-16          | 1/6/2011                | 989.44                             | 11.30          | 978.14                                | DPE System on all wells                         |
| MW-16          | 1/20/2011               | 989.44                             | 11.91          | 977.53                                | DPE System on all wells                         |
| MW-16          | 2/28/2011               | 989.44                             | 11.77          | 977.67                                | DPE System on all wells                         |
| MW-16          | 3/7/2011                | 989.44                             | 12.27          | 977.17                                | DPE System on all wells                         |
| MW-16          | 3/18/2011               | 989.44                             | 12.38          | 977.06                                | DPE System on all wells                         |
| MW-16          | 3/23/2011               | 989.44                             | 11.13          | 978.31                                | DPE System on all wells                         |
| MW-16          | 4/22/2011               | 989.44                             | 11.92          | 977.52                                | DPE System on all wells                         |
| MW-16          | 5/19/2011               | 989.44                             | 11.88          | 977.56                                | DPE System on all wells                         |
| MW-16          | 6/16/2011               | 989.44<br>989.44                   | 11.97          | 977.47                                | DPE System on all wells                         |
| MW-16<br>MW-16 | 7/25/2011<br>8/28/2011  | 989.44                             | 11.31<br>12.59 | 978.13<br>976.85                      | DPE System on all wells                         |
| MW-16          | 9/29/2011               | 989.44                             | 13.09          | 976.83                                | DPE System on all wells<br>DPE-1,2,3,4          |
| MW-16          | 10/18/2011              | 989.44                             | 11.59          | 977.85                                | DPE-1,2,3,4                                     |
| MW-16          | 10/27/2011              | 989.44                             | 12.88          | 976.56                                | DPE-1,2,3,4                                     |
| MW-16          | 11/21/2011              | 989.44                             | 13.68          | 975.76                                | DPE-1,2,3,4                                     |
| MW-16          | 1/20/212                | 989.44                             | 12.73          | 976.71                                | DPE-1,2,3,4                                     |
| MW-16          | 1/27/2012               | 989.44                             | 13.88          | 975.56                                | DPE-1,2,3,4                                     |
| MW-16          | 2/16/2012               | 989.44                             | 13.99          | 975.45                                | DPE-1,2,3,4                                     |
| MW-16          | 3/16/2012               | 989.44                             | 14.14          | 975.30                                | DPE-1,2,3,4                                     |
| MW-16          | 3/27/2012               | 989.44                             | 13.34          | 976.10                                | DPE-1,2,3,4                                     |
| MW-16          | 4/17/2012               | 989.44                             | 13.88          | 975.56                                | DPE-1,2,3,4                                     |
| MW-16          | 5/17/2012               | 989.44                             | 13.80          | 975.64                                | DPE-1,2,3,4                                     |
| MW-16          | 5/31/2012               | 989.44                             | 13.26          | 976.18                                | DPE-1,2,3,4                                     |
| MW-16          | 6/14/2012               | 989.44                             | 14.21          | 975.23                                | DPE-1,2,3,4                                     |
| MW-16<br>MW-16 | 7/19/2012<br>8/23/2012  | 989.44<br>989.44                   | 14.51<br>13.99 | 974.93<br>975.45                      | DPE-3<br>DPE-3                                  |
| MW-16          | 9/26/2012               | 989.44                             | 14.32          | 975.45                                | DPE-3                                           |
| MW-16          | 10/26/2012              | 989.44                             | 14.32          | 975.12                                | DPE-3                                           |
| MW-16          | 12/19/2012              | 989.44                             | 13.02          | 976.42                                | DPE-3; Before restarting the system             |
| MW-16          | 12/21/2012              | 989.44                             | 14.12          | 975.32                                | DPE-3; After restarting the system              |
| MW-16          | 1/30/2013               | 989.44                             | 14.46          | 974.98                                | DPE-1,2,3,4                                     |
| MW-16          | 2/26/2013               | 989.44                             | 14.04          | 975.40                                | DPE-1,2,3,4                                     |
| MW-16          | 3/21/2013               | 989.44                             | 14.69          | 974.75                                | DPE-1,2,3,4                                     |
| MW-16          | 5/23/2013               | 989.44                             | 8.92           | 980.52                                | DPE-1,2,3,4                                     |
| MW-16          | 6/26/2013               | 989.44                             | 10.91          | 978.53                                | DPE-1,2,3,4                                     |
| MW-16          | 8/26/2013               | 989.44                             | 12.54          | 976.90                                | DPE-1,2,3,4                                     |
| MW-16          | 12/10/2013              | 989.44                             | 11.73          | 977.71                                | System Off                                      |
| MW-16          | 2/17/2014               | 989.44                             | 12.09          | 977.35                                | System Off                                      |
| MW-16          | 4/20/2014<br>8/21/2014  | 989.44<br>989.44                   | 10.86          | 978.58                                | System Off                                      |
| MW-16<br>MW-16 | 8/21/2014<br>11/19/2014 | 989.44                             | 11.94<br>11.29 | 977.50<br>978.15                      | System Off System Off                           |
| MW-16          | 2/25/2015               | 989.44                             | 12.13          | 978.13                                | System Off                                      |
| MW-16          | 6/15/2015               | 989.44                             | 10.88          | 977.51                                | System Off                                      |
| MW-16          | 8/17/2015               | 989.44                             | 12.06          | 977.38                                | System Off                                      |
| MW-16          | 9/10/2015               | 989.44                             | 11.83          | 977.61                                | System Off                                      |
| MW-16          | 10/12/2015              | 989.44                             | 13.21          | 976.23                                | System Off                                      |
| MW-16          | 12/14/2015              | 989.44                             | 11.64          | 977.80                                | DPE System on all wells                         |
| MW-16          | 1/11/2016               | 989.44                             | 11.99          | 977.45                                | DPE System on all wells                         |
| MW-16          | 2/23/2016               | 989.44                             | 11.27          | 978.17                                | DPE System on all wells                         |
| MW-16          | 4/20/2016               | 989.44                             | 11.28          | 978.16                                | DPE System on all wells                         |
| 11111 10       |                         |                                    |                |                                       |                                                 |

### GROUNDWATER ELEVATIONS MN Bio Business Center

221 First Avenue SW Rochester, Minnesota

| XX 11          | ъ.                      | Top of                             | Depth to       |                        |                                                 |
|----------------|-------------------------|------------------------------------|----------------|------------------------|-------------------------------------------------|
| Well           | Date                    | Casing<br>Elevation <sup>1,2</sup> | Groundwater    | Groundwater            |                                                 |
| ID             | Measured                |                                    | (feet)         | Elevation <sup>3</sup> | System Status                                   |
| MW-17          | 12/3/2008               | 989.53                             | 12.81          | 976.72                 | pre-system installation                         |
| MW-17          | 6/8/2009<br>7/9/2009    | 989.53<br>989.53                   | 13.69<br>14.44 | 975.84                 | pre-system startup DPE system on DPE-1          |
| MW-17<br>MW-17 | 7/9/2009                | 989.53                             | 14.44          | 975.09<br>975.18       | DPE system temporarily off                      |
| MW-17          | 9/4/2009                | 989.53                             | 14.31          | 975.22                 | DPE system on                                   |
| MW-17          | 9/4/2009                | 989.53                             | 14.33          | 975.20                 | DPE system on after replacing inlet screen      |
| MW-17          | 9/4/2009                | 989.53                             | 14.39          | 975.14                 | DPE system on after replacing inlet filter      |
| MW-17          | 10/15/2009              | 989.53                             | 14.00          | 975.53                 | DPE system on DPE-1                             |
| MW-17          | 10/23/2009              | 989.53                             | 13.13          | 976.40                 | DPE system off                                  |
| MW-17          | 11/16/2009              | 989.53                             | 12.76          | 976.77                 | DPE System on all wells                         |
| MW-17          | 12/17/2009              | 989.53                             | 13.04          | 976.49                 | DPE System on all wells                         |
| MW-17          | 1/14/2010               | 989.53                             | 13.22          | 976.31                 | DPE System on all wells                         |
| MW-17          | 2/22/2010               | 989.53                             | 14.37          | 975.16                 | DPE System on all wells                         |
| MW-17          | 3/25/2010               | 989.53                             | 12.78          | 976.75                 | DPE System on all wells                         |
| MW-17          | 4/16/2010               | 989.53                             | 13.19          | 976.34                 | DPE System on all wells                         |
| MW-17          | 5/12/2010               | 989.53                             | 13.84          | 975.69                 | DPE System on all wells                         |
| MW-17<br>MW-17 | 6/17/2010               | 989.53                             | 14.13          | 975.40<br>974.45       | DPE System on all wells                         |
| MW-17<br>MW-17 | 8/18/2010<br>9/27/2010  | 989.53<br>989.53                   | 15.08<br>12.68 | 974.45                 | DPE System on all wells DPE System on all wells |
| MW-17          | 11/18/2010              | 989.53                             | 12.68          | 976.85                 | DPE System on an wens  DPE System not operating |
| MW-17          | 12/22/2010              | 989.53                             | 12.50          | 977.03                 | DPE System not operating  DPE System restarted  |
| MW-17          | 1/6/2011                | 989.53                             | 12.17          | 977.36                 | DPE System on all wells                         |
| MW-17          | 1/20/2011               | 989.53                             | 12.25          | 977.28                 | DPE System on all wells                         |
| MW-17          | 2/28/2011               | 989.53                             | 12.20          | 977.33                 | DPE System on all wells                         |
| MW-17          | 3/7/2011                | 989.53                             | 12.41          | 977.12                 | DPE System on all wells                         |
| MW-17          | 3/18/2011               | 989.53                             | 12.44          | 977.09                 | DPE System on all wells                         |
| MW-17          | 3/23/2011               | 989.53                             | 11.41          | 978.12                 | DPE System on all wells                         |
| MW-17          | 4/22/2011               | 989.53                             | 11.64          | 977.89                 | DPE System on all wells                         |
| MW-17          | 5/19/2011               | 989.53                             | 11.96          | 977.57                 | DPE System on all wells                         |
| MW-17          | 6/16/2011               | 989.53                             | 12.21          | 977.32                 | DPE System on all wells                         |
| MW-17          | 7/25/2011               | 989.53                             | 12.02          | 977.51                 | DPE System on all wells                         |
| MW-17          | 8/28/2011               | 989.53<br>989.53                   | 13.41<br>13.04 | 976.12<br>976.49       | DPE System on all wells<br>DPE-1,2,3,4          |
| MW-17<br>MW-17 | 9/29/2011<br>10/18/2011 | 989.53                             | 12.66          | 976.49                 | DPE-1,2,3,4<br>DPE-1,2,3,4                      |
| MW-17          | 10/13/2011              | 989.53                             | 13.08          | 976.45                 | DPE-1,2,3,4                                     |
| MW-17          | 11/21/2011              | 989.53                             | 13.48          | 976.05                 | DPE-1,2,3,4                                     |
| MW-17          | 1/20/2012               | 989.53                             | 13.72          | 975.81                 | DPE-1,2,3,4                                     |
| MW-17          | 1/27/2012               | 989.53                             | 13.99          | 975.54                 | DPE-1,2,3,4                                     |
| MW-17          | 2/16/2012               | 989.53                             | 14.04          | 975.49                 | DPE-1,2,3,4                                     |
| MW-17          | 3/16/2012               | 989.53                             | 14.11          | 975.42                 | DPE-1,2,3,4                                     |
| MW-17          | 3/27/2012               | 989.53                             | 13.59          | 975.94                 | DPE-1,2,3,4                                     |
| MW-17          | 4/17/2012               | 989.53                             | 13.83          | 975.70                 | DPE-1,2,3,4                                     |
| MW-17          | 5/17/2012               | 989.53                             | 13.91          | 975.62                 | DPE-1,2,3,4                                     |
| MW-17          | 5/31/2012               | 989.53                             | 13.99          | 975.54                 | DPE-1,2,3,4                                     |
| MW-17          | 6/14/2012               | 989.53                             | 14.48          | 975.05                 | DPE-1,2,3,4                                     |
| MW-17<br>MW-17 | 7/19/2012<br>8/23/2012  | 989.53<br>989.53                   | 15.29<br>14.68 | 974.24<br>974.85       | DPE-3<br>DPE-3                                  |
| MW-17<br>MW-17 | 9/26/2012               | 989.53                             | 14.88          | 974.85                 | DPE-3                                           |
| MW-17          | 10/26/2012              | 989.53                             | 14.68          | 974.03                 | DPE-3                                           |
| MW-17          | 12/19/2012              | 989.53                             | 13.86          | 975.67                 | DPE-3; Before restarting the system             |
| MW-17          | 12/21/2012              | 989.53                             | 14.21          | 975.32                 | DPE-3; After restarting the system              |
| MW-17          | 1/30/2013               | 989.53                             | 13.92          | 975.61                 | DPE-1,2,3,4                                     |
| MW-17          | 2/26/2013               | 989.53                             | 14.28          | 975.25                 | DPE-1,2,3,4                                     |
| MW-17          | 3/21/2013               | 989.53                             | 14.30          | 975.23                 | DPE-1,2,3,4                                     |
| MW-17          | 5/23/2013               | 989.53                             | 10.19          | 979.34                 | DPE-1,2,3,4                                     |
| MW-17          | 6/26/2013               | 989.53                             | 10.71          | 978.82                 | DPE-1,2,3,4                                     |
| MW-17          | 8/26/2013               | 989.53                             | 12.56          | 976.97                 | DPE-1,2,3,4                                     |
| MW-17          | 12/10/2013              | 989.53                             | 12.70          | 976.83                 | System Off                                      |
| MW-17          | 2/17/2014               | 989.53                             | 12.86          | 976.67                 | System Off                                      |
| MW-17          | 4/20/2014<br>8/21/2014  | 989.53                             | 11.84          | 977.69                 | System Off                                      |
| MW-17<br>MW-17 | 8/21/2014<br>11/19/2014 | 989.53<br>989.53                   | 13.13<br>12.13 | 976.40<br>977.40       | System Off System Off                           |
| MW-17          | 2/25/2015               | 989.53                             | 12.13          | 977.40                 | System Off                                      |
| MW-17          | 6/15/2015               | 989.53                             | 11.91          | 970.04                 | System Off                                      |
| MW-17          | 8/17/2015               | 989.53                             | 13.08          | 976.45                 | System Off                                      |
| MW-17          | 9/10/2015               | 989.53                             | 12.82          | 976.71                 | System Off                                      |
| MW-17          | 10/12/2015              | 989.53                             | 13.07          | 976.46                 | System Off                                      |
| MW-17          | 12/14/2015              | 989.53                             | 12.39          | 977.14                 | DPE System on all wells                         |
| MW-17          | 1/11/2016               | 989.53                             | 12.25          | 977.28                 | DPE System on all wells                         |
| MW-17          | 2/23/2016               | 989.53                             | 11.92          | 977.61                 | DPE System on all wells                         |
|                |                         | 989.53                             | 11.44          | 978.09                 | DPE System on all wells                         |
| MW-17          | 4/20/2016               | 909.33                             | 11.44          | 976.09                 | DI E System on an wens                          |

#### GROUNDWATER ELEVATIONS MN Bio Business Center

221 First Avenue SW Rochester, Minnesota

|                | 1                        | т с                      | D. d.                   |                        | T                                                              |
|----------------|--------------------------|--------------------------|-------------------------|------------------------|----------------------------------------------------------------|
| Well           | Date                     | Top of<br>Casing         | Depth to<br>Groundwater | Groundwater            |                                                                |
| ID             | Measured                 | Elevation <sup>1,2</sup> | (feet)                  | Elevation <sup>3</sup> | System Status                                                  |
| MW-18          | 12/3/2008                | 989.50                   | 13.82                   | 975.68                 | pre-system installation                                        |
| MW-18          | 6/8/2009                 | 989.50                   | 14.22                   | 975.28                 | pre-system startup                                             |
| MW-18          | 7/9/2009                 | 989.50                   | 16.61                   | 972.89                 | DPE system on DPE-1                                            |
| MW-18          | 7/9/2009                 | 989.50                   | 15.61                   | 973.89                 | DPE system temporarily off                                     |
| MW-18          | 9/4/2009                 | 989.50                   | 15.37                   | 974.13                 | DPE system on                                                  |
| MW-18          | 9/4/2009                 | 989.50                   | 15.38                   | 974.12                 | DPE system on after replacing inlet screen                     |
| MW-18<br>MW-18 | 9/4/2009<br>10/15/2009   | 989.50<br>989.50         | 15.40<br>15.18          | 974.10<br>974.32       | DPE system on after replacing inlet filter DPE system on DPE-1 |
| MW-18          | 10/13/2009               | 989.50                   | 14.28                   | 975.22                 | DPE system off                                                 |
| MW-18          | 11/16/2009               | 989.50                   | 13.83                   | 975.67                 | DPE System on all wells                                        |
| MW-18          | 12/17/2009               | 989.50                   | 13.85                   | 975.65                 | DPE System on all wells                                        |
| MW-18          | 1/14/2010                | 989.50                   | 13.96                   | 975.54                 | DPE System on all wells                                        |
| MW-18          | 2/22/2010                | 989.50                   | 15.49                   | 974.01                 | DPE System on all wells                                        |
| MW-18          | 3/25/2010                | 989.50                   | 13.24                   | 976.26                 | DPE System on all wells                                        |
| MW-18<br>MW-18 | 4/16/2010<br>5/12/2010   | 989.50<br>989.50         | 13.83<br>14.60          | 975.67<br>974.90       | DPE System on all wells DPE System on all wells                |
| MW-18          | 6/17/2010                | 989.50                   | 15.14                   | 974.36                 | DPE System on all wells                                        |
| MW-18          | 8/18/2010                | 989.50                   | 16.53                   | 972.97                 | DPE System on all wells                                        |
| MW-18          | 9/27/2010                | 989.50                   | 13.79                   | 975.71                 | DPE System on all wells                                        |
| MW-18          | 11/18/2010               | 989.50                   | 13.54                   | 975.96                 | DPE System not operating                                       |
| MW-18          | 12/22/2010               | 989.50                   | 13.20                   | 976.30                 | DPE System restarted                                           |
| MW-18          | 1/6/2011                 | 989.50                   | 13.03                   | 976.47                 | DPE System on all wells                                        |
| MW-18          | 1/20/2011                | 989.50                   | 12.88                   | 976.62                 | DPE System on all wells                                        |
| MW-18<br>MW-18 | 2/28/2011<br>3/7/2011    | 989.50<br>989.50         | 12.79<br>13.21          | 976.71<br>976.29       | DPE System on all wells DPE System on all wells                |
| MW-18          | 3/18/2011                | 989.50                   | 12.99                   | 976.29                 | DPE System on all wells                                        |
| MW-18          | 3/23/2011                | 989.50                   | 12.08                   | 977.42                 | DPE System on all wells                                        |
| MW-18          | 4/22/2011                | 989.50                   | 12.27                   | 977.23                 | DPE System on all wells                                        |
| MW-18          | 5/19/2011                | 989.50                   | 12.80                   | 976.70                 | DPE System on all wells                                        |
| MW-18          | 6/16/2011                | 989.50                   | 13.19                   | 976.31                 | DPE System on all wells                                        |
| MW-18          | 7/25/2011                | 989.50                   | 13.00                   | 976.50                 | DPE System on all wells                                        |
| MW-18          | 8/28/2011                | 989.50                   | 14.52                   | 974.98                 | DPE System on all wells                                        |
| MW-18          | 9/29/2011                | 989.50                   | 13.67                   | 975.83                 | DPE-1,2,3,4                                                    |
| MW-18<br>MW-18 | 10/18/2011<br>10/27/2011 | 989.50<br>989.50         | 13.44<br>13.56          | 976.06<br>975.94       | DPE-1,2,3,4<br>DPE-1,2,3,4                                     |
| MW-18          | 11/21/2011               | 989.50                   | 13.88                   | 975.62                 | DPE-1,2,3,4<br>DPE-1,2,3,4                                     |
| MW-18          | 1/20/2012                | 989.50                   | 14.42                   | 975.08                 | DPE-1,2,3,4                                                    |
| MW-18          | 1/27/2012                | 989.50                   | 14.53                   | 974.97                 | DPE-1,2,3,4                                                    |
| MW-18          | 2/16/2012                | 989.50                   | 14.63                   | 974.87                 | DPE-1,2,3,4                                                    |
| MW-18          | 3/16/2012                | 989.50                   | 14.71                   | 974.79                 | DPE-1,2,3,4                                                    |
| MW-18          | 3/27/2012                | 989.50                   | 14.22                   | 975.28                 | DPE-1,2,3,4                                                    |
| MW-18          | 4/17/2012                | 989.50                   | 14.26                   | 975.24                 | DPE-1,2,3,4                                                    |
| MW-18<br>MW-18 | 5/17/2012<br>5/31/2012   | 989.50<br>989.50         | 14.88<br>14.96          | 974.62<br>974.54       | DPE-1,2,3,4<br>DPE-1,2,3,4                                     |
| MW-18          | 6/14/2012                | 989.50                   | 15.47                   | 974.03                 | DPE-1,2,3,4                                                    |
| MW-18          | 7/19/2012                | 989.50                   | 16.70                   | 972.80                 | DPE-3                                                          |
| MW-18          | 8/23/2012                | 989.50                   | 16.02                   | 973.48                 | DPE-3                                                          |
| MW-18          | 9/26/2012                | 989.50                   | 16.06                   | 973.44                 | DPE-3                                                          |
| MW-18          | 10/26/2012               | 989.50                   | 15.82                   | 973.68                 | DPE-3                                                          |
| MW-18          | 12/19/2012               | 989.50                   | 14.53                   | 974.97                 | DPE-3; Before restarting the system                            |
| MW-18          | 1/20/2012                | 989.50                   | 14.80                   | 974.70                 | DPE-1-2-3-4                                                    |
| MW-18<br>MW-18 | 1/30/2013<br>2/26/2013   | 989.50<br>989.50         | 14.25<br>14.84          | 975.25<br>974.66       | DPE-1,2,3,4<br>DPE-1,2,3,4                                     |
| MW-18          | 3/21/2013                | 989.50                   | 14.83                   | 974.66                 | DPE-1,2,3,4<br>DPE-1,2,3,4                                     |
| MW-18          | 5/23/2013                | 989.50                   | 11.09                   | 978.41                 | DPE-1,2,3,4                                                    |
| MW-18          | 6/26/2013                | 989.50                   | 11.34                   | 978.16                 | DPE-1,2,3,4                                                    |
| MW-18          | 8/26/2013                | 989.50                   | 13.39                   | 976.11                 | DPE-1,2,3,4                                                    |
| MW-18          | 12/10/2013               | 989.50                   | 13.38                   | 976.12                 | System Off                                                     |
| MW-18          | 2/17/2014                | 989.50                   | 13.35                   | 976.15                 | System Off                                                     |
| MW-18          | 4/20/2014                | 989.50                   | 12.62                   | 976.88                 | System Off                                                     |
| MW-18<br>MW-18 | 8/21/2014<br>11/19/2014  | 989.50<br>989.50         | 14.10<br>12.88          | 975.40<br>976.62       | System Off System Off                                          |
| MW-18          | 2/25/2015                | 989.50                   | 13.35                   | 976.62                 | System Off                                                     |
| MW-18          | 6/15/2015                | 989.50                   | 12.27                   | 977.23                 | System Off                                                     |
| MW-18          | 8/17/2015                | 989.50                   | 14.08                   | 975.42                 | System Off                                                     |
| MW-18          | 9/10/2015                | 989.50                   | 13.81                   | 975.69                 | System Off                                                     |
| MW-18          | 10/12/2015               | 989.50                   | 13.49                   | 976.01                 | System Off                                                     |
| MW-18          | 12/14/2015               | 989.50                   | 12.94                   | 976.56                 | DPE System on all wells                                        |
| MW-18          | 1/11/2016                | 989.50                   | 12.64                   | 976.86                 | DPE System on all wells                                        |
| MW-18          | 2/23/2016                | 989.50                   | 12.20                   | 977.30                 | DPE System on all wells                                        |
| MW-18<br>MW-18 | 4/20/2016<br>5/17/2016   | 989.50<br>989.50         | 11.67<br>11.26          | 977.83<br>978.24       | DPE System on all wells  Dpe System on all wells               |
| 141 44 -10     | 3/11/2010                | 707.30                   | 11.20                   | >10.∠ <del>4</del>     | De Dystem on an wens                                           |
|                |                          |                          |                         |                        | i                                                              |

| XX 11          | ъ.                      | Top of                             | Depth to       |                        |                                                 |  |  |  |
|----------------|-------------------------|------------------------------------|----------------|------------------------|-------------------------------------------------|--|--|--|
| Well           | Date                    | Casing<br>Elevation <sup>1,2</sup> | Groundwater    | Groundwater            |                                                 |  |  |  |
| ID             | Measured                |                                    | (feet)         | Elevation <sup>3</sup> | System Status                                   |  |  |  |
| MW-19          | 12/3/2008               |                                    |                | 978.68                 | pre-system installation<br>pre-system startup   |  |  |  |
| MW-19<br>MW-19 | 6/8/2009<br>7/9/2009    | 991.13<br>991.13                   | 13.40<br>14.75 | 977.73<br>976.38       | DPE system on DPE-1                             |  |  |  |
| MW-19          | 7/9/2009                | 991.13                             | 14.58          | 976.55                 | DPE system on DPE-1  DPE system temporarily off |  |  |  |
| MW-19          | 9/4/2009                | 991.13                             | 14.68          | 976.45                 | DPE system on                                   |  |  |  |
| MW-19          | 9/4/2009                | 991.13                             | 14.61          | 976.52                 | DPE system on after replacing inlet screen      |  |  |  |
| MW-19          | 9/4/2009                | 991.13                             | 14.66          | 976.47                 | DPE system on after replacing inlet filter      |  |  |  |
| MW-19          | 10/15/2009              | 991.13                             | 14.47          | 976.66                 | DPE system on DPE-1                             |  |  |  |
| MW-19          | 10/23/2009              | 991.13                             | 13.28          | 977.85                 | DPE system off                                  |  |  |  |
| MW-19          | 11/16/2009              | 991.13                             | 12.85          | 978.28                 | DPE System on all wells                         |  |  |  |
| MW-19          | 12/17/2009              | 991.13                             | 13.69          | 977.44                 | DPE System on all wells                         |  |  |  |
| MW-19          | 1/14/2010               | 991.13                             | 13.78          | 977.35                 | DPE System on all wells                         |  |  |  |
| MW-19<br>MW-19 | 2/22/2010<br>3/25/2010  | 991.13<br>991.13                   | 14.62<br>13.81 | 976.51<br>977.32       | DPE System on all wells DPE System on all wells |  |  |  |
| MW-19          | 4/16/2010               | 991.13                             | 14.21          | 976.92                 | DPE System on all wells                         |  |  |  |
| MW-19          | 5/12/2010               | 991.13                             | 14.84          | 976.29                 | DPE System on all wells                         |  |  |  |
| MW-19          | 6/17/2010               | 991.13                             | 15.01          | 976.12                 | DPE System on all wells                         |  |  |  |
| MW-19          | 8/18/2010               | 991.13                             | 15.71          | 975.42                 | DPE System on all wells                         |  |  |  |
| MW-19          | 9/27/2010               | 991.13                             | 12.94          | 978.19                 | DPE System on all wells                         |  |  |  |
| MW-19          | 11/18/2010              | 991.13                             | 13.26          | 977.87                 | DPE System not operating                        |  |  |  |
| MW-19          | 12/22/2010              | 991.13                             | 13.69          | 977.44                 | DPE System restarted                            |  |  |  |
| MW-19          | 1/6/2011                | 991.13                             | 13.06          | 978.07                 | DPE System on all wells                         |  |  |  |
| MW-19          | 1/20/2011               | 991.13                             | 13.41          | 977.72                 | DPE System on all wells                         |  |  |  |
| MW-19          | 2/28/2011               | 991.13                             | 13.92          | 977.21                 | DPE System on all wells                         |  |  |  |
| MW-19          | 3/7/2011                | 991.13                             | 13.18          | 977.95                 | DPE System on all wells                         |  |  |  |
| MW-19<br>MW-19 | 3/18/2011               | 991.13<br>991.13                   | 13.56<br>12.09 | 977.57<br>979.04       | DPE System on all wells DPE System on all wells |  |  |  |
| MW-19          | 3/23/2011<br>4/22/2011  | 991.13                             | 12.09          | 979.04                 | DPE System on all wells                         |  |  |  |
| MW-19          | 5/19/2011               | 991.13                             | 12.42          | 978.71                 | DPE System on all wells                         |  |  |  |
| MW-19          | 6/16/2011               | 991.13                             | 13.05          | 978.08                 | DPE System on all wells                         |  |  |  |
| MW-19          | 7/25/2011               | 991.13                             | 12.42          | 978.71                 | DPE System on all wells                         |  |  |  |
| MW-19          | 8/28/2011               | 991.13                             | 14.29          | 976.84                 | DPE System on all wells                         |  |  |  |
| MW-19          | 9/29/2011               | 991.13                             | 14.05          | 977.08                 | DPE-1,2,3,4                                     |  |  |  |
| MW-19          | 10/18/2011              | 991.13                             | 13.33          | 977.80                 | DPE-1,2,3,4                                     |  |  |  |
| MW-19          | 10/27/2011              | 991.13                             | 14.32          | 976.81                 | DPE-1,2,3,4                                     |  |  |  |
| MW-19          | 11/21/2011              | 991.13                             | 14.74          | 976.39                 | DPE-1,2,3,4                                     |  |  |  |
| MW-19          | 1/20/2012               | 991.13                             | 14.76          | 976.37                 | DPE-1,2,3,4                                     |  |  |  |
| MW-19          | 1/27/2012               | 991.13                             | 15.43          | 975.70                 | DPE-1,2,3,4                                     |  |  |  |
| MW-19          | 2/16/2012               | 991.13                             | 15.46          | 975.67                 | DPE-1,2,3,4                                     |  |  |  |
| MW-19<br>MW-19 | 3/16/2012<br>3/27/2012  | 991.13<br>991.13                   | 15.59<br>14.60 | 975.54<br>976.53       | DPE-1,2,3,4<br>DPE-1,2,3,4                      |  |  |  |
| MW-19          | 4/17/2012               | 991.13                             | 15.37          | 975.76                 | DPE-1,2,3,4                                     |  |  |  |
| MW-19          | 5/17/2012               | 991.13                             | 15.03          | 976.10                 | DPE-1,2,3,4                                     |  |  |  |
| MW-19          | 5/31/2012               | 991.13                             | 14.79          | 976.34                 | DPE-1,2,3,4                                     |  |  |  |
| MW-19          | 6/14/2012               | 991.13                             | 15.56          | 975.57                 | DPE-1,2,3,4                                     |  |  |  |
| MW-19          | 7/19/2012               | 991.13                             | 16.06          | 975.07                 | DPE-3                                           |  |  |  |
| MW-19          | 8/23/2012               | 991.13                             | 15.38          | 975.75                 | DPE-3                                           |  |  |  |
| MW-19          | 9/26/2012               | 991.13                             | 15.77          | 975.36                 | DPE-3                                           |  |  |  |
| MW-19          | 10/26/2012              | 991.13                             | 15.89          | 975.24                 | DPE-3                                           |  |  |  |
| MW-19          | 12/19/2012              | 991.13                             | 14.91          | 976.22                 | DPE-3; Before restarting the system             |  |  |  |
| MW-19<br>MW-19 | 12/21/2012<br>1/30/2013 | 991.13<br>991.13                   | 15.32<br>15.39 | 975.81<br>975.74       | DPE-3; After restarting the system DPE-1,2,3,4  |  |  |  |
| MW-19<br>MW-19 | 2/26/2013               | 991.13                             | 15.39          | 975.74                 | DPE-1,2,3,4<br>DPE-1,2,3,4                      |  |  |  |
| MW-19          | 3/21/2013               | 991.13                             | 15.70          | 975.43                 | DPE-1,2,3,4<br>DPE-1,2,3,4                      |  |  |  |
| MW-19          | 5/23/2013               | 991.13                             | 9.74           | 981.39                 | DPE-1,2,3,4                                     |  |  |  |
| MW-19          | 6/26/2013               | 991.13                             | 10.93          | 980.20                 | DPE-1,2,3,4                                     |  |  |  |
| MW-19          | 8/26/2013               | 991.13                             | 12.82          | 978.31                 | DPE-1,2,3,4                                     |  |  |  |
| MW-19          | 12/10/2013              | 991.13                             | 13.13          | 978.00                 | System Off                                      |  |  |  |
| MW-19          | 2/17/2014               | 991.13                             | 13.98          | 977.15                 | System Off                                      |  |  |  |
| MW-19          | 4/20/2014               | 991.13                             | 12.52          | 978.61                 | System Off                                      |  |  |  |
| MW-19          | 8/21/2014               | 991.13                             | 14.11          | 977.02                 | System Off                                      |  |  |  |
| MW-19          | 11/19/2014              | 991.13                             | 13.11          | 978.02                 | System Off                                      |  |  |  |
| MW-19          | 2/25/2015               | 991.13<br>991.13                   | 14.04          | 977.09                 | System Off System Off                           |  |  |  |
| MW-19<br>MW-19 | 6/15/2015<br>8/17/2015  | 991.13                             | 12.56<br>13.88 | 978.57<br>977.25       | System Off System Off                           |  |  |  |
| MW-19<br>MW-19 | 9/10/2015               | 991.13                             | 13.88          | 977.55                 | System Off System Off                           |  |  |  |
| MW-19          | 10/12/2015              | 991.13                             | 14.41          | 977.33                 | System Off                                      |  |  |  |
| MW-19          | 12/14/2015              | 991.13                             | 13.10          | 978.03                 | DPE System on all wells                         |  |  |  |
| MW-19          | 1/11/2016               | 991.13                             | 13.63          | 977.50                 | DPE System on all wells                         |  |  |  |
| MW-19          | 2/23/2016               | 991.13                             | 13.10          | 978.03                 | DPE System on all wells                         |  |  |  |
| MW-19          | 4/20/2016               | 991.13                             | 12.77          | 978.36                 | DPE System on all wells                         |  |  |  |
| MW-19          | 5/17/2016               | 991.13                             | 12.50          | 978.63                 | DPE System on all wells                         |  |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Top of                                                                                                                                                                                                                                                                                                                       | Depth to                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Well                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Casing                                                                                                                                                                                                                                                                                                                       | Groundwater                                                                                                                                                                                                           | Groundwater                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Elevation <sup>1,2</sup>                                                                                                                                                                                                                                                                                                     | (feet)                                                                                                                                                                                                                | Elevation <sup>3</sup>                                                                                                                                                                                                                                                                                                                                     | System Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/3/2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 991.50                                                                                                                                                                                                                                                                                                                       | 12.40                                                                                                                                                                                                                 | 979.10                                                                                                                                                                                                                                                                                                                                                     | pre-system installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6/8/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 991.50                                                                                                                                                                                                                                                                                                                       | 11.93                                                                                                                                                                                                                 | 979.57                                                                                                                                                                                                                                                                                                                                                     | pre-system startup                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MW-20<br>MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7/9/2009<br>7/9/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 991.50<br>991.50                                                                                                                                                                                                                                                                                                             | 12.19<br>12.24                                                                                                                                                                                                        | 979.31<br>979.26                                                                                                                                                                                                                                                                                                                                           | DPE system on DPE-1 DPE system temporarily off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9/4/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 991.50                                                                                                                                                                                                                                                                                                                       | 12.24                                                                                                                                                                                                                 | 979.26                                                                                                                                                                                                                                                                                                                                                     | DPE system on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9/4/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 991.50                                                                                                                                                                                                                                                                                                                       | 12.47                                                                                                                                                                                                                 | 979.03                                                                                                                                                                                                                                                                                                                                                     | DPE system on after replacing inlet screen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9/4/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 991.50                                                                                                                                                                                                                                                                                                                       | 12.49                                                                                                                                                                                                                 | 979.01                                                                                                                                                                                                                                                                                                                                                     | DPE system on after replacing inlet filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10/15/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 991.50                                                                                                                                                                                                                                                                                                                       | 12.16                                                                                                                                                                                                                 | 979.34                                                                                                                                                                                                                                                                                                                                                     | DPE system on DPE-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10/23/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 991.50                                                                                                                                                                                                                                                                                                                       | 11.33                                                                                                                                                                                                                 | 980.17                                                                                                                                                                                                                                                                                                                                                     | DPE system off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11/16/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 991.50                                                                                                                                                                                                                                                                                                                       | 11.02                                                                                                                                                                                                                 | 980.48                                                                                                                                                                                                                                                                                                                                                     | DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12/17/2009                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 991.50                                                                                                                                                                                                                                                                                                                       | 12.31                                                                                                                                                                                                                 | 979.19                                                                                                                                                                                                                                                                                                                                                     | DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MW-20<br>MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/14/2010<br>2/22/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 991.50<br>991.50                                                                                                                                                                                                                                                                                                             | 12.34<br>12.78                                                                                                                                                                                                        | 979.16<br>978.72                                                                                                                                                                                                                                                                                                                                           | DPE System on all wells DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3/25/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 991.50                                                                                                                                                                                                                                                                                                                       | 12.54                                                                                                                                                                                                                 | 978.96                                                                                                                                                                                                                                                                                                                                                     | DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/16/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 991.50                                                                                                                                                                                                                                                                                                                       | 12.76                                                                                                                                                                                                                 | 978.74                                                                                                                                                                                                                                                                                                                                                     | DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5/12/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 991.50                                                                                                                                                                                                                                                                                                                       | 13.18                                                                                                                                                                                                                 | 978.32                                                                                                                                                                                                                                                                                                                                                     | DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6/17/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 991.50                                                                                                                                                                                                                                                                                                                       | 12.99                                                                                                                                                                                                                 | 978.51                                                                                                                                                                                                                                                                                                                                                     | DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8/18/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 991.50                                                                                                                                                                                                                                                                                                                       | 12.71                                                                                                                                                                                                                 | 978.79                                                                                                                                                                                                                                                                                                                                                     | DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9/27/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 991.50                                                                                                                                                                                                                                                                                                                       | 10.17                                                                                                                                                                                                                 | 981.33                                                                                                                                                                                                                                                                                                                                                     | DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11/18/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 991.50                                                                                                                                                                                                                                                                                                                       | 11.68                                                                                                                                                                                                                 | 979.82<br>979.35                                                                                                                                                                                                                                                                                                                                           | DPE System not operating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MW-20<br>MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12/22/2010<br>1/6/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 991.50<br>991.50                                                                                                                                                                                                                                                                                                             | 12.15<br>11.99                                                                                                                                                                                                        | 979.33                                                                                                                                                                                                                                                                                                                                                     | DPE System restarted DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/20/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 991.50                                                                                                                                                                                                                                                                                                                       | 12.45                                                                                                                                                                                                                 | 979.05                                                                                                                                                                                                                                                                                                                                                     | DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2/28/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 991.50                                                                                                                                                                                                                                                                                                                       | 12.69                                                                                                                                                                                                                 | 978.81                                                                                                                                                                                                                                                                                                                                                     | DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3/7/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 991.50                                                                                                                                                                                                                                                                                                                       | 12.26                                                                                                                                                                                                                 | 979.24                                                                                                                                                                                                                                                                                                                                                     | DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3/18/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 991.50                                                                                                                                                                                                                                                                                                                       | 12.62                                                                                                                                                                                                                 | 978.88                                                                                                                                                                                                                                                                                                                                                     | DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3/23/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 991.50                                                                                                                                                                                                                                                                                                                       | 11.19                                                                                                                                                                                                                 | 980.31                                                                                                                                                                                                                                                                                                                                                     | DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/22/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 991.50                                                                                                                                                                                                                                                                                                                       | 11.22                                                                                                                                                                                                                 | 980.28                                                                                                                                                                                                                                                                                                                                                     | DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5/19/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 991.50                                                                                                                                                                                                                                                                                                                       | 11.26                                                                                                                                                                                                                 | 980.24                                                                                                                                                                                                                                                                                                                                                     | DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6/16/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 991.50                                                                                                                                                                                                                                                                                                                       | 11.69                                                                                                                                                                                                                 | 979.81                                                                                                                                                                                                                                                                                                                                                     | DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MW-20<br>MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7/25/2011<br>8/28/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 991.50<br>991.50                                                                                                                                                                                                                                                                                                             | 10.13<br>12.32                                                                                                                                                                                                        | 981.37<br>979.18                                                                                                                                                                                                                                                                                                                                           | DPE System on all wells DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-20<br>MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/29/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 991.50                                                                                                                                                                                                                                                                                                                       | 12.48                                                                                                                                                                                                                 | 979.18                                                                                                                                                                                                                                                                                                                                                     | DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10/18/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 991.50                                                                                                                                                                                                                                                                                                                       | 12.31                                                                                                                                                                                                                 | 979.19                                                                                                                                                                                                                                                                                                                                                     | DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10/27/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 991.50                                                                                                                                                                                                                                                                                                                       | 12.98                                                                                                                                                                                                                 | 978.52                                                                                                                                                                                                                                                                                                                                                     | DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11/21/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 991.50                                                                                                                                                                                                                                                                                                                       | 13.46                                                                                                                                                                                                                 | 978.04                                                                                                                                                                                                                                                                                                                                                     | DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/20/2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 991.50                                                                                                                                                                                                                                                                                                                       | 13.71                                                                                                                                                                                                                 | 977.79                                                                                                                                                                                                                                                                                                                                                     | DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MW-20<br>MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/27/2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 991.50                                                                                                                                                                                                                                                                                                                       | 13.71<br>13.96                                                                                                                                                                                                        | 977.54                                                                                                                                                                                                                                                                                                                                                     | DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MW-20<br>MW-20<br>MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1/27/2012<br>2/16/2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 991.50<br>991.50                                                                                                                                                                                                                                                                                                             | 13.71<br>13.96<br>14.08                                                                                                                                                                                               | 977.54<br>977.42                                                                                                                                                                                                                                                                                                                                           | DPE-1,2,3,4<br>DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MW-20<br>MW-20<br>MW-20<br>MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/27/2012<br>2/16/2012<br>3/16/2012                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 991.50<br>991.50<br>991.50                                                                                                                                                                                                                                                                                                   | 13.71<br>13.96<br>14.08<br>14.20                                                                                                                                                                                      | 977.54<br>977.42<br>977.30                                                                                                                                                                                                                                                                                                                                 | DPE-1,2,3,4<br>DPE-1,2,3,4<br>DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012                                                                                                                                                                                                                                                                                                                                                                                                                                      | 991.50<br>991.50<br>991.50<br>991.50                                                                                                                                                                                                                                                                                         | 13.71<br>13.96<br>14.08<br>14.20<br>13.64                                                                                                                                                                             | 977.54<br>977.42<br>977.30<br>977.86                                                                                                                                                                                                                                                                                                                       | DPE-1,2,3,4<br>DPE-1,2,3,4<br>DPE-1,2,3,4<br>DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>4/17/2012                                                                                                                                                                                                                                                                                                                                                                                                                         | 991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                                                                                                                                                                                                               | 13.71<br>13.96<br>14.08<br>14.20<br>13.64<br>14.03                                                                                                                                                                    | 977.54<br>977.42<br>977.30<br>977.86<br>977.47                                                                                                                                                                                                                                                                                                             | DPE-1,2,3,4<br>DPE-1,2,3,4<br>DPE-1,2,3,4<br>DPE-1,2,3,4<br>DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>4/17/2012<br>5/17/2012                                                                                                                                                                                                                                                                                                                                                                                                            | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                                                                                                                                                                                                     | 13.71<br>13.96<br>14.08<br>14.20<br>13.64<br>14.03<br>13.59                                                                                                                                                           | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91                                                                                                                                                                                                                                                                                                   | DPE-1,2,3,4<br>DPE-1,2,3,4<br>DPE-1,2,3,4<br>DPE-1,2,3,4<br>DPE-1,2,3,4<br>DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>4/17/2012                                                                                                                                                                                                                                                                                                                                                                                                                         | 991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                                                                                                                                                                                                               | 13.71<br>13.96<br>14.08<br>14.20<br>13.64<br>14.03                                                                                                                                                                    | 977.54<br>977.42<br>977.30<br>977.86<br>977.47                                                                                                                                                                                                                                                                                                             | DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>4/17/2012<br>5/17/2012<br>5/31/2012                                                                                                                                                                                                                                                                                                                                                                                               | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                                                                                                                                                                                           | 13.71<br>13.96<br>14.08<br>14.20<br>13.64<br>14.03<br>13.59<br>13.38                                                                                                                                                  | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12                                                                                                                                                                                                                                                                                         | DPE-1,2,3,4<br>DPE-1,2,3,4<br>DPE-1,2,3,4<br>DPE-1,2,3,4<br>DPE-1,2,3,4<br>DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>4/17/2012<br>5/17/2012<br>5/31/2012<br>6/14/2012<br>7/19/2012<br>8/23/2012                                                                                                                                                                                                                                                                                                                                                        | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                                                                                                                                                                       | 13.71<br>13.96<br>14.08<br>14.20<br>13.64<br>14.03<br>13.59<br>13.38<br>13.81<br>13.71<br>13.13                                                                                                                       | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37                                                                                                                                                                                                                                                           | DPE-1,2,3,4 DPE-3 DPE-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>4/17/2012<br>5/17/2012<br>5/31/2012<br>6/14/2012<br>7/19/2012<br>8/23/2012<br>9/26/2012                                                                                                                                                                                                                                                                                                                                           | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                                                                                                                                                             | 13.71<br>13.96<br>14.08<br>14.20<br>13.64<br>14.03<br>13.59<br>13.38<br>13.81<br>13.71<br>13.13                                                                                                                       | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62                                                                                                                                                                                                                                                 | DPE-1,2,3,4 DPE-3 DPE-3 DPE-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>4/17/2012<br>5/17/2012<br>5/31/2012<br>6/14/2012<br>7/19/2012<br>8/23/2012<br>9/26/2012                                                                                                                                                                                                                                                                                                                                           | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                                                                                                                                                   | 13.71<br>13.96<br>14.08<br>14.20<br>13.64<br>14.03<br>13.59<br>13.38<br>13.81<br>13.71<br>13.13<br>13.88<br>14.09                                                                                                     | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62<br>977.41                                                                                                                                                                                                                                       | DPE-1,2,3,4 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>3/27/2012<br>5/17/2012<br>5/31/2012<br>6/14/2012<br>7/19/2012<br>8/23/2012<br>10/26/2012<br>10/26/2012                                                                                                                                                                                                                                                                                                                            | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                                                                                                                                                   | 13.71<br>13.96<br>14.08<br>14.20<br>13.64<br>14.03<br>13.59<br>13.38<br>13.81<br>13.71<br>13.13<br>13.88<br>14.09<br>13.79                                                                                            | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62<br>977.41<br>977.71                                                                                                                                                                                                                             | DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,5 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3; Before restarting the system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>3/27/2012<br>5/17/2012<br>5/31/2012<br>6/14/2012<br>7/19/2012<br>8/23/2012<br>10/26/2012<br>10/26/2012<br>12/19/2012                                                                                                                                                                                                                                                                                                              | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                                                                                                                                         | 13.71<br>13.96<br>14.08<br>14.20<br>13.64<br>14.03<br>13.59<br>13.38<br>13.81<br>13.71<br>13.13<br>13.88<br>14.09<br>13.79<br>13.84                                                                                   | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62<br>977.41<br>977.71                                                                                                                                                                                                                             | DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-3,3,4 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3; Before restarting the system DPE-3; After restarting the system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>4/17/2012<br>5/31/2012<br>5/31/2012<br>6/14/2012<br>7/19/2012<br>8/23/2012<br>9/26/2012<br>10/26/2012<br>12/19/2012<br>12/21/2012                                                                                                                                                                                                                                                                                                 | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                                                                                                                               | 13.71<br>13.96<br>14.08<br>14.20<br>13.64<br>14.03<br>13.59<br>13.38<br>13.81<br>13.71<br>13.13<br>13.88<br>14.09<br>13.79<br>13.84<br>14.09                                                                          | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62<br>977.41<br>977.66<br>977.41                                                                                                                                                                                                                   | DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3; Before restarting the system DPE-3; After restarting the system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                       | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>4/17/2012<br>5/31/2012<br>5/31/2012<br>6/14/2012<br>7/19/2012<br>8/23/2012<br>9/26/2012<br>10/26/2012<br>12/19/2012<br>13/0/2013<br>2/26/2013                                                                                                                                                                                                                                                                                     | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                                                                                                                     | 13.71<br>13.96<br>14.08<br>14.20<br>13.64<br>14.03<br>13.59<br>13.38<br>13.81<br>13.71<br>13.13<br>13.88<br>14.09<br>13.79<br>13.84<br>14.09<br>14.26                                                                 | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62<br>977.41<br>977.66<br>977.41<br>977.66                                                                                                                                                                                                         | DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-3,3,4 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3; Before restarting the system DPE-3; After restarting the system DPE-1,2,3,4 DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20<br>MW-20                                                                                                                                                                                                                                                                                                                                                                                                                         | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>4/17/2012<br>5/31/2012<br>5/31/2012<br>6/14/2012<br>7/19/2012<br>8/23/2012<br>9/26/2012<br>10/26/2012<br>12/19/2012<br>12/21/2012                                                                                                                                                                                                                                                                                                 | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                                                                                                                               | 13.71<br>13.96<br>14.08<br>14.20<br>13.64<br>14.03<br>13.59<br>13.38<br>13.81<br>13.71<br>13.13<br>13.88<br>14.09<br>13.79<br>13.84<br>14.09                                                                          | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62<br>977.41<br>977.66<br>977.41                                                                                                                                                                                                                   | DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3; Before restarting the system DPE-3; After restarting the system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                     | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>4/17/2012<br>5/31/2012<br>6/14/2012<br>7/19/2012<br>8/23/2012<br>9/26/2012<br>10/26/2012<br>12/19/2012<br>12/21/2012<br>1/30/2013<br>3/21/2013                                                                                                                                                                                                                                                                                    | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                                                                                                                     | 13.71<br>13.96<br>14.08<br>14.20<br>13.64<br>14.03<br>13.59<br>13.38<br>13.81<br>13.71<br>13.13<br>13.88<br>14.09<br>13.79<br>13.84<br>14.09<br>14.26<br>13.83                                                        | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62<br>977.41<br>977.71<br>977.66<br>977.41<br>977.24<br>977.67                                                                                                                                                                                     | DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-3,3,4 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3; After restarting the system DPE-3; After restarting the system DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| MW-20                                                                                                                                                                                                                                                                                                                                                 | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>3/27/2012<br>5/17/2012<br>5/31/2012<br>6/14/2012<br>7/19/2012<br>8/23/2012<br>10/26/2012<br>12/19/2012<br>12/21/2012<br>1/30/2013<br>2/26/2013<br>3/21/2013<br>5/23/2013<br>8/26/2013                                                                                                                                                                                                                                             | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                                                                                       | 13.71<br>13.96<br>14.08<br>14.20<br>13.64<br>14.03<br>13.59<br>13.38<br>13.81<br>13.71<br>13.13<br>13.88<br>14.09<br>13.79<br>13.84<br>14.09<br>14.26<br>13.83<br>7.39<br>9.62<br>11.70                               | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62<br>977.41<br>977.66<br>977.41<br>977.66<br>977.41<br>977.67<br>984.11<br>981.88<br>979.80                                                                                                                                                       | DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3; Before restarting the system DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| MW-20                                                                                                                                                                                                                                                                                                                                     | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>3/27/2012<br>5/17/2012<br>5/31/2012<br>6/14/2012<br>7/19/2012<br>8/23/2012<br>9/26/2012<br>12/19/2012<br>12/21/2012<br>12/21/2013<br>3/21/2013<br>5/23/2013<br>6/26/2013<br>8/26/2013<br>12/10/2013                                                                                                                                                                                                                               | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                                                                             | 13.71 13.96 14.08 14.20 13.64 14.03 13.59 13.38 13.81 13.71 13.13 13.88 14.09 13.79 13.84 14.09 14.26 13.83 7.39 9.62 11.70 12.71                                                                                     | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62<br>977.41<br>977.66<br>977.41<br>977.67<br>984.11<br>981.88<br>979.80<br>978.79                                                                                                                                                                 | DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3; Before restarting the system DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| MW-20                                                                                                                                                                                                                                                                                     | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/16/2012<br>4/17/2012<br>5/31/2012<br>6/14/2012<br>7/19/2012<br>8/23/2012<br>9/26/2012<br>10/26/2012<br>12/19/2012<br>12/21/2012<br>12/21/2013<br>5/23/2013<br>6/26/2013<br>3/21/2013<br>5/23/2013<br>6/26/2013<br>12/10/2013<br>12/10/2013<br>12/10/2013                                                                                                                                                                                     | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                                                                   | 13.71 13.96 14.08 14.20 13.64 14.03 13.59 13.38 13.81 13.71 13.13 13.88 14.09 13.79 13.84 14.09 14.26 13.83 7.39 9.62 11.70 12.71 13.33                                                                               | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62<br>977.41<br>977.71<br>977.66<br>977.41<br>977.24<br>977.67<br>984.11<br>981.88<br>979.80<br>978.79<br>978.17                                                                                                                                   | DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3; Before restarting the system DPE-3; After restarting the system DPE-1,2,3,4 D |
| MW-20                                                                                                                                                                                                                                                                   | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>4/17/2012<br>5/31/2012<br>6/14/2012<br>7/19/2012<br>8/23/2012<br>10/26/2012<br>10/26/2012<br>12/19/2012<br>12/19/2012<br>12/2012<br>12/2012<br>12/2012<br>12/2012<br>12/2013<br>5/23/2013<br>6/26/2013<br>8/26/2013<br>8/26/2013<br>8/26/2013<br>8/26/2013                                                                                                                                                                        | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                                                         | 13.71 13.96 14.08 14.08 14.20 13.64 14.03 13.59 13.38 13.81 13.71 13.13 13.88 14.09 13.79 13.84 14.09 14.26 13.83 7.39 9.62 11.70 12.71 13.33 10.94                                                                   | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62<br>977.41<br>977.66<br>977.41<br>977.76<br>984.11<br>981.88<br>979.80<br>978.79<br>978.17<br>980.56                                                                                                                                             | DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-3,3,4 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3; Before restarting the system DPE-3; After restarting the system DPE-1,2,3,4 DPE-1,2,3 |
| MW-20                                                                                                                                                                                                                                                       | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>5/17/2012<br>5/17/2012<br>5/31/2012<br>6/14/2012<br>7/19/2012<br>10/26/2012<br>10/26/2012<br>12/19/2012<br>12/19/2012<br>12/21/2013<br>5/23/2013<br>6/26/2013<br>3/21/2013<br>8/26/2013<br>12/10/2014<br>4/20/2014                                                                                                                                                                                                                | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                                                         | 13.71 13.96 14.08 14.08 14.20 13.64 14.03 13.59 13.38 13.81 13.71 13.13 13.88 14.09 13.79 13.84 14.09 13.79 13.84 14.09 14.26 13.83 7.39 9.62 11.70 12.71 13.33 10.94 12.06                                           | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62<br>977.41<br>977.66<br>977.41<br>977.67<br>984.11<br>981.88<br>979.80<br>978.79<br>978.17<br>980.56<br>979.44                                                                                                                                   | DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3; Before restarting the system DPE-1,2,3,4  |
| MW-20                                                                                                                                                                                                                   | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>3/27/2012<br>5/17/2012<br>5/17/2012<br>5/17/2012<br>6/14/2012<br>7/19/2012<br>8/23/2012<br>10/26/2012<br>12/19/2012<br>12/19/2012<br>12/21/2013<br>2/26/2013<br>8/26/2013<br>8/26/2013<br>12/10/2014<br>8/21/2014<br>1/19/2014                                                                                                                                                                                                    | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                                                         | 13.71 13.96 14.08 14.08 14.20 13.64 14.03 13.59 13.38 13.81 13.71 13.13 13.88 14.09 13.79 13.84 14.09 13.79 13.84 14.09 13.73 13.83 7.39 9.62 11.70 12.71 13.33 10.94 12.06 12.22                                     | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62<br>977.41<br>977.66<br>977.41<br>977.67<br>984.11<br>981.88<br>979.80<br>978.79<br>978.79<br>978.79<br>978.79                                                                                                                                   | DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3; Before restarting the system DPE-1,2,3,4 DPE-1, |
| MW-20                                                                                                                                                                                                                   | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>3/27/2012<br>5/17/2012<br>5/31/2012<br>6/14/2012<br>7/19/2012<br>8/23/2012<br>9/26/2012<br>10/26/2012<br>12/19/2012<br>12/21/2012<br>1/30/2013<br>2/26/2013<br>8/26/2013<br>8/26/2013<br>12/10/2014<br>4/20/2014<br>4/20/2014<br>4/21/2014<br>11/19/2014<br>2/25/2015                                                                                                                                                             | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                 | 13.71 13.96 14.08 14.20 13.64 14.03 13.59 13.38 13.81 13.71 13.13 13.88 14.09 13.79 13.84 14.09 14.26 13.83 7.39 9.62 11.70 12.71 13.33 10.94 12.06 12.22 13.30                                                       | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62<br>977.41<br>977.66<br>977.41<br>977.66<br>977.41<br>977.67<br>984.11<br>981.88<br>979.80<br>978.79<br>978.79<br>978.79<br>978.79                                                                                                               | DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3; Before restarting the system DPE-1,2,3,4 System Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MW-20                                                                                                                                                       | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/16/2012<br>3/27/2012<br>4/17/2012<br>5/17/2012<br>5/31/2012<br>6/14/2012<br>7/19/2012<br>8/23/2012<br>9/26/2012<br>10/26/2012<br>12/19/2012<br>12/21/2013<br>3/21/2013<br>3/21/2013<br>3/21/2013<br>12/10/2013<br>2/17/2014<br>4/20/2014<br>8/21/2014<br>1/11/2014<br>1/21/2015<br>6/15/2015                                                                                                                                                 | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                           | 13.71 13.96 14.08 14.08 14.20 13.64 14.03 13.59 13.38 13.81 13.71 13.13 13.88 14.09 13.79 13.84 14.09 14.26 13.83 7.39 9.62 11.70 12.71 13.33 10.94 12.06 12.22 13.30 10.92                                           | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62<br>977.41<br>977.66<br>977.41<br>977.76<br>977.41<br>977.67<br>984.11<br>981.88<br>978.99<br>978.17<br>980.56<br>979.44<br>979.28<br>979.28<br>978.20<br>980.58                                                                                 | DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3; Before restarting the system DPE-1,2,3,4 System Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MW-20                                                                                                                                                                                                                   | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>3/27/2012<br>5/17/2012<br>5/31/2012<br>6/14/2012<br>7/19/2012<br>8/23/2012<br>9/26/2012<br>10/26/2012<br>12/19/2012<br>12/21/2012<br>1/30/2013<br>2/26/2013<br>8/26/2013<br>8/26/2013<br>12/10/2014<br>4/20/2014<br>4/20/2014<br>4/21/2014<br>11/19/2014<br>2/25/2015                                                                                                                                                             | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                 | 13.71 13.96 14.08 14.20 13.64 14.03 13.59 13.38 13.81 13.71 13.13 13.88 14.09 13.79 13.84 14.09 14.26 13.83 7.39 9.62 11.70 12.71 13.33 10.94 12.06 12.22 13.30                                                       | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62<br>977.41<br>977.66<br>977.41<br>977.66<br>977.41<br>977.67<br>984.11<br>981.88<br>979.80<br>978.79<br>978.79<br>978.79<br>978.79                                                                                                               | DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3; Before restarting the system DPE-1,2,3,4 System Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MW-20                                                                   | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>5/17/2012<br>5/17/2012<br>5/31/2012<br>6/14/2012<br>7/19/2012<br>9/26/2012<br>10/26/2012<br>12/19/2012<br>12/21/2012<br>13/2013<br>5/23/2013<br>6/26/2013<br>3/21/2013<br>5/23/2013<br>6/26/2013<br>12/10/2014<br>4/20/2014<br>8/21/2014<br>11/19/2014<br>2/25/2015<br>6/15/2015<br>6/15/2015<br>10/12/2015                                                                                                                       | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                                                                           | 13.71 13.96 14.08 14.08 14.20 13.64 14.03 13.59 13.38 13.81 13.71 13.13 13.88 14.09 13.79 13.84 14.09 14.26 13.83 7.39 9.62 11.70 12.71 13.33 10.94 12.06 12.22 13.30 10.92 12.32                                     | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62<br>977.41<br>977.66<br>977.41<br>977.67<br>984.11<br>981.88<br>979.80<br>978.79<br>978.17<br>980.56<br>979.44<br>979.28<br>979.28                                                                                                               | DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3; Before restarting the system DPE-1,2,3,4  |
| MW-20                                                             | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>4/17/2012<br>5/31/2012<br>6/14/2012<br>5/17/2012<br>5/31/2012<br>6/14/2012<br>7/19/2012<br>10/26/2012<br>10/26/2012<br>12/19/2012<br>12/21/2012<br>1/30/2013<br>5/23/2013<br>6/26/2013<br>12/10/2013<br>12/10/2014<br>4/20/2014<br>8/21/2014<br>11/19/2014<br>2/25/2015<br>6/15/2015<br>8/17/2015<br>9/10/2015                                                                                                                    | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                         | 13.71 13.96 14.08 14.08 14.20 13.64 14.03 13.59 13.38 13.81 13.71 13.13 13.88 14.09 13.79 13.84 14.09 13.79 13.84 14.09 14.26 13.83 7.39 9.62 11.70 12.71 13.33 10.94 12.06 12.22 13.30 10.92 12.32 11.75             | 977.54<br>977.42<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62<br>977.41<br>977.66<br>977.41<br>977.67<br>984.11<br>981.88<br>979.80<br>978.79<br>978.79<br>978.79<br>978.79<br>978.79<br>978.79<br>978.79<br>979.80<br>979.80<br>979.99                                                             | DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-3,3,4 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3; Before restarting the system DPE-1,2,3,4 DPE-1,2, |
| MW-20                                                       | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/27/2012<br>3/27/2012<br>5/17/2012<br>5/31/2012<br>6/14/2012<br>7/19/2012<br>8/23/2012<br>10/26/2012<br>12/19/2012<br>12/19/2012<br>12/21/2013<br>3/21/2013<br>3/21/2013<br>5/23/2013<br>6/26/2013<br>8/26/2013<br>12/10/2014<br>4/20/2014<br>4/20/2014<br>4/20/2014<br>4/20/2014<br>11/19/2015<br>6/15/2015<br>8/17/2015<br>9/10/2015<br>12/14/2015<br>12/14/2015<br>12/14/2015<br>12/14/2015                                                | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50 | 13.71 13.96 14.08 14.08 14.20 13.64 14.03 13.59 13.38 13.81 13.71 13.13 13.88 14.09 13.79 13.84 14.09 14.26 13.83 7.39 9.62 11.70 12.71 13.33 10.94 12.06 12.22 13.30 10.92 12.32 11.75 13.01 12.41 12.56             | 977.54<br>977.42<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62<br>977.41<br>977.66<br>977.41<br>977.67<br>984.11<br>981.88<br>979.80<br>978.79<br>978.17<br>980.56<br>979.44<br>979.28<br>979.28<br>979.80<br>979.80<br>979.99<br>978.49<br>979.99<br>978.49                                         | DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3; Before restarting the system DPE-3; After restarting the system DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,5 DPE-1,2,3,6 DPE-1,2,3,6 DPE-1,2,3,6 DPE-1,2,3,7 DPE-1,2,3,9 DPE-1,2 |
| MW-20                                           | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/16/2012<br>3/27/2012<br>4/17/2012<br>5/31/2012<br>6/14/2012<br>7/19/2012<br>8/23/2012<br>9/26/2012<br>10/26/2012<br>12/19/2012<br>12/21/2012<br>12/2013<br>3/21/2013<br>3/21/2013<br>3/21/2013<br>12/10/2013<br>12/10/2013<br>12/10/2013<br>12/10/2013<br>12/10/2013<br>12/10/2013<br>12/10/2013<br>12/10/2013<br>12/10/2013<br>12/10/2013<br>12/10/2013<br>12/10/2015<br>10/12/2015<br>10/12/2015<br>10/12/2015<br>10/12/2015<br>10/12/2016 | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                     | 13.71 13.96 14.08 14.08 14.20 13.64 14.03 13.59 13.38 13.81 13.71 13.13 13.88 14.09 13.79 13.84 14.09 14.26 13.83 7.39 9.62 11.70 12.71 13.33 10.94 12.06 12.22 13.30 10.92 12.32 11.75 13.01 12.41 12.56 12.55       | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62<br>977.41<br>977.71<br>977.66<br>977.41<br>977.24<br>977.67<br>984.11<br>981.88<br>979.80<br>978.79<br>978.17<br>980.56<br>979.44<br>979.28<br>979.80<br>979.99<br>978.94<br>979.99<br>978.94                                                   | DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3; Before restarting the system DPE-3; After restarting the system DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,5 DPE-1,2,3,4 DPE-1,2,3,5 DPE-1,2,3,5 DPE-1,2,3,6 DPE-1,2,3,6 DPE-1,2,3,7 DPE-1,2,3,7 DPE-1,2,3,9 D |
| MW-20 | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/16/2012<br>4/17/2012<br>5/31/2012<br>5/31/2012<br>6/14/2012<br>5/31/2012<br>6/14/2012<br>1/19/2012<br>10/26/2012<br>12/19/2012<br>12/19/2012<br>12/21/2012<br>1/30/2013<br>3/21/2013<br>5/23/2013<br>6/26/2013<br>8/26/2013<br>8/26/2013<br>12/10/2014<br>4/20/2014<br>8/21/2014<br>11/19/2014<br>2/25/2015<br>8/17/2015<br>9/10/2015<br>10/12/2015<br>1/11/2016<br>4/20/2016                                                                | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                                         | 13.71 13.96 14.08 14.08 14.20 13.64 14.03 13.59 13.38 13.81 13.71 13.13 13.88 14.09 13.79 13.84 14.09 14.26 13.83 7.39 9.62 11.70 12.71 13.33 10.94 12.06 12.22 13.30 10.92 12.32 11.75 13.01 12.41 12.56 12.55 11.97 | 977.54<br>977.42<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62<br>977.41<br>977.66<br>977.41<br>977.24<br>977.67<br>984.11<br>981.88<br>979.80<br>978.79<br>978.17<br>980.56<br>979.44<br>979.28<br>979.28<br>979.44<br>979.28<br>979.49<br>979.99<br>978.49<br>979.99<br>978.95<br>978.95<br>979.95 | DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3; Before restarting the system DPE-3; After restarting the system DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,5 DPE-1,2,3,4 D |
| MW-20                                           | 1/27/2012<br>2/16/2012<br>3/16/2012<br>3/16/2012<br>3/27/2012<br>4/17/2012<br>5/31/2012<br>6/14/2012<br>7/19/2012<br>8/23/2012<br>9/26/2012<br>10/26/2012<br>12/19/2012<br>12/21/2012<br>12/2013<br>3/21/2013<br>3/21/2013<br>3/21/2013<br>12/10/2013<br>12/10/2013<br>12/10/2013<br>12/10/2013<br>12/10/2013<br>12/10/2013<br>12/10/2013<br>12/10/2013<br>12/10/2013<br>12/10/2013<br>12/10/2013<br>12/10/2015<br>10/12/2015<br>10/12/2015<br>10/12/2015<br>10/12/2015<br>10/12/2016 | 991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50<br>991.50                     | 13.71 13.96 14.08 14.08 14.20 13.64 14.03 13.59 13.38 13.81 13.71 13.13 13.88 14.09 13.79 13.84 14.09 14.26 13.83 7.39 9.62 11.70 12.71 13.33 10.94 12.06 12.22 13.30 10.92 12.32 11.75 13.01 12.41 12.56 12.55       | 977.54<br>977.42<br>977.30<br>977.86<br>977.47<br>977.91<br>978.12<br>977.69<br>977.79<br>978.37<br>977.62<br>977.41<br>977.71<br>977.66<br>977.41<br>977.24<br>977.67<br>984.11<br>981.88<br>979.80<br>978.79<br>978.17<br>980.56<br>979.44<br>979.28<br>979.80<br>979.99<br>978.94<br>979.99<br>978.94                                                   | DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3 DPE-3; Before restarting the system DPE-3; After restarting the system DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,4 DPE-1,2,3,5 DPE-1,2,3,4 DPE-1,2,3,5 DPE-1,2,3,5 DPE-1,2,3,6 DPE-1,2,3,6 DPE-1,2,3,7 DPE-1,2,3,7 DPE-1,2,3,9 D |

|                         |                         | Top of                   | Depth to       |                        |                                                  |  |
|-------------------------|-------------------------|--------------------------|----------------|------------------------|--------------------------------------------------|--|
| Well                    | Date                    | Casing                   | Groundwater    | Groundwater            |                                                  |  |
| ID                      | Measured                | Elevation <sup>1,2</sup> | (feet)         | Elevation <sup>3</sup> | System Status                                    |  |
| DPE-1                   | 12/3/2008               | 991.46                   | 13.66          | 977.80                 | pre-system installation                          |  |
| DPE-1                   | 6/8/2009                | 992.40                   | 18.78          | 973.62                 | pre-system startup                               |  |
| DPE-1<br>DPE-1          | 7/9/2009<br>7/9/2009    | 992.40<br>992.40         | 20.51<br>16.38 | 971.89<br>976.02       | DPE system on DPE-1 DPE system temporarily off   |  |
| DPE-1                   | 9/4/2009                | 992.40                   | NR             | 970.02                 | DPE system temporarily on<br>DPE system on DPE-1 |  |
| DPE-1                   | 9/4/2009                | 992.40                   | NR             |                        | DPE-1 on after replacing inlet screen            |  |
| DPE-1                   | 9/4/2009                | 992.40                   | 17.86          | 974.54                 | DPE-1 on after replacing inlet filter            |  |
| DPE-1                   | 10/15/2009              | 992.40                   | NR             |                        | DPE system on DPE-1                              |  |
| DPE-1                   | 10/23/2009              | 992.40                   | 14.88          | 977.52                 | DPE system off                                   |  |
| DPE-1                   | 11/16/2009              | 992.40                   | 14.45          | 977.95                 | DPE System on all wells                          |  |
| DPE-1                   | 12/17/2009              | 992.40                   | 15.13          | 977.27                 | DPE System on all wells                          |  |
| DPE-1                   | 1/14/2010               | 992.40                   | 15.53          | 976.87                 | DPE System on all wells                          |  |
| DPE-1                   | 2/22/2010               | 992.40                   | 12.22          | 980.18                 | DPE System on all wells                          |  |
| DPE-1<br>DPE-1          | 3/25/2010<br>4/16/2010  | 992.40<br>992.40         | 15.72<br>15.88 | 976.68<br>976.52       | DPE System on all wells DPE System on all wells  |  |
| DPE-1                   | 5/12/2010               | 992.40                   | 16.48          | 975.92                 | DPE System on all wells                          |  |
| DPE-1                   | 6/17/2010               | 992.40                   | 16.62          | 975.78                 | DPE System on all wells                          |  |
| DPE-1                   | 8/18/2010               | 992.40                   | 16.80          | 975.60                 | DPE System on all wells                          |  |
| DPE-1                   | 9/27/2010               | 992.40                   | 14.60          | 977.80                 | DPE System on all wells                          |  |
| DPE-1                   | 11/18/2010              | 992.40                   | 14.99          | 977.41                 | DPE System not operating                         |  |
| DPE-1                   | 12/22/2010              | 992.40                   | 15.72          | 976.68                 | DPE System restarted                             |  |
| DPE-1                   | 1/6/2011                | 992.40                   | 14.04          | 978.36                 | DPE System on all wells                          |  |
| DPE-1                   | 1/20/2011               | 992.40                   | 16.80          | 975.60                 | DPE System on all wells                          |  |
| DPE-1                   | 2/28/2011               | 992.40                   | 15.33          | 977.07                 | DPE System on all wells                          |  |
| DPE-1                   | 3/7/2011                | 992.40                   | 17.27          | 975.13                 | DPE System on all wells                          |  |
| DPE-1                   | 3/18/2011               | 992.40                   | 17.80          | 974.60                 | DPE System on all wells                          |  |
| DPE-1<br>DPE-1          | 3/23/2011<br>4/22/2011  | 992.40<br>992.40         | 15.92<br>16.61 | 976.48<br>975.79       | DPE System on all wells DPE System on all wells  |  |
| DPE-1                   | 5/19/2011               | 992.40                   | 14.59          | 973.79                 | DPE System on all wells                          |  |
| DPE-1                   | 6/16/2011               | 992.40                   | 15.12          | 977.28                 | DPE System on all wells                          |  |
| DPE-1                   | 7/25/2011               | 992.40                   | 14.35          | 978.05                 | DPE System on all wells                          |  |
|                         |                         |                          |                |                        | DPE System on all wells. Appears to be           |  |
| DPE-1                   | 8/28/2011               | 992.40                   | 13.04          | 979.36                 | data outlier.                                    |  |
| DPE-1                   | 9/29/2011               | 992.40                   | 15.89          | 976.51                 | DPE-1,2,3,4                                      |  |
| DPE-1                   | 10/18/2011              | 992.40                   | 14.89          | 977.51                 | DPE-1,2,3,4                                      |  |
| DPE-1                   | 10/27/2011              | 992.40                   | 16.65          | 975.75                 | DPE-1,2,3,4                                      |  |
| DPE-1                   | 11/21/2011              | 992.40                   | 17.40          | 975.00                 | DPE-1,2,3,4                                      |  |
| DPE-1                   | 1/20/2012               | 992.40                   | 15.39          | 977.01                 | DPE-1,2,3,4                                      |  |
| DPE-1<br>DPE-1          | 1/27/2012<br>2/16/2012  | 992.40<br>992.40         | 17.19<br>18.28 | 975.21<br>974.12       | DPE-1,2,3,4<br>DPE-1,2,3,4                       |  |
| DPE-1                   | 3/16/2012               | 992.40                   | 19.30          | 974.12                 | DPE-1,2,3,4<br>DPE-1,2,3,4                       |  |
| DPE-1                   | 3/27/2012               | 992.40                   | 17.95          | 974.45                 | DPE-1,2,3,4                                      |  |
| DPE-1                   | 4/17/2012               | 992.40                   | 16.67          | 975.73                 | DPE-1,2,3,4                                      |  |
| DPE-1                   | 5/17/2012               | 992.40                   | 16.93          | 975.47                 | DPE-1,2,3,4                                      |  |
| DPE-1                   | 5/31/2012               | 992.40                   | 15.79          | 976.61                 | DPE-1,2,3,4                                      |  |
| DPE-1                   | 6/14/2012               | 992.40                   | 17.05          | 975.35                 | DPE-1,2,3,4                                      |  |
| DPE-1                   | 7/19/2012               | 992.40                   | 17.54          | 974.86                 | DPE-3                                            |  |
| DPE-1                   | 8/23/2012               | 992.40                   | 16.68          | 975.72                 | DPE-3                                            |  |
| DPE-1                   | 9/26/2012               | 992.40                   | 16.41          | 975.99                 | DPE-3                                            |  |
| DPE-1                   | 10/26/2012              | 992.40                   | 16.75          | 975.65                 | DPE-3                                            |  |
| DPE-1                   | 12/19/2012              | 992.40                   | 15.84          | 976.56                 | DPE-3; Before restarting the system              |  |
| DPE-1<br>DPE-1          | 12/21/2012<br>1/30/2013 | 992.40<br>992.40         | 21.82<br>17.86 | 970.58<br>974.54       | DPE-3; After restarting the system DPE-1,2,3,4   |  |
| DPE-1                   | 2/26/2013               | 992.40                   | 16.94          | 974.34                 | DPE-1,2,3,4<br>DPE-1,2,3,4                       |  |
| DPE-1                   | 3/21/2013               | 992.40                   | 18.40          | 973.40                 | DPE-1,2,3,4<br>DPE-1,2,3,4                       |  |
| DPE-1                   | 5/23/2013               | 992.40                   | 11.34          | 981.06                 | DPE-1,2,3,4                                      |  |
| DPE-1                   | 6/26/2013               | 992.40                   | 13.84          | 978.56                 | DPE-1,2,3,4                                      |  |
| DPE-1                   | 8/26/2013               | 992.40                   | 15.68          | 976.72                 | DPE-1,2,3,4                                      |  |
| DPE-1                   | 12/10/2013              | 992.40                   | 14.40          | 978.00                 | System Off                                       |  |
| DPE-1                   | 2/17/2014               | 992.40                   | 14.90          | 977.50                 | System Off                                       |  |
| DPE-1                   | 4/20/2014               | 992.40                   | 13.54          | 978.86                 | System Off                                       |  |
| DPE-1                   | 8/21/2014               | 992.40                   | 15.80          | 976.60                 | System Off                                       |  |
| DPE-1                   | 11/19/2014              | 992.40                   | 14.06          | 978.34                 | System Off                                       |  |
| DPE-1                   | 2/25/2015               | 992.40                   | 14.84          | 977.56                 | System Off                                       |  |
| DPE-1<br>DPE-1          | 6/15/2015<br>8/17/2015  | 992.40<br>992.40         | 15.58<br>17.06 | 976.82<br>975.34       | System Off System Off                            |  |
| DPE-1<br>DPE-1          | 9/10/2015               | 992.40                   | 16.83          | 975.34                 | System Off System Off                            |  |
|                         | 10/12/2015              | 992.40                   | 16.83          | 975.57                 | System Off System Off                            |  |
| DDF_1                   |                         | 992.40                   | 14.55          | 976.10                 |                                                  |  |
| DPE-1<br>DPE-1          | [2/14//0115             |                          | 17.00          | 711.00                 | DPE System on all wells                          |  |
| DPE-1<br>DPE-1<br>DPE-1 | 12/14/2015<br>1/11/2016 | 992.40                   | 15.79          | 976.61                 | DPE System on all wells                          |  |
| DPE-1                   | 1/11/2016<br>2/23/2016  |                          | 15.79<br>13.98 | 976.61<br>978.42       | DPE System on all wells DPE System on all wells  |  |
| DPE-1<br>DPE-1          | 1/11/2016               | 992.40                   |                |                        |                                                  |  |

| XX7 11         | ъ.                      | Top of                             | Depth to       |                        |                                                                                 |  |  |
|----------------|-------------------------|------------------------------------|----------------|------------------------|---------------------------------------------------------------------------------|--|--|
| Well           | Date                    | Casing<br>Elevation <sup>1,2</sup> | Groundwater    | Groundwater            |                                                                                 |  |  |
| ID             | Measured                |                                    | (feet)         | Elevation <sup>3</sup> | System Status                                                                   |  |  |
| DPE-2          | 12/3/2008               | 991.46                             | 13.60          | 977.86                 | pre-system installation                                                         |  |  |
| DPE-2          | 6/8/2009                | 992.80                             | 17.45          | 975.35                 | pre-system startup                                                              |  |  |
| DPE-2<br>DPE-2 | 7/9/2009<br>7/9/2009    | 992.80<br>992.80                   | 17.61<br>16.83 | 975.19<br>975.97       | DPE system on DPE-1 DPE system temporarily off                                  |  |  |
| DPE-2          | 9/4/2009                | 992.80                             | 17.18          | 975.62                 | DPE system on DPE-1                                                             |  |  |
| DPE-2          | 9/4/2009                | 992.80                             | 17.16          | 975.54                 | DPE-1 on after replacing inlet screen                                           |  |  |
| DPE-2          | 9/4/2009                | 992.80                             | 17.54          | 975.26                 | DPE-1 on after replacing inlet serection  DPE-1 on after replacing inlet filter |  |  |
| DPE-2          | 10/15/2009              | 992.80                             | 16.96          | 975.84                 | DPE system on DPE-1                                                             |  |  |
| DPE-2          | 10/23/2009              | 992.80                             | 15.53          | 977.27                 | DPE system off                                                                  |  |  |
| DPE-2          | 11/16/2009              | 992.80                             | 15.19          | 977.61                 | DPE System on all wells                                                         |  |  |
| DPE-2          | 12/17/2009              | 992.80                             | 15.69          | 977.11                 | DPE System on all wells                                                         |  |  |
| DPE-2          | 1/14/2010               | 992.80                             | 16.04          | 976.76                 | DPE System on all wells                                                         |  |  |
| DPE-2          | 2/22/2010               | 992.80                             | 14.19          | 978.61                 | DPE System on all wells                                                         |  |  |
| DPE-2          | 3/25/2010               | 992.80                             | 15.50          | 977.30                 | DPE System on all wells                                                         |  |  |
| DPE-2          | 4/16/2010               | 992.80                             | 16.31          | 976.49                 | DPE System on all wells                                                         |  |  |
| DPE-2          | 5/12/2010               | 992.80                             | 16.31          | 976.49                 | DPE System on all wells                                                         |  |  |
| DPE-2          | 6/17/2010               | 992.80                             | 17.09          | 975.71                 | DPE System on all wells                                                         |  |  |
| DPE-2          | 8/18/2010               | 992.80<br>992.80                   | 17.58          | 975.22                 | DPE System on all wells                                                         |  |  |
| DPE-2<br>DPE-2 | 9/27/2010<br>11/18/2010 | 992.80                             | 14.92          | 977.88<br>978.01       | DPE System on all wells DPE System not operating                                |  |  |
| DPE-2<br>DPE-2 | 12/22/2010              | 992.80                             | 14.79<br>15.72 | 978.01                 | DPE System not operating DPE System restarted                                   |  |  |
| DPE-2          | 1/6/2011                | 992.80                             | 14.42          | 978.38                 | DPE System restarted DPE System on all wells                                    |  |  |
| DPE-2          | 1/20/2011               | 992.80                             | 14.98          | 977.82                 | DPE System on all wells                                                         |  |  |
| DPE-2          | 2/28/2011               | 992.80                             | 14.88          | 977.92                 | DPE System on all wells                                                         |  |  |
| DPE-2          | 3/7/2011                | 992.80                             | 15.22          | 977.58                 | DPE System on all wells                                                         |  |  |
| DPE-2          | 3/18/2011               | 992.80                             | 15.41          | 977.39                 | DPE System on all wells                                                         |  |  |
| DPE-2          | 3/23/2011               | 992.80                             | 13.62          | 979.18                 | DPE System on all wells                                                         |  |  |
| DPE-2          | 4/22/2011               | 992.80                             | 14.51          | 978.29                 | DPE System on all wells                                                         |  |  |
| DPE-2          | 5/19/2011               | 992.80                             | 14.78          | 978.02                 | DPE System on all wells                                                         |  |  |
| DPE-2          | 6/16/2011               | 992.80                             | 15.00          | 977.80                 | DPE System on all wells                                                         |  |  |
| DPE-2          | 7/25/2011               | 992.80                             | 14.83          | 977.97                 | DPE System on all wells                                                         |  |  |
| DPE-2          | 8/28/2011               | 992.80                             | 17.81          | 974.99                 | DPE System on all wells                                                         |  |  |
| DPE-2<br>DPE-2 | 9/29/2011<br>10/18/2011 | 992.80<br>992.80                   | 15.78<br>14.78 | 977.02<br>978.02       | DPE-1,2,3,4<br>DPE-1,2,3,4                                                      |  |  |
| DPE-2          | 10/18/2011              | 992.80                             | 15.94          | 976.02                 | DPE-1,2,3,4<br>DPE-1,2,3,4                                                      |  |  |
| DPE-2          | 11/21/2011              | 992.80                             | 16.49          | 976.31                 | DPE-1,2,3,4                                                                     |  |  |
| DPE-2          | 1/20/2012               | 992.80                             | 15.94          | 976.86                 | DPE-1,2,3,4                                                                     |  |  |
| DPE-2          | 1/27/2012               | 992.80                             | 16.98          | 975.82                 | DPE-1,2,3,4                                                                     |  |  |
| DPE-2          | 2/16/2012               | 992.80                             | 17.06          | 975.74                 | DPE-1,2,3,4                                                                     |  |  |
| DPE-2          | 3/16/2012               | 992.80                             | 17.04          | 975.76                 | DPE-1,2,3,4                                                                     |  |  |
| DPE-2          | 3/27/2012               | 992.80                             | 16.29          | 976.51                 | DPE-1,2,3,4                                                                     |  |  |
| DPE-2          | 4/17/2012               | 992.80                             | 16.76          | 976.04                 | DPE-1,2,3,4                                                                     |  |  |
| DPE-2          | 5/17/2012               | 992.80                             | 16.63          | 976.17                 | DPE-1,2,3,4                                                                     |  |  |
| DPE-2          | 5/31/2012               | 992.80                             | 16.34          | 976.46                 | DPE-1,2,3,4                                                                     |  |  |
| DPE-2          | 6/14/2012               | 992.80                             | 17.10          | 975.70                 | DPE-1,2,3,4                                                                     |  |  |
| DPE-2          | 7/19/2012               | 992.80                             | 17.79          | 975.01                 | DPE-3                                                                           |  |  |
| DPE-2          | 8/23/2012               | 992.80<br>992.80                   | 16.90<br>16.99 | 975.90<br>975.81       | DPE-3<br>DPE-3                                                                  |  |  |
| DPE-2<br>DPE-2 | 9/26/2012<br>10/26/2012 | 992.80                             | 17.01          | 975.79                 | DPE-3                                                                           |  |  |
| DPE-2          | 12/19/2012              | 992.80                             | 16.13          | 975.79                 | DPE-3; Before restarting the system                                             |  |  |
| DPE-2          | 12/21/2012              | 992.80                             | 18.80          | 974.00                 | DPE-3; After restarting the system                                              |  |  |
| DPE-2          | 1/30/2013               | 992.80                             | 17.41          | 975.39                 | DPE-1,2,3,4                                                                     |  |  |
| DPE-2          | 2/26/2013               | 992.80                             | 17.20          | 975.60                 | DPE-1,2,3,4                                                                     |  |  |
| DPE-2          | 3/21/2013               | 992.80                             | 17.33          | 975.47                 | DPE-1,2,3,4                                                                     |  |  |
| DPE-2          | 5/23/2013               | 992.80                             | 12.15          | 980.65                 | DPE-1,2,3,4                                                                     |  |  |
| DPE-2          | 6/26/2013               | 992.80                             | 13.81          | 978.99                 | DPE-1,2,3,4                                                                     |  |  |
| DPE-2          | 8/26/2013               | 992.80                             | 15.42          | 977.38                 | DPE-1,2,3,4                                                                     |  |  |
| DPE-2          | 12/10/2013              | 992.80                             | 14.90          | 977.90                 | System Off                                                                      |  |  |
| DPE-2          | 2/17/2014               | 992.80                             | 15.14          | 977.66                 | System Off                                                                      |  |  |
| DPE-2          | 4/20/2014               | 992.80                             | 13.96          | 978.84                 | System Off                                                                      |  |  |
| DPE-2          | 8/21/2014               | 992.80<br>992.80                   | 15.56          | 977.24<br>978.39       | System Off                                                                      |  |  |
| DPE-2<br>DPE-2 | 11/19/2014<br>2/25/2015 | 992.80                             | 14.41<br>15.24 | 978.39                 | System Off System Off                                                           |  |  |
| DPE-2<br>DPE-2 | 6/15/2015               | 992.80                             | 13.69          | 977.36                 | System Off System Off                                                           |  |  |
| DPE-2          | 8/17/2015               | 992.80                             | 15.19          | 979.11                 | System Off System Off                                                           |  |  |
| DPE-2          | 9/10/2015               | 992.80                             | 15.05          | 977.75                 | System Off                                                                      |  |  |
| DPE-2          | 10/12/2015              | 992.80                             | 16.44          | 976.36                 | System Off                                                                      |  |  |
| DPE-2          | 12/14/2015              | 992.80                             | 14.71          | 978.09                 | DPE System on all wells                                                         |  |  |
|                | 1/11/2016               | 992.80                             | 14.91          | 977.89                 | DPE System on all wells                                                         |  |  |
| DPF-2          |                         |                                    |                |                        |                                                                                 |  |  |
| DPE-2<br>DPE-2 | 2/23/2016               | 992.80                             | 14.29          | 978.51                 | DPE System on all wells                                                         |  |  |
|                |                         | 992.80<br>992.80                   | 14.29<br>14.34 | 978.51<br>978.46       | DPE System on all wells DPE System on all wells                                 |  |  |

### GROUNDWATER ELEVATIONS MN Bio Business Center

| Date   Date   Casing   Groundwater   Groun |             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| DRE-3   12/3/2008   991.50   10.30   981.20   pre-system installation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| DPE-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| DPE-3         10/15/2009         992.48         14.87         977.61         DPE system on DPE-1           DPE-3         10/23/2009         992.48         14.76         977.72         DPE system off           DPE-3         11/16/2009         992.48         14.59         977.20         DPE System on all wells           DPE-3         12/17/2009         992.48         15.28         977.20         DPE System on all wells           DPE-3         1/14/2010         992.48         15.29         977.19         DPE System on all wells           DPE-3         2/22/2010         992.48         15.29         977.19         DPE System on all wells           DPE-3         3/25/2010         992.48         15.68         976.60         DPE System on all wells           DPE-3         4/16/2010         992.48         15.68         976.68         DPE System on all wells           DPE-3         5/12/2010         992.48         16.26         976.22         DPE System on all wells           DPE-3         6/17/2010         992.48         16.26         976.22         DPE System on all wells           DPE-3         1/1/18/2010         992.48         17.20         975.28         DPE System on all wells           DPE-3         1/28/2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| DPE-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| DPE-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| DPE-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| DPE-3         2/22/2010         992.48         15.29         977.19         DPE System on all wells           DPE-3         3/25/2010         992.48         15.68         976.80         DPE System on all wells           DPE-3         4/16/2010         992.48         15.80         976.68         DPE System on all wells           DPE-3         5/12/2010         992.48         16.26         976.22         DPE System on all wells           DPE-3         6/17/2010         992.48         16.26         976.05         DPE System on all wells           DPE-3         8/18/2010         992.48         16.43         976.05         DPE System on all wells           DPE-3         8/18/2010         992.48         17.20         975.28         DPE System on all wells           DPE-3         19/27/2010         992.48         14.29         978.19         DPE System on of operating           DPE-3         11/18/2010         992.48         14.62         977.86         DPE System not operating           DPE-3         12/22/2010         992.48         14.50         977.98         DPE System on all wells           DPE-3         1/20/2011         992.48         14.50         977.26         DPE System on all wells           DPE-3         2/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| DPE-3   3/25/2010   992.48   15.68   976.80   DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| DPE-3         4/16/2010         992.48         15.80         976.68         DPE System on all wells           DPE-3         5/12/2010         992.48         16.26         976.22         DPE System on all wells           DPE-3         6/17/2010         992.48         16.43         976.05         DPE System on all wells           DPE-3         8/18/2010         992.48         17.20         975.28         DPE System on all wells           DPE-3         9/27/2010         992.48         14.29         978.19         DPE System on all wells           DPE-3         11/18/2010         992.48         14.62         977.86         DPE System not operating           DPE-3         12/22/2010         992.48         15.62         976.86         DPE System on all wells           DPE-3         1/6/2011         992.48         14.50         977.98         DPE System on all wells           DPE-3         1/20/2011         992.48         14.99         977.49         DPE System on all wells           DPE-3         2/28/2011         992.48         15.22         977.26         DPE System on all wells           DPE-3         3/18/2011         992.48         15.20         977.28         DPE System on all wells           DPE-3         3/18/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| DPE-3         5/12/2010         992.48         16.26         976.22         DPE System on all wells           DPE-3         6/17/2010         992.48         16.43         976.05         DPE System on all wells           DPE-3         8/18/2010         992.48         17.20         975.28         DPE System on all wells           DPE-3         9/27/2010         992.48         14.29         978.19         DPE System on all wells           DPE-3         11/18/2010         992.48         14.62         977.86         DPE System not operating           DPE-3         12/22/2010         992.48         14.50         977.98         DPE System on all wells           DPE-3         1/6/2011         992.48         14.50         977.98         DPE System on all wells           DPE-3         1/20/2011         992.48         15.22         977.26         DPE System on all wells           DPE-3         2/28/2011         992.48         15.22         977.26         DPE System on all wells           DPE-3         3/18/2011         992.48         15.57         976.91         DPE System on all wells           DPE-3         3/23/2011         992.48         13.88         978.60         DPE System on all wells           DPE-3         4/22/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| DPE-3         6/17/2010         992.48         16.43         976.05         DPE System on all wells           DPE-3         8/18/2010         992.48         17.20         975.28         DPE System on all wells           DPE-3         9/27/2010         992.48         14.29         978.19         DPE System on all wells           DPE-3         11/18/2010         992.48         14.62         977.86         DPE System not operating           DPE-3         12/22/2010         992.48         15.62         976.86         DPE System restarted           DPE-3         1/6/2011         992.48         14.50         977.98         DPE System on all wells           DPE-3         1/20/2011         992.48         14.50         977.49         DPE System on all wells           DPE-3         2/28/2011         992.48         15.22         977.26         DPE System on all wells           DPE-3         3/18/2011         992.48         15.20         977.28         DPE System on all wells           DPE-3         3/18/2011         992.48         15.57         976.91         DPE System on all wells           DPE-3         3/23/2011         992.48         13.88         978.60         DPE System on all wells           DPE-3         4/22/2011<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| DPE-3         8/18/2010         992.48         17.20         975.28         DPE System on all wells           DPE-3         9/27/2010         992.48         14.29         978.19         DPE System on all wells           DPE-3         11/18/2010         992.48         14.62         977.86         DPE System not operating           DPE-3         12/22/2010         992.48         15.62         976.86         DPE System on operating           DPE-3         1/6/2011         992.48         14.50         977.98         DPE System on all wells           DPE-3         1/20/2011         992.48         14.59         977.49         DPE System on all wells           DPE-3         1/20/2011         992.48         15.22         977.26         DPE System on all wells           DPE-3         3/7/2011         992.48         15.20         977.28         DPE System on all wells           DPE-3         3/18/2011         992.48         15.57         976.91         DPE System on all wells           DPE-3         3/23/2011         992.48         13.88         978.60         DPE System on all wells           DPE-3         4/22/2011         992.48         14.51         977.97         DPE System on all wells           DPE-3         5/19/201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| DPE-3         9/27/2010         992.48         14.29         978.19         DPE System on all wells           DPE-3         11/18/2010         992.48         14.62         977.86         DPE System not operating           DPE-3         12/22/2010         992.48         15.62         976.86         DPE System restarted           DPE-3         1/6/2011         992.48         14.50         977.98         DPE System on all wells           DPE-3         1/20/2011         992.48         14.99         977.49         DPE System on all wells           DPE-3         2/28/2011         992.48         15.22         977.26         DPE System on all wells           DPE-3         3/7/2011         992.48         15.20         977.28         DPE System on all wells           DPE-3         3/18/2011         992.48         15.57         976.91         DPE System on all wells           DPE-3         3/23/2011         992.48         15.57         976.91         DPE System on all wells           DPE-3         4/22/2011         992.48         14.51         977.97         DPE System on all wells           DPE-3         5/19/2011         992.48         14.51         977.52         DPE System on all wells           DPE-3         6/16/2011 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| DPE-3         12/22/2010         992.48         15.62         976.86         DPE System restarted           DPE-3         1/6/2011         992.48         14.50         977.98         DPE System on all wells           DPE-3         1/20/2011         992.48         14.99         977.49         DPE System on all wells           DPE-3         2/28/2011         992.48         15.22         977.26         DPE System on all wells           DPE-3         3/7/2011         992.48         15.20         977.28         DPE System on all wells           DPE-3         3/18/2011         992.48         15.57         976.91         DPE System on all wells           DPE-3         3/23/2011         992.48         13.88         978.60         DPE System on all wells           DPE-3         4/22/2011         992.48         14.51         977.97         DPE System on all wells           DPE-3         5/19/2011         992.48         14.96         977.52         DPE System on all wells           DPE-3         6/16/2011         992.48         15.83         976.65         DPE System on all wells           DPE-3         7/25/2011         992.48         15.83         976.65         DPE System on all wells           DPE-3         8/28/2011 <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| DPE-3         1/6/2011         992.48         14.50         977.98         DPE System on all wells           DPE-3         1/20/2011         992.48         14.99         977.49         DPE System on all wells           DPE-3         2/28/2011         992.48         15.22         977.26         DPE System on all wells           DPE-3         3/7/2011         992.48         15.20         977.28         DPE System on all wells           DPE-3         3/18/2011         992.48         15.57         976.91         DPE System on all wells           DPE-3         3/23/2011         992.48         13.88         978.60         DPE System on all wells           DPE-3         4/22/2011         992.48         14.51         977.97         DPE System on all wells           DPE-3         5/19/2011         992.48         14.96         977.52         DPE System on all wells           DPE-3         6/16/2011         992.48         15.83         976.65         DPE System on all wells           DPE-3         7/25/2011         992.48         14.11         978.37         DPE System on all wells           DPE-3         8/28/2011         992.48         15.88         976.60         DPE System on all wells           DPE-3         9/29/2011 </td <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| DPE-3         1/20/2011         992.48         14.99         977.49         DPE System on all wells           DPE-3         2/28/2011         992.48         15.22         977.26         DPE System on all wells           DPE-3         3/7/2011         992.48         15.20         977.28         DPE System on all wells           DPE-3         3/18/2011         992.48         15.57         976.91         DPE System on all wells           DPE-3         3/23/2011         992.48         13.88         978.60         DPE System on all wells           DPE-3         4/22/2011         992.48         14.51         977.97         DPE System on all wells           DPE-3         5/19/2011         992.48         14.96         977.52         DPE System on all wells           DPE-3         6/16/2011         992.48         15.83         976.65         DPE System on all wells           DPE-3         7/25/2011         992.48         14.11         978.37         DPE System on all wells           DPE-3         8/28/2011         992.48         15.88         976.60         DPE System on all wells           DPE-3         9/29/2011         992.48         16.56         975.92         DPE-1,2,3,4           DPE-3         10/27/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| DPE-3         2/28/2011         992.48         15.22         977.26         DPE System on all wells           DPE-3         3/7/2011         992.48         15.20         977.28         DPE System on all wells           DPE-3         3/18/2011         992.48         15.57         976.91         DPE System on all wells           DPE-3         3/23/2011         992.48         13.88         978.60         DPE System on all wells           DPE-3         4/22/2011         992.48         14.51         977.97         DPE System on all wells           DPE-3         5/19/2011         992.48         14.96         977.52         DPE System on all wells           DPE-3         6/16/2011         992.48         15.83         976.65         DPE System on all wells           DPE-3         7/25/2011         992.48         14.11         978.37         DPE System on all wells           DPE-3         8/28/2011         992.48         15.88         976.60         DPE System on all wells           DPE-3         9/29/2011         992.48         16.56         975.92         DPE-1,2,3,4           DPE-3         10/27/2011         992.48         14.89         977.59         DPE-1,2,3,4           DPE-3         10/27/2011         992.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| DPE-3         3/7/2011         992.48         15.20         977.28         DPE System on all wells           DPE-3         3/18/2011         992.48         15.57         976.91         DPE System on all wells           DPE-3         3/23/2011         992.48         13.88         978.60         DPE System on all wells           DPE-3         4/22/2011         992.48         14.51         977.97         DPE System on all wells           DPE-3         5/19/2011         992.48         14.96         977.52         DPE System on all wells           DPE-3         6/16/2011         992.48         15.83         976.65         DPE System on all wells           DPE-3         7/25/2011         992.48         14.11         978.37         DPE System on all wells           DPE-3         8/28/2011         992.48         15.88         976.60         DPE System on all wells           DPE-3         9/29/2011         992.48         15.88         976.60         DPE System on all wells           DPE-3         10/21/2011         992.48         16.56         975.92         DPE-1,2,3,4           DPE-3         10/27/2011         992.48         16.82         975.66         DPE-1,2,3,4           DPE-3         11/21/2011         992.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| DPE-3         3/18/2011         992.48         15.57         976.91         DPE System on all wells           DPE-3         3/23/2011         992.48         13.88         978.60         DPE System on all wells           DPE-3         4/22/2011         992.48         14.51         977.97         DPE System on all wells           DPE-3         5/19/2011         992.48         14.96         977.52         DPE System on all wells           DPE-3         6/16/2011         992.48         15.83         976.65         DPE System on all wells           DPE-3         7/25/2011         992.48         15.83         976.60         DPE System on all wells           DPE-3         8/28/2011         992.48         15.88         976.60         DPE System on all wells           DPE-3         9/29/2011         992.48         16.56         975.92         DPE-1,2,3,4           DPE-3         10/18/2011         992.48         14.89         977.59         DPE-1,2,3,4           DPE-3         10/227/2011         992.48         16.82         975.66         DPE-1,2,3,4           DPE-3         11/21/2011         992.48         16.51         975.97         DPE-1,2,3,4           DPE-3         11/20/2012         992.48         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| DPE-3         3/23/2011         992.48         13.88         978.60         DPE System on all wells           DPE-3         4/22/2011         992.48         14.51         977.97         DPE System on all wells           DPE-3         5/19/2011         992.48         14.96         977.52         DPE System on all wells           DPE-3         6/16/2011         992.48         15.83         976.65         DPE System on all wells           DPE-3         7/25/2011         992.48         14.11         978.37         DPE System on all wells           DPE-3         8/28/2011         992.48         15.88         976.60         DPE System on all wells           DPE-3         9/29/2011         992.48         16.56         975.92         DPE-1,2,3,4           DPE-3         10/18/2011         992.48         14.89         977.59         DPE-1,2,3,4           DPE-3         10/27/2011         992.48         16.82         975.66         DPE-1,2,3,4           DPE-3         11/21/2011         992.48         16.51         975.97         DPE-1,2,3,4           DPE-3         11/20/2012         992.48         16.51         975.97         DPE-1,2,3,4           DPE-3         10/20/2012         992.48         16.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| DPE-3         4/22/2011         992.48         14.51         977.97         DPE System on all wells           DPE-3         5/19/2011         992.48         14.96         977.52         DPE System on all wells           DPE-3         6/16/2011         992.48         15.83         976.65         DPE System on all wells           DPE-3         7/25/2011         992.48         14.11         978.37         DPE System on all wells           DPE-3         8/28/2011         992.48         15.88         976.60         DPE System on all wells           DPE-3         9/29/2011         992.48         16.56         975.92         DPE-1,2,3,4           DPE-3         10/18/2011         992.48         14.89         977.59         DPE-1,2,3,4           DPE-3         10/27/2011         992.48         16.82         975.66         DPE-1,2,3,4           DPE-3         11/21/2011         992.48         16.51         975.97         DPE-1,2,3,4           DPE-3         1/20/2012         992.48         16.15         976.33         DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| DPE-3         6/16/2011         992.48         15.83         976.65         DPE System on all wells           DPE-3         7/25/2011         992.48         14.11         978.37         DPE System on all wells           DPE-3         8/28/2011         992.48         15.88         976.60         DPE System on all wells           DPE-3         9/29/2011         992.48         16.56         975.92         DPE-1,2,3,4           DPE-3         10/18/2011         992.48         14.89         977.59         DPE-1,2,3,4           DPE-3         10/27/2011         992.48         16.82         975.66         DPE-1,2,3,4           DPE-3         11/21/2011         992.48         16.51         975.97         DPE-1,2,3,4           DPE-3         11/20/2012         992.48         16.15         976.33         DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| DPE-3         7/25/2011         992.48         14.11         978.37         DPE System on all wells           DPE-3         8/28/2011         992.48         15.88         976.60         DPE System on all wells           DPE-3         9/29/2011         992.48         16.56         975.92         DPE-1,2,3,4           DPE-3         10/18/2011         992.48         14.89         977.59         DPE-1,2,3,4           DPE-3         10/27/2011         992.48         16.82         975.66         DPE-1,2,3,4           DPE-3         11/21/2011         992.48         16.51         975.97         DPE-1,2,3,4           DPE-3         1/20/2012         992.48         16.15         976.33         DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| DPE-3         8/28/2011         992.48         15.88         976.60         DPE System on all wells           DPE-3         9/29/2011         992.48         16.56         975.92         DPE-1,2,3,4           DPE-3         10/18/2011         992.48         14.89         977.59         DPE-1,2,3,4           DPE-3         10/27/2011         992.48         16.82         975.66         DPE-1,2,3,4           DPE-3         11/21/2011         992.48         16.51         975.97         DPE-1,2,3,4           DPE-3         1/20/2012         992.48         16.15         976.33         DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| DPE-3         9/29/2011         992.48         16.56         975.92         DPE-1,2,3,4           DPE-3         10/18/2011         992.48         14.89         977.59         DPE-1,2,3,4           DPE-3         10/27/2011         992.48         16.82         975.66         DPE-1,2,3,4           DPE-3         11/21/2011         992.48         16.51         975.97         DPE-1,2,3,4           DPE-3         1/20/2012         992.48         16.15         976.33         DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| DPE-3         10/18/2011         992.48         14.89         977.59         DPE-1,2,3,4           DPE-3         10/27/2011         992.48         16.82         975.66         DPE-1,2,3,4           DPE-3         11/21/2011         992.48         16.51         975.97         DPE-1,2,3,4           DPE-3         1/20/2012         992.48         16.15         976.33         DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |
| DPE-3         10/27/2011         992.48         16.82         975.66         DPE-1,2,3,4           DPE-3         11/21/2011         992.48         16.51         975.97         DPE-1,2,3,4           DPE-3         1/20/2012         992.48         16.15         976.33         DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
| DPE-3         11/21/2011         992.48         16.51         975.97         DPE-1,2,3,4           DPE-3         1/20/2012         992.48         16.15         976.33         DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| DPE-3 1/20/2012 992.48 16.15 976.33 DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| DPE-3 1/27/2012 992.48 17.60 974.88 DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| DPE-3 2/16/2012 992.48 17.90 974.58 DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| DPE-3 3/16/2012 992.48 17.51 974.97 DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| DPE-3         3/27/2012         992.48         16.38         976.10         DPE-1,2,3,4           DPE-3         4/17/2012         992.48         17.28         975.20         DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| DPE-3         4/17/2012         992.48         17.28         975.20         DPE-1,2,3,4           DPE-3         5/17/2012         992.48         17.08         975.40         DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| DPE-3 5/31/2012 992.48 16.82 975.66 DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| DPE-3 6/14/2012 992.48 17.42 975.06 DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| DPE-3 7/19/2012 992.48 16.61 975.87 DPE-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| DPE-3 8/23/2012 992.48 17.20 975.28 DPE-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <del></del> |
| DPE-3 9/26/2012 992.48 17.02 975.46 DPE-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| DPE-3 10/26/2012 992.48 17.29 975.19 DPE-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| DPE-3         12/19/2012         992.48         16.36         976.12         DPE-3; Before restarting the system           DPE-3         12/21/2012         992.48         17.56         974.92         DPE-3; After restarting the system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |
| DPE-3 1/30/2013 992.48 18.33 974.15 DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| DPE-3 2/26/2013 992.48 18.14 974.34 DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| DPE-3 3/21/2013 992.48 17.78 974.70 DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| DPE-3 5/23/2013 992.48 11.68 980.80 DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _           |
| DPE-3 6/26/2013 992.48 14.99 977.49 DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| DPE-3 8/26/2013 992.48 15.51 976.97 DPE-1,2,3,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| DPE-3         12/10/2013         992.48         14.98         977.50         System Off           DPE-3         2/17/2014         992.48         15.41         977.07         System Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| DPE-3 2/1//2014 992.48 13.41 977.07 System Off  DPE-3 4/20/2014 992.48 14.00 978.48 System Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| DPE-3 8/21/2014 992.48 15.33 977.15 System Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| DPE-3 11/19/2014 992.48 14.58 977.90 System Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| DPE-3 2/25/2015 992.48 15.41 977.07 System Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| DPE-3 6/15/2015 992.48 13.76 978.72 System Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| DPE-3 8/17/2015 992.48 15.17 977.31 System Off                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| DPE-3 9/10/2015 992.48 NR Well taken apart/being fixed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| DPE-3         10/12/2015         992.48         16.23         976.25         System Off           DPE-3         12/14/2015         992.48         14.89         977.59         DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| DPE-3         12/14/2015         992.48         14.89         977.59         DPE System on all wells           DPE-3         1/11/2016         992.48         15.29         977.19         DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| DPE-3 1/11/2016 992.48 13.29 977.19 DPE System on all wells  DPE-3 2/23/2016 992.48 14.40 978.08 DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| DPE-3 4/20/2016 992.48 14.72 977.76 DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| DPE-3 5/17/2016 992.48 14.01 978.47 DPE System on all wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |

| XX7.11         | Dete                    | Top of                             | Depth to       | C1                                    |                                                 |  |  |
|----------------|-------------------------|------------------------------------|----------------|---------------------------------------|-------------------------------------------------|--|--|
| Well           | Date                    | Casing<br>Elevation <sup>1,2</sup> | Groundwater    | Groundwater<br>Elevation <sup>3</sup> |                                                 |  |  |
| ID DEED        | Measured                |                                    | (feet)         |                                       | System Status                                   |  |  |
| DPE-4<br>DPE-4 | 12/3/2008<br>6/8/2009   | 991.39<br>992.40                   | 14.20<br>15.30 | 977.19<br>977.10                      | pre-system installation<br>pre-system startup   |  |  |
| DPE-4          | 7/9/2009                | 992.40                             | 16.95          | 977.10                                | DPE system on DPE-1                             |  |  |
| DPE-4          | 7/9/2009                | 992.40                             | 16.08          | 976.32                                | DPE system temporarily off                      |  |  |
| DPE-4          | 9/4/2009                | 992.40                             | 15.94          | 976.46                                | DPE system on DPE-1                             |  |  |
| DPE-4          | 9/4/2009                | 992.40                             | 15.91          | 976.49                                | DPE-1 on after replacing inlet screen           |  |  |
| DPE-4          | 9/4/2009                | 992.40                             | 15.99          | 976.41                                | DPE-1 on after replacing inlet filter           |  |  |
| DPE-4          | 10/15/2009              | 992.40                             | 15.83          | 976.57                                | DPE system on DPE-1                             |  |  |
| DPE-4          | 10/23/2009              | 992.40                             | 14.81          | 977.59                                | DPE system off                                  |  |  |
| DPE-4          | 11/16/2009              | 992.40                             | 14.48          | 977.92                                | DPE System on all wells                         |  |  |
| DPE-4          | 12/17/2009              | 992.40                             | 15.44          | 976.96                                | DPE System on all wells                         |  |  |
| DPE-4          | 1/14/2010               | 992.40                             | 16.08          | 976.32                                | DPE System on all wells                         |  |  |
| DPE-4          | 2/22/2010               | 992.40                             | 16.08          | 976.32                                | DPE System on all wells                         |  |  |
| DPE-4<br>DPE-4 | 3/25/2010<br>4/16/2010  | 992.40<br>992.40                   | 16.22<br>16.21 | 976.18<br>976.19                      | DPE System on all wells DPE System on all wells |  |  |
| DPE-4          | 5/12/2010               | 992.40                             | 16.86          | 975.54                                | DPE System on all wells                         |  |  |
| DPE-4          | 6/17/2010               | 992.40                             | 16.83          | 975.57                                | DPE System on all wells                         |  |  |
| DPE-4          | 8/18/2010               | 992.40                             | 16.74          | 975.66                                | DPE System on all wells                         |  |  |
| DPE-4          | 9/27/2010               | 992.40                             | 14.74          | 977.66                                | DPE System on all wells                         |  |  |
| DPE-4          | 11/18/2010              | 992.40                             | 14.93          | 977.47                                | DPE System not operating                        |  |  |
| DPE-4          | 12/22/2010              | 992.40                             | 14.89          | 977.51                                | DPE System restarted                            |  |  |
| DPE-4          | 1/6/2011                | 992.40                             | 14.61          | 977.79                                | DPE System on all wells                         |  |  |
| DPE-4          | 1/20/2011               | 992.40                             | 15.15          | 977.25                                | DPE System on all wells                         |  |  |
| DPE-4          | 2/28/2011               | 992.40                             | 15.30          | 977.10                                | DPE System on all wells                         |  |  |
| DPE-4          | 3/7/2011                | 992.40                             | 15.62          | 976.78                                | DPE System on all wells                         |  |  |
| DPE-4          | 3/18/2011               | 992.40                             | 15.62          | 976.78                                | DPE System on all wells                         |  |  |
| DPE-4          | 3/23/2011               | 992.40                             | 14.04          | 978.36                                | DPE System on all wells                         |  |  |
| DPE-4          | 4/22/2011               | 992.40                             | 14.64          | 977.76                                | DPE System on all wells DPE System on all wells |  |  |
| DPE-4<br>DPE-4 | 5/19/2011<br>6/16/2011  | 992.40<br>992.40                   | 15.80<br>15.02 | 976.60<br>977.38                      | DPE System on all wells DPE System on all wells |  |  |
| DPE-4          | 7/25/2011               | 992.40                             | 14.49          | 977.91                                | DPE System on all wells                         |  |  |
| DPE-4          | 8/28/2011               | 992.40                             | 16.58          | 975.82                                | DPE System on all wells                         |  |  |
| DPE-4          | 9/29/2011               | 992.40                             | 16.42          | 975.98                                | DPE-1,2,3,4                                     |  |  |
| DPE-4          | 10/18/2011              | 992.40                             | 14.98          | 977.42                                | DPE-1,2,3,4                                     |  |  |
| DPE-4          | 10/27/2011              | 992.40                             | 16.64          | 975.76                                | DPE-1,2,3,4                                     |  |  |
| DPE-4          | 11/21/2011              | 992.40                             | 17.11          | 975.29                                | DPE-1,2,3,4                                     |  |  |
| DPE-4          | 1/20/2012               | 992.40                             | 16.08          | 976.32                                | DPE-1,2,3,4                                     |  |  |
| DPE-4          | 1/27/2012               | 992.40                             | 17.49          | 974.91                                | DPE-1,2,3,4                                     |  |  |
| DPE-4          | 2/16/2012               | 992.40                             | 17.76          | 974.64                                | DPE-1,2,3,4                                     |  |  |
| DPE-4          | 3/16/2012               | 992.40                             | 17.70          | 974.70                                | DPE-1,2,3,4                                     |  |  |
| DPE-4          | 3/27/2012               | 992.40                             | 16.29          | 976.11                                | DPE-1,2,3,4                                     |  |  |
| DPE-4          | 4/17/2012               | 992.40                             | 17.61          | 974.79                                | DPE-1,2,3,4                                     |  |  |
| DPE-4<br>DPE-4 | 5/17/2012<br>5/31/2012  | 992.40<br>992.40                   | 18.44<br>17.71 | 973.96<br>974.69                      | DPE-1,2,3,4                                     |  |  |
| DPE-4          | 6/14/2012               | 992.40                             | 18.41          | 974.09                                | DPE-1,2,3,4<br>DPE-1,2,3,4                      |  |  |
| DPE-4          | 7/19/2012               | 992.40                             | 18.08          | 974.32                                | DPE-3                                           |  |  |
| DPE-4          | 8/23/2012               | 992.40                             | 17.12          | 975.28                                | DPE-3                                           |  |  |
| DPE-4          | 9/26/2012               | 992.40                             | 17.14          | 975.26                                | DPE-3                                           |  |  |
| DPE-4          | 10/26/2012              | 992.40                             | 17.24          | 975.16                                | DPE-3                                           |  |  |
| DPE-4          | 12/19/2012              | 992.40                             | 16.38          | 976.02                                | DPE-3; Before restarting the system             |  |  |
| DPE-4          | 12/21/2012              | 992.40                             | 17.54          | 974.86                                | DPE-3; After restarting the system              |  |  |
| DPE-4          | 1/30/2013               | 992.40                             | 17.73          | 974.67                                | DPE-1,2,3,4                                     |  |  |
| DPE-4          | 2/26/2013               | 992.40                             | 17.69          | 974.71                                | DPE-1,2,3,4                                     |  |  |
| DPE-4          | 3/21/2013               | 992.40                             | 17.76          | 974.64                                | DPE-1,2,3,4                                     |  |  |
| DPE-4          | 5/23/2013               | 992.40                             | 12.22          | 980.18                                | DPE-1,2,3,4                                     |  |  |
| DPE-4          | 6/26/2013               | 992.40                             | 14.46          | 977.94                                | DPE-1,2,3,4                                     |  |  |
| DPE-4          | 8/26/2013               | 992.40                             | 15.59          | 976.81                                | DPE-1,2,3,4                                     |  |  |
| DPE-4<br>DPE-4 | 12/10/2013<br>2/17/2014 | 992.40<br>992.40                   | 15.07<br>15.46 | 977.33<br>976.94                      | System Off System Off                           |  |  |
| DPE-4 DPE-4    | 4/20/2014               | 992.40                             | 15.46          | 976.94                                | System Off System Off                           |  |  |
| DPE-4          | 8/21/2014               | 992.40                             | 15.44          | 976.16                                | System Off                                      |  |  |
| DPE-4          | 11/19/2014              | 992.40                             | 14.64          | 970.90                                | System Off                                      |  |  |
| DPE-4          | 2/25/2015               | 992.40                             | 15.49          | 976.91                                | System Off                                      |  |  |
| DPE-4          | 6/15/2015               | 992.40                             | 13.94          | 978.46                                | System Off                                      |  |  |
| DPE-4          | 8/17/2015               | 992.40                             | 15.38          | 977.02                                | System Off                                      |  |  |
| DPE-4          | 9/10/2015               | 992.40                             | 13.11          | 979.29                                | System Off                                      |  |  |
| DPE-4          | 10/12/2015              | 992.40                             | 16.29          | 976.11                                | System Off                                      |  |  |
| DPE-4          | 12/14/2015              | 992.40                             | 14.91          | 977.49                                | DPE System on all wells                         |  |  |
| DPE-4          | 1/11/2016               | 992.40                             | 15.17          | 977.23                                | DPE System on all wells                         |  |  |
| DPE-4          | 2/23/2016               | 992.40                             | 14.49          | 977.91                                | DPE System on all wells                         |  |  |
| DPE-4          | 4/20/2016               | 992.40                             | 14.58          | 977.82                                | DPE System on all wells                         |  |  |
| DPE-4          | 5/17/2016               | 992.40                             | 14.23          | 978.17                                | DPE System on all wells                         |  |  |

| XX7.11         | Dete                     | Top of                             | Depth to              | C1                                    |                                                                             |  |  |
|----------------|--------------------------|------------------------------------|-----------------------|---------------------------------------|-----------------------------------------------------------------------------|--|--|
| Well<br>ID     | Date<br>Measured         | Casing<br>Elevation <sup>1,2</sup> | Groundwater<br>(feet) | Groundwater<br>Elevation <sup>3</sup> | System Status                                                               |  |  |
| DPE-5          | 12/3/2008                | 991.47                             | 12.44                 | 979.03                                | pre-system installation                                                     |  |  |
| DPE-5          | 6/8/2009                 | 992.46                             | 14.48                 | 977.98                                | pre-system installation                                                     |  |  |
| DPE-5          | 7/9/2009                 | 992.46                             | 16.28                 | 976.18                                | DPE system on DPE-1                                                         |  |  |
| DPE-5          | 7/9/2009                 | 992.46                             | 15.31                 | 977.15                                | DPE system temporarily off                                                  |  |  |
| DPE-5          | 9/4/2009                 | 992.46                             | 15.08                 | 977.38                                | DPE system on DPE-1                                                         |  |  |
| DPE-5<br>DPE-5 | 9/4/2009<br>9/4/2009     | 992.46<br>992.46                   | 15.04<br>15.03        | 977.42<br>977.43                      | DPE-1 on after replacing inlet screen DPE-1 on after replacing inlet filter |  |  |
| DPE-5          | 10/15/2009               | 992.46                             | 14.99                 | 977.47                                | DPE system on DPE-1                                                         |  |  |
| DPE-5          | 10/23/2009               | 992.46                             | 13.78                 | 978.68                                | DPE system off                                                              |  |  |
| DPE-5          | 11/16/2009               | 992.46                             | 13.43                 | 979.03                                | DPE System on all wells                                                     |  |  |
| DPE-5          | 12/17/2009               | 992.46                             | NR                    | 077.46                                | DPE System on all wells                                                     |  |  |
| DPE-5<br>DPE-5 | 1/14/2010<br>2/22/2010   | 992.46<br>992.46                   | 15.00<br>15.01        | 977.46<br>977.45                      | DPE System on all wells DPE System on all wells                             |  |  |
| DPE-5          | 3/25/2010                | 992.46                             | 16.42                 | 976.04                                | DPE System on all wells                                                     |  |  |
| DPE-5          | 4/16/2010                | 992.46                             | 15.54                 | 976.92                                | DPE System on all wells                                                     |  |  |
| DPE-5          | 5/12/2010                | 992.46                             | 15.98                 | 976.48                                | DPE System on all wells                                                     |  |  |
| DPE-5          | 6/17/2010                | 992.46                             | 17.21                 | 975.25                                | DPE System on all wells                                                     |  |  |
| DPE-5<br>DPE-5 | 8/18/2010<br>9/27/2010   | 992.46<br>992.46                   | 16.55<br>13.73        | 975.91<br>978.73                      | DPE System on all wells DPE System on all wells                             |  |  |
| DPE-5          | 11/18/2010               | 992.46                             | 14.19                 | 978.73                                | DPE System on an wens DPE System not operating                              |  |  |
| DPE-5          | 12/22/2010               | 992.46                             | 15.41                 | 977.05                                | DPE System restarted                                                        |  |  |
| DPE-5          | 1/6/2011                 | 992.46                             | 14.14                 | 978.32                                | DPE System on all wells                                                     |  |  |
| DPE-5          | 1/20/2011                | 992.46                             | 15.38                 | 977.08                                | DPE System on all wells                                                     |  |  |
| DPE-5<br>DPE-5 | 2/28/2011<br>3/7/2011    | 992.46<br>992.46                   | 15.38<br>16.81        | 977.08<br>975.65                      | DPE System on all wells DPE System on all wells                             |  |  |
| DPE-5          | 3/18/2011                | 992.46                             | 15.03                 | 973.63                                | DPE System on all wells                                                     |  |  |
| DPE-5          | 3/23/2011                | 992.46                             | 13.08                 | 979.38                                | DPE System on all wells                                                     |  |  |
| DPE-5          | 4/22/2011                | 992.46                             | 16.26                 | 976.20                                | DPE System on all wells                                                     |  |  |
| DPE-5          | 5/19/2011                | 992.46                             | 14.32                 | 978.14                                | DPE System on all wells                                                     |  |  |
| DPE-5          | 6/16/2011                | 992.46                             | 14.73                 | 977.73                                | DPE System on all wells                                                     |  |  |
| DPE-5<br>DPE-5 | 7/25/2011<br>8/28/2011   | 992.46<br>992.46                   | 13.59<br>16.28        | 978.87<br>976.18                      | DPE System on all wells DPE System on all wells                             |  |  |
| DPE-5          | 9/29/2011                | 992.46                             | 15.35                 | 977.11                                | DPE-1,2,3,4                                                                 |  |  |
| DPE-5          | 10/18/2011               | 992.46                             | 14.24                 | 978.22                                | DPE-1,2,3,4                                                                 |  |  |
| DPE-5          | 10/27/2011               | 992.46                             | 16.46                 | 976.00                                | DPE-1,2,3,4                                                                 |  |  |
| DPE-5          | 11/21/2011               | 992.46                             | 17.18                 | 975.28                                | DPE-1,2,3,4                                                                 |  |  |
| DPE-5<br>DPE-5 | 1/20/2012<br>1/27/2012   | 992.46<br>992.46                   | 15.39<br>16.44        | 977.07<br>976.02                      | DPE-1,2,3,4<br>DPE-1,2,3,4                                                  |  |  |
| DPE-5          | 2/16/2012                | 992.46                             | 17.42                 | 975.04                                | DPE-1,2,3,4<br>DPE-1,2,3,4                                                  |  |  |
| DPE-5          | 3/16/2012                | 992.46                             | 17.41                 | 975.05                                | DPE-1,2,3,4                                                                 |  |  |
| DPE-5          | 3/27/2012                | 992.46                             | 15.62                 | 976.84                                | DPE-1,2,3,4                                                                 |  |  |
| DPE-5          | 4/17/2012                | 992.46                             | 17.08                 | 975.38                                | DPE-1,2,3,4                                                                 |  |  |
| DPE-5<br>DPE-5 | 5/17/2012<br>5/31/2012   | 992.46<br>992.46                   | 16.65<br>15.58        | 975.81<br>976.88                      | DPE-1,2,3,4<br>DPE-1,2,3,4                                                  |  |  |
| DPE-5          | 6/14/2012                | 992.46                             | 16.95                 | 975.51                                | DPE-1,2,3,4                                                                 |  |  |
| DPE-5          | 7/19/2012                | 992.46                             | 17.22                 | 975.24                                | DPE-3                                                                       |  |  |
| DPE-5          | 8/23/2012                | 992.46                             | 16.22                 | 976.24                                | DPE-3                                                                       |  |  |
| DPE-5          | 9/26/2012                | 992.46                             | 16.31                 | 976.15                                | DPE-3                                                                       |  |  |
| DPE-5<br>DPE-5 | 10/26/2012               | 992.46<br>992.46                   | 16.41<br>15.74        | 976.05<br>976.72                      | DPE-3; Before restarting the system                                         |  |  |
| DPE-5          | 12/19/2012<br>12/21/2012 | 992.46                             | 17.58                 | 976.72                                | DPE-3; After restarting the system                                          |  |  |
| DPE-5          | 1/30/2013                | 992.46                             | 17.21                 | 975.25                                | DPE-1,2,3,4                                                                 |  |  |
| DPE-5          | 2/26/2013                | 992.46                             | 16.81                 | 975.65                                | DPE-1,2,3,4                                                                 |  |  |
| DPE-5          | 3/21/2013                | 992.46                             | 17.48                 | 974.98                                | DPE-1,2,3,4                                                                 |  |  |
| DPE-5<br>DPE-5 | 5/23/2013<br>6/26/2013   | 992.46<br>992.46                   | 11.18<br>14.90        | 981.28<br>977.56                      | DPE-1,2,3,4<br>DPE-1,2,3,4                                                  |  |  |
| DPE-5          | 8/26/2013                | 992.46                             | 14.90                 | 977.56                                | DPE-1,2,3,4<br>DPE-1,2,3,4                                                  |  |  |
| DPE-5          | 12/10/2013               | 992.46                             | 14.41                 | 978.05                                | System Off                                                                  |  |  |
| DPE-5          | 2/17/2014                | 992.46                             | 14.99                 | 977.47                                | System Off                                                                  |  |  |
| DPE-5          | 4/20/2014                | 992.46                             | 13.61                 | 978.85                                | System Off                                                                  |  |  |
| DPE-5<br>DPE-5 | 8/21/2014<br>11/19/2014  | 992.46<br>992.46                   | 14.91<br>14.12        | 977.55<br>978.34                      | System Off System Off                                                       |  |  |
| DPE-5          | 2/25/2015                | 992.46                             | 14.12                 | 978.34                                | System Off System Off                                                       |  |  |
| DPE-5          | 6/15/2015                | 992.46                             | 14.25                 | 978.21                                | System Off                                                                  |  |  |
| DPE-5          | 8/17/2015                | 992.46                             | 14.88                 | 977.58                                | System Off                                                                  |  |  |
| DPE-5          | 9/10/2015                | 992.46                             | 14.61                 | 977.85                                | System Off                                                                  |  |  |
| DPE-5          | 10/12/2015               | 992.46                             | 16.11                 | 976.35                                | System Off DDE System on all wells                                          |  |  |
| DPE-5<br>DPE-5 | 12/14/2015<br>1/11/2016  | 992.46<br>992.46                   | 14.49<br>16.11        | 977.97<br>976.35                      | DPE System on all wells DPE System on all wells                             |  |  |
| DPE-5          | 2/23/2016                | 992.46                             | 14.30                 | 978.16                                | DPE System on all wells                                                     |  |  |
| DPE-5          | 4/20/2016                | 992.46                             | 15.76                 | 976.70                                | DPE System on all wells                                                     |  |  |
| DPE-5          | 5/17/2016                | 992.46                             | 13.54                 | 978.92                                | DPE System on all wells                                                     |  |  |
|                | 1                        |                                    |                       | l                                     | İ                                                                           |  |  |

### GROUNDWATER ELEVATIONS MN Bio Business Center

| XX - 11        | Dete                    | Top of                             | Depth to              | C1                                    |                                                 |  |  |
|----------------|-------------------------|------------------------------------|-----------------------|---------------------------------------|-------------------------------------------------|--|--|
| Well           | Date                    | Casing<br>Elevation <sup>1,2</sup> | Groundwater<br>(feet) | Groundwater<br>Elevation <sup>3</sup> |                                                 |  |  |
| ID .           |                         | 1/10usureu                         |                       |                                       | System Status                                   |  |  |
| DPE-6<br>DPE-6 | 12/3/2008<br>6/8/2009   | 991.44<br>992.40                   | 12.93<br>16.19        | 978.51<br>976.21                      | pre-system installation<br>pre-system startup   |  |  |
| DPE-6          | 7/9/2009                | 992.40                             | 16.19                 | 976.21                                | DPE system on DPE-1                             |  |  |
| DPE-6          | 7/9/2009                | 992.40                             | 15.92                 | 975.80                                | DPE system on DPE-1  DPE system temporarily off |  |  |
| DPE-6          | 9/4/2009                | 992.40                             | 15.68                 | 976.72                                | DPE system on DPE-1                             |  |  |
| DPE-6          | 9/4/2009                | 992.40                             | 15.65                 | 976.75                                | DPE-1 on after replacing inlet screen           |  |  |
| DPE-6          | 9/4/2009                | 992.40                             | 15.81                 | 976.59                                | DPE-1 on after replacing inlet filter           |  |  |
| DPE-6          | 10/15/2009              | 992.40                             | 15.94                 | 976.46                                | DPE system on DPE-1                             |  |  |
| DPE-6          | 10/23/2009              | 992.40                             | 14.56                 | 977.84                                | DPE system off                                  |  |  |
| DPE-6          | 11/16/2009              | 992.40                             | 14.24                 | 978.16                                | DPE System on all wells                         |  |  |
| DPE-6          | 12/17/2009              | 992.40                             | 14.89                 | 977.51                                | DPE System on all wells                         |  |  |
| DPE-6          | 1/14/2010               | 992.40                             | 15.14                 | 977.26                                | DPE System on all wells                         |  |  |
| DPE-6          | 2/22/2010               | 992.40                             | 15.61                 | 976.79                                | DPE System on all wells                         |  |  |
| DPE-6          | 3/25/2010               | 992.40                             | 15.24                 | 977.16                                | DPE System on all wells                         |  |  |
| DPE-6          | 4/16/2010               | 992.40                             | 15.48                 | 976.92                                | DPE System on all wells                         |  |  |
| DPE-6          | 5/12/2010               | 992.40<br>992.40                   | 16.02<br>15.98        | 976.38                                | DPE System on all wells DPE System on all wells |  |  |
| DPE-6<br>DPE-6 | 6/17/2010<br>8/18/2010  | 992.40                             | 16.56                 | 976.42<br>975.84                      | DPE System on all wells                         |  |  |
| DPE-6          | 9/27/2010               | 992.40                             | 13.98                 | 978.42                                | DPE System on all wells                         |  |  |
| DPE-6          | 11/18/2010              | 992.40                             | 14.24                 | 978.42                                | DPE System on an wens  DPE System not operating |  |  |
| DPE-6          | 12/22/2010              | 992.40                             | 14.89                 | 977.51                                | DPE System restarted                            |  |  |
| DPE-6          | 1/6/2011                | 992.40                             | 13.96                 | 978.44                                | DPE System on all wells                         |  |  |
| DPE-6          | 1/20/2011               | 992.40                             | 14.20                 | 978.20                                | DPE System on all wells                         |  |  |
| DPE-6          | 2/28/2011               | 992.40                             | 14.31                 | 978.09                                | DPE System on all wells                         |  |  |
| DPE-6          | 3/7/2011                | 992.40                             | 14.80                 | 977.60                                | DPE System on all wells                         |  |  |
| DPE-6          | 3/18/2011               | 992.40                             | 14.87                 | 977.53                                | DPE System on all wells                         |  |  |
| DPE-6          | 3/23/2011               | 992.40                             | 14.08                 | 978.32                                | DPE System on all wells                         |  |  |
| DPE-6          | 4/22/2011               | 992.40                             | 13.52                 | 978.88                                | DPE System on all wells                         |  |  |
| DPE-6          | 5/19/2011               | 992.40                             | 14.09                 | 978.31                                | DPE System on all wells                         |  |  |
| DPE-6          | 6/16/2011               | 992.40                             | 14.30                 | 978.10                                | DPE System on all wells                         |  |  |
| DPE-6<br>DPE-6 | 7/25/2011<br>8/28/2011  | 992.40<br>992.40                   | 14.64<br>15.38        | 977.76<br>977.02                      | DPE System on all wells                         |  |  |
| DPE-6          | 9/29/2011               | 992.40                             | 15.57                 | 977.02                                | DPE System on all wells<br>DPE-1,2,3,4          |  |  |
| DPE-6          | 10/18/2011              | 992.40                             | 14.20                 | 978.20                                | DPE-1,2,3,4                                     |  |  |
| DPE-6          | 10/27/2011              | 992.40                             | 15.64                 | 976.76                                | DPE-1,2,3,4                                     |  |  |
| DPE-6          | 11/21/2011              | 992.40                             | 15.81                 | 976.59                                | DPE-1,2,3,4                                     |  |  |
| DPE-6          | 1/20/2012               | 992.40                             | 15.39                 | 977.01                                | DPE-1,2,3,4                                     |  |  |
| DPE-6          | 1/27/2012               | 992.40                             | 16.29                 | 976.11                                | DPE-1,2,3,4                                     |  |  |
| DPE-6          | 2/16/2012               | 992.40                             | 16.28                 | 976.12                                | DPE-1,2,3,4                                     |  |  |
| DPE-6          | 3/16/2012               | 992.40                             | 16.40                 | 976.00                                | DPE-1,2,3,4                                     |  |  |
| DPE-6          | 3/27/2012               | 992.40                             | 15.68                 | 976.72                                | DPE-1,2,3,4                                     |  |  |
| DPE-6          | 4/17/2012               | 992.40                             | 16.19                 | 976.21                                | DPE-1,2,3,4                                     |  |  |
| DPE-6          | 5/17/2012               | 992.40                             | 16.09                 | 976.31                                | DPE-1,2,3,4                                     |  |  |
| DPE-6          | 5/31/2012               | 992.40                             | 15.56                 | 976.84                                | DPE-1,2,3,4                                     |  |  |
| DPE-6          | 6/14/2012               | 992.40                             | 16.51                 | 975.89                                | DPE-1,2,3,4                                     |  |  |
| DPE-6          | 7/19/2012               | 992.40<br>992.40                   | 16.96                 | 975.44                                | DPE-3                                           |  |  |
| DPE-6<br>DPE-6 | 8/23/2012<br>9/26/2012  | 992.40                             | 16.51<br>16.36        | 975.89<br>976.04                      | DPE-3<br>DPE-3                                  |  |  |
| DPE-6          | 10/26/2012              | 992.40                             | 16.42                 | 975.98                                | DPE-3                                           |  |  |
| DPE-6          | 12/19/2012              | 992.40                             | 15.66                 | 976.74                                | DPE-3; Before restarting the system             |  |  |
| DPE-6          | 12/21/2012              | 992.40                             | 16.00                 | 976.40                                | DPE-3; After restarting the system              |  |  |
| DPE-6          | 1/30/2013               | 992.40                             | 16.63                 | 975.77                                | DPE-1,2,3,4                                     |  |  |
| DPE-6          | 2/26/2013               | 992.40                             | 16.59                 | 975.81                                | DPE-1,2,3,4                                     |  |  |
| DPE-6          | 3/21/2013               | 992.40                             | 16.61                 | 975.79                                | DPE-1,2,3,4                                     |  |  |
| DPE-6          | 5/23/2013               | 992.40                             | 11.44                 | 980.96                                | DPE-1,2,3,4                                     |  |  |
| DPE-6          | 6/26/2013               | 992.40                             | 13.18                 | 979.22                                | DPE-1,2,3,4                                     |  |  |
| DPE-6          | 8/26/2013               | 992.40                             | 14.86                 | 977.54                                | DPE-1,2,3,4                                     |  |  |
| DPE-6          | 12/10/2013              | 992.40                             | 14.39                 | 978.01                                | System Off                                      |  |  |
| DPE-6          | 2/17/2014               | 992.40                             | 14.81                 | 977.59                                | System Off                                      |  |  |
| DPE-6          | 4/20/2014<br>8/21/2014  | 992.40<br>992.40                   | 13.59                 | 978.81                                | System Off                                      |  |  |
| DPE-6<br>DPE-6 | 8/21/2014<br>11/19/2014 | 992.40                             | 15.04<br>13.01        | 977.36<br>979.39                      | System Off System Off                           |  |  |
| DPE-6          | 2/25/2015               | 992.40                             | 14.87                 | 979.59                                | System Off                                      |  |  |
| DPE-6          | 6/15/2015               | 992.40                             | 13.45                 | 977.33                                | System Off                                      |  |  |
| DPE-6          | 8/17/2015               | 992.40                             | 14.75                 | 977.65                                | System Off                                      |  |  |
| DPE-6          | 9/10/2015               | 992.40                             | 14.57                 | 977.83                                | System Off                                      |  |  |
| DPE-6          | 10/12/2015              | 992.40                             | 15.21                 | 977.19                                | System Off                                      |  |  |
| DPE-6          | 12/14/2015              | 992.40                             | 14.35                 | 978.05                                | DPE System on all wells                         |  |  |
| DPE-6          | 1/11/2016               | 992.40                             | 14.67                 | 977.73                                | DPE System on all wells                         |  |  |
| DPE-6          | 2/23/2016               | 992.40                             | 14.09                 | 978.31                                | DPE System on all wells                         |  |  |
|                | 4/20/2016               | 992.40                             | 13.93                 | 978.47                                | DPE System on all wells                         |  |  |
| DPE-6          | 1/20/2010               |                                    |                       |                                       |                                                 |  |  |

### GROUNDWATER ELEVATIONS MN Bio Business Center

|                |                          | т с                      | D. d.                   |                        |                                                                        |
|----------------|--------------------------|--------------------------|-------------------------|------------------------|------------------------------------------------------------------------|
| Well           | Date                     | Top of<br>Casing         | Depth to<br>Groundwater | Groundwater            |                                                                        |
| ID             | Measured                 | Elevation <sup>1,2</sup> | (feet)                  | Elevation <sup>3</sup> | System Status                                                          |
| DPE-7          | 12/3/2008                | 991.47                   | 12.96                   | 978.51                 | pre-system installation                                                |
| DPE-7          | 6/8/2009                 | 993.48                   | 16.78                   | 976.70                 | pre-system startup                                                     |
| DPE-7          | 7/9/2009                 | 993.48                   | 17.76                   | 975.72                 | DPE system on DPE-1                                                    |
| DPE-7          | 7/9/2009                 | 993.48                   | 17.16                   | 976.32                 | DPE system temporarily off                                             |
| DPE-7          | 9/4/2009                 | 993.48                   | 17.03                   | 976.45                 | DPE system on DPE-1                                                    |
| DPE-7          | 9/4/2009                 | 993.48                   | 17.00                   | 976.48                 | DPE-1 on after replacing inlet screen                                  |
| DPE-7<br>DPE-7 | 9/4/2009<br>10/15/2009   | 993.48<br>993.48         | 17.18<br>16.80          | 976.30<br>976.68       | DPE-1 on after replacing inlet filter DPE system on DPE-1              |
| DPE-7          | 10/13/2009               | 993.48                   | 15.68                   | 977.80                 | DPE system off                                                         |
| DPE-7          | 11/16/2009               | 993.48                   | 15.44                   | 978.04                 | DPE System on all wells                                                |
| DPE-7          | 12/17/2009               | 993.48                   | 16.03                   | 977.45                 | DPE System on all wells                                                |
| DPE-7          | 1/14/2010                | 993.48                   | 16.26                   | 977.22                 | DPE System on all wells                                                |
| DPE-7          | 2/22/2010                | 993.48                   | 16.98                   | 976.50                 | DPE System on all wells                                                |
| DPE-7          | 3/25/2010                | 993.48                   | 16.65                   | 976.83                 | DPE System on all wells                                                |
| DPE-7<br>DPE-7 | 4/16/2010<br>5/12/2010   | 993.48<br>993.48         | 16.71<br>17.41          | 976.77<br>976.07       | DPE System on all wells DPE System on all wells                        |
| DPE-7          | 6/17/2010                | 993.48                   | 17.50                   | 975.98                 | DPE System on all wells                                                |
| DPE-7          | 8/18/2010                | 993.48                   | 17.98                   | 975.50                 | DPE System on all wells                                                |
| DPE-7          | 9/27/2010                | 993.48                   | 15.36                   | 978.12                 | DPE System on all wells                                                |
| DPE-7          | 11/18/2010               | 993.48                   | 15.59                   | 977.89                 | DPE System not operating                                               |
| DPE-7          | 12/22/2010               | 993.48                   | 16.02                   | 977.46                 | DPE System restarted                                                   |
| DPE-7          | 1/6/2011                 | 993.48                   | 15.20                   | 978.28                 | DPE System on all wells                                                |
| DPE-7          | 1/20/2011                | 993.48                   | 15.31                   | 978.17                 | DPE System on all wells                                                |
| DPE-7<br>DPE-7 | 2/28/2011<br>3/7/2011    | 993.48<br>993.48         | 15.61<br>16.08          | 977.87<br>977.40       | DPE System on all wells DPE System on all wells                        |
| DPE-7          | 3/18/2011                | 993.48                   | 16.08                   | 977.40                 | DPE System on all wells                                                |
| DPE-7          | 3/23/2011                | 993.48                   | 14.83                   | 978.65                 | DPE System on all wells                                                |
| DPE-7          | 4/22/2011                | 993.48                   | 15.60                   | 977.88                 | DPE System on all wells                                                |
| DPE-7          | 5/19/2011                | 993.48                   | 15.33                   | 978.15                 | DPE System on all wells                                                |
| DPE-7          | 6/16/2011                | 993.48                   | 15.58                   | 977.90                 | DPE System on all wells                                                |
| DPE-7          | 7/25/2011                | 993.48                   | 14.64                   | 978.84                 | DPE System on all wells                                                |
| DPE-7          | 8/28/2011                | 993.48                   | 16.96                   | 976.52                 | DPE 1 2 2 4                                                            |
| DPE-7<br>DPE-7 | 9/29/2011<br>10/18/2011  | 993.48<br>993.48         | 17.35<br>16.25          | 976.13<br>977.23       | DPE-1,2,3,4<br>DPE-1,2,3,4                                             |
| DPE-7          | 10/18/2011               | 993.48                   | 17.46                   | 976.02                 | DPE-1,2,3,4<br>DPE-1,2,3,4                                             |
| DPE-7          | 11/21/2011               | 993.48                   | 17.14                   | 976.34                 | DPE-1,2,3,4                                                            |
| DPE-7          | 1/20/2012                | 993.48                   | 16.68                   | 976.80                 | DPE-1,2,3,4                                                            |
| DPE-7          | 1/27/2012                | 993.48                   | 17.64                   | 975.84                 | DPE-1,2,3,4                                                            |
| DPE-7          | 2/16/2012                | 993.48                   | 17.69                   | 975.79                 | DPE-1,2,3,4                                                            |
| DPE-7          | 3/16/2012                | 993.48                   | 17.71                   | 975.77                 | DPE-1,2,3,4                                                            |
| DPE-7<br>DPE-7 | 3/27/2012<br>4/17/2012   | 993.48<br>993.48         | 17.08<br>17.41          | 976.40<br>976.07       | DPE-1,2,3,4                                                            |
| DPE-7          | 5/17/2012                | 993.48                   | 17.41                   | 975.86                 | DPE-1,2,3,4<br>DPE-1,2,3,4                                             |
| DPE-7          | 5/31/2012                | 993.48                   | 17.11                   | 976.37                 | DPE-1,2,3,4                                                            |
| DPE-7          | 6/14/2012                | 993.48                   | 17.83                   | 975.65                 | DPE-1,2,3,4                                                            |
| DPE-7          | 7/19/2012                | 993.48                   | 18.41                   | 975.07                 | DPE-3                                                                  |
| DPE-7          | 8/23/2012                | 993.48                   | 18.21                   | 975.27                 | DPE-3                                                                  |
| DPE-7          | 9/26/2012                | 993.48                   | 17.81                   | 975.67                 | DPE-3                                                                  |
| DPE-7          | 10/26/2012               | 993.48<br>993.48         | 17.88                   | 975.60                 | DPE-3: Pafore rectarting the evetern                                   |
| DPE-7<br>DPE-7 | 12/19/2012<br>12/21/2012 | 993.48                   | 17.02<br>17.59          | 976.46<br>975.89       | DPE-3; Before restarting the system DPE-3; After restarting the system |
| DPE-7          | 1/30/2013                | 993.48                   | 17.86                   | 975.62                 | DPE-1,2,3,4                                                            |
| DPE-7          | 2/26/2013                | 993.48                   | 17.66                   | 975.82                 | DPE-1,2,3,4                                                            |
| DPE-7          | 3/21/2013                | 993.48                   | 18.03                   | 975.45                 | DPE-1,2,3,4                                                            |
| DPE-7          | 5/23/2013                | 993.48                   | 13.00                   | 980.48                 | DPE-1,2,3,4                                                            |
| DPE-7          | 6/26/2013                | 993.48                   | 14.40                   | 979.08                 | DPE-1,2,3,4                                                            |
| DPE-7          | 8/26/2013<br>12/10/2013  | 993.48                   | 16.04                   | 977.44                 | DPE-1,2,3,4                                                            |
| DPE-7<br>DPE-7 | 2/17/2014                | 993.48<br>993.48         | 15.64<br>16.04          | 977.84<br>977.44       | System Off System Off                                                  |
| DPE-7          | 4/20/2014                | 993.48                   | 14.84                   | 978.64                 | System Off                                                             |
| DPE-7          | 8/21/2014                | 993.48                   | 15.71                   | 977.77                 | System Off                                                             |
| DPE-7          | 11/19/2014               | 993.48                   | 15.27                   | 978.21                 | System Off                                                             |
| DPE-7          | 2/25/2015                | 993.48                   | 16.11                   | 977.37                 | System Off                                                             |
| DPE-7          | 6/15/2015                | 993.48                   | 15.43                   | 978.05                 | System Off                                                             |
| DPE-7          | 8/17/2015                | 993.48                   | 16.05                   | 977.43                 | System Off                                                             |
| DPE-7<br>DPE-7 | 9/10/2015<br>10/12/2015  | 993.48<br>993.48         | 15.79<br>NR             | 977.69                 | System Off<br>Well was dry                                             |
| DPE-7          | 12/14/2015               | 993.48                   | 15.61                   | 977.87                 | DPE System on all wells                                                |
| DPE-7          | 1/11/2016                | 993.48                   | 15.85                   | 977.63                 | DPE System on all wells                                                |
| DPE-7          | 2/23/2016                | 993.48                   | 15.21                   | 978.27                 | DPE System on all wells                                                |
| DPE-7          | 4/20/2016                | 993.48                   | 14.82                   | 978.66                 | DPE System on all wells                                                |
| DPE-7          | 5/17/2016                | 993.48                   | 15.87                   | 977.61                 | DPE System on all wells                                                |
|                |                          |                          |                         |                        |                                                                        |

### GROUNDWATER ELEVATIONS MN Bio Business Center

|                | _                       | Top of                   | Depth to       |                        |                                                  |
|----------------|-------------------------|--------------------------|----------------|------------------------|--------------------------------------------------|
| Well           | Date                    | Casing                   | Groundwater    | Groundwater            |                                                  |
| ID             | Measured                | Elevation <sup>1,2</sup> | (feet)         | Elevation <sup>3</sup> | System Status                                    |
| DPE-8          | 12/3/2008               | 991.48                   | 12.56          | 978.92                 | pre-system installation                          |
| DPE-8          | 6/8/2009                | 992.84                   | 14.50          | 978.34                 | pre-system startup                               |
| DPE-8<br>DPE-8 | 7/9/2009<br>7/9/2009    | 992.84<br>992.84         | 14.57<br>14.49 | 978.27<br>978.35       | DPE system on DPE-1 DPE system temporarily off   |
| DPE-8          | 9/4/2009                | 992.84                   | 14.49          | 978.55                 | DPE system temporarily on<br>DPE system on DPE-1 |
| DPE-8          | 9/4/2009                | 992.84                   | 14.31          | 978.53                 | DPE-1 on after replacing inlet screen            |
| DPE-8          | 9/4/2009                | 992.84                   | 14.28          | 978.56                 | DPE-1 on after replacing inlet sereen            |
| DPE-8          | 10/15/2009              | 992.84                   | 14.01          | 978.83                 | DPE system on DPE-1                              |
| DPE-8          | 10/23/2009              | 992.84                   | 13.18          | 979.66                 | DPE system off                                   |
| DPE-8          | 11/16/2009              | 992.84                   | 13.30          | 979.54                 | DPE System on all wells                          |
| DPE-8          | 12/17/2009              | 992.84                   | 15.31          | 977.53                 | DPE System on all wells                          |
| DPE-8          | 1/14/2010               | 992.84                   | 16.58          | 976.26                 | DPE System on all wells                          |
| DPE-8          | 2/22/2010               | 992.84                   | 14.19          | 978.65                 | DPE System on all wells                          |
| DPE-8          | 3/25/2010               | 992.84                   | 15.72          | 977.12                 | DPE System on all wells                          |
| DPE-8          | 4/16/2010               | 992.84                   | 16.20          | 976.64                 | DPE System on all wells                          |
| DPE-8          | 5/12/2010               | 992.84                   | 16.61          | 976.23                 | DPE System on all wells                          |
| DPE-8          | 6/17/2010               | 992.84                   | 16.92          | 975.92                 | DPE System on all wells                          |
| DPE-8          | 8/18/2010               | 992.84                   | 17.21          | 975.63<br>978.09       | DPE System on all wells                          |
| DPE-8<br>DPE-8 | 9/27/2010<br>11/18/2010 | 992.84<br>992.84         | 14.75<br>15.37 | 978.09                 | DPE System on all wells DPE System not operating |
| DPE-8          | 12/22/2010              | 992.84                   | 15.40          | 977.44                 | DPE System restarted                             |
| DPE-8          | 1/6/2011                | 992.84                   | 15.18          | 977.66                 | DPE System restarted DPE System on all wells     |
| DPE-8          | 1/20/2011               | 992.84                   | 16.15          | 976.69                 | DPE System on all wells                          |
| DPE-8          | 2/28/2011               | 992.84                   | 16.78          | 976.06                 | DPE System on all wells                          |
| DPE-8          | 3/7/2011                | 992.84                   | 15.81          | 977.03                 | DPE System on all wells                          |
| DPE-8          | 3/18/2011               | 992.84                   | 15.71          | 977.13                 | DPE System on all wells                          |
| DPE-8          | 3/23/2011               | 992.84                   | 14.20          | 978.64                 | DPE System on all wells                          |
| DPE-8          | 4/22/2011               | 992.84                   | 14.61          | 978.23                 | DPE System on all wells                          |
| DPE-8          | 5/19/2011               | 992.84                   | 15.18          | 977.66                 | DPE System on all wells                          |
| DPE-8          | 6/16/2011               | 992.84                   | 15.48          | 977.36                 | DPE System on all wells                          |
| DPE-8          | 7/25/2011               | 992.84                   | 14.41          | 978.43                 | DPE System on all wells                          |
| DPE-8          | 8/28/2011               | 992.84                   | 16.91          | 975.93                 | DPE System on all wells                          |
| DPE-8<br>DPE-8 | 9/29/2011<br>10/18/2011 | 992.84<br>992.84         | 16.37<br>15.41 | 976.47<br>977.43       | DPE-1,2,3,4                                      |
| DPE-8          | 10/18/2011              | 992.84                   | 16.82          | 976.02                 | DPE-1,2,3,4<br>DPE-1,2,3,4                       |
| DPE-8          | 11/21/2011              | 992.84                   | 17.11          | 975.73                 | DPE-1,2,3,4                                      |
| DPE-8          | 1/20/2012               | 992.84                   | 16.74          | 976.10                 | DPE-1,2,3,4                                      |
| DPE-8          | 1/27/2012               | 992.84                   | 17.43          | 975.41                 | DPE-1,2,3,4                                      |
| DPE-8          | 2/16/2012               | 992.84                   | DRY            |                        | DPE-1,2,3,4                                      |
| DPE-8          | 3/16/2012               | 992.84                   | 17.50          | 975.34                 | DPE-1,2,3,4                                      |
| DPE-8          | 3/27/2012               | 992.84                   | 16.78          | 976.06                 | DPE-1,2,3,4                                      |
| DPE-8          | 4/17/2012               | 992.84                   | 17.49          | 975.35                 | DPE-1,2,3,4                                      |
| DPE-8          | 5/17/2012               | 992.84                   | DRY            |                        | DPE-1,2,3,4                                      |
| DPE-8          | 5/31/2012               | 992.84                   | 16.99          | 975.85                 | DPE-1,2,3,4                                      |
| DPE-8          | 6/14/2012               | 992.84                   | DRY            |                        | DPE-1,2,3,4                                      |
| DPE-8          | 7/19/2012               | 992.84                   | DRY            |                        | DPE-3                                            |
| DPE-8<br>DPE-8 | 8/23/2012               | 992.84<br>992.84         | DRY<br>DRY     |                        | DPE-3<br>DPE-3                                   |
| DPE-8          | 9/26/2012<br>10/26/2012 | 992.84                   | DRY            |                        | DPE-3                                            |
| DPE-8          | 12/19/2012              | 992.84                   | 17.02          | 975.82                 | DPE-3; Before restarting the system              |
| DPE-8          | 12/21/2012              | 992.84                   | DRY            | 7.5.02                 | DPE-3; After restarting the system               |
| DPE-8          | 1/30/2013               | 992.84                   | DRY            |                        | DPE-1,2,3,4                                      |
| DPE-8          | 2/26/2013               | 992.84                   | DRY            |                        | DPE-1,2,3,4                                      |
| DPE-8          | 3/21/2013               | 992.84                   | DRY            |                        | DPE-1,2,3,4                                      |
| DPE-8          | 5/23/2013               | 992.84                   | 12.19          | 980.65                 | DPE-1,2,3,4                                      |
| DPE-8          | 6/26/2013               | 992.84                   | 14.00          | 978.84                 | DPE-1,2,3,4                                      |
| DPE-8          | 8/26/2013               | 992.84                   | 15.49          | 977.35                 | DPE-1,2,3,4                                      |
| DPE-8          | 12/10/2013              | 992.84                   | 15.62          | 977.22                 | System Off                                       |
| DPE-8          | 2/17/2014               | 992.84                   | 16.00          | 976.84                 | System Off                                       |
| DPE-8          | 4/20/2014               | 992.84                   | 14.46          | 978.38                 | System Off                                       |
| DPE-8          | 8/21/2014               | 992.84<br>992.84         | 16.00<br>15.04 | 976.84<br>977.80       | System Off System Off                            |
| DPE-8<br>DPE-8 | 11/19/2014<br>2/25/2015 | 992.84                   | 15.04          | 977.80                 | System Off System Off                            |
| DPE-8          | 6/15/2015               | 992.84                   | 14.29          | 978.55                 | System Off                                       |
| DPE-8          | 8/17/2015               | 992.84                   | 15.74          | 978.33                 | System Off                                       |
| DPE-8          | 9/10/2015               | 992.84                   | 15.52          | 977.32                 | System Off                                       |
| DPE-8          | 10/12/2015              | 992.84                   | 16.45          | 976.39                 | System Off                                       |
| DPE-8          | 12/14/2015              | 992.84                   | 15.43          | 977.41                 | DPE System on all wells                          |
| DPE-8          | 1/11/2016               | 992.84                   | 15.68          | 977.16                 | DPE System on all wells                          |
|                |                         | 992.84                   | 15.08          | 977.76                 | DPE System on all wells                          |
| DPE-8          | 2/23/2016               | 332.04                   | 15.00          | 211.10                 |                                                  |
| DPE-8<br>DPE-8 | 4/20/2016               | 992.84                   | 14.95          | 977.89                 | DPE System on all wells                          |

#### GROUNDWATER ELEVATIONS MN Bio Business Center 221 First Avenue SW

Rochester, Minnesota

|                                                    |                         | Top of                   | Depth to     |                        |                                                 |
|----------------------------------------------------|-------------------------|--------------------------|--------------|------------------------|-------------------------------------------------|
| Well                                               |                         |                          |              |                        |                                                 |
| ID                                                 | Measured                | Elevation <sup>1,2</sup> | (feet)       | Elevation <sup>3</sup> | System Status                                   |
| Elevator Draintile Sump                            | 6/8/2009                | 989.58                   | 7.00         | 982.58                 | pre-system startup                              |
| Elevator Draintile Sump                            | 6/25/2009               | 990.20                   | 6.34         | 983.86                 | pre-system startup                              |
| Elevator Draintile Sump                            | 7/9/2009                | 990.20                   | 6.38         | 983.82                 | DPE system on DPE-1                             |
| Elevator Draintile Sump                            | 9/4/2009                | 990.20                   | 6.29         | 983.91                 | DPE system on DPE-1                             |
| Elevator Draintile Sump                            | 10/15/2009              | 990.20                   | 6.18         | 984.02                 | DPE system on DPE-1                             |
| Elevator Draintile Sump                            | 10/23/2009              | 990.20                   | 6.08         | 984.12                 | DPE system off                                  |
| Elevator Draintile Sump                            | 11/16/2009              | 990.20<br>990.20         | 5.72         | 984.48                 | DPE System on all wells                         |
| Elevator Draintile Sump<br>Elevator Draintile Sump | 12/17/2009<br>1/14/2010 | 990.20                   | 6.48<br>6.46 | 983.72<br>983.74       | DPE System on all wells DPE System on all wells |
| Elevator Draintile Sump                            | 2/22/2010               | 990.20                   | 6.81         | 983.39                 | DPE System on all wells                         |
| Elevator Draintile Sump                            | 3/25/2010               | 990.20                   | 6.88         | 983.32                 | DPE System on all wells                         |
| Elevator Draintile Sump                            | 4/16/2010               | 990.20                   | 6.91         | 983.29                 | DPE System on all wells                         |
| Elevator Draintile Sump                            | 5/12/2010               | 990.20                   | 7.01         | 983.19                 | DPE System on all wells                         |
| Elevator Draintile Sump                            | 6/17/2010               | 990.20                   | 6.88         | 983.32                 | DPE System on all wells                         |
| Elevator Draintile Sump                            | 8/18/2010               | 990.20                   | 6.72         | 983.48                 | DPE System on all wells                         |
| Elevator Draintile Sump                            | 9/27/2010               | 990.20                   | 6.02         | 984.18                 | DPE System on all wells                         |
| Elevator Draintile Sump                            | 11/18/2010              | 990.20                   | 6.59         | 983.61                 | DPE System not operating                        |
| Elevator Draintile Sump                            | 12/22/2010              | 990.20                   | 6.48         | 983.72                 | DPE System restarted                            |
| Elevator Draintile Sump                            | 1/6/2011                | 990.20                   | NA           |                        | DPE System on all wells                         |
| Elevator Draintile Sump                            | 1/20/2011               | 990.20                   | 6.84         | 983.36                 | DPE System on all wells                         |
| Elevator Draintile Sump                            | 2/28/2011               | 990.20                   | 7.03         | 983.17                 | DPE System on all wells                         |
| Elevator Draintile Sump                            | 3/7/2011                | 990.20                   | 6.91         | 983.29                 | DPE System on all walls                         |
| Elevator Draintile Sump                            | 3/18/2011               | 990.20<br>990.20         | 6.97<br>6.76 | 983.23<br>983.44       | DPE System on all walls                         |
| Elevator Draintile Sump Elevator Draintile Sump    | 3/23/2011<br>4/22/2011  | 990.20                   | 6.52         | 983.44                 | DPE System on all wells DPE System on all wells |
| Elevator Draintile Sump                            | 5/19/2011               | 990.20                   | 6.27         | 983.93                 | DPE System on all wells                         |
| Elevator Draintile Sump                            | 6/16/2011               | 990.20                   | 6.52         | 983.68                 | DPE System on all wells                         |
| Elevator Draintile Sump                            | 7/25/2011               | 990.20                   | 5.58         | 984.62                 | DPE System on all wells                         |
| Elevator Draintile Sump                            | 8/28/2011               | 990.20                   | 6.56         | 983.64                 | DPE System on all wells                         |
| Elevator Draintile Sump                            | 9/29/2011               | 990.20                   | 6.97         | 983.23                 | DPE-1,2,3,4                                     |
| Elevator Draintile Sump                            | 10/18/2011              | 990.20                   | 6.68         | 983.52                 | DPE-1,2,3,4                                     |
| Elevator Draintile Sump                            | 10/27/2011              | 990.20                   | 7.01         | 983.19                 | DPE-1,2,3,4                                     |
| Elevator Draintile Sump                            | 11/21/2011              | 990.20                   | 7.31         | 982.89                 | DPE-1,2,3,4                                     |
| Elevator Draintile Sump                            | 1/20/2012               | 990.20                   | 7.33         | 982.87                 | DPE-1,2,3,4                                     |
| Elevator Draintile Sump                            | 1/27/2012               | 990.20                   | 7.38         | 982.82                 | DPE-1,2,3,4                                     |
| Elevator Draintile Sump                            | 2/16/2012               | 990.20                   | 7.44         | 982.76                 | DPE-1,2,3,4                                     |
| Elevator Draintile Sump                            | 3/16/2012               | 990.20                   | 7.61         | 982.59                 | DPE-1,2,3,4                                     |
| Elevator Draintile Sump                            | 4/17/2012               | 990.20                   | 7.97         | 982.23                 | DPE-1,2,3,4                                     |
| Elevator Draintile Sump                            | 5/17/2012<br>5/31/2012  | 990.20<br>990.20         | DRY<br>6.99  | 983.21                 | DPE-1,2,3,4                                     |
| Elevator Draintile Sump Elevator Draintile Sump    | 6/14/2012               | 990.20                   | 7.11         | 983.21                 | DPE-1,2,3,4<br>DPE-1,2,3,4                      |
| Elevator Draintile Sump                            | 7/19/2012               | 990.20                   | 7.11         | 983.11                 | DPE-3                                           |
| Elevator Draintile Sump                            | 8/23/2012               | 990.20                   | 6.88         | 983.32                 | DPE-3                                           |
| Elevator Draintile Sump                            | 9/26/2012               | 990.20                   | 7.19         | 983.01                 | DPE-3                                           |
| Elevator Draintile Sump                            | 10/26/2012              | 990.20                   | 7.41         | 982.79                 | DPE-3                                           |
| Elevator Draintile Sump                            | 12/19/2012              | 990.20                   | 7.33         | 982.87                 | DPE-3; Before restarting the system             |
| Elevator Draintile Sump                            | 12/21/2012              | 990.20                   | 7.36         | 982.84                 | DPE-3; After restarting the system              |
| Elevator Draintile Sump                            | 1/30/2013               | 990.20                   | 7.48         | 982.72                 | DPE-1,2,3,4                                     |
| Elevator Draintile Sump                            | 2/26/2013               | 990.20                   | 7.70         | 982.50                 | DPE-1,2,3,4                                     |
| Elevator Draintile Sump                            | 3/21/2013               | 990.20                   | 7.18         | 983.02                 | DPE-1,2,3,4                                     |
| Elevator Draintile Sump                            | 5/23/2013               | 990.20                   | 4.07         | 986.13                 | DPE-1,2,3,4                                     |
| Elevator Draintile Sump                            | 6/26/2013               | 990.20                   | 5.54         | 984.66                 | DPE-1,2,3,4                                     |
| Elevator Draintile Sump Elevator Draintile Sump    | 8/26/2013               | 990.20                   | 6.66         | 983.54                 | DPE-1,2,3,4                                     |
| Elevator Draintile Sump                            | 12/10/2013<br>2/17/2014 | 990.20<br>990.20         | 6.89<br>6.94 | 983.31<br>983.26       | System Off System Off                           |
| Elevator Draintile Sump                            | 4/20/2014               | 990.20                   | 5.92         | 984.28                 | System Off                                      |
| Elevator Draintile Sump                            | 8/21/2014               | 990.20                   | 7.71         | 982.49                 | System Off                                      |
| Elevator Draintile Sump                            | 11/19/2014              | 990.20                   | 6.58         | 983.62                 | System Off                                      |
| Elevator Draintile Sump                            | 2/25/2015               | 990.20                   | 7.13         | 983.07                 | System Off                                      |
| Elevator Draintile Sump                            | 6/15/2015               | 990.20                   | NR           |                        | System Off                                      |
| Elevator Draintile Sump                            | 8/17/2015               | 990.20                   | NR           |                        | System Off                                      |
| Elevator Draintile Sump                            | 10/12/2015              | 990.20                   | 6.68         | 983.52                 | System Off                                      |
| Elevator Draintile Sump                            | 1/11/2016               | 990.20                   | 6.81         | 983.39                 | DPE System on all wells                         |
| Elevator Draintile Sump                            | 2/23/2016               | 990.20                   | NR           |                        | DPE System on all wells                         |
| Elevator Draintile Sump                            | 4/20/2016               | 990.20                   | NR           |                        | DPE System on all wells                         |
|                                                    |                         |                          |              |                        |                                                 |

#### Notes:

#### NR: Not Recorded

- 1. Monitoring well top of casing elevations were surveyed by Adolfson and Peterson on 4/22/08.
- 2. DPE well top of casing elevations changed during DPE well head installation and were estimated from a basement floor elevation of 989.5 ft and include the distance from the floor to the top of the well seal cover and the distance from the well seal cover to the top of the PVC stickup for collecting water level readings.
- 3. Elevations are in feet above mean sea level.

TABLE 2

# WELL CONSTRUCTION SUMMARY (elevations are in feet above mean sea level)

MN Bio Business Center 221 First Avenue SW Rochester, Minnesota

|            |                          |           |           |             |             |             |          | Depth to  |           |               |
|------------|--------------------------|-----------|-----------|-------------|-------------|-------------|----------|-----------|-----------|---------------|
|            | Top of                   | Basement  | Top of    | Top of      | Top of      | Bottom of   | Screen   | Bottom of | Bottom of |               |
| Monitoring | Casing                   | Floor     | Seal      | Filter Pack | Well Screen | Well Screen | Interval | Well      | Well      | Well          |
| Well       | Elevation <sup>1,2</sup> | Elevation | Elevation | Elevation   | Elevation   | Elevation   | (feet)   | (feet)    | Elevation | Completion    |
| MW-14      | 989.50                   | 989.50    | 989.50    | 986.00      | 984.00      | 974.00      | 10       | 17.5      | 972.00    | flush-mounted |
| MW-15      | 991.50                   | 989.50    | 990.50    | 987.50      | 985.50      | 975.50      | 10       | 18.0      | 973.50    | stickup       |
| MW-16      | 989.44                   | 989.50    | 989.94    | 985.44      | 983.44      | 973.44      | 10       | 18.0      | 971.44    | flush-mounted |
| MW-17      | 989.53                   | 989.50    | 989.03    | 973.53      | 971.53      | 966.53      | 5        | 25.0      | 964.53    | flush-mounted |
| MW-18      | 989.50                   | 989.50    | 989.25    | 938.50      | 936.50      | 931.50      | 5        | 60.0      | 929.50    | flush-mounted |
| MW-19      | 991.13                   | 989.50    | 990.63    | 984.13      | 983.13      | 973.13      | 10       | 20.0      | 971.13    | stickup       |
| MW-20      | 991.50                   | 989.50    | 992.80    | 988.80      | 986.80      | 976.80      | 10       | 16.7      | 974.80    | stickup       |
| DPE-1      | 992.40                   | 989.50    | 989.53    | 984.53      | 982.53      | 970.53      | 12       | 21.9      | 970.53    | stickup       |
| DPE-2      | 992.80                   | 989.50    | 990.28    | 986.28      | 984.28      | 972.28      | 12       | 20.5      | 972.28    | stickup       |
| DPE-3      | 992.48                   | 989.50    | 990.42    | 989.42      | 987.42      | 975.42      | 12       | 17.1      | 975.42    | stickup       |
| DPE-4      | 992.40                   | 989.50    | 990.07    | 987.07      | 985.07      | 973.07      | 12       | 19.3      | 973.07    | stickup       |
| DPE-5      | 992.46                   | 989.50    | 990.32    | 987.32      | 986.32      | 974.32      | 12       | 18.1      | 974.32    | stickup       |
| DPE-6      | 992.40                   | 989.50    | 989.87    | 986.87      | 984.87      | 972.87      | 12       | 19.5      | 972.87    | stickup       |
| DPE-7      | 993.48                   | 989.50    | 990.32    | 984.32      | 983.32      | 971.32      | 12       | 22.2      | 971.32    | stickup       |
| DPE-8      | 992.84                   | 989.50    | 990.84    | 989.34      | 987.34      | 975.34      | 12       | 17.5      | 975.34    | stickup       |
|            |                          |           |           |             |             |             |          |           |           |               |

1 of 1

#### Notes:

- 1. Monitoring well top of casing elevations were surveyed by Adolfson and Peterson on 4/22/08.
- 2. DPE well top of casing elevations changed during DPE well head installation and were estimated from a basement floor elevation of 989.5 ft and include the distance from the floor to the top of the well seal cover and the distance from the well seal cover to the top of the PVC stickup for collecting water level readings.

TABLE 3

### NATURAL ATTENUATION ANALYTICAL RESULTS (ug/L)

MN Bio Business Center 221 First Avenue SW Rochester, Minnesota

| Sample ID                | DPE-1      | DPE-1      | DPE-2      | DPE-2      | DPE-3     | DPE-3      | DPE-4      | DPE-4      |
|--------------------------|------------|------------|------------|------------|-----------|------------|------------|------------|
| Collected Date           | 09/28/2009 | 12/10/2008 | 09/28/2009 | 12/10/2008 | 09/28/200 | 12/10/2008 | 09/28/2009 | 12/10/2008 |
| Collected Date           | 12:52      | 13:50      | 14:22      | 11:45      | 9 15:25   | 10:57      | 10:13      | 11:20      |
| Calcium, Dissolved       | NA*        | 149,000    | NA*        | 181,000    | NA*       | 556,000    | NA*        | 258,000    |
| Dissolved Organic Carbon | <2000      | 4,800      | 2,000      | 2,800      | 3,700     | 6,900      | <2000      | 2700       |
| Iron, Dissolved          | <50.0      | <50.0      | <50.0      | <50.0      | <50.0     | <50.0      | <50.0      | <50.0      |
| Magnesium, Dissolved     | NA*        | 33,400     | NA*        | 47,600     | NA*       | 103,000    | NA*        | 73,400     |
| Methane                  | <10.0      | <10.0      | <10.0      | <10.0      | <10.0     | <10.0      | <10.0      | <10.0      |
| Nitrate as N             | 5,900      | 6,400      | 4,900      | 7,800      | 7,100     | 9,800      | 11,000     | 26,800     |
| Sulfate                  | 157,000    | 250,000    | 174,000    | 182,000    | 296,000   | 436,000    | 168,000    | 235,000    |
| Sulfide                  | <5000      | <5000      | <5000      | <5000      | <5000     | <5000      | <5000      | <5000      |

| Sample ID                | DPE-5      | DPE-5      | DPE-6      | DPE-6      | DPE-7     | DPE-7      | DPE-8      | DPE-8      |
|--------------------------|------------|------------|------------|------------|-----------|------------|------------|------------|
| Collected Date           | 12/10/2008 | 09/24/2009 | 12/10/2008 | 09/24/2009 | 12/10/200 | 09/24/2009 | 12/10/2008 | 09/24/2009 |
| Collected Date           | 16:45      | 04:00      | 14:29      | 04:30      | 8 13:15   | 05:00      | 09:30      | 05:30      |
| Calcium, Dissolved       | 75,400     | NA*        | 70,800     | NA*        | 123,000   | NA*        | 189,000    | NA*        |
| Dissolved Organic Carbon | 4700       | <2000      | 2500       | <2000      | 3,300     | <2000      | 4,000      | 3,000      |
| Iron, Dissolved          | < 50.0     | <50.0      | <50.0      | <50.0      | <50.0     | <50.0      | <50.0      | <50.0      |
| Magnesium, Dissolved     | 86,200     | NA*        | 17,700     | NA*        | 23,400    | NA*        | 36,800     | NA*        |
| Methane                  | <10.0      | <10.0      | <10.0      | <10.0      | <10.0     | <10.0      | <10.0      | <10.0      |
| Nitrate as N             | 5,500      | 5,500      | 3,000      | 1,500      | 7,900     | 1,900      | 9,800      | 4,300      |
| Sulfate                  | 468,000    | 281,000    | 159,000    | 67,600     | 275,000   | 85,600     | 262,000    | 149,000    |
| Sulfide                  | <5000      | <5000      | <5000      | <5000      | <5000     | <5000      | <5000      | <5000      |

Notes:

**Bold:** Parameter detected above laboratory reporting

limit

NA\*: Not Analyzed

TABLE 3

### NATURAL ATTENUATION ANALYTICAL RESULTS (ug/L)

MN Bio Business Center 221 First Avenue SW Rochester, Minnesota

| Sample ID                | MW14       | MW-14      | MW15       | MW15       | MW16       | MW-16      | MW17       | MW-17      |
|--------------------------|------------|------------|------------|------------|------------|------------|------------|------------|
| Collected Date           | 10/01/2009 | 12/03/2008 | 10/01/2009 | 12/10/2008 | 10/01/2009 | 12/03/2008 | 10/01/2009 | 12/03/2008 |
| Collected Date           | 04:00      | 16:20      | 04:20      | 12:15      | 04:25      | 12:35      | 05:20      | 13:10      |
| Calcium, Dissolved       | NA*        | 114,000    | NA*        | 67,700     | NA*        | 194,000    | NA*        | 76,300     |
| Dissolved Organic Carbon | 69,200     | 2,400      | 15,700     | <2000      | 49,100     | 3,500      | 9,100      | 7,500      |
| Iron, Dissolved          | <50.0      | <50.0      | <50.0      | <50.0      | <50.0      | <50.0      | <50.0      | 50.1       |
| Magnesium, Dissolved     | NA*        | 30,400     | NA*        | 18,700     | NA*        | 70,200     | NA*        | 29,100     |
| Methane                  | 10.1       | <10.0      | <10.0      | <10.0      | <10.0      | <10.0      | <10.0      | <10.0      |
| Nitrate as N             | 1,600      | 3,700      | 580        | 2,200      | 16,200     | NA*        | 3,900      | NA*        |
| Sulfate                  | 146,000    | 131,000    | 99,900     | 87,500     | 258,000    | 253,000    | 159,000    | 199,000    |
| Sulfide                  | <5000      | <5000      | <5000      | <5000      | <5000      | <5000      | <5000      | <5000      |

| Sample ID                | MW18       | MW-18      | MW-19      | MW-19      | MW20       | MW20       |
|--------------------------|------------|------------|------------|------------|------------|------------|
| Collected Date           | 10/01/2009 | 12/03/2008 | 09/24/2009 | 12/03/2008 | 10/01/2009 | 12/10/2008 |
| Collected Date           | 05:46      | 14:26      | 11:40      | 16:59      | 06:00      | 10:30      |
| Calcium, Dissolved       | NA*        | 99,000     | NA*        | 245,000    | NA*        | 260,000    |
| Dissolved Organic Carbon | 5,400      | 8,500      | <2000      | 3,100      | 20,300     | 2,700      |
| Iron, Dissolved          | 88.3       | 4,190      | <50.0      | <50.0      | <50.0      | <50.0      |
| Magnesium, Dissolved     | NA*        | 52,600     | NA*        | 71,100     | NA*        | 65,900     |
| Methane                  | <10.0      | <10.0      | 10.7       | <10.0      | 274        | 17.0       |
| Nitrate as N             | <400       | NA*        | 16,800     | NA*        | 8900       | 10,900     |
| Sulfate                  | 110,000    | 115,000    | 156,000    | 187,000    | 139,000    | 203,000    |
| Sulfide                  | <5000      | <5000      | <5000      | <5000      | <5000      | <5000      |

Notes:

**Bold:** Parameter detected above laboratory reporting

limit

NA\*: Not Analyzed

#### GROUNDWATER FIELD DATA

| Monitorino         | Date                    | Тотт             | Conductivity           |              | Redox<br>Potential | Dissolved    | Head        |
|--------------------|-------------------------|------------------|------------------------|--------------|--------------------|--------------|-------------|
| Monitoring<br>Well | Measured                | Temp<br>(Deg. C) | @ 25 deg. C<br>(uS/cm) | pН           | (Eh)               | Oxygen       | Space (ppm) |
| MW-14              | 12/3/2008               | 15.1             | 735                    | 7.41         | 228                | 2.6          | 1.752       |
| MW-14              | 10/1/2009               | 18.8             | 1825                   | 7.41         | 181                | 3.6          | NR          |
| MW-14              | 11/16/2009              | 19.22            | 1747                   | 6.74         | 47.5               | 3.48         | NR          |
| MW-14              | 2/23/2010               | 18.51            | 1693                   | 7.54         | 186                | 2.8          | NR          |
| MW-14              | 5/12/2010               | 18.65            | 1539                   | 7.5          | 379                | 5.2          | NR          |
| MW-14              | 8/18/2010               | 19.16            | 1088                   | 8.24         | 285                | 5.51         | NR          |
| MW-14              | 11/18/2010              | 19.54            | 1137                   | 6.95         | -42                | 3.49         | NR          |
| MW-14              | 3/1/2011                | 18.9             | 996                    | 6.2          | 4.3                | 1.34         | NR          |
| MW-14              | 5/19/2011               | 19.38            | 984                    | 7.61         | -19.1              | 2.57         | NR          |
| MW-14              | 8/28/2011               | 19.5             | 1711                   | 5.59         | 148                | 3.21         | NR          |
| MW-14              | 11/21/2011              | 19.7             | 1123                   | 6.92         | -14.2              | 3.99         | NR          |
| MW-14              | 2/15/2012               | 19.3             | 1174                   | 7.44         | -44.9              | 4.58         | NR          |
| MW-14              | 5/17/2012               | 9.9              | 1062                   | 7.07         | -17                | 1.9          | NR          |
| MW-14              | 9/26/2012               | 19.4             | 1043                   | 7.53         | -23                | 6.36         | NR          |
| MW-14              | 12/19/2012              | 19.8             | 1119                   | 7.42         | -36                | 1.33         | NR          |
| MW-14              | 2/25/2013               | 19.4             | 1324                   | 7.17         | -11.6              | 4.4          | NR          |
| MW-14              | 5/23/2013               | 19.2             | 701                    | 7.92         | -61                | 4.4          | NR          |
| MW-14              | 8/26/2013               | 19.41            | 1266                   | 7.54         | 58.2               | 1.59         | NR          |
| MW-14              | 12/10/2013              | 20               | 1507                   | 6.99         | -25                | 4.08         | NR          |
| MW-14              | 2/17/2014               | 19.51            | 1596                   | 7.74         | -20.8              | 1.88         | NR          |
| MW-14              | 4/20/2014               | 19.34            | 1411                   | 7.78         | -36.6              | 1.95         | NR          |
| MW-14              | 8/21/2014               | 19.9             | 1009                   | 6.92         | -1                 | 4.56         | NR          |
| MW-14              | 11/19/2014              | 19.8             | 1129                   | 7.57         | -30                | 2.83         | NR          |
| MW-14              | 2/25/2015               | 19.25<br>19.48   | 1328                   | 7.7          | -54<br>-80.1       | 1.6          | NR          |
| MW-14              | 6/15/2015               | 19.48            | 1118<br>1652           | 7.84<br>7.23 | -80.1<br>147.4     | 2.49         | NR<br>NR    |
| MW-14<br>MW-14     | 8/17/2015<br>12/14/2015 | 19.62            | 987                    | 7.77         | 218.9              | 4.47         | NR<br>NR    |
| MW-14              | 1/11/2016               | 19.76            | 1313                   | 7.77         | 3.9                | 3.94         | NR          |
| MW-14              | 5/17/2016               | 19.31            | 1522                   | 7.44         | 111.9              | 3.09         | NR          |
| 101 00 - 1 - 4     | 3/17/2010               | 19.21            | 1322                   | 7.44         | 111.9              | 3.07         | IVIX        |
| MW-15              | 12/3/2008               | 13.4             | 735                    | 8.18         | 87                 | 3.8          | 279         |
| MW-15              | 10/1/2009               | 18.4             | 920                    | 8.08         | 167                | 5.22         | NR          |
| MW-15              | 11/16/2009              | 19.6             | 1155                   | 7.35         | 200                | 4.53         | NR          |
| MW-15              | 2/22/2010               | 19.5             | 1506                   | 7.82         | 916                | 4.27         | NR          |
| MW-15              | 5/12/2010               | 18.56            | 1708                   | 7.37         | 84.9               | 6.97         | NR          |
| MW-15              | 8/18/2010               | 21.3             | 1593                   | 10.6         | 166                | 6.04         | NR          |
| MW-15              | 11/18/2010              | 19.7             | 1446                   | 6.14         | 25.8               | 4.86         | NR          |
| MW-15              | 3/1/2011                | 19.6             | 936                    | 7.41         | 16.3               | 2.19         | NR          |
| MW-15              | 5/19/2011               | 15.4             | 1314                   | 8.08         | -42                | 2.91         | NR          |
| MW-15              | 8/28/2011               | 19.9             | 2051                   | 6.65         | 121                | 5.15         | NR          |
| MW-15              | 11/21/2011              | 18.5             | 14                     | 7.38         | -37                | 97.3         | NR          |
| MW-15              | 2/15/2012               | 18.4             | 841                    | 7.61         | -53                | 4.21         | NR          |
| MW-15              | 5/17/2012               | 9.9              | 1223                   | 7.49         | -20                | 1.9          | NR          |
| MW-15              | 9/26/2012               | 19.2             | 1295                   | 7.67         | -30                | 6.3          | NR          |
| MW-15              | 12/19/2012              | 20.4             | 1130                   | 7.49         | -40                | 1.97         | NR          |
| MW-15              | 2/25/2013               | 20.7             | 1416                   | 7.4          | -23                | 1.46         | NR          |
| MW-15              | 5/23/2013               | 20.1             | 5007                   | 7.53         | -41                | 3.36         | NR          |
| MW-15              | 8/26/2013               | 20.31            | 3002                   | 7.48         | 33.4               | 2.39         | NR          |
| MW-15              | 12/10/2013              | 20.31            | 1322                   | 7.47         | -51                | 4.63         | NR<br>ND    |
| MW-15              | 2/17/2014               | 20.14            | 967                    | 7.95         | -32.3              | 2.26         | NR<br>ND    |
| MW-15<br>MW-15     | 4/20/2014<br>8/21/2014  | 19.83<br>20.2    | 2281<br>2451           | 7.74         | -35.7<br>63.9      | 2.82         | NR<br>NR    |
| MW-15              | 11/19/2014              | 20.2             | 1805                   | 7.13         | -33                | 3.03<br>2.04 | NR          |
| MW-15              | 2/25/2015               | 19.69            | 1560                   | 7.72         | -56                | 2.04         | NR          |
| MW-15              | 6/15/2015               | 20.17            | 2766                   | 7.79         | -45.5              | 3.7          | NR          |
| MW-15              | 8/18/2015               | 20.17            | 2465                   | 7.79         | 241.3              | 3.5          | NR          |
| MW-15              | 12/14/2015              | 20.62            | 2249                   | 7.39         | 235.4              | 3.27         | NR          |
| MW-15              | 1/11/2016               | 20.02            | 3590                   | 7.46         | 101.8              | 3.65         | NR          |
| MW-15              | 5/17/2016               | 20.27            | 3226                   | 7.05         | 149.9              | 3.69         | NR          |
|                    |                         |                  |                        |              |                    |              | - 1-1       |

#### GROUNDWATER FIELD DATA

|                |                         |                | Conductivity |              | Redox        |              | Head     |
|----------------|-------------------------|----------------|--------------|--------------|--------------|--------------|----------|
| Monitoring     | Date                    | Temp           | @ 25 deg. C  | pH           | Potential    | Dissolved    | Space    |
| Well           | Measured                | (Deg. C)       | (uS/cm)      |              | (Eh)         | Oxygen       | (ppm)    |
| MW-16          | 12/3/2008               | 14.5           | 735          | 8.21         | -45          | 1.9          | 40       |
| MW-16          | 10/1/2009               | 18.27          | 1182         | 7.46         | 214          | 9.68         | NR       |
| MW-16          | 11/16/2009              | 18.82          | 4048         | 6.91         | 170          | 3.67         | NR       |
| MW-16          | 2/22/2010               | 18.54          | 3238         | 7.31         | 115          | 4.17         | NR       |
| MW-16          | 5/12/2010               | 18.52          | 3240         | 7.46         | 209          | 6.29         | NR       |
| MW-16          | 8/18/2010               | 19.21          | 2695         | 10.3         | 49           | 6.26         | NR       |
| MW-16<br>MW-16 | 11/18/2010<br>3/1/2011  | 19.19<br>18.93 | 2935<br>1862 | 7.61<br>7.22 | -71<br>-23   | 3.54<br>1.94 | NR<br>NR |
| MW-16<br>MW-16 | 5/19/2011               | 19.2           | 2476         | 7.76         | -25          | 2.54         | NR       |
| MW-16          | 8/28/2011               | 19.2           | 3357         | 6.96         | 117          | 4.16         | NR       |
| MW-16          | 11/21/2011              | 19.7           | 2535         | 7.17         | -26          | 3.35         | NR       |
| MW-16          | 2/15/2012               | 18.9           | 1492         | 7.68         | -57          | 4.25         | NR       |
| MW-16          | 5/17/2012               | 9.9            | 1129         | 7.54         | -24          | 1.9          | NR       |
| MW-16          | 9/26/2012               | 18.9           | 1126         | 7.4          | -16          | 6.21         | NR       |
| MW-16          | 12/19/2012              | 19.6           | 2177         | 7.39         | -10          | 3.61         | NR       |
| MW-16          | 2/25/2013               | 19.4           | 1338         | 7.48         | -27          | 4.7          | NR       |
| MW-16          | 5/23/2013               | 19.1           | 2161         | 7.02         | -19          | 1.92         | NR       |
| MW-16          | 8/26/2013               | 19.69          | 2058         | 7.29         | -2.5         | 2.37         | NR       |
| MW-16          | 12/10/2013              | 19.88          | 2319         | 7.45         | -50.7        | 6.12         | NR       |
| MW-16          | 2/17/2014               | 19.76          | 2391         | 7.71         | -19.2        | 4.19         | NR       |
| MW-16          | 4/20/2014               | 19.24          | 9599         | 7.01         | 1.9          | 3.43         | NR       |
| MW-16          | 8/21/2014               | 19.89          | 3415         | 7.1          | 92.6         | 3.7          | NR       |
| MW-16          | 11/19/2014              | 20.3           | 3437         | 7.43         | 63           | 3.56         | NR       |
| MW-16          | 2/25/2015               | 19.5           | 2559         | 7.45         | -41          | 2.57         | NR       |
| MW-16          | 6/15/2015               | 19.75          | 4532         | 7.62         | -33.6        | 3.55         | NR       |
| MW-16          | 8/18/2015               | 19.94          | 3952         | 7.39         | 412.4        | 2.43         | NR       |
| MW-16          | 12/14/2015              | 19.89          | 4269         | 7.49         | 111.4        | 2.55         | NR       |
| MW-16          | 1/11/2016               | 19.7           | 2876         | 7.28         | 83.5         | 3.19         | NR       |
| MW-16          | 5/17/2016               | 19.58          | 3358         | 7.25         | 131.6        | 4.49         | NR       |
| MW-17          | 12/3/2008               | 14.8           | 735          | 8.99         | -99          | 2.6          | 1.3      |
| MW-17          | 10/1/2009               | 17.8           | 1428         | 8.6          | 175          | 1.99         | NR       |
| MW-17          | 11/16/2009              | 17.62          | 1761         | 7.34         | 29           | 1.62         | NR       |
| MW-17          | 2/22/2010               | 18.25          | 16.08        | 7.66         | -163         | 2.02         | NR       |
| MW-17          | 5/12/2010               | 18.05          | 1707         | 7.21         | -82          | 1.96         | NR       |
| MW-17          | 8/18/2010               | 18.29          | 1759         | 10.4         | 15           | 3.51         | NR       |
| MW-17          | 11/18/2010              | 18.47          | 2102         | 7.43         | -62          | 2.23         | NR       |
| MW-17          | 3/1/2011                | 18.5           | 1425         | 7.21         | -76          | 1.21         | NR       |
| MW-17          | 5/19/2011               | 18.6           | 1371         | 7.87         | -31          | 0.77         | NR       |
| MW-17          | 8/28/2011               | 19.1           | 2206         | 6.96         | -116         | 4.1          | NR       |
| MW-17          | 11/21/2011              | 19.81          | 1927         | 7.26         | -31          | 0.83         | NR       |
| MW-17          | 2/15/2012               | 19.04          | 1349         | 7.45         | -45          | 0.42         | NR       |
| MW-17          | 5/17/2012               | 9.9            | 1000         | 7.54         | -39          | 1.09         | NR       |
| MW-17          | 9/26/2012               | 18.2           | 753          | 7.03         | 2.1          | 3.02         | NR       |
| MW-17          | 12/19/2012              | 19.5           | 727          | 7.48         | -40          | 0.43         | NR       |
| MW-17          | 2/25/2013               | 19.2           | 1361         | 7.32         | -19.3        | 1.6          | NR       |
| MW-17          | 5/23/2013               | 19.2           | 1396         | 7.92         | -58          | 1.62         | NR       |
| MW-17          | 8/26/2013               | 19.29          | 1594         | 7.32         | -51.2        | 1.02         | NR<br>ND |
| MW-17<br>MW-17 | 12/10/2013<br>2/17/2014 | 20.15<br>19.59 | 1480<br>1311 | 7.41         | -48<br>-23.5 | 2.77<br>0.97 | NR<br>NR |
| MW-17<br>MW-17 | 4/20/2014               | 19.39          | 1861         | 7.79         | -25.3        | 1.54         | NR       |
| MW-17          | 8/21/2014               | 19.40          | 640          | 7.5          | 22.3         | 1.28         | NR       |
| MW-17          | 11/19/2014              | 19.9           | 1436         | 7.76         | 6.9          | 1.62         | NR       |
| MW-17          | 2/25/2015               | 19.44          | 1509         | 7.56         | -84.1        | 0.57         | NR       |
| MW-17          | 6/15/2015               | 19.8           | 1123         | 9.5          | -450         | 0.33         | NR       |
| MW-17          | 8/18/2015               | 19.73          | 1813         | 8.37         | 226.1        | 0.8          | NR       |
| MW-17          | 12/14/2015              | 19.68          | 1952         | 8.65         | -78.3        | 0.81         | NR       |
| MW-17          | 1/11/2016               | 19.59          | 1817         | 7.67         | -89.3        | 0.73         | NR       |
| MW 17          | 5/17/2016               | 19.44          | 1539         | 10.39        | -195.6       | 0.47         | NR       |
| MW-17          | 3/17/2010               | 17             | 100          | 10.07        | 1,0.0        | 0.17         |          |

#### GROUNDWATER FIELD DATA

| M :: :                                                                                                   | Б.,                                                                                                                                                                       | m                                                                                                          | Conductivity                                                                                                 | **                                                                                                   | Redox                                                                                      | D: 1 1                                                                                              | Head                                     |
|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------|
| Monitoring<br>Well                                                                                       | Date<br>Measured                                                                                                                                                          | Temp<br>(Deg. C)                                                                                           | @ 25 deg. C<br>(uS/cm)                                                                                       | pН                                                                                                   | Potential<br>(Eh)                                                                          | Dissolved<br>Oxygen                                                                                 | Space (ppm)                              |
|                                                                                                          |                                                                                                                                                                           |                                                                                                            |                                                                                                              | 9.06                                                                                                 |                                                                                            | ,,,                                                                                                 | **                                       |
| MW-18<br>MW-18                                                                                           | 12/3/2008                                                                                                                                                                 | 14.9<br>17.8                                                                                               | 735<br>1497                                                                                                  | 8.06<br>7.75                                                                                         | -137<br>176                                                                                | 3.1<br>1.47                                                                                         | 1.2<br>NR                                |
| MW-18                                                                                                    | 10/1/2009<br>11/16/2009                                                                                                                                                   | 16.46                                                                                                      | 2588                                                                                                         | 6.6                                                                                                  | 54.7                                                                                       | 1.47                                                                                                | NR                                       |
| MW-18                                                                                                    | 2/22/2010                                                                                                                                                                 | 17.7                                                                                                       | 2061                                                                                                         | 7.41                                                                                                 | -244                                                                                       | 1.19                                                                                                | NR                                       |
| MW-18                                                                                                    | 5/12/2010                                                                                                                                                                 | 18.11                                                                                                      | 1992                                                                                                         | 6.98                                                                                                 | -122                                                                                       | 2.21                                                                                                | NR                                       |
| MW-18                                                                                                    | 8/18/2010                                                                                                                                                                 | 17.3                                                                                                       | 1876                                                                                                         | 10.3                                                                                                 | -69                                                                                        | 0.69                                                                                                | NR                                       |
| MW-18                                                                                                    | 11/18/2010                                                                                                                                                                | 17.34                                                                                                      | 1640                                                                                                         | 7.51                                                                                                 | -66                                                                                        | 2.7                                                                                                 | NR                                       |
| MW-18                                                                                                    | 3/1/2011                                                                                                                                                                  | 17.34                                                                                                      | 1845                                                                                                         | 6.94                                                                                                 | -46                                                                                        | 0.61                                                                                                | NR                                       |
| MW-18                                                                                                    | 5/19/2011                                                                                                                                                                 | 17.5                                                                                                       | 1949                                                                                                         | 7.41                                                                                                 | -8.5                                                                                       | 0.91                                                                                                | NR                                       |
| MW-18                                                                                                    | 8/28/2011                                                                                                                                                                 | 18.9                                                                                                       | 2149                                                                                                         | 6.71                                                                                                 | 2.7                                                                                        | 1.1                                                                                                 | NR                                       |
| MW-18                                                                                                    | 11/21/2011                                                                                                                                                                | 19.8                                                                                                       | 1840                                                                                                         | 7.31                                                                                                 | -34                                                                                        | 1.03                                                                                                | NR                                       |
| MW-18                                                                                                    | 2/15/2012                                                                                                                                                                 | 18.76                                                                                                      | 1937                                                                                                         | 7.5                                                                                                  | -86                                                                                        | 0.71                                                                                                | NR                                       |
| MW-18                                                                                                    | 5/17/2012                                                                                                                                                                 | 9.9                                                                                                        | 2361                                                                                                         | 6.68                                                                                                 | -46                                                                                        | 5.6                                                                                                 | NR                                       |
| MW-18                                                                                                    | 9/26/2012                                                                                                                                                                 | 19.3                                                                                                       | 1680                                                                                                         | 6.98                                                                                                 | 4.9                                                                                        | 2.9                                                                                                 | NR                                       |
| MW-18                                                                                                    | 12/19/2012                                                                                                                                                                | 19.5                                                                                                       | 1738                                                                                                         | 7.08                                                                                                 | -18                                                                                        | 0.6                                                                                                 | NR                                       |
| MW-18                                                                                                    | 2/25/2013                                                                                                                                                                 | 19.9                                                                                                       | 2076                                                                                                         | 7.11                                                                                                 | -85                                                                                        | 0.5                                                                                                 | NR                                       |
| MW-18                                                                                                    | 5/23/2013                                                                                                                                                                 | 19.6                                                                                                       | 2121                                                                                                         | 7.67                                                                                                 | -16                                                                                        | 1.06                                                                                                | NR                                       |
| MW-18                                                                                                    | 8/26/2013                                                                                                                                                                 | 19.39                                                                                                      | 2441                                                                                                         | 7.03                                                                                                 | -65.9                                                                                      | 0.28                                                                                                | NR                                       |
| MW-18                                                                                                    | 12/10/2013                                                                                                                                                                | 18.59                                                                                                      | 2655                                                                                                         | 7.22                                                                                                 | -36.5                                                                                      | 1.52                                                                                                | NR                                       |
| MW-18                                                                                                    | 2/17/2014                                                                                                                                                                 | 19.58                                                                                                      | 2669                                                                                                         | 7.41                                                                                                 | -3.4                                                                                       | 0.62                                                                                                | NR                                       |
| MW-18                                                                                                    | 4/20/2014                                                                                                                                                                 | 19.36                                                                                                      | 2280                                                                                                         | 7.46                                                                                                 | -21                                                                                        | 0.3                                                                                                 | NR                                       |
| MW-18                                                                                                    | 8/21/2014                                                                                                                                                                 | 19.59                                                                                                      | 2341                                                                                                         | 7.47                                                                                                 | -224                                                                                       | 0.68                                                                                                | NR                                       |
| MW-18                                                                                                    | 11/19/2014                                                                                                                                                                | 19.8                                                                                                       | 2198                                                                                                         | 7.36                                                                                                 | -190                                                                                       | 0.4                                                                                                 | NR                                       |
| MW-18                                                                                                    | 2/25/2015                                                                                                                                                                 | 19.46                                                                                                      | 2507                                                                                                         | 7.19                                                                                                 | -116.7                                                                                     | 0.57                                                                                                | NR                                       |
| MW-18                                                                                                    | 6/15/2015                                                                                                                                                                 | 19.57                                                                                                      | 2113                                                                                                         | 8.23                                                                                                 | -450                                                                                       | 0.75                                                                                                | NR                                       |
| MW-18                                                                                                    | 8/18/2015                                                                                                                                                                 | 19.71                                                                                                      | 2105                                                                                                         | 7.92                                                                                                 | -164.2                                                                                     | 2.47                                                                                                | NR                                       |
| MW-18                                                                                                    | 12/14/2015                                                                                                                                                                | 19.78                                                                                                      | 1392                                                                                                         | 11.01                                                                                                | 68.1                                                                                       | 1.93                                                                                                | NR                                       |
| MW-18                                                                                                    | 1/11/2016                                                                                                                                                                 | 19.64                                                                                                      | 2180                                                                                                         | 7.37                                                                                                 | -83.8                                                                                      | 2.08                                                                                                | NR                                       |
| MW-18                                                                                                    | 5/17/2016                                                                                                                                                                 | 19.61                                                                                                      | 2114                                                                                                         | 10.47                                                                                                | -210.8                                                                                     | 0.74                                                                                                | NR                                       |
| MW-19                                                                                                    | 12/3/2008                                                                                                                                                                 | 13.7                                                                                                       | 735                                                                                                          | 7.20                                                                                                 | 219                                                                                        | 2.2                                                                                                 | 0.13                                     |
| MW-19                                                                                                    | 10/1/2009                                                                                                                                                                 | 15.6                                                                                                       | 3667                                                                                                         | 7.03                                                                                                 | 163                                                                                        | 225                                                                                                 | NR                                       |
| MW-19                                                                                                    | 11/16/2009                                                                                                                                                                | 15.96                                                                                                      | 3482                                                                                                         | 6.13                                                                                                 | 226                                                                                        | 3.03                                                                                                | NR                                       |
| MW-19                                                                                                    | 2/23/2010                                                                                                                                                                 | 15.81                                                                                                      | 4277                                                                                                         | 6.88                                                                                                 | 130                                                                                        | 5.42                                                                                                | NR                                       |
| MW-19                                                                                                    | 5/12/2010                                                                                                                                                                 | 6.4                                                                                                        | 8955                                                                                                         | 6.25                                                                                                 | 332.2                                                                                      | 43.55                                                                                               | NR                                       |
| MW-19                                                                                                    | 8/18/2010                                                                                                                                                                 | 17.28                                                                                                      | 3147                                                                                                         | 6.44                                                                                                 | 157                                                                                        | 6.61                                                                                                | NR                                       |
| MW-19                                                                                                    | 11/18/2010                                                                                                                                                                | 16.99                                                                                                      | 4653                                                                                                         | 6.74                                                                                                 | -25                                                                                        | 3.71                                                                                                | NR                                       |
| MW-19                                                                                                    | 3/1/2011                                                                                                                                                                  | 17.8                                                                                                       | 3992                                                                                                         | 6.77                                                                                                 | 30.8                                                                                       | 2.81                                                                                                | NR                                       |
| MW-19                                                                                                    | 5/19/2011                                                                                                                                                                 | 16.9                                                                                                       | 3750                                                                                                         | 7.05                                                                                                 | 14                                                                                         | 2.61                                                                                                | NR                                       |
| MW-19                                                                                                    | 8/28/2011                                                                                                                                                                 | 17.4                                                                                                       | 4618                                                                                                         | 6.59                                                                                                 | 47                                                                                         | 4.7                                                                                                 | NR                                       |
| MW-19                                                                                                    | 11/21/2011                                                                                                                                                                | 17.1                                                                                                       | 64                                                                                                           | 5.18                                                                                                 | 300                                                                                        | 5.93                                                                                                | NR                                       |
| MW-19                                                                                                    | 2/15/2012                                                                                                                                                                 | 17.33                                                                                                      | 3772                                                                                                         | 6.23                                                                                                 | 19.7                                                                                       | 4.25                                                                                                | NR                                       |
| MW-19                                                                                                    | 5/17/2012                                                                                                                                                                 | 9.9                                                                                                        | 4425                                                                                                         | 7.30                                                                                                 | -3.4                                                                                       | 7                                                                                                   | NR                                       |
| MW-19                                                                                                    |                                                                                                                                                                           |                                                                                                            |                                                                                                              |                                                                                                      |                                                                                            |                                                                                                     | 3.775                                    |
|                                                                                                          | 9/26/2012                                                                                                                                                                 | 18.14                                                                                                      | 4655                                                                                                         | 6.71                                                                                                 | 17.3                                                                                       | 8.16                                                                                                | NR                                       |
| MW-19                                                                                                    | 12/19/2012                                                                                                                                                                | 17                                                                                                         | 4655<br>5054                                                                                                 | 6.71<br>6.71                                                                                         | 17.3<br>-24                                                                                | 2.39                                                                                                | NR                                       |
| MW-19<br>MW-19                                                                                           | 12/19/2012<br>2/25/2013                                                                                                                                                   | 17<br>17.9                                                                                                 | 4655<br>5054<br>6006                                                                                         | 6.71<br>6.71<br>7.15                                                                                 | 17.3<br>-24<br>-10.3                                                                       | 2.39<br>2.12                                                                                        | NR<br>NR                                 |
| MW-19<br>MW-19<br>MW-19                                                                                  | 12/19/2012<br>2/25/2013<br>5/23/2013                                                                                                                                      | 17<br>17.9<br>17.2                                                                                         | 4655<br>5054<br>6006<br>4673                                                                                 | 6.71<br>6.71<br>7.15<br>6.63                                                                         | 17.3<br>-24<br>-10.3<br>-40                                                                | 2.39<br>2.12<br>0.63                                                                                | NR<br>NR<br>NR                           |
| MW-19<br>MW-19<br>MW-19<br>MW-19                                                                         | 12/19/2012<br>2/25/2013<br>5/23/2013<br>8/26/2013                                                                                                                         | 17<br>17.9<br>17.2<br>17.54                                                                                | 4655<br>5054<br>6006<br>4673<br>5499                                                                         | 6.71<br>6.71<br>7.15<br>6.63<br>6.93                                                                 | 17.3<br>-24<br>-10.3<br>-40<br>77.8                                                        | 2.39<br>2.12<br>0.63<br>2.46                                                                        | NR<br>NR<br>NR<br>NR                     |
| MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19                                                                | 12/19/2012<br>2/25/2013<br>5/23/2013<br>8/26/2013<br>12/10/2013                                                                                                           | 17<br>17.9<br>17.2<br>17.54<br>17.89                                                                       | 4655<br>5054<br>6006<br>4673<br>5499<br>5095                                                                 | 6.71<br>6.71<br>7.15<br>6.63<br>6.93<br>6.90                                                         | 17.3<br>-24<br>-10.3<br>-40<br>77.8<br>79.8                                                | 2.39<br>2.12<br>0.63<br>2.46<br>5.89                                                                | NR<br>NR<br>NR<br>NR                     |
| MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19                                                       | 12/19/2012<br>2/25/2013<br>5/23/2013<br>8/26/2013<br>12/10/2013<br>2/17/2014                                                                                              | 17<br>17.9<br>17.2<br>17.54<br>17.89<br>17.38                                                              | 4655<br>5054<br>6006<br>4673<br>5499<br>5095<br>6328                                                         | 6.71<br>6.71<br>7.15<br>6.63<br>6.93<br>6.90<br>7.17                                                 | 17.3<br>-24<br>-10.3<br>-40<br>77.8<br>79.8<br>9.2                                         | 2.39<br>2.12<br>0.63<br>2.46<br>5.89<br>2.1                                                         | NR<br>NR<br>NR<br>NR<br>NR               |
| MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19                                                       | 12/19/2012<br>2/25/2013<br>5/23/2013<br>8/26/2013<br>12/10/2013<br>2/17/2014<br>4/20/2014                                                                                 | 17<br>17.9<br>17.2<br>17.54<br>17.89<br>17.38<br>17.63                                                     | 4655<br>5054<br>6006<br>4673<br>5499<br>5095<br>6328<br>5684                                                 | 6.71<br>6.71<br>7.15<br>6.63<br>6.93<br>6.90<br>7.17<br>6.89                                         | 17.3<br>-24<br>-10.3<br>-40<br>77.8<br>79.8<br>9.2<br>7.9                                  | 2.39<br>2.12<br>0.63<br>2.46<br>5.89<br>2.1<br>2.53                                                 | NR NR NR NR NR NR NR                     |
| MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19                                     | 12/19/2012<br>2/25/2013<br>5/23/2013<br>8/26/2013<br>12/10/2013<br>2/17/2014<br>4/20/2014<br>8/21/2014                                                                    | 17<br>17.9<br>17.2<br>17.54<br>17.89<br>17.38<br>17.63                                                     | 4655<br>5054<br>6006<br>4673<br>5499<br>5095<br>6328<br>5684<br>6939                                         | 6.71<br>6.71<br>7.15<br>6.63<br>6.93<br>6.90<br>7.17<br>6.89<br>6.44                                 | 17.3<br>-24<br>-10.3<br>-40<br>77.8<br>79.8<br>9.2<br>7.9<br>111.2                         | 2.39<br>2.12<br>0.63<br>2.46<br>5.89<br>2.1<br>2.53<br>3.69                                         | NR NR NR NR NR NR NR NR                  |
| MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19                            | 12/19/2012<br>2/25/2013<br>5/23/2013<br>8/26/2013<br>12/10/2013<br>2/17/2014<br>4/20/2014<br>8/21/2014<br>11/19/2014                                                      | 17<br>17.9<br>17.2<br>17.54<br>17.89<br>17.38<br>17.63<br>17.6                                             | 4655<br>5054<br>6006<br>4673<br>5499<br>5095<br>6328<br>5684<br>6939<br>6174                                 | 6.71<br>6.71<br>7.15<br>6.63<br>6.93<br>6.90<br>7.17<br>6.89<br>6.44<br>6.97                         | 17.3<br>-24<br>-10.3<br>-40<br>77.8<br>79.8<br>9.2<br>7.9<br>111.2<br>-4.5                 | 2.39<br>2.12<br>0.63<br>2.46<br>5.89<br>2.1<br>2.53<br>3.69<br>2.95                                 | NR NR NR NR NR NR NR NR NR               |
| MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19                   | 12/19/2012<br>2/25/2013<br>5/23/2013<br>8/26/2013<br>12/10/2013<br>2/17/2014<br>4/20/2014<br>8/21/2014<br>11/19/2014<br>2/25/2015                                         | 17<br>17.9<br>17.2<br>17.54<br>17.89<br>17.38<br>17.63<br>17.6<br>17.9                                     | 4655<br>5054<br>6006<br>4673<br>5499<br>5095<br>6328<br>5684<br>6939<br>6174<br>6298                         | 6.71<br>6.71<br>7.15<br>6.63<br>6.93<br>6.90<br>7.17<br>6.89<br>6.44<br>6.97<br>6.87                 | 17.3<br>-24<br>-10.3<br>-40<br>77.8<br>79.8<br>9.2<br>7.9<br>111.2<br>-4.5<br>74.5         | 2.39<br>2.12<br>0.63<br>2.46<br>5.89<br>2.1<br>2.53<br>3.69<br>2.95<br>2.41                         | NR      |
| MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19                   | 12/19/2012<br>2/25/2013<br>5/23/2013<br>8/26/2013<br>12/10/2013<br>2/17/2014<br>4/20/2014<br>4/20/2014<br>11/19/2014<br>2/25/2015<br>6/15/2015                            | 17<br>17.9<br>17.2<br>17.54<br>17.89<br>17.38<br>17.63<br>17.6<br>17.9<br>17.62                            | 4655<br>5054<br>6006<br>4673<br>5499<br>5095<br>6328<br>5684<br>6939<br>6174<br>6298<br>6233                 | 6.71<br>6.71<br>7.15<br>6.63<br>6.93<br>6.90<br>7.17<br>6.89<br>6.44<br>6.97<br>6.87<br>6.94         | 17.3<br>-24<br>-10.3<br>-40<br>77.8<br>79.8<br>9.2<br>7.9<br>111.2<br>-4.5<br>74.5<br>-6.2 | 2.39<br>2.12<br>0.63<br>2.46<br>5.89<br>2.1<br>2.53<br>3.69<br>2.95<br>2.41<br>2.51                 | NR N |
| MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19          | 12/19/2012<br>2/25/2013<br>5/23/2013<br>8/26/2013<br>12/10/2013<br>2/17/2014<br>4/20/2014<br>8/21/2014<br>11/19/2014<br>2/25/2015<br>6/15/2015<br>8/18/2015               | 17<br>17.9<br>17.2<br>17.54<br>17.89<br>17.38<br>17.63<br>17.6<br>17.9<br>17.62<br>17.49                   | 4655<br>5054<br>6006<br>4673<br>5499<br>5095<br>6328<br>5684<br>6939<br>6174<br>6298<br>6233<br>7015         | 6.71<br>6.71<br>7.15<br>6.63<br>6.93<br>6.90<br>7.17<br>6.89<br>6.44<br>6.97<br>6.87<br>6.94         | 17.3 -24 -10.3 -40 77.8 79.8 9.2 111.2 -4.5 74.5 -6.2 204.3                                | 2.39<br>2.12<br>0.63<br>2.46<br>5.89<br>2.1<br>2.53<br>3.69<br>2.95<br>2.41<br>2.51<br>2.45         | NR N |
| MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19 | 12/19/2012<br>2/25/2013<br>5/23/2013<br>8/26/2013<br>12/10/2013<br>2/17/2014<br>4/20/2014<br>8/21/2014<br>11/19/2014<br>2/25/2015<br>6/15/2015<br>8/18/2015<br>12/14/2015 | 17<br>17.9<br>17.2<br>17.54<br>17.89<br>17.38<br>17.63<br>17.6<br>17.9<br>17.62<br>17.49<br>17.42<br>17.99 | 4655<br>5054<br>6006<br>4673<br>5499<br>5095<br>6328<br>5684<br>6939<br>6174<br>6298<br>6233<br>7015<br>7173 | 6.71<br>6.71<br>7.15<br>6.63<br>6.93<br>6.90<br>7.17<br>6.89<br>6.44<br>6.97<br>6.87<br>6.94<br>6.34 | 17.3 -24 -10.3 -40 -77.8 -79.8 -9.2 -7.9 111.2 -4.5 -6.2 204.3 -69.8                       | 2.39<br>2.12<br>0.63<br>2.46<br>5.89<br>2.1<br>2.53<br>3.69<br>2.95<br>2.41<br>2.51<br>2.45<br>2.48 | NR N |
| MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19<br>MW-19          | 12/19/2012<br>2/25/2013<br>5/23/2013<br>8/26/2013<br>12/10/2013<br>2/17/2014<br>4/20/2014<br>8/21/2014<br>11/19/2014<br>2/25/2015<br>6/15/2015<br>8/18/2015               | 17<br>17.9<br>17.2<br>17.54<br>17.89<br>17.38<br>17.63<br>17.6<br>17.9<br>17.62<br>17.49                   | 4655<br>5054<br>6006<br>4673<br>5499<br>5095<br>6328<br>5684<br>6939<br>6174<br>6298<br>6233<br>7015         | 6.71<br>6.71<br>7.15<br>6.63<br>6.93<br>6.90<br>7.17<br>6.89<br>6.44<br>6.97<br>6.87<br>6.94         | 17.3 -24 -10.3 -40 77.8 79.8 9.2 111.2 -4.5 74.5 -6.2 204.3                                | 2.39<br>2.12<br>0.63<br>2.46<br>5.89<br>2.1<br>2.53<br>3.69<br>2.95<br>2.41<br>2.51<br>2.45         | NR N |

#### GROUNDWATER FIELD DATA

|                |                         |                | Conductivity |              | Redox          |              | Head     |
|----------------|-------------------------|----------------|--------------|--------------|----------------|--------------|----------|
| Monitoring     | Date                    | Temp           | @ 25 deg. C  | pН           | Potential      | Dissolved    | Space    |
| Well           | Measured                | (Deg. C)       | (uS/cm)      |              | (Eh)           | Oxygen       | (ppm)    |
| MW-20          | 12/3/2008               | 13.1           | 753          | 7.47         | 139            | 1.8          | 3.279    |
| MW-20          | 10/1/2009               | 17.5           | 4008         | 7.31         | 317            | 6.19         | NR       |
| MW-20          | 11/16/2009              | 17.31          | 3760         | 6.8          | 288            | 3.85         | NR       |
| MW-20          | 2/23/2010               | 16.82          | 4720         | 7.23         | 322            | 5.22         | NR       |
| MW-20<br>MW-20 | 5/12/2010<br>8/18/2010  | 17.96<br>18.3  | 2410<br>4559 | 7.16<br>10.1 | 276<br>182     | 7.83<br>8    | NR<br>NR |
| MW-20          | 11/18/2010              | 18.39          | 4497         | 7.44         | -62            | 3.88         | NR       |
| MW-20          | 3/1/2011                | 16.6           | 3505         | 6.42         | 9.6            | 2.43         | NR       |
| MW-20          | 5/19/2011               | 18.5           | 3788         | 7.27         | 7.2            | 2.17         | NR       |
| MW-20          | 8/28/2011               | 18.7           | 5102         | 7.12         | 82             | 6.24         | NR       |
| MW-20          | 11/21/2011              | 18.45          | 5491         | 5.19         | 253            | 1.89         | NR       |
| MW-20          | 2/15/2012               | 17.95          | 5192         | 6.99         | -22            | 4.42         | NR       |
| MW-20          | 5/17/2012               | 9.9            | 726          | 7.02         | -21            | 1.06         | NR       |
| MW-20          | 9/26/2012               | 18.4           | 4277         | 6.99         | 3.6            | 3.9          | NR       |
| MW-20          | 12/19/2012              | 18.4           | 4868         | 6.78         | -3             | 0.33         | NR       |
| MW-20          | 2/25/2013               | 18.9           | 5812         | 7.04         | -4.8           | 1.3          | NR       |
| MW-20          | 5/23/2013               | 19.35          | 6325         | 6.96         | -12            | 2.83         | NR       |
| MW-20          | 8/26/2013               | 19.13          | 7554         | 6.88         | 63.6           | 4.04         | NR       |
| MW-20          | 12/10/2013              | 19.35          | 6735         | 7.93         | -32            | 4.93         | NR       |
| MW-20          | 2/17/2014               | 18.72          | 6617         | 7.14         | 10.9           | 0.6          | NR       |
| MW-20          | 4/20/2014               | 19.24          | 9599         | 7.01         | 1.9            | 3.43         | NR       |
| MW-20          | 8/21/2014               | 19.5           | 93.61        | 6.68         | 252            | 4.26         | NR       |
| MW-20          | 11/19/2014              | 19.6           | 8514         | 7.15         | -10            | 4.3          | NR       |
| MW-20          | 2/25/2015               | 18.98          | 6510         | 6.96         | 108.1          | 0.76         | NR       |
| MW-20          | 6/15/2015               | 19.76          | 9394         | 7.11         | -13.6          | 5.6          | NR       |
| MW-20<br>MW-20 | 8/18/2015<br>12/14/2015 | 20.02<br>19.38 | 1006<br>1006 | 7.08<br>6.93 | 111.6<br>137.3 | 3.58<br>3.65 | NR<br>NR |
| MW-20          | 1/11/2016               | 19.38          | 9861         | 7.24         | 143.2          | 4.12         | NR       |
| MW-20          | 5/17/2016               | 19.23          | 1033         | 8.16         | -22.7          | 6.35         | NR       |
| WI W -20       | 3/17/2010               | 19             | 1033         | 0.10         | -22.1          | 0.55         | IVIX     |
| DPE-1          | 12/3/2008               | 14.5           | 735          | 8.02         | -4.9           | 0.9          | 10.5     |
| DPE-1          | 9/28/2009               | 18.1           | 2584         | 7.64         | 170            | 4.8          | NR       |
| DPE-1          | 11/16/2009              | 18.18          | 2595         | 7.52         | 173            | 4.98         | NR       |
| DPE-1          | 2/22/2010               | 17.9           | 1152         | 6.23         | 255.6          | 8.16         | NR       |
| DPE-1          | 5/13/2010               | 18.4           | 2428         | 6.41         | 248            | 8.05         | NR       |
| DPE-1          | 8/18/2010               | 19.3           | 2242         | 10.4         | 286            | 5.54         | NR       |
| DPE-1          | 12/23/2010              | 18.61          | 1982         | 5.96         | -4.7           | 12.57        | 10.1     |
| DPE-1          | 3/1/2011                | 18.2           | 990          | 7.6          | 14.2           | 4.02         | 6.4      |
| DPE-1          | 5/19/2011               | 18.9           | 1677         | 8.42         | -59            | 4.17         | NR       |
| DPE-1          | 8/28/2011               | 18.1           | 2162         | 7.01         | 3              | 4            | NR       |
| DPE-1          | 11/21/2011              | 18.4           | 16.21        | 7.69         | -53            | 5.89         | NR       |
| DPE-1          | 2/16/2012               | 18.14          | 1381         | 7.08         | -26            | 5.04         | NR       |
| DPE-1          | 5/17/2012               | 9.9            | 1023         | 7.83         | -57            | 1.09         | NR<br>NB |
| DPE-1<br>DPE-1 | 9/26/2012<br>12/19/2012 | 19.1           | 1170         | 8.5<br>7.95  | -74<br>-64     | 5.7          | NR<br>NR |
| DPE-1          | 2/26/2013               | 18.9<br>17.1   | 1205<br>1321 | 7.95         | -64<br>-6      | 4.24<br>5.1  | NR<br>NR |
| DPE-1          | 5/23/2013               | 17.1           | 4945         | 7.69         | -6<br>-49      | 3.63         | NR<br>NR |
| DPE-1          | 8/26/2013               | 19.2           | 1858         | 7.49         | 168            | 4.11         | NR       |
| DPE-1          | 12/10/2013              | 19.97          | 1176         | 7.49         | -75.8          | 6.3          | NR       |
| DPE-1          | 2/17/2014               | 18.88          | 1910         | 8.3          | -49.9          | 3.39         | NR       |
| DPE-1          | 4/20/2014               | 18.86          | 4150         | 7.89         | -43.1          | 3.62         | NR       |
| DPE-1          | 8/21/2014               | 19.23          | 6093         | 7.69         | 138.2          | 4.41         | NR       |
| DPE-1          | 11/19/2014              | 19.02          | 4194         | 8.15         | 133            | 4.37         | NR       |
| DPE-1          | 2/25/2015               | 17.3           | 3570         | 7.83         | -61            | 2.2          | NR       |
| DPE-1          | 6/15/2015               | 20.28          | 4422         | 7.91         | -51.1          | 3.05         | NR       |
| DPE-1          | 8/17/2015               | 19.78          | 5025         | 7.83         | 162.8          | 3.05         | NR       |
| DPE-1          | 12/14/2015              | 19.56          | 4053         | 7.53         | 218.1          | 1.44         | NR       |
| DPE-1          | 1/11/2016               | 18.52          | 2309         | 7.54         | 292.7          | 3.56         | NR       |
| DPE-1          | 5/17/2016               | 18.63          | 2257         | 7.29         | 158.3          | 6.55         | NR       |
|                |                         |                | 1            |              |                | 1            |          |

#### GROUNDWATER FIELD DATA

| Well   Measured   Deg. C)   (uS/cm)     (Eh)   Oxygen   Option   Opti |       |            |       | Conductivity |      | Redox |      | Head       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|-------|--------------|------|-------|------|------------|
| DPE-2   12/3/2008   14.4   735   7.83   109   1.9   20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |            | •     |              | pH   |       |      | Space      |
| DPE-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |            |       |              |      |       |      | (ppm)      |
| DPE-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |            |       |              |      |       |      | 2000       |
| DPE-2   22/22/010   17.5   2751   7.75   283   4.57   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |       |              |      |       |      | NR         |
| DPE-2   \$5/13/2010   18.1   2900   7.25   268   5.59   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |            |       |              |      |       |      | NR         |
| DPE-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |            |       |              |      | 1     |      | NR         |
| DPE-2   12/23/2010   17.6   962   7.09   442   11.6   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |       |              |      |       |      | NR         |
| DPE-2   31/2011   18.6   1986   7.21   118   3.16   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |            |       |              |      |       |      | NR         |
| DPE-2   S/19/2011   18.4   1972   8   -38   2.75   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |            |       |              |      |       |      | 2.8        |
| DPE-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |            |       |              |      |       |      | 15.1<br>NR |
| DPE-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |            |       | L            |      |       |      | NR<br>NR   |
| DPE-2   2/16/2012   18.6   1931   7.56   -51   2.37   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |       |              |      |       |      | NR         |
| DPE-2   9/26/2012   18.9   2156   7.74   -61   4.37   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |       |              |      |       |      | NR         |
| DPE-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |            |       |              |      | 1     |      | NR         |
| DPE-2   12/19/2012   18.7   2440   7.7   5.51   5.03   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |            |       |              |      |       |      | NR         |
| DPE-2   2/26/2013   16.4   1062   7.10   -62   4.2   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |            |       |              |      |       |      | NR         |
| DPE-2   5/23/2013   18.8   5181   7.52   -40   4.87   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |       |              |      |       |      | NR         |
| DPE-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |            |       |              |      |       |      | NR         |
| DPE-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |            |       |              |      |       |      | NR         |
| DPE-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |            |       |              |      |       |      | NR         |
| DPE-2   8/21/2014   19.48   7389   7.76   138.2   4.13   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DPE-2 | 2/17/2014  | 19.09 | 4705         | 8.13 | -41.4 | 3.66 | NR         |
| DPE-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DPE-2 | 4/20/2014  | 19.03 | 6497         | 7.72 | -34.4 | 4.09 | NR         |
| DPE-2   2/25/2015   18.92   4769   7.53   -39   3.98   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DPE-2 | 8/21/2014  | 19.48 | 7389         | 7.76 | 138.2 | 4.13 | NR         |
| DPE-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DPE-2 | 11/19/2014 | 19.17 | 6329         | 8.1  | -56   | 3.79 | NR         |
| DPE-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 2/25/2015  |       |              |      |       |      | NR         |
| DPE-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |            |       |              |      |       |      | NR         |
| DPE-2         1/11/2016         18.22         3076         7.63         279.1         3.88         N           DPE-2         5/17/2016         19.82         3689         7.22         141.3         4.61         N           DPE-3         12/3/2008         13.4         735         7.96         127         2.5         16           DPE-3         9/28/2009         17.3         7799         7.95         158         7.05         N           DPE-3         11/17/2009         17.43         4442         7.1         208         3.32         N           DPE-3         2/22/2010         15.4         4707         7.9         310         7.59         N           DPE-3         5/13/2010         17.1         4484         7.62         270         7.36         N           DPE-3         8/18/2010         18.4         4992         10.5         277         6.31         N           DPE-3         12/23/2010         16.2         5922         7.15         17         16.23         20           DPE-3         3/1/2011         18.8         6621         7.19         -0.6         2.01         22           DPE-3         5/19/2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |       |              |      |       |      | NR         |
| DPE-2         5/17/2016         19.82         3689         7.22         141.3         4.61         N           DPE-3         12/3/2008         13.4         735         7.96         127         2.5         16           DPE-3         19/28/2009         17.3         7799         7.95         158         7.05         N           DPE-3         11/17/2009         17.43         4442         7.1         208         3.32         N           DPE-3         2/22/2010         15.4         4707         7.9         310         7.59         N           DPE-3         5/13/2010         17.1         4484         7.62         270         7.36         N           DPE-3         8/18/2010         18.4         4992         10.5         277         6.31         N           DPE-3         12/23/2010         16.2         5922         7.15         17         16.23         22           DPE-3         3/1/2011         18.8         6621         7.19         -0.6         2.01         22           DPE-3         5/19/2011         17.2         4847         8.12         -44         5.76         N           DPE-3         8/28/2011         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |            |       |              |      |       |      | NR         |
| DPE-3   12/3/2008   13.4   735   7.96   127   2.5   160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |       |              |      |       |      | NR         |
| DPE-3         9/28/2009         17.3         7799         7.95         158         7.05         N           DPE-3         11/17/2009         17.43         4442         7.1         208         3.32         N           DPE-3         2/22/2010         15.4         4707         7.9         310         7.59         N           DPE-3         5/13/2010         17.1         4484         7.62         270         7.36         N           DPE-3         8/18/2010         18.4         4992         10.5         277         6.31         N           DPE-3         12/2/3/2010         16.2         5922         7.15         17         16.23         23           DPE-3         3/1/2011         18.8         6621         7.19         -0.6         2.01         23           DPE-3         5/19/2011         17.2         4847         8.12         -44         5.76         N           DPE-3         8/28/2011         NR         5894         7.61         -41         5.3         N           DPE-3         11/21/2011         17.6         3012         7.54         -45         2.7         N           DPE-3         2/16/2012         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DPE-2 | 5/17/2016  | 19.82 | 3689         | 7.22 | 141.3 | 4.61 | NR         |
| DPE-3         9/28/2009         17.3         7799         7.95         158         7.05         N           DPE-3         11/17/2009         17.43         4442         7.1         208         3.32         N           DPE-3         2/22/2010         15.4         4707         7.9         310         7.59         N           DPE-3         5/13/2010         17.1         4484         7.62         270         7.36         N           DPE-3         8/18/2010         18.4         4992         10.5         277         6.31         N           DPE-3         12/2/3/2010         16.2         5922         7.15         17         16.23         23           DPE-3         3/1/2011         18.8         6621         7.19         -0.6         2.01         23           DPE-3         5/19/2011         17.2         4847         8.12         -44         5.76         N           DPE-3         8/28/2011         NR         5894         7.61         -41         5.3         N           DPE-3         11/21/2011         17.6         3012         7.54         -45         2.7         N           DPE-3         2/16/2012         17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DDE 2 | 12/2/2009  | 12.4  | 725          | 7.06 | 127   | 2.5  | 1684       |
| DPE-3         11/17/2009         17.43         4442         7.1         208         3.32         N           DPE-3         2/22/2010         15.4         4707         7.9         310         7.59         N           DPE-3         5/13/2010         17.1         4484         7.62         270         7.36         N           DPE-3         8/18/2010         18.4         4992         10.5         277         6.31         N           DPE-3         12/23/2010         16.2         5922         7.15         17         16.23         28           DPE-3         3/1/2011         18.8         6621         7.19         -0.6         2.01         22           DPE-3         3/1/2011         18.8         6621         7.19         -0.6         2.01         22           DPE-3         5/19/2011         17.2         4847         8.12         -44         5.76         N           DPE-3         5/19/2011         17.2         4847         7.61         -41         5.3         N           DPE-3         11/21/2011         17.6         3012         7.54         -45         2.7         N           DPE-3         2/16/2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |            |       |              |      |       |      | NR         |
| DPE-3         2/22/2010         15.4         4707         7.9         310         7.59         N           DPE-3         5/13/2010         17.1         4484         7.62         270         7.36         N           DPE-3         8/18/2010         18.4         4992         10.5         277         6.31         N           DPE-3         12/23/2010         16.2         5922         7.15         17         16.23         28           DPE-3         3/1/2011         18.8         6621         7.19         -0.6         2.01         22           DPE-3         5/19/2011         17.2         4847         8.12         -44         5.76         N           DPE-3         5/19/2011         17.2         4847         8.12         -44         5.76         N           DPE-3         8/28/2011         NR         5894         7.61         -41         5.3         N           DPE-3         11/21/2011         17.6         3012         7.54         -45         2.7         N           DPE-3         2/16/2012         17.92         4634         7.07         -25         4.85         N           DPE-3         5/17/2012         9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |            |       |              |      |       |      | NR<br>NR   |
| DPE-3         5/13/2010         17.1         4484         7.62         270         7.36         N           DPE-3         8/18/2010         18.4         4992         10.5         277         6.31         N           DPE-3         12/23/2010         16.2         5922         7.15         17         16.23         28           DPE-3         3/1/2011         18.8         6621         7.19         -0.6         2.01         23           DPE-3         5/19/2011         17.2         4847         8.12         -44         5.76         N           DPE-3         8/28/2011         NR         5894         7.61         -41         5.3         N           DPE-3         11/21/2011         17.6         3012         7.54         -45         2.7         N           DPE-3         2/16/2012         17.92         4634         7.07         -25         4.85         N           DPE-3         5/17/2012         9.9         4383         7.45         -40         1.09         N           DPE-3         9/26/2012         17         2777         8.3         -63         7.1         N           DPE-3         12/19/2012         18.2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>NR</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |            |       |              |      |       |      | NR         |
| DPE-3         8/18/2010         18.4         4992         10.5         277         6.31         N           DPE-3         12/23/2010         16.2         5922         7.15         17         16.23         28           DPE-3         3/1/2011         18.8         6621         7.19         -0.6         2.01         22           DPE-3         5/19/2011         17.2         4847         8.12         -44         5.76         N           DPE-3         8/28/2011         NR         5894         7.61         -41         5.3         N           DPE-3         11/21/2011         17.6         3012         7.54         -45         2.7         N           DPE-3         2/16/2012         17.92         4634         7.07         -25         4.85         N           DPE-3         5/17/2012         9.9         4383         7.45         -40         1.09         N           DPE-3         9/26/2012         17         2777         8.3         -63         7.1         N           DPE-3         12/19/2012         18.2         4487         7.14         -21         2.07         N           DPE-3         12/26/2013         18.3<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |            |       |              |      |       |      | NR         |
| DPE-3         12/23/2010         16.2         5922         7.15         17         16.23         22           DPE-3         3/1/2011         18.8         6621         7.19         -0.6         2.01         22           DPE-3         5/19/2011         17.2         4847         8.12         -44         5.76         N           DPE-3         8/28/2011         NR         5894         7.61         -41         5.3         N           DPE-3         11/21/2011         17.6         3012         7.54         -45         2.7         N           DPE-3         2/16/2012         17.92         4634         7.07         -25         4.85         N           DPE-3         5/17/2012         9.9         4383         7.45         -40         1.09         N           DPE-3         9/26/2012         17         2777         8.3         -63         7.1         N           DPE-3         9/26/2012         18.2         4487         7.14         -21         2.07         N           DPE-3         12/19/2012         18.2         4487         7.14         -21         2.07         N           DPE-3         12/26/2013         18.3<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |            |       |              |      | +     |      | NR         |
| DPE-3         3/1/2011         18.8         6621         7.19         -0.6         2.01         22           DPE-3         5/19/2011         17.2         4847         8.12         -44         5.76         N           DPE-3         8/28/2011         NR         5894         7.61         -41         5.3         N           DPE-3         11/21/2011         17.6         3012         7.54         -45         2.7         N           DPE-3         2/16/2012         17.92         4634         7.07         -25         4.85         N           DPE-3         5/17/2012         9.9         4383         7.45         -40         1.09         N           DPE-3         9/26/2012         17         2777         8.3         -63         7.1         N           DPE-3         12/19/2012         18.2         4487         7.14         -21         2.07         N           DPE-3         12/26/2013         18.3         1114         7.11         -51         3.9         N           DPE-3         5/23/2013         18.4         7742         7.02         -47         3.12         N           DPE-3         12/10/2013         NR* <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>28.2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |            |       |              |      |       |      | 28.2       |
| DPE-3         5/19/2011         17.2         4847         8.12         -44         5.76         N           DPE-3         8/28/2011         NR         5894         7.61         -41         5.3         N           DPE-3         11/21/2011         17.6         3012         7.54         -45         2.7         N           DPE-3         2/16/2012         17.92         4634         7.07         -25         4.85         N           DPE-3         5/17/2012         9.9         4383         7.45         -40         1.09         N           DPE-3         9/26/2012         17         2777         8.3         -63         7.1         N           DPE-3         12/19/2012         18.2         4487         7.14         -21         2.07         N           DPE-3         12/19/2012         18.2         4487         7.14         -21         2.07         N           DPE-3         12/19/2012         18.2         4487         7.14         -21         2.07         N           DPE-3         12/26/2013         18.3         1114         7.11         -51         3.9         N           DPE-3         8/26/2013         19.39 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>23.5</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |            |       |              |      | 1     |      | 23.5       |
| DPE-3         8/28/2011         NR         5894         7.61         -41         5.3         N           DPE-3         11/21/2011         17.6         3012         7.54         -45         2.7         N           DPE-3         2/16/2012         17.92         4634         7.07         -25         4.85         N           DPE-3         5/17/2012         9.9         4383         7.45         -40         1.09         N           DPE-3         9/26/2012         17         2777         8.3         -63         7.1         N           DPE-3         12/19/2012         18.2         4487         7.14         -21         2.07         N           DPE-3         12/19/2012         18.2         4487         7.14         -21         2.07         N           DPE-3         12/19/2012         18.2         4487         7.14         -21         2.07         N           DPE-3         12/26/2013         18.3         1114         7.11         -51         3.9         N           DPE-3         8/26/2013         19.39         5878         6.98         156         3.47         N           DPE-3         12/10/2013         NR* </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>NR</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |            |       |              |      |       |      | NR         |
| DPE-3         2/16/2012         17.92         4634         7.07         -25         4.85         N           DPE-3         5/17/2012         9.9         4383         7.45         -40         1.09         N           DPE-3         9/26/2012         17         2777         8.3         -63         7.1         N           DPE-3         12/19/2012         18.2         4487         7.14         -21         2.07         N           DPE-3         2/26/2013         18.3         1114         7.11         -51         3.9         N           DPE-3         5/23/2013         18.4         7742         7.02         -47         3.12         N           DPE-3         8/26/2013         19.39         5878         6.98         156         3.47         N           DPE-3         12/10/2013         NR*         NR*         NR*         NR*         NR*         NR*           DPE-3         12/17/2014         18.58         6875         7.35         0         1.11         N           DPE-3         4/20/2014         19.23         7780         7.07         -1.2         2.26         N           DPE-3         8/21/2014         19.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |            |       |              |      | -41   |      | NR         |
| DPE-3         5/17/2012         9.9         4383         7.45         -40         1.09         N           DPE-3         9/26/2012         17         2777         8.3         -63         7.1         N           DPE-3         12/19/2012         18.2         4487         7.14         -21         2.07         N           DPE-3         2/26/2013         18.3         1114         7.11         -51         3.9         N           DPE-3         5/23/2013         18.4         7742         7.02         -47         3.12         N           DPE-3         8/26/2013         19.39         5878         6.98         156         3.47         N           DPE-3         12/10/2013         NR*         NR*         NR*         NR*         NR*         NR*           DPE-3         12/10/2014         18.58         6875         7.35         0         1.11         N           DPE-3         4/20/2014         19.23         7780         7.07         -1.2         2.26         N           DPE-3         8/21/2014         19.47         7917         7.14         103.7         2.97         N           DPE-3         11/19/2014         19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DPE-3 | 11/21/2011 | 17.6  | 3012         | 7.54 | -45   | 2.7  | NR         |
| DPE-3         9/26/2012         17         2777         8.3         -63         7.1         N           DPE-3         12/19/2012         18.2         4487         7.14         -21         2.07         N           DPE-3         2/26/2013         18.3         1114         7.11         -51         3.9         N           DPE-3         5/23/2013         18.4         7742         7.02         -47         3.12         N           DPE-3         8/26/2013         19.39         5878         6.98         156         3.47         N           DPE-3         12/10/2013         NR*         NR*         NR*         NR*         NR*         NR*           DPE-3         12/10/2014         18.58         6875         7.35         0         1.11         N           DPE-3         4/20/2014         19.23         7780         7.07         -1.2         2.26         N           DPE-3         8/21/2014         19.47         7917         7.14         103.7         2.97         N           DPE-3         11/19/2014         19.07         7193         7.48         -20         2.54         N           DPE-3         2/25/2015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |            | 17.92 | L            |      |       | 4.85 | NR         |
| DPE-3         12/19/2012         18.2         4487         7.14         -21         2.07         N           DPE-3         2/26/2013         18.3         1114         7.11         -51         3.9         N           DPE-3         5/23/2013         18.4         7742         7.02         -47         3.12         N           DPE-3         8/26/2013         19.39         5878         6.98         156         3.47         N           DPE-3         12/10/2013         NR*         NR*         NR*         NR*         NR*         NR*         NR*         N         NR*         NR*         N         NR*         NR*         NR*         N         NR*         NR*         NR         NR*         NR         NR*         NR         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |            |       |              |      |       |      | NR         |
| DPE-3         2/26/2013         18.3         1114         7.11         -51         3.9         N           DPE-3         5/23/2013         18.4         7742         7.02         -47         3.12         N           DPE-3         8/26/2013         19.39         5878         6.98         156         3.47         N           DPE-3         12/10/2013         NR*         NR*         NR*         NR*         NR*         NR*         NR*         N           DPE-3         2/17/2014         18.58         6875         7.35         0         1.11         N           DPE-3         4/20/2014         19.23         7780         7.07         -1.2         2.26         N           DPE-3         8/21/2014         19.47         7917         7.14         103.7         2.97         N           DPE-3         11/19/2014         19.07         7193         7.48         -20         2.54         N           DPE-3         2/25/2015         17.16         6630         7.27         -32         1.59         N           DPE-3         6/15/2015         19.87         6953         7.43         -28.7         2.2         N           DPE-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |            |       |              |      |       |      | NR         |
| DPE-3         5/23/2013         18.4         7742         7.02         -47         3.12         N           DPE-3         8/26/2013         19.39         5878         6.98         156         3.47         N           DPE-3         12/10/2013         NR*         NR*         NR*         NR*         NR*         NR*         NR*         NR*         N         NR*         NR*<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |            |       |              |      |       |      | NR         |
| DPE-3         8/26/2013         19.39         5878         6.98         156         3.47         N           DPE-3         12/10/2013         NR*         NR*         NR*         NR*         NR*         NR*         NR*         NR*         NR*         NR         NR*         NR         NR*         NR*         NR         NR*         NR*         NR         NR*         NR         NR*         NR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |            |       |              |      |       |      | NR         |
| DPE-3         12/10/2013         NR*         NP*         NP* <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>NR</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |            |       |              |      |       |      | NR         |
| DPE-3         2/17/2014         18.58         6875         7.35         0         1.11         N           DPE-3         4/20/2014         19.23         7780         7.07         -1.2         2.26         N           DPE-3         8/21/2014         19.47         7917         7.14         103.7         2.97         N           DPE-3         11/19/2014         19.07         7193         7.48         -20         2.54         N           DPE-3         2/25/2015         17.16         6630         7.27         -32         1.59         N           DPE-3         6/15/2015         19.87         6953         7.43         -28.7         2.2         N           DPE-3         8/17/2015         19.98         7990         7.29         119.2         1.52         N           DPE-3         12/14/2015         19.31         8178         7.36         153.3         3.67         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |            |       |              |      |       |      | NR         |
| DPE-3         4/20/2014         19.23         7780         7.07         -1.2         2.26         N           DPE-3         8/21/2014         19.47         7917         7.14         103.7         2.97         N           DPE-3         11/19/2014         19.07         7193         7.48         -20         2.54         N           DPE-3         2/25/2015         17.16         6630         7.27         -32         1.59         N           DPE-3         6/15/2015         19.87         6953         7.43         -28.7         2.2         N           DPE-3         8/17/2015         19.98         7990         7.29         119.2         1.52         N           DPE-3         12/14/2015         19.31         8178         7.36         153.3         3.67         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |            |       |              |      |       |      | NR<br>ND   |
| DPE-3         8/21/2014         19.47         7917         7.14         103.7         2.97         N           DPE-3         11/19/2014         19.07         7193         7.48         -20         2.54         N           DPE-3         2/25/2015         17.16         6630         7.27         -32         1.59         N           DPE-3         6/15/2015         19.87         6953         7.43         -28.7         2.2         N           DPE-3         8/17/2015         19.98         7990         7.29         119.2         1.52         N           DPE-3         12/14/2015         19.31         8178         7.36         153.3         3.67         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |            |       |              |      |       |      | NR<br>NR   |
| DPE-3         11/19/2014         19.07         7193         7.48         -20         2.54         N           DPE-3         2/25/2015         17.16         6630         7.27         -32         1.59         N           DPE-3         6/15/2015         19.87         6953         7.43         -28.7         2.2         N           DPE-3         8/17/2015         19.98         7990         7.29         119.2         1.52         N           DPE-3         12/14/2015         19.31         8178         7.36         153.3         3.67         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |            |       |              |      |       |      | NR<br>NR   |
| DPE-3         2/25/2015         17.16         6630         7.27         -32         1.59         N           DPE-3         6/15/2015         19.87         6953         7.43         -28.7         2.2         N           DPE-3         8/17/2015         19.98         7990         7.29         119.2         1.52         N           DPE-3         12/14/2015         19.31         8178         7.36         153.3         3.67         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |            |       |              |      |       |      | NR         |
| DPE-3         6/15/2015         19.87         6953         7.43         -28.7         2.2         N           DPE-3         8/17/2015         19.98         7990         7.29         119.2         1.52         N           DPE-3         12/14/2015         19.31         8178         7.36         153.3         3.67         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |            |       |              |      | 1     |      | NR         |
| DPE-3         8/17/2015         19.98         7990         7.29         119.2         1.52         N           DPE-3         12/14/2015         19.31         8178         7.36         153.3         3.67         N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |            |       |              |      |       |      | NR         |
| DPE-3 12/14/2015 19.31 8178 7.36 153.3 3.67 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |            |       |              |      |       |      | NR         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |            |       |              |      |       |      | NR         |
| רבע ביים 1/11/2010 ביים בע                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | DPE-3 | 1/11/2016  | 18.07 | 7280         | 7.53 | 286.7 | 4.54 | NR         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |            |       |              |      |       |      | NR         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |            |       |              |      |       |      |            |

#### GROUNDWATER FIELD DATA

|                |                         |              | Conductivity |              | Redox          |             | Head     |
|----------------|-------------------------|--------------|--------------|--------------|----------------|-------------|----------|
| Monitoring     | Date                    | Temp         | @ 25 deg. C  | pН           | Potential      | Dissolved   | Space    |
| Well           | Measured                | (Deg. C)     | (uS/cm)      |              | (Eh)           | Oxygen      | (ppm)    |
| DPE-4          | 12/3/2008               | 13.5         | 735          | 7.84         | 114            | 1.9         | 2000     |
| DPE-4          | 9/28/2009               | 17.14        | 3230         | 8.25         | 87.4           | 8.22        | NR       |
| DPE-4          | 11/17/2009              | 17.49        | 4057         | 7.16         | 285            | 5.2         | NR       |
| DPE-4          | 2/22/2010               | 17.4         | 2899<br>3362 | 7.11         | 198            | 7.64        | NR       |
| DPE-4<br>DPE-4 | 5/13/2010               | 17.6<br>18.3 | 3296         | 7.88<br>10.6 | 242<br>252     | 8.61<br>6.9 | NR<br>NR |
| DPE-4          | 8/18/2010<br>12/23/2010 | 17.1         | 3296         | 7.46         | 3.9            | NR          | 23.1     |
| DPE-4          | 3/1/2011                | 18.8         | 874          | 7.40         | 144            | 1.9         | 11.5     |
| DPE-4          | 5/19/2011               | 18.8         | 2168         | 8.21         | -49            | 4.37        | NR       |
| DPE-4          | 8/28/2011               | 18.6         | 3318         | 7.63         | -48            | 5.4         | NR       |
| DPE-4          | 11/21/2011              | 17.8         | 2265         | 7.38         | -42            | 2.09        | NR       |
| DPE-4          | 2/16/2012               | 18.2         | 2692         | 7.5          | -47            | 4.18        | NR       |
| DPE-4          | 5/17/2012               | 19.2         | 2579         | 7.45         | -18            | 6.33        | NR       |
| DPE-4          | 9/26/2012               | 18.5         | 1891         | 8.1          | -56            | 5.9         | NR       |
| DPE-4          | 12/19/2012              | 19.6         | 3637         | 6.62         | -158           | 2.76        | NR       |
| DPE-4          | 2/26/2013               | 18.4         | 951          | 7.62         | -46            | 4.4         | NR       |
| DPE-4          | 5/23/2013               | 19           | 4272         | 6.34         | -73            | 1.78        | NR       |
| DPE-4          | 8/26/2013               | 20.05        | 3719         | 7.01         | 135            | 3.12        | NR       |
| DPE-4          | 12/10/2013              | 19.93        | 4120         | 6.75         | -11.5          | 3.86        | NR       |
| DPE-4          | 2/17/2014               | 19.79        | 4102         | 6.98         | 19.2           | 1.76        | NR       |
| DPE-4          | 4/20/2014               | 19.32        | 4794         | 6.52         | 26.8           | 1.21        | NR       |
| DPE-4          | 8/21/2014               | 19.77        | 5364         | 7.05         | 11.3           | 3.11        | NR       |
| DPE-4          | 11/19/2014              | 19.4         | 4684         | 7.35         | -81            | 2.88        | NR       |
| DPE-4          | 2/25/2015               | 20.1         | 4562         | 6.89         | -93            | 1.45        | NR       |
| DPE-4          | 6/15/2015               | 19.93        | 4474         | 7.06         | -11.9          | 2.27        | NR       |
| DPE-4          | 8/17/2015               | 20.21        | 5609         | 7.23         | 65             | 1.74        | NR       |
| DPE-4          | 12/14/2015              | 19.88        | 5983         | 6.69         | -64.3          | 2.14        | NR       |
| DPE-4<br>DPE-4 | 1/11/2016<br>5/17/2016  | 18.61        | 3878         | 7.65         | 268.1<br>200.1 | 5.28        | NR       |
| DPE-4          | 3/17/2016               | 19.43        | 3915         | 6.65         | 200.1          | 6.21        | NR       |
| DPE-5          | 12/3/2008               | 14.3         | 735          | 9.26         | 13             | 0.5         | 1.3      |
| DPE-5          | 9/28/2009               | 17.06        | 2264         | 7.94         | 181            | 0.2         | NR       |
| DPE-5          | 11/17/2009              | 18.02        | 2921         | 7.58         | 204            | 4.15        | NR       |
| DPE-5          | 2/22/2010               | 16.7         | 3271         | 7.48         | 231            | 6.3         | NR       |
| DPE-5          | 5/13/2010               | 17.1         | 3115         | 7.92         | 274            | 7.54        | NR       |
| DPE-5          | 8/18/2010               | 18.3         | 2997         | 10.5         | 241            | 3.65        | NR       |
| DPE-5          | 12/23/2010              | 17.4         | 2216         | 7.12         | -13            | 10.3        | 17.7     |
| DPE-5          | 3/1/2011                | 18.5         | 776          | 7.21         | 22             | 2.87        | 0        |
| DPE-5          | 5/19/2011               | 18.6         | 1008         | 8.15         | -36            | 2.91        | NR       |
| DPE-5          | 8/28/2011               | 18.6         | 3219         | 6.69         | -44            | 5.9         | NR       |
| DPE-5          | 11/21/2011              | 18.5         | 2939         | 7.76         | -56            | 4.77        | NR       |
| DPE-5          | 2/16/2012               | 18.19        | 2280         | 7.95         | -72            | 5.11        | NR       |
| DPE-5          | 5/17/2012               | 9.9          | 1767         | 7.85         | -15            | 1.09        | NR       |
| DPE-5          | 9/26/2012               | 18.3         | 1972         | 8.5          | -73            | 7.2         | NR       |
| DPE-5          | 12/19/2012              | 18.9         | 1886         | 9.28         | -134           | 0.91        | NR       |
| DPE-5<br>DPE-5 | 2/26/2013<br>5/23/2013  | 19.2         | 1801<br>1528 | 7.21<br>7.91 | -44<br>-60     | 4.6<br>1.57 | NR<br>NR |
|                | 0.10.1.10.1.0           | 18.85        | 24.42        |              |                | 200         | 2.770    |
| DPE-5<br>DPE-5 | 8/26/2013<br>12/10/2013 | 19.99        | 2163<br>1468 | 8.14         | -89            | 2.93        | NR<br>NR |
| DPE-5          | 2/17/2014               | 19.12        | 1508         | 8.26         | -49.2          | 0.92        | NR       |
| DPE-5          | 4/20/2014               | 19.05        | 2290         | 7.92         | -45.2          | 1.44        | NR       |
| DPE-5          | 8/21/2014               | 19.34        | 3428         | 8.37         | 85.9           | 2.21        | NR       |
| DPE-5          | 11/19/2014              | 18.5         | 3111         | 8.64         | -82            | 0.98        | NR       |
| DPE-5          | 2/25/2015               | 19.5         | 2818         | 9.8          | 85.6           | 2.48        | NR       |
| DPE-5          | 6/15/2015               | 19.89        | 3738         | 7.08         | -105.8         | 2.3         | NR       |
| DPE-5          | 8/17/2015               | 19.92        | 4832         | 8.53         | 62.5           | 1.57        | NR       |
| DPE-5          | 12/14/2015              | 19.87        | 4175         | 8.01         | 162.4          | 2.7         | NR       |
| DPE-5          | 1/11/2016               | 17.95        | 3497         | 7.88         | 179.5          | 5.81        | NR       |
| DPE-5          | 5/17/2016               | 18.61        | 3308         | 7.12         | 163.1          | 6.17        | NR       |
|                |                         |              |              |              |                |             |          |

#### GROUNDWATER FIELD DATA

|                |                         |               | Conductivity |              | Redox       |              | Head        |
|----------------|-------------------------|---------------|--------------|--------------|-------------|--------------|-------------|
| Monitoring     | Date                    | Temp          | @ 25 deg. C  | pН           | Potential   | Dissolved    | Space       |
| Well           | Measured                | (Deg. C)      | (uS/cm)      |              | (Eh)        | Oxygen       | (ppm)       |
| DPE-6          | 12/3/2008               | 14.6          | 735          | 8.12         | 67.1        | 1.9          | 1.2         |
| DPE-6          | 9/28/2009               | 18.6          | 1086         | 8.39         | 98.6        | 9.8          | NR          |
| DPE-6          | 11/17/2009              | 18.7          | 1400         | 7.81         | 249         | 6.3          | NR          |
| DPE-6          | 2/22/2010               | 17.9          | 1248         | 7.81         | 213         | 5.42         | NR          |
| DPE-6          | 5/13/2010               | 18.4          | 1022         | 8.18         | 272         | 5.86         | NR          |
| DPE-6          | 8/18/2010               | 19.1          | 559          | 11.1         | 251         | 6.67         | NR          |
| DPE-6          | 11/18/2010              | 18.39         | 4497         | 7.44         | -62         | 3.88         | NR          |
| DPE-6<br>DPE-6 | 12/23/2010<br>3/1/2011  | 17.2<br>17.9  | 3341<br>1048 | 7.11         | -12<br>-16  | 10.9<br>2.04 | 17.7<br>6.2 |
| DPE-6          | 5/19/2011               | 18.4          | 1162         | 8.22         | -44         | 2.61         | NR          |
| DPE-6          | 8/28/2011               | 18.7          | 1800         | 6.82         | -3          | 4.6          | NR          |
| DPE-6          | 11/21/2011              | 19.3          | 648          | 8.15         | -76         | 3.49         | NR          |
| DPE-6          | 2/16/2012               | 19.07         | 590          | 7.9          | -69         | 3.59         | NR          |
| DPE-6          | 5/17/2012               | 14.9          | 611          | 7.93         | -23         | 6.43         | NR          |
| DPE-6          | 9/26/2012               | 19.6          | 461          | 8            | 50          | 4.3          | NR          |
| DPE-6          | 12/19/2012              | 19.6          | 695          | 7.49         | -40         | 3.3          | NR          |
| DPE-6          | 2/26/2013               | 17.6          | 1726         | 6.91         | -40         | 5.1          | NR          |
| DPE-6          | 5/23/2013               | 19.12         | 1414         | 7.86         | -58         | 3.96         | NR          |
| DPE-6          | 8/26/2013               | 20.34         | 1006         | 6.97         | 167         | 2.73         | NR          |
| DPE-6          | 12/10/2013              | 19.6          | 622          | 7.89         | -75         | 3.17         | NR          |
| DPE-6          | 2/17/2014               | 19.62         | 472          | 7.24         | -4.9        | 2.5          | NR          |
| DPE-6          | 4/20/2014               | 19.66         | 706          | 6.95         | 4.7         | 3.28         | NR          |
| DPE-6<br>DPE-6 | 8/21/2014<br>11/19/2014 | 19.51<br>19.6 | 879<br>929   | 7.84<br>8.02 | 130.1<br>95 | 3.65<br>3.11 | NR<br>NR    |
| DPE-6          | 2/25/2015               | 18.6          | 1088         | 7.6          | 13.3        | 3.1          | NR          |
| DPE-6          | 6/15/2015               | 19.99         | 882          | 7.98         | -54.2       | 3.55         | NR          |
| DPE-6          | 8/17/2015               | 19.68         | 1132         | 7.84         | 412.4       | 3.14         | NR          |
| DPE-6          | 12/14/2015              | 19.65         | 1380         | 7.5          | 274.3       | 3.6          | NR          |
| DPE-6          | 1/11/2016               | 18.39         | 1486         | 7.58         | 193         | 3.53         | NR          |
| DPE-6          | 5/17/2016               | 19.27         | 1563         | 7.14         | 162.5       | 4.95         | NR          |
|                |                         |               |              |              |             |              |             |
| DPE-7          | 12/3/2008               | 15.2          | 735          | 7.95         | 92.8        | 0.4          | 2.5         |
| DPE-7          | 9/28/2009               | 17.15         | 2216         | 7.01         | 196         | 2.14         | NR          |
| DPE-7          | 11/17/2009              | 19.01         | 2095         | 7.97         | 193         | 5.01         | NR          |
| DPE-7<br>DPE-7 | 2/22/2010<br>5/13/2010  | 18.1<br>18.5  | 1354<br>1240 | 7.84<br>7.93 | 209<br>272  | 5.31<br>5.19 | NR<br>NR    |
| DPE-7<br>DPE-7 | 8/18/2010               | 19.7          | 1012         | 11.1         | 276         | 4.13         | NR          |
| DPE-7          | 11/18/2010              | 19.19         | 2535         | 7.61         | -71         | 3.54         | NR          |
| DPE-7          | 12/23/2010              | 17.3          | 5901         | 7.19         | -18         | 9.6          | 10.7        |
| DPE-7          | 3/1/2011                | 18.5          | 996          | 7.01         | -8          | 1.96         | 0           |
| DPE-7          | 5/19/2011               | 18.2          | 2472         | 8.09         | -43         | 2.97         | NR          |
| DPE-7          | 8/28/2011               | 16.9          | 1602         | 7.72         | -51         | 9.4          | NR          |
| DPE-7          | 11/21/2011              | 19.7          | 727          | 7.92         | -64         | 3.48         | NR          |
| DPE-7          | 2/16/2012               | 19.3          | 1478         | 7.5          | -48         | 2.5          | NR          |
| DPE-7          | 5/17/2012               | 19.3          | 1366         | 7.68         | -22         | 4.76         | NR          |
| DPE-7          | 9/26/2012               | 19.9          | 747          | 7.8          | 40          | 4.3          | NR          |
| DPE-7          | 12/19/2012              | 20            | 1045         | 6.88         | -8.6        | 3.04         | NR          |
| DPE-7          | 2/26/2013<br>5/23/2013  | 18.4          | 1500<br>2289 | 7.08         | -49<br>-28  | 2.98         | NR<br>NP    |
| DPE-7<br>DPE-7 | 8/26/2013               | 19.6<br>19.6  | 2289         | 7.28         | -28         | 2.98         | NR<br>NR    |
| DPE-7          | 12/10/2013              | 19.7          | 972          | 7.28         | -76         | 4.4          | NR          |
| DPE-7          | 2/17/2014               | 19.11         | 885          | 7.95         | -31.9       | 3.45         | NR          |
| DPE-7          | 4/20/2014               | 19.36         | 11.33        | 7.65         | -31.3       | 3.61         | NR          |
| DPE-7          | 8/21/2014               | 20.33         | 1655         | 7.77         | 95.3        | 3.51         | NR          |
| DPE-7          | 11/19/2014              | 19.2          | 1524         | 8.26         | 93          | 3.61         | NR          |
| DPE-7          | 2/25/2015               | 18.7          | 1442         | 6.31         | 103         | 3.36         | NR          |
| DPE-7          | 6/15/2015               | 19.91         | 1273         | 8.1          | -58.4       | 2.65         | NR          |
| DPE-7          | 8/17/2015               | 19.94         | 2319         | 7.98         | 442.1       | 2.56         | NR          |
| DPE-7          | 12/14/2015              | 19.73         | 2297         | 7.41         | 182.7       | 3.01         | NR          |
| DPE-7          | 1/11/2016               | 20.17         | 1845         | 7.22         | 191.1       | 4.51         | NR          |
| DPE-7          | 5/17/2016               | 19.73         | 2311         | 7.02         | 157.9       | 5.08         | NR          |
|                |                         |               |              |              | I           |              |             |

#### GROUNDWATER FIELD DATA

MN Bio Business Center 221 First Avenue SW Rochester, Minnesota

|            |            |          | Conductivity |      | Redox     |           | Head  |
|------------|------------|----------|--------------|------|-----------|-----------|-------|
| Monitoring | Date       | Temp     | @ 25 deg. C  | pН   | Potential | Dissolved | Space |
| Well       | Measured   | (Deg. C) | (uS/cm)      |      | (Eh)      | Oxygen    | (ppm) |
| DPE-8      | 12/3/2008  | 13.6     | 753          | 7.52 | 165       | 1.4       | 1056  |
| DPE-8      | 9/28/2009  | 17.31    | 2826         | 7.93 | 460       | 6.61      | NR    |
| DPE-8      | 11/17/2009 | 1678     | 3604         | 7.2  | 226       | 5.19      | NR    |
| DPE-8      | 2/22/2010  | 16.2     | 2661         | 7.82 | 227       | 7.15      | NR    |
| DPE-8      | 5/13/2010  | 17.8     | 2236         | 8.03 | 267       | 9.06      | NR    |
| DPE-8      | 8/18/2010  | 17.6     | 3115         | 11   | 262       | 6.68      | NR    |
| DPE-8      | 11/18/2010 | NR       | NR           | NR   | NR        | NR        | NR    |
| DPE-8      | 12/23/2010 | 17.3     | 4162         | NR   | NR        | NR        | 11.4  |
| DPE-8      | 3/1/2011   | 18.4     | 872          | 6.92 | 21        | 1.87      | 0.8   |
| DPE-8      | 5/19/2011  | 18.4     | 3649         | 7.21 | 1.7       | 2.22      | NR    |
| DPE-8      | 8/28/2011  | 18.7     | 5345         | 7.14 | -20       | 4.09      | NR    |
| DPE-8      | 11/21/2011 | 18.55    | 5100         | 7.2  | -28       | 3.38      | NR    |
| DPE-8      | 2/16/2012  | NR*      | NR*          | NR*  | NR*       | NR*       | NR    |
| DPE-8      | 5/17/2012  | NR*      | NR*          | NR*  | NR*       | NR*       | NR    |
| DPE-8      | 9/26/2012  | NR*      | NR*          | NR*  | NR*       | NR*       | NR    |
| DPE-8      | 12/19/2012 | NR*      | NR*          | NR*  | NR*       | NR*       | NR    |
| DPE-8      | 2/26/2013  | NR*      | NR*          | NR*  | NR*       | NR*       | NR    |
| DPE-8      | 2/25/2013  | 19.9     | 6720         | 7.35 | -32       | 4.3       | NR    |
| DPE-8      | 8/26/2013  | 19.98    | 7601         | 6.65 | 186       | 2.82      | NR    |
| DPE-8      | 12/10/2013 | NR*      | NR*          | NR*  | NR*       | NR*       | NR    |
| DPE-8      | 2/17/2014  | NR*      | NR*          | NR*  | NR*       | NR*       | NR    |
| DPE-8      | 4/20/2014  | NR*      | NR*          | NR*  | NR*       | NR*       | NR    |
| DPE-8      | 8/21/2014  | 19.37    | 8741         | 7.17 | 165.2     | 3.48      | NR    |
| DPE-8      | 11/19/2014 | NR*      | NR*          | NR*  | NR*       | NR*       | NR    |
| DPE-8      | 2/25/2015  | 20.7     | 6803         | 8.45 | 128       | 2.3       | NR    |
| DPE-8      | 6/15/2015  | 19.8     | 8359         | 7.41 | -27.7     | 4.05      | NR    |
| DPE-8      | 8/17/2015  | 20.4     | 9924         | 7.38 | 125.5     | 2.65      | NR    |
| DPE-8      | 12/14/2015 | 19.86    | 9141         | 7.28 | 160.3     | 3.08      | NR    |
| DPE-8      | 1/11/2016  | 18.17    | 7311         | 7.35 | 239.3     | 5.57      | NR    |
| DPE-8      | 5/17/2016  | 17.69    | 7236         | 6.88 | 174.5     | 6.5       | NR    |
|            |            |          |              |      |           |           |       |

#### Notes:

**Bold** - number has exceeded the range of the instrument NR - Not Recorded

NR\* - Not Recorded, well was dry

| Sample ID      | Date                   | PCE<br>Conc.<br>(ug/L) | % Change        |
|----------------|------------------------|------------------------|-----------------|
| MW-14          | 12/3/2008              | 30.6                   |                 |
| MW-14          | 6/29/2009              | 30.6                   |                 |
| MW-14          | 10/1/2009              | 4.2                    | -86.3           |
| MW-14          | 11/16/2009             | 7.1                    | -76.8           |
| MW-14          | 2/23/2010              | 3.0                    | -90.2           |
| MW-14          | 5/12/2010              | 3.1                    | -89.9           |
| MW-14          | 8/18/2010              | 1.8                    | -94.1           |
| MW-14          | 11/18/2010             | 6.6                    | -78.4           |
| MW-14<br>MW-14 | 3/1/2011<br>5/19/2011  | 4.8<br>5.0             | -84.3<br>-83.7  |
| MW-14          | 8/28/2011              | 1.5                    | -95.1           |
| MW-14          | 11/21/2011             | 1.5                    | -95.1           |
| MW-14          | 2/16/2012              | <1.0                   | -100.0          |
| MW-14          | 5/17/2012              | <1.0                   | -100.0          |
| MW-14          | 9/26/2012              | <1.0                   | -100.0          |
| MW-14          | 12/19/2012             | 1.3                    | -95.8           |
| MW-14          | 2/25/2013              | <1.0                   | -100.0          |
| MW-14          | 5/23/2013              | 2.2                    | -92.8           |
| MW-14          | 8/26/2013              | 1.2                    | -96.1           |
| MW-14<br>MW-14 | 12/10/2013             | 1.5                    | -95.1           |
| MW-14          | 2/17/2014<br>5/20/2014 | 3.1                    | -89.9<br>-81.4  |
| MW-14          | 8/21/2014              | 5.7<br>1.4             | -95.4           |
| MW-14          | 11/19/2014             | 2.9                    | -90.5           |
| MW-14          | 3/3/2015               | 244.0                  | 697.4           |
| MW-14          | 6/15/2015              | 60.4                   | 97.4            |
| MW-14          | 8/18/2015              | 4.1                    | -86.6           |
| MW-14          | 12/14/2015             | 88.3                   | 188.6           |
| MW-14          | 1/11/2016              | 11.1                   | -63.7           |
| MW-14          | 2/23/2016              | 2.8                    | -90.8           |
| MW-14          | 5/17/2016              | 35.7                   | 16.7            |
| MW-15          | 12/10/2008             | 104                    |                 |
| MW-15          | 6/29/2009              | 104                    |                 |
| MW-15          | 10/1/2009              | 15.7                   | -84.9           |
| MW-15          | 11/16/2009             | 9.5                    | -90.9           |
| MW-15          | 2/22/2010              | 5.7                    | -94.5           |
| MW-15<br>MW-15 | 5/12/2010<br>8/18/2010 | 2.8<br>1.3             | -97.3<br>-98.8  |
| MW-15          | 11/18/2010             | 3.3                    | -96.8           |
| MW-15          | 3/1/2011               | <1.0                   | -100.0          |
| MW-15          | 5/19/2011              | <1.0                   | -100.0          |
| MW-15          | 8/28/2011              | 1.2                    | -98.8           |
| MW-15          | 11/21/2011             | <1.0                   | -100.0          |
| MW-15          | 2/15/2012              | <1.0                   | -100.0          |
| MW-15          | 5/17/2012              | <1.0                   | -100.0          |
| MW-15          | 9/26/2012              | <1.1                   | -99.0           |
| MW-15<br>MW-15 | 12/19/2012             | <1.0                   | -100.0          |
| MW-15          | 2/25/2013<br>5/23/2013 | <1.0                   | -100.0<br>-96.3 |
| MW-15          | 8/26/2013              | <1.0                   | -100.0          |
| MW-15          | 12/10/2013             | <1.0                   | -100.0          |
| MW-15          | 2/17/2014              | <1.0                   | -100.0          |
| MW-15          | 5/20/2014              | 1.6                    | -98.5           |
| MW-15          | 8/21/2014              | <1.0                   | -100.0          |
| MW-15          | 11/19/2014             | <1.1                   | -100.0          |
| MW-15          | 3/3/2015               | 85.2                   | -18.1           |
| MW-15          | 6/15/2015              | 101                    | -2.9            |
| MW-15          | 8/18/2015              | 1.8                    | -98.3           |
| MW-15<br>MW-15 | 12/14/2015             | 194                    | 86.5            |
| MW-15          | 1/11/2016<br>2/23/2016 | 11.9<br>1.1            | -88.6<br>-98.9  |
| MW-15          | 5/17/2016              | 26.4                   | -74.6           |
| 19199-10       | 0/11/2010              | 23.7                   | 7 7.0           |

|                |                        | PCE     |                |
|----------------|------------------------|---------|----------------|
| Sample ID      | Date                   | Conc.   | % Change       |
|                |                        | (ug/L)  |                |
| MW-16          | 12/3/2008              | 14,100  |                |
| MW-16          | 6/29/2009              | 14,100  |                |
| MW-16          | 10/1/2009              | 6,890   | -51.1          |
| MW-16          | 11/16/2009             | 21,000  | 48.9           |
| MW-16          | 2/22/2010              | 4,390   | -68.9          |
| MW-16          | 5/12/2010              | 815     | -94.2          |
| MW-16          | 8/18/2010              | 696     | -95.1          |
| MW-16          | 11/18/2010             | 2,120   | -85.0          |
| MW-16          | 3/1/2011               | 322     | -97.7          |
| MW-16          | 5/19/2011              | 1,310   | -90.7          |
| MW-16          | 8/28/2011              | 590     | -95.8          |
| MW-16          | 11/21/2011             | 75      | -99.5          |
| MW-16          | 2/15/2012              | 16.1    | -99.9          |
| MW-16          | 5/17/2012              | 7.8     | -99.9          |
| MW-16          | 9/26/2012              | 21.8    | -99.8          |
| MW-16          | 12/19/2012             | 128.0   | -99.1          |
| MW-16          | 2/25/2013              | 8.0     | -99.9          |
| MW-16          | 5/23/2013              | 7,450.0 | -47.2          |
| MW-16          | 8/26/2013              | 469.0   | -96.7          |
| MW-16          | 12/10/2013             | 432.0   | -96.9          |
| MW-16          | 2/17/2014              | 432.0   | -96.9<br>-97.1 |
|                |                        |         |                |
| MW-16<br>MW-16 | 5/20/2014<br>8/21/2014 | 2,530.0 | -82.1          |
|                |                        | 1,780.0 | -87.4          |
| MW-16<br>MW-16 | 11/19/2014             | 2,350.0 | -83.3          |
|                | 2/25/2015              | 963.0   | -93.2          |
| MW-16          | 6/15/2015              | 2,650.0 | -81.2          |
| MW-16          | 8/18/2015              | 2,790.0 | -80.2          |
|                | 12/14/2015             | 1,490.0 | -89.4          |
| MW-16          | 1/11/2016              | 290.0   | -97.9          |
| MW-16          | 2/23/2016              | 461.0   | -96.7          |
| MW-16          | 5/17/2016              | 452.0   | -96.8          |
| MW-17          | 12/3/2008              | 363     |                |
| MW-17          | 6/29/2009              | 363     |                |
|                |                        |         | 101.0          |
| MW-17<br>MW-17 | 10/1/2009              | 803     | 121.2          |
| MW-17          | 11/16/2009             | 1,100   | 203.0          |
|                | 2/22/2010              | 639     | 76.0           |
| MW-17          | 5/12/2010              | 412     | 13.5           |
| MW-17          | 8/18/2010              | 174     | -52.1          |
| MW-17          | 11/18/2010             | 209     | -42.4          |
| MW-17          | 3/1/2011               | 145     | -60.1          |
| MW-17          | 5/19/2011              | 109     | -70.0          |
| MW-17          | 8/28/2011              | 107     | -70.5          |
| MW-17          | 11/21/2011             | 106     | -70.8          |
| MW-17          | 2/15/2012              | 47.1    | -87.0          |
| MW-17          | 5/17/2012              | 37.1    | -89.8          |
| MW-17          | 9/26/2012              | 38.1    | -89.5          |
| MW-17          | 12/19/2012             | 22.0    | -93.9          |
| MW-17          | 2/25/2013              | 49.9    | -86.3          |
| MW-17          | 5/23/2013              | 215.0   | -40.8          |
| MW-17          | 8/26/2013              | 95.5    | -73.7          |
| MW-17          | 12/10/2013             | 69.9    | -80.7          |
| MW-17          | 2/17/2014              | 54.8    | -84.9          |
| MW-17          | 5/20/2014              | 94.7    | -73.9          |
| MW-17          | 8/21/2014              | 211.0   | -41.9          |
| MW-17          | 11/19/2014             | 227.0   | -37.5          |
| MW-17          | 2/25/2015              | 70.4    | -80.6          |
| MW-17          | 6/15/2015              | 433.0   | 19.3           |
| MW-17          | 8/18/2015              | 1,060.0 | 192.0          |
| MW-17          | 12/14/2015             | 1,010.0 | 178.2          |
| MW-17          | 1/11/2016              | 329.0   | -9.4           |
| MW-17          | 2/23/2016              | 877.0   | 141.6          |
| MW-17          | 5/18/2016              | 227.0   | -37.5          |
|                |                        |         |                |

| Sample ID      | Date                    | PCE<br>Conc. | % Change        |
|----------------|-------------------------|--------------|-----------------|
| Sample ID      | Date                    | (ug/L)       | 76 Change       |
| MW-18          | 12/3/2008               | 257          |                 |
| MW-18<br>MW-18 | 6/29/2009               | 257          | 0.7             |
| MW-18          | 10/1/2009<br>11/16/2009 | 250<br>130   | -2.7<br>-49.4   |
| MW-18          | 2/22/2010               | 96.8         | -49.4           |
| MW-18          | 5/12/2010               | 26           | -89.9           |
| MW-18          | 8/18/2010               | 8.4          | -96.7           |
| MW-18          | 11/18/2010              | 8.6          | -96.7           |
| MW-18          | 3/1/2011                | 4.8          | -98.1           |
| MW-18<br>MW-18 | 5/19/2011               | 3.6          | -98.6           |
| MW-18          | 8/28/2011<br>11/21/2011 | 3.6          | -98.6<br>-98.6  |
| MW-18          | 2/15/2012               | 2.9          | -98.9           |
| MW-18          | 5/17/2012               | 1.5          | -99.4           |
| MW-18          | 9/26/2012               | 1.8          | -99.3           |
| MW-18          | 12/19/2012              | <1.0         | -100.0          |
| MW-18          | 2/25/2013               | 2.3          | -99.1           |
| MW-18<br>MW-18 | 5/23/2013               | 1.2          | -99.5           |
| MW-18          | 8/26/2013<br>12/10/2013 | 1.5<br>1.6   | -99.4<br>-99.4  |
| MW-18          | 2/17/2014               | 2            | -99.4           |
| MW-18          | 5/20/2014               | 15.7         | -93.9           |
| MW-18          | 8/21/2014               | 3            | -98.8           |
| MW-18          | 11/19/2014              | 1.3          | -99.5           |
| MW-18          | 2/25/2015               | 2.3          | -99.1           |
| MW-18          | 6/15/2015               | 340          | 32.3            |
| MW-18          | 8/18/2015               | 2.1          | -99.2           |
| MW-18          | 12/14/2015              | 952          | 270.4           |
| MW-18<br>MW-18 | 1/11/2016<br>2/23/2016  | 156<br>522   | -39.3<br>103.1  |
| MW-18          | 5/18/2016               | 121          | -52.9           |
| 101111         | 0/10/2010               | 121          | 02.0            |
| MW-19          | 12/3/2008               | 2.4          |                 |
| MW-19          | 6/29/2009               | 2.4          |                 |
| MW-19          | 9/24/2009               | 17.4         | 625.0           |
| MW-19<br>MW-19 | 11/16/2009<br>2/23/2010 | 13.6<br>12.9 | 466.7<br>437.5  |
| MW-19          | 5/12/2010               | 7.2          | 200.0           |
| MW-19          | 8/18/2010               | 4.2          | 75.0            |
| MW-19          | 11/18/2010              | 4.8          | 100.0           |
| MW-19          | 3/1/2011                | 4.8          | 100.0           |
| MW-19          | 5/19/2011               | 4.7          | 95.8            |
| MW-19          | 8/28/2011               | 2.9          | 20.8            |
| MW-19          | 11/21/2011              | 2.7          | 12.5            |
| MW-19<br>MW-19 | 2/15/2012<br>5/17/2012  | 2.2<br>1.1   | -8.3<br>-54.2   |
| MW-19          | 9/26/2012               | <1.0         | -54.2<br>-100.0 |
| MW-19          | 12/19/2012              | 1.4          | -41.7           |
| MW-19          | 2/25/2013               | <1.0         | -100.0          |
| MW-19          | 5/23/2013               | 3            | 25.0            |
| MW-19          | 8/26/2013               | 1.7          | -29.2           |
| MW-19          | 12/10/2013              | 2.1          | -12.5           |
| MW-19          | 2/17/2014               | 11.7         | 387.5           |
| MW-19<br>MW-19 | 5/20/2014<br>8/21/2014  | 4.7<br>3.7   | 95.8<br>54.2    |
| MW-19          | 11/19/2014              | 5.3          | 120.8           |
| MW-19          | 2/25/2015               | 50.1         | 1987.5          |
| MW-19          | 6/15/2015               | 203          | 8358.3          |
| MW-19          | 8/18/2015               | 55.7         | 2220.8          |
| MW-19          | 12/14/2015              | 139          | 5691.7          |
| MW-19          | 1/11/2016               | 36.1         | 1404.2          |
| MW-19          | 2/23/2016               | 35.4         | 1375.0          |
| MW-19          | 5/17/2016               | 54.2         | 2158.3          |
|                |                         |              | [               |

|           |            | PCE    |          |
|-----------|------------|--------|----------|
| Sample ID | Date       | Conc.  | % Change |
| •         |            | (ug/L) | •        |
| MW-20     | 12/10/2008 | 599    |          |
| MW-20     | 6/29/2009  | 599    |          |
| MW-20     | 10/1/2009  | 713    | 19.0     |
| MW-20     | 11/16/2009 | 307    | -48.7    |
| MW-20     | 2/23/2010  | 402    | -32.9    |
| MW-20     | 5/12/2010  | 194    | -67.6    |
| MW-20     | 8/18/2010  | 74.7   | -87.5    |
| MW-20     | 11/18/2010 | 50.9   | -91.5    |
| MW-20     | 3/1/2011   | 211    | -64.8    |
| MW-20     | 5/19/2011  | 16.8   | -97.2    |
| MW-20     | 8/28/2011  | 12.2   | -98.0    |
| MW-20     | 11/21/2011 | 32.5   | -94.6    |
| MW-20     | 2/15/2012  | 41.8   | -93.0    |
| MW-20     | 5/17/2012  | 28.7   | -95.2    |
| MW-20     | 9/26/2012  | 17.4   | -97.1    |
| MW-20     | 12/19/2012 | 40.8   | -93.2    |
| MW-20     | 2/25/2013  | 50.2   | -91.6    |
| MW-20     | 5/23/2013  | 198    | -66.9    |
| MW-20     | 8/26/2013  | 45.5   | -92.4    |
| MW-20     | 12/10/2013 | 81.4   | -86.4    |
| MW-20     | 2/17/2014  | 106    | -82.3    |
| MW-20     | 5/20/2014  | 46.9   | -92.2    |
| MW-20     | 8/21/2014  | 12.7   | -97.9    |
| MW-20     | 11/19/2014 | 20.4   | -96.6    |
| MW-20     | 2/25/2015  | 47.1   | -92.1    |
| MW-20     | 6/15/2015  | 172    | -71.3    |
| MW-20     | 8/18/2015  | 762    | 27.2     |
| MW-20     | 12/14/2015 | 177    | -70.5    |
| MW-20     | 1/11/2016  | 27.5   | -95.4    |
| MW-20     | 2/23/2016  | 62     | -89.6    |
| MW-20     | 5/17/2016  | 23.2   | -96.1    |
|           |            |        |          |

|                | 5.4                     | PCE                | a, a,          |
|----------------|-------------------------|--------------------|----------------|
| Sample ID      | Date                    | Conc.<br>(ug/L)    | % Change       |
| DPE-1          | 8/7/2008                | 157,000            |                |
| DPE-1          | 12/10/2008              | 161,000            |                |
| DPE-1          | 6/29/2009               | 161,000            |                |
| DPE-1          | 9/28/2009               | 6,820              | -95.8          |
| DPE-1          | 11/16/2009              | 3,330              | -97.9          |
| DPE-1          | 2/22/2010               | 2,610              | -98.4          |
| DPE-1<br>DPE-1 | 5/13/2010<br>8/18/2010  | 1,700<br>965       | -98.9<br>-99.4 |
| DPE-1          | 12/22/2010              | 1,190              | -99.3          |
| DPE-1          | 3/1/2011                | 101                | -99.9          |
| DPE-1          | 5/19/2011               | 185                | -99.9          |
| DPE-1          | 8/28/2011               | 309                | -99.8          |
| DPE-1          | 11/21/2011              | 99                 | -99.9          |
| DPE-1          | 2/16/2012               | 26.4               | -100.0         |
| DPE-1          | 5/17/2012               | 38.8               | -100.0         |
| DPE-1          | 9/26/2012               | 82.2               | -99.9          |
| DPE-1          | 12/19/2012              | 505.0              | -99.7          |
| DPE-1<br>DPE-1 | 2/26/2013<br>5/23/2013  | 171.0<br>9,840.0   | -99.9<br>-93.9 |
| DPE-1          | 8/26/2013               | 265.0              | -99.8          |
| DPE-1          | 12/10/2013              | 1,270.0            | -99.2          |
| DPE-1          | 2/17/2014               | 2,400.0            | -98.5          |
| DPE-1          | 5/20/2014               | 1,550.0            | -99.0          |
| DPE-1          | 8/21/2014               | 5,620.0            | -96.5          |
| DPE-1          | 11/19/2014              | 4,180.0            | -97.4          |
| DPE-1          | 2/25/2015               | 4,690.0            | -97.1          |
| DPE-1          | 6/15/2015               | 4,660.0            | -97.1          |
| DPE-1          | 8/18/2015               | 6,700.0            | -95.8          |
| DPE-1<br>DPE-1 | 12/14/2015<br>1/11/2016 | 5,490.0<br>1,270.0 | -96.6<br>-99.2 |
| DPE-1          | 2/23/2016               | 2,970.0            | -98.2          |
| DPE-1          | 5/18/2016               | 889.0              | -99.4          |
|                |                         |                    |                |
| DPE-2          | 12/10/2008              | 38,200             |                |
| DPE-2          | 6/29/2009               | 38,200             |                |
| DPE-2          | 9/28/2009               | 32,000             | -16.2          |
| DPE-2          | 11/17/2009              | 10,600             | -72.3          |
| DPE-2          | 2/22/2010               | 2,710              | -92.9          |
| DPE-2<br>DPE-2 | 5/13/2010<br>8/18/2010  | 5,800<br>12,100    | -84.8<br>-68.3 |
| DPE-2          | 12/22/2010              | 4,690              | -87.7          |
| DPE-2          | 3/1/2011                | 2,990              | -92.2          |
| DPE-2          | 5/19/2011               | 1,680              | -95.6          |
| DPE-2          | 8/28/2011               | 2,080              | -94.6          |
| DPE-2          | 11/21/2011              | 890                | -97.7          |
| DPE-2          | 2/16/2012               | 511                | -98.7          |
| DPE-2          | 5/17/2012               | 206                | -99.5          |
| DPE-2          | 9/26/2012               | 39                 | -99.9          |
| DPE-2<br>DPE-2 | 12/19/2012<br>2/26/2013 | 746<br>140         | -98.0<br>-99.6 |
| DPE-2          | 5/23/2013               | 7,100              | -81.4          |
| DPE-2          | 8/26/2013               | 184                | -99.5          |
| DPE-2          | 12/10/2013              | 1,720              | -95.5          |
| DPE-2          | 2/17/2014               | 1,840              | -95.2          |
| DPE-2          | 5/20/2014               | 6,800              | -82.2          |
| DPE-2          | 8/21/2014               | 7,330              | -80.8          |
| DPE-2          | 11/19/2014              | 6,200              | -83.8          |
| DPE-2          | 3/3/2015                | 1,100              | -97.1          |
| DPE-2          | 6/15/2015               | 5,130              | -86.6<br>73.0  |
| DPE-2<br>DPE-2 | 8/18/2015<br>12/14/2015 | 10,300<br>7,680    | -73.0<br>-79.9 |
| DPE-2          | 1/11/2016               | 1,280              | -79.9<br>-96.6 |
| DPE-2          | 2/23/2016               | 4,230              | -88.9          |
| DPE-2          | 5/18/2016               | 1,260              | -96.7          |
|                |                         |                    |                |

|                | D. /                    | PCE              | a, 61          |
|----------------|-------------------------|------------------|----------------|
| Sample ID      | Date                    | Conc.<br>(ug/L)  | % Change       |
| DPE-3          | 12/10/2008              | 152,000          |                |
| DPE-3          | 6/29/2009               | 152,000          |                |
| DPE-3          | 9/28/2009               | 20,300           | -86.6          |
| DPE-3          | 11/17/2009              | 34,600           | -77.2          |
| DPE-3          | 2/22/2010               | 806              | -99.5          |
| DPE-3          | 5/13/2010               | 2,240            | -98.5          |
| DPE-3          | 8/18/2010               | 20,400           | -86.6          |
| DPE-3          | 12/22/2010              | 1,450            | -99.0          |
| DPE-3<br>DPE-3 | 3/1/2011<br>5/19/2011   | 12,700<br>3,220  | -91.6<br>-97.9 |
| DPE-3          | 8/28/2011               | 4,260            | -97.9          |
| DPE-3          | 11/21/2011              | 5,310            | -96.5          |
| DPE-3          | 2/16/2012               | 1,010            | -99.3          |
| DPE-3          | 5/17/2012               | 3,690            | -97.6          |
| DPE-3          | 9/26/2012               | 75               | -100.0         |
| DPE-3          | 12/19/2012              | 5,670            | -96.3          |
| DPE-3          | 2/26/2013               | 264              | -99.8          |
| DPE-3          | 5/23/2013               | 61,800           | -59.3          |
| DPE-3          | 8/26/2013               | 6,980            | -95.4          |
| DPE-3          | 12/10/2013              | 10,200           | -93.3          |
| DPE-3          | 2/17/2014               | 20,000           | -86.8          |
| DPE-3          | 5/20/2014               | 53,800           | -64.6          |
| DPE-3          | 8/21/2014               | 21,200           | -86.1          |
| DPE-3          | 11/19/2014              | 36,300           | -76.1          |
| DPE-3          | 2/25/2015               | 30,800           | -79.7          |
| DPE-3          | 6/15/2015<br>8/18/2015  | 21,200           | -86.1          |
| DPE-3<br>DPE-3 | 12/14/2015              | 30,800<br>37,300 | -79.7<br>-75.5 |
| DPE-3          | 1/11/2016               | 2,960            | -98.1          |
| DPE-3          | 2/23/2016               | 19,600           | -87.1          |
| DPE-3          | 5/18/2016               | 2,510            | -98.3          |
|                |                         | ,-               |                |
| DPE-4          | 12/10/2008              | 35,600           |                |
| DPE-4          | 6/29/2009               | 35,600           |                |
| DPE-4          | 9/28/2009               | 7,340            | -79.4          |
| DPE-4          | 11/17/2009              | 5,040            | -85.8          |
| DPE-4          | 2/22/2010               | 429              | -98.8          |
| DPE-4          | 5/13/2010               | 357              | -99.0          |
| DPE-4          | 8/18/2010               | 2,600<br>1,100   | -92.7          |
| DPE-4<br>DPE-4 | 12/22/2010<br>3/1/2011  | 1,160            | -96.9<br>-96.7 |
| DPE-4          | 5/19/2011               | 367              | -99.0          |
| DPE-4          | 8/28/2011               | 771              | -97.8          |
| DPE-4          | 11/21/2011              | 763              | -97.9          |
| DPE-4          | 2/16/2012               | 830              | -97.7          |
| DPE-4          | 5/17/2012               | 223              | -99.4          |
| DPE-4          | 9/26/2012               | 187              | -99.5          |
| DPE-4          | 12/19/2012              | 1,410            | -96.0          |
| DPE-4          | 2/26/2013               | 219              | -99.4          |
| DPE-4          | 5/23/2013               | 13,700           | -61.5          |
| DPE-4          | 8/26/2013               | 982              | -97.2          |
| DPE-4          | 12/10/2013              | 6,850            | -80.8          |
| DPE-4          | 2/17/2014               | 8,860            | -75.1          |
| DPE-4          | 5/20/2014               | 8,320            | -76.6          |
| DPE-4          | 8/21/2014               | 9,670            | -72.8          |
| DPE-4<br>DPE-4 | 11/19/2014<br>2/25/2015 | 11,100           | -68.8<br>-85.7 |
| DPE-4          | 6/15/2015               | 5,090<br>11,800  | -85.7<br>-66.9 |
| DPE-4          | 8/18/2015               | 14,900           | -58.1          |
| DPE-4          | 12/14/2015              | 6,900            | -80.6          |
| DPE-4          | 1/11/2016               | 1,040            | -97.1          |
| DPE-4          | 2/23/2016               | 6,170            | -82.7          |
| DPE-4          | 5/18/2016               | 724              | -98.0          |
|                |                         |                  |                |

|                |                         | PCE         |                |
|----------------|-------------------------|-------------|----------------|
| Sample ID      | Date                    | Conc.       | % Change       |
|                |                         | (ug/L)      |                |
| DPE-5          | 12/10/2008              | 1,340       |                |
| DPE-5          | 6/29/2009               | 1,340       |                |
| DPE-5          | 9/24/2009               | 875         | -34.7          |
| DPE-5          | 11/17/2009              | 1,450       | 8.2            |
| DPE-5          | 2/22/2010               | 486         | -63.7          |
| DPE-5          | 5/13/2010               | 205         | -84.7          |
| DPE-5          | 8/18/2010               | 124         | -90.7          |
| DPE-5          | 12/22/2010              | 22          | -98.4          |
| DPE-5          | 3/1/2011                | 339         | -74.7          |
| DPE-5          | 5/19/2011               | 67          | -95.0          |
| DPE-5          | 8/28/2011               | <1.0        | -100.0         |
| DPE-5          | 11/21/2011              | 51          | -96.2          |
| DPE-5          | 2/16/2012               | 70          | -94.8          |
| DPE-5          | 5/17/2012               | 11          | -99.2          |
| DPE-5          | 9/26/2012               | 16          | -98.8          |
| DPE-5          | 12/19/2012              | 74          | -94.5          |
| DPE-5          | 2/26/2013               | 31          | -97.7          |
| DPE-5          | 5/23/2013               | 405         | -69.8          |
| DPE-5          | 8/26/2013               | 30          | -97.8          |
| DPE-5          | 12/10/2013              | 740         | -44.8          |
| DPE-5          | 2/17/2014               | 209         | -84.4          |
| DPE-5          | 5/20/2014               | 135         | -89.9          |
| DPE-5          | 8/21/2014               | 1,670       | 24.6           |
| DPE-5          | 11/19/2014              | 2,280       | 70.1           |
| DPE-5          | 2/25/2015               | 174         | -87.0          |
| DPE-5          | 6/15/2015               | 288         | -78.5          |
| DPE-5          | 8/18/2015               | 17,900      | 1235.8         |
| DPE-5          | 12/14/2015              | 263         | -80.4          |
| DPE-5          | 1/11/2016               | 209         | -84.4          |
| DPE-5          | 2/23/2016               | 148         | -89.0          |
| DPE-5          | 5/17/2016               | 152         | -88.7          |
|                |                         |             |                |
| DPE-6          | 12/10/2008              | 188         |                |
| DPE-6          | 6/29/2009               | 188         | -57.8          |
| DPE-6<br>DPE-6 | 9/24/2009<br>11/17/2009 | 79.3<br>104 | -44.7          |
| DPE-6          | 2/22/2010               | 57.8        | -69.3          |
| DPE-6          | 5/13/2010               | 14.6        | -92.2          |
| DPE-6          | 8/18/2010               | 21.7        | -88.5          |
| DPE-6          | 12/22/2010              | 77.1        | -59.0          |
| DPE-6          | 3/1/2011                | 3.9         | -97.9          |
| DPE-6          | 5/19/2011               | 23.4        | -87.6          |
| DPE-6          | 8/28/2011               | 7.7         | -95.9          |
| DPE-6<br>DPE-6 | 11/21/2011<br>2/16/2012 | 1.9<br>44.8 | -99.0<br>-76.2 |
| DPE-6          | 5/17/2012               | <1.0        | -100.0         |
| DPE-6          | 9/26/2012               | 4.6         | -97.6          |
| DPE-6          | 12/19/2012              | 10.9        | -94.2          |
| DPE-6          | 2/26/2013               | 19.8        | -89.5          |
| DPE-6          | 5/23/2013               | 6.2         | -96.7          |
| DPE-6          | 8/26/2013               | 4           | -97.9          |
| DPE-6          | 12/10/2013              | 107         | -43.1          |
| DPE-6          | 2/17/2014               | 12.9        | -93.1          |
| DPE-6<br>DPE-6 | 5/20/2014<br>8/21/2014  | 17.4<br>25  | -90.7<br>-86.7 |
| DPE-6          | 11/19/2014              | 24.6        | -86.9          |
| DPE-6          | 2/25/2015               | 5.2         | -97.2          |
| DPE-6          | 6/15/2015               | 52          | -72.3          |
| DPE-6          | 8/18/2015               | 65.9        | -64.9          |
| DPE-6          | 12/14/2015              | 67.8        | -63.9          |
| DPE-6          | 1/11/2016               | 17          | -91.0          |
| DPE-6          | 2/23/2016               | 5.8         | -96.9          |
| DPE-6          | 5/17/2016               | 51.2        | -72.8          |
|                |                         |             |                |

#### PCE GROUNDWATER CONCENTRATION DATA MN Bio Business Center 221 First Avenue SW Rochester, Minnesota

|                |                         | PCE             |                |
|----------------|-------------------------|-----------------|----------------|
| Sample ID      | Date                    | Conc.<br>(ug/L) | % Change       |
| DPE-7          | 12/10/2008              | 22.3            |                |
| DPE-7          | 6/29/2009               | 22.3            |                |
| DPE-7          | 9/24/2009               | 5.2             | -76.7          |
| DPE-7          | 11/17/2009              | 55.2            | 147.5          |
| DPE-7          | 2/22/2010               | 7.3             | -67.3          |
| DPE-7          | 5/13/2010               | 25.7            | 15.2           |
| DPE-7<br>DPE-7 | 8/18/2010<br>12/22/2010 | 189<br>23.2     | 747.5<br>4.0   |
| DPE-7          | 3/1/2011                | 7.1             | -68.2          |
| DPE-7          | 5/19/2011               | 15.9            | -28.7          |
| DPE-7          | 8/28/2011               | 26.9            | 20.6           |
| DPE-7          | 11/21/2011              | <1.0            | -100.0         |
| DPE-7          | 2/16/2012               | 27.8            | 24.7           |
| DPE-7          | 5/17/2012               | <1.0            | -100.0         |
| DPE-7          | 9/26/2012               | <1.0            | -100.0         |
| DPE-7          | 12/19/2012              | 3.7             | -83.4          |
| DPE-7          | 2/26/2013               | 8               | -64.1          |
| DPE-7          | 5/23/2013               | 1.6             | -92.8          |
| DPE-7          | 8/26/2013               | <0.4            | -100.0         |
| DPE-7          | 12/10/2013              | 2               | -91.0          |
| DPE-7          | 2/17/2014               | 5.8             | -74.0          |
| DPE-7          | 5/20/2014               | 6.9             | -69.1          |
| DPE-7          | 8/21/2014               | 44.2            | 98.2           |
| DPE-7          | 11/19/2014              | 48.9            | 119.3          |
| DPE-7          | 2/25/2015               | 14              | -37.2          |
| DPE-7          | 6/15/2015               | 233             | 944.8          |
| DPE-7          | 8/18/2015               | 127<br>146      | 469.5<br>554.7 |
| DPE-7<br>DPE-7 | 12/14/2015<br>1/11/2016 | 29.1            | 30.5           |
| DPE-7          | 2/23/2016               | 3.4             | -84.8          |
| DPE-7          | 5/17/2016               | 37              | 65.9           |
| DI L-I         | 3/11/2010               | - 51            | 00.0           |
| DPE-8          | 12/10/2008              | 14,200          |                |
| DPE-8          | 6/29/2009               | 14,200          |                |
| DPE-8          | 9/24/2009               | 1,850           | -87.0          |
| DPE-8          | 11/17/2009              | 1,480           | -89.6          |
| DPE-8          | 2/22/2010               | 90.3            | -99.4          |
| DPE-8          | 5/13/2010               | 66.9            | -99.5          |
| DPE-8          | 8/18/2010               | 131.0           | -99.1          |
| DPE-8          | 12/22/2010              | 262.0           | -98.2          |
| DPE-8          | 3/1/2011                | 415.0           | -97.1          |
| DPE-8          | 5/19/2011               | 698.0           | -95.1          |
| DPE-8          | 8/28/2011               | 700.0           | -95.1          |
| DPE-8          | 11/21/2011              | 389.0           | -97.3          |
| DPE-8          | 2/16/2012               | NS<br>NS        | NS<br>NC       |
| DPE-8          | 5/17/2012               | NS<br>NS        | NS<br>NS       |
| DPE-8          | 9/26/2012<br>12/19/2012 | NS<br>NS        | NS<br>NS       |
| DPE-8          | 2/26/2013               | NS              | NS             |
| DPE-8          | 5/23/2013               | 4,240.0         | -70.1          |
| DPE-8          | 8/26/2013               | 291.0           | -98.0          |
| DPE-8          | 12/10/2013              | 2.450.0         | -82.7          |
| DPE-8          | 2/17/2014               | 2,390.0         | -83.2          |
| DPE-8          | 5/20/2014               | 5,610.0         | -60.5          |
| DPE-8          | 8/21/2014               | 1,130.0         | -92.0          |
| DPE-8          | 11/19/2014              | 1,230.0         | -91.3          |
| DPE-8          | 2/25/2015               | 221.0           | -98.4          |
| DPE-8          | 6/15/2015               | 2,980.0         | -79.0          |
| DPE-8          | 8/18/2015               | 2,350.0         | -83.5          |
| DPE-8          | 12/14/2015              | 2,700.0         | -81.0          |
| DPE-8          | 1/11/2016               | 288.0           | -98.0          |
| DPE-8          | 2/23/2016               | 503.0           | -96.5          |
| DPE-8          | 5/18/2016               | 808.0           | -94.3          |
| Notes:         |                         | l               | l              |

Notes: NS - Not Sampled

221 1st Avenue SW Rochester, Minnesota

| Sample ID                                             | MDH Health          | DPE-1               | DPE-1                | DPE-1                | DPE-1                | DPE-1                | DPE-1                | DPE-1                | DPE-1                | DPE-1                | DPE-1               | DPE-1                | DPE-1               | DPE-1              | DPE-1              | DPE-1              | DPE-1              | DPE-1               | DPE-1               | DPE-1               | DPE-1               | DPE-1              | DPE-1              | DPE-1              | DPE-1               | DPE-1               | DPE-1                | DPE-1            | DPE-1                 | DPE-1                 | DPE-1          | DPE-1                  |
|-------------------------------------------------------|---------------------|---------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|---------------------|----------------------|---------------------|--------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|---------------------|---------------------|----------------------|------------------|-----------------------|-----------------------|----------------|------------------------|
| Collected Date and Time                               | Risk Limits<br>5/09 | 5/18/2016           | 2/23/2016            | 1/11/2016            | 12/14/2015           | 8/18/2015            | 6/15/2015            | 2/25/2015            | 11/19/2014           | 8/21/2014            | 5/20/2014           | 12/10/2013           | 12/10/2013          | 8/26/2013          | 5/23/2013          | 2/25/2013          | 12/19/2012         | 9/26/2012           | 5/17/2012           | 2/16/2012           | 11/21/2011          | 8/28/2011          | 5/19/2011          | 03/01/11           | 12/22/10            | 08/18/10            | 05/13/10             | 02/22/10         | 11/16/09              | 09/28/09              | 12/10/08       | 8/7/2008               |
| 1,1,1,2-Tetrachloroethane                             | 70                  | <40.0               | <40.0                | <10.0                | <50.0                | <50.0                | <50.0                | <50.0                | <25.0                | <10.0                | <1.0                | <10.0                | <2.0                | <1.0               | 1.6                | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <5.0                | <5.0                | <1.0                 | <25.0            | <25.0                 | <50.0                 | NA*            | <250                   |
| 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane       | 9000                | <10.0<br><10.0      | <40.0<br><40.0       | <10.0<br><10.0       | <50.0<br><50.0       | <50.0<br><50.0       | <50.0<br><50.0       | <50.0<br><50.0       | <25.0<br><25.0       | <10.0<br><10.0       | <1.0<br><1.0        | <10.0<br><10.0       | <2.0<br><2.0        | <1.0<br><1.0       | <b>6.4</b> <1.0    | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <5.0<br><5.0        | <5.0<br><5.0        | <1.0<br><1.0         | <25.0<br><25.0   | <25.0<br><25.0        | <50.0<br><50.0        | NA*<br>NA*     | <250<br><250           |
| 1,1,2-Trichloroethane                                 | 3                   | <10.0               | <40.0                | <10.0                | <50.0                | <50.0                | <50.0                | <50.0                | <25.0                | <10.0                | <1.0                | <10.0                | <2.0                | <1.0               | 1.2                | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <5.0                | <5.0                | <1.0                 | <25.0            | <25.0                 | <50.0                 | NA*            | <250                   |
| 1,1,2-Trichlorotrifluoroethane<br>1,1-Dichloroethane  | 200000<br>70        | <b>58.9</b> <10.0   | <200<br><40.0        | <b>71.4</b> <10.0    | <50.0<br><50.0       | <b>231</b> <50.0     | <b>96.8</b> <50.0    | <b>248</b><br><50.0  | <b>145</b> <25.0     | <b>85.1</b> <10.0    | <b>16.0</b> <1.0    | <b>28.1</b> <10.0    | <b>9.6</b> <2.0     | <b>35.8</b> <1.0   | <b>145</b><br><1.0 | <b>7.9</b> <1.0    | <b>3.9</b> <1.0    | <b>1.1</b> <1.0     | <b>1.1</b> <1.0     | <1.0<br><1.0        | <b>3.2</b> <1.0     | <b>9.5</b> <1.0    | <b>13.3</b> <1.0   | <b>3.2</b> <1.0    | <b>37.8</b> <5.0    | <b>66.4</b><br><5.0 | <b>148</b> <1.0      | <b>190</b> <25.0 | <b>215</b> <25.0      | <b>912</b> <50.0      | NA*<br>NA*     | <b>11,300</b> <250     |
| 1,1-Dichloroethene                                    | 6                   | <10.0               | <40.0                | <10.0                | <50.0                | <50.0                | <50.0                | <50.0                | <25.0                | <10.0                | <1.0                | <10.0                | <2.0                | <1.0               | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <5.0                | <5.0                | <1.0                 | <25.0            | <25.0                 | <50.0                 | <2000          | <250                   |
| 1,1-Dichloropropene 1,2,3-Trichlorobenzene            | NL<br>NI            | <10.0<br><10.0      | <40.0<br><200        | <10.0<br><50.0       | <50.0<br><50.0       | <50.0<br><50.0       | <50.0<br><50.0       | <50.0<br><50.0       | <25.0<br><25.0       | <10.0<br><10.0       | <1.0<br><1.0        | <10.0<br><10.0       | <2.0<br><2.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <5.0<br><5.0        | <5.0<br><5.0        | <1.0<br><1.0         | <25.0<br><25.0   | <25.0<br><25.0        | <50.0<br><50.0        | NA*<br>NA*     | <250<br><250           |
| 1,2,3-Trichloropropane                                | 40                  | <40.0               | <40.0                | <10.0                | <200                 | <200                 | <200                 | <200                 | <100                 | <40.0                | <4.0                | <40.0                | <8.0                | <4.0               | <4.0               | <4.0               | <4.0               | <4.0                | <4.0                | <4.0                | <4.0                | <4.0               | <4.0               | <4.0               | <5.0                | <5.0                | <1.0                 | <25.0            | <25.0                 | <50.0                 | NA*            | <250                   |
| 1,2,4-Trichlorobenzene                                | NL<br>NI            | <10.0               | <200                 | <50.0                | <50.0                | <50.0                | <50.0                | <50.0                | <25.0                | <10.0                | <1.0                | <10.0                | <2.0                | <1.0               | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0<br><1.0        | <1.0<br><1.0        | <1.0               | <1.0               | <1.0<br><1.0       | <5.0                | <5.0                | <1.0<br><1.0         | <25.0            | <25.0                 | <50.0                 | NA*<br>NA*     | <250                   |
| 1,2,4-Trimethylbenzene<br>1,2-Dibromo-3-chloropropane | NL<br>NL            | <10.0<br><100       | <40.0<br><200        | <10.0<br><50.0       | <50.0<br><200        | <50.0<br><200        | <50.0<br><500        | <50.0<br><200        | <25.0<br><100        | <10.0<br><40.0       | <1.0<br><4.0        | <10.0<br><40.0       | <2.0<br><8.0        | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0        | <4.0                | <4.0                | <1.0<br><4.0       | <1.0<br><4.0       | <4.0               | <5.0<br><20.0       | <5.0<br><20.0       | <4.0                 | <25.0<br><100    | <25.0<br><100         | <50.0<br><200         | NA*            | <250<br><1000          |
| 1,2-Dibromoethane (EDB)                               | .004                | <10.0               | <40.0                | <10.0                | <50.0                | <50.0                | <50.0                | <50.0                | <25.0                | <10.0                | <1.0                | <10.0                | <2.0                | <1.0               | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <5.0                | <5.0                | <1.0                 | <25.0            | <25.0                 | <50.0                 | NA*            | <250                   |
| 1,2-Dichlorobenzene 1,2-Dichloroethane                | 600<br>4            | <10.0<br><10.0      | <40.0<br><40.0       | <10.0<br><10.0       | <50.0<br><50.0       | <50.0<br><50.0       | <50.0<br><50.0       | <50.0<br><50.0       | <25.0<br><25.0       | <10.0<br><10.0       | <1.0<br><1.0        | <10.0<br><10.0       | <2.0<br><2.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <5.0<br><5.0        | <5.0<br><5.0        | <1.0<br><1.0         | <25.0<br><25.0   | <25.0<br><25.0        | <50.0<br><50.0        | NA*<br>NA*     | <250<br><250           |
| 1,2-Dichloropropane                                   | 5                   | <40.0               | <40.0                | <10.0                | <200                 | <200                 | <200                 | <200                 | <100                 | <40.0                | <4.0                | <40.0                | <8.0                | <4.0               | <4.0               | <4.0               | <4.0               | <4.0                | <4.0                | <4.0                | <4.0                | <4.0               | <4.0               | <1.0               | <5.0                | <5.0                | <1.0                 | <25.0            | <25.0                 | <50.0                 | NA*            | <250                   |
| 1,3,5-Trimethylbenzene<br>1,3-Dichlorobenzene         | 100<br>NL           | <10.0<br><10.0      | <40.0<br><40.0       | <10.0<br><10.0       | <50.0<br><50.0       | <50.0<br><50.0       | <50.0<br><50.0       | <50.0<br><50.0       | <25.0<br><25.0       | <10.0<br><10.0       | <1.0<br><1.0        | <10.0<br><10.0       | <2.0<br><2.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <5.0<br><5.0        | <5.0<br><5.0        | <1.0<br><1.0         | <25.0<br><25.0   | <25.0<br><25.0        | <50.0<br><50.0        | NA*<br>NA*     | <250<br><250           |
| 1,3-Dichloropropane                                   | NL                  | <10.0               | <40.0                | <10.0                | <50.0                | <50.0                | <50.0                | <50.0                | <25.0                | <10.0                | <1.0                | <10.0                | <2.0                | <1.0               | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <5.0                | <5.0                | <1.0                 | <25.0            | <25.0                 | <50.0                 | NA*            | <250                   |
| 1,4-Dichlorobenzene<br>2,2-Dichloropropane            | 10<br>NL            | <10.0<br><40.0      | <40.0<br><40.0       | <10.0<br><10.0       | <50.0<br><200        | <50.0<br><200        | <50.0<br><200        | <50.0<br><200        | <25.0<br><100        | <10.0<br><40.0       | <1.0<br><4.0        | <10.0<br><40.0       | <2.0<br><8.0        | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0       | <1.0<br><4.0       | <1.0               | <5.0<br><20.0       | <5.0<br><20.0       | <1.0<br><4.0         | <25.0<br><25.0   | <25.0<br><100         | <50.0<br><50.0        | NA*<br>NA*     | <250<br><250           |
| 2-Butanone (MEK)                                      | 4000                | <50.0               | <800                 | <200                 | <250                 | <250<br><250         | <250                 | <250                 | <125                 | <50.0                | <4.0<br><5.0        | <50.0                | <8.0<br><10.0       | <4.0<br><5.0       | <4.0<br><5.0       | <4.0<br><4.0       | <4.0<br><4.0       | <4.0<br><4.0        | <4.0<br><4.0        | <4.0<br><4.0        | <4.0<br><4.0        | <4.0<br><4.0       | <4.0<br><4.0       | <4.0<br><4.0       | <20.0               | <20.0               | <4.0<br><4.0         | <25.0<br><100    | <100                  | <200                  | NA*            | <1000                  |
| 2-Chlorotoluene                                       | NL                  | <10.0               | <40.0                | <10.0                | <50.0                | <50.0                | <50.0                | <50.0                | <25.0                | <10.0                | <1.0                | <10.0                | <2.0                | <1.0               | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <5.0                | <5.0                | <1.0                 | <25.0            | <25.0                 | <50.0                 | NA*            | <250                   |
| 4-Chlorotoluene<br>4-Methyl-2-pentanone (MIBK)        | NL<br>300           | <10.0<br><50.0      | <40.0<br><800        | <10.0<br><200        | <50.0<br><250        | <50.0<br><250        | <50.0<br><250        | <50.0<br><250        | <25.0<br><125        | <10.0<br><50.0       | <1.0<br><5.0        | <10.0<br><50.0       | <2.0<br><10.0       | <1.0<br><5.0       | <1.0<br><5.0       | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0       | <5.0<br><20.0       | <5.0<br><20.0       | <1.0<br><4.0         | <25.0<br><100    | <25.0<br><100         | <50.0<br><200         | NA*<br>NA*     | <250<br><1000          |
| Acetone                                               | 700                 | <200                | <800                 | <200                 | <1000                | <1000                | <2500                | <1000                | <500                 | <200                 | <20.0               | <200                 | <40.0               | <20.0              | <20.0              | <25.0              | <25.0              | <25.0               | <25.0               | <25.0               | <25.0               | <25.0              | <25.0              | <25.0              | <50.0               | <50.0               | <10.0                | <250             | <250                  | <500                  | NA*            | <2500                  |
| Allyl chloride<br>Benzene                             | 30                  | <40.0<br><10.0      | <200<br><40.0        | <50.0<br><10.0       | <200<br><50.0        | <200<br><50.0        | <200<br><50.0        | <200<br><50.0        | <100<br><25.0        | <40.0<br><10.0       | <4.0<br><1.0        | <40.0<br><10.0       | <8.0<br><2.0        | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | <20.0<br><5.0       | <20.0<br><5.0       | <4.0<br><1.0         | <100<br><25.0    | <100<br><25.0         | <200<br><50.0         | NA*<br>NA*     | <1000<br><250          |
| Bromobenzene                                          | NL                  | <10.0               | <40.0                | <10.0                | <50.0                | <50.0                | <50.0                | <50.0                | <25.0                | <10.0                | <1.0                | <10.0                | <2.0                | <1.0               | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <5.0                | <5.0                | <1.0                 | <25.0            | <25.0                 | <50.0                 | NA*            | <250                   |
| Bromochloromethane<br>Bromodichloromethane            | NL<br>6             | <10.0<br><10.0      | <40.0<br><40.0       | <10.0<br><10.0       | <50.0<br><50.0       | <50.0<br><50.0       | <50.0<br><50.0       | <50.0<br><50.0       | <25.0<br><25.0       | <10.0<br><10.0       | <1.0<br><1.0        | <10.0<br><10.0       | <2.0<br><2.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <5.0<br><5.0        | <5.0<br><5.0        | <1.0<br><1.0         | <25.0<br><25.0   | <25.0<br><25.0        | <50.0<br><50.0        | NA*<br>NA*     | <250<br><250           |
| Bromoform                                             | 40                  | <40.0               | <200                 | <50.0                | <200                 | <200                 | <200                 | <200                 | <100                 | <40.0                | <4.0                | <40.0                | <8.0                | <4.0               | <4.0               | <4.0               | <4.0               | <4.0                | <4.0                | <4.0                | <4.0                | <4.0               | <4.0               | <8.0               | <40.0               | <40.0               | <8.0                 | <200             | <200                  | <400                  | NA*            | <2000                  |
| Bromomethane<br>Carbon tetrachloride                  | 10                  | <40.0<br><10.0      | <200<br><40.0        | <50.0<br><10.0       | <200<br><50.0        | <200<br><50.0        | <200<br><50.0        | <200<br><50.0        | <100<br><25.0        | <40.0<br><10.0       | <4.0<br><1.0        | <40.0<br><10.0       | <8.0<br><2.0        | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0       | <10.0<br><4.0      | <20.0<br><20.0      | <20.0<br><20.0      | <4.0<br><4.0         | <100<br><25.0    | <100<br><100          | <200<br><50.0         | NA*<br>NA*     | <1000<br><250          |
| Chlorobenzene                                         | 100                 | <10.0               | <40.0                | <10.0                | <50.0                | <50.0                | <50.0                | <50.0                | <25.0                | <10.0                | <1.0                | <10.0                | <2.0                | <1.0               | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <5.0                | <5.0                | <1.0                 | <25.0            | <25.0                 | <50.0                 | NA*            | <250                   |
| Chloroethane                                          | 300<br>30           | <10.0               | <40.0                | <10.0<br><50.0       | <50.0                | <50.0                | <50.0                | <50.0<br><50.0       | <25.0                | <40.0<br><10.0       | <1.0                | <10.0<br><10.0       | <2.0                | <1.0               | <4.0               | <1.0               | <1.0               | <1.0<br><1.0        | <1.0<br><1.0        | <1.0                | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0               | <5.0                | <5.0<br><5.0        | <1.0<br><b>2.6</b>   | <25.0            | <25.0                 | <50.0                 | NA*<br>NA*     | <250<br><250           |
| Chloroform<br>Chloromethane                           | NL                  | <10.0<br><40.0      | <200<br><40.0        | <10.0                | <50.0<br><200        | <50.0<br><200        | <50.0<br><200        | <200                 | <25.0<br><100        | <40.0                | <1.0<br><4.0        | <40.0                | <2.0<br><8.0        | 10.6               | <b>3.5</b> <4.0    | <1.0<br><4.0       | <1.0<br><4.0       | <4.0                | <4.0                | <1.0<br><4.0        | <4.0                | <4.0               | <4.0               | <1.0<br><4.0       | <5.0<br><20.0       | <20.0               | <4.0                 | <25.0<br><100    | <25.0<br><100         | <50.0<br><200         | NA*            | <250                   |
| cis-1,2-Dichloroethene                                | 50                  | <10.0               | <40.0                | <10.0                | <50.0                | <50.0                | <50.0                | <50.0                | <25.0                | <10.0                | 5.8                 | <10.0                | 8.8                 | 1.8                | 89.7               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0                | 2.9                | 1.3                | <1.0               | 11.5                | <5.0                | 8.7                  | <25.0            | <25.0                 | <50.0                 | <2000          | 3,250                  |
| cis-1,3-Dichloropropene Dibromochloromethane          | NL<br>10            | <40.0<br><10.0      | <200<br><200         | <50.0<br><50.0       | <200<br><50.0        | <200<br><50.0        | <200<br><50.0        | <200<br><50.0        | <100<br><25.0        | <40.0<br><10.0       | <4.0<br><1.0        | <40.0<br><10.0       | <8.0<br><2.0        | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | <20.0<br><5.0       | <20.0<br><5.0       | <4.0<br><1.0         | <100<br><25.0    | <100<br><25.0         | <200<br><50.0         | NA*<br>NA*     | <1000<br><250          |
| Dibromomethane                                        | NL                  | <40.0               | <40.0                | <10.0                | <200                 | <200                 | <200                 | <200                 | <100                 | <40.0                | <4.0                | <40.0                | <8.0                | <4.0               | <4.0               | <4.0               | <4.0               | <4.0                | <4.0                | <4.0                | <4.0                | <4.0               | <4.0               | <4.0               | <20.0               | <20.0               | <4.0                 | <25.0            | <25.0                 | <50.0                 | NA*            | <250                   |
| Dichlorodifluoromethane<br>Dichlorofluoromethane      | 1000<br>NL          | <10.0<br><10.0      | <40.0<br><40.0       | <10.0<br><10.0       | <50.0<br><50.0       | <50.0<br><50.0       | <50.0<br><50.0       | <50.0<br><50.0       | <25.0<br><25.0       | <10.0<br><10.0       | <1.0<br><1.0        | <10.0<br><10.0       | <2.0<br><2.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <5.0<br><5.0        | <5.0<br><5.0        | <1.0<br><1.0         | <25.0<br><25.0   | <25.0<br><25.0        | <50.0<br><50.0        | NA*<br>NA*     | <250<br><250           |
| Diethyl ether (Ethyl ether)                           | 1000                | <40.0               | <200                 | <50.0                | <200                 | <200                 | <200                 | <200                 | <100                 | <40.0                | <4.0                | <40.0                | <8.0                | <4.0               | <4.0               | <4.0               | <4.0               | <4.0                | <4.0                | <4.0                | <4.0                | <4.0               | <4.0               | <4.0               | <20.0               | <20.0               | <4.0                 | <100             | <100                  | <200                  | NA*            | <1000                  |
| Ethylbenzene<br>Hexachloro-1,3-butadiene              | 700<br>1            | <10.0<br><40.0      | <40.0<br><200        | <10.0<br><50.0       | <50.0<br><50.0       | <50.0<br><50.0       | <50.0<br><50.0       | <50.0<br><50.0       | <25.0<br><25.0       | <10.0<br><10.0       | <1.0<br><1.0        | <10.0<br><10.0       | <2.0<br><2.0        | <1.0<br><1.0       | <1.0<br><5.0       | <1.0<br><5.0       | <1.0<br><5.0       | <1.0<br><5.0        | <1.0<br><5.0        | <1.0<br><5.0        | <1.0<br><5.0        | <1.0<br><5.0       | <1.0<br><5.0       | <1.0<br><4.0       | <5.0<br><20.0       | <5.0<br><20.0       | <1.0<br><4.0         | <25.0<br><100    | <25.0<br><100         | <50.0<br><200         | NA*<br>NA*     | <250<br><1000          |
| Isopropylbenzene (Cumene)                             | 300                 | <10.0               | <40.0                | <10.0                | <50.0                | <50.0                | <50.0                | <50.0                | <25.0                | <10.0                | <1.0                | <10.0                | <2.0                | <1.0               | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <5.0                | <5.0                | <1.0                 | <25.0            | <25.0                 | <50.0                 | NA*            | <250                   |
| m&p-Xylene                                            | NL<br>5             | NA<br>-40.0         | NA<br><40.0          | NA<br><10.0          | NA<br>-200           | NA<br><200           | NA<br>~200           | NA -200              | NA<br>~100           | NA<br><40.0          | NA<br>~1.0          | NA -40.0             | NA<br>-8.0          | NA<br><1.0         | NA<br><1.0         | <2.0               | <2.0               | <2.0                | <2.0                | <2.0                | <2.0                | <2.0               | <2.0               | <2.0               | <10.0               | <10.0               | <2.0                 | <50.0<br><100    | <50.0                 | <100                  | NA*<br>NA*     | <500<br><1000          |
| Methylene Chloride<br>Methyl-tert-butyl ether         | 5<br>70             | <40.0<br><10.0      | <40.0<br><40.0       | <10.0<br><10.0       | <200<br><50.0        | <200<br><50.0        | <200<br><50.0        | <200<br><50.0        | <100<br><25.0        | <40.0<br><10.0       | <4.0<br><1.0        | <40.0<br><10.0       | <8.0<br><2.0        | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | <20.0<br><5.0       | <20.0<br><5.0       | <4.0<br><1.0         | <100<br><25.0    | <100<br><25.0         | <200<br><50.0         | NA*            | <1000<br><250          |
| Naphthalene                                           | 300                 | <40.0               | <200                 | <50.0                | <200                 | <200                 | <200                 | <200                 | <100                 | <40.0                | <4.0                | <40.0                | <8.0                | <4.0               | <4.0               | <4.0               | <4.0               | <4.0                | <4.0                | <4.0                | <4.0                | <4.0               | <4.0               | <4.0               | <20.0               | <20.0               | <4.0                 | <100             | <100                  | <200                  | NA*            | <1000                  |
| n-Butylbenzene<br>n-Propylbenzene                     | NL<br>NL            | <10.0<br><10.0      | <40.0<br><40.0       | <10.0<br><10.0       | <50.0<br><50.0       | <50.0<br><50.0       | <50.0<br><50.0       | <50.0<br><50.0       | <25.0<br><25.0       | <10.0<br><10.0       | <1.0<br><1.0        | <10.0<br><10.0       | <2.0<br><2.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <5.0<br><5.0        | <5.0<br><5.0        | <1.0<br><1.0         | <25.0<br><25.0   | <25.0<br><25.0        | <50.0<br><50.0        | NA*<br>NA*     | <250<br><250           |
| o-Xylene                                              | NL                  | NA                  | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                   | NA                  | NA                   | NA                  | NA                 | NA                 | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <5.0                | <5.0                | <1.0                 | <25.0            | <25.0                 | <50.0                 | NA*            | <250                   |
| p-Isopropyltoluene<br>sec-Butylbenzene                | NL<br>NL            | <10.0<br><10.0      | <40.0<br><200        | <10.0<br><50.0       | <50.0<br><50.0       | <50.0<br><50.0       | <50.0<br><50.0       | <50.0<br><50.0       | <25.0<br><25.0       | <10.0<br><10.0       | <1.0<br><1.0        | <10.0<br><10.0       | <2.0<br><2.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <5.0<br><5.0        | <5.0<br><5.0        | <1.0<br><1.0         | <25.0<br><25.0   | <25.0<br><25.0        | <50.0<br><50.0        | NA*<br>NA*     | <250<br><250           |
| Styrene                                               | NL                  | <10.0               | <40.0                | <10.0                | <50.0                | <50.0                | <50.0                | <50.0                | <25.0                | <10.0                | <1.0                | <10.0                | <2.0                | <1.0               | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <5.0                | <5.0                | <1.0                 | <25.0            | <25.0                 | <50.0                 | NA*            | <250                   |
| tert-Butylbenzene<br>Tetrachloroethene                | NL<br>5             | <10.0<br><b>889</b> | <40.0<br><b>2970</b> | <10.0<br><b>1270</b> | <50.0<br><b>5490</b> | <50.0<br><b>6700</b> | <50.0<br><b>4660</b> | <50.0<br><b>4690</b> | <25.0<br><b>4180</b> | <10.0<br><b>5620</b> | <1.0<br><b>1550</b> | <10.0<br><b>2400</b> | <2.0<br><b>1270</b> | <1.0<br><b>265</b> | <1.0<br>9840       | <1.0<br><b>171</b> | <1.0<br><b>505</b> | <1.0<br><b>82.2</b> | <1.0<br><b>38.8</b> | <1.0<br><b>26.4</b> | <1.0<br><b>99.2</b> | <1.0<br><b>309</b> | <1.0<br><b>185</b> | <1.0<br><b>101</b> | <5.0<br><b>1190</b> | <5.0<br><b>965</b>  | <1.0<br><b>1,700</b> | <25.0<br>2.610   | <25.0<br><b>3,330</b> | <50.0<br><b>6,820</b> | NA*<br>161,000 | <250<br><b>157,000</b> |
| Tetrahydrofuran                                       | 100                 | <100                | <200                 | <50.0                | <500                 | <500                 | <500                 | <500                 | <250                 | <100                 | <10.0               | <100                 | <20.0               | <10.0              | <10.0              | <10.0              | <10.0              | <10.0               | <10.0               | <10.0               | <10.0               | <10.0              | <10.0              | <10.0              | <50.0               | <50.0               | <10.0                | <250             | <250                  | <500                  | NA*            | <2500                  |
| Toluene                                               | 1000                | <10.0               | <40.0                | <10.0                | <50.0                | <50.0                | <50.0                | <50.0                | <25.0                | <10.0                | <1.0                | <10.0                | <2.0                | <1.0               | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <5.0                | <5.0                | <1.0                 | <25.0            | <25.0                 | <50.0                 | NA*            | <250                   |
| trans-1,2-Dichloroethene<br>trans-1,3-Dichloropropene | 100<br>NL           | <10.0<br><40.0      | <40.0<br><800        | <10.0<br><200        | <50.0<br><200        | <50.0<br><200        | <50.0<br><200        | <50.0<br><200        | <25.0<br><100        | <10.0<br><40.0       | <1.0<br><4.0        | <10.0<br><40.0       | <2.0<br><8.0        | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0        | <4.0<br><4.0        | <4.0<br><4.0       | <4.0<br><4.0       | <1.0<br><4.0       | <5.0<br><20.0       | <5.0<br><20.0       | <1.0<br><4.0         | <25.0<br><100    | <25.0<br><100         | <50.0<br><200         | <2000<br>NA*   | <250<br><1000          |
| Trichloroethene                                       | 5                   | <4.0                | <40.0                | <10.0                | <20.0                | <20.0                | <20.0                | <20.0                | <10.0                | 5.4                  | 2.9                 | <4.0                 | 3.1                 | 0.84               | 25.9               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <5.0                | <5.0                | 2.3                  | <25.0            | <25.0                 | <50.0                 | <2000          | 563                    |
| Trichlorofluoromethane<br>Vinyl chloride              | 2000<br>0.2         | <10.0<br><4.0       | <40.0<br><40.0       | <10.0<br><10.0       | <50.0<br><20.0       | <50.0<br><20.0       | <50.0<br><20.0       | <50.0<br><20.0       | <25.0<br><10.0       | <10.0<br><4.0        | <1.0<br><1.0        | <10.0<br><4.0        | <2.0<br><0.80       | <1.0<br><0.40      | <1.0<br><0.40      | <1.0<br><0.40      | <1.0<br><0.40      | <1.0<br><0.40       | <1.0<br><0.40       | <1.0<br><0.40       | <1.0<br><0.40       | <1.0<br><0.40      | <1.0<br><0.40      | <1.0<br><0.40      | <5.0<br><2.0        | <5.0<br><2.0        | <1.0<br><0.40        | <25.0<br><10.0   | <25.0<br><10.0        | <50.0<br><20.0        | NA*<br><800    | <250<br><100           |
| Xylene (Total)                                        | 10000               | <4.0<br><30.0       | <40.0<br><120        | <10.0<br><30.0       | <20.0<br><150        | <20.0<br><150        | <20.0<br><150        | <20.0<br><150        | <10.0<br><75.0       | <4.0<br><30.0        | <1.0<br><3.0        | <4.0<br><30.0        | <0.80<br><6.0       | <0.40<br><3.0      | <0.40<br><3.0      | <0.40<br><3.0      | <0.40<br><3.0      | <0.40<br><3.0       | <0.40<br><3.0       | <0.40<br><3.0       | <0.40<br><3.0       | <0.40<br><3.0      | <0.40<br><3.0      | <0.40<br><3.0      | <2.0<br><15.0       | <2.0<br><15.0       | <0.40<br><3.0        | <75.0            | <75.0                 | <20.0<br><150         | <800<br>NA*    | <750                   |
| Notes:                                                |                     |                     |                      |                      | _                    |                      |                      | •                    |                      | •                    |                     |                      |                     |                    |                    |                    |                    |                     |                     |                     |                     |                    | •                  |                    | _                   | _                   | •                    | •                | _                     | _                     | •              |                        |

Notes:
NL: No Limit
NA\*: Not Analyzed
NS: Not Sampled

221 1st Avenue SW Rochester, Minnesota

| Sample ID                                              | MDH Health   | DPE-2                | DPE-2            | DPE-2             | DPE-2             | DPE-2               | DPE-2                | DPE-2                | DPE-2               | DPE-2             | DPE-2               | DPE-2             | DPE-2              | DPE-2               | DPE-2               | DPE-2            | DPE-2              | DPE-2             | DPE-2            | DPE-2            | DPE-2            | DPE-2            | DPE-2              | DPE-2             | DPE-2                 | DPE-2              | DPE-2                | DPE-2             | DPE-2               | DPE-2               | DPE-2                |
|--------------------------------------------------------|--------------|----------------------|------------------|-------------------|-------------------|---------------------|----------------------|----------------------|---------------------|-------------------|---------------------|-------------------|--------------------|---------------------|---------------------|------------------|--------------------|-------------------|------------------|------------------|------------------|------------------|--------------------|-------------------|-----------------------|--------------------|----------------------|-------------------|---------------------|---------------------|----------------------|
| Collected Date and Time                                | Risk Limits  |                      |                  | 01/11/16          |                   |                     | 06/15/15             |                      | 11/19/14            |                   | 05/20/14            |                   | 12/10/13           | 08/26/13            |                     |                  |                    |                   | 05/17/12         | 02/16/12         | 11/21/11         |                  | 05/19/11           | 03/01/11          |                       |                    |                      | 02/22/10          | 11/17/2009          |                     | 12/10/08             |
|                                                        | 5/09         |                      |                  |                   |                   |                     |                      |                      |                     |                   |                     |                   |                    |                     |                     |                  |                    |                   |                  |                  |                  |                  |                    |                   |                       |                    |                      |                   |                     |                     | NA*                  |
| 1,1,1,2-Tetrachloroethane<br>1,1,1-Trichloroethane     | 70<br>9000   | <40.0<br><10.0       | <40.0<br><40.0   | <10.0<br><10.0    | <50.0<br><50.0    | <50.0<br><50.0      | <10.0<br><10.0       | <10.0<br><10.0       | <25.0<br><25.0      | <100<br><100      | <1.0<br>1.6         | <20.0<br><20.0    | <2.0<br><2.0       | <1.0<br><1.0        | 1.3<br>4.1          | <1.0<br><1.0     | <1.0<br><1.0       | <1.0<br><1.0      | <2.0<br><2.0     | <5.0<br><5.0     | <10.0<br><10.0   | <10.0<br><10.0   | <1.0<br><1.0       | <25.0<br><25.0    | <50.0<br><50.0        | <50.0<br><50.0     | <1.0<br><b>2.9</b>   | <20.0<br><20.0    | <100<br><100        | <250<br><250        | NA*                  |
| 1,1,2,2-Tetrachloroethane                              | 2            | <10.0                | <40.0            | <10.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <100              | <1.0                | <20.0             | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | NA*                  |
| 1,1,2-Trichloroethane                                  | 3            | <10.0                | <40.0            | <10.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0<br><b>384</b> | <100              | <1.0                | <20.0             | <2.0               | <1.0                | 1.3                 | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | NA*<br>NA*           |
| 1,1,2-Trichlorotrifluoroethane<br>1,1-Dichloroethane   | 200000<br>70 | <b>104</b> <10.0     | <200<br><40.0    | <b>72.1</b> <10.0 | <b>426</b> <50.0  | <b>364</b><br><50.0 | <b>251</b> <10.0     | <b>69.6</b> <10.0    | <25.0               | <b>302</b> <100   | <b>328</b> <1.0     | <b>41.8</b> <20.0 | <b>87.9</b> <2.0   | <b>25.6</b> <1.0    | <b>136</b> <1.0     | <b>16.0</b> <1.0 | <b>43.5</b> <1.0   | <b>3.1</b> <1.0   | <b>23.8</b> <2.0 | <b>41.5</b> <5.0 | <b>110</b> <10.0 | <b>212</b> <10.0 | <b>199</b> <1.0    | <25.0<br><25.0    | <b>356</b> <50.0      | <b>997</b> <50.0   | <b>673</b> <1.0      | <b>305</b> <20.0  | <b>1,270</b> <100   | <b>1,620</b> <250   | NA*                  |
| 1,1-Dichloroethene                                     | 6            | <10.0                | <40.0            | <10.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <100              | 1.4                 | <20.0             | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | <500                 |
| 1,1-Dichloropropene                                    | NL           | <10.0                | <40.0            | <10.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <100              | <1.0                | <20.0             | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | NA*                  |
| 1,2,3-Trichlorobenzene<br>1,2,3-Trichloropropane       | NL<br>40     | <10.0<br><40.0       | <200<br><40.0    | <50.0<br><10.0    | <50.0<br><200     | <50.0<br><200       | <10.0<br><40.0       | <10.0<br><40.0       | <25.0<br><100       | <100<br><400      | <1.0<br><4.0        | <20.0<br><80.0    | <2.0<br><8.0       | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0     | <1.0<br><4.0       | <1.0<br><4.0      | <2.0<br><8.0     | <5.0<br><20.0    | <10.0<br><40.0   | <10.0<br><40.0   | <1.0<br><4.0       | <25.0<br><100     | <50.0<br><50.0        | <50.0<br><50.0     | <1.0<br><1.0         | <20.0<br><20.0    | <100<br><100        | <250<br><250        | NA*<br>NA*           |
| 1,2,4-Trichlorobenzene                                 | NL           | <10.0                | <200             | <50.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <100              | <1.0                | <20.0             | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | NA*                  |
| 1,2,4-Trimethylbenzene                                 | NL           | 16                   | <40.0            | <10.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <100              | <1.0                | <20.0             | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | NA*                  |
| 1,2-Dibromo-3-chloropropane<br>1,2-Dibromoethane (EDB) | NL<br>.004   | <100<br><10.0        | <200<br><40.0    | <50.0<br><10.0    | <200<br><50.0     | <200<br><50.0       | <100<br><10.0        | <40.0<br><10.0       | <100<br><25.0       | <400<br><100      | <4.0<br><1.0        | <80.0<br><20.0    | <8.0<br><2.0       | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0     | <4.0<br><1.0       | <4.0<br><1.0      | <8.0<br><2.0     | <20.0<br><5.0    | <40.0<br><10.0   | <40.0<br><10.0   | <4.0<br><1.0       | <100<br><25.0     | <200<br><50.0         | <200<br><50.0      | <4.0<br><1.0         | <80.0<br><20.0    | <400<br><100        | <1000<br><250       | NA*<br>NA*           |
| 1,2-Dichlorobenzene                                    | 600          | <10.0                | <40.0            | <10.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <100              | <1.0                | <20.0             | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | NA*                  |
| 1,2-Dichloroethane                                     | 4            | <10.0                | <40.0            | <10.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <100              | <1.0                | <20.0             | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | NA*                  |
| 1,2-Dichloropropane 1,3,5-Trimethylbenzene             | 5            | <40.0<br><b>11.2</b> | <40.0<br><40.0   | <10.0             | <200<br><50.0     | <200<br><50.0       | <40.0<br><10.0       | <40.0<br><10.0       | <100                | <400              | <4.0                | <80.0             | <8.0<br><2.0       | <4.0<br><1.0        | <4.0                | <4.0             | <4.0               | <4.0              | <8.0             | <20.0            | <40.0<br><10.0   | <40.0            | <4.0               | <25.0             | <50.0<br><50.0        | <50.0<br><50.0     | <b>1.3</b> <1.0      | <20.0<br><20.0    | <100                | <250<br><250        | NA*<br>NA*           |
| 1,3-Dichlorobenzene                                    | 100<br>NL    | <10.0                | <40.0<br><40.0   | <10.0<br><10.0    | <50.0<br><50.0    | <50.0<br><50.0      | <10.0                | <10.0                | <25.0<br><25.0      | <100<br><100      | <1.0<br><1.0        | <20.0<br><20.0    | <2.0<br><2.0       | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0       | <1.0<br><1.0      | <2.0<br><2.0     | <5.0<br><5.0     | <10.0            | <10.0<br><10.0   | <1.0<br><1.0       | <25.0<br><25.0    | <50.0<br><50.0        | <50.0<br><50.0     | <1.0<br><1.0         | <20.0<br><20.0    | <100<br><100        | <250<br><250        | NA*                  |
| 1,3-Dichloropropane                                    | NL           | <10.0                | <40.0            | <10.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <100              | <1.0                | <20.0             | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | NA*                  |
| 1,4-Dichlorobenzene                                    | 10           | <10.0                | <40.0            | <10.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <100              | <1.0                | <20.0             | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | NA*                  |
| 2,2-Dichloropropane<br>2-Butanone (MEK)                | NL<br>4000   | <40.0<br><50.0       | <40.0<br><800    | <10.0<br><200     | <200<br><250      | <200<br><250        | <40.0<br><50.0       | <40.0<br><50.0       | <100<br><125        | <400<br><500      | <4.0<br><5.0        | <80.0<br><100     | <8.0<br><10.0      | <4.0<br><5.0        | <4.0<br><5.0        | <4.0<br><4.0     | <4.0<br><4.0       | <4.0<br><4.0      | <8.0<br><8.0     | <20.0<br><20.0   | <40.0<br><40.0   | <40.0<br><40.0   | <4.0<br><4.0       | <100<br><100      | <200<br><200          | <200<br><200       | <4.0<br><4.0         | <20.0<br><80.0    | <400<br><400        | <250<br><1000       | NA*<br>NA*           |
| 2-Chlorotoluene                                        | NL           | <10.0                | <40.0            | <10.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <100              | <1.0                | <20.0             | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | NA*                  |
| 4-Chlorotoluene                                        | NL           | <10.0                | <40.0            | <10.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <100              | <1.0                | <20.0             | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | NA*                  |
| 4-Methyl-2-pentanone (MIBK) Acetone                    | 300<br>700   | <50.0<br><200        | <800<br><800     | <200<br><200      | <250<br><1000     | <250<br><1000       | <50.0<br><500        | <50.0<br><200        | <125<br><500        | <500<br><2000     | <5.0<br><20.0       | <100<br><400      | <10.0<br><40.0     | <5.0<br><20.0       | <5.0<br><20.0       | <4.0<br><25.0    | <4.0<br><25.0      | <4.0<br><25.0     | <8.0<br><50.0    | <20.0<br><125    | <40.0<br><250    | <40.0<br><250    | <4.0<br><25.0      | <100<br><625      | <200<br><500          | <200<br><500       | <4.0<br><10.0        | <80.0<br><200     | <400<br><1000       | <1000<br><2500      | NA*<br>NA*           |
| Allyl chloride                                         | 30           | <40.0                | <200             | <50.0             | <200              | <200                | <40.0                | <40.0                | <100                | <400              | <4.0                | <80.0             | <8.0               | <4.0                | <4.0                | <4.0             | <4.0               | <4.0              | <8.0             | <20.0            | <40.0            | <40.0            | <4.0               | <100              | <200                  | <200               | <4.0                 | <80.0             | <400                | <1000               | NA*                  |
| Benzene                                                | 2            | <10.0                | <40.0            | <10.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <100              | <1.0                | <20.0             | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | NA*                  |
| Bromobenzene                                           | NL<br>NI     | <10.0                | <40.0            | <10.0             | <50.0<br><50.0    | <50.0<br><50.0      | <10.0<br><10.0       | <10.0<br><10.0       | <25.0<br><25.0      | <100<br><100      | <1.0                | <20.0<br><20.0    | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0<br><10.0   | <1.0               | <25.0<br><25.0    | <50.0<br><50.0        | <50.0<br><50.0     | <1.0                 | <20.0<br><20.0    | <100<br><100        | <250<br><250        | NA*<br>NA*           |
| Bromochloromethane<br>Bromodichloromethane             | NL<br>6      | <10.0<br><10.0       | <40.0<br><40.0   | <10.0<br><10.0    | <50.0             | <50.0<br><50.0      | <10.0                | <10.0                | <25.0               | <100              | <1.0<br><1.0        | <20.0             | <2.0<br><2.0       | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0       | <1.0<br><1.0      | <2.0<br><2.0     | <5.0<br><5.0     | <10.0<br><10.0   | <10.0            | <1.0<br><1.0       | <25.0             | <50.0                 | <50.0<br><50.0     | <1.0<br><1.0         | <20.0             | <100                | <250                | NA*                  |
| Bromoform                                              | 40           | <40.0                | <200             | <50.0             | <200              | <200                | <40.0                | <40.0                | <100                | <400              | <4.0                | <80.0             | <8.0               | <4.0                | <4.0                | <4.0             | <4.0               | <4.0              | <8.0             | <20.0            | <40.0            | <40.0            | <4.0               | <200              | <400                  | <400               | <8.0                 | <160              | <800                | <2000               | NA*                  |
| Bromomethane                                           | 10<br>3      | <40.0<br><10.0       | <200<br><40.0    | <50.0<br><10.0    | <200<br><50.0     | <200<br><50.0       | <40.0<br><10.0       | <40.0<br><10.0       | <100<br><25.0       | <400              | <4.0                | <80.0<br><20.0    | <8.0<br><2.0       | <4.0                | <4.0<br><1.0        | <4.0             | <4.0<br><1.0       | <4.0              | <8.0<br><2.0     | <20.0            | <40.0<br><10.0   | <40.0<br><10.0   | <4.0<br><1.0       | <250<br><100      | <200<br><200          | <200<br><200       | <4.0<br><4.0         | <80.0<br><20.0    | <400<br><400        | <1000<br><250       | NA*<br>NA*           |
| Carbon tetrachloride<br>Chlorobenzene                  | 100          | <10.0                | <40.0            | <10.0             | <50.0             | <50.0<br><50.0      | <10.0                | <10.0                | <25.0               | <100<br><100      | <1.0<br><1.0        | <20.0             | <2.0               | <1.0<br><1.0        | <1.0                | <1.0<br><1.0     | <1.0               | <1.0<br><1.0      | <2.0             | <5.0<br><5.0     | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | NA*                  |
| Chloroethane                                           | 300          | <10.0                | <40.0            | <10.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <400              | <1.0                | <20.0             | <2.0               | <1.0                | <4.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | NA*                  |
| Chloroform                                             | 30           | <10.0                | <200             | <50.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <100              | <1.0                | <20.0             | <2.0               | <1.0                | 3.8                 | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | 3.1                | <25.0             | <50.0                 | <50.0              | 3.7                  | <20.0             | <100                | <250                | NA*                  |
| Chloromethane cis-1,2-Dichloroethene                   | NL<br>50     | <40.0<br><10.0       | <40.0<br><40.0   | <10.0<br><10.0    | <200<br><50.0     | <200<br><50.0       | <40.0<br><b>18.4</b> | <40.0<br><b>11.4</b> | <100<br><25.0       | <400<br><100      | <4.0<br><b>11.0</b> | <80.0<br><20.0    | <8.0<br><b>2.5</b> | <4.0<br><1.0        | <4.0<br><b>67.8</b> | <4.0<br><1.0     | <4.0<br><b>1.8</b> | <4.0<br><1.0      | <8.0<br><2.0     | <20.0<br><5.0    | <40.0<br><10.0   | <40.0<br><10.0   | <4.0<br><b>5.5</b> | <100<br><25.0     | <200<br><50.0         | <200<br><50.0      | <4.0<br><b>25.8</b>  | <80.0<br><20.0    | <400<br><100        | <1000<br><250       | NA*<br><500          |
| cis-1,3-Dichloropropene                                | NL           | <40.0                | <200             | <50.0             | <200              | <200                | <40.0                | <40.0                | <100                | <400              | <4.0                | <80.0             | <8.0               | <4.0                | <4.0                | <4.0             | <4.0               | <4.0              | <8.0             | <20.0            | <40.0            | <40.0            | <4.0               | <100              | <200                  | <200               | <4.0                 | <80.0             | <400                | <1000               | NA*                  |
| Dibromochloromethane                                   | 10           | <10.0                | <200             | <50.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <100              | <1.0                | <20.0             | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | NA*                  |
| Dibromomethane<br>Dichlorodifluoromethane              | NL<br>1000   | <40.0<br><10.0       | <40.0<br><40.0   | <10.0<br><10.0    | <200<br><50.0     | <200<br><50.0       | <40.0<br><10.0       | <40.0<br><10.0       | <100<br><25.0       | <400<br><100      | <4.0<br><1.0        | <80.0<br><20.0    | <8.0<br><2.0       | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0     | <4.0<br><1.0       | <4.0<br><1.0      | <8.0<br><2.0     | <20.0<br><5.0    | <40.0<br><10.0   | <40.0<br><10.0   | <4.0<br><1.0       | <100<br><25.0     | <200<br><50.0         | <200<br><50.0      | <4.0<br><1.0         | <20.0<br><20.0    | <100<br><100        | <250<br><250        | NA*<br>NA*           |
| Dichlorofluoromethane                                  | NL           | <10.0                | <40.0            | <10.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <100              | <1.0                | <20.0             | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | NA*                  |
| Diethyl ether (Ethyl ether)                            | 1000         | <40.0                | <200             | <50.0             | <200              | <200                | <40.0                | <40.0                | <100                | <400              | <4.0                | <80.0             | <8.0               | <4.0                | <4.0                | <4.0             | <4.0               | <4.0              | <8.0             | <20.0            | <40.0            | <40.0            | <4.0               | <100              | <200                  | <200               | <4.0                 | <80.0             | <400                | <1000               | NA*                  |
| Ethylbenzene<br>Hexachloro-1,3-butadiene               | 700<br>1     | <10.0<br><40.0       | <40.0<br><200    | <10.0<br><50.0    | <50.0<br><50.0    | <50.0<br><50.0      | <10.0                | <10.0                | <25.0<br><25.0      | <100<br><100      | <1.0<br><1.0        | <20.0<br><20.0    | <2.0<br><2.0       | <1.0<br><1.0        | <1.0<br><5.0        | <1.0<br><5.0     | <1.0<br><5.0       | <1.0<br><5.0      | <2.0<br><10.0    | <5.0<br><25.0    | <10.0<br><50.0   | <10.0<br><50.0   | <1.0<br><5.0       | <25.0<br><100     | <50.0<br><200         | <50.0<br><200      | <1.0<br><4.0         | <20.0<br><80.0    | <100<br><400        | <250<br><1000       | NA*<br>NA*           |
| Isopropylbenzene (Cumene)                              | 300          | <10.0                | <40.0            | <10.0             | <50.0             | <50.0<br><50.0      | <10.0                | <10.0                | <25.0               | <100              | <1.0                | <20.0             | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | NA*                  |
| m&p-Xylene                                             | NL           | NA                   | NA               | NA                | NA                | NA                  | NA                   | NA                   | NA                  | NA                | NA                  | NA                | NA                 | NA                  | NA                  | <2.0             | <2.0               | <2.0              | <4.0             | <10.0            | <20.0            | <20.0            | <2.0               | <50.0             | <100                  | <100               | <2.0                 | <40.0             | <200                | <500                | NA*                  |
| Methylene Chloride                                     | 5            | <40.0                | <40.0            | <10.0             | <200              | <200                | <40.0                | <40.0                | <100                | <400              | <4.0                | <80.0             | <8.0               | <4.0                | <4.0                | <4.0             | <4.0               | <4.0              | <8.0             | <20.0            | <40.0            | <40.0            | <4.0               | <100              | <200                  | <200               | <4.0                 | <80.0             | <400                | <1000               | NA*                  |
| Methyl-tert-butyl ether<br>Naphthalene                 | 70<br>300    | <10.0<br><40.0       | <40.0<br><200    | <10.0<br><50.0    | <50.0<br><200     | <50.0<br><200       | <10.0<br><40.0       | <10.0<br><40.0       | <25.0<br><100       | <100<br><400      | <1.0<br><4.0        | <20.0<br><80.0    | <2.0<br><8.0       | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0     | <1.0<br><4.0       | <1.0<br><4.0      | <2.0<br><8.0     | <5.0<br><20.0    | <10.0<br><40.0   | <10.0<br><40.0   | <1.0<br><4.0       | <25.0<br><100     | <50.0<br><200         | <50.0<br><200      | <1.0<br><4.0         | <20.0<br><80.0    | <100<br><400        | <250<br><1000       | NA*<br>NA*           |
| n-Butylbenzene                                         | NL           | <10.0                | <40.0            | <10.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <100              | <1.0                | <20.0             | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | NA*                  |
| n-Propylbenzene                                        | NL           | <10.0                | <40.0            | <10.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <100              | <1.0                | <20.0             | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | NA*                  |
| o-Xylene<br>p-Isopropyltoluene                         | NL<br>NL     | NA<br><10.0          | NA<br><40.0      | NA<br><10.0       | NA<br><50.0       | NA<br><50.0         | NA<br><10.0          | NA<br><10.0          | NA<br><25.0         | NA<br><100        | NA<br><1.0          | NA<br><20.0       | NA<br><2.0         | NA<br><1.0          | NA<br><1.0          | <1.0<br><1.0     | <1.0<br><1.0       | <1.0<br><1.0      | <2.0<br><2.0     | <5.0<br><5.0     | <10.0<br><10.0   | <10.0<br><10.0   | <1.0<br><1.0       | <25.0<br><25.0    | <50.0<br><50.0        | <50.0<br><50.0     | <1.0<br><1.0         | <20.0<br><20.0    | <100<br><100        | <250<br><250        | NA*<br>NA*           |
| sec-Butylbenzene                                       | NL NL        | <10.0                | <200             | <50.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <100              | <1.0                | <20.0             | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | NA*                  |
| Styrene                                                | NL           | <10.0                | <40.0            | <10.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <100              | <1.0                | <20.0             | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | NA*                  |
| tert-Butylbenzene                                      | NL<br>E      | <10.0                | <40.0            | <10.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <100              | <1.0                | <20.0             | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0<br><b>4,690</b> | <50.0              | <1.0<br><b>5,800</b> | <20.0             | <100                | <250                | NA*                  |
| Tetrachloroethene<br>Tetrahydrofuran                   | 5<br>100     | <b>1260</b> <100     | <b>4230</b> <200 | <b>1280</b> <50.0 | <b>7,680</b> <500 | <b>10300</b> <500   | <b>5130</b> <100     | <b>1100</b> <100     | <b>6200</b> <250    | <b>7330</b> <1000 | <b>6800</b> <10.0   | <b>1840</b> <200  | <b>1720</b> <20.0  | <b>184</b> <10.0    | <b>7100</b> <10.0   | <b>140</b> <10.0 | <b>746</b> <10.0   | <b>39.0</b> <10.0 | <b>206</b> <20.0 | <b>511</b> <50.0 | <b>890</b> <100  | <b>2080</b> <100 | <b>1680</b> <10.0  | <b>2,990</b> <250 | <b>&lt;500</b>        | <b>12,100</b> <500 | <10.0                | <b>2,710</b> <200 | <b>10,600</b> <1000 | <b>32,000</b> <2500 | <b>38,200</b><br>NA* |
| Toluene                                                | 1000         | <10.0                | <40.0            | <10.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <100              | <1.0                | <20.0             | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <10.0            | <10.0            | <1.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | NA*                  |
| trans-1,2-Dichloroethene                               | 100          | <10.0                | <40.0            | <10.0             | <50.0             | <50.0               | <10.0                | <10.0                | <25.0               | <100              | <1.0                | <20.0             | <2.0               | <1.0                | <1.0                | <1.0             | <1.0               | <1.0              | <2.0             | <5.0             | <40.0            | <40.0            | <4.0               | <25.0             | <50.0                 | <50.0              | <1.0                 | <20.0             | <100                | <250                | <500                 |
| trans-1,3-Dichloropropene                              | NL<br>5      | <40.0                | <800<br><40.0    | <200              | <200              | <200                | <40.0                | <40.0                | <100                | <400              | <4.0<br><b>6.1</b>  | <80.0             | <8.0<br><b>1.5</b> | <4.0<br><b>0.45</b> | <4.0<br><b>12.7</b> | <4.0             | <4.0<br><b>1.6</b> | <4.0              | <8.0             | <20.0            | <40.0            | <40.0            | <4.0<br><b>2.2</b> | <100<br><25.0     | <200<br><50.0         | <200<br><50.0      | <4.0<br><b>7.5</b>   | <80.0             | <400<br><100        | <1000               | NA*                  |
| Trichloroethene<br>Trichlorofluoromethane              | 2000         | <4.0<br><10.0        | <40.0<br><40.0   | <10.0<br><10.0    | <20.0<br><50.0    | <20.0<br><50.0      | <4.0<br><10.0        | <4.0<br><10.0        | <10.0<br><25.0      | <40.0<br><100     | <1.0                | <8.0<br><20.0     | <2.0               | <1.0                | <1.0                | <1.0<br><1.0     | <1.0               | <1.0<br><1.0      | <2.0<br><2.0     | <5.0<br><5.0     | <10.0<br><10.0   | <10.0<br><10.0   | <1.0               | <25.0<br><25.0    | <50.0<br><50.0        | <50.0<br><50.0     | <1.0                 | <20.0<br><20.0    | <100<br><100        | <250<br><250        | <500<br>NA*          |
| Vinyl chloride                                         | 0.2          | <4.0                 | <40.0            | <10.0             | <20.0             | <20.0               | <4.0                 | <4.0                 | <10.0               | <40.0             | <1.0                | <8.0              | <0.80              | <0.40               | <0.40               | <0.40            | <0.40              | <0.40             | <0.80            | <2.0             | <4.0             | <4.0             | <0.40              | <10.0             | <20.0                 | <20.0              | <0.40                | <8.0              | <40.0               | <100                | <200                 |
| Xylene (Total)                                         | 10000        | <30.0                | <120             | <30.0             | <30.0             | <30.0               | <30.0                | <30.0                | <75.0               | <300              | <3.0                | <60.0             | <6.0               | <3.0                | <3.0                | <3.0             | <3.0               | <3.0              | <6.0             | <15.0            | <30.0            | <30.0            | <3.0               | <75.0             | <150                  | <150               | <3.0                 | <60.0             | <300                | <750                | NA*                  |

Notes:
NL: No Limit
NA\*: Not Analyzed
NS: Not Sampled

221 1st Avenue SW Rochester, Minnesota

| Sample ID                                             | MDH Health        | DPE-3                 | DPE-3                | DPE-3          | DPE-3          | DPE-3          | DPE-3                | DPE-3         | DPE-3                 | DPE-3         | DPE-3                | DPE-3         | DPE-3          | DPE-3                | DPE-3                | DPE-3              | DPE-3               | DPE-3               | DPE-3                | DPE-3                | DPE-3                | DPE-3                | DPE-3          | DPE-3          | DPE-3          | DPE-3          | DPE-3         | DPE-3          | DPE-3         | DPE-3         | DPE-3       |
|-------------------------------------------------------|-------------------|-----------------------|----------------------|----------------|----------------|----------------|----------------------|---------------|-----------------------|---------------|----------------------|---------------|----------------|----------------------|----------------------|--------------------|---------------------|---------------------|----------------------|----------------------|----------------------|----------------------|----------------|----------------|----------------|----------------|---------------|----------------|---------------|---------------|-------------|
| Collected Date and Time                               | Risk Limits       |                       |                      |                |                | 08/18/15       |                      | 02/25/15      |                       | 08/21/14      | 05/20/14             |               | 12/10/13       | 08/26/13             |                      | 02/25/13           |                     |                     | 05/17/12             |                      |                      | 08/28/11             | 05/19/11       |                |                |                | 05/13/10      |                |               |               | 12/10/08    |
| 1,1,1,2-Tetrachloroethane                             | <b>5/09</b><br>70 | <80.0                 | <200                 | <10.0          | <200           | <200           | <200                 | <100          | <50.0                 | <100          | 5.5                  | <100          | <50.0          | <50.0                | 4.9                  | <1.0               | <1.0                | <1.0                | <20.0                | <10.0                | <25.0                | <25.0                | <20.0          | <10.0          | <10.0          | <20.0          | <1.0          | <10.0          | <200          | <200          | NA*         |
| 1,1,1-Trichloroethane                                 | 9000              | <20.0                 | <200                 | <10.0          | <200           | <200           | <200                 | <100          | <50.0                 | <100          | 33.7                 | <100          | <50.0          | <50.0                | 38.7                 | <1.0               | 4.2                 | <1.0                | <20.0                | <10.0                | <25.0                | <25.0                | <20.0          | <10.0          | <10.0          | <20.0          | <1.0          | <10.0          | <200          | <200          | NA*         |
| 1,1,2,2-Tetrachloroethane<br>1,1,2-Trichloroethane    | 2                 | <20.0<br><20.0        | <200<br><200         | <10.0<br><10.0 | <200<br><200   | <200<br><200   | <200<br><200         | <100<br><100  | <50.0<br><50.0        | <100<br><100  | <1.0<br><1.0         | <100<br><100  | <50.0<br><50.0 | <50.0<br><50.0       | <2.0<br><b>2.1</b>   | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <20.0<br><20.0       | <10.0<br><10.0       | <25.0<br><25.0       | <25.0<br><25.0       | <20.0<br><20.0 | <10.0<br><10.0 | <10.0<br><10.0 | <20.0<br><20.0 | <1.0<br><1.0  | <10.0<br><10.0 | <200<br><200  | <200<br><200  | NA*<br>NA*  |
| 1,1,2-Trichlorotrifluoroethane                        | 200000            | 64.9                  | <1000                | 105            | 2890           | 2560           | 2110                 | 2800          | 3370                  | 2040          | 3650                 | 1330          | 664            | 686                  | 6020                 | 15.8               | 232                 | 2.7                 | 414                  | 251                  | 787                  | 348                  | 343            | 1030           | 78.8           | 2,260          | 49.5          | 67.1           | 1,920         | 843           | NA*         |
| 1,1-Dichloroethane                                    | 70                | <20.0                 | <200                 | <10.0          | <200           | <200           | <200                 | <100          | <50.0                 | <100          | 1.0                  | <100          | <50.0          | <50.0                | <2.0                 | <1.0               | <1.0                | <1.0                | <20.0                | <10.0                | <25.0                | <25.0                | <20.0          | <10.0          | <10.0          | <20.0          | <1.0          | <10.0          | <200          | <200          | NA*         |
| 1,1-Dichloroethene 1,1-Dichloropropene                | 6<br>NL           | <20.0<br><20.0        | <200<br><200         | <10.0<br><10.0 | <200<br><200   | <200<br><200   | <200<br><200         | <100<br><100  | <50.0<br><50.0        | <100<br><100  | <b>13.5</b> <1.0     | <100<br><100  | <50.0<br><50.0 | <50.0<br><50.0       | <b>2.0</b> <2.0      | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <20.0<br><20.0       | <10.0<br><10.0       | <25.0<br><25.0       | <25.0<br><25.0       | <20.0<br><20.0 | <10.0<br><10.0 | <10.0<br><10.0 | <20.0<br><20.0 | <1.0<br><1.0  | <10.0<br><10.0 | <200<br><200  | <200<br><200  | <500<br>NA* |
| 1,2,3-Trichlorobenzene                                | NL                | <20.0                 | <1000                | <50.0          | <200           | <200           | <200                 | <100          | <50.0                 | <100          | <1.0                 | <100          | <50.0          | <50.0                | <2.0                 | <1.0               | <1.0                | <1.0                | <20.0                | <10.0                | <25.0                | <25.0                | <20.0          | <10.0          | <10.0          | <20.0          | <1.0          | <10.0          | <200          | <200          | NA*         |
| 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene         | 40<br>NL          | <80.0<br><20.0        | <200<br><1000        | <10.0<br><50.0 | <800<br><200   | <800<br><200   | <800<br><200         | <400<br><100  | <200<br><50.0         | <400          | <4.0<br><1.0         | <400<br><100  | <200<br><50.0  | <200<br><50.0        | <8.0<br><2.0         | <4.0               | <4.0<br><1.0        | <4.0<br><1.0        | <80.0<br><20.0       | <40.0<br><10.0       | <100<br><25.0        | <100<br><25.0        | <80.0<br><20.0 | <40.0<br><10.0 | <10.0<br><10.0 | <20.0<br><20.0 | <1.0<br><1.0  | <10.0<br><10.0 | <200<br><200  | <200<br><200  | NA*<br>NA*  |
| 1,2,4-Trimethylbenzene                                | NL<br>NL          | <20.0                 | <200                 | <10.0          | <200           | <200           | <200                 | <100          | <50.0                 | <100<br><100  | <1.0                 | <100          | <50.0          | <50.0<br><50.0       | <2.0                 | <1.0<br><1.0       | <1.0                | <1.0                | <20.0                | <10.0                | <25.0                | <25.0                | <20.0          | <10.0          | <10.0          | <20.0          | <1.0          | <10.0          | <200          | <200          | NA*         |
| 1,2-Dibromo-3-chloropropane                           | NL                | <200                  | <1000                | <50.0          | <800           | <800           | <2000                | <400          | <200                  | <400          | <4.0                 | <400          | <200           | <200                 | <8.0                 | <4.0               | <4.0                | <4.0                | <80.0                | <40.0                | <100                 | <100                 | <80.0          | <40.0          | <40.0          | <80.0          | <4.0          | <40.0          | <800          | <800          | NA*         |
| 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene           | .004<br>600       | <20.0<br><20.0        | <200<br><200         | <10.0<br><10.0 | <200<br><200   | <200<br><200   | <200<br><200         | <100<br><100  | <50.0<br><50.0        | <100<br><100  | <1.0<br><1.0         | <100<br><100  | <50.0<br><50.0 | <50.0<br><50.0       | <2.0<br><2.0         | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <20.0<br><20.0       | <10.0<br><10.0       | <25.0<br><25.0       | <25.0<br><25.0       | <20.0<br><20.0 | <10.0<br><10.0 | <10.0<br><10.0 | <20.0<br><20.0 | <1.0<br><1.0  | <10.0<br><10.0 | <200<br><200  | <200<br><200  | NA*<br>NA*  |
| 1,2-Dichloroethane                                    | 4                 | <20.0                 | <200                 | <10.0          | <200           | <200           | <200                 | <100          | <50.0                 | <100          | <1.0                 | <100          | <50.0          | <50.0                | <2.0                 | <1.0               | <1.0                | <1.0                | <20.0                | <10.0                | <25.0                | <25.0                | <20.0          | <10.0          | <10.0          | <20.0          | <1.0          | <10.0          | <200          | <200          | NA*         |
| 1,2-Dichloropropane                                   | 5                 | <80.0                 | <200                 | <10.0          | <800           | <800           | <800                 | <400          | <200                  | <400          | 11.3                 | <400          | <200           | <200                 | 10.0                 | <4.0               | <4.0                | <4.0                | <80.0                | <40.0                | <100                 | <100                 | <80.0          | <10.0          | <10.0          | <20.0          | <1.0          | <10.0          | <200          | <200          | NA*         |
| 1,3,5-Trimethylbenzene<br>1,3-Dichlorobenzene         | 100<br>NL         | <20.0<br><20.0        | <200<br><200         | <10.0<br><10.0 | <200<br><200   | <200<br><200   | <200<br><200         | <100<br><100  | <50.0<br><50.0        | <100<br><100  | <1.0<br><1.0         | <100<br><100  | <50.0<br><50.0 | <50.0<br><50.0       | <2.0<br><2.0         | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <20.0<br><20.0       | <10.0<br><10.0       | <25.0<br><25.0       | <25.0<br><25.0       | <20.0<br><20.0 | <10.0<br><10.0 | <10.0<br><10.0 | <20.0<br><20.0 | <1.0<br><1.0  | <10.0<br><10.0 | <200<br><200  | <200<br><200  | NA*<br>NA*  |
| 1,3-Dichloropropane                                   | NL<br>NL          | <20.0                 | <200                 | <10.0          | <200           | <200           | <200                 | <100          | <50.0                 | <100          | <1.0                 | <100          | <50.0          | <50.0                | <2.0                 | <1.0               | <1.0                | <1.0                | <20.0                | <10.0                | <25.0                | <25.0                | <20.0          | <10.0          | <10.0          | <20.0          | <1.0          | <10.0          | <200          | <200          | NA*         |
| 1,4-Dichlorobenzene                                   | 10                | <20.0                 | <200                 | <10.0          | <200           | <200           | <200                 | <100          | <50.0                 | <100          | <1.0                 | <100          | <50.0          | <50.0                | <2.0                 | <1.0               | <1.0                | <1.0                | <20.0                | <10.0                | <25.0                | <25.0                | <20.0          | <10.0          | <10.0          | <20.0          | <1.0          | <10.0          | <200          | <200          | NA*         |
| 2,2-Dichloropropane<br>2-Butanone (MEK)               | NL<br>4000        | <80.0<br><100         | <200<br><4000        | <10.0<br><200  | <800<br><1000  | <800<br><1000  | <800<br><1000        | <400<br><500  | <200<br><250          | <400<br><500  | <4.0<br><5.0         | <400<br><500  | <200<br><250   | <200<br><250         | <8.0<br><10.0        | <4.0<br><4.0       | <4.0<br><4.0        | <4.0<br><4.0        | <80.0<br><80.0       | <40.0<br><40.0       | <100<br><100         | <100<br><100         | <80.0<br><80.0 | <40.0<br><40.0 | <40.0<br><40.0 | <80.0<br><80.0 | <4.0<br><4.0  | <10.0<br><40.0 | <800<br><800  | <200<br><800  | NA*<br>NA*  |
| 2-Chlorotoluene                                       | NL                | <20.0                 | <200                 | <10.0          | <200           | <200           | <200                 | <100          | <50.0                 | <100          | 2.3                  | <100          | <50.0          | <50.0                | 4.2                  | <1.0               | <1.0                | <1.0                | <20.0                | <10.0                | <25.0                | <25.0                | <20.0          | <10.0          | <10.0          | <20.0          | <1.0          | <10.0          | <200          | <200          | NA*         |
| 4-Chlorotoluene                                       | NL<br>200         | <20.0                 | <200                 | <10.0          | <200           | <200           | <200                 | <100          | <50.0                 | <100          | <1.0                 | <100          | <50.0          | <50.0                | <2.0                 | <1.0               | <1.0                | <1.0                | <20.0                | <10.0                | <25.0                | <25.0                | <20.0          | <10.0          | <10.0          | <20.0          | <1.0          | <10.0          | <200          | <200          | NA*<br>NA*  |
| 4-Methyl-2-pentanone (MIBK) Acetone                   | 300<br>700        | <100<br><400          | <4000<br><4000       | <200<br><200   | <1000<br><4000 | <1000<br><4000 | <1000<br><10000      | <500<br><2000 | <250<br><1000         | <500<br><2000 | <5.0<br><20.0        | <500<br><2000 | <250<br><1000  | <250<br><1000        | <10.0<br><40.0       | <4.0<br><b>104</b> | <4.0<br><25.0       | <4.0<br><25.0       | <80.0<br><500        | <40.0<br><250        | <100<br><625         | <100<br><625         | <80.0<br><500  | <40.0<br><250  | <40.0<br><100  | <80.0<br><200  | <4.0<br><10.0 | <40.0<br><100  | <800<br><2000 | <800<br><2000 | NA*         |
| Allyl chloride                                        | 30                | <80.0                 | <1000                | <50.0          | <800           | <800           | <800                 | <400          | <200                  | <400          | <4.0                 | <400          | <200           | <200                 | <8.0                 | <4.0               | <4.0                | <4.0                | <80.0                | <40.0                | <100                 | <100                 | <80.0          | <40.0          | <40.0          | <80.0          | <4.0          | <40.0          | <800          | <800          | NA*         |
| Benzene                                               | 2<br>NL           | <20.0<br><20.0        | <200<br><200         | <10.0<br><10.0 | <200<br><200   | <200<br><200   | <200<br><200         | <100<br><100  | <50.0<br><50.0        | <100<br><100  | <1.0                 | <100<br><100  | <50.0<br><50.0 | <50.0<br><50.0       | <2.0<br><2.0         | <1.0               | <1.0<br><1.0        | <1.0                | <20.0<br><20.0       | <10.0<br><10.0       | <25.0<br><25.0       | <25.0<br><25.0       | <20.0<br><20.0 | <10.0<br><10.0 | <10.0<br><10.0 | <20.0<br><20.0 | <1.0          | <10.0<br><10.0 | <200<br><200  | <200<br><200  | NA*<br>NA*  |
| Bromobenzene<br>Bromochloromethane                    | NL<br>NL          | <20.0                 | <200                 | <10.0          | <200           | <200           | <200                 | <100          | <50.0<br><50.0        | <100          | <1.0<br><1.0         | <100          | <50.0          | <50.0                | <2.0                 | <1.0<br><1.0       | <1.0                | <1.0<br><1.0        | <20.0                | <10.0                | <25.0                | <25.0                | <20.0          | <10.0          | <10.0          | <20.0          | <1.0<br><1.0  | <10.0          | <200          | <200          | NA*         |
| Bromodichloromethane                                  | 6                 | <20.0                 | <200                 | <10.0          | <200           | <200           | <200                 | <100          | <50.0                 | <100          | <1.0                 | <100          | <50.0          | <50.0                | <2.0                 | <1.0               | <1.0                | <1.0                | <20.0                | <10.0                | <25.0                | <25.0                | <20.0          | <10.0          | <10.0          | <20.0          | <1.0          | <10.0          | <200          | <200          | NA*         |
| Bromoform<br>Bromomethane                             | 40<br>10          | <80.0<br><80.0        | <1000<br><1000       | <50.0<br><50.0 | <800<br><800   | <800<br><800   | <800<br><800         | <400<br><400  | <200<br><200          | <400<br><400  | <4.0<br><4.0         | <400<br><400  | <200<br><200   | <200<br><200         | <8.0<br><8.0         | <4.0<br><4.0       | <4.0<br><4.0        | <4.0<br><4.0        | <80.0<br><80.0       | <40.0<br><40.0       | <100<br><100         | <100<br><100         | <80.0<br><80.0 | <80.0<br><40.0 | <80.0<br><40.0 | <160<br><80.0  | <8.0<br><4.0  | <80.0<br><40.0 | <1600<br><800 | <1600<br><800 | NA*<br>NA*  |
| Carbon tetrachloride                                  | 3                 | <20.0                 | <200                 | <10.0          | <200           | <200           | <200                 | <100          | <50.0                 | <100          | <1.0                 | <100          | <50.0          | <50.0                | <2.0                 | <1.0               | <1.0                | <1.0                | <20.0                | <10.0                | <25.0                | <25.0                | <20.0          | <40.0          | <40.0          | <80.0          | <4.0          | <10.0          | <800          | <200          | NA*         |
| Chlorobenzene                                         | 100               | <20.0                 | <200                 | <10.0          | <200           | <200           | <200                 | <100          | <50.0                 | <100          | <1.0                 | <100          | <50.0          | <50.0                | <2.0                 | <1.0               | <1.0                | <1.0                | <20.0                | <10.0                | <25.0                | <25.0                | <20.0          | <10.0          | <10.0          | <20.0          | <1.0          | <10.0          | <200          | <200          | NA*         |
| Chloroethane<br>Chloroform                            | 300<br>30         | <20.0<br><20.0        | <200<br><1000        | <10.0<br><50.0 | <200<br><200   | <200<br><200   | <200<br><200         | <100<br><100  | <50.0<br><50.0        | <400<br><100  | <1.0<br><b>15.7</b>  | <100<br><100  | <50.0<br><50.0 | <50.0<br><50.0       | <8.0<br><b>14.6</b>  | <1.0<br><1.0       | <1.0<br><b>2.6</b>  | <1.0<br><1.0        | <20.0<br><20.0       | <10.0<br><10.0       | <25.0<br><25.0       | <25.0<br><25.0       | <20.0<br><20.0 | <10.0<br><10.0 | <10.0<br><10.0 | <20.0<br><20.0 | <1.0<br><1.0  | <10.0<br><10.0 | <200<br><200  | <200<br><200  | NA*<br>NA*  |
| Chloromethane                                         | NL                | <80.0                 | <200                 | <10.0          | <800           | <800           | <800                 | <400          | <200                  | <400          | <4.0                 | <400          | <200           | 272                  | <8.0                 | <4.0               | <4.0                | <4.0                | <80.0                | <40.0                | <100                 | <100                 | <80.0          | <40.0          | <40.0          | <80.0          | <4.0          | <40.0          | <800          | <800          | NA*         |
| cis-1,2-Dichloroethene                                | 50                | <20.0                 | <200                 | <10.0          | <200           | <200           | <200                 | <100          | 50.2                  | <100          | 124                  | <100          | <50.0          | <50.0                | 90.2                 | <1.0               | 25.0                | <1.0                | <20.0                | <10.0                | <25.0                | <25.0                | <20.0          | 19.6           | <10.0          | 59.2           | 2.6           | <10.0          | <200          | <200          | 1,090       |
| cis-1,3-Dichloropropene Dibromochloromethane          | NL<br>10          | <80.0<br><20.0        | <1000<br><1000       | <50.0<br><50.0 | <800<br><200   | <800<br><200   | <800<br><200         | <400<br><100  | <200<br><50.0         | <400<br><100  | <4.0<br><1.0         | <400<br><100  | <200<br><50.0  | <200<br><50.0        | <8.0<br><2.0         | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0        | <80.0<br><20.0       | <40.0<br><10.0       | <100<br><25.0        | <100<br><25.0        | <80.0<br><20.0 | <40.0<br><10.0 | <40.0<br><10.0 | <80.0<br><20.0 | <4.0<br><1.0  | <40.0<br><10.0 | <800<br><200  | <800<br><200  | NA*<br>NA*  |
| Dibromomethane                                        | NL                | <80.0                 | <200                 | <10.0          | <800           | <800           | <800                 | <400          | <200                  | <400          | <4.0                 | <400          | <200           | <200                 | <8.0                 | <4.0               | <4.0                | <4.0                | <80.0                | <40.0                | <100                 | <100                 | <80.0          | <40.0          | <40.0          | <80.0          | <4.0          | <10.0          | <200          | <200          | NA*         |
| Dichlorodifluoromethane Dichlorofluoromethane         | 1000<br>NL        | <20.0<br><20.0        | <200<br><200         | <10.0<br><10.0 | <200<br><200   | <200<br><200   | <200<br><200         | <100<br><100  | <50.0<br><50.0        | <100<br><100  | <1.0<br><1.0         | <100<br><100  | <50.0<br><50.0 | <50.0<br><50.0       | <2.0<br><2.0         | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <20.0<br><20.0       | <10.0<br><10.0       | <25.0<br><25.0       | <25.0<br><25.0       | <20.0<br><20.0 | <10.0<br><10.0 | <10.0<br><10.0 | <20.0<br><20.0 | <1.0<br><1.0  | <10.0<br><10.0 | <200<br><200  | <200<br><200  | NA*<br>NA*  |
| Diethyl ether (Ethyl ether)                           | 1000              | <80.0                 | <1000                | <50.0          | <800           | <800           | <800                 | <400          | <200                  | <400          | <4.0                 | <400          | <200           | <200                 | <8.0                 | <4.0               | <4.0                | <4.0                | <80.0                | <40.0                | <100                 | <100                 | <80.0          | <40.0          | <40.0          | <80.0          | <4.0          | <40.0          | <800          | <800          | NA*         |
| Ethylbenzene                                          | 700               | <20.0                 | <200                 | <10.0          | <200           | <200           | <200                 | <100          | <50.0                 | <100          | <1.0                 | <100          | <50.0          | <50.0                | <2.0                 | <1.0               | <1.0                | <1.0                | <20.0                | <10.0                | <25.0                | <25.0                | <20.0          | <10.0          | <10.0          | <20.0          | <1.0          | <10.0          | <200          | <200          | NA*         |
| Hexachloro-1,3-butadiene<br>Isopropylbenzene (Cumene) | 1<br>300          | <80.0<br><20.0        | <1000<br><200        | <50.0<br><10.0 | <200<br><200   | <200<br><200   | <200<br><200         | <100<br><100  | <50.0<br><50.0        | <100<br><100  | <1.0<br><1.0         | <100<br><100  | <50.0<br><50.0 | <50.0<br><50.0       | <10.0<br><2.0        | <5.0<br><1.0       | <5.0<br><1.0        | <5.0<br><1.0        | <100<br><20.0        | <50.0<br><10.0       | <125<br><25.0        | <125<br><25.0        | <100<br><20.0  | <40.0<br><10.0 | <40.0<br><10.0 | <80.0<br><20.0 | <4.0<br><1.0  | <40.0<br><10.0 | <800<br><200  | <800<br><200  | NA*<br>NA*  |
| m&p-Xylene                                            | NL                | NA                    | NA                   | NA             | NA             | NA             | NA                   | NA            | NA                    | NA            | NA                   | NA            | NA             | NA                   | NA                   | <2.0               | <2.0                | <2.0                | <40.0                | <20.0                | <50.0                | <50.0                | <40.0          | <20.0          | <20.0          | <40.0          | <2.0          | <20.0          | <400          | <400          | NA*         |
| Methylene Chloride                                    | 5                 | <80.0                 | <200                 | <10.0          | <800           | <800           | <800                 | <400          | <200                  | <400          | <4.0                 | <400          | <200           | <200                 | <8.0                 | <4.0               | <4.0                | <4.0                | <80.0                | <40.0                | <100                 | <100                 | <80.0          | <40.0          | <40.0          | <80.0          | <4.0          | <40.0          | <800          | <800          | NA*         |
| Methyl-tert-butyl ether<br>Naphthalene                | 70<br>300         | <20.0<br><80.0        | <200<br><1000        | <10.0<br><50.0 | <200<br><800   | <200<br><800   | <200<br><800         | <100<br><400  | <50.0<br><200         | <100<br><400  | <1.0<br><4.0         | <100<br><400  | <50.0<br><200  | <50.0<br><200        | <2.0<br><8.0         | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0        | <20.0<br><80.0       | <10.0<br><40.0       | <25.0<br><100        | <25.0<br><100        | <20.0<br><80.0 | <10.0<br><40.0 | <10.0<br><40.0 | <20.0<br><80.0 | <1.0<br><4.0  | <10.0<br><40.0 | <200<br><800  | <200<br><800  | NA*<br>NA*  |
| n-Butylbenzene                                        | NL                | <20.0                 | <200                 | <10.0          | <200           | <200           | <200                 | <100          | <50.0                 | <100          | <1.0                 | <100          | <50.0          | <50.0                | <2.0                 | <1.0               | <1.0                | <1.0                | <20.0                | <10.0                | <25.0                | <25.0                | <20.0          | <10.0          | <10.0          | <20.0          | <1.0          | <10.0          | <200          | <200          | NA*         |
| n-Propylbenzene                                       | NL<br>NI          | <20.0                 | <200                 | <10.0          | <200           | <200           | <200                 | <100          | <50.0                 | <100          | <1.0                 | <100          | <50.0          | <50.0                | <2.0                 | <1.0               | <1.0                | <1.0                | <20.0                | <10.0                | <25.0                | <25.0                | <20.0          | <10.0          | <10.0          | <20.0          | <1.0          | <10.0          | <200          | <200          | NA*         |
| o-Xylene<br>p-Isopropyltoluene                        | NL<br>NL          | NA<br><20.0           | NA<br><200           | NA<br><10.0    | NA<br><200     | NA<br><200     | NA<br><200           | NA<br><100    | NA<br><50.0           | NA<br><100    | NA<br><1.0           | NA<br><100    | NA<br><50.0    | NA<br><50.0          | NA<br><2.0           | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <20.0<br><20.0       | <10.0<br><10.0       | <25.0<br><25.0       | <25.0<br><25.0       | <20.0<br><20.0 | <10.0<br><10.0 | <10.0<br><10.0 | <20.0<br><20.0 | <1.0<br><1.0  | <10.0<br><10.0 | <200<br><200  | <200<br><200  | NA*         |
| sec-Butylbenzene                                      | NL                | <20.0                 | <1000                | <50.0          | <200           | <200           | <200                 | <100          | <50.0                 | <100          | <1.0                 | <100          | <50.0          | <50.0                | <2.0                 | <1.0               | <1.0                | <1.0                | <20.0                | <10.0                | <25.0                | <25.0                | <20.0          | <10.0          | <10.0          | <20.0          | <1.0          | <10.0          | <200          | <200          | NA*         |
| Styrene<br>tert-Butylbenzene                          | NL<br>NL          | <20.0<br><20.0        | <200<br><200         | <10.0<br><10.0 | <200<br><200   | <200<br><200   | <200<br><200         | <100<br><100  | <50.0<br><50.0        | <100<br><100  | <1.0<br><1.0         | <100<br><100  | <50.0<br><50.0 | <50.0<br><50.0       | <2.0<br><2.0         | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <20.0<br><20.0       | <10.0<br><10.0       | <25.0<br><25.0       | <25.0<br><25.0       | <20.0<br><20.0 | <10.0<br><10.0 | <10.0<br><10.0 | <20.0<br><20.0 | <1.0<br><1.0  | <10.0<br><10.0 | <200<br><200  | <200<br><200  | NA*<br>NA*  |
| tert-Butylbenzene<br>Tetrachloroethene                | NL<br>5           | <20.0<br><b>2,510</b> | <200<br><b>19600</b> |                | <200<br>37,300 |                | <200<br><b>21200</b> | 30800         | <50.0<br><b>36300</b> | 21200         | <1.0<br><b>53800</b> | 20000         | <50.0<br>10200 | <50.0<br><b>6980</b> | <2.0<br><b>61800</b> | <1.0<br><b>264</b> | <1.0<br><b>5670</b> | <1.0<br><b>74.8</b> | <20.0<br><b>3690</b> | <10.0<br><b>1010</b> | <25.0<br><b>5310</b> | <25.0<br><b>4260</b> | 3220           | 12,700         | 1,450          | 20,400         | 2,240         |                |               |               | 152,000     |
| Tetrahydrofuran                                       | 100               | <200                  | <1000                | <50.0          | <2000          | <2000          | <2000                | <1000         | <500                  | <1000         | <10.0                | <1000         | <500           | <500                 | <20.0                | <10.0              | <10.0               | <10.0               | <200                 | <100                 | <250                 | <250                 | <200           | <100           | <100           | <200           | 10.9          | <100           | <2000         | <2000         | NA*         |
| Toluene<br>trans-1 2-Dichloroethene                   | 1000<br>100       | <20.0                 | <200<br><200         | <10.0<br><10.0 | <200<br><200   | <200<br><200   | <200<br><200         | <100<br><100  | <50.0<br><50.0        | <100<br><100  | <1.0                 | <100<br><100  | <50.0<br><50.0 | <50.0<br><50.0       | <2.0<br><2.0         | <1.0<br><1.0       | <1.0                | <1.0<br><1.0        | <20.0<br><20.0       | <10.0<br><10.0       | <25.0<br><100        | <25.0<br><100        | <20.0<br><80.0 | <10.0<br><10.0 | <10.0<br><10.0 | <20.0<br><20.0 | <1.0          | <10.0<br><10.0 | <200<br><200  | <200<br><200  | NA*<br><500 |
| trans-1,2-Dichloroethene<br>trans-1,3-Dichloropropene | NL                | <20.0<br><80.0        | <4000                | <200           | <200<br><800   | <200<br><800   | <200<br><800         | <400          | <50.0<br><200         | <100<br><400  | <1.0<br><4.0         | <400          | <50.0<br><200  | <50.0<br><200        | <2.0<br><8.0         | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0        | <20.0<br><80.0       | <10.0<br><40.0       | <100                 | <100                 | <80.0<br><80.0 | <10.0<br><40.0 | <10.0<br><40.0 | <20.0<br><80.0 | <1.0<br><4.0  | <10.0<br><40.0 | <200<br><800  | <200<br><800  | <500<br>NA* |
| Trichloroethene                                       | 5                 | <8.0                  | <200                 | <10.0          | <80.0          | <80.0          | <80.0                | <40.0         | 40.7                  | <40.0         | 72.6                 | <40.0         | <20.0          | <20.0                | 68.2                 | <1.0               | 10.4                | <1.0                | <20.0                | <10.0                | <25.0                | <25.0                | <20.0          | 12.3           | <10.0          | 22.8           | <1.0          | <10.0          | <200          | <200          | <500        |
| Trichlorofluoromethane                                | 2000              | <20.0                 | <200                 | <10.0          | <200           | <200           | <200                 | <100          | <50.0                 | <100          | <1.0                 | <100          | <50.0          | <50.0                | <2.0                 | <1.0               | <1.0                | <1.0                | <20.0                | <10.0                | <25.0                | <25.0                | <20.0          | <10.0          | <10.0          | <20.0          | <1.0          | <10.0          | <200          | <200          | NA*         |
| Vinyl chloride<br>Xylene (Total)                      | 0.2<br>10000      | <8.0<br><60.0         | <200<br><600         | <10.0<br><30.0 | <80.0<br><600  | <80.0<br><600  | <80.0<br><600        | <40.0<br><300 | <20.0<br><150         | <40.0<br><300 | <1.0<br><3.0         | <40.0<br><300 | <20.0<br><150  | <20.0<br><150        | <0.80<br><6.0        | <0.40<br><3.0      | <0.40<br><3.0       | <0.40<br><3.0       | <8.0<br><60.0        | <4.0<br><30.0        | <10.0<br><75.0       | <10.0<br><75.0       | <8.0<br><60.0  | <4.0<br><30.0  | <4.0<br><30.0  | <8.0<br><60.0  | <0.40<br><3.0 | <4.0<br><30.0  | <80.0<br><600 | <80.0<br><600 | <200<br>NA* |
| Notes:                                                |                   | -50.0                 | -300                 | -50.0          | -300           | -500           | -500                 | -500          | 00                    | -500          | -5.0                 | -500          |                | - 100                | -0.0                 | -0.0               | -0.0                | -5.0                | -50.0                | -50.0                | 0.0                  | 0.0                  |                |                |                |                |               | -00.0          | -500          |               |             |

Notes:
NL: No Limit
NA\*: Not Analyzed
NS: Not Sampled

221 1st Avenue SW Rochester, Minnesota

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sample ID                                 | MDH Health | DPE-4  | DPE-4  | DPE-4 | DPE-4 | DPE-4 | DPE-4 | DPE-4 | DPE-4 | DPE-4 | DPE-4 | DPE-4 | DPE-4  | DPE-4 | DPE-4 | DPE-4    | DPE-4 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|-------|-------|----------|-------|
| 1. The content of the                                                                                                                                                                                                                                                                                                 | Collected Date and Time                   |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       | 09/28/09 |       |
| 1 Holestones   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100   100                                                                                                                                                                                                                                                                                                 | 1,1,1,2-Tetrachloroethane                 | 0,00       | <20.0 | <50.0 | <5.0  | <100  | <50.0 | <50.0 | <50.0 | <25.0 | <50.0 | <50.0 | <50.0 | <10.0 | <10.0 | <2.0  | <1.0   | <1.0   | <1.0  | <2.0  | <5.0  | <5.0  | <5.0  | <2.0  | <10.0 | <10.0 | <5.0  | <1.0   | <5.0  | <50.0 | <50.0    | NA*   |
| 19-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,1,1-Trichloroethane                     | 9000       |       |       |       |       |       |       |       |       |       |       |       |       |       |       | <1.0   |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| 1. Propose shore s                                                                                                                                                                                                                                                                                                 | , , ,                                     | 2          |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| State   Stat                                                                                                                                                                                                                                                                                                   | 1,1,2-Trichlorotrifluoroethane            |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        | 11.0   |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| 1. Statement of the control of the c                                                                                                                                                                                                                                                                                                 | 1,1-Dichloroethane                        |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| 2-7-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           | -          |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,2,3-Trichlorobenzene                    |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| 24 The separate of the separat                                                                                                                                                                                                                                                                                                 | 1,2,3-Trichloropropane                    |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| Separate S                                                                                                                                                                                                                                                                                                   |                                           |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| Schellenstensier 19 2, 20 30 50 50 50 50 50 50 50 50 50 50 50 50 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-Dibromo-3-chloropropane               |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| Schellerscheine 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,2-Dibromoethane (EDB)                   |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | · ·                                       | 600<br>4   |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| Separate   Marchine                                                                                                                                                                                                                                                                                                    | 1,2-Dichloropropane                       | 5          |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| Substitution of the substi                                                                                                                                                                                                                                                                                                 | 1,3,5-Trimethylbenzene                    |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| *** Althorsports see the section of                                                                                                                                                                                                                                                                                                  |                                           |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| Hallenge Ciffic   Mov                                                                                                                                                                                                                                                                                                    | 1,4-Dichlorobenzene                       |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          | NA*   |
| Consistency                                                                                                                                                                                                                                                                                                      | 2,2-Dichloropropane                       |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ` '                                       |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| www. www. www. www. www. www. www. www                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4-Chlorotoluene                           | NL         |       |       | <5.0  |       | <50.0 | <50.0 | <50.0 | <25.0 | <50.0 |       | <50.0 |       |       |       |        | <1.0   | <1.0  |       | <5.0  | <5.0  | <5.0  |       |       |       |       |        | <5.0  | <50.0 | <50.0    | NA*   |
| Wilson   W                                                                                                                                                                                                                                                                                                   | 4-Methyl-2-pentanone (MIBK)               |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        | 1      |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| merimene   2   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450                                                                                                                                                                                                                                                                                                 | Allyl chloride                            |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| Instruction content                                                                                                                                                                                                                                                                                                    | Benzene                                   | 2          | <5.0  |       |       |       |       |       |       |       |       |       |       |       | <10.0 |       | <1.0   | <1.0   | <1.0  |       | <5.0  |       |       |       |       |       |       | <1.0   |       |       |          |       |
| inconstring from the fine stand properties and standard properties and stan                                                                                                                                                                                                                                                                                                 | Bromobenzene<br>Bromochloromothana        |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| Informatise informatise in the control informatise informatise informatise informatise in the control informatise information informatise informatise informatise informatise informatise                                                                                                                                                                                                                                                                                                  | Bromodichloromethane                      |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| informer paramental professor parament professor parameter parament professor parameter parameter parameter professor parameter parameter professor parameter parameter parameter parameter parameter parameter parameter parameter parameter par                                                                                                                                                                                                                                                                                                 | Bromoform                                 |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| Descriptions   100   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6.5   6                                                                                                                                                                                                                                                                                                   |                                           |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| District Conting   Nat   Section                                                                                                                                                                                                                                                                                                     | Chlorobenzene                             | -          |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| New Processor   New Processo                                                                                                                                                                                                                                                                                                   | Chloroethane                              |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| sis -12 Delitoprochemen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                           |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| District Production   Top   So   So   So   So   So   So   So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cis-1,2-Dichloroethene                    | 50         |       |       |       |       |       |       |       |       |       |       |       |       |       |       | <1.0   |        | <1.0  |       |       |       |       |       |       |       | 20.7  |        | 1     |       |          |       |
| Decompossible proproprise propriet pr                                                                                                                                                                                                                                                                                                   | cis-1,3-Dichloropropene                   |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| Principolishormathman   100   45.0   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450   450                                                                                                                                                                                                                                                                                                   |                                           |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| lethy lether ([Ethy lether (Ethy lether (Eth                                                                                                                                                                                                                                                                                                 | Dichlorodifluoromethane                   | 1000       |       | <50.0 |       | <100  | <50.0 | <50.0 | <50.0 | <25.0 |       | <50.0 |       |       |       |       |        |        |       |       | <5.0  |       |       |       |       |       |       |        |       | <50.0 | <50.0    | NA*   |
| itylimplemene i mylimplemene i mylim                                                                                                                                                                                                                                                                                                 |                                           |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ethylbenzene                              |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| NL   NA   NA   NA   NA   NA   NA   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Hexachloro-1,3-butadiene                  | 1          |       | <250  | <25.0 |       |       | <50.0 |       | <25.0 | <50.0 | <50.0 | <50.0 | <10.0 |       | <10.0 | <5.0   |        |       |       | <25.0 | <25.0 | <25.0 | <10.0 |       |       | <20.0 |        | <20.0 | <200  | <200     |       |
| lefty-left-builder Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Isopropylbenzene (Cumene)                 |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| Methyl-terh-buryl ether   From   Fr                                                                                                                                                                                                                                                                                                   | Methylene Chloride                        |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| Filely ble marker   NL   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0   \$5,0 | Methyl-tert-butyl ether                   |            | <5.0  |       |       |       |       |       |       |       |       |       |       | <10.0 |       | <2.0  | <1.0   | <1.0   | <1.0  | <2.0  |       |       |       | <2.0  |       |       |       | <1.0   |       |       |          |       |
| Propylehazene Pr                                                                                                                                                                                                                                                                                                 | Naphthalene<br>n-Butylbenzene             |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| -Xylene NL NL NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n-Propylbenzene                           |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| NL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                           | NL         | NA    |       |       | NA    | NA    | NA    |       |       |       |       | NA    | NA    |       | NA    |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| Styrene of NL control of NL co                                                                                                                                                                                                                                                                                                 |                                           |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| etrachloroethene 5 724 6170 1040 6,900 14900 11800 5090 11100 9670 8320 8860 6850 982 13700 219 1410 187 223 830 763 771 367 1,160 1,100 2,600 357 429 5,040 7,340 35,600 etrachloroethene 100 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <50.0 <                                                                                                                                                                                                                                                                                                 | Styrene                                   |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| Tetrahydrofuran 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tert-Butylbenzene                         |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| Follume Tollume Tollum                                                                                                                                                                                                                                                                                                 |                                           | 1 1        |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| rans-1,2-Dichloroethene 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Toluene                                   |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
| Frichloroethene 5 < 2.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0 < 50.0                                                                                                                                                                                                                                                                                                 | trans-1,2-Dichloroethene                  | 100        |       | <50.0 | <5.0  | <100  | <50.0 | <50.0 | <50.0 | <25.0 | <50.0 | <50.0 | <50.0 | <10.0 | <10.0 | <2.0  | <1.0   | <1.0   | <1.0  | <2.0  | <5.0  | <20.0 | <20.0 | <8.0  | <10.0 | <10.0 | <5.0  | <1.0   | <5.0  | <50.0 | <50.0    |       |
| Frichlorofluoromethane 2000 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 < 5.0 <                                                                                                                                                                                                                                                                                                  | trans-1,3-Dichloropropene Trichloroethene |            |       |       |       |       |       |       |       |       |       |       |       |       | -     |       |        |        |       |       |       |       |       |       |       |       |       | -      |       |       |          |       |
| (rinyl chloride 0.2 < 2.0 <50.0 < 50.0 < 40.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.0 < 20.                                                                                                                                                                                                                                                                                                 | Trichlorofluoromethane                    |            |       |       |       |       |       |       |       |       |       |       |       |       |       |       |        |        |       |       |       |       |       |       |       |       |       |        |       |       |          |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vinyl chloride                            | 0.2        | <2.0  | <50.0 | <5.0  | <40.0 | <20.0 | <20.0 | <20.0 | <10.0 | <20.0 | <50.0 | <20.0 | <4.0  | <4.0  | <0.80 | < 0.40 | < 0.40 | <0.40 | <0.80 | <2.0  | <2.0  | <2.0  | <0.80 | <4.0  | <4.0  | <2.0  | < 0.40 | <2.0  | <20.0 | <20.0    | <200  |
| Into C'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Xylene (Total) Notes:                     | 10000      | <15.0 | <150  | <15.0 | <300  | <150  | <150  | <150  | <75.0 | <150  | <150  | <150  | <30.0 | <30.0 | <6.0  | <3.0   | <3.0   | <3.0  | <6.0  | <15.0 | <15.0 | <15.0 | <6.0  | <30.0 | <30.0 | <15.0 | <3.0   | <15.0 | <150  | <150     | NA*   |

Notes:
NL: No Limit
NA\*: Not Analyzed
NS: Not Sampled

221 1st Avenue SW Rochester, Minnesota

| Sample ID                                            | MDH Health        | DPE-5         | DPE-5         | DPE-5               | DPE-5              | DPE-5              | DPE-5               | DPE-5                | DPE-5                | DPE-5         | DPE-5               | DPE-5         | DPE-5               | DPE-5              | DPE-5               | DPE-5         | DPE-5               | DPE-5         | DPE-5         | DPE-5              | DPE-5              | DPE-5         | DPE-5              | DPE-5               | DPE-5            | DPE-5               | DPE-5               | DPE-5               | DPE-5               | DPE-5                | DPE-5        |
|------------------------------------------------------|-------------------|---------------|---------------|---------------------|--------------------|--------------------|---------------------|----------------------|----------------------|---------------|---------------------|---------------|---------------------|--------------------|---------------------|---------------|---------------------|---------------|---------------|--------------------|--------------------|---------------|--------------------|---------------------|------------------|---------------------|---------------------|---------------------|---------------------|----------------------|--------------|
| Collected Date and Time                              | Risk Limits       |               | 02/23/16      |                     |                    | 08/18/15           |                     |                      |                      |               |                     | 02/17/14      | 12/10/13            |                    |                     |               |                     |               |               | 02/16/12           |                    | 08/28/11      |                    | 03/01/11            |                  |                     | 05/13/10            |                     | 11/17/09            |                      | 12/10/08     |
| 1,1,1,2-Tetrachloroethane                            | <b>5/09</b><br>70 | <2.0          | <2.0          | <1.0                | <2.0               | <2.0               | <2.0                | <20.0                | <25.0                | <2.0          | <1.0                | <2.0          | <1.0                | <1.0               | <1.0                | <1.0          | <1.0                | <1.0          | <1.0          | <1.0               | <1.0               | <1.0          | <1.0               | <1.0                | <1.0             | <1.0                | <1.0                | <5.0                | <10.0               | <10.0                | NA*          |
| 1,1,1-Trichloroethane                                | 9000              | <2.0          | <2.0          | <1.0                | <2.0               | 21.9               | <2.0                | <20.0                | <25.0                | <2.0          | <1.0                | <2.0          | <1.0                | <1.0               | <1.0                | <1.0          | <1.0                | <1.0          | <1.0          | <1.0               | <1.0               | <1.0          | <1.0               | <1.0                | <1.0             | <1.0                | <1.0                | <5.0                | <10.0               | <10.0                | NA*          |
| 1,1,2,2-Tetrachloroethane                            | 2 3               | <2.0          | <2.0          | <1.0                | <2.0<br><2.0       | <2.0<br>2.2        | <2.0                | <20.0                | <25.0                | <2.0<br><2.0  | <1.0                | <2.0<br><2.0  | <1.0                | <1.0               | <1.0                | <1.0          | <1.0                | <1.0          | <1.0          | <1.0               | <1.0               | <1.0          | <1.0               | <1.0                | <1.0             | <1.0                | <1.0                | <5.0                | <10.0               | <10.0                | NA*          |
| 1,1,2-Trichloroethane 1,1,2-Trichlorotrifluoroethane | 200000            | <2.0<br>13.2  | <2.0<br><10.0 | <1.0<br><b>19.7</b> | 63.3               | 597                | <2.0<br><b>50.6</b> | <20.0<br><b>20.1</b> | <25.0<br><b>34.3</b> | 19.4          | <1.0<br><b>30.2</b> | 9.9           | <1.0<br><b>37.4</b> | <1.0<br><b>7.0</b> | <1.0<br><b>48.0</b> | <1.0<br><1.0  | <1.0<br><b>13.4</b> | <1.0          | <1.0<br><1.0  | <1.0<br><b>2.2</b> | <1.0<br><b>3.0</b> | <1.0<br><1.0  | <1.0<br><b>5.2</b> | <1.0<br><b>13.9</b> | <1.0<br>T <1.0 I | <1.0<br><b>11.5</b> | <1.0<br><b>16.9</b> | <5.0<br><b>19.4</b> | <10.0<br><b>498</b> | <10.0<br><b>37.9</b> | NA*<br>NA*   |
| 1,1-Dichloroethane                                   | 70                | <2.0          | <2.0          | <1.0                | <2.0               | <2.0               | <2.0                | <20.0                | <25.0                | <2.0          | <1.0                | <2.0          | <1.0                | <1.0               | <1.0                | <1.0          | <1.0                | <1.0          | <1.0          | <1.0               | <1.0               | <1.0          | <1.0               | <1.0                | <1.0             | <1.0                | <1.0                | <5.0                | <10.0               | <10.0                | NA*          |
| 1,1-Dichloroethene                                   | 6                 | <2.0          | <2.0          | <1.0                | <2.0               | 5.5                | <2.0                | <20.0                | <25.0                | <2.0          | <1.0                | <2.0          | <1.0                | <1.0               | <1.0                | <1.0          | <1.0                | <1.0          | <1.0          | <1.0               | <1.0               | <1.0          | <1.0               | <1.0                | <1.0             | <1.0                | <1.0                | <5.0                | <10.0               | <10.0                | <10.0        |
| 1,1-Dichloropropene 1,2,3-Trichlorobenzene           | NL<br>NL          | <2.0<br><2.0  | <2.0<br><10.0 | <1.0<br><5.0        | <2.0<br><2.0       | <2.0<br><2.0       | <2.0<br><2.0        | <20.0<br><20.0       | <25.0<br><25.0       | <2.0<br><2.0  | <1.0<br><1.0        | <2.0<br><2.0  | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0  | <1.0<br><1.0        | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0        | <5.0<br><5.0        | <10.0<br><10.0      | <10.0<br><10.0       | NA*<br>NA*   |
| 1,2,3-Trichloropropane                               | 40                | <8.0          | <2.0          | <1.0                | <8.0               | <8.0               | <8.0                | <80.0                | <100                 | <8.0          | <4.0                | <8.0          | <4.0                | <4.0               | <4.0                | <4.0          | <4.0                | <4.0          | <4.0          | <4.0               | <4.0               | <4.0          | <4.0               | <4.0                | <1.0             | <1.0                | <1.0                | <5.0                | <10.0               | <10.0                | NA*          |
| 1,2,4-Trichlorobenzene 1,2,4-Trimethylbenzene        | NL<br>NI          | <2.0          | <10.0         | <5.0                | <2.0               | <2.0               | <2.0                | <20.0                | <25.0                | <2.0          | <1.0                | <2.0          | <1.0                | <1.0               | <1.0                | <1.0          | <1.0                | <1.0          | <1.0          | <1.0               | <1.0               | <1.0          | <1.0               | <1.0                | <1.0             | <1.0                | <1.0                | <5.0                | <10.0               | <10.0                | NA*<br>NA*   |
| 1,2-Dibromo-3-chloropropane                          | NL<br>NL          | <2.0<br><8.0  | <2.0<br><10.0 | <1.0<br><5.0        | <2.0<br><8.0       | <2.0<br><8.0       | <2.0<br><20.0       | <20.0<br><80.0       | <25.0<br><100        | <2.0<br><8.0  | <1.0<br><4.0        | <2.0<br><8.0  | <1.0<br><4.0        | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0  | <1.0<br><4.0        | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0  | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0     | <1.0<br><4.0        | <1.0<br><4.0        | <5.0<br><20.0       | <10.0<br><40.0      | <10.0<br><40.0       | NA*          |
| 1,2-Dibromoethane (EDB)                              | .004              | <2.0          | <2.0          | <1.0                | <2.0               | <2.0               | <2.0                | <20.0                | <25.0                | <2.0          | <1.0                | <2.0          | <1.0                | <1.0               | <1.0                | <1.0          | <1.0                | <1.0          | <1.0          | <1.0               | <1.0               | <1.0          | <1.0               | <1.0                | <1.0             | <1.0                | <1.0                | <5.0                | <10.0               | <10.0                | NA*          |
| 1,2-Dichlorobenzene                                  | 600               | <2.0          | <2.0          | <1.0                | <2.0               | <2.0<br><2.0       | <2.0                | <20.0                | <25.0                | <2.0          | <1.0                | <2.0          | <1.0                | <1.0               | <1.0                | <1.0          | <1.0                | <1.0<br><1.0  | <1.0<br><1.0  | <1.0               | <1.0               | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0        | <5.0                | <10.0               | <10.0                | NA*<br>NA*   |
| 1,2-Dichloroethane 1,2-Dichloropropane               | 5                 | <2.0<br><8.0  | <2.0<br><2.0  | <1.0<br><1.0        | <2.0<br><8.0       | 8.9                | <2.0<br><8.0        | <20.0<br><80.0       | <25.0<br><100        | <2.0<br><8.0  | <1.0<br><4.0        | <2.0<br><8.0  | <1.0<br><4.0        | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0  | <1.0<br><4.0        | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0  | <4.0               | <1.0                | <1.0             | <1.0                | <1.0                | <5.0<br><5.0        | <10.0<br><10.0      | <10.0<br><10.0       | NA*          |
| 1,3,5-Trimethylbenzene                               | 100               | <2.0          | <2.0          | <1.0                | <2.0               | <2.0               | <2.0                | <20.0                | <25.0                | <2.0          | <1.0                | <2.0          | <1.0                | <1.0               | <1.0                | <1.0          | <1.0                | <1.0          | <1.0          | <1.0               | <1.0               | <1.0          | <1.0               | <1.0                | <1.0             | <1.0                | <1.0                | <5.0                | <10.0               | <10.0                | NA*          |
| 1,3-Dichlorobenzene                                  | NL<br>NI          | <2.0          | <2.0          | <1.0                | <2.0               | <2.0               | <2.0                | <20.0                | <25.0                | <2.0          | <1.0                | <2.0          | <1.0                | <1.0               | <1.0                | <1.0          | <1.0                | <1.0          | <1.0          | <1.0               | <1.0               | <1.0          | <1.0               | <1.0                | <1.0             | <1.0                | <1.0                | <5.0                | <10.0               | <10.0                | NA*          |
| 1,3-Dichloropropane 1,4-Dichlorobenzene              | NL<br>10          | <2.0<br><2.0  | <2.0<br><2.0  | <1.0<br><1.0        | <2.0<br><2.0       | <2.0<br><2.0       | <2.0<br><2.0        | <20.0<br><20.0       | <25.0<br><25.0       | <2.0<br><2.0  | <1.0<br><1.0        | <2.0<br><2.0  | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0  | <1.0<br><1.0        | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0        | <5.0<br><5.0        | <10.0<br><10.0      | <10.0<br><10.0       | NA*<br>NA*   |
| 2,2-Dichloropropane                                  | NL                | <8.0          | <2.0          | <1.0                | <8.0               | <8.0               | <8.0                | <80.0                | <100                 | <8.0          | <4.0                | <8.0          | <4.0                | <4.0               | <4.0                | <4.0          | <4.0                | <4.0          | <4.0          | <4.0               | <4.0               | <4.0          | <4.0               | <4.0                | <4.0             | <4.0                | <4.0                | <5.0                | <40.0               | <10.0                | NA*          |
| 2-Butanone (MEK)                                     | 4000              | <10.0         | <40.0         | <20.0               | <10.0              | <10.0              | <10.0               | <100                 | <125                 | <10.0         | <5.0                | <10.0         | <5.0                | <5.0               | <5.0                | <4.0          | <4.0                | <4.0          | <4.0          | <4.0               | <4.0               | <4.0          | <4.0               | <4.0                | <4.0             | <4.0                | <4.0                | <20.0               | <40.0               | <40.0                | NA*          |
| 2-Chlorotoluene<br>4-Chlorotoluene                   | NL<br>NL          | <2.0<br><2.0  | <2.0<br><2.0  | <1.0<br><1.0        | <2.0<br><2.0       | <2.0<br><2.0       | <2.0<br><2.0        | <20.0<br><20.0       | <25.0<br><25.0       | <2.0<br><2.0  | <1.0<br><1.0        | <2.0<br><2.0  | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0  | <1.0<br><1.0        | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0        | <5.0<br><5.0        | <10.0<br><10.0      | <10.0<br><10.0       | NA*<br>NA*   |
| 4-Methyl-2-pentanone (MIBK)                          | 300               | <10.0         | <40.0         | <20.0               | <10.0              | <10.0              | <10.0               | <100                 | <125                 | <10.0         | <5.0                | <10.0         | <5.0                | <5.0               | <5.0                | <4.0          | <4.0                | <4.0          | <4.0          | <4.0               | <4.0               | <4.0          | <4.0               | <4.0                | <4.0             | <4.0                | <4.0                | <20.0               | <40.0               | <40.0                | NA*          |
| Acetone                                              | 700               | 111           | <40.0         | <20.0               | <40.0              | <40.0              | <100                | <400                 | <500                 | <40.0         | <20.0               | <40.0         | <20.0               | <20.0              | <20.0               | 107           | <25.0               | <25.0         | <25.0         | <25.0              | <25.0              | <25.0         | <25.0              | <25.0               | <10.0            | <10.0               | <10.0               | <50.0               | <100                | <100                 | NA*          |
| Allyl chloride<br>Benzene                            | 30<br>2           | <8.0<br><2.0  | <10.0<br><2.0 | <5.0<br><1.0        | <8.0<br><2.0       | <8.0<br><2.0       | <8.0<br><2.0        | <80.0<br><20.0       | <100<br><25.0        | <8.0<br><2.0  | <4.0<br><1.0        | <8.0<br><2.0  | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0  | <4.0<br><1.0        | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0  | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0     | <4.0<br><1.0        | <4.0<br><1.0        | <20.0<br><5.0       | <40.0<br><10.0      | <40.0<br><10.0       | NA*<br>NA*   |
| Bromobenzene                                         | NL                | <2.0          | <2.0          | <1.0                | <2.0               | <2.0               | <2.0                | <20.0                | <25.0                | <2.0          | <1.0                | <2.0          | <1.0                | <1.0               | <1.0                | <1.0          | <1.0                | <1.0          | <1.0          | <1.0               | <1.0               | <1.0          | <1.0               | <1.0                | <1.0             | <1.0                | <1.0                | <5.0                | <10.0               | <10.0                | NA*          |
| Bromochloromethane<br>Bromodichloromethane           | NL<br>6           | <2.0<br><2.0  | <2.0<br><2.0  | <1.0<br><1.0        | <2.0<br><2.0       | <2.0<br><2.0       | <2.0<br><2.0        | <20.0<br><20.0       | <25.0<br><25.0       | <2.0<br><2.0  | <1.0<br><1.0        | <2.0<br><2.0  | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0  | <1.0<br><1.0        | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0       | <1.0                | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0        | <5.0<br><5.0        | <10.0<br><10.0      | <10.0<br><10.0       | NA*<br>NA*   |
| Bromodichloromethane<br>Bromoform                    | 40                | <8.0          | <10.0         | <5.0                | <8.0               | <2.0<br><8.0       | <2.0<br><8.0        | <80.0                | <100                 | <2.0<br><8.0  | <4.0                | <2.0<br><8.0  | <4.0                | <4.0               | <4.0                | <4.0          | <4.0                | <4.0          | <4.0          | <4.0               | <4.0               | <4.0          | <4.0               | <1.0<br><8.0        | <8.0             | <8.0                | <8.0                | <40.0               | <80.0               | <80.0                | NA*          |
| Bromomethane                                         | 10                | <8.0          | <10.0         | <5.0                | <8.0               | <8.0               | <8.0                | <80.0                | <100                 | <8.0          | <4.0                | <8.0          | <4.0                | <4.0               | <4.0                | <4.0          | <4.0                | <4.0          | <4.0          | <4.0               | <4.0               | <4.0          | <4.0               | <4.0                | <4.0             | <4.0                | <4.0                | <20.0               | <40.0               | <40.0                | NA*          |
| Carbon tetrachloride<br>Chlorobenzene                | 3<br>100          | <2.0<br><2.0  | <2.0<br><2.0  | <1.0<br><1.0        | <2.0<br><2.0       | <2.0<br><2.0       | <2.0<br><2.0        | <20.0<br><20.0       | <25.0<br><25.0       | <2.0<br><2.0  | <1.0<br><1.0        | <8.0<br><2.0  | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0  | <1.0<br><1.0        | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0     | <4.0<br><1.0        | <4.0<br><1.0        | <5.0<br><5.0        | <40.0<br><10.0      | <10.0<br><10.0       | NA*<br>NA*   |
| Chloroethane                                         | 300               | <2.0          | <2.0          | <1.0                | <2.0               | <2.0               | <2.0                | <20.0                | <25.0                | <8.0          | <1.0                | <2.0          | <1.0                | <1.0               | <4.0                | <1.0          | <1.0                | <1.0          | <1.0          | <1.0               | <1.0               | <1.0          | <1.0               | <1.0                | <1.0             | <1.0                | <1.0                | <5.0                | <10.0               | <10.0                | NA*          |
| Chloroform                                           | 30                | <8.0          | <10.0         | <5.0                | <2.0               | 11.8               | <2.0                | <20.0                | <25.0                | 2.9           | <1.0                | <2.0          | 2.5                 | <1.0               | 1.7                 | <1.0          | 1.5                 | <1.0          | <1.0          | <1.0               | <1.0               | <1.0          | <1.0               | <1.0                | <1.0             | <1.0                | <1.0                | <5.0                | <10.0               | <10.0                | NA*          |
| Chloromethane cis-1,2-Dichloroethene                 | NL<br>50          | <8.0<br><2.0  | <2.0<br><2.0  | <1.0                | <8.0<br><b>3.1</b> | <8.0<br><b>276</b> | <8.0<br><b>3.2</b>  | <80.0<br><20.0       | <100<br><b>91.3</b>  | 16.4<br>55.4  | <4.0<br><1.0        | <8.0<br><2.0  | <4.0<br><b>1.8</b>  | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0  | <4.0<br><1.0        | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0  | <4.0<br><1.0       | <4.0                | <4.0<br>  <1.0   | <4.0<br><b>1.3</b>  | <4.0<br><b>1.8</b>  | <20.0<br><5.0       | <40.0<br><10.0      | <40.0<br><10.0       | NA*<br><10.0 |
| cis-1,3-Dichloropropene                              | NL                | <8.0          | <10.0         | <5.0                | <8.0               | <8.0               | <8.0                | <80.0                | <100                 | <8.0          | <4.0                | <8.0          | <4.0                | <4.0               | <4.0                | <4.0          | <4.0                | <4.0          | <4.0          | <4.0               | <4.0               | <4.0          | <4.0               | <4.0                | <4.0             | <4.0                | <4.0                | <20.0               | <40.0               | <40.0                | NA*          |
| Dibromochloromethane                                 | 10                | <2.0          | <10.0         | <5.0                | <2.0               | <2.0               | <2.0                | <20.0                | <25.0                | <2.0          | <1.0                | <2.0          | <1.0                | <1.0               | <1.0                | <1.0          | <1.0                | <1.0          | <1.0          | <1.0               | <1.0               | <1.0          | <1.0               | <1.0                | <1.0             | <1.0                | <1.0                | <5.0                | <10.0               | <10.0                | NA*          |
| Dibromomethane<br>Dichlorodifluoromethane            | NL<br>1000        | <8.0<br><2.0  | <2.0<br><2.0  | <1.0<br><1.0        | <8.0<br><2.0       | <8.0<br><2.0       | <8.0<br><2.0        | <80.0<br><20.0       | <100<br><25.0        | <8.0<br><2.0  | <4.0<br><1.0        | <8.0<br><2.0  | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0  | <4.0<br><1.0        | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0  | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0     | <4.0<br><1.0        | <4.0<br><1.0        | <5.0<br><5.0        | <10.0<br><10.0      | <10.0<br><10.0       | NA*<br>NA*   |
| Dichlorofluoromethane                                | NL                | <2.0          | <2.0          | <1.0                | <2.0               | <2.0               | <2.0                | <20.0                | <25.0                | <2.0          | <1.0                | <2.0          | <1.0                | <1.0               | <1.0                | <1.0          | <1.0                | <1.0          | <1.0          | <1.0               | <1.0               | <1.0          | <1.0               | <1.0                | <1.0             | <1.0                | <1.0                | <5.0                | <10.0               | <10.0                | NA*          |
| Diethyl ether (Ethyl ether)                          | 1000              | <8.0          | <10.0         | <5.0                | <8.0               | <8.0               | <8.0                | <80.0                | <100                 | <8.0          | <4.0                | <8.0          | <4.0                | <4.0               | <4.0                | <4.0          | <4.0                | <4.0          | <4.0          | <4.0               | <4.0               | <4.0          | <4.0               | <4.0                | <4.0             | <4.0                | <4.0                | <20.0               | <40.0               | <40.0                | NA*          |
| Ethylbenzene<br>Hexachloro-1,3-butadiene             | 700<br>1          | <2.0<br><2.0  | <2.0<br><10.0 | <1.0<br><5.0        | <2.0<br><2.0       | <2.0<br><2.0       | <2.0<br><2.0        | <20.0<br><20.0       | <25.0<br><25.0       | <2.0<br><2.0  | <1.0<br><1.0        | <2.0<br><2.0  | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><5.0        | <1.0<br><5.0  | <1.0<br><5.0        | <1.0<br><5.0  | <1.0<br><5.0  | <1.0<br><5.0       | <1.0<br><5.0       | <1.0<br><5.0  | <1.0<br><5.0       | <1.0<br><4.0        | <1.0<br><4.0     | <1.0<br><4.0        | <1.0<br><4.0        | <5.0<br><20.0       | <10.0<br><40.0      | <10.0<br><40.0       | NA*<br>NA*   |
| Isopropylbenzene (Cumene)                            | 300               | <2.0          | <2.0          | <1.0                | <2.0               | <2.0               | <2.0                | <20.0                | <25.0                | <2.0          | <1.0                | <2.0          | <1.0                | <1.0               | <1.0                | <1.0          | <1.0                | <1.0          | <1.0          | <1.0               | <1.0               | <1.0          | <1.0               | <1.0                | <1.0             | <1.0                | <1.0                | <5.0                | <10.0               | <10.0                | NA*          |
| m&p-Xylene                                           | NL                | NA            | NA            | NA                  | NA                 | NA                 | NA                  | NA                   | NA                   | NA            | NA                  | NA            | NA                  | NA                 | NA                  | <2.0          | <2.0                | <2.0          | <2.0          | <2.0               | <2.0               | <2.0          | <2.0               | <2.0                | <2.0             | <2.0                | <2.0                | <10.0               | <20.0               | <20.0                | NA*          |
| Methylene Chloride<br>Methyl-tert-butyl ether        | 5<br>70           | <8.0<br><2.0  | <2.0<br><2.0  | <1.0<br><1.0        | <8.0<br><2.0       | <8.0<br><2.0       | <8.0<br><2.0        | <80.0<br><20.0       | <100<br><25.0        | <8.0<br><2.0  | <4.0<br><1.0        | <8.0<br><2.0  | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0  | <4.0<br><1.0        | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0  | <4.0<br><1.0       | <b>6.2</b> <1.0     | <4.0<br><1.0     | <4.0<br><1.0        | <4.0<br><1.0        | <20.0<br><5.0       | <40.0<br><10.0      | <40.0<br><10.0       | NA*<br>NA*   |
| Naphthalene                                          | 300               | <8.0          | <10.0         | <5.0                | <8.0               | <8.0               | <8.0                | <80.0                | <100                 | <8.0          | <4.0                | <8.0          | <4.0                | <4.0               | <4.0                | <4.0          | <4.0                | <4.0          | <4.0          | <4.0               | <4.0               | <4.0          | <4.0               | <4.0                | <4.0             | <4.0                | <4.0                | <20.0               | <40.0               | <40.0                | NA*          |
| n-Butylbenzene                                       | NL                | <2.0          | <2.0          | <1.0                | <2.0               | <2.0               | <2.0                | <20.0                | <25.0                | <2.0          | <1.0                | <2.0          | <1.0                | <1.0               | <1.0                | <1.0          | <1.0                | <1.0          | <1.0          | <1.0               | <1.0               | <1.0          | <1.0               | <1.0                | <1.0             | <1.0                | <1.0                | <5.0                | <10.0               | <10.0                | NA*          |
| n-Propylbenzene<br>o-Xylene                          | NL<br>NL          | <2.0<br>NA    | <2.0<br>NA    | <1.0<br>NA          | <2.0<br>NA         | <2.0<br>NA         | <2.0<br>NA          | <20.0<br>NA          | <25.0<br>NA          | <2.0<br>NA    | <1.0<br>NA          | <2.0<br>NA    | <1.0<br>NA          | <1.0<br>NA         | <1.0<br>NA          | <1.0<br><1.0  | <1.0<br><1.0        | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0        | <5.0<br><5.0        | <10.0<br><10.0      | <10.0<br><10.0       | NA*<br>NA*   |
| p-Isopropyltoluene                                   | NL                | <2.0          | <2.0          | <1.0                | <2.0               | <2.0               | <2.0                | <20.0                | <25.0                | <2.0          | <1.0                | <2.0          | <1.0                | <1.0               | <1.0                | <1.0          | <1.0                | <1.0          | <1.0          | <1.0               | <1.0               | <1.0          | <1.0               | <1.0                | <1.0             | <1.0                | <1.0                | <5.0                | <10.0               | <10.0                | NA*          |
| sec-Butylbenzene                                     | NL                | <2.0          | <10.0         | <5.0                | <2.0               | <2.0               | <2.0                | <20.0                | <25.0                | <2.0          | <1.0                | <2.0          | <1.0                | <1.0               | <1.0                | <1.0          | <1.0                | <1.0          | <1.0          | <1.0               | <1.0               | <1.0          | <1.0               | <1.0                | <1.0             | <1.0                | <1.0                | <5.0                | <10.0               | <10.0                | NA*          |
| Styrene<br>tert-Butylbenzene                         | NL<br>NL          | <2.0<br><2.0  | <2.0<br><2.0  | <1.0<br><1.0        | <2.0<br><2.0       | <2.0<br><2.0       | <2.0<br><2.0        | <20.0<br><20.0       | <25.0<br><25.0       | <2.0<br><2.0  | <1.0<br><1.0        | <2.0<br><2.0  | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0  | <1.0<br><1.0        | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0        | <5.0<br><5.0        | <10.0<br><10.0      | <10.0<br><10.0       | NA*<br>NA*   |
| Tetrachloroethene                                    | 5                 | 152           | 148           | 209                 | 263                | 17900              | 288                 | 174                  | 2280                 | 1670          | 135                 | 209           | 740                 | 29.5               | 405                 | 30.9          | 74.1                | 16.4          | 11.1          | 69.5               | 51.2               | <1.0          | 67.2               | 339                 | 21.6             | 124                 | 205                 | 486                 | 1,450               | 875                  | 1,340        |
| Tetrahydrofuran                                      | 100               | <20.0         | <10.0         | <5.0                | <20.0              | <20.0              | <20.0               | <200                 | <250                 | <20.0         | <10.0               | <20.0         | <10.0               | <10.0              | <10.0               | <10.0         | <10.0               | <10.0         | <10.0         | <10.0              | <10.0              | <10.0         | <10.0              | <10.0               | <10.0            | <10.0               | <10.0               | <50.0               | <100                | <100                 | NA*          |
| Toluene<br>trans-1,2-Dichloroethene                  | 1000<br>100       | <2.0          | <2.0<br><2.0  | <1.0<br><1.0        | <2.0<br><2.0       | <2.0<br><2.0       | <2.0<br><2.0        | <20.0<br><20.0       | <25.0<br><25.0       | <2.0<br><2.0  | <1.0<br><1.0        | <2.0<br><2.0  | <1.0                | <1.0               | <1.0<br><1.0        | <1.0<br><1.0  | <1.0                | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><4.0       | <1.0<br><4.0  | <1.0<br><4.0       | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0        | <5.0<br><5.0        | <10.0<br><10.0      | <10.0<br><10.0       | NA*<br><10.0 |
| trans-1,3-Dichloropropene                            | NL                | <2.0<br><8.0  | <40.0         | <1.0<br><20.0       | <2.0<br><8.0       | <2.0<br><8.0       | <2.0<br><8.0        | <20.0<br><80.0       | <25.0<br><100        | <2.0<br><8.0  | <1.0<br><4.0        | <2.0<br><8.0  | <1.0<br><4.0        | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0  | <1.0<br><4.0        | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0       | <4.0<br><4.0       | <4.0<br><4.0  | <4.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0     | <1.0<br><4.0        | <1.0<br><4.0        | <5.0<br><20.0       | <10.0<br><40.0      | <10.0<br><40.0       | <10.0<br>NA* |
| Trichloroethene                                      | 5                 | <0.80         | <2.0          | <1.0                | <0.80              | 67.8               | <0.80               | <8.0                 | 10.4                 | 7.2           | <1.0                | <0.80         | 1.8                 | <0.40              | <1.0                | <1.0          | <1.0                | <1.0          | <1.0          | <1.0               | <1.0               | <1.0          | <1.0               | <1.0                | <1.0             | <1.0                | <1.0                | <5.0                | <10.0               | <10.0                | <10.0        |
| Trichlorofluoromethane                               | 2000              | <2.0          | <2.0          | <1.0                | <2.0               | <2.0               | <2.0                | <20.0                | <25.0                | <2.0          | <1.0                | <2.0          | <1.0                | <1.0               | <1.0                | <1.0          | <1.0                | <1.0          | <1.0          | <1.0               | <1.0               | <1.0          | <1.0               | <1.0                | <1.0             | <1.0                | <1.0                | <5.0                | <10.0               | <10.0                | NA*          |
| Vinyl chloride<br>Xylene (Total)                     | 0.2<br>10000      | <0.80<br><6.0 | <2.0<br><6.0  | <1.0<br><3.0        | <0.80<br><6.0      | <0.80<br><3.0      | <0.80<br><6.0       | <8.0<br><60.0        | <10.0<br><75.0       | <0.80<br><6.0 | <1.0<br><3.0        | <0.80<br><6.0 | <0.40<br><3.0       | <0.40<br><3.0      | <0.40<br><3.0       | <0.40<br><3.0 | <0.40<br><3.0       | <0.40<br><3.0 | <0.40<br><3.0 | <0.40<br><3.0      | <0.40<br><3.0      | <0.40<br><3.0 | <0.40<br><3.0      | <0.40<br><3.0       | <0.40<br><3.0    | <0.40<br><3.0       | <0.40<br><3.0       | <2.0<br><15.0       | <4.0<br><30.0       | <4.0<br><30.0        | <4.0<br>NA*  |
| Notes:                                               |                   | -5.0          | -0.0          | -0.0                | -0.0               | -0.0               | -0.0                | -55.0                | 5.0                  | -0.0          | -5.0                | -0.0          | -5.0                | -5.0               | -0.0                | -5.0          | -0.0                | -0.0          | -0.0          | -0.0               | -0.0               | -5.0          | .5.0               | .0.0                | .5.0             | .5.0                | .5.0                |                     | -50.0               | -00.0                |              |

Notes:
NL: No Limit
NA\*: Not Analyzed
NS: Not Sampled

#### TABLE 6A

# GROUNDWATER ANALYTICAL RESULTS (ug/L) MN Bio Business Center

221 1st Avenue SW Rochester, Minnesota

| Sample ID                                             | MDH Health          | DPE-6         | DPE-6        | DPE-6        | DPE-6         | DPE-6           | DPE-6         | DPE-6           | DPE-6           | DPE-6           | DPE-6        | DPE-6         | DPE-6         | DPE-6           | DPE-6           | DPE-6         | DPE-6         | DPE-6         | DPE-6         | DPE-6         | DPE-6         | DPE-6         | DPE-6              | DPE-6           | DPE-6           | DPE-6           | DPE-6           | DPE-6           | DPE-6           | DPE-6         | DPE-6        |
|-------------------------------------------------------|---------------------|---------------|--------------|--------------|---------------|-----------------|---------------|-----------------|-----------------|-----------------|--------------|---------------|---------------|-----------------|-----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------------|--------------|
| Collected Date and Time                               | Risk Limits<br>5/09 | 05/17/16      | 02/23/16     | 01/11/16     | 12/14/15      | 08/18/15        | 06/15/15      | 02/25/15        | 11/19/14        | 08/21/14        | 04/20/14     | 02/17/14      | 12/10/13      | 08/26/13        | 05/23/13        | 02/25/13      | 12/19/12      | 09/26/12      | 05/17/12      | 02/16/12      | 11/21/11      | 08/28/11      | 05/19/11           | 03/01/11        | 12/22/10        | 08/18/10        | 05/13/10        | 02/22/10        | 11/17/09        | 09/24/09      | 12/10/08     |
| 1,1,1,2-Tetrachloroethane                             | 70                  | <1.0          | <1.0         | <1.0         | <1.0          | <1.0            | <1.0          | <1.0            | <1.0            | <1.0            | <1.0         | <1.0          | <1.0          | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0          | NA*          |
| 1,1,1-Trichloroethane                                 | 9000                | <1.0          | <1.0         | <1.0         | <1.0          | <1.0            | <1.0          | <1.0            | <1.0            | <1.0            | <1.0         | <1.0          | <1.0          | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0          | NA*          |
| 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane       | 3                   | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | NA*<br>NA*   |
| 1,1,2-Trichlorotrifluoroethane                        | 200000              | <1.0          | <5.0         | <5.0         | <1.0          | 1.6             | 1.8           | <1.0            | 1.8             | 1.1             | <1.0         | <1.0          | 2.4           | <1.0            | 1.1             | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0               | <1.0            | 1.5             | <1.0            | <1.0            | <1.0            | <1.0            | 3.5           | NA*          |
| 1,1-Dichloroethane                                    | 70<br>6             | <1.0<br><1.0  | <1.0         | <1.0         | <1.0          | <1.0            | <1.0          | <1.0            | <1.0            | <1.0<br><1.0    | <1.0         | <1.0          | <1.0          | <1.0            | <1.0            | <1.0<br><1.0  | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0<br><1.0       | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0            | <1.0            | <1.0            | <1.0          | NA*          |
| 1,1-Dichloroethene 1,1-Dichloropropene                | NL                  | <1.0          | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0    | <1.0            | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0    | <1.0          | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0               | <1.0            | <1.0            | <1.0            | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | <2.0<br>NA*  |
| 1,2,3-Trichlorobenzene                                | NL                  | <1.0          | <5.0         | <5.0         | <1.0          | <1.0            | <1.0          | <1.0            | <1.0            | <1.0            | <1.0         | <1.0          | <1.0          | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0          | NA*          |
| 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene         | 40<br>NL            | <4.0<br><1.0  | <1.0<br><5.0 | <1.0<br><5.0 | <4.0<br><1.0  | <4.0<br><1.0    | <4.0<br><1.0  | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0 | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0       | <4.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | NA*<br>NA*   |
| 1,2,4-Trimethylbenzene                                | NL                  | <1.0          | <1.0         | <1.0         | <1.0          | <1.0            | <1.0          | <1.0            | <1.0            | <1.0            | <1.0         | <1.0          | <1.0          | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0          | NA*          |
| 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB)   | NL<br>.004          | <4.0<br><1.0  | <5.0<br><1.0 | <5.0<br><1.0 | <4.0<br><1.0  | <4.0<br><1.0    | <10.0<br><1.0 | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0 | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0       | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0  | NA*<br>NA*   |
| 1,2-Dichlorobenzene                                   | 600                 | <1.0          | <1.0         | <1.0         | <1.0          | <1.0            | <1.0          | <1.0            | <1.0            | <1.0            | <1.0         | <1.0          | <1.0          | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0          | NA*          |
| 1,2-Dichloroethane                                    | 4                   | <1.0          | <1.0         | <1.0         | <1.0          | <1.0            | <1.0          | <1.0            | <1.0            | <1.0            | <1.0         | <1.0          | <1.0          | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0          | NA*          |
| 1,2-Dichloropropane 1,3,5-Trimethylbenzene            | 5<br>100            | <4.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0 | <4.0<br><1.0  | <4.0<br><1.0    | <4.0<br><1.0  | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0 | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0       | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | NA*<br>NA*   |
| 1,3-Dichlorobenzene                                   | NL                  | <1.0<br><1.0  | <1.0         | <1.0         | <1.0          | <1.0            | <1.0          | <1.0            | <1.0            | <1.0            | <1.0         | <1.0          | <1.0          | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0          | NA*          |
| 1,3-Dichloropropane                                   | NL<br>10            | <1.0          | <1.0         | <1.0         | <1.0          | <1.0            | <1.0          | <1.0            | <1.0            | <1.0            | <1.0         | <1.0          | <1.0          | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0          | NA*          |
| 1,4-Dichlorobenzene<br>2,2-Dichloropropane            | 10<br>NL            | <1.0<br><4.0  | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><4.0  | <1.0<br><4.0    | <1.0<br><4.0  | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0 | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0       | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><1.0    | <1.0<br><4.0    | <1.0<br><1.0  | NA*<br>NA*   |
| 2-Butanone (MEK)                                      | 4000                | <5.0          | <20.0        | <20.0        | <5.0          | <5.0            | <5.0          | <5.0            | <5.0            | <5.0            | <5.0         | <5.0          | <5.0          | <5.0            | <5.0            | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0               | <4.0            | <4.0            | <4.0            | <4.0            | <4.0            | <4.0            | <4.0          | NA*          |
| 2-Chlorotoluene 4-Chlorotoluene                       | NL<br>NL            | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | NA*<br>NA*   |
| 4-Methyl-2-pentanone (MIBK)                           | 300                 | <5.0          | <20.0        | <20.0        | <5.0          | <5.0            | <5.0          | <5.0            | <5.0            | <5.0            | <5.0         | <5.0          | <5.0          | <5.0            | <5.0            | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0               | <4.0            | <4.0            | <4.0            | <4.0            | <4.0            | <4.0            | <4.0          | NA*          |
| Acetone<br>Allyl oblorido                             | 700<br>30           | <20.0         | <20.0        | <20.0        | <20.0         | <20.0           | <50.0         | <20.0           | <20.0           | <20.0           | <20.0        | <20.0         | <20.0         | <20.0           | <20.0           | <25.0         | <25.0         | <25.0         | <25.0         | <25.0         | <25.0         | <25.0         | <25.0              | <25.0           | <10.0           | <10.0           | <10.0           | <10.0           | <10.0           | <10.0         | NA*<br>NA*   |
| Allyl chloride<br>Benzene                             | 2                   | <4.0<br><1.0  | <5.0<br><1.0 | <5.0<br><1.0 | <4.0<br><1.0  | <4.0<br><1.0    | <4.0<br><1.0  | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0 | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0       | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0  | NA*          |
| Bromobenzene                                          | NL                  | <1.0          | <1.0         | <1.0         | <1.0          | <1.0            | <1.0          | <1.0            | <1.0            | <1.0            | <1.0         | <1.0          | <1.0          | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0          | NA*          |
| Bromochloromethane<br>Bromodichloromethane            | NL<br>6             | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | NA*<br>NA*   |
| Bromoform                                             | 40                  | <4.0          | <5.0         | <5.0         | <4.0          | <4.0            | <4.0          | <4.0            | <4.0            | <4.0            | <4.0         | <4.0          | <4.0          | <4.0            | <4.0            | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0               | <8.0            | <8.0            | <8.0            | <8.0            | <8.0            | <8.0            | <8.0          | NA*          |
| Bromomethane                                          | 10<br>3             | <4.0          | <5.0         | <5.0         | <4.0          | <4.0            | <4.0          | <4.0            | <4.0            | <4.0            | <4.0         | <4.0          | <4.0          | <4.0            | <4.0            | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0               | <4.0            | <4.0            | <4.0<br><4.0    | <4.0<br><4.0    | <4.0            | <4.0            | <4.0          | NA*<br>NA*   |
| Carbon tetrachloride<br>Chlorobenzene                 | 100                 | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0       | <4.0<br><1.0    | <4.0<br><1.0    | <1.0            | <1.0            | <1.0<br><1.0    | <4.0<br><1.0    | <1.0<br><1.0  | NA*          |
| Chloroethane                                          | 300                 | <1.0          | <1.0         | <1.0         | <1.0          | <1.0            | <1.0          | <1.0            | <1.0            | <4.0            | <1.0         | <1.0          | <1.0          | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0          | NA*          |
| Chloroform<br>Chloromethane                           | 30<br>NL            | <4.0<br><4.0  | <5.0<br><1.0 | <5.0<br><1.0 | <1.0<br><4.0  | <b>1.1</b> <4.0 | <1.0<br><4.0  | <b>1.1</b> <4.0 | <b>1.1</b> <4.0 | <b>1.1</b> <4.0 | <1.0<br><4.0 | <1.0<br><4.0  | <1.0<br><4.0  | <b>1.3</b> <4.0 | <b>1.6</b> <4.0 | <1.0<br><4.0  | <b>1.4</b><br><4.0 | <b>1.1</b> <4.0 | <b>1.2</b> <4.0 | <b>1.0</b> <4.0 | <b>1.1</b> <4.0 | <b>1.6</b> <4.0 | <b>1.6</b> <4.0 | <1.0<br><4.0  | NA*<br>NA*   |
| cis-1,2-Dichloroethene                                | 50                  | <1.0          | <1.0         | <1.0         | <1.0          | <1.0            | <1.0          | <1.0            | <1.0            | <1.0            | <1.0         | <1.0          | <1.0          | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | 1.5             | <1.0          | <2.0         |
| cis-1,3-Dichloropropene                               | NL<br>10            | <4.0          | <5.0         | <5.0         | <4.0          | <4.0            | <4.0          | <4.0            | <4.0            | <4.0            | <4.0         | <4.0          | <4.0          | <4.0            | <4.0            | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0               | <4.0            | <4.0            | <4.0            | <4.0            | <4.0            | <4.0            | <4.0          | NA*<br>NA*   |
| Dibromochloromethane<br>Dibromomethane                | NL                  | <1.0<br><4.0  | <5.0<br><1.0 | <5.0<br><1.0 | <1.0<br><4.0  | <1.0<br><4.0    | <1.0<br><4.0  | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0 | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0       | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | NA*          |
| Dichlorodifluoromethane                               | 1000                | <1.0          | <1.0         | <1.0         | <1.0          | <1.0            | <1.0          | <1.0            | <1.0            | <1.0            | <1.0         | <1.0          | <1.0          | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0          | NA*          |
| Dichlorofluoromethane Diethyl ether (Ethyl ether)     | NL<br>1000          | <1.0<br><4.0  | <1.0<br><5.0 | <1.0<br><5.0 | <1.0<br><4.0  | <1.0<br><4.0    | <1.0<br><4.0  | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0 | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0       | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0  | NA*<br>NA*   |
| Ethylbenzene                                          | 700                 | <1.0          | <1.0         | <1.0         | <1.0          | <1.0            | <1.0          | <1.0            | <1.0            | <1.0            | <1.0         | <1.0          | <1.0          | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0          | NA*          |
| Hexachloro-1,3-butadiene<br>Isopropylbenzene (Cumene) | 1<br>300            | <1.0          | <5.0         | <5.0         | <1.0<br><1.0  | <1.0            | <1.0          | <1.0            | <1.0            | <1.0<br><1.0    | <1.0         | <1.0<br><1.0  | <1.0<br><1.0  | <1.0            | <5.0<br><1.0    | <5.0<br><1.0  | <5.0<br><1.0  | <5.0<br><1.0  | <5.0<br><1.0  | <5.0<br><1.0  | <5.0<br><1.0  | <5.0          | <5.0<br><1.0       | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0    | <4.0            | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0  | NA*<br>NA*   |
| m&p-Xylene                                            | NL                  | <1.0<br>NA    | <1.0<br>NA   | <1.0<br>NA   | NA            | <1.0<br>NA      | <1.0<br>NA    | <1.0<br>NA      | <1.0<br>NA      | NA              | <1.0<br>NA   | NA            | NA            | <1.0<br>NA      | <1.0<br>NA      | <1.0<br><2.0  | <1.0<br><2.0  | <1.0<br><2.0  | <1.0<br><2.0  | <2.0          | <1.0<br><2.0  | <1.0<br><2.0  | <1.0<br><2.0       | <2.0            | <2.0            | <1.0<br><2.0    | <1.0<br><2.0    | <1.0<br><2.0    | <1.0<br><2.0    | <2.0          | NA*          |
| Methylene Chloride                                    | 5                   | <4.0          | <1.0         | <1.0         | <4.0          | <4.0            | <4.0          | <4.0            | <4.0            | <4.0            | <4.0         | <4.0          | <4.0          | <4.0            | <4.0            | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0               | 7.3             | <4.0            | <4.0            | <4.0            | <4.0            | <4.0            | <4.0          | NA*          |
| Methyl-tert-butyl ether<br>Naphthalene                | 70<br>300           | <1.0<br><4.0  | <1.0<br><5.0 | <1.0<br><5.0 | <1.0<br><4.0  | <1.0<br><4.0    | <1.0<br><4.0  | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0 | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0       | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0  | NA*<br>NA*   |
| n-Butylbenzene                                        | NL                  | <1.0          | <1.0         | <1.0         | <1.0          | <1.0            | <1.0          | <1.0            | <1.0            | <1.0            | <1.0         | <1.0          | <1.0          | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0          | NA*          |
| n-Propylbenzene                                       | NL<br>NI            | <1.0<br>NA    | <1.0<br>NA   | <1.0         | <1.0          | <1.0<br>NA      | <1.0          | <1.0<br>NA      | <1.0            | <1.0            | <1.0<br>NA   | <1.0          | <1.0<br>NA    | <1.0<br>NA      | <1.0            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0          | NA*<br>NA*   |
| o-Xylene<br>p-Isopropyltoluene                        | NL<br>NL            | <1.0          | NA<br><1.0   | <1.0         | <1.0          | <1.0            | NA<br><1.0    | NA<br><1.0      | MA<br><1.0      | NA<br><1.0      | <1.0         | <1.0          | NA<br><1.0    | NA<br><1.0      | <1.0            | <1.0<br><1.0       | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | NA*          |
| sec-Butylbenzene                                      | NL                  | <1.0          | <5.0         | <5.0         | <1.0          | <1.0            | <1.0          | <1.0            | <1.0            | <1.0            | <1.0         | <1.0          | <1.0          | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0          | NA*          |
| Styrene<br>tert-Butylbenzene                          | NL<br>NL            | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | NA*<br>NA*   |
| Tetrachloroethene                                     | 5                   | 51.2          | 5.8          | 17           | 67.8          | 65.9            | 138           | 5.2             | 24.6            | 25.0            | 17.4         | 12.9          | 107           | 4.0             | 6.2             | 19.8          | 10.9          | 4.6           | <1.0          | 44.8          | 1.9           | 7.7           | 23.4               | 3.9             | 77.1            | 21.7            | 14.6            | 57.8            | 104             | 79.3          | 188          |
| Tetrahydrofuran                                       | 100                 | <10.0         | <5.0         | <5.0         | <10.0         | <10.0           | <10.0         | <10.0           | <10.0           | <10.0           | <10.0        | <10.0         | <10.0         | <10.0           | <10.0           | <10.0         | <10.0         | <10.0         | <10.0         | <10.0         | <10.0         | <10.0         | <10.0              | <10.0           | <10.0           | <10.0           | <10.0           | <10.0           | <10.0           | <10.0         | NA*          |
| Toluene<br>trans-1,2-Dichloroethene                   | 1000<br>100         | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0       | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | NA*<br><2.0  |
| trans-1,3-Dichloropropene                             | NL                  | <4.0          | <20.0        | <20.0        | <4.0          | <4.0            | <4.0          | <4.0            | <4.0            | <4.0            | <4.0         | <4.0          | <4.0          | <4.0            | <4.0            | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0               | <4.0            | <4.0            | <4.0            | <4.0            | <4.0            | <4.0            | <4.0          | NA*          |
| Trichloroethene                                       | 5                   | <0.40         | <1.0         | <1.0         | <0.40         | <0.40           | <0.40         | <0.40           | <0.40           | <0.40           | <1.0         | <0.40         | <0.40         | <0.40           | <1.0            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0            | <1.0          | <2.0         |
| Trichlorofluoromethane<br>Vinyl chloride              | 2000<br>0.2         | <1.0<br><0.40 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><0.40 | <1.0<br><0.40   | <1.0<br><0.40 | <1.0<br><0.40   | <1.0<br><0.40   | <1.0<br><0.40   | <1.0<br><1.0 | <1.0<br><0.40 | <1.0<br><0.40 | <1.0<br><0.40   | <1.0<br><0.40   | <1.0<br><0.40 | <1.0<br><0.40 | <1.0<br><0.40 | <1.0<br><0.40 | <1.0<br><0.40 | <1.0<br><0.40 | <1.0<br><0.40 | <1.0<br><0.40      | <1.0<br><0.40   | <1.0<br><0.40   | <1.0<br><0.40   | <1.0<br><0.40   | <1.0<br><0.40   | <1.0<br><0.40   | <1.0<br><0.40 | NA*<br><0.80 |
| Xylene (Total)                                        | 10000               | <3.0          | <3.0         | <3.0         | <3.0          | <3.0            | <3.0          | <3.0            | <3.0            | <3.0            | <3.0         | <3.0          | <3.0          | <3.0            | <3.0            | <3.0          | <3.0          | <3.0          | <3.0          | <3.0          | <3.0          | <3.0          | <3.0               | <3.0            | <3.0            | <3.0            | <3.0            | <3.0            | <3.0            | <3.0          | NA*          |
| Notes:                                                |                     |               |              |              |               |                 |               |                 |                 |                 |              |               |               |                 |                 |               |               |               |               |               |               |               |                    |                 |                 |                 |                 |                 |                 |               |              |

Notes:
NL: No Limit
NA\*: Not Analyzed
NS: Not Sampled

#### TABLE 6A

### GROUNDWATER ANALYTICAL RESULTS (ug/L) MN Bio Business Center

221 1st Avenue SW Rochester, Minnesota

| Sample ID                                            | MDH Health        | DPE-7               | DPE-7              | DPE-7               | DPE-7              | DPE-7              | DPE-7              | DPE-7               | DPE-7               | DPE-7               | DPE-7              | DPE-7              | DPE-7              | DPE-7          | DPE-7              | DPE-7              | DPE-7              | DPE-7         | DPE-7         | DPE-7               | DPE-7         | DPE-7               | DPE-7               | DPE-7              | DPE-7               | DPE-7              | DPE-7               | DPE-7              | DPE-7               | DPE-7              | DPE-7       |
|------------------------------------------------------|-------------------|---------------------|--------------------|---------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|----------------|--------------------|--------------------|--------------------|---------------|---------------|---------------------|---------------|---------------------|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------|--------------------|-------------|
| Collected Date and Time                              | Risk Limits       | 05/17/16            | 02/23/16           | 01/11/16            | 12/14/15           | 08/18/15           | 06/15/15           | 02/25/15            | 11/19/14            | 08/21/14            | 05/20/14           | 02/17/14           | 12/10/13           | 08/26/13       | 05/23/13           | 02/25/13           | 12/19/12           | 09/26/12      | 05/17/12      | 02/16/12            | 11/21/11      | 08/28/11            | 05/19/11            | 03/01/11           | 12/22/10            | 08/18/10           | 05/13/10            | 02/22/10           | 11/17/09            | 09/24/09           | 12/10/08    |
| 1,1,1,2-Tetrachloroethane                            | <b>5/09</b><br>70 | <1.0                | <1.0               | <1.0                | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <1.0           | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <1.0          | <1.0                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | NA*         |
| 1,1,1-Trichloroethane                                | 9000              | <1.0                | <1.0               | <1.0                | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <1.0           | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <1.0          | <1.0                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | NA*         |
| 1,1,2,2-Tetrachloroethane<br>1,1,2-Trichloroethane   | 2                 | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0        | <1.0<br><1.0  | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | NA*<br>NA*  |
| 1,1,2-Trichlorotrifluoroethane                       | 200000            | <1.0                | <5.0               | <5.0                | <1.0               | 1.4                | 1.5                | 1.3                 | 1.9                 | 4.8                 | <1.0               | <1.0               | <1.0               | <1.0           | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <1.0          | 3.8                 | 1.8                 | <1.0               | 2.2                 | 11.9               | 4.0                 | 2.7                | 9.8                 | 1.6                | NA*         |
| 1,1-Dichloroethane                                   | 70                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <1.0           | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <1.0          | <1.0                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | NA*         |
| 1,1-Dichloroethene 1,1-Dichloropropene               | 6<br>NL           | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0        | <1.0<br><1.0  | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br>NA* |
| 1,2,3-Trichlorobenzene                               | NL                | <1.0                | <5.0               | <5.0                | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <1.0           | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <1.0          | <1.0                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | NA*         |
| 1,2,3-Trichloropropane                               | 40                | <4.0                | <1.0               | <1.0                | <4.0               | <4.0               | <4.0               | <4.0                | <4.0                | <4.0                | <4.0               | <4.0               | <4.0               | <4.0           | <4.0               | <4.0               | <4.0               | <4.0          | <4.0          | <4.0                | <4.0          | <4.0                | <4.0                | <4.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | NA*         |
| 1,2,4-Trichlorobenzene<br>1,2,4-Trimethylbenzene     | NL<br>NL          | <1.0<br><1.0        | <5.0<br><1.0       | <5.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0        | <1.0<br><1.0  | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | NA*<br>NA*  |
| 1,2-Dibromo-3-chloropropane                          | NL                | <4.0                | <5.0               | <5.0                | <4.0               | <4.0               | <10.0              | <4.0                | <4.0                | <4.0                | <4.0               | <4.0               | <4.0               | <4.0           | <4.0               | <4.0               | <4.0               | <4.0          | <4.0          | <4.0                | <4.0          | <4.0                | <4.0                | <4.0               | <4.0                | <4.0               | <4.0                | <4.0               | <4.0                | <4.0               | NA*         |
| 1,2-Dibromoethane (EDB)                              | .004              | <1.0                | <1.0               | <1.0                | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <1.0           | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <1.0          | <1.0                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | NA*         |
| 1,2-Dichlorobenzene 1,2-Dichloroethane               | 600<br>4          | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0        | <1.0<br><1.0  | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | NA*<br>NA*  |
| 1,2-Dichloropropane                                  | 5                 | <4.0                | <1.0               | <1.0                | <4.0               | <4.0               | <4.0               | <4.0                | <4.0                | <4.0                | <4.0               | <4.0               | <4.0               | <4.0           | <4.0               | <4.0               | <4.0               | <4.0          | <4.0          | <4.0                | <4.0          | <4.0                | <4.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | NA*         |
| 1,3,5-Trimethylbenzene                               | 100               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <1.0           | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <1.0          | <1.0                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | NA*         |
| 1,3-Dichlorobenzene 1,3-Dichloropropane              | NL<br>NL          | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0        | <1.0<br><1.0  | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | NA*<br>NA*  |
| 1,4-Dichlorobenzene                                  | 10                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <1.0           | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <1.0          | <1.0                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | NA*         |
| 2,2-Dichloropropane                                  | NL<br>4000        | <4.0                | <1.0               | <1.0                | <4.0               | <4.0               | <4.0               | <4.0                | <4.0                | <4.0                | <4.0               | <4.0               | <4.0               | <4.0           | <4.0               | <4.0               | <4.0               | <4.0          | <4.0          | <4.0                | <4.0          | <4.0                | <4.0                | <4.0               | <4.0                | <4.0               | <4.0                | <1.0               | <4.0                | <1.0               | NA*         |
| 2-Butanone (MEK)<br>2-Chlorotoluene                  | 4000<br>NL        | <5.0<br><1.0        | <20.0<br><1.0      | <20.0<br><1.0       | <5.0<br><1.0       | <5.0<br><1.0       | <5.0<br><1.0       | <5.0<br><1.0        | <5.0<br><1.0        | <5.0<br><1.0        | <5.0<br><1.0       | <5.0<br><1.0       | <5.0<br><1.0       | <5.0<br><1.0   | <5.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0        | <4.0<br><1.0  | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0       | NA*<br>NA*  |
| 4-Chlorotoluene                                      | NL                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <1.0           | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <1.0          | <1.0                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | NA*         |
| 4-Methyl-2-pentanone (MIBK)                          | 300               | <5.0                | <20.0              | <20.0               | <5.0               | <5.0               | <5.0<br>•50.0      | <5.0                | <5.0                | <5.0                | <5.0               | <5.0               | <5.0               | <5.0           | <5.0               | <4.0               | <4.0               | <4.0          | <4.0          | <4.0                | <4.0          | <4.0                | <4.0                | <4.0               | <4.0                | <4.0               | <4.0                | <4.0               | <4.0                | <4.0               | NA*<br>NA*  |
| Acetone<br>Allyl chloride                            | 700<br>30         | <20.0<br><4.0       | <20.0<br><5.0      | <20.0<br><5.0       | <20.0<br><4.0      | <20.0<br><4.0      | <50.0<br><4.0      | <20.0<br><4.0       | <20.0<br><4.0       | <20.0<br><4.0       | <20.0<br><4.0      | <20.0<br><4.0      | <20.0<br><4.0      | <20.0<br><4.0  | <20.0<br><4.0      | <25.0<br><4.0      | <25.0<br><4.0      | <25.0<br><4.0 | <25.0<br><4.0 | <25.0<br><4.0       | <25.0<br><4.0 | <25.0<br><4.0       | <25.0<br><4.0       | <25.0<br><4.0      | <10.0<br><4.0       | <10.0<br><4.0      | <10.0<br><4.0       | <10.0<br><4.0      | <10.0<br><4.0       | <10.0<br><4.0      | NA<br>NA*   |
| Benzene                                              | 2                 | <1.0                | <1.0               | <1.0                | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <1.0           | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <1.0          | <1.0                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | NA*         |
| Bromobenzene<br>Bromochloromethane                   | NL<br>NL          | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0        | <1.0<br><1.0  | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | NA*<br>NA*  |
| Bromodichloromethane                                 | 6                 | <1.0                | <1.0               | <1.0                | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <1.0           | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <1.0          | <1.0                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | NA*         |
| Bromoform                                            | 40                | <4.0                | <5.0               | <5.0                | <4.0               | <4.0               | <4.0               | <4.0                | <4.0                | <4.0                | <4.0               | <4.0               | <4.0               | <4.0           | <4.0               | <4.0               | <4.0               | <4.0          | <4.0          | <4.0                | <4.0          | <4.0                | <4.0                | <8.0               | <8.0                | <8.0               | <8.0                | <8.0               | <8.0                | <8.0               | NA*         |
| Bromomethane<br>Carbon tetrachloride                 | 10<br>3           | <4.0<br><1.0        | <5.0<br><1.0       | <5.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0   | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0        | <4.0<br><1.0  | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><4.0       | <4.0<br><4.0        | <4.0<br><4.0       | <4.0<br><4.0        | <4.0<br><1.0       | <4.0<br><4.0        | <4.0<br><1.0       | NA*<br>NA*  |
| Chlorobenzene                                        | 100               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <1.0           | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <1.0          | <1.0                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | NA*         |
| Chloroethane<br>Chloroform                           | 300               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0               | <1.0               | <1.0                | <1.0<br><b>1.0</b>  | <4.0<br><1.0        | <1.0               | <1.0               | <4.0               | <1.0           | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <1.0          | <1.0<br>1.2         | <1.0<br><b>2.3</b>  | <1.0<br><b>2.3</b> | <1.0                | <1.0               | <1.0                | <1.0               | <1.0<br><b>1.1</b>  | <1.0               | NA*<br>NA*  |
| Chloromethane                                        | 30<br>NL          | <4.0  <br><4.0      | <5.0<br><1.0       | <5.0<br><1.0        | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0       | <4.0                | <4.0                | 8.1                 | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0   | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0        | <1.0<br><4.0  | <4.0                | <4.0                | <4.0               | <1.0<br><4.0        | <b>1.3</b> <4.0    | <b>1.3</b> <4.0     | <b>1.2</b> <4.0    | <4.0                | <b>1.3</b> <4.0    | NA*         |
| cis-1,2-Dichloroethene                               | 50                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <1.0           | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <1.0          | <1.0                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0        |
| cis-1,3-Dichloropropene                              | NL<br>10          | <4.0                | <5.0               | <5.0                | <4.0               | <4.0<br><1.0       | <4.0               | <4.0                | <4.0                | <4.0                | <4.0               | <4.0               | <4.0               | <4.0           | <4.0               | <4.0               | <4.0               | <4.0          | <4.0          | <4.0                | <4.0          | <4.0                | <4.0                | <4.0               | <4.0                | <4.0               | <4.0                | <4.0               | <4.0                | <4.0               | NA*<br>NA*  |
| Dibromochloromethane<br>Dibromomethane               | NL                | <1.0<br><4.0        | <5.0<br><1.0       | <5.0<br><1.0        | <1.0<br><4.0       | <4.0               | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0   | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0        | <1.0<br><4.0  | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | NA*         |
| Dichlorodifluoromethane                              | 1000              | <1.0                | <1.0               | <1.0                | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <1.0           | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <1.0          | <1.0                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | NA*         |
| Dichlorofluoromethane<br>Diethyl ether (Ethyl ether) | NL<br>1000        | <1.0<br><4.0        | <1.0<br><5.0       | <1.0<br><5.0        | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0   | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0        | <1.0<br><4.0  | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0       | NA*<br>NA*  |
| Ethylbenzene                                         | 700               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <1.0           | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <1.0          | <1.0                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | NA*         |
| Hexachloro-1,3-butadiene                             | 1                 | <1.0                | <5.0               | <5.0                | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <1.0           | <5.0               | <5.0               | <5.0               | <5.0          | <5.0          | <5.0                | <5.0          | <5.0                | <5.0                | <4.0               | <4.0                | <4.0               | <4.0                | <4.0               | <4.0                | <4.0               | NA*         |
| Isopropylbenzene (Cumene)<br>m&p-Xylene              | 300<br>NL         | <1.0<br>NA          | <1.0<br>NA         | <1.0<br>NA          | <1.0<br>NA         | <1.0<br>NA         | <1.0<br>NA         | <1.0<br>NA          | <1.0<br>NA          | <1.0<br>NA          | <1.0<br>NA         | <1.0<br>NA         | <1.0<br>NA         | <1.0<br>NA     | <1.0<br>NA         | <1.0<br><2.0       | <1.0<br><2.0       | <1.0<br><2.0  | <1.0<br><2.0  | <1.0<br><2.0        | <1.0<br><2.0  | <1.0<br><2.0        | <1.0<br><2.0        | <1.0<br><2.0       | <1.0<br><2.0        | <1.0<br><2.0       | <1.0<br><2.0        | <1.0<br><2.0       | <1.0<br><2.0        | <1.0<br><2.0       | NA*<br>NA*  |
| Methylene Chloride                                   | 5                 | <4.0                | <1.0               | <1.0                | <4.0               | <4.0               | <4.0               | <4.0                | <4.0                | <4.0                | <4.0               | <4.0               | <4.0               | <4.0           | <4.0               | <4.0               | <4.0               | <4.0          | <4.0          | <4.0                | <4.0          | <4.0                | <4.0                | 6.6                | <4.0                | <4.0               | <4.0                | <4.0               | <4.0                | <4.0               | NA*         |
| Methyl-tert-butyl ether                              | 70                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <1.0           | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <1.0          | <1.0                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | NA*         |
| Naphthalene<br>n-Butylbenzene                        | 300<br>NL         | <4.0<br><1.0        | <5.0<br><1.0       | <5.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0   | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0        | <4.0<br><1.0  | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0       | NA*<br>NA*  |
| n-Propylbenzene                                      | NL                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <1.0           | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <1.0          | <1.0                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | NA*         |
| o-Xylene                                             | NL<br>NL          | NA<br>~1.0          | NA<br>-1.0         | NA<br>-1.0          | NA<br>-1.0         | NA<br>-1.0         | NA<br>-1.0         | NA<br>-1.0          | NA<br>-1.0          | NA<br>-1.0          | NA<br>-1.0         | NA<br>~1.0         | NA<br>-1.0         | NA<br>-1.0     | NA<br>-1.0         | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <1.0          | <1.0                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | NA*         |
| p-Isopropyltoluene<br>sec-Butylbenzene               | NL<br>NL          | <1.0<br><1.0        | <1.0<br><5.0       | <1.0<br><5.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0        | <1.0<br><1.0  | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | NA*<br>NA*  |
| Styrene                                              | NL                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <1.0           | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <1.0          | <1.0                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | NA*         |
| tert-Butylbenzene<br>Tetrachloroethene               | NL<br>5           | <1.0<br><b>37.9</b> | <1.0<br><b>3.4</b> | <1.0<br><b>29.1</b> | <1.0<br><b>146</b> | <1.0<br><b>127</b> | <1.0<br><b>233</b> | <1.0<br><b>14.0</b> | <1.0<br><b>48.5</b> | <1.0<br><b>44.2</b> | <1.0<br><b>6.9</b> | <1.0<br><b>5.8</b> | <1.0<br><b>2.0</b> | <1.0<br><1.0   | <1.0<br><b>1.6</b> | <1.0<br><b>8.0</b> | <1.0<br><b>3.7</b> | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><b>27.8</b> | <1.0<br><1.0  | <1.0<br><b>26.9</b> | <1.0<br><b>15.9</b> | <1.0<br><b>7.1</b> | <1.0<br><b>23.2</b> | <1.0<br><b>189</b> | <1.0<br><b>25.7</b> | <1.0<br><b>7.3</b> | <1.0<br><b>55.2</b> | <1.0<br><b>5.2</b> | NA*<br>22.3 |
| Tetrachioroethene                                    | 100               | <10.0               | <5.0               | <5.0                | <10.0              | <10.0              | <10.0              | <10.0               | <10.0               | <10.0               | <10.0              | <10.0              | <10.0              | <10.0<br><10.0 | <10.0              | <10.0              | <10.0              | <10.0         | <10.0         | <10.0               | <10.0         | <10.0               | <10.0               | <10.0              | <10.0               | <10.0              | <10.0               | <10.0              | <10.0               | <10.0              | NA*         |
| Toluene                                              | 1000              | <1.0                | <1.0               | <1.0                | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <1.0           | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <1.0          | <1.0                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | NA*         |
| trans-1,2-Dichloroethene                             | 100               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <1.0           | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <4.0          | <4.0                | <4.0<br><4.0        | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0       | <1.0<br><4.0        | <1.0               | <1.0                | <1.0               | <1.0<br>NA* |
| trans-1,3-Dichloropropene<br>Trichloroethene         | NL<br>5           | <4.0<br><0.40       | <20.0<br><1.0      | <20.0<br><1.0       | <4.0<br><0.40      | <4.0<br><0.40      | <4.0<br><0.40      | <4.0<br><0.40       | <4.0<br><0.40       | <4.0<br><0.40       | <4.0<br><1.0       | <4.0<br><0.40      | <4.0<br><1.0       | <4.0<br><0.40  | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0        | <4.0<br><1.0  | <4.0<br><1.0        | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0       | NA*<br><1.0 |
| Trichlorofluoromethane                               | 2000              | <1.0                | <1.0               | <1.0                | <1.0               | <1.0               | <1.0               | <1.0                | <1.0                | <1.0                | <1.0               | <1.0               | <1.0               | <1.0           | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0                | <1.0          | <1.0                | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | <1.0                | <1.0               | NA*         |
| Vinyl chloride                                       | 0.2               | <0.40               | <1.0               | <1.0                | <0.40              | <0.40              | <0.40              | <0.40               | <0.40               | <0.40               | <1.0               | <0.40              | <0.40              | <0.40          | <0.40              | <0.40              | <0.40              | <0.40         | <0.40         | <0.40               | <0.40         | <0.40               | < 0.40              | < 0.40             | < 0.40              | < 0.40             | < 0.40              | <0.40              | <0.40               | <0.40              | <0.40       |
| Xylene (Total) Notes:                                | 10000             | <3.0                | <3.0               | <3.0                | <3.0               | <3.0               | <3.0               | <3.0                | <3.0                | <3.0                | <3.0               | <3.0               | <3.0               | <3.0           | <3.0               | <3.0               | <3.0               | <3.0          | <3.0          | <3.0                | <3.0          | <3.0                | <3.0                | <3.0               | <3.0                | <3.0               | <3.0                | <3.0               | <3.0                | <3.0               | NA*         |

Notes:
NL: No Limit
NA\*: Not Analyzed
NS: Not Sampled

### GROUNDWATER ANALYTICAL RESULTS (ug/L) MN Bio Business Center

221 1st Avenue SW Rochester, Minnesota

| Sample ID                                           | MDH Health          | DPE-8          | DPE-8          | DPE-8          | DPE-8          | DPE-8          | DPE-8         | DPE-8         | DPE-8         | DPE-8         | DPE-8            | DPE-8          | DPE-8          | DPE-8         | DPE-8           | DPE-8    | DPE-8    | DPE-8    | DPE-8    | DPE-8    | DPE-8          | DPE-8         | DPE-8          | DPE-8         | DPE-8         | DPE-8         | DPE-8         | DPE-8            | DPE-8          | DPE-8            | DPE-8        |
|-----------------------------------------------------|---------------------|----------------|----------------|----------------|----------------|----------------|---------------|---------------|---------------|---------------|------------------|----------------|----------------|---------------|-----------------|----------|----------|----------|----------|----------|----------------|---------------|----------------|---------------|---------------|---------------|---------------|------------------|----------------|------------------|--------------|
| Collected Date and Time                             | Risk Limits<br>5/09 | 05/18/16       | 02/23/16       | 01/11/16       | 12/14/15       | 08/18/15       | 06/15/15      | 02/25/15      | 11/19/14      | 08/21/14      | 05/20/14         | 02/17/14       | 12/10/13       | 08/26/13      | 05/23/13        | 02/25/13 | 12/19/12 | 09/26/12 | 05/17/12 | 02/16/12 | 11/21/11       | 08/28/11      | 05/19/11       | 03/01/11      | 12/22/10      | 08/18/10      | 05/13/10      | 02/22/10         | 11/17/09       | 09/24/09         | 12/10/08     |
| 1,1,1,2-Tetrachloroethane                           | 70                  | <40.0          | <5.0           | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| 1,1,1-Trichloroethane                               | 9000                | <10.0          | <5.0           | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | 1.5              | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane     | 2                   | <10.0<br><10.0 | <5.0<br><5.0   | <4.0<br><4.0   | <25.0<br><25.0 | <25.0<br><25.0 | <1.0<br><1.0  | <2.0<br><2.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0     | <20.0<br><20.0 | <25.0<br><25.0 | <2.0<br><2.0  | <5.0<br><5.0    | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | <5.0<br><5.0   | <2.0<br><2.0  | <5.0<br><5.0   | <2.0<br><2.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0     | <10.0<br><10.0 | <2.0<br><2.0     | NA*<br>NA*   |
| 1,1,2-Trichlorotrifluoroethane                      | 200000              | 87.9           | 39.6           | <20.0          | 174            | 151            | 123           | 14.9          | 75.7          | 141           | 235              | 267            | 104            | 36.4          | 237             | NS       | NS       | NS       | NS       | NS       | 62.0           | 32.4          | 77.9           | 48.7          | 33.5          | 5.9           | 2.2           | 3.8              | 34.2           | 43.4             | NA*          |
| 1,1-Dichloroethane                                  | 70                  | <10.0          | <5.0           | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| 1,1-Dichloroethene                                  | 6                   | <10.0          | <5.0           | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | <100         |
| 1,1-Dichloropropene 1,2,3-Trichlorobenzene          | NL<br>NL            | <10.0          | <5.0<br><25.0  | <4.0<br><20.0  | <25.0<br><25.0 | <25.0<br><25.0 | <1.0<br><1.0  | <2.0<br><2.0  | <1.0          | <1.0          | <1.0             | <20.0<br><20.0 | <25.0<br><25.0 | <2.0          | <5.0<br><5.0    | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | <5.0<br><5.0   | <2.0<br><2.0  | <5.0<br><5.0   | <2.0<br><2.0  | <1.0          | <1.0          | <1.0          | <1.0             | <10.0<br><10.0 | <2.0<br><2.0     | NA*<br>NA*   |
| 1,2,3-Trichloropropane                              | 40                  | <10.0<br><40.0 | <5.0           | <4.0           | <100           | <100           | <4.0          | <2.0<br><8.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0     | <80.0          | <100           | <2.0<br><8.0  | <20.0           | NS       | NS       | NS       | NS       | NS       | <20.0          | <2.0<br><8.0  | <20.0          | <8.0          | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0     | <10.0          | <2.0             | NA*          |
| 1,2,4-Trichlorobenzene                              | NL                  | <10.0          | <25.0          | <20.0          | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| 1,2,4-Trimethylbenzene                              | NL                  | <10.0          | <5.0           | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB) | NL<br>.004          | <100<br><10.0  | <25.0<br><5.0  | <20.0<br><4.0  | <100<br><25.0  | <100<br><25.0  | <10.0<br><1.0 | <8.0<br><2.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0     | <80.0<br><20.0 | <100<br><25.0  | <8.0<br><2.0  | <20.0<br><5.0   | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | <20.0<br><5.0  | <8.0<br><2.0  | <20.0<br><5.0  | <8.0<br><2.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0     | <40.0<br><10.0 | <8.0<br><2.0     | NA*<br>NA*   |
| 1,2-Dichlorobenzene                                 | 600                 | <10.0          | <5.0           | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| 1,2-Dichloroethane                                  | 4                   | <10.0          | <5.0           | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| 1,2-Dichloropropane                                 | 5                   | <40.0          | <5.0           | <4.0           | <100           | <100           | <4.0          | <8.0          | <4.0          | <4.0          | <4.0             | <80.0          | <100           | <8.0          | <20.0           | NS       | NS       | NS       | NS       | NS       | <20.0          | <8.0          | <20.0          | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| 1,3,5-Trimethylbenzene<br>1,3-Dichlorobenzene       | 100<br>NL           | <10.0<br><10.0 | <5.0<br><5.0   | <4.0<br><4.0   | <25.0<br><25.0 | <25.0<br><25.0 | <1.0<br><1.0  | <2.0<br><2.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0     | <20.0<br><20.0 | <25.0<br><25.0 | <2.0<br><2.0  | <5.0<br><5.0    | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | <5.0<br><5.0   | <2.0<br><2.0  | <5.0<br><5.0   | <2.0<br><2.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0     | <10.0<br><10.0 | <2.0<br><2.0     | NA*<br>NA*   |
| 1,3-Dichloropropane                                 | NL<br>NL            | <10.0          | <5.0<br><5.0   | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0<br><5.0    | NS       | NS       | NS       | NS       | NS       | <5.0<br><5.0   | <2.0          | <5.0<br><5.0   | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| 1,4-Dichlorobenzene                                 | 10                  | <10.0          | <5.0           | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| 2,2-Dichloropropane                                 | NL<br>1000          | <40.0          | <5.0           | <4.0           | <100           | <100           | <4.0          | <8.0          | <4.0          | <4.0          | <4.0             | <80.0          | <100           | <8.0          | <20.0           | NS       | NS       | NS       | NS       | NS       | <20.0          | <8.0          | <20.0          | <8.0          | <4.0          | <4.0          | <4.0          | <1.0             | <40.0          | <2.0             | NA*          |
| 2-Butanone (MEK) 2-Chlorotoluene                    | 4000<br>NL          | <50.0<br><10.0 | <100<br><5.0   | <80.0<br><4.0  | <125<br><25.0  | <125<br><25.0  | <5.0<br><1.0  | <10.0<br><2.0 | <5.0<br><1.0  | <5.0<br><1.0  | <5.0<br><1.0     | <100<br><20.0  | <125<br><25.0  | <10.0<br><2.0 | <25.0<br><5.0   | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | <20.0<br><5.0  | <8.0<br><2.0  | <20.0<br><5.0  | <8.0<br><2.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0     | <40.0<br><10.0 | <b>24.1</b> <2.0 | NA*<br>NA*   |
| 4-Chlorotoluene                                     | NL                  | <10.0          | <5.0           | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| 4-Methyl-2-pentanone (MIBK)                         | 300                 | <50.0          | <100           | <80.0          | <125           | <125           | <5.0          | <10.0         | <5.0          | <5.0          | <5.0             | <100           | <125           | <10.0         | <25.0           | NS       | NS       | NS       | NS       | NS       | <20.0          | <8.0          | <20.0          | <8.0          | <4.0          | <4.0          | <4.0          | <4.0             | <40.0          | <8.0             | NA*          |
| Acetone                                             | 700                 | <200           | <100           | <80.0          | <500           | <500           | <50.0         | <40.0         | <20.0         | <20.0         | <20.0            | <400           | <500           | <40.0         | <100            | NS       | NS       | NS       | NS       | NS       | <125           | <50.0         | <125           | <50.0         | <10.0         | <10.0         | <10.0         | 12.9             | <100           | <20.0            | NA*          |
| Allyl chloride<br>Benzene                           | 30<br>2             | <40.0<br><10.0 | <25.0<br><5.0  | <20.0<br><4.0  | <100<br><25.0  | <100<br><25.0  | <4.0<br><1.0  | <8.0<br><2.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0     | <80.0<br><20.0 | <100<br><25.0  | <8.0<br><2.0  | <20.0<br><5.0   | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | <20.0<br><5.0  | <8.0<br><2.0  | <20.0<br><5.0  | <8.0<br><2.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0     | <40.0<br><10.0 | <8.0<br><2.0     | NA*<br>NA*   |
| Bromobenzene                                        | NL                  | <10.0          | <5.0           | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| Bromochloromethane                                  | NL                  | <10.0          | <5.0           | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| Bromodichloromethane                                | 6                   | <10.0          | < 5.0          | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| Bromoform<br>Bromomethane                           | 40<br>10            | <40.0<br><40.0 | <25.0<br><25.0 | <20.0<br><20.0 | <100<br><100   | <100<br><100   | <4.0<br><4.0  | <8.0<br><8.0  | <4.0<br><4.0  | <4.0<br><4.0  | <4.0<br><4.0     | <80.0<br><80.0 | <100<br><100   | <8.0<br><8.0  | <20.0<br><20.0  | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | <20.0<br><20.0 | <8.0<br><8.0  | <20.0<br><20.0 | <16.0<br><8.0 | <8.0<br><4.0  | <8.0<br><4.0  | <8.0<br><4.0  | <8.0<br><4.0     | <80.0<br><40.0 | <16.0<br><8.0    | NA*<br>NA*   |
| Carbon tetrachloride                                | 3                   | <10.0          | <5.0           | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <8.0          | <4.0          | <4.0          | <4.0          | <1.0             | <40.0          | <2.0             | NA*          |
| Chlorobenzene                                       | 100                 | <10.0          | <5.0           | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| Chloroethane<br>Chloroform                          | 300<br>30           | <10.0<br><10.0 | <5.0<br><25.0  | <4.0<br><20.0  | <25.0<br><25.0 | <25.0<br><25.0 | <1.0<br><1.0  | <2.0<br><2.0  | <1.0<br><1.0  | <4.0<br><1.0  | <1.0<br><1.0     | <20.0<br><20.0 | <100<br><25.0  | <2.0<br><2.0  | <20.0<br><5.0   | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | <5.0<br><5.0   | <2.0<br><2.0  | <5.0<br><5.0   | <2.0<br><2.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0     | <10.0<br><10.0 | <2.0<br><2.0     | NA*<br>NA*   |
| Chloromethane                                       | NL                  | <40.0          | <5.0           | <4.0           | <100           | <100           | <4.0          | <8.0          | <4.0          | 15.4          | <4.0             | <80.0          | <100           | <8.0          | <20.0           | NS       | NS       | NS       | NS       | NS       | <20.0          | <8.0          | <20.0          | <8.0          | <4.0          | <4.0          | <4.0          | <4.0             | <40.0          | <8.0             | NA*          |
| cis-1,2-Dichloroethene                              | 50                  | <10.0          | <5.0           | <4.0           | <25.0          | <25.0          | 2.3           | <2.0          | <1.0          | 1.7           | 1.7              | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | <100         |
| cis-1,3-Dichloropropene                             | NL                  | <40.0          | <25.0          | <20.0          | <100           | <100           | <4.0          | <8.0          | <4.0          | <4.0          | <4.0             | <80.0          | <100           | <8.0          | <20.0           | NS       | NS       | NS       | NS       | NS       | <20.0          | <8.0          | <20.0          | <8.0          | <4.0          | <4.0          | <4.0          | <4.0             | <40.0          | <8.0             | NA*          |
| Dibromochloromethane<br>Dibromomethane              | 10<br>NL            | <10.0<br><40.0 | <25.0          | <20.0          | <25.0<br><100  | <25.0<br><100  | <1.0<br><4.0  | <2.0<br><8.0  | <1.0<br><4.0  | <1.0          | <1.0             | <20.0<br><80.0 | <25.0<br><100  | <2.0          | <5.0            | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | <5.0<br><20.0  | <2.0<br><8.0  | <5.0<br><20.0  | <2.0<br><8.0  | <1.0          | <1.0          | <1.0          | <1.0             | <10.0<br><10.0 | <2.0<br><2.0     | NA*<br>NA*   |
| Dichlorodifluoromethane                             | 1000                | <10.0          | <5.0<br><5.0   | <4.0<br><4.0   | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <4.0<br><1.0  | <4.0<br><1.0     | <20.0          | <25.0          | <8.0<br><2.0  | <20.0<br><5.0   | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <1.0<br><1.0     | <10.0          | <2.0             | NA*          |
| Dichlorofluoromethane                               | NL                  | <10.0          | <5.0           | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| Diethyl ether (Ethyl ether)                         | 1000                | <40.0          | <25.0          | <20.0          | <100           | <100           | <4.0          | <8.0          | <4.0          | <4.0          | <4.0             | <80.0          | <100           | <8.0          | <20.0           | NS       | NS       | NS       | NS       | NS       | <20.0          | <8.0          | <20.0          | <8.0          | <4.0          | <4.0          | <4.0          | <4.0             | <40.0          | <8.0             | NA*          |
| Ethylbenzene<br>Hexachloro-1,3-butadiene            | 700<br>1            | <10.0<br><40.0 | <5.0<br><25.0  | <4.0<br><20.0  | <25.0<br><25.0 | <25.0<br><25.0 | <1.0<br><1.0  | <2.0<br><2.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0     | <20.0<br><20.0 | <25.0<br><25.0 | <2.0<br><2.0  | <5.0<br><25.0   | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | <5.0<br><25.0  | <2.0<br><10.0 | <5.0<br><25.0  | <2.0<br><8.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0     | <10.0<br><40.0 | <2.0<br><8.0     | NA*<br>NA*   |
| Isopropylbenzene (Cumene)                           | 300                 | <10.0          | <5.0           | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| m&p-Xylene                                          | NL                  | NA             | NA             | NA             | NA             | NA             | NA            | NA            | NA            | NA            | NA               | NA             | NA             | NA            | NA              | NS       | NS       | NS       | NS       | NS       | <10.0          | <4.0          | <10.0          | <4.0          | <2.0          | <2.0          | <2.0          | <2.0             | <20.0          | <4.0             | NA*          |
| Methylene Chloride                                  | 5                   | <40.0          | <5.0           | <4.0           | <100           | <100           | <4.0          | <8.0          | <4.0          | <4.0          | <4.0             | <80.0          | <100           | <8.0          | <20.0           | NS       | NS       | NS       | NS       | NS       | <20.0          | <8.0          | <20.0          | <8.0          | <4.0          | <4.0          | <4.0          | <4.0             | <40.0          | <8.0             | NA*          |
| Methyl-tert-butyl ether<br>Naphthalene              | 70<br>300           | <10.0<br><40.0 | <5.0<br><25.0  | <4.0<br><20.0  | <25.0<br><100  | <25.0<br><100  | <1.0<br><4.0  | <2.0<br><8.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0     | <20.0<br><80.0 | <25.0<br><100  | <2.0<br><8.0  | <5.0<br><20.0   | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | <5.0<br><20.0  | <2.0<br><8.0  | <5.0<br><20.0  | <2.0<br><8.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0     | <10.0<br><40.0 | <2.0<br><8.0     | NA*<br>NA*   |
| n-Butylbenzene                                      | NL                  | <10.0          | <5.0           | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| n-Propylbenzene                                     | NL                  | <10.0          | <5.0           | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| o-Xylene                                            | NL<br>N''           | NA<br>-10.0    | NA<br>45.0     | NA<br>-1.0     | NA<br>-25.0    | NA<br>-25.0    | NA<br>-1.0    | NA<br>12.0    | NA<br>-1.0    | NA<br>11.0    | NA<br>-1.0       | NA<br>20.0     | NA<br>-25.0    | NA<br>-2.0    | NA<br>-E O      | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| p-Isopropyltoluene<br>sec-Butylbenzene              | NL<br>NL            | <10.0<br><10.0 | <5.0<br><25.0  | <4.0<br><20.0  | <25.0<br><25.0 | <25.0<br><25.0 | <1.0<br><1.0  | <2.0<br><2.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0     | <20.0<br><20.0 | <25.0<br><25.0 | <2.0<br><2.0  | <5.0<br><5.0    | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | <5.0<br><5.0   | <2.0<br><2.0  | <5.0<br><5.0   | <2.0<br><2.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0     | <10.0<br><10.0 | <2.0<br><2.0     | NA*<br>NA*   |
| Styrene                                             | NL                  | <10.0          | <5.0           | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| tert-Butylbenzene                                   | NL                  | <10.0          | <5.0           | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| Tetrachloroethene                                   | 5                   | 808            | 503            | 288            | 2700           | 2350           | 2980          | 221           | 1230          | 1130          | 5610             | 2390           | 2450           | 291           | 4240            | NS       | NS       | NS       | NS       | NS       | 389            | 700           | 698            | 415           | 262           | 131           | 66.9          | 90.3             | 1,480          |                  | 14,200       |
| Tetrahydrofuran<br>Toluene                          | 100<br>1000         | <100<br><10.0  | <25.0<br><5.0  | <20.0<br><4.0  | <250<br><25.0  | <250<br><25.0  | <10.0<br><1.0 | <20.0<br><2.0 | <10.0<br><1.0 | <10.0<br><1.0 | <b>17.4</b> <1.0 | <200<br><20.0  | <250<br><25.0  | <20.0<br><2.0 | <b>112</b> <5.0 | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | <50.0<br><5.0  | <20.0<br><2.0 | <50.0<br><5.0  | <20.0<br><2.0 | <10.0<br><1.0 | <10.0<br><1.0 | <10.0<br><1.0 | <b>18.4</b> <1.0 | <100<br><10.0  | <b>46.1</b> <2.0 | NA*<br>NA*   |
| trans-1,2-Dichloroethene                            | 1000                | <10.0          | <5.0<br><5.0   | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0<br><5.0    | NS       | NS       | NS       | NS       | NS       | <20.0          | <2.0<br><8.0  | <20.0          | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | <100         |
| trans-1,3-Dichloropropene                           | NL                  | <40.0          | <100           | <80.0          | <100           | <100           | <4.0          | <8.0          | <4.0          | <4.0          | <4.0             | <80.0          | <100           | <8.0          | <20.0           | NS       | NS       | NS       | NS       | NS       | <20.0          | <8.0          | <20.0          | <8.0          | <4.0          | <4.0          | <4.0          | <4.0             | <40.0          | <8.0             | NA*          |
| Trichloroethene                                     | 5                   | <4.0           | <5.0           | <4.0           | <10.0          | <10.0          | 3.1           | 0.84          | 1.8           | 2.0           | 4.1              | <8.0           | <25.0          | <0.80         | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | <100         |
| Trichlorofluoromethane                              | 2000                | <10.0          | <5.0           | <4.0           | <25.0          | <25.0          | <1.0          | <2.0          | <1.0          | <1.0          | <1.0             | <20.0          | <25.0          | <2.0          | <5.0            | NS       | NS       | NS       | NS       | NS       | <5.0           | <2.0          | <5.0           | <2.0          | <1.0          | <1.0          | <1.0          | <1.0             | <10.0          | <2.0             | NA*          |
| Vinyl chloride<br>Xylene (Total)                    | 0.2<br>10000        | <4.0<br><30.0  | <5.0<br><15.0  | <4.0<br><12.0  | <10.0<br><75.0 | <10.0<br><3.0  | <0.40<br><3.0 | <0.80<br><6.0 | <0.40<br><3.0 | <0.40<br><3.0 | <1.0<br><3.0     | <8.0<br><60.0  | <10.0<br><75.0 | <0.80<br><6.0 | <2.0<br><15.0   | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | NS<br>NS | <2.0<br><15.0  | <0.80<br><6.0 | <2.0<br><15.0  | <0.80<br><6.0 | <0.40<br><3.0 | <0.40<br><3.0 | <0.40<br><3.0 | <0.40<br><3.0    | <4.0<br><30.0  | <0.80<br><6.0    | <40.0<br>NA* |
| Notes:                                              | 10000               | <.00.0         | <10.U          | < 1∠.U         | <b>₹10.0</b>   | <b>∖</b> 3.∪   | <b>√</b> J.∪  | <b>∖∪.</b> ∪  | <b>₹</b> J.U  | <b>∖</b> 3.0  | <b>∖</b> 3.0     | <b>₹00.0</b>   | <10.U          | <b>₹0.0</b>   | <10.U           | CVI      | OVI      | INO      | OVI      | IVO      | <13.0          | <b>₹</b> 0.0  | \ 1J.U         | <b>∖∪.</b> ∪  | <b>∖</b> J.U  | <b>∖</b> J.∪  | <b>∖</b> J.∪  | <b>₹</b> 0.0     | <b>₹</b> 00.0  | <b>₹</b> 0.0     | INA          |

Notes:
NL: No Limit
NA\*: Not Analyzed
NS: Not Sampled

## GROUNDWATER ANALYTICAL RESULTS (ug/L) MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

| Sample ID                                             | MDH Health<br>Risk Limits | MW-14        | MW-14         | MW-14         | MW-14        | MW-14        | MW-14        | MW-14        | MW-14        | MW-14        | MW-14        | MW-14        | MW-14        |              |              |              |              |              |              |              |              |              |              |              | MW-14        |              |              |              |              |              | MW-14       |
|-------------------------------------------------------|---------------------------|--------------|---------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------|
| Collected Date and Time                               | 5/09                      | 5/17/2016    | 2/23/2016     | 1/11/2016     | 12/14/2015   | 8/18/2015    | 6/15/2015    | 3/3/2015     | 11/19/2014   | 8/21/2014    | 4/20/2014    | 2/17/2014    | 12/10/2013   | 3 08/26/13   | 05/23/13     | 02/25/13     | 12/21/12     | 09/26/12     | 05/17/12     | 02/16/12     | 11/21/11     | 08/28/11     | 05/19/11     | 03/01/11     | 11/18/10     | 08/18/10     | 05/12/10     | 02/23/10     | 11/16/09     | 10/01/09 1   |             |
| 1,1,1,2-Tetrachloroethane                             | 70                        | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane       | 9000                      | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0         | <1.0<br>~1.0 | <1.0<br>~1.0 | <1.0<br>~1.0 | <1.0         | <1.0<br><1.0 | <1.0<br>~1.0 | <1.0<br><1.0 | NA*<br>NA*  |
| 1,1,2-Trichloroethane                                 | 3                         | <1.0         | <1.0          | <1.0          | <1.0         | <1.0<br><1.0 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0         | <1.0<br><1.0 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| 1,1,2-Trichlorotrifluoroethane                        | 200000                    | <1.0         | <5.0          | <5.0          | <1.0         | <1.0         | <1.0         | 6.6          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | 1.1          | <1.0         | NA*         |
| 1,1-Dichloroethane                                    | 70                        | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| 1,1-Dichloroethene                                    | 6                         | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0        |
| 1,1-Dichloropropene                                   | NL<br>NI                  | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane         | NL<br>40                  | <1.0<br><4.0 | <5.0<br><1.0  | <5.0<br><1.0  | <1.0<br><4.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | NA*<br>NA*  |
| 1,2,4-Trichlorobenzene                                | NL                        | <1.0         | <5.0          | <5.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| 1,2,4-Trimethylbenzene                                | NL                        | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| 1,2-Dibromo-3-chloropropane                           | NL                        | <4.0         | <5.0          | <5.0          | <4.0         | <4.0         | <10.0        | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | NA*         |
| 1,2-Dibromoethane (EDB)                               | .004                      | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| 1,2-Dichlorobenzene                                   | 600                       | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| 1,2-Dichloroethane 1,2-Dichloropropane                | 5                         | <1.0<br><4.0 | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><4.0 | <1.0<br><1.0 | NA*<br>NA*  |
| 1,3,5-Trimethylbenzene                                | 100                       | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| 1,3-Dichlorobenzene                                   | NL                        | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| 1,3-Dichloropropane                                   | NL                        | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| 1,4-Dichlorobenzene                                   | 10                        | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| 2,2-Dichloropropane 2-Butanone (MEK)                  | NL<br>4000                | <4.0<br><5.0 | <1.0<br><20.0 | <1.0<br><20.0 | <4.0<br><5.0 | <4.0<br><4.0 | <1.0<br><4.0 | <4.0<br><4.0 | <1.0<br><4.0 | NA*<br>NA*  |
| 2-Chlorotoluene                                       | NL                        | <5.0<br><1.0 | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <5.0<br><1.0 | <5.0<br><1.0 | <1.0         | <5.0<br><1.0 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| 4-Chlorotoluene                                       | NL                        | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| 4-Methyl-2-pentanone (MIBK)                           | 300                       | <5.0         | <20.0         | <20.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | NA*         |
| Acetone                                               | 700                       | <20.0        | <20.0         | <20.0         | <20.0        | <20.0        | <50.0        | <20.0        | <20.0        | <20.0        | <20.0        | <20.0        | <20.0        | <20.0        | <20.0        | <20.0        | <25.0        | <25.0        | <25.0        | <25.0        | <25.0        | <25.0        | <25.0        | <25.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | NA*         |
| Allyl chloride                                        | 30                        | <4.0         | <5.0          | <5.0          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | NA*         |
| Benzene<br>Bromobenzene                               | NL                        | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | NA*<br>NA*  |
| Bromochloromethane                                    | NL<br>NL                  | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| Bromodichloromethane                                  | 6                         | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | 1.5          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | 1.1          | <1.0         | <1.0         | <1.0         | NA*         |
| Bromoform                                             | 40                        | <4.0         | <5.0          | <5.0          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <8.0         | <8.0         | <8.0         | <8.0         | <8.0         | <8.0         | <8.0         | NA*         |
| Bromomethane                                          | 10                        | <4.0         | <5.0          | <5.0          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | NA*         |
| Carbon tetrachloride Chlorobenzene                    | 100                       | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <1.0<br><1.0 | <4.0<br><1.0 | <1.0<br><1.0 | NA*<br>NA*  |
| Chloroethane                                          | 300                       | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <4.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| Chloroform                                            | 30                        | <4.0         | <5.0          | <5.0          | 1.8          | 1.4          | 2.0          | 1.6          | 2.2          | 1.5          | 1.9          | 2.2          | 1.6          | 2.3          | 3.5          | 2.0          | 2.1          | 1.6          | 1.4          | 1.2          | 1.4          | 1.6          | 1.9          | 2.3          | 3.5          | 3.0          | 4.1          | 3.2          | 2.7          | 3.7          | NA*         |
| Chloromethane                                         | NL                        | <4.0         | <1.0          | <1.0          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | 14.2         | <4.0         | <4.0         | NA*         |
| cis-1,2-Dichloroethene                                | 50                        | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0        |
| cis-1,3-Dichloropropene                               | NL                        | <4.0         | <5.0          | <5.0          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | NA*         |
| Dibromochloromethane Dibromomethane                   | 10<br>NL                  | <1.0<br><4.0 | <5.0<br><1.0  | <5.0<br><1.0  | <1.0<br><4.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | NA*<br>NA*  |
| Dichlorodifluoromethane                               | 1000                      | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| Dichlorofluoromethane                                 | NL                        | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| Diethyl ether (Ethyl ether)                           | 1000                      | <4.0         | <5.0          | <5.0          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | NA*         |
| Ethylbenzene                                          | 700                       | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| Hexachloro-1,3-butadiene                              | 1<br>300                  | <1.0         | <5.0          | <5.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | < 5.0        | < 5.0        | < 5.0        | < 5.0        | < 5.0        | < 5.0        | < 5.0        | < 5.0        | < 5.0        | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | NA*<br>NA*  |
| Isopropylbenzene (Cumene)<br>m&p-Xylene               | NI                        | <1.0<br>NA   | <1.0<br>NA    | <1.0<br>NA    | <1.0<br>NA   | <1.0<br>NA   | <1.0<br>NA   | <1.0<br>NA   | <1.0<br>NA   | <1.0<br>NA   | <1.0<br>NA   | <1.0<br>NA   | <1.0<br>NA   | <1.0<br>NA   | <1.0<br>NA   | <1.0<br><4.0 | <1.0<br><2.0 | NA*         |
| Methylene Chloride                                    | 5                         | <4.0         | <1.0          | <1.0          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <1.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | 7.2          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | NA*         |
| Methyl-tert-butyl ether                               | 70                        | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA           | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| Naphthalene                                           | 300                       | <4.0         | <5.0          | <5.0          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | NA*         |
| n-Butylbenzene                                        | NL<br>                    | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| n-Propylbenzene                                       | NL<br>NI                  | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| o-Xylene<br>p-Isopropyltoluene                        | NL<br>NL                  | NA<br><1.0   | NA<br><1.0    | NA<br><1.0    | NA<br><1.0   | NA<br><1.0   | NA<br><1.0   | NA<br><1.0   | NA<br><1.0   | NA<br><1.0   | NA<br><1.0   | NA<br><1.0   | NA<br><1.0   | NA<br><1.0   | NA<br><1.0   | NA<br><1.0   | <1.0<br><1.0 | NA*<br>NA*  |
| sec-Butylbenzene                                      | NL NL                     | <1.0         | <5.0          | <5.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| Styrene                                               | NL                        | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| tert-Butylbenzene                                     | NL                        | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| Tetrachloroethene                                     | 5                         | 35.7         | 2.8           | 11.1          | 88.3         | 4.1          | 60.4         | 244          | 2.9          | 1.4          | 5.7          | 3.1          | 1.5          | 1.2          | 2.2          | <1.0         | 1.3          | <1.0         | <1.0         | <1.0         | 1.5          | 1.5          | 5.0          | 4.8          | 6.6          | 1.8          | 3.1          | 3.0          | 7.1          | 4.2          | 30.6        |
| Tetrahydrofuran                                       | 100                       | <10.0        | <5.0          | <5.0          | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | NA*         |
| Toluene                                               | 1000                      | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| trans-1,2-Dichloroethene<br>trans-1,3-Dichloropropene | 100<br>NL                 | <1.0<br><4.0 | <1.0<br><20.0 | <1.0<br><20.0 | <1.0<br><4.0 | <4.0<br><4.0 | <4.0<br><4.0 | <4.0<br><4.0 | <1.0<br><4.0 | <1.0<br>NA* |
| Trichloroethene                                       | 5                         | <0.40        | <1.0          | <1.0          | <0.40        | <0.40        | <0.40        | 0.49         | <0.40        | <0.40        | <1.0         | <0.40        | <0.40        | <0.40        | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0        |
| Trichlorofluoromethane                                | 2000                      | <1.0         | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | NA*         |
| Vinyl chloride                                        | 0.2                       | <0.40        | <1.0          | <1.0          | <0.40        | <0.40        | <0.40        | <0.40        | <0.40        | <0.40        | <1.0         | <0.40        | < 0.40       | <0.40        | <0.40        | <0.40        | <0.40        | < 0.40       | <0.40        | <0.40        | <0.40        | <0.40        | <0.40        | <0.40        | <0.40        | <0.40        | <0.40        | <0.40        | <0.40        |              | <0.40       |
| Xylene (Total)                                        | 10000                     | <3.0         | <3.0          | <3.0          | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | NA*         |

Notes: NL: No Limit NA\*: Not Analyzed NS: Not Sampled

1,620 Parameter detected above laboratory reporting limit
5.2 Parameter detected above MDH Health Risk Limit

5.2 Parameter detected above MDH

Rochester, Minnesota

| Sample ID                                         | MDH Health          | MW-15          MW-15         | MW-15         | MW-15         | MW-15        | MW-15        | MW-15        | MW-15        | MW-15        | MW-15        | MW-15        | MW-15        | MW-15        | MW-15        | MW-15        | MW-15        | MW-15        | MW-15          | MW-15           | MW-15        | MW-15       |
|---------------------------------------------------|---------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------|---------------|---------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|-----------------|--------------|-------------|
| Collected Date and Time                           | Risk Limits<br>5/09 | 05/17/16      | 02/23/16      | 01/11/16      | 12/14/15      | 08/18/15      | 06/15/15      | 03/03/15      | 11/19/14      | NR/21/14      | 05/20/14     | 02/17/14      | 12/10/13      | 08/26/13      | 05/23/13     | 02/25/13     | 12/19/12     | 09/26/12     | 05/17/12     | 02/16/12     | 11/21/11     | 08/28/11     | 05/19/11     | 03/01/11     | 11/18/10     | 08/18/10     | 05/12/10     | 02/22/10       | 11/16/09        | 10/01/09 1   | 2/10/08     |
| 1,1,1,2-Tetrachloroethane                         | 70                  | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| 1,1,1-Trichloroethane                             | 9000                | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| 1,1,2,2-Tetrachloroethane                         | 2                   | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| 1,1,2-Trichloroethane                             | 3                   | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| 1,1,2-Trichlorotrifluoroethane                    | 200000              | <1.0          | <5.0          | <5.0          | <1.0          | <1.0          | <1.0          | 1.7           | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | 1.1          | <1.0         | <1.0         | 2.0          | <1.0 L       | 1.5          | 3.3            | 6.4             | 6.4          | NA*         |
| 1,1-Dichloroethane<br>1,1-Dichloroethene          | 70<br>6             | <1.0<br><1.0   <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0         | <1.0<br><1.0 | <1.0<br><1.0   | <1.0<br><1.0    | <1.0<br><1.0 | NA*<br><1.0 |
| 1,1-Dichloropropene                               | NL                  | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| 1,2,3-Trichlorobenzene                            | NL                  | <1.0          | <5.0          | <5.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| 1,2,3-Trichloropropane                            | 40                  | <4.0          | <1.0          | <1.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| 1,2,4-Trichlorobenzene<br>1,2,4-Trimethylbenzene  | NL<br>NL            | <1.0<br><1.0  | <5.0          | <5.0<br><1.0  | <1.0          | <1.0          | <1.0<br><1.0  | <1.0<br><1.0  | <1.0          | <1.0          | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0         | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0         | <1.0         | <1.0         | <1.0<br><1.0 | <1.0         | <1.0         | <1.0<br><1.0 | <1.0<br><1.0   | <1.0            | <1.0         | NA*<br>NA*  |
| 1,2-Dibromo-3-chloropropane                       | NL                  | <4.0          | <1.0<br><5.0  | <5.0          | <1.0<br><4.0  | <1.0<br><4.0  | <10.0         | <4.0          | <1.0<br><4.0  | <1.0<br><4.0  | <4.0         | <4.0          | <4.0          | <4.0          | <1.0<br><4.0 | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <4.0         | <1.0<br><4.0 | <1.0<br><4.0 | <4.0         | <4.0           | <1.0<br><4.0    | <1.0<br><4.0 | NA*         |
| 1,2-Dibromoethane (EDB)                           | .004                | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| 1,2-Dichlorobenzene                               | 600                 | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| 1,2-Dichloroethane                                | 4                   | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| 1,2-Dichloropropane 1,3,5-Trimethylbenzene        | 5<br>100            | <4.0          | <1.0<br><1.0  | <1.0          | <4.0<br>~1.0  | <4.0<br>~1.0  | <4.0<br><1.0  | <4.0<br>~1.0  | <4.0<br><1.0  | <4.0<br>~1.0  | <4.0<br><1.0 | <4.0<br>~1.0  | <4.0<br>~1.0  | <4.0<br><1.0  | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br>~1.0 | <4.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0   | <1.0            | <1.0<br><1.0 | NA*<br>NA*  |
| 1,3,5-1 rimethylbenzene<br>1.3-Dichlorobenzene    | NL                  | <1.0<br><1.0   <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0         | <1.0<br><1.0 | <1.0<br><1.0 | <1.0         | <1.0<br><1.0   | <1.0<br><1.0    | <1.0<br><1.0 | NA*         |
| 1,3-Dichloropropane                               | NL                  | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| 1,4-Dichlorobenzene                               | 10                  | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| 2,2-Dichloropropane                               | NL<br>4000          | <4.0          | <1.0          | <1.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <1.0           | <4.0            | <1.0         | NA*         |
| 2-Butanone (MEK)<br>2-Chlorotoluene               | 4000<br>NL          | <5.0<br><1.0  | <20.0<br><1.0 | <20.0<br><1.0 | <5.0<br><1.0   <5.0<br><1.0  | <5.0<br><1.0  | <5.0<br><1.0  | <5.0<br><1.0 | <5.0<br><1.0 | <4.0<br><1.0 | <4.0 L<br><1.0 | <b>5.1</b> <1.0 | <4.0<br><1.0 | NA*<br>NA*  |
| 4-Chlorotoluene                                   | NL                  | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| 4-Methyl-2-pentanone (MIBK)                       | 300                 | <5.0          | <20.0         | <20.0         | <5.0          | <5.0          | <5.0          | <5.0          | <5.0          | <5.0          | <5.0         | <5.0          | < 5.0         | <5.0          | <5.0         | <5.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0           | <4.0            | <4.0         | NA*         |
| Acetone                                           | 700                 | <20.0         | <20.0         | <20.0         | <20.0         | <20.0         | <50.0         | <20.0         | <20.0         | <20.0         | <20.0        | <20.0         | <20.0         | <20.0         | <20.0        | <20.0        | <25.0        | <25.0        | <25.0        | <25.0        | <25.0        | <25.0        | <25.0        | <25.0        | <10.0        | <10.0        | <10.0        | <10.0          | <10.0           | <10.0        | NA*         |
| Allyl chloride                                    | 30                  | <4.0          | < 5.0         | < 5.0         | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0           | <4.0            | <4.0         | NA*         |
| Benzene<br>Bromobenzene                           | 2<br>NL             | <1.0<br><1.0   <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0   | <1.0<br><1.0    | <1.0<br><1.0 | NA*<br>NA*  |
| Bromochloromethane                                | NL                  | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| Bromodichloromethane                              | 6                   | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| Bromoform                                         | 40                  | <4.0          | <5.0          | <5.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <8.0         | <8.0         | <8.0         | <8.0         | <8.0           | <8.0            | <8.0         | NA*         |
| Bromomethane<br>Carbon tetrachloride              | 10<br>3             | <4.0          | <5.0          | <5.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0<br><4.0 | <4.0         | <4.0         | <4.0<br><4.0 | <4.0           | <4.0<br><4.0    | <4.0         | NA*<br>NA*  |
| Chlorobenzene                                     | 100                 | <1.0<br><1.0   <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0         | <4.0<br><1.0 | <4.0<br><1.0 | <1.0         | <1.0<br><1.0   | <1.0            | <1.0<br><1.0 | NA*         |
| Chloroethane                                      | 300                 | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <4.0          | <1.0         | <1.0          | <1.0          | <1.0          | <4.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| Chloroform                                        | 30                  | <1.0          | <5.0          | <5.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | 1.0          | 2.8          | 1.2          | 1.8          | <1.0         | 1.3          | 1.4            | 2.2             | 2.2          | NA*         |
| Chloromethane                                     | NL                  | <4.0          | <1.0          | <1.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0           | <4.0            | <4.0         | NA*         |
| cis-1,2-Dichloroethene<br>cis-1,3-Dichloropropene | 50<br>NL            | <1.0<br><4.0  | <1.0<br><5.0  | <1.0<br><5.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0          | <1.0<br><4.0 | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0   | <1.0<br><4.0    | <1.0<br><4.0 | <1.0<br>NA* |
| Dibromochloromethane                              | 10                  | <1.0          | <5.0          | <5.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <4.0<br><1.0  | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| Dibromomethane                                    | NL                  | <4.0          | <1.0          | <1.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <1.0           | <1.0            | <1.0         | NA*         |
| Dichlorodifluoromethane                           | 1000                | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| Dichlorofluoromethane                             | NL<br>1000          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| Diethyl ether (Ethyl ether)<br>Ethylbenzene       | 1000<br>700         | <4.0<br><1.0  | <5.0<br><1.0  | <5.0<br><1.0  | <4.0<br><1.0   <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0   | <4.0<br><1.0    | <4.0<br><1.0 | NA*<br>NA*  |
| Hexachloro-1,3-butadiene                          | 1                   | <1.0          | <5.0          | <5.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0           | <4.0            | <4.0         | NA*         |
| Isopropylbenzene (Cumene)                         | 300                 | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| m&p-Xylene                                        | NL                  | NA             NA            | NA            | NA            | NA           | <4.0         | <2.0         | <2.0         | <2.0         | <2.0         | <2.0         | <2.0         | <2.0         | <2.0         | <2.0         | <2.0         | <2.0         | <2.0           | <2.0            | <2.0         | NA*         |
| Methylene Chloride                                | 5                   | <4.0          | <1.0          | <1.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0          | <4.0         | <1.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | 6.4          | <4.0         | <4.0         | <4.0         | <4.0           | <4.0            | <4.0         | NA*         |
| Methyl-tert-butyl ether<br>Naphthalene            | 70<br>300           | <1.0          | <1.0<br><5.0  | <1.0<br><5.0  | <1.0<br><4.0   <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0 | NA<br><4.0   | <1.0         | <1.0<br><4.0   | <1.0<br><4.0    | <1.0<br><4.0 | NA*<br>NA*  |
| n-Butylbenzene                                    | NL                  | <4.0<br><1.0  | <5.0<br><1.0  | <1.0          | <4.0<br><1.0   <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0   | <4.0<br><1.0    | <4.0<br><1.0 | NA*         |
| n-Propylbenzene                                   | NL                  | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| o-Xylene                                          | NL                  | NA             NA            | NA            | NA            | NA           | NA           | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| p-Isopropyltoluene                                | NL<br>NI            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| sec-Butylbenzene<br>Styrene                       | NL<br>NL            | <1.0<br><1.0  | <5.0          | <5.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0          | <1.0          | <1.0         | <1.0          | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0 | <1.0         | <1.0<br><1.0 | <1.0         | <1.0         | <1.0         | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0         | <1.0           | <1.0            | <1.0<br><1.0 | NA*<br>NA*  |
| Styrene<br>tert-Butylbenzene                      | NL<br>NL            | <1.0          | <1.0<br><1.0   <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0   | <1.0<br><1.0    | <1.0<br><1.0 | NA*         |
| Tetrachloroethene                                 | 5                   | 26.4          | 1.1           | 11.9          | 194           | 1.8           | 101           | 85.2          | <1.0          | <1.0          | 1.6          | <1.0          | <1.0          | <1.0          | 3.9          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | 1.2          | <1.0         | <1.0         | 3.3          | 1.3          | 2.8          | 5.7            | 9.5             | 15.7         | 104         |
| Tetrahydrofuran                                   | 100                 | <10.0         | <5.0          | <5.0          | <10.0         | <10.0         | <10.0         | <10.0         | <10.0         | <10.0         | <10.0        | <10.0         | <10.0         | <10.0         | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0          | <10.0           | <10.0        | NA*         |
| Toluene                                           | 1000                | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | NA*         |
| trans-1,2-Dichloroethene                          | 100                 | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <4.0         | <4.0         | <4.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0            | <1.0         | <1.0        |
| trans-1,3-Dichloropropene                         | NL<br>5             | <4.0          | <20.0         | <20.0         | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br>~1.0 | <4.0<br><1.0 | <4.0           | <4.0            | <4.0         | NA*         |
| Trichloroethene<br>Trichlorofluoromethane         | 2000                | <0.40<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0  | <0.40<br><1.0 | <0.40<br><1.0 | <0.40<br><1.0 | <0.40<br><1.0 | <0.40<br><1.0 | <0.40<br><1.0 | <1.0<br><1.0 | <0.40<br><1.0 | <0.40<br><1.0 | <0.40<br><1.0 | <1.0<br><1.0   | <1.0<br><1.0    | <1.0<br><1.0 | <1.0<br>NA* |
| Vinyl chloride                                    | 0.2                 | <0.40         | <1.0          | <1.0          | <0.40         | <0.40         | <0.40         | <0.40         | <0.40         | <0.40         | <1.0         | <0.40         | <0.40         | <0.40         | <0.40        | <0.40        | <0.40        | <0.40        | <0.40        | <0.40        | <0.40        | <0.40        | <0.40        | <0.40        | <0.40        | <0.40        | <0.40        | <0.40          | <0.40           | <0.40        | <0.40       |
| Xylene (Total)                                    | 10000               | <3.0          | <3.0          | <3.0          | <3.0          | <3.0          | <3.0          | <3.0          | <3.0          | <3.0          | <3.0         | <3.0          | <3.0          | <3.0          | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0           | <3.0            | <3.0         | NA*         |
|                                                   |                     | _             | _             | _             | _             |               | _             |               |               | _             |              |               | _             |               |              |              |              |              |              |              |              |              |              |              |              |              |              |                |                 |              |             |

Notes: NL: No Limit NA\*: Not Analyzed NS: Not Sampled

Rochester, Minnesota

| Sample ID                                   | MDH Health          | MW-16          | MW-16         | MW-16         | MW-16          | MW-16          | MW-16          | MW-16        | MW-16          | MW-16        | MW-16        | MW-16        | MW-16        | MW-16        | MW-16        | MW-16        | MW-16        | MW-16        | MW-16        | MW-16        | MW-16        | MW-16         | MW-16        | MW-16        | MW-16         | MW-16         | MW-16          | MW-16          | MW-16         | MW-16          | MW-16      |
|---------------------------------------------|---------------------|----------------|---------------|---------------|----------------|----------------|----------------|--------------|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|---------------|---------------|----------------|----------------|---------------|----------------|------------|
| Collected Date and Time                     | Risk Limits<br>5/09 | 05/17/16       | 02/23/16      | 01/11/16      | 12/14/15       | 08/18/15       | 06/15/15       | 02/25/15     | 11/19/14       | 08/21/14     | 05/20/14     | 02/17/14     | 12/10/13     | 08/26/13     | 05/23/13     | 02/25/13     | 12/19/12     | 09/26/12     | 05/17/12     | 02/16/12     | 11/21/11     | 08/28/11      | 05/19/11     | 03/01/11     | 11/18/10      | 08/18/10      | 05/12/10       | 02/22/10       | 11/16/09      | 10/01/09 1     | 12/03/08   |
| 1,1,1,2-Tetrachloroethane                   | 70                  | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| 1,1,1-Trichloroethane                       | 9000                | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | 10.7         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| 1,1,2,2-Tetrachloroethane                   | 2                   | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | < 5.0        | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| 1,1,2-Trichloroethane                       | 3                   | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | < 5.0        | <1.0         | <5.0         | <5.0         | < 5.0        | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| 1,1,2-Trichlorotrifluoroethane              | 200000              | 32.5           | 38.9          | 21.5          | 150            | 332            | 60.7           | 83.5         | 237            | 382          | 78.9         | 28.1         | 25.6         | 33.0         | 1050         | <1.0         | 7.3          | 1.3          | <1.0         | <1.0         | 3.1          | 19.7          | 43.6         | 23.0         | 127           | 63.8          | 39.3           | 261            | 1,390         | 779            | NA*        |
| 1,1-Dichloroethane                          | 70                  | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| 1,1-Dichloroethene                          | 6                   | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | <1.0       |
| 1,1-Dichloropropene                         | NL                  | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| 1,2,3-Trichlorobenzene                      | NL                  | <10.0          | <25.0         | <10.0         | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| 1,2,3-Trichloropropane                      | 40                  | <40.0          | <5.0          | <2.0          | <100           | <100           | <100           | <20.0        | <100           | <20.0        | <4.0         | <20.0        | <20.0        | <20.0        | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <8.0          | <8.0         | <8.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| 1,2,4-Trichlorobenzene                      | NL                  | <10.0          | <25.0         | <10.0         | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| 1,2,4-Trimethylbenzene                      | NL<br>NI            | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| 1,2-Dibromo-3-chloropropane                 | NL<br>004           | <40.0          | <25.0         | <10.0         | <100           | <100           | <250           | <20.0        | <100           | <20.0        | <4.0         | <20.0        | <20.0        | <20.0        | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <8.0          | <8.0         | <8.0         | <20.0         | <20.0         | <40.0          | <200           | <1000         | <40.0          | NA*        |
| 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene | .004<br>600         | <10.0<br><10.0 | <5.0<br><5.0  | <2.0<br><2.0  | <25.0<br><25.0 | <25.0<br><25.0 | <25.0<br><25.0 | <5.0<br><5.0 | <25.0<br><25.0 | <5.0<br><5.0 | <1.0<br><1.0 | <5.0<br><5.0 | <5.0<br><5.0 | <5.0<br><5.0 | <1.0         | <1.0         | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <2.0<br><2.0  | <2.0<br><2.0 | <2.0<br><2.0 | <5.0<br><5.0  | <5.0<br><5.0  | <10.0          | <50.0<br><50.0 | <250<br><250  | <10.0<br><10.0 | NA*<br>NA* |
| 1,2-Dichloroethane                          | 4                   | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0<br><1.0 | <1.0<br><1.0 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0<br><10.0 | <50.0          | <250          | <10.0          | NA*        |
| 1,2-Dichloropropane                         | 5                   | <40.0          | <5.0          | <2.0          | <100           | <100           | <100           | <20.0        | <100           | <20.0        | <4.0         | <20.0        | <20.0        | <20.0        | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <8.0          | <8.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| 1,3,5-Trimethylbenzene                      | 100                 | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| 1,3-Dichlorobenzene                         | NL                  | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| 1,3-Dichloropropane                         | NL                  | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| 1,4-Dichlorobenzene                         | 10                  | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| 2,2-Dichloropropane                         | NL                  | <40.0          | <5.0          | <2.0          | <100           | <100           | <100           | <20.0        | <100           | <20.0        | <4.0         | <20.0        | <20.0        | <20.0        | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <8.0          | <8.0         | <8.0         | <20.0         | <20.0         | <40.0          | <200           | <1000         | <10.0          | NA*        |
| 2-Butanone (MEK)                            | 4000                | <50.0          | <100          | <40.0         | 828            | <125           | <125           | <25.0        | <125           | <25.0        | < 5.0        | <25.0        | <25.0        | <25.0        | < 5.0        | <5.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <8.0          | <8.0         | <8.0         | <20.0         | <20.0         | <40.0          | <200           | <1000         | <40.0          | NA*        |
| 2-Chlorotoluene                             | NL                  | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| 4-Chlorotoluene                             | NL                  | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| 4-Methyl-2-pentanone (MIBK)                 | 300                 | <50.0          | <100          | <40.0         | <125           | <125           | <125           | <25.0        | <125           | <25.0        | <5.0         | <25.0        | <25.0        | <25.0        | <5.0         | <5.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <8.0          | <8.0         | <8.0         | <20.0         | <20.0         | <40.0          | <200           | <1000         | <40.0          | NA*        |
| Acetone                                     | 700                 | <200           | <100          | <40.0         | <500           | <500           | <1250          | <100         | <500           | <100         | <20.0        | <100         | <100         | <100         | <20.0        | <20.0        | <25.0        | <25.0        | <25.0        | <25.0        | <25.0        | <50.0         | <50.0        | <50.0        | <50.0         | <50.0         | <100           | <500           | <2500         | <100           | NA*        |
| Allyl chloride                              | 30                  | <40.0          | <25.0         | <10.0         | <100           | <100           | <100           | <20.0        | <100           | <20.0        | <4.0         | <20.0        | <20.0        | <20.0        | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <8.0          | <8.0         | <8.0         | <20.0         | <20.0         | <40.0          | <200           | <1000         | <40.0          | NA*        |
| Benzene                                     | 2                   | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | < 5.0        | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0<br><2.0 | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| Bromobenzene<br>Bromochloromothono          | NL<br>NL            | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0<br><25.0 | <5.0         | <25.0          | <5.0         | <1.0         | <5.0<br><5.0 | <5.0<br><5.0 | <5.0<br><5.0 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0<br><2.0 | <2.0<br><2.0 | <5.0          | <5.0<br><5.0  | <10.0          | <50.0          | <250<br><250  | <10.0<br><10.0 | NA*<br>NA* |
| Bromochloromethane<br>Bromodichloromethane  | 6                   | <10.0<br><10.0 | <5.0<br><5.0  | <2.0<br><2.0  | <25.0<br><25.0 | <25.0<br><25.0 | <25.0          | <5.0<br><5.0 | <25.0<br><25.0 | <5.0<br><5.0 | <1.0<br><1.0 | <5.0         | <5.0         | <5.0         | <1.0<br><1.0 | <2.0<br><2.0  | <2.0         | <2.0         | <5.0<br><5.0  | <5.0          | <10.0<br><10.0 | <50.0<br><50.0 | <250          | <10.0          | NA*        |
| Bromoform                                   | 40                  | <40.0          | <25.0         | <10.0         | <100           | <100           | <100           | <20.0        | <100           | <20.0        | <4.0         | <20.0        | <20.0        | <20.0        | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <8.0          | <8.0         | <16.0        | <40.0         | <40.0         | <80.0          | <400           | <2000         | <80.0          | NA*        |
| Bromomethane                                | 10                  | <40.0          | <25.0         | <10.0         | <100           | <100           | <100           | <20.0        | <100           | <20.0        | <4.0         | <20.0        | <20.0        | <20.0        | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <8.0          | <8.0         | <20.0        | <20.0         | <20.0         | <40.0          | <200           | <1000         | <40.0          | NA*        |
| Carbon tetrachloride                        | 3                   | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <8.0         | <20.0         | <20.0         | <40.0          | <200           | <1000         | <10.0          | NA*        |
| Chlorobenzene                               | 100                 | <10.0          | < 5.0         | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | < 5.0        | <5.0         | < 5.0        | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| Chloroethane                                | 300                 | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <20.0        | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| Chloroform                                  | 30                  | <40.0          | <25.0         | <10.0         | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | 4.5          | 1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| Chloromethane                               | NL                  | <40.0          | <5.0          | <2.0          | <100           | <100           | <100           | <20.0        | <100           | <20.0        | <4.0         | <20.0        | <20.0        | 456          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <8.0          | <8.0         | <8.0         | <20.0         | <20.0         | <40.0          | <200           | <1000         | <40.0          | NA*        |
| cis-1,2-Dichloroethene                      | 50                  | <10.0          | <5.0          | 2.3           | <25.0          | <25.0          | <25.0          | 8.7          | <25.0          | 11.2         | 6.2          | <5.0         | <5.0         | <5.0         | 91.8         | <1.0         | 1.7          | <1.0         | <1.0         | <1.0         | 1.0          | 7.3           | 4.1          | 2.6          | 12.6          | <5.0          | <10.0          | <50.0          | <250          | 24.0           | 133        |
| cis-1,3-Dichloropropene                     | NL                  | <40.0          | <25.0         | <10.0         | <100           | <100           | <100           | <20.0        | <100           | <20.0        | <4.0         | <20.0        | <20.0        | <20.0        | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <8.0          | <8.0         | <8.0         | <20.0         | <20.0         | <40.0          | <200           | <1000         | <40.0          | NA*        |
| Dibromochloromethane                        | 10                  | <10.0          | <25.0         | <10.0         | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| Dibromomethane                              | NL                  | <40.0          | <5.0          | <2.0          | <100           | <100           | <100           | <20.0        | <100           | <20.0        | <4.0         | <20.0        | <20.0        | <20.0        | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <8.0          | <8.0         | <8.0         | <20.0         | <20.0         | <40.0          | <200           | <250          | <10.0          | NA*        |
| Dichlorodifluoromethane                     | 1000                | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| Dichlorofluoromethane                       | NL<br>1000          | <10.0          | < 5.0         | <2.0          | <25.0          | <25.0          | <25.0          | < 5.0        | <25.0          | < 5.0        | <1.0         | < 5.0        | < 5.0        | < 5.0        | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| Diethyl ether (Ethyl ether)                 | 1000                | <40.0          | <25.0         | <10.0         | <100           | <100           | <100           | <20.0        | <100           | <20.0        | <4.0         | <20.0        | <20.0        | <20.0        | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <8.0          | <8.0<br><2.0 | <8.0<br><2.0 | <20.0         | <20.0         | <40.0          | <200           | <1000         | <40.0          | NA*        |
| Ethylbenzene<br>Hexachloro-1,3-butadiene    | 700<br>1            | <10.0<br><10.0 | <5.0<br><25.0 | <2.0<br><10.0 | <25.0<br><25.0 | <25.0<br><25.0 | <25.0<br><25.0 | <5.0<br><5.0 | <25.0<br><25.0 | <5.0<br><5.0 | <1.0<br><1.0 | <5.0<br><5.0 | <5.0<br><5.0 | <5.0<br><5.0 | <1.0<br><5.0 | <2.0<br><10.0 | <10.0        | <8.0         | <5.0<br><20.0 | <5.0<br><20.0 | <40.0          | <50.0<br><200  | <250<br><1000 | <10.0<br><40.0 | NA*<br>NA* |
| Isopropylbenzene (Cumene)                   | 300                 | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| m&p-Xylene                                  | NL                  | NA             | NA            | NA            | NA             | NA             | NA             | NA           | NA             | NA           | NA           | NA           | NA           | NA           | NA           | <4.0         | <2.0         | <2.0         | <2.0         | <2.0         | <2.0         | <4.0          | <4.0         | <4.0         | <10.0         | <10.0         | <20.0          | <100           | <500          | <20.0          | NA*        |
| Methylene Chloride                          | 5                   | <40.0          | <5.0          | <2.0          | <100           | <100           | <100           | <20.0        | <100           | <20.0        | <4.0         | <20.0        | <20.0        | <20.0        | <4.0         | <1.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <8.0          | <8.0         | <8.0         | <20.0         | <20.0         | <40.0          | <200           | <1000         | <40.0          | NA*        |
| Methyl-tert-butyl ether                     | 70                  | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | NA           | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| Naphthalene                                 | 300                 | <40.0          | <25.0         | <10.0         | <100           | <100           | <100           | <20.0        | <100           | <20.0        | <4.0         | <20.0        | <20.0        | <20.0        | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <8.0          | <8.0         | <8.0         | <20.0         | <20.0         | <40.0          | <200           | <1000         | <40.0          | NA*        |
| n-Butylbenzene                              | NL                  | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| n-Propylbenzene                             | NL                  | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | < 5.0        | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| o-Xylene                                    | NL                  | NA             | NA            | NA            | NA             | NA             | NA             | NA           | NA             | NA           | NA           | NA           | NA           | NA           | NA           | NA           | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | < 5.0         | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| p-Isopropyltoluene                          | NL                  | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | < 5.0        | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| sec-Butylbenzene                            | NL                  | <10.0          | <25.0         | <10.0         | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| Styrene                                     | NL                  | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| tert-Butylbenzene                           | NL                  | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| Tetrachloroethene                           | 5                   | 452            | 461           | 290           | 1490           | 2790           | 2650           | 963          | 2350           | 1780         | 2530         | 413          | 432          | 469          | 7450         | 8.0          | 128          | 21.8         | 7.8          | 16.1         | 75.0         | 590           | 1310         | 322          | 2120          | 696           | 815            | 4,390          | 21,000        |                | 14,100     |
| Tetrahydrofuran                             | 100                 | <100           | <25.0         | <10.0         | <250           | <250           | <250           | <50.0        | <250           | <50.0        | <10.0        | <50.0        | <50.0        | <50.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <20.0         | <20.0        | <20.0        | <50.0         | <50.0         | <100           | <500           | <2500         | <100           | NA*        |
| Toluene                                     | 1000                | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| trans-1,2-Dichloroethene                    | 100                 | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <4.0         | <8.0          | <8.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | <1.0       |
| trans-1,3-Dichloropropene                   | NL<br>-             | <40.0          | <100          | <40.0         | <100           | <100           | <100           | <20.0        | <100           | <20.0        | <4.0         | <20.0        | <20.0        | <20.0        | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <8.0          | <8.0         | <8.0         | <20.0         | <20.0         | <40.0          | <200           | <1000         | <40.0          | NA*        |
| Trichloroethene                             | 5                   | <4.0           | <5.0          | <2.0          | <10.0          | <10.0          | <10.0          | 2.5          | <10.0          | 3.9          | 3.4          | <2.0         | <2.0         | <2.0         | 25.1         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | 2.0          | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | 35.0       |
| Trichlorofluoromethane                      | 2000                | <10.0          | <5.0          | <2.0          | <25.0          | <25.0          | <25.0          | <5.0         | <25.0          | <5.0         | <1.0         | <5.0         | <5.0         | <5.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <2.0          | <2.0         | <2.0         | <5.0          | <5.0          | <10.0          | <50.0          | <250          | <10.0          | NA*        |
| Vinyl chloride                              | 0.2                 | <4.0           | <5.0          | <2.0          | <10.0          | <10.0          | <10.0          | <2.0         | <10.0          | <2.0         | <1.0         | <2.0         | <2.0         | <2.0         | <0.40        | <0.40        | <0.40        | <0.40        | <0.40        | <0.40        | <0.40        | <0.80         | <0.80        | <0.80        | <2.0          | <2.0          | <4.0           | <20.0          | <100          | <4.0           | <0.40      |
| Xylene (Total)                              | 10000               | <30.0          | <15.0         | <6.0          | <75.0          | <3.0           | <75.0          | <15.0        | <75.0          | <15.0        | <3.0         | <15.0        | <15.0        | <15.0        | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <6.0          | <6.0         | <6.0         | <15.0         | <15.0         | <30.0          | <150           | <750          | <30.0          | NA*        |

Notes: NL: No Limit NA\*: Not Analyzed NS: Not Sampled

Rochester, Minnesota

| Sample ID                                         | MDH Health          | MW-17         | MW-17          | MW-17         | MW-17          | MW-17          | MW-17         | MW-17         | MW-17         | MW-17              | MW-17         | MW-17              | MW-17         | MW-17              | MW-17              | MW-17              | MW-17         | MW-17         | MW-17         | MW-17              | MW-17         | MW-17         | MW-17              | MW-17              | MW-17              | MW-17              | MW-17          | MW-17          | MW-17          | MW-17              | MW-17       |
|---------------------------------------------------|---------------------|---------------|----------------|---------------|----------------|----------------|---------------|---------------|---------------|--------------------|---------------|--------------------|---------------|--------------------|--------------------|--------------------|---------------|---------------|---------------|--------------------|---------------|---------------|--------------------|--------------------|--------------------|--------------------|----------------|----------------|----------------|--------------------|-------------|
| Collected Date and Time                           | Risk Limits<br>5/09 | 05/18/16      | 02/23/16       | 01/11/16      |                |                |               | 02/25/15      |               |                    |               | 02/17/14           |               | 08/26/13           |                    |                    |               |               | 05/17/12      |                    |               |               | 05/19/11           |                    | 11/18/10           | 08/18/10           |                | 02/22/10       |                |                    | 12/03/08    |
| 1,1,1,2-Tetrachloroethane                         | 70                  | <1.0          | <10.0          | <2.0          | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| 1,1,1-Trichloroethane                             | 9000                | <1.0          | <10.0          | <2.0          | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| 1,1,2,2-Tetrachloroethane                         | 2                   | <1.0          | <10.0          | <2.0          | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| 1,1,2-Trichloroethane                             | 3                   | <1.0          | <10.0          | <2.0          | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| 1,1,2-Trichlorotrifluoroethane                    | 200000              | <1.0          | <50.0          | 18.2          | 37.6           | 58.0           | 26.1          | 12.9          | 20.1          | 23.7               | 13.4          | 5.5                | 4.2           | 10.8               | 32.8               | 7.0                | <1.0          | 2.0           | 6.3           | 6.6                | 11.5          | 6.5           | 15.8               | 21.6               | 25.1               | 25.4               | 46.8           | 76.2           | 199            | 249                | NA*         |
| 1,1-Dichloroethane                                | 70                  | <1.0          | <10.0          | <2.0          | < 5.0          | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| 1,1-Dichloroethene 1,1-Dichloropropene            | NL                  | <1.0<br><1.0  | <10.0<br><10.0 | <2.0<br><2.0  | <5.0<br><5.0   | <5.0<br><5.0   | <1.0<br><1.0  | <1.0<br><1.0  | <2.0<br><2.0  | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <5.0<br><5.0   | <5.0<br><5.0   | <5.0<br><5.0   | <2.0<br><2.0       | <5.0<br>NA* |
| 1,2,3-Trichlorobenzene                            | NL                  | <1.0          | <50.0          | <10.0         | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| 1,2,3-Trichloropropane                            | 40                  | <4.0          | <10.0          | <2.0          | <20.0          | <20.0          | <4.0          | <4.0          | <8.0          | <4.0               | <4.0          | <4.0               | <4.0          | <4.0               | <4.0               | <4.0               | <4.0          | <4.0          | <4.0          | <4.0               | <4.0          | <4.0          | <4.0               | <4.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| 1,2,4-Trichlorobenzene                            | NL                  | <1.0          | <50.0          | <10.0         | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| 1,2,4-Trimethylbenzene                            | NL                  | <1.0          | <10.0          | <2.0          | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| 1,2-Dibromo-3-chloropropane                       | NL<br>004           | <4.0          | <50.0          | <10.0         | <20.0          | <20.0          | <10.0         | <4.0          | <8.0          | <4.0               | <4.0          | <4.0               | <4.0          | <4.0               | <4.0               | <4.0               | <4.0          | <4.0          | <4.0          | <4.0               | <4.0          | <4.0          | <4.0               | <4.0               | <4.0               | <4.0               | <20.0          | <20.0          | <20.0          | <8.0               | NA*         |
| 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene       | .004<br>600         | <1.0          | <10.0<br><10.0 | <2.0<br><2.0  | <5.0           | <5.0           | <1.0<br><1.0  | <1.0          | <2.0<br><2.0  | <1.0<br><1.0       | <1.0<br><1.0  | <1.0               | <1.0          | <1.0               | <1.0               | <1.0<br><1.0       | <1.0<br><1.0  | <1.0          | <1.0<br><1.0  | <1.0               | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0               | <5.0<br><5.0   | <5.0<br><5.0   | <5.0<br><5.0   | <2.0<br><2.0       | NA*<br>NA*  |
| 1,2-Dichloroethane                                | 4                   | <1.0<br><1.0  | <10.0          | <2.0          | <5.0<br><5.0   | <5.0<br><5.0   | <1.0          | <1.0<br><1.0  | <2.0          | <1.0               | <1.0          | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0       | <1.0               | <1.0          | <1.0<br><1.0  | <1.0          | <1.0<br><1.0       | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0<br><1.0       | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| 1,2-Dichloropropane                               | 5                   | <4.0          | <10.0          | <2.0          | <20.0          | <20.0          | <4.0          | <4.0          | <8.0          | <4.0               | <4.0          | <4.0               | <4.0          | <4.0               | <4.0               | <4.0               | <4.0          | <4.0          | <4.0          | <4.0               | <4.0          | <4.0          | <4.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| 1,3,5-Trimethylbenzene                            | 100                 | <1.0          | <10.0          | <2.0          | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| 1,3-Dichlorobenzene                               | NL                  | <1.0          | <10.0          | <2.0          | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| 1,3-Dichloropropane                               | NL                  | <1.0          | <10.0          | <2.0          | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| 1,4-Dichlorobenzene                               | 10                  | <1.0          | <10.0          | <2.0          | < 5.0          | < 5.0          | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | < 5.0          | <5.0           | <5.0           | <2.0               | NA*         |
| 2,2-Dichloropropane 2-Butanone (MEK)              | NL<br>4000          | <4.0          | <10.0<br><200  | <2.0<br><40.0 | <20.0<br><25.0 | <20.0<br><25.0 | <4.0<br><5.0  | <4.0<br><5.0  | <8.0<br><10.0 | <4.0<br><5.0       | <4.0<br><5.0  | <4.0               | <4.0<br><5.0  | <4.0<br><5.0       | <4.0               | <4.0<br><5.0       | <4.0<br><4.0  | <4.0<br><4.0  | <4.0<br><4.0  | <4.0<br><4.0       | <4.0<br><4.0  | <4.0<br><4.0  | <4.0<br><4.0       | <4.0<br><4.0       | <4.0<br><4.0       | <4.0<br><4.0       | <20.0<br><20.0 | <20.0<br><20.0 | <20.0<br><20.0 | <2.0<br><8.0       | NA*<br>NA*  |
| 2-Chlorotoluene                                   | NL                  | <5.0<br><1.0  | <10.0          | <2.0          | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <5.0<br><1.0       | <1.0          | <1.0               | <5.0<br><1.0       | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| 4-Chlorotoluene                                   | NL                  | <1.0          | <10.0          | <2.0          | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| 4-Methyl-2-pentanone (MIBK)                       | 300                 | <5.0          | <200           | <40.0         | <25.0          | <25.0          | <5.0          | <5.0          | <10.0         | <5.0               | <5.0          | <5.0               | <5.0          | < 5.0              | <5.0               | <5.0               | <4.0          | <4.0          | <4.0          | <4.0               | <4.0          | <4.0          | <4.0               | <4.0               | <4.0               | <4.0               | <20.0          | <20.0          | <20.0          | <8.0               | NA*         |
| Acetone                                           | 700                 | <20.0         | <200           | <40.0         | <100           | <100           | <50.0         | <20.0         | <40.0         | <20.0              | <20.0         | <20.0              | <20.0         | <20.0              | <20.0              | <20.0              | <25.0         | <25.0         | <25.0         | <25.0              | <25.0         | <25.0         | <25.0              | <25.0              | <10.0              | <10.0              | <50.0          | <50.0          | <50.0          | <20.0              | NA*         |
| Allyl chloride                                    | 30                  | <4.0          | <50.0          | <10.0         | <20.0          | <20.0          | <4.0          | <4.0          | <8.0          | <4.0               | <4.0          | <4.0               | <4.0          | <4.0               | <4.0               | <4.0               | <4.0          | <4.0          | <4.0          | <4.0               | <4.0          | <4.0          | <4.0               | <4.0               | <4.0               | <4.0               | <20.0          | <20.0          | <20.0          | <8.0               | NA*         |
| Benzene                                           | 2                   | <1.0          | <10.0          | <2.0          | < 5.0          | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| Bromobenzene<br>Bromochloromethane                | NL<br>NL            | <1.0<br><1.0  | <10.0<br><10.0 | <2.0<br><2.0  | <5.0<br><5.0   | <5.0<br><5.0   | <1.0<br><1.0  | <1.0<br><1.0  | <2.0<br><2.0  | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <5.0<br><5.0   | <5.0<br><5.0   | <5.0<br><5.0   | <2.0<br><2.0       | NA*<br>NA*  |
| Bromodichloromethane                              | 6                   | <1.0          | <10.0          | <2.0          | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| Bromoform                                         | 40                  | <4.0          | <50.0          | <10.0         | <20.0          | <20.0          | <4.0          | <4.0          | <8.0          | <4.0               | <4.0          | <4.0               | <4.0          | <4.0               | <4.0               | <4.0               | <4.0          | <4.0          | <4.0          | <4.0               | <4.0          | <4.0          | <4.0               | <8.0               | <8.0               | <8.0               | <40.0          | <40.0          | <40.0          | <16.0              | NA*         |
| Bromomethane                                      | 10                  | <4.0          | <50.0          | <10.0         | <20.0          | <20.0          | <4.0          | <4.0          | <8.0          | <4.0               | <4.0          | <4.0               | <4.0          | <4.0               | <4.0               | <4.0               | <4.0          | <4.0          | <4.0          | <4.0               | <4.0          | <4.0          | <4.0               | <10.0              | <4.0               | <4.0               | <20.0          | <20.0          | <20.0          | <8.0               | NA*         |
| Carbon tetrachloride                              | 3                   | <1.0          | <10.0          | <2.0          | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <4.0               | <4.0               | <4.0               | <20.0          | <20.0          | <20.0          | <2.0               | NA*         |
| Chlorobenzene                                     | 100                 | <1.0          | <10.0          | <2.0          | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| Chloroethane<br>Chloroform                        | 300<br>30           | <1.0<br><4.0  | <10.0<br><50.0 | <2.0<br><10.0 | <5.0<br><5.0   | <5.0<br><5.0   | <1.0<br><1.0  | <1.0          | <2.0<br><2.0  | <4.0<br><b>1.3</b> | <1.0<br><1.0  | <1.0<br><b>1.3</b> | <1.0          | <1.0<br><b>2.0</b> | <4.0<br><b>1.2</b> | <1.0<br><b>1.3</b> | <1.0<br>1.1   | <1.0          | <1.0          | <1.0<br><b>1.2</b> | <1.0          | <1.0          | <1.0<br><b>1.1</b> | <1.0<br><b>1.4</b> | <1.0<br><b>1.8</b> | <1.0<br><b>2.5</b> | <5.0<br><5.0   | <5.0<br><5.0   | <5.0<br><5.0   | <2.0<br><b>2.4</b> | NA*<br>NA*  |
| Chloromethane                                     | NL                  | <4.0          | <10.0          | <2.0          | <20.0          | <20.0          | <4.0          | <4.0          | <8.0          | <4.0               | <4.0          | <4.0               | <4.0          | 6.1                | <4.0               | <4.0               | <4.0          | <4.0          | <4.0          | <4.0               | <4.0          | <4.0          | <4.0               | <4.0               | <4.0               | <4.0               | <20.0          | <20.0          | <20.0          | <8.0               | NA*         |
| cis-1,2-Dichloroethene                            | 50                  | <1.0          | <10.0          | 2.0           | <5.0           | 9.8            | <1.0          | 1.2           | 3.2           | 3.7                | <1.0          | <1.0               | <1.0          | <1.0               | 2.5                | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | 1.0           | 1.3           | 1.0                | 1.8                | 2.2                | 2.4                | <5.0           | 5.4            | 7.9            | 4.8                | <5.0        |
| cis-1,3-Dichloropropene                           | NL                  | <4.0          | <50.0          | <10.0         | <20.0          | <20.0          | <4.0          | <4.0          | <8.0          | <4.0               | <4.0          | <4.0               | <4.0          | <4.0               | <4.0               | <4.0               | <4.0          | <4.0          | <4.0          | <4.0               | <4.0          | <4.0          | <4.0               | <4.0               | <4.0               | <4.0               | <20.0          | <20.0          | <20.0          | <8.0               | NA*         |
| Dibromochloromethane                              | 10                  | <1.0          | <50.0          | <10.0         | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| Dibromomethane                                    | NL                  | <4.0          | <10.0          | <2.0          | <20.0          | <20.0          | <4.0          | <4.0          | <8.0          | <4.0               | <4.0          | <4.0               | <4.0          | <4.0               | <4.0               | <4.0               | <4.0          | <4.0          | <4.0          | <4.0               | <4.0          | <4.0          | <4.0               | <4.0               | <4.0               | <4.0               | <20.0          | <20.0          | <5.0           | <2.0               | NA*         |
| Dichlorodifluoromethane                           | 1000                | <1.0          | <10.0          | <2.0          | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| Dichlorofluoromethane Diethyl ether (Ethyl ether) | NL<br>1000          | <1.0<br><4.0  | <10.0<br><50.0 | <2.0<br><10.0 | <5.0<br><20.0  | <5.0<br><20.0  | <1.0<br><4.0  | <1.0<br><4.0  | <2.0<br><8.0  | <1.0<br><4.0       | <1.0<br><4.0  | <1.0               | <1.0<br><4.0  | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0       | <1.0          | <1.0<br><4.0  | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0       | <5.0<br><20.0  | <5.0<br><20.0  | <5.0<br><20.0  | <2.0<br><8.0       | NA*<br>NA*  |
| Ethylbenzene                                      | 700                 | <1.0          | <10.0          | <2.0          | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <4.0<br><1.0       | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <4.0<br><1.0  | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| Hexachloro-1,3-butadiene                          | 1                   | <1.0          | <50.0          | <10.0         | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <5.0               | <5.0               | <5.0          | <5.0          | <5.0          | <5.0               | <5.0          | <5.0          | <5.0               | <4.0               | <4.0               | <4.0               | <20.0          | <20.0          | <20.0          | <8.0               | NA*         |
| Isopropylbenzene (Cumene)                         | 300                 | <1.0          | <10.0          | <2.0          | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| m&p-Xylene                                        | NL                  | NA            | NA             | NA            | NA             | NA             | NA            | NA            | NA            | NA                 | NA            | NA                 | NA            | NA                 | NA                 | <4.0               | <2.0          | <2.0          | <2.0          | <2.0               | <2.0          | <2.0          | <2.0               | <2.0               | <2.0               | <2.0               | <10.0          | <10.0          | <10.0          | <4.0               | NA*         |
| Methylene Chloride                                | 5                   | <4.0          | <10.0          | <2.0          | <20.0          | <20.0          | <4.0          | <4.0          | <8.0          | <4.0               | <4.0          | <4.0               | <4.0          | <4.0               | <4.0               | <1.0               | <4.0          | <4.0          | <4.0          | <4.0               | <4.0          | <4.0          | <4.0               | 6.1                | <4.0               | <4.0               | <20.0          | <20.0          | <20.0          | <8.0               | NA*         |
| Methyl-tert-butyl ether                           | 70                  | <1.0          | <10.0          | <2.0          | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | NA                 | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| Naphthalene<br>n-Butylbenzene                     | 300<br>NL           | <4.0          | <50.0<br><10.0 | <10.0<br><2.0 | <20.0<br><5.0  | <20.0          | <4.0<br><1.0  | <4.0          | <8.0<br><2.0  | <4.0<br><1.0       | <4.0<br><1.0  | <4.0<br><1.0       | <4.0<br><1.0  | <4.0<br><1.0       | <4.0               | <4.0               | <4.0<br><1.0  | <4.0          | <4.0          | <4.0<br><1.0       | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | <20.0<br><5.0  | <20.0          | <20.0<br><5.0  | <8.0<br><2.0       | NA*<br>NA*  |
| n-Propylbenzene                                   | NL<br>NL            | <1.0<br><1.0  | <10.0          | <2.0          | <5.0           | <5.0<br><5.0   | <1.0          | <1.0<br><1.0  | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0<br><1.0       | <1.0<br><1.0       | <1.0          | <1.0<br><1.0  | <1.0<br><1.0  | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0<br><5.0   | <5.0           | <2.0               | NA*         |
| o-Xylene                                          | NL                  | NA            | NA             | NA            | NA             | NA             | NA            | NA            | NA            | NA                 | NA            | NA                 | NA            | NA                 | NA                 | NA                 | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| p-Isopropyltoluene                                | NL                  | <1.0          | <10.0          | <2.0          | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| sec-Butylbenzene                                  | NL                  | <1.0          | <50.0          | <10.0         | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| Styrene                                           | NL                  | <1.0          | <10.0          | <2.0          | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| tert-Butylbenzene                                 | NL                  | <1.0          | <10.0          | <2.0          | < 5.0          | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| Tetrachloroethene<br>Tetrahydrofuran              | 5<br>100            | <b>227</b>    | <b>877</b>     | 329<br><10.0  | 1,010          | 1060           | <b>433</b>    | <b>70.4</b>   | <b>227</b>    | <b>244</b>         | 94.7          | <b>54.8</b>        | <b>69.9</b>   | <b>95.5</b>        | 215<br>-10.0       | <b>49.9</b>        | <b>22.0</b>   | 23.3          | <b>37.1</b>   | <b>47.1</b>        | 106           | 107<br>-10.0  | 109                | 145                | <b>209</b>         | 174<br>-10.0       | <b>412</b>     | <b>639</b>     | 1,100          | <b>803</b>         | 363<br>NA*  |
| Tetrahydrofuran<br>Toluene                        | 100<br>1000         | <10.0<br><1.0 | <50.0<br><10.0 | <10.0<br><2.0 | <50.0<br><5.0  | <50.0<br><5.0  | <10.0<br><1.0 | <10.0<br><1.0 | <20.0<br><2.0 | <10.0<br><1.0      | <10.0<br><1.0 | <10.0<br><1.0      | <10.0<br><1.0 | <10.0<br><1.0      | <10.0<br><1.0      | <10.0<br><1.0      | <10.0<br><1.0 | <10.0<br><1.0 | <10.0<br><1.0 | <10.0<br><1.0      | <10.0<br><1.0 | <10.0<br><1.0 | <10.0<br><1.0      | <10.0<br><1.0      | <10.0<br><1.0      | <10.0<br><1.0      | <50.0<br><5.0  | <50.0<br><5.0  | <50.0<br><5.0  | <20.0<br><2.0      | NA*<br>NA*  |
| trans-1,2-Dichloroethene                          | 100                 | <1.0          | <10.0          | <2.0          | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <4.0          | <4.0          | <4.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | <5.0        |
| trans-1,3-Dichloropropene                         | NL                  | <4.0          | <200           | <40.0         | <20.0          | <20.0          | <4.0          | <4.0          | <8.0          | <4.0               | <4.0          | <4.0               | <4.0          | <4.0               | <4.0               | <4.0               | <4.0          | <4.0          | <4.0          | <4.0               | <4.0          | <4.0          | <4.0               | <4.0               | <4.0               | <4.0               | <20.0          | <20.0          | <20.0          | <8.0               | NA*         |
| Trichloroethene                                   | 5                   | <0.40         | <10.0          | <2.0          | <2.0           | 3.3            | <0.40         | <0.40         | 0.89          | 1.1                | <1.0          | <0.40              | <0.40         | 0.42               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | <5.0        |
| Trichlorofluoromethane                            | 2000                | <1.0          | <10.0          | <2.0          | <5.0           | <5.0           | <1.0          | <1.0          | <2.0          | <1.0               | <1.0          | <1.0               | <1.0          | <1.0               | <1.0               | <1.0               | <1.0          | <1.0          | <1.0          | <1.0               | <1.0          | <1.0          | <1.0               | <1.0               | <1.0               | <1.0               | <5.0           | <5.0           | <5.0           | <2.0               | NA*         |
| Vinyl chloride                                    | 0.2                 | < 0.40        | <10.0          | <2.0          | <2.0           | <2.0           | <0.40         | < 0.40        | <0.80         | < 0.40             | <1.0          | < 0.40             | < 0.40        | < 0.40             | < 0.40             | < 0.40             | < 0.40        | < 0.40        | < 0.40        | < 0.40             | < 0.40        | < 0.40        | <0.40              | <0.40              | <0.40              | <0.40              | <2.0           | <2.0           | <2.0           | <0.80              | <2.0        |
| Xylene (Total)                                    | 10000               | <3.0          | <30.0          | <6.0          | <15.0          | <3.0           | <3.0          | <3.0          | <6.0          | <3.0               | <3.0          | <3.0               | <3.0          | <3.0               | <3.0               | <3.0               | <3.0          | <3.0          | <3.0          | <3.0               | <3.0          | <3.0          | <3.0               | <3.0               | <3.0               | <3.0               | <15.0          | <15.0          | <15.0          | <6.0               | NA*         |

Xylene (Total)
Notes:
NL: No Limit NA\*: Not Analyzed NS: Not Sampled

Rochester, Minnesota

| Sample ID                                         | MDH Health          | MW-18         | MW-18         | MW-18         | MW-18              | MW-18           | MW-18           | MW-18         | MW-18         | MW-18         | MW-18        | MW-18         | MW-18         | MW-18         | MW-18        | MW-18        | MW-18        | MW-18        | MW-18        | MW-18        | MW-18        | MW-18        | MW-18        | MW-18        | MW-18        | MW-18        | MW-18          | MW-18              | MW-18              | MW-18              | MW-18       |
|---------------------------------------------------|---------------------|---------------|---------------|---------------|--------------------|-----------------|-----------------|---------------|---------------|---------------|--------------|---------------|---------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|----------------|--------------------|--------------------|--------------------|-------------|
| Collected Date and Time                           | Risk Limits<br>5/09 | 05/18/16      | 02/23/16      | 01/11/16      | 12/14/15           | 08/18/15        | 06/15/15        | 02/25/15      | 11/19/14      | 08/21/14      | 05/20/14     | 02/17/14      | 12/10/13      | 08/26/13      | 05/23/13     | 02/25/13     | 12/19/12     | 09/26/12     | 05/17/12     | 02/16/12     | 11/21/11     | 08/28/11     | 05/19/11     | 03/01/11     | 11/18/10     | 08/18/10     | 05/12/10       | 02/22/10           | 11/16/09           | 10/01/09 1         | 12/03/08    |
| 1,1,1,2-Tetrachloroethane                         | 70                  | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| 1,1,1-Trichloroethane                             | 9000                | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| 1,1,2,2-Tetrachloroethane                         | 2                   | <1.0          | < 5.0         | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| 1,1,2-Trichloroethane                             | 3                   | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| 1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethane | 200000<br>70        | <1.0<br><1.0  | <25.0         | <5.0<br><1.0  | 6.3                | <1.0<br><1.0    | <b>1.5</b> <1.0 | <1.0          | <1.0          | <1.0<br><1.0  | <1.0         | <1.0          | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0 | <1.0         | <1.0<br><1.0 | <1.0         | <1.0         | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br>~1.0 | <1.0 [<br><1.0 | 2.0                | <1.0               | 2.7                | NA*<br>NA*  |
| 1,1-Dichloroethane                                | 6                   | <1.0          | <5.0<br><5.0  | <1.0          | <1.0<br><1.0       | <1.0            | <1.0            | <1.0<br><1.0  | <1.0<br><1.0  | <1.0          | <1.0<br><1.0 | <1.0<br><1.0  | <1.0          | <1.0          | <1.0         | <1.0<br><1.0 | <1.0         | <1.0<br><1.0 | <1.0<br><1.0 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | <2.0        |
| 1,1-Dichloropropene                               | NL                  | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| 1,2,3-Trichlorobenzene                            | NL                  | <1.0          | <25.0         | <5.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| 1,2,3-Trichloropropane                            | 40<br>NII           | <4.0          | < 5.0         | <1.0          | <4.0               | <4.0            | <4.0            | <4.0          | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| 1,2,4-Trichlorobenzene<br>1,2,4-Trimethylbenzene  | NL<br>NL            | <1.0<br><1.0  | <25.0<br><5.0 | <5.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | NA*<br>NA*  |
| 1,2-Dibromo-3-chloropropane                       | NL                  | <4.0          | <25.0         | <5.0          | <4.0               | <4.0            | <10.0           | <4.0          | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0           | <4.0               | <4.0               | <4.0               | NA*         |
| 1,2-Dibromoethane (EDB)                           | .004                | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| 1,2-Dichlorobenzene                               | 600                 | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| 1,2-Dichloroethane                                | 4                   | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| 1,2-Dichloropropane<br>1,3,5-Trimethylbenzene     | 5<br>100            | <4.0<br><1.0  | <5.0<br><5.0  | <1.0<br><1.0  | <4.0<br><1.0       | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0 | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | NA*<br>NA*  |
| 1,3-Dichlorobenzene                               | NL                  | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| 1,3-Dichloropropane                               | NL                  | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| 1,4-Dichlorobenzene                               | 10                  | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| 2,2-Dichloropropane<br>2-Butanone (MEK)           | NL<br>4000          | <4.0          | <5.0          | <1.0<br><20.0 | <4.0               | <4.0            | <4.0            | <4.0<br><5.0  | <4.0<br><5.0  | <4.0          | <4.0         | <4.0<br><5.0  | <4.0<br><5.0  | <4.0<br><5.0  | <4.0         | <4.0<br><5.0 | <4.0         | <4.0<br><4.0 | <4.0         | <4.0<br><4.0 | <4.0         | <4.0<br><4.0 | <4.0         | <4.0         | <4.0         | <4.0         | <4.0           | <1.0<br><4.0       | <4.0               | <1.0<br><4.0       | NA*<br>NA*  |
| 2-Chlorotoluene                                   | 4000<br>NL          | <5.0<br><1.0  | <100<br><5.0  | <1.0          | <5.0<br><1.0       | <5.0<br><1.0    | <5.0<br><1.0    | <5.0<br><1.0  | <5.0<br><1.0  | <5.0<br><1.0  | <5.0<br><1.0 | <5.0<br><1.0  | <5.0<br><1.0  | <1.0          | <5.0<br><1.0 | <5.0<br><1.0 | <4.0<br><1.0   | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | NA*         |
| 4-Chlorotoluene                                   | NL                  | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| 4-Methyl-2-pentanone (MIBK)                       | 300                 | <5.0          | <100          | <20.0         | <5.0               | <5.0            | <5.0            | <5.0          | <5.0          | < 5.0         | <5.0         | < 5.0         | < 5.0         | <5.0          | <5.0         | <5.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0           | <4.0               | <4.0               | <4.0               | NA*         |
| Acetone                                           | 700                 | <20.0         | <100          | <20.0         | <20.0              | <20.0           | <50.0           | <20.0         | <20.0         | <20.0         | <20.0        | <20.0         | <20.0         | <20.0         | <20.0        | <20.0        | <25.0        | <25.0        | <25.0        | <25.0        | <25.0        | <25.0        | <25.0        | <25.0        | <10.0        | <10.0        | <10.0          | 12.2               | <10.0              | <10.0              | NA*         |
| Allyl chloride                                    | 30                  | <4.0          | <25.0         | < 5.0         | <4.0               | <4.0            | <4.0            | <4.0          | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0<br><1.0 | <4.0<br><1.0 | <4.0         | <4.0         | <4.0<br><1.0   | <4.0               | <4.0               | <4.0               | NA*<br>NA*  |
| Benzene<br>Bromobenzene                           | NL                  | <1.0<br><1.0  | <5.0<br><5.0  | <1.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0         | <1.0         | <1.0<br><1.0 | <1.0<br><1.0 | <1.0           | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | NA*         |
| Bromochloromethane                                | NL                  | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| Bromodichloromethane                              | 6                   | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| Bromoform                                         | 40                  | <4.0          | <25.0         | <5.0          | <4.0               | <4.0            | <4.0            | <4.0          | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <8.0         | <8.0         | <8.0         | <8.0           | <8.0               | <8.0               | <8.0               | NA*         |
| Bromomethane<br>Carbon tetrachloride              | 10<br>3             | <4.0<br><1.0  | <25.0<br><5.0 | <5.0<br><1.0  | <4.0<br><1.0       | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0 | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><4.0 | <4.0<br><4.0 | <4.0<br><4.0 | <4.0<br><4.0   | <4.0<br><1.0       | <4.0<br><4.0       | <4.0<br><1.0       | NA*<br>NA*  |
| Chlorobenzene                                     | 100                 | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| Chloroethane                                      | 300                 | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <4.0          | <1.0         | <1.0          | <1.0          | <1.0          | 20.9         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| Chloroform                                        | 30                  | <4.0          | <25.0         | <5.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| Chloromethane                                     | NL                  | <4.0          | <5.0          | <1.0          | <4.0               | <4.0            | <4.0            | <4.0          | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | 5.0           | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0           | <4.0               | <4.0               | <4.0               | NA*         |
| cis-1,2-Dichloroethene<br>cis-1,3-Dichloropropene | 50<br>NL            | <1.0<br><4.0  | <5.0<br><25.0 | <1.0<br><5.0  | <1.0<br><4.0       | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0 | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0   | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0       | <2.0<br>NA* |
| Dibromochloromethane                              | 10                  | <1.0          | <25.0         | <5.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| Dibromomethane                                    | NL                  | <4.0          | <5.0          | <1.0          | <4.0               | <4.0            | <4.0            | <4.0          | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0          | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0           | <1.0               | <1.0               | <1.0               | NA*         |
| Dichlorodifluoromethane                           | 1000                | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| Dichlorofluoromethane                             | NL<br>1000          | <1.0          | < 5.0         | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| Diethyl ether (Ethyl ether) Ethylbenzene          | 1000<br>700         | <4.0<br><1.0  | <25.0<br><5.0 | <5.0<br><1.0  | <4.0<br><1.0       | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0 | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0   | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0       | NA*<br>NA*  |
| Hexachloro-1,3-butadiene                          | 1                   | <1.0          | <25.0         | <5.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <5.0         | <4.0         | <4.0         | <4.0         | <4.0           | <4.0               | <4.0               | <4.0               | NA*         |
| Isopropylbenzene (Cumene)                         | 300                 | <1.0          | < 5.0         | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| m&p-Xylene                                        | NL<br>-             | NA            | NA            | NA            | NA                 | NA              | NA              | NA            | NA            | NA            | NA           | NA            | NA            | NA            | NA           | <4.0         | <2.0         | <2.0         | <2.0         | <2.0         | <2.0         | <2.0         | <2.0         | <2.0         | <2.0         | <2.0         | <2.0           | <2.0               | <2.0               | <2.0               | NA*         |
| Methylene Chloride                                | 5                   | <4.0          | <5.0          | <1.0          | <4.0               | <4.0            | <4.0            | <4.0          | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0          | <4.0         | <1.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | <4.0         | 7.2          | <4.0         | <4.0         | <4.0           | <4.0               | <4.0               | <4.0               | NA*         |
| Methyl-tert-butyl ether<br>Naphthalene            | 70<br>300           | <1.0<br><4.0  | <5.0<br><25.0 | <1.0<br><5.0  | <1.0<br><4.0       | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0 | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0 | NA<br><4.0   | <1.0<br><4.0   | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0       | NA*<br>NA*  |
| n-Butylbenzene                                    | NL                  | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| n-Propylbenzene                                   | NL                  | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| o-Xylene                                          | NL                  | NA            | NA            | NA            | NA                 | NA              | NA              | NA            | NA            | NA            | NA           | NA            | NA            | NA            | NA           | NA           | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| p-Isopropyltoluene                                | NL<br>NI            | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| sec-Butylbenzene<br>Styrene                       | NL<br>NL            | <1.0<br><1.0  | <25.0<br><5.0 | <5.0<br><1.0  | <1.0<br><1.0       | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0       | NA*<br>NA*  |
| tert-Butylbenzene                                 | NL                  | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| Tetrachloroethene                                 | 5                   | 121           | 522           | 156           | 952                | 2.1             | 340             | 2.3           | 1.3           | 3.0           | 15.7         | 2.0           | 1.6           | 1.5           | 1.2          | 2.3          | <1.0         | 1.8          | 1.5          | 2.9          | 3.6          | 3.6          | 3.6          | 4.8          | 8.6          | 8.4          | 26.0           | 96.8               | 130                | 250                | 257         |
| Tetrahydrofuran                                   | 100                 | <10.0         | <25.0         | <5.0          | <10.0              | <10.0           | <10.0           | <10.0         | <10.0         | <10.0         | <10.0        | <10.0         | <10.0         | <10.0         | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0        | <10.0          | <10.0              | <10.0              | <10.0              | NA*         |
| Toluene                                           | 1000                | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| trans-1,2-Dichloroethene                          | 100                 | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <4.0         | <4.0         | <4.0<br><4.0 | <1.0<br><4.0 | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | <2.0<br>NA* |
| trans-1,3-Dichloropropene Trichloroethene         | NL<br>5             | <4.0<br><0.40 | <100<br><5.0  | <20.0<br><1.0 | <4.0<br><b>1.1</b> | <4.0<br>  <0.40 | <4.0<br><0.40   | <4.0<br><0.40 | <4.0<br><0.40 | <4.0<br><0.40 | <4.0<br><1.0 | <4.0<br><0.40 | <4.0<br><0.40 | <4.0<br><0.40 | <4.0<br><1.0   | <4.0<br><b>1.2</b> | <4.0<br><b>2.1</b> | <4.0<br><b>2.6</b> | NA*<br><2.0 |
| Trichlorofluoromethane                            | 2000                | <1.0          | <5.0          | <1.0          | <1.0               | <1.0            | <1.0            | <1.0          | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0          | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0         | <1.0           | <1.0               | <1.0               | <1.0               | NA*         |
| Vinyl chloride                                    | 0.2                 | < 0.40        | <5.0          | <1.0          | < 0.40             | <0.40           | < 0.40          | < 0.40        | <0.40         | < 0.40        | <1.0         | < 0.40        | < 0.40        | <0.40         | < 0.40       | <0.40        | <0.40        | < 0.40       | <0.40        | <0.40        | <0.40        | < 0.40       | <0.40        | <0.40        | <0.40        | < 0.40       | <0.40          | < 0.40             | < 0.40             | < 0.40             | <0.80       |
| Xylene (Total)                                    | 10000               | <3.0          | <15.0         | <3.0          | <3.0               | <3.0            | <3.0            | <3.0          | <3.0          | <3.0          | <3.0         | <3.0          | <3.0          | <3.0          | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0         | <3.0           | <3.0               | <3.0               | <3.0               | NA*         |

Notes: NL: No Limit NA\*: Not Analyzed NS: Not Sampled

Rochester, Minnesota

| Sample ID                                             | MDH Health          | MW-19         | MW-19         | MW-19         | MW-19         | MW-19                | MW-19         | MW-19                | MW-19         | MW-19         | MW-19        | MW-19         | MW-19         | MW-19                | MW-19                | MW-19                   | MW-19        | MW-19                | MW-19        | MW-19        | MW-19        | MW-19        | MW-19                | MW-19           | MW-19         | MW-19         | MW-19        | MW-19               | MW-19        | MW-19        | MW-19       |
|-------------------------------------------------------|---------------------|---------------|---------------|---------------|---------------|----------------------|---------------|----------------------|---------------|---------------|--------------|---------------|---------------|----------------------|----------------------|-------------------------|--------------|----------------------|--------------|--------------|--------------|--------------|----------------------|-----------------|---------------|---------------|--------------|---------------------|--------------|--------------|-------------|
| Collected Date and Time                               | Risk Limits<br>5/09 |               |               |               |               |                      |               |                      |               |               |              |               |               |                      |                      |                         |              |                      |              |              |              |              |                      |                 |               |               |              |                     |              | 09/24/09 1   |             |
| 1,1,1,2-Tetrachloroethane                             | 70                  | <1.0          | <1.0          | <1.0          | <1.0          | <b>08/18/15</b> <1.0 | <1.0          | <b>02/25/15</b> <1.0 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <b>08/26/13</b> <1.0 | <b>05/23/13</b> <1.0 | <b>02/25/13</b><br><1.0 | <1.0         | <b>09/26/12</b> <1.0 | <1.0         | <1.0         | <1.0         | <1.0         | <b>05/19/11</b> <1.0 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| 1,1,1-Trichloroethane                                 | 9000                | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| 1,1,2,2-Tetrachloroethane                             | 2                   | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| 1,1,2-Trichloroethane                                 | 3                   | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| 1,1,2-Trichlorotrifluoroethane                        | 200000              | 1.1           | 5.4           | <5.0          | 5.3           | 9.5                  | 3.1           | 8.0                  | 1.2           | <1.0          | 1.2          | 2.3           | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | 1.9          | 2.4          | NA*         |
| 1,1-Dichloroethane 1,1-Dichloroethene                 | 70<br>6             | <1.0          | <1.0          | <1.0          | <1.0          | <1.0<br><1.0         | <1.0          | <1.0<br><1.0         | <1.0<br><1.0  | <1.0          | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0         | <1.0                 | <1.0<br><1.0            | <1.0<br><1.0 | <1.0<br><1.0         | <1.0<br><1.0 | <1.0         | <1.0<br><1.0 | <1.0<br><1.0 | <1.0                 | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0 | <1.0                | <1.0         | <1.0<br><1.0 | NA*<br><1.0 |
| 1,1-Dichloropropene                                   | NL                  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0                 | <1.0<br><1.0  | <1.0                 | <1.0          | <1.0<br><1.0  | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0<br><1.0         | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0<br><1.0 | <1.0         | <1.0         | <1.0<br><1.0         | <1.0            | <1.0          | <1.0          | <1.0         | <1.0<br><1.0        | <1.0<br><1.0 | <1.0         | NA*         |
| 1,2,3-Trichlorobenzene                                | NL                  | <1.0          | <5.0          | <5.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| 1,2,3-Trichloropropane                                | 40                  | <4.0          | <1.0          | <1.0          | <4.0          | <4.0                 | <4.0          | <4.0                 | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0                 | <4.0                 | <4.0                    | <4.0         | <4.0                 | <4.0         | <4.0         | <4.0         | <4.0         | <4.0                 | <4.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| 1,2,4-Trichlorobenzene                                | NL                  | <1.0          | <5.0          | <5.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| 1,2,4-Trimethylbenzene<br>1,2-Dibromo-3-chloropropane | NL<br>NL            | <1.0<br><4.0  | <1.0<br><5.0  | <1.0<br><5.0  | <1.0<br><4.0  | <1.0<br><4.0         | <1.0<br><10.0 | <1.0<br><4.0         | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0 | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0         | <1.0<br><4.0         | <1.0<br><4.0            | <1.0<br><4.0 | <1.0<br><4.0         | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0         | <1.0<br><4.0    | <1.0<br><4.0  | <1.0          | <1.0<br><4.0 | <1.0<br><4.0        | <1.0<br><4.0 | <1.0<br><4.0 | NA*<br>NA*  |
| 1,2-Dibromoethane (EDB)                               | .004                | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| 1,2-Dichlorobenzene                                   | 600                 | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| 1,2-Dichloroethane                                    | 4                   | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| 1,2-Dichloropropane                                   | 5                   | <4.0          | <1.0          | <1.0          | <4.0          | <4.0                 | <4.0          | <4.0                 | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0                 | <4.0                 | <4.0                    | <4.0         | <4.0                 | <4.0         | <4.0         | <4.0         | <4.0         | <4.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| 1,3,5-Trimethylbenzene                                | 100                 | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| 1,3-Dichlorobenzene<br>1,3-Dichloropropane            | NL<br>NL            | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0         | <1.0<br><1.0  | <1.0<br><1.0         | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0         | <1.0<br><1.0         | <1.0<br><1.0            | <1.0<br><1.0 | <1.0<br><1.0         | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0         | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0        | <1.0<br><1.0 | <1.0<br><1.0 | NA*<br>NA*  |
| 1,4-Dichlorobenzene                                   | 10                  | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| 2,2-Dichloropropane                                   | NL                  | <4.0          | <1.0          | <1.0          | <4.0          | <4.0                 | <4.0          | <4.0                 | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0                 | <4.0                 | <4.0                    | <4.0         | <4.0                 | <4.0         | <4.0         | <4.0         | <4.0         | <4.0                 | <4.0            | <4.0          | <4.0          | <4.0         | <1.0                | <4.0         | <1.0         | NA*         |
| 2-Butanone (MEK)                                      | 4000                | <5.0          | <20.0         | <20.0         | <5.0          | <5.0                 | <5.0          | <5.0                 | <5.0          | <5.0          | <5.0         | <5.0          | <5.0          | <5.0                 | <5.0                 | <5.0                    | <4.0         | <4.0                 | <4.0         | <4.0         | <4.0         | <4.0         | <4.0                 | <4.0            | <4.0          | <4.0          | <4.0         | <4.0                | <4.0         | 5.5          | NA*         |
| 2-Chlorotoluene                                       | NL                  | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| 4-Chlorotoluene<br>4-Methyl-2-pentanone (MIBK)        | NL<br>300           | <1.0<br><5.0  | <1.0<br><20.0 | <1.0<br><20.0 | <1.0<br><5.0  | <1.0<br><5.0         | <1.0<br><5.0  | <1.0<br><5.0         | <1.0<br><5.0  | <1.0<br><5.0  | <1.0<br><5.0 | <1.0<br><5.0  | <1.0<br><5.0  | <1.0<br><5.0         | <1.0<br><5.0         | <1.0<br><5.0            | <1.0<br><4.0 | <1.0<br><4.0         | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0         | <1.0<br><4.0    | <1.0          | <1.0          | <1.0<br><4.0 | <1.0<br><4.0        | <1.0<br><4.0 | <1.0<br><4.0 | NA*<br>NA*  |
| Acetone                                               | 700                 | <20.0         | <20.0         | <20.0         | <5.0<br><20.0 | <20.0                | <50.0         | <20.0                | <20.0         | <20.0         | <20.0        | <20.0         | <20.0         | <20.0                | <20.0                | <20.0                   | <25.0        | <25.0                | <25.0        | <25.0        | <25.0        | <25.0        | <25.0                | <25.0           | <4.0<br><10.0 | <4.0<br><10.0 | <10.0        | <10.0               | <10.0        | <10.0        | NA*         |
| Allyl chloride                                        | 30                  | <4.0          | <5.0          | <5.0          | <4.0          | <4.0                 | <4.0          | <4.0                 | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0                 | <4.0                 | <4.0                    | <4.0         | <4.0                 | <4.0         | <4.0         | <4.0         | <4.0         | <4.0                 | <4.0            | <4.0          | <4.0          | <4.0         | <4.0                | <4.0         | <4.0         | NA*         |
| Benzene                                               | 2                   | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| Bromobenzene                                          | NL                  | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| Bromochloromethane                                    | NL<br>6             | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*<br>NA*  |
| Bromodichloromethane<br>Bromoform                     | 40                  | <1.0<br><4.0  | <1.0<br><5.0  | <1.0<br><5.0  | <1.0<br><4.0  | <1.0<br><4.0         | <1.0<br><4.0  | <1.0<br><4.0         | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0 | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0         | <1.0<br><4.0         | <1.0<br><4.0            | <1.0<br><4.0 | <1.0<br><4.0         | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0         | <1.0<br><8.0    | <1.0<br><8.0  | <1.0<br><8.0  | <1.0<br><8.0 | <1.0<br><8.0        | <1.0<br><8.0 | <1.0<br><8.0 | NA*         |
| Bromomethane                                          | 10                  | <4.0          | <5.0          | <5.0          | <4.0          | <4.0                 | <4.0          | <4.0                 | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0                 | <4.0                 | <4.0                    | <4.0         | <4.0                 | <4.0         | <4.0         | <4.0         | <4.0         | <4.0                 | <4.0            | <4.0          | <4.0          | <4.0         | <4.0                | <4.0         | <4.0         | NA*         |
| Carbon tetrachloride                                  | 3                   | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <4.0            | <4.0          | <4.0          | <4.0         | <1.0                | <4.0         | <1.0         | NA*         |
| Chlorobenzene                                         | 100                 | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| Chloroethane<br>Chloroform                            | 300<br>30           | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <4.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*<br>NA*  |
| Chloromethane                                         | NL                  | <4.0<br><4.0  | <5.0<br><1.0  | <5.0<br><1.0  | <1.0<br><4.0  | <1.0<br><4.0         | <1.0<br><4.0  | <1.0<br><4.0         | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0 | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><b>4.3</b>   | <1.0<br><4.0         | <1.0<br><4.0            | <1.0<br><4.0 | <1.0<br><4.0         | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0 | <1.0<br><4.0         | <1.0<br><4.0    | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0 | <1.0<br><b>10.4</b> | <1.0<br><4.0 | <1.0<br><4.0 | NA*         |
| cis-1,2-Dichloroethene                                | 50                  | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | <1.0        |
| cis-1,3-Dichloropropene                               | NL                  | <4.0          | < 5.0         | <5.0          | <4.0          | <4.0                 | <4.0          | <4.0                 | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0                 | <4.0                 | <4.0                    | <4.0         | <4.0                 | <4.0         | <4.0         | <4.0         | <4.0         | <4.0                 | <4.0            | <4.0          | <4.0          | <4.0         | <4.0                | <4.0         | <4.0         | NA*         |
| Dibromochloromethane                                  | 10                  | <1.0          | <5.0          | <5.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| Dibromomethane                                        | NL                  | <4.0          | <1.0          | <1.0          | <4.0          | <4.0                 | <4.0          | <4.0                 | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0                 | <4.0                 | <4.0                    | <4.0         | <4.0                 | <4.0         | <4.0         | <4.0         | <4.0         | <4.0                 | <4.0            | <4.0          | <4.0          | <4.0         | <1.0                | <1.0         | <1.0         | NA*         |
| Dichlorodifluoromethane Dichlorofluoromethane         | 1000<br>NL          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0<br><1.0  | <1.0                 | <1.0          | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0  | <1.0                 | <1.0<br><1.0         | <1.0                    | <1.0<br><1.0 | <1.0<br><1.0         | <1.0         | <1.0         | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0         | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0 | <1.0                | <1.0<br><1.0 | <1.0<br><1.0 | NA*<br>NA*  |
| Diethyl ether (Ethyl ether)                           | 1000                | <1.0<br><4.0  | <1.0<br><5.0  | <1.0<br><5.0  | <1.0<br><4.0  | <1.0<br><4.0         | <4.0          | <1.0<br><4.0         | <1.0<br><4.0  | <4.0          | <4.0         | <4.0          | <4.0          | <1.0<br><4.0         | <4.0                 | <1.0<br><4.0            | <4.0         | <4.0                 | <1.0<br><4.0 | <1.0<br><4.0 | <4.0         | <4.0         | <4.0                 | <4.0            | <4.0          | <4.0          | <4.0         | <1.0<br><4.0        | <4.0         | <4.0         | NA*         |
| Ethylbenzene                                          | 700                 | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| Hexachloro-1,3-butadiene                              | 1                   | <1.0          | <5.0          | <5.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <5.0                 | <5.0                    | <5.0         | <5.0                 | <5.0         | <5.0         | <5.0         | < 5.0        | <5.0                 | <4.0            | <4.0          | <4.0          | <4.0         | <4.0                | <4.0         | <4.0         | NA*         |
| Isopropylbenzene (Cumene)                             | 300                 | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| m&p-Xylene                                            | NL                  | NA<br>.1.0    | NA<br>.1.0    | NA<br>.1.0    | NA<br>.1.0    | NA<br>.1.0           | NA<br>.4.0    | NA<br>.4.0           | NA<br>.4.0    | NA<br>.1.0    | NA<br>.1.0   | NA<br>.1.0    | NA<br>.1.0    | NA<br>.1.0           | NA<br>.1.0           | <4.0                    | <2.0         | <2.0                 | <2.0         | <2.0         | <2.0         | <2.0         | <2.0                 | <2.0            | <2.0          | <2.0          | <2.0         | <2.0                | <2.0         | <2.0         | NA*         |
| Methylene Chloride Methyl-tert-butyl ether            | 5<br>70             | <4.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0         | <4.0<br><1.0  | <4.0<br><1.0         | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0 | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0         | <4.0<br><1.0         | <1.0<br>NA              | <4.0<br><1.0 | <4.0<br><1.0         | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0         | <b>5.2</b> <1.0 | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0 | <4.0<br><1.0        | <4.0<br><1.0 | <4.0<br><1.0 | NA*<br>NA*  |
| Naphthalene                                           | 300                 | <4.0          | <5.0          | <5.0          | <4.0          | <4.0                 | <4.0          | <4.0                 | <4.0          | <4.0          | <4.0         | <4.0          | <4.0          | <4.0                 | <4.0                 | <4.0                    | <4.0         | <4.0                 | <4.0         | <4.0         | <4.0         | <4.0         | <4.0                 | <4.0            | <4.0          | <4.0          | <4.0         | <4.0                | <4.0         | <4.0         | NA*         |
| n-Butylbenzene                                        | NL                  | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| n-Propylbenzene                                       | NL                  | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| o-Xylene                                              | NL                  | NA            | NA            | NA            | NA            | NA                   | NA            | NA                   | NA            | NA            | NA           | NA            | NA            | NA                   | NA                   | NA                      | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| p-Isopropyltoluene                                    | NL<br>NI            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0<br><1.0         | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| sec-Butylbenzene<br>Styrene                           | NL<br>NL            | <1.0<br><1.0  | <5.0<br><1.0  | <5.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0         | <1.0<br><1.0  | <1.0<br><1.0         | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0         | <1.0<br><1.0         | <1.0<br><1.0            | <1.0<br><1.0 | <1.0<br><1.0         | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0 | <1.0<br><1.0         | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0 | <1.0<br><1.0        | <1.0<br><1.0 | <1.0<br><1.0 | NA*<br>NA*  |
| tert-Butylbenzene                                     | NL                  | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| Tetrachloroethene                                     | 5                   | 54.2          | 35.4          | 36.1          | 139           | 55.7                 | 203           | 50.1                 | 5.3           | 3.7           | 4.7          | 11.7          | 2.1           | 1.7                  | 3.0                  | <1.0                    | 1.4          | <1.0                 | 1.1          | 2.2          | 2.7          | 2.9          | 4.7                  | 4.8             | 4.8           | 4.2           | 7.2          | 12.9                | 13.6         | 17.4         | 2.4         |
| Tetrahydrofuran                                       | 100                 | <10.0         | <5.0          | <5.0          | <10.0         | <10.0                | <10.0         | <10.0                | <10.0         | <10.0         | <10.0        | <10.0         | <10.0         | <10.0                | <10.0                | <10.0                   | <10.0        | <10.0                | <10.0        | <10.0        | <10.0        | <10.0        | <10.0                | <10.0           | <10.0         | <10.0         | <10.0        | <10.0               | <10.0        | <10.0        | NA*         |
| Toluene                                               | 1000                | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | NA*         |
| trans-1,2-Dichloroethene                              | 100                 | <1.0          | <1.0          | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <1.0          | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0         | <1.0                 | <1.0         | <1.0         | <4.0         | <4.0         | <4.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0                | <1.0         | <1.0         | <1.0<br>NA* |
| trans-1,3-Dichloropropene Trichloroethene             | NL<br>5             | <4.0<br><0.40 | <20.0<br><1.0 | <20.0<br><1.0 | <4.0<br><0.40 | <4.0<br><0.40        | <4.0<br><0.40 | <4.0<br><0.40        | <4.0<br><0.40 | <4.0<br><0.40 | <4.0<br><1.0 | <4.0<br><0.40 | <4.0<br><0.40 | <4.0<br><0.40        | <4.0<br><1.0         | <4.0<br><1.0            | <4.0<br><1.0 | <4.0<br><1.0         | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0 | <4.0<br><1.0         | <4.0<br><1.0    | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0 | <4.0<br><1.0        | <4.0<br><1.0 | <4.0<br><1.0 | NA*<br><1.0 |
| Trichlorofluoromethane                                | 2000                | <1.0          | <1.0<br><1.0  | <1.0          | <1.0          | <1.0                 | <1.0          | <1.0                 | <1.0          | <1.0          | <1.0         | <0.40<br><1.0 | <1.0          | <1.0                 | <1.0                 | <1.0                    | <1.0<br><1.0 | <1.0                 | <1.0<br><1.0 | <1.0         | <1.0         | <1.0         | <1.0                 | <1.0            | <1.0          | <1.0          | <1.0         | <1.0<br><1.0        | <1.0<br><1.0 | <1.0         | <1.0<br>NA* |
| Vinyl chloride                                        | 0.2                 | <0.40         | <1.0          | <1.0          | <0.40         | < 0.40               | <0.40         | <0.40                | <0.40         | < 0.40        | <1.0         | <0.40         | <0.40         | <0.40                | <0.40                | <0.40                   | <0.40        | <0.40                | <0.40        | <0.40        | <0.40        | <0.40        | <0.40                | <0.40           | <0.40         | <0.40         | <0.40        | <0.40               | <0.40        | <0.40        | <0.40       |
| Xylene (Total)                                        | 10000               | <3.0          | <3.0          | <3.0          | <3.0          | <3.0                 | <3.0          | <3.0                 | <3.0          | <3.0          | <3.0         | <3.0          | <3.0          | <3.0                 | <3.0                 | <3.0                    | <3.0         | <3.0                 | <3.0         | <3.0         | <3.0         | <3.0         | <3.0                 | <3.0            | <3.0          | <3.0          | <3.0         | <3.0                | <3.0         | <3.0         | NA*         |

Notes: NL: No Limit

Rochester, Minnesota

| Samula ID                                          | MDH Health   | B414/ 20      | MW 20         | MW 20         | MW 20         | MW 20         | MW 20         | BANA/ 20      | MW 20         | MW 20         | MM 20         | MM 20           | MW 20         | MW 20           | MW 20            | MW 20           | MW 20           | MW 20         | MW 20         | MW 20           | MW 20         | MW 20         | MW 20           | MW 20           | MW 20           | MW 20           | MW 20            | MW 20            | MW 20            | MANA/ 20         | NAVA 20           |
|----------------------------------------------------|--------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-----------------|---------------|-----------------|------------------|-----------------|-----------------|---------------|---------------|-----------------|---------------|---------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|------------------|------------------|-------------------|
| Sample ID                                          | Risk Limits  | MW-20         | IVIVV-20      | IVIVV-20      | MW-20           | IVIVV-20      | MW-20           | MW-20            | WW-20           | MW-20           | MW-20         | MW-20         | MW-20           | MW-20         | IVIVV-2U      | MW-20           | MW-20           | WW-20           | MW-20           | MW-20            | MW-20            | MW-20            | MW-20            | MW-20             |
| Collected Date and Time                            | 5/09         |               |               | 01/11/16      |               |               | 06/15/15      |               |               |               |               |                 |               |                 |                  |                 |                 |               |               |                 |               |               |                 | 03/01/11        |                 | 08/18/10        |                  |                  |                  |                  | 2/10/08           |
| 1,1,1,2-Tetrachloroethane<br>1,1,1-Trichloroethane | 70<br>9000   | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0     | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <2.0<br><2.0     | <2.0<br><2.0     | <2.0<br><2.0     | <1.0<br><1.0     | NA*<br>NA*        |
| 1,1,2,2-Tetrachloroethane                          | 2            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0            | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            | <1.0          | <1.0          | <1.0            | <1.0          | <1.0          | <1.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | NA*               |
| 1,1,2-Trichloroethane                              | 3            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0            | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            | <1.0          | <1.0          | <1.0            | <1.0          | <1.0          | <1.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | NA*               |
| 1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethane  | 200000<br>70 | <1.0          | <5.0          | <5.0          | 17.6          | 14.4          | 12.5          | 5.5           | 2.8           | 2.5           | 6.5           | <b>9.1</b> <1.0 | 6.4           | <b>9.3</b> <1.0 | <b>18.0</b> <1.0 | <b>1.4</b> <1.0 | <b>1.3</b> <1.0 | 1.3           | 1.5           | <b>2.1</b> <1.0 | 2.5           | <1.0          | <b>2.3</b> <1.0 | <b>8.6</b> <1.0 | <b>2.7</b> <1.0 | <b>2.8</b> <1.0 | <b>11.2</b> <2.0 | <b>20.9</b> <2.0 | <b>37.4</b> <2.0 | <b>33.5</b> <1.0 | NA*<br>NA*        |
| 1,1-Dichloroethene                                 | 6            | <1.0<br><1.0  | <1.0            | <1.0<br><1.0  | <1.0            | <1.0             | <1.0            | <1.0            | <1.0<br><1.0  | <1.0<br><1.0  | <1.0            | <1.0<br><1.0  | <1.0<br><1.0  | <1.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | <5.0              |
| 1,1-Dichloropropene                                | NL           | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0            | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            | <1.0          | <1.0          | <1.0            | <1.0          | <1.0          | <1.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | NA*               |
| 1,2,3-Trichlorobenzene                             | NL           | <1.0          | <5.0          | <5.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0            | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            | <1.0          | <1.0          | <1.0            | <1.0          | <1.0          | <1.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | NA*               |
| 1,2,3-Trichloropropane 1,2,4-Trichlorobenzene      | 40<br>NL     | <4.0<br><1.0  | <1.0<br><5.0  | <1.0<br><5.0  | <4.0<br><1.0    | <4.0<br><1.0  | <4.0<br><1.0    | <4.0<br><1.0     | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0    | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0    | <4.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <2.0<br><2.0     | <2.0<br><2.0     | <2.0<br><2.0     | <1.0<br><1.0     | NA*<br>NA*        |
| 1,2,4-Trimethylbenzene                             | NL           | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0            | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            | <1.0          | <1.0          | <1.0            | <1.0          | <1.0          | <1.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | NA*               |
| 1,2-Dibromo-3-chloropropane                        | NL           | <4.0          | <5.0          | <5.0          | <4.0          | <4.0          | <10.0         | <4.0          | <4.0          | <4.0          | <4.0          | <4.0            | <4.0          | <4.0            | <4.0             | <4.0            | <4.0            | <4.0          | <4.0          | <4.0            | <4.0          | <4.0          | <4.0            | <4.0            | <4.0            | <4.0            | <8.0             | <8.0             | <8.0             | <4.0             | NA*               |
| 1,2-Dibromoethane (EDB)                            | .004         | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0            | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            | <1.0          | <1.0          | <1.0            | <1.0          | <1.0          | <1.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | NA*               |
| 1,2-Dichlorobenzene 1,2-Dichloroethane             | 600<br>4     | <1.0<br><1.0  | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0<br><1.0  | <1.0          | <1.0<br><1.0  | <1.0<br><1.0  | <1.0            | <1.0          | <1.0            | <1.0<br><1.0     | <1.0<br><1.0    | <1.0<br><1.0    | <1.0          | <1.0<br><1.0  | <1.0            | <1.0          | <1.0          | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <2.0<br><2.0     | <2.0<br><2.0     | <2.0<br><2.0     | <1.0             | NA*<br>NA*        |
| 1,2-Dichloropropane                                | 5            | <1.0<br><4.0  | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><4.0    | <1.0<br><4.0  | <1.0<br><4.0    | <1.0<br><4.0     | <4.0            | <4.0            | <1.0<br><4.0  | <4.0          | <1.0<br><4.0    | <1.0<br><4.0  | <1.0<br><4.0  | <4.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0<br><2.0     | <2.0<br><2.0     | <1.0<br><1.0     | NA*               |
| 1,3,5-Trimethylbenzene                             | 100          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0            | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            | <1.0          | <1.0          | <1.0            | <1.0          | <1.0          | <1.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | NA*               |
| 1,3-Dichlorobenzene                                | NL<br>NI     | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0            | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            | <1.0          | <1.0          | <1.0            | <1.0          | <1.0          | <1.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | NA*               |
| 1,3-Dichloropropane<br>1,4-Dichlorobenzene         | NL<br>10     | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0     | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0  | <1.0            | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <2.0<br><2.0     | <2.0<br><2.0     | <2.0<br><2.0     | <1.0<br><1.0     | NA*<br>NA*        |
| 2,2-Dichloropropane                                | NL           | <1.0<br><4.0  | <1.0<br><1.0  | <1.0          | <1.0<br><4.0    | <1.0<br><4.0  | <1.0<br><4.0    | <1.0<br><4.0     | <4.0            | <4.0            | <1.0<br><4.0  | <4.0          | <1.0<br><4.0    | <1.0<br><4.0  | <4.0          | <1.0<br><4.0    | <1.0<br><4.0    | <4.0            | <4.0            | <2.0<br><8.0     | <2.0<br><2.0     | <2.0<br><8.0     | <1.0             | NA*               |
| 2-Butanone (MEK)                                   | 4000         | <5.0          | <20.0         | <20.0         | <5.0          | <5.0          | <5.0          | <5.0          | <5.0          | <5.0          | <5.0          | <5.0            | <5.0          | <5.0            | <5.0             | <5.0            | <4.0            | <4.0          | <4.0          | <4.0            | <4.0          | <4.0          | <4.0            | <4.0            | <4.0            | <4.0            | <8.0             | <8.0             | <8.0             | <4.0             | NA*               |
| 2-Chlorotoluene                                    | NL           | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0            | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            |               | <1.0          | <1.0            | <1.0          | <1.0          | <1.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | NA*               |
| 4-Chlorotoluene<br>4-Methyl-2-pentanone (MIBK)     | NL<br>300    | <1.0<br><5.0  | <1.0<br><20.0 | <1.0<br><20.0 | <1.0<br><5.0    | <1.0<br><5.0  | <1.0<br><5.0    | <1.0<br><5.0     | <1.0<br><5.0    | <1.0<br><4.0    | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0    | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0    | <2.0<br><8.0     | <2.0<br><8.0     | <2.0<br><8.0     | <1.0<br><4.0     | NA*<br>NA*        |
| Acetone                                            | 700          | <20.0         | <20.0         | <20.0         | <20.0         | <20.0         | <50.0         | <20.0         | <20.0         | <20.0         | <20.0         | <20.0           | <20.0         | <20.0           | <20.0            | <20.0           | <25.0           | <25.0         | <25.0         | <25.0           | <25.0         | <25.0         | <25.0           | <25.0           | <10.0           | <10.0           | <20.0            | <20.0            | <20.0            | <10.0            | NA*               |
| Allyl chloride                                     | 30           | <4.0          | <5.0          | <5.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0            | <4.0          | <4.0            | <4.0             | <4.0            | <4.0            | <4.0          | <4.0          | <4.0            | <4.0          | <4.0          | <4.0            | <4.0            | <4.0            | <4.0            | <8.0             | <8.0             | <8.0             | <4.0             | NA*               |
| Benzene                                            | 2            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0            | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            | <1.0          | <1.0          | <1.0            | <1.0          | <1.0          | <1.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | NA*               |
| Bromobenzene<br>Bromochloromethane                 | NL<br>NL     | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0     | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <2.0<br><2.0     | <2.0<br><2.0     | <2.0<br><2.0     | <1.0<br><1.0     | NA*<br>NA*        |
| Bromodichloromethane                               | 6            | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0            | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            | <1.0          | <1.0          | <1.0            | <1.0          | <1.0          | <1.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | NA*               |
| Bromoform                                          | 40           | <4.0          | <5.0          | <5.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0            | <4.0          | <4.0            | <4.0             | <4.0            | <4.0            | <4.0          | <4.0          | <4.0            | <4.0          | <4.0          | <4.0            | <8.0            | <8.0            | <8.0            | <16.0            | <16.0            | <16.0            | <8.0             | NA*               |
| Bromomethane                                       | 10           | <4.0          | <5.0          | <5.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0            | <4.0          | <4.0            | <4.0             | <4.0            | <4.0            | <4.0          | <4.0          | <4.0            | <4.0          | <4.0          | <4.0            | <4.0            | <4.0            | <4.0            | <8.0             | <8.0             | <8.0             | <4.0             | NA*               |
| Carbon tetrachloride Chlorobenzene                 | 3<br>100     | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0     | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0    | <8.0<br><2.0     | <2.0<br><2.0     | <8.0<br><2.0     | <1.0<br><1.0     | NA*<br>NA*        |
| Chloroethane                                       | 300          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <4.0          | <1.0          | <1.0            | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            | <1.0          | <1.0          | <1.0            | <1.0          | <1.0          | <1.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | NA*               |
| Chloroform                                         | 30           | <4.0          | <5.0          | <5.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0            | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            | <1.0          | <1.0          | <1.0            | <1.0          | <1.0          | <1.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | NA*               |
| Chloromethane                                      | NL           | <4.0          | <1.0          | <1.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0            | <4.0          | 21.9            | <4.0             | <4.0            | <4.0            | <4.0          | <4.0          | <4.0            | <4.0          | <4.0          | <4.0            | <4.0            | <4.0            | <4.0            | <8.0             | 8.6              | <8.0             | <4.0             | NA*               |
| cis-1,2-Dichloroethene<br>cis-1,3-Dichloropropene  | 50<br>NL     | <1.0          | <1.0          | <1.0<br><5.0  | <1.0<br><4.0  | <1.0          | <1.0          | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0<br><4.0  | <1.0            | <1.0<br><4.0  | <1.0<br><4.0    | <1.0<br><4.0     | <1.0<br><4.0    | <1.0<br><4.0    | <1.0          | <1.0<br><4.0  | <1.0            | <1.0<br><4.0  | <1.0          | <1.0<br><4.0    | <1.0            | <1.0<br><4.0    | <1.0<br><4.0    | <2.0<br><8.0     | <2.0<br><8.0     | <2.0<br><8.0     | <1.0<br><4.0     | <5.0<br>NA*       |
| Dibromochloromethane                               | 10           | <4.0<br><1.0  | <5.0<br><5.0  | <5.0          | <1.0          | <4.0<br><1.0  | <4.0<br><1.0  | <1.0          | <1.0          | <1.0          | <1.0          | <4.0<br><1.0    | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            | <4.0<br><1.0  | <1.0          | <4.0<br><1.0    | <1.0          | <4.0<br><1.0  | <1.0            | <4.0<br><1.0    | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | NA*               |
| Dibromomethane                                     | NL           | <4.0          | <1.0          | <1.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0            | <4.0          | <4.0            | <4.0             | <4.0            | <4.0            | <4.0          | <4.0          | <4.0            | <4.0          | <4.0          | <4.0            | <4.0            | <4.0            | <4.0            | <8.0             | <2.0             | <2.0             | <1.0             | NA*               |
| Dichlorodifluoromethane                            | 1000         | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0            | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            | <1.0          | <1.0          | <1.0            | <1.0          | <1.0          | <1.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | NA*               |
| Dichlorofluoromethane Diethyl ether (Ethyl ether)  | NL<br>1000   | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0            | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            | <1.0          | <1.0          | <1.0            | <1.0          | <1.0          | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0    | <1.0<br><4.0    | <2.0<br><8.0     | <2.0<br><8.0     | <2.0             | <1.0             | NA*<br>NA*        |
| Ethylbenzene                                       | 700          | <4.0<br><1.0  | <5.0<br><1.0  | <5.0<br><1.0  | <4.0<br><1.0    | <4.0<br><1.0  | <4.0<br><1.0    | <4.0<br><1.0     | <4.0<br><1.0    | <4.0<br><1.0    | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0    | <4.0<br><1.0  | <4.0<br><1.0  | <1.0            | <1.0            | <1.0            | <1.0            | <2.0             | <0.0<br><2.0     | <8.0<br><2.0     | <4.0<br><1.0     | NA*               |
| Hexachloro-1,3-butadiene                           | 1            | <1.0          | < 5.0         | <5.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0            | <1.0          | <1.0            | <5.0             | <5.0            | <5.0            | <5.0          | <5.0          | <5.0            | <5.0          | <5.0          | < 5.0           | <4.0            | <4.0            | <4.0            | <8.0             | <8.0             | <8.0             | <4.0             | NA*               |
| Isopropylbenzene (Cumene)                          | 300          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0            | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            | <1.0          | <1.0          | <1.0            | <1.0          | <1.0          | <1.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | NA*               |
| m&p-Xylene                                         | NL           | NA<br>.1.0    | NA<br>.1.0    | NA<br>·1.0    | NA<br>.4.0    | NA<br>·1.0    | NA<br>.1.0    | NA<br>.1.0    | NA<br>.1.0    | NA<br>.1.0    | NA<br>.1.0    | NA<br>.1.0      | NA<br>.1.0    | NA<br>.4.0      | NA<br>.4.0       | <4.0            | <2.0            | <2.0          | <2.0          | <2.0            | <2.0          | <2.0          | <2.0            | <2.0            | <2.0            | <2.0            | <4.0             | <4.0             | <4.0             | <2.0             | NA*               |
| Methylene Chloride<br>Methyl-tert-butyl ether      | 5<br>70      | <4.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0  | <4.0<br><1.0    | <4.0<br><1.0  | <4.0<br><1.0    | <4.0<br><1.0     | <1.0<br>NA      | <4.0<br><1.0    | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0    | <4.0<br><1.0  | <4.0<br><1.0  | <4.0<br><1.0    | <b>5.2</b> <1.0 | <4.0<br><1.0    | <4.0<br><1.0    | <8.0<br><2.0     | <8.0<br><2.0     | <8.0<br><2.0     | <4.0<br><1.0     | NA*<br>NA*        |
| Naphthalene                                        | 300          | <4.0          | <5.0          | <5.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0            | <4.0          | <4.0            | <4.0             | <4.0            | <4.0            | <4.0          | <4.0          | <4.0            | <4.0          | <4.0          | <4.0            | <4.0            | <4.0            | <4.0            | <8.0             | <8.0             | <8.0             | <4.0             | NA*               |
| n-Butylbenzene                                     | NL           | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0            | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            | <1.0          | <1.0          | <1.0            | <1.0          | <1.0          | <1.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | NA*               |
| n-Propylbenzene                                    | NL           | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0            | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            | <1.0          | <1.0          | <1.0            | <1.0          | <1.0          | <1.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | NA*               |
| o-Xylene<br>p-Isopropyltoluene                     | NL<br>NL     | NA<br><1.0      | NA<br><1.0    | NA<br><1.0      | NA<br><1.0       | NA<br><1.0      | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0  | <1.0<br><1.0  | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <1.0<br><1.0    | <2.0<br><2.0     | <2.0<br><2.0     | <2.0<br><2.0     | <1.0<br><1.0     | NA*<br>NA*        |
| sec-Butylbenzene                                   | NL           | <1.0          | <5.0          | <5.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0            | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            | <1.0          | <1.0          | <1.0            | <1.0          | <1.0          | <1.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | NA*               |
| Styrene                                            | NL           | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0            | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            | <1.0          | <1.0          | <1.0            | <1.0          | <1.0          | <1.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | NA*               |
| tert-Butylbenzene                                  | NL           | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0            | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            | <1.0          | <1.0          | <1.0            | <1.0          | <1.0          | <1.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | NA*               |
| Tetrachloroethene<br>Tetrabydrofuran               | 5<br>100     | <b>23.2</b>   | <b>62.0</b>   | <b>27.5</b>   | <b>177</b>    | <b>762</b>    | 172<br><10.0  | <b>47.1</b>   | <b>20.4</b>   | <b>12.7</b>   | <b>46.9</b>   | <b>106</b>      | <b>81.4</b>   | <b>45.5</b>     | 198              | <b>50.2</b>     | <b>40.8</b>     | <b>17.4</b>   | <b>28.7</b>   | <b>41.8</b>     | <b>32.5</b>   | 12.2<br><10.0 | <b>16.8</b>     | <b>211</b>      | <b>50.9</b>     | <b>74.7</b>     | 194<br><20.0     | 402<br>36.1      | <b>307</b>       | <b>713</b>       | <b>599</b><br>NA* |
| Tetrahydrofuran<br>Toluene                         | 1000         | <10.0<br><1.0 | <5.0<br><1.0  | <5.0<br><1.0  | <10.0<br><1.0   | <10.0<br><1.0 | <10.0<br><1.0   | <10.0<br><1.0    | <10.0<br><1.0   | <10.0<br><1.0   | <10.0<br><1.0 | <10.0<br><1.0 | <10.0<br><1.0   | <10.0<br><1.0 | <10.0<br><1.0 | <10.0<br><1.0   | <10.0<br><1.0   | <10.0<br><1.0   | <10.0<br><1.0   | <20.0<br><2.0    | <b>36.1</b> <2.0 | <20.0<br><2.0    | <10.0<br><1.0    | NA*               |
| trans-1,2-Dichloroethene                           | 100          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0          | <1.0            | <1.0          | <1.0            | <1.0             | <1.0            | <1.0            | <1.0          | <1.0          | <1.0            | <4.0          | <4.0          | <4.0            | <1.0            | <1.0            | <1.0            | <2.0             | <2.0             | <2.0             | <1.0             | <5.0              |
| trans-1,3-Dichloropropene                          | NL           | <4.0          | <20.0         | <20.0         | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0          | <4.0            | <4.0          | <4.0            | <4.0             | <4.0            | <4.0            | <4.0          | <4.0          | <4.0            | <4.0          | <4.0          | <4.0            | <4.0            | <4.0            | <4.0            | <8.0             | <8.0             | <8.0             | <4.0             | NA*               |
| Trichloroethene                                    | 5            | <0.40         | <1.0          | <1.0          | <0.40         | 1.0           | <0.40         | <0.40         | <0.40         | <0.40         | <1.0          | <0.40           | <0.40         | <0.40           | <1.0             | <1.0            | <1.0            | <1.0          | <1.0          | <1.0            | <1.0          | <1.0          | <1.0            | <1.0            | <1.0            | <1.0            | 2.9              | <2.0             | <2.0             | <1.0             | <5.0              |
| Trichlorofluoromethane                             | 2000         | <1.0<br><0.40 | <1.0          | <1.0          | <1.0<br><0.40 | <1.0<br><0.40 | <1.0<br><0.40 | <1.0<br><0.40 | <1.0<br><0.40 | <1.0<br><0.40 | <1.0          | <1.0<br><0.40   | <1.0<br><0.40 | <1.0<br><0.40   | <1.0<br><0.40    | <1.0<br><0.40   | <1.0<br><0.40   | <1.0<br><0.40 | <1.0<br><0.40 | <1.0<br><0.40   | <1.0<br><0.40 | <1.0<br><0.40 | <1.0<br><0.40   | <1.0<br><0.40   | <1.0<br><0.40   | <1.0<br><0.40   | <2.0<br><0.80    | <2.0<br><0.80    | <2.0<br><0.80    | <1.0<br><0.40    | NA*               |
| Vinyl chloride<br>Xylene (Total)                   | 0.2<br>10000 | <0.40<br><3.0 | <1.0<br><3.0  | <1.0<br><3.0  | <0.40<br><3.0 | <0.40<br><3.0 | <0.40<br><3.0 | <0.40<br><3.0 | <0.40<br><3.0 | <0.40<br><3.0 | <1.0<br><3.0  | <0.40<br><3.0   | <0.40<br><3.0 | <0.40<br><3.0   | <0.40<br><3.0    | <0.40<br><3.0   | <0.40<br><3.0   | <0.40<br><3.0 | <0.40<br><3.0 | <0.40<br><3.0   | <0.40<br><3.0 | <0.40<br><3.0 | <0.40<br><3.0   | <0.40<br><3.0   | <0.40<br><3.0   | <0.40<br><3.0   | <0.80<br><6.0    | <0.80<br><6.0    | <0.80<br><6.0    | <0.40<br><3.0    | <2.0<br>NA*       |
| Aylono (Total)                                     | 10000        | <b>~∪.</b> ∪  | <b>~</b> ∪.∪  | <b>~∪.</b> ∪  | <b>~∪.</b> ∪  | <b>~∪.</b> ∪  | <b>~∪.</b> ∪  | <b>~</b> ∪.∪    | <b>~</b> ∪.∪  | <b>~∪.</b> ∪    | <b>~∪.</b> ∪     | <b>~∪.</b> ∪    | <b>~∪.</b> ∪    | <b>~</b> ∪.∪  | <b>~∪.</b> ∪  | <b>~∪.</b> ∪    | <b>~∪.</b> ∪  | ~∪.∪          | ٦٥.0            | ٦٥.0            | ٦٥.0            | ٦٥.0            | ٦٥.0             | <b>~∪.∪</b>      | <b>~∪.</b> ∪     | <b>~∪.∪</b>      | 1 1/1             |

Notes: NL: No Limit NA\*: Not Analyzed NS: Not Sampled

## TABLE 7 Vapor Mitigation Systems Monitoring Results MN Bio Business Center 221 1st Avenue SW Rochester, MN

| Date               | Passive Venting<br>On/Off | VMS-1 (north)     | VMS-2 (middle)    | VMS-3 (south) | V-1    | V-2    | V-3    | V-4    | LSG-7  | LSG-8  | LSG-9  | LSG-10 | SP-1  | SP-2 |
|--------------------|---------------------------|-------------------|-------------------|---------------|--------|--------|--------|--------|--------|--------|--------|--------|-------|------|
| Venting System N   | Nonitoring during So      | il Vapor Sampling |                   |               |        |        |        |        |        |        |        |        |       |      |
| 8/22/2014          | ON                        | NA                | NA                | NA            | 0.059  | 0.063  | 0.067  | NR     | 0.066  | 0.051  | 0.045  | 0.048  | 0.024 | 0.00 |
| 2/26/2015          | ON                        | NA                | NA                | NA            | NR      NR   |
| 9/8/2015           | OFF                       | NA                | NA                | NA            | NR      NR   |
| 1/12/2016          | OFF                       | NA                | NA                | NA            | NR     | NR     | NR     | NR     | 0.068  | 0.092  | 0.068  | 0.089  | NR    | NR   |
| 2/23/2016          | OFF                       | NA                | NA                | NA            | NR      NR   |
| Pre-Mitigation Dia | agnostic Testing (AC      | TIVE VENTING SYS  | TEM)              |               |        |        |        |        |        |        |        |        |       |      |
| 3/23/2015          | ACTIVE ON                 | -1.5              | NA                | NA            | -0.17  | 0      | -0.015 | NR     | 0.027  | 0.002  | -0.116 | -0.01  | NR    | NR   |
| 3/23/2015          | ACTIVE ON                 | NA                | -1.5              | NA            | -0.907 | -0.025 | -1.023 | NR     | 0.007  | -0.018 | -0.110 | -0.199 | NR    | NR   |
| 3/23/2015          | ACTIVE ON                 | NA                | NA                | -1.5          | -0.07  | -1.194 | -0.046 | NR     | 0.001  | -0.095 | -0.158 | -0.183 | NR    | NR   |
| Post-Mitigation D  | iagnostic Testing an      | d Monitoring (ACT | IVE VENTING SYSTE | M)            |        |        |        |        |        |        |        |        |       |      |
| 9/14/2015          | ACTIVE ON                 | -2.06             | NR                | -1.68         | NR      NR   |
| 9/21/2015          | ACTIVE ON                 | -2.05             | NR                | -1.66         | NR      NR   |
| 9/30/2015          | ACTIVE ON                 | -2.09             | NR                | -1.69         | NR      NR   |
| 10/13/2015         | ACTIVE ON                 | -2.06             | -2.02             | -1.68         | NR      NR   |
| 12/15/2015         | ACTIVE ON/OFF             | -2.05             | -1.97             | -2.28         | -1.532 | -1.474 | -1.324 | NR     | -0.098 | -0.378 | -0.732 | -0.683 | NR    | NR   |
| 5/17/2016          | ACTIVE OFF/ON             | -2.02             | -1.67             | -0.51         | -1.277 | -0.167 | -1.379 | -1.941 | -0.032 | -0.120 | -0.382 | -0.291 | NR    | NR   |
| 6/23/2016          | ACTIVE ON                 | -2.03             | -1.76             | -1.75         | -1.542 | -1.485 | -1.625 | -1.826 | -0.103 | -0.425 | -0.831 | -0.823 | NR    | NR   |
|                    |                           |                   |                   |               |        |        |        |        |        |        |        |        |       | ĺ    |

Notes:

VMS-1 is the north system connected to V-4.

VMS-2 is the middle system connected to V-1 & V-3.

VMS-3 is the south system connected to V-2.

NA: Not applicable.

NR: Not recorded.

<sup>\*</sup>VMS-3 (south) digital meter appears to not be working on 5/17/2016 because the readings were very low and fluctuating a lot

<sup>\*</sup>It was determined that the fan at VMS-3 (south) was powered off. It was powered back on on 6/23/16. Moisture was also in the tubing that lead to the digital manometer so that was fixed as well.

# Table 8 Soil Vapor Sampling Results MN Bio Business Center Rochester, MN (ug/m³)

|                                      | MPCA         | MPCA         | LSG-7             | LSG-7             | LSG-7             | LSG-7          | LSG-7           | LSG-7           | LSG-7             | LSG-7              | LSG-7           | LSG-8             | LSG-8             | LSG-8             | LSG-8             | LSG -8          | LSG-8            | LSG-8              | LSG-8         | LSG-8         |
|--------------------------------------|--------------|--------------|-------------------|-------------------|-------------------|----------------|-----------------|-----------------|-------------------|--------------------|-----------------|-------------------|-------------------|-------------------|-------------------|-----------------|------------------|--------------------|---------------|---------------|
|                                      | Commercial   | Residential  | 6/23/2016         | 2/24/2016         | 1/12/2016         | 9/8/2015       | 2/26/2015       | 8/22/2014       | 2/18/2014         | 10/18/2013         | 12/21/2012      | 6/23/2016         | 2/24/2016         | 1/12/2016         | 9/8/2015          | 2/26/2015       | 8/22/2014        | 2/18/2014          | 10/18/2013    | 12/21/2012    |
| Parameter                            | 10X ISV      | 10X ISV      | Legend            | Legend            | Legend            | Legend         | Legend          | Pace            | Legend            | Legend             | Legend          | Legend            | Legend            | Legend            | Legend            | Legend          | Pace             | Legend             | Legend        | Legend        |
| 1,1,1-Trichloroethane                | 100000       | 50000        | <2.7              | <2.7              | <2.7              | <8.1           | <2.7            | <2.3            | <2.7              | <2.7               | <2.7            | <2.7              | <2.7              | <2.7              | <2.7              | <2.7            | <2.8             | <2.7               | <2.7          | <2.7          |
| 1,1,2,2-Tetrachloroethane            | 10           | 2            | <3.4              | <3.4              | <3.4              | <10            | <3.4            | <1.5            | <3.4              | <3.4               | <3.4            | <3.4              | <3.4              | <3.4              | <3.4              | <3.4            | <1.8             | <3.4               | <3.4          | <3.4          |
| 1,1,2-Trichloroethane                | 20           | 6            | <2.7              | <2.7              | <2.7              | <8.1           | <2.7            | <1.2            | <2.7              | <2.7               | <2.7            | <2.7              | <2.7              | <2.7              | <2.7              | <2.7            | <1.4             | <2.7               | <2.7          | <2.7          |
| 1,1-Dichloroethane                   | 10000        | 5000         | <2.0              | <2.0              | <2.0              | <6.0           | <2.0            | <1.7            | <2.0              | <2.0               | <2.0            | <2.0              | <2.0              | <2.0              | <2.0              | <2.0            | <2.1             | <2.0               | <2.0          | <2.0          |
| 1,1-Dichloroethene                   | 6000         | 2000         | <2.0              | <2.0              | <2.0              | <6.0           | <2.0            | <1.7            | <2.0              | <2.0               | <2.0            | <2.0              | <2.0              | <2.0              | <2.0              | <2.0            | <2.0             | <2.0               | <2.0          | <2.0          |
| 1,2,4-Trichlorobenzene               | 100          | 40           | <3.7              | <3.7              | <3.7              | <11            | <3.7            | <3.2            | <3.7              | <3.7               | <3.7            | <3.7              | <3.7              | <3.7              | 5.0               | <3.7            | <3.8             | <3.7               | <3.7          | <3.7          |
| 1,2,4-Trimethylbenzene               | 200          | 70           | 1.6               | <1.0              | 2.2               | 15             | 26              | 3.6             | 1.1               | 1.1                | 6.1             | 1.7               | 1.1               | 1.6               | 6.5               | 25              | 288              | <1.0               | 1.2           | 5.5           |
| 1,2-Dibromoethane                    | 1            | 0.2          | <3.8              | <3.8              | <3.8              | <11            | <3.8            | <3.3            | <3.8              | <3.8               | <3.8            | <3.8              | <3.8              | <3.8              | <3.8              | <3.8            | <3.9             | <3.8               | <3.8          | <3.8          |
| 1,2-Dichlorobenzene                  | 6000         | 2000         | <3.0              | <3.0              | <3.0              | <9.0           | <3.0            | <2.6            | <3.0              | <3.0               | <3.0            | <3.0              | <3.0              | <3.0              | <3.0              | <3.0            | <3.1             | <3.0               | <3.0          | <3.0          |
| 1,2-Dichloroethane                   | 10           | 4            | <2.0              | <2.0              | <2.0              | <6.0           | <2.0            | <0.86           | <2.0              | <2.0               | <2.0            | <2.0              | <2.0              | <2.0              | <2.0              | <2.0            | <1.0             | <2.0               | <2.0          | <2.0          |
| 1,2-Dichloropropane                  | 100          | 40           | <2.3              | <2.3              | <2.3              | <6.9           | <2.3            | <2.0            | <2.3              | <2.3               | <2.3            | <2.3              | <2.3              | <2.3              | <2.3              | <2.3            | <2.4             | <2.3               | <2.3          | <2.3          |
| 1,3,5-Trimethylbenzene               | 200          | 60           | <1.0              | <1.0              | <1.0              | 3.7            | 4.9             | 2.9             | <1.0              | <1.0               | 2.1             | <1.0              | <1.0              | <1.0              | 1.9               | 4.6             | 98.5             | <1.0               | <1.0          | 2.1           |
| 1,3-Butadiene                        | 27           | 3            | 1.2               | <1.1              | <1.1              | <3.3           | <1.1            | <0.94           | <1.1              | <1.1               | <1.1            | <1.1              | <1.1              | <1.1              | <1.1              | <1.1            | <1.1             | <1.1               | <1.1          | <1.1          |
| 1,3-Dichlorobenzene                  | NA           | NA           | <3.0              | <3.0              | <3.0              | <9.0           | <3.0            | <2.6            | <3.0              | <3.0               | <3.0            | <3.0              | <3.0              | <3.0              | <3.0              | <3.0            | <3.1             | <3.0               | <3.0          | <3.0          |
| 1,4-Dichlorobenzene                  | 2000         | 600          | <3.0              | <3.0              | <3.0              | <9.0           | <3.0            | <2.6            | 8.3               | <3.0               | <3.0            | <3.0              | <3.0              | <3.0              | <3.0              | <3.0            | <3.1             | 7                  | <3.0          | <3.0          |
| 2-Butanone                           | 100000       | 50000        | 3.1               | 5.9               | 6.9               | 34             | <1.5            | 2.3             | 1.6               | <1.5               | 5.4             | 2.1               | 4.0               | 8.4               | 29                | <1.5            | 42.7             | <1.5               | <1.5          | 5.4           |
| 4-Ethyltoluene                       | NA<br>870000 | NA<br>310000 | <2.5<br><b>51</b> | <2.5<br><b>64</b> | <2.5<br><b>31</b> | <7.5           | 4.5<br>11       | <b>3.8</b> <5.1 | <2.5<br><b>15</b> | <2.5<br><b>7.8</b> | 3.1<br>55       | <2.5<br><b>21</b> | <2.5<br><b>33</b> | <2.5<br><b>45</b> | <2.5<br><b>16</b> | 4.1             | 97.7<br>176      | <2.5<br><b>8.4</b> | <2.5<br>13    | 2.8<br>49     |
| Acetone<br>Benzene                   | 450          | 46           | 5.4               | 0.78              | 0.85              | 2.4            | 1.1             | 1.2             | 0.85              | 7.8                | <0.64           | <0.64             | <0.64             | 1.1               | <0.64             | 0.7             | 176              | <0.64              | <0.64         | <0.64         |
| Benzyl chloride                      | 30           | 10           | <2.6              | <2.6              | <2.6              | <7.8           | <2.6            | <2.2            | <2.6              | <2.6               | <2.6            | <2.6              | <2.6              | <2.6              | <2.6              | <2.6            | <2.6             | <2.6               | <2.6          | <2.6          |
| Bromodichloromethane                 | NA           | NA           | <3.4              | <3.4              | <3.4              | <10            | <3.4            | <2.9            | <3.4              | <3.4               | <3.4            | <3.4              | <3.4              | <3.4              | <3.4              | <3.4            | <3.4             | <3.4               | <3.4          | <3.4          |
| Bromoform                            | 300          | 90           | <5.2              | <5.2              | <5.2              | <16            | <5.2            | <11.0           | <5.2              | <5.2               | <5.2            | <5.2              | <5.2              | <5.2              | <5.2              | <5.2            | <13.2            | <5.2               | <5.2          | <5.2          |
| Bromomethane                         | 100          | 50           | <1.9              | <1.9              | <1.9              | <5.7           | <1.9            | <1.7            | <1.9              | <1.9               | <1.9            | <1.9              | <1.9              | <1.9              | <1.9              | <1.9            | <2.0             | <1.9               | <1.9          | <1.9          |
| Carbon disulfide                     | 20000        | 7000         | <1.6              | <1.6              | <1.6              | <4.8           | <1.6            | <1.3            | <1.6              | <1.6               | <1.6            | <1.6              | <1.6              | <1.6              | <1.6              | <1.6            | 2.2              | <1.6               | <1.6          | <1.6          |
| Carbon tetrachloride                 | 160          | 17           | <3.1              | <3.1              | <3.1              | <9.3           | <3.1            | <1.3            | <3.1              | <3.1               | <3.1            | <3.1              | <3.1              | <3.1              | <3.1              | <3.1            | <1.6             | <3.1               | <3.1          | <3.1          |
| Chlorobenzene                        | 1000         | 500          | <2.3              | <2.3              | <2.3              | <6.9           | <2.3            | <2.0            | <2.3              | <2.3               | <2.3            | <2.3              | <2.3              | <2.3              | <2.3              | <2.3            | <2.4             | <2.3               | <2.3          | <2.3          |
| Chloroethane                         | 300000       | 100000       | <1.3              | <1.3              | <1.3              | <3.9           | <1.3            | <1.1            | <1.3              | <1.3               | <1.3            | <1.3              | <1.3              | <1.3              | <1.3              | <1.3            | <1.4             | <1.3               | <1.3          | <1.3          |
| Chloroform                           | 3000         | 1000         | <2.4              | <2.4              | <2.4              | <7.2           | <2.4            | 1.3             | <2.4              | <2.4               | <2.4            | <2.4              | <2.4              | <2.4              | <2.4              | <2.4            | <1.2             | <2.4               | <2.4          | <2.4          |
| Chloromethane                        | 3000         | 900          | 1.2               | <1.0              | <1.0              | <3.0           | <1.0            | <0.88           | <1.0              | <1.0               | <1.0            | <1.0              | <1.0              | <1.0              | <1.0              | <1.0            | <1.1             | <1.0               | <1.0          | <1.0          |
| cis-1,2-Dichloroethene               | NA           | NA           | <2.0              | <2.0              | <2.0              | <6.0           | <2.0            | <1.7            | <2.0              | <2.0               | <2.0            | <2.0              | <2.0              | <2.0              | <2.0              | <2.0            | <2.0             | <2.0               | <2.0          | <2.0          |
| cis-1,3-Dichloropropene              | 600          | 200          | <2.3              | <2.3              | <2.3              | <6.9           | <2.3            | <4.8            | <2.3              | <2.3               | <2.3            | <2.3              | <2.3              | <2.3              | <2.3              | <2.3            | <5.8             | <2.3               | <2.3          | <2.3          |
| Cyclohexane                          | 200000       | 60000        | <1.7              | <1.7              | <1.7              | <5.1           | <1.7            | <3.7            | <1.7              | 1.8                | 14              | <1.7              | <1.7              | <1.7              | <1.7              | <1.7            | 231              | <1.7               | <1.7          | 7.9           |
| Dibromochloromethane                 | NA           | NA           | <4.3              | <4.3              | <4.3              | <13            | <4.3            | <3.6            | <4.3              | <4.3               | <4.3            | <4.3              | <4.3              | <4.3              | <4.3              | <4.3            | <4.4             | <4.3               | <4.3          | <4.3          |
| Dichlorodifluoromethane              | NA           | NA           | 2.7               | 3.1               | <2.5              | <7.5           | <2.5            | <5.3            | <2.5              | <2.5               | <2.5            | 3.3               | 3.1               | 2.7               | <2.5              | <2.5            | <6.3             | <2.5               | <2.5          | <2.5          |
| Dichlorotetrafluoroethane            | NA           | NA<br>150000 | <3.5              | <3.5              | <3.5              | <10            | <3.5            | <3.0            | <3.5              | <3.5               | <3.5            | <3.5              | <3.5              | <3.5              | <3.5              | <3.5            | <3.6             | <3.5               | <3.5          | <3.5          |
| Ethanol                              | 420000       | 150000       | 1200              | 340               | 650               | 320            | 170             | 24.9            | 97                | 24                 | 490             | 210               | 280               | 1200              | 9.9               | 130             | 23.7             | 180                | 36            | 470           |
| Ethyl acetate                        | 80000        | 30000        | 2.0               | 3.7               | 3.8               | <5.4           | <1.8            | <1.5            | <1.8              | <1.8               | <1.8            | 4.7               | 2.3               | 4.3               | <1.8              | <1.8            | <1.8             | <1.8               | <1.8          | <1.8          |
| Ethylbenzene<br>Hexachlorobutadiene  | 390<br>10    | 41<br>5      | <b>0.99</b> <5.3  | <b>1.8</b> <5.3   | <b>2.0</b> <5.3   | <b>8.0</b> <16 | <b>3.2</b> <5.3 | <b>2.5</b> <4.6 | <b>2.2</b> <5.3   | <0.87<br><5.3      | <b>4.5</b> <5.3 | <b>0.92</b> <5.3  | <b>1.4</b> <5.3   | <b>1.7</b> <5.3   | <b>2.4</b> <5.3   | <b>2.7</b> <5.3 | <b>91.3</b> <5.5 | <b>1.2</b> <5.3    | <0.87<br><5.3 | <b>4</b> <5.3 |
| Isopropyl alcohol                    | 200000       | 70000        | 540               | 300               | 190               | 64             | 35              | 66.6            | 14                | 21                 | 13              | 110               | 210               | 300               | 39                | 38              | 33.9             | 14                 | 29            | 18            |
| m,p-Xylene                           | 3000         | 1000         | 3.3               | 6.9               | 7.0               | 23             | 13              | 4.5             | 11                | 2                  | 3.6             | 3.6               | 5.2               | 6.0               | 9.8               | 11              | 304              | 4.3                | <1.7          | 2             |
| Methyl butyl ketone (2-Hexanone)     | 1110         | 310          | <2.0              | <2.0              | <2.0              | <6.0           | <2.0            | <1.7            | <2.0              | <2.0               | 2.1             | <2.0              | <2.0              | <2.0              | <2.0              | <2.0            | 6.7              | <2.0               | <2.0          | <2.0          |
| Methyl isobutyl ketone               | 80000        | 30000        | <2.0              | <2.0              | <2.0              | <6.0           | <2.0            | <1.7            | <2.0              | <2.0               | <2.0            | <2.0              | <2.0              | <2.0              | <2.0              | <2.0            | 7.7              | <2.0               | <2.0          | <2.0          |
| Methyl tert-butyl ether              | 80000        | 30000        | <1.8              | <1.8              | <1.8              | <5.4           | <1.8            | <1.5            | <1.8              | <1.8               | <1.8            | <1.8              | <1.8              | <1.8              | <1.8              | <1.8            | 12.6             | <1.8               | <1.8          | <1.8          |
| Methylene chloride (Dichloromethane) | 21,000       | 6,300        | 2.4               | 2.2               | <1.7              | <5.1           | <1.7            | <7.4            | <1.7              | 3.3                | 4               | 1.8               | <1.7              | 5.0               | <1.7              | 1.8             | 76.2             | <1.7               | 6.3           | <1.7          |
| Naphthalene                          | 300          | 90           | <2.6              | <2.6              | <2.6              | 9.6            | 4.3             | <5.6            | <2.6              | <2.6               | <2.6            | <2.6              | <2.6              | <2.6              | 3.9               | 4.5             | 36.3             | <2.6               | <2.6          | <2.6          |
| n-Heptane                            | NA           | NA           | <2.0              | <2.0              | <2.0              | <60            | 45              | <1.7            | <2.0              | <2.0               | <2.0            | <2.0              | <2.0              | <2.0              | <2.0              | 29              | 32.3             | <2.0               | <2.0          | <2.0          |
| n-Hexane                             | 60000        | 20000        | <1.8              | 2.6               | 2.3               | <5.4           | 1.9             | 3.3             | 2.8               | 4.2                | 38              | <1.8              | <1.8              | 2.8               | <1.8              | <1.8            | 63.6             | <1.8               | 2.2           | 8.3           |
| o-Xylene                             | 3000         | 1000         | 1.2               | 2.4               | 2.0               | 6.3            | 5.6             | 2.7             | 4.1               | <0.87              | 1.8             | 1.3               | 1.9               | 1.9               | 4.1               | 4.9             | 33.7             | 1.3                | <0.87         | <0.87         |
| Propylene                            | 80000        | 30000        | <0.86             | <0.86             | <0.86             | <2.6           | <0.86           | <1.8            | <0.86             | <0.86              | <0.86           | <0.86             | <0.86             | <0.86             | <0.86             | <0.86           | 4.6              | <0.86              | <0.86         | <0.86         |
| Styrene                              | 30000        | 10000        | <2.1              | <2.1              | <2.1              | <6.3           | <2.1            | <4.5            | <2.1              | <2.1               | 14              | <2.1              | <2.1              | <2.1              | <2.1              | <2.1            | <5.4             | <2.1               | <2.1          | 23            |
| Tetrachloroethene                    | 330          | 33           | <3.4              | 87                | 17                | 15             | 720             | 21.2            | 440               | 18                 | 26              | <3.4              | 880               | 15                | 14                | 490             | 17.1             | 1300               | 17            | 20            |
| Tetrahydrofuran                      | NA           | NA           | <1.5              | 5.3               | 5.1               | <4.5           | <1.5            | <1.3            | <1.5              | 3.4                | 3.8             | <1.5              | 4.0               | 5.1               | <1.5              | <1.5            | <1.5             | <1.5               | 4.4           | 3.5           |
| Toluene                              | 100000       | 50000        | 13                | 54                | 12                | 34             | 59              | 38.5            | 15                | 94                 | 3900            | 6.1               | 24                | 11                | 26                | 32              | 55.2             | 3.4                | 49            | 970           |
| trans-1,2-Dichloroethene             | NA           | NA           | <2.0              | <2.0              | <2.0              | <6.0           | <2.0            | <1.7            | <2.0              | <2.0               | <2.0            | <2.0              | <2.0              | <2.0              | 5.5               | <2.0            | 10.4             | <2.0               | 6.5           | <2.0          |
| trans-1,3-Dichloropropene            | 600          | 200          | <2.3              | <2.3              | <2.3              | <6.9           | <2.3            | <4.8            | <2.3              | <2.3               | <2.3            | <2.3              | <2.3              | <2.3              | <2.3              | <2.3            | <5.8             | <2.3               | <2.3          | <2.3          |
| Trichloroethene                      | 70           | 21           | <1.1              | <1.1              | <1.1              | <3.3           | 5.8             | <1.2            | <1.1              | 27                 | <2.7            | <1.1              | 1.5               | <1.1              | <1.1              | 1.5             | <1.4             | 1.6                | 7             | <2.7          |
| Trichlorofluoromethane               | 20000        | 7000         | <2.8              | <2.8              | <2.8              | <8.4           | <2.8            | <2.4            | <2.8              | <2.8               | <2.8            | <2.8              | <2.8              | <2.8              | <2.8              | <2.8            | <2.9             | <2.8               | <2.8          | <2.8          |
| Trichlorotrifluoroethane             | 800000       | 300000       | <3.8              | 56                | 4.7               | <11            | 8.4             | <3.4            | 11                | <3.8               | <3.8            | <3.8              | 33                | <3.8              | <3.8              | 4.2             | <4.0             | 3700               | <3.8          | <3.8          |
| Vinyl acetate                        | 6000         | 2000         | <1.8              | <1.8              | <1.8              | <5.4           | <1.8            | <1.5            | <1.8              | <1.8               | <1.8            | <1.8              | <1.8              | <1.8              | <1.8              | <1.8            | <1.8             | <1.8               | <1.8          | <1.8<br><1.3  |
| Vinyl chloride                       | 220          | 32           | < 0.51            | < 0.51            | < 0.51            | <1.5           | < 0.51          | < 0.55          | < 0.51            | < 0.51             | <1.3            | < 0.51            | < 0.51            | < 0.51            | < 0.51            | < 0.51          | < 0.66           | < 0.51             | < 0.51        |               |

Notes:

**BOLD**: exceeds laboratory method detection.

exceeds applicable MPCA 10X Commercial/Industrial ISV.

Interim MPCA ISVs, May 25, 2016.

1 of 3 7/29/20169:43 AM

#### Table 8 Soil Vapor Sampling Results MN Bio Business Center Rochester, MN (ug/m³)

|                                                   | MPCA         | MPCA        | LSG-9              | LSG-9           | LSG-9           | LSG-9              | LSG-9              | LSG-9               | LSG-9        | LSG-9        | LSG-9        | LSG-10            | LSG-10            | LSG-10            | LSG-10            | LSG-10             | LSG-10             | LSG-10             | LSG-10       | LSG-10       |
|---------------------------------------------------|--------------|-------------|--------------------|-----------------|-----------------|--------------------|--------------------|---------------------|--------------|--------------|--------------|-------------------|-------------------|-------------------|-------------------|--------------------|--------------------|--------------------|--------------|--------------|
|                                                   | Commercial   | Residential | 6/23/2016          | 2/24/2016       | 1/12/2016       | 9/8/2015           | 2/26/2015          | 8/22/2014           | 2/18/2014    | 10/18/2013   | 12/21/2012   | 6/23/2016         | 2/24/2016         | 1/12/2016         | 9/8/2015          | 2/26/2015          | 8/22/2014          | 2/18/2014          | 10/18/2013   |              |
| Parameter                                         | 10X ISV      | 10X ISV     | Legend             | Legend          | Legend          | Legend             | Legend             | Pace                | Legend       | Legend       | Legend       | Legend            | Legend            | Legend            | Legend            | Legend             | Pace               | Legend             | Legend       | Legend       |
| 1,1,1-Trichloroethane                             | 100000       | 50000       | <2.7               | <2.7            | <2.7            | <2.7               | 3.8                | <3.5                | <2.7         | <2.7         | <2.7         | <2.7              | <2.7              | <2.7              | <2.7              | <2.7               | <2.5               | <2.7               | <2.7         | <2.7         |
| 1,1,2,2-Tetrachloroethane                         | 10           | 2           | <3.4               | <3.4            | <3.4            | <3.4               | <3.4               | <2.2                | <3.4         | <3.4         | <3.4         | <3.4              | <3.4              | <3.4              | <3.4              | <3.4               | <1.6               | <3.4               | <3.4         | <3.4         |
| 1,1,2-Trichloroethane                             | 20           | 6           | <2.7               | <2.7            | <2.7            | <2.7               | <2.7               | <1.7                | <2.7         | <2.7         | <2.7         | <2.7              | <2.7              | <2.7              | <2.7              | <2.7               | <1.3               | <2.7               | <2.7         | <2.7         |
| 1,1-Dichloroethane                                | 10000        | 5000        | <2.0               | <2.0            | <2.0            | <2.0               | <2.0               | <2.6                | <2.0         | <2.0         | <2.0         | <2.0              | <2.0              | <2.0              | <2.0              | <2.0               | <1.9               | <2.0               | <2.0         | <2.0         |
| 1,1-Dichloroethene                                | 6000         | 2000        | <2.0               | <2.0            | <2.0            | <2.0               | <2.0               | <2.6                | <2.0         | <2.0         | <2.0         | <2.0              | <2.0              | <2.0              | <2.0              | <2.0               | <1.9               | <2.0               | <2.0         | <2.0         |
| 1,2,4-Trichlorobenzene                            | 100          | 40          | <3.7               | <3.7            | <3.7            | 4.9                | <3.7               | <4.8                | <3.7         | <3.7         | <3.7         | <3.7              | <3.7              | <3.7              | 4.9               | <3.7               | <3.5               | <3.7               | <3.7         | <3.7         |
| 1,2,4-Trimethylbenzene                            | 200          | 70          | 1.1                | 1.2             | 1.7             | 6.4                | 22                 | 4.5                 | 2.1          | <1.0         | 1.5          | 2.2               | <1.0              | 2.1               | 5.7               | 22                 | 3.5                | 1.1                | <1.0         | 3.4          |
| 1,2-Dibromoethane                                 | 1            | 0.2         | <3.8               | <3.8            | <3.8            | <3.8               | <3.8               | <4.9                | <3.8         | <3.8         | <3.8         | <3.8              | <3.8              | <3.8              | <3.8              | <3.8               | <3.6               | <3.8               | <3.8         | <3.8         |
| 1,2-Dichlorobenzene                               | 6000         | 2000        | <3.0               | <3.0            | <3.0            | <3.0               | <3.0               | <3.9                | <3.0         | <3.0         | <3.0         | <3.0              | <3.0              | <3.0              | <3.0              | <3.0               | <2.8               | <3.0               | <3.0         | <3.0         |
| 1,2-Dichloroethane                                | 10           | 4           | <2.0               | <2.0            | <2.0            | <2.0               | <2.0               | <1.3                | <2.0         | <2.0         | <2.0         | <2.0              | <2.0              | <2.0              | <2.0              | <2.0               | <0.94              | <2.0               | <2.0         | <2.0         |
| 1,2-Dichloropropane                               | 100<br>200   | 40          | <2.3<br><1.0       | <2.3            | <2.3<br><1.0    | <2.3<br><b>2.0</b> | <2.3<br><b>4.3</b> | <3.0<br><b>4</b>    | <2.3<br><1.0 | <2.3<br><1.0 | <2.3         | <2.3              | <2.3<br><1.0      | <2.3<br><1.0      | <2.3<br>1.8       | <2.3<br><b>4.3</b> | <2.2<br><b>3.2</b> | <2.3<br><1.0       | <2.3<br><1.0 | <2.3<br>1.4  |
| 1,3,5-Trimethylbenzene                            | 200          | 60          | 1                  | <1.0            |                 |                    |                    | <1.4                |              | 1            | <0.98        | <1.0              |                   |                   |                   | 1                  | <1.0               | +                  | +            |              |
| 1,3-Butadiene 1,3-Dichlorobenzene                 | NA NA        | NA          | <1.1<br><3.0       | <1.1<br><3.0    | <1.1<br><3.0    | <1.1<br><3.0       | <1.1<br><3.0       | <3.9                | <1.1<br><3.0 | <1.1<br><3.0 | <1.1<br><3.0 | <1.1<br><3.0      | <1.1<br><3.0      | <1.1<br><3.0      | <1.1<br><3.0      | <1.1<br><3.0       | <2.8               | <1.1<br><3.0       | <1.1<br><3.0 | <1.1<br><3.0 |
| 1,4-Dichlorobenzene                               | 2000         | 600         | <3.0               | <3.0            | <3.0            | <3.0               | <3.0               | <3.9                | <3.0         | <3.0         | <3.0         | <3.0              | <3.0              | <3.0              | <3.0              | <3.0               | <2.8               | 8.1                | <3.0         | <3.0         |
| 2-Butanone                                        | 100000       | 50000       | 2.0                | 6.6             | 8.2             | 29                 | <1.5               | 3.6                 | 8.3          | 1.7          | 6.1          | 3.6               | 4.0               | 6.5               | 7.8               | 2.6                | <1.4               | 1.7                | 3.2          | 11           |
| 4-Ethyltoluene                                    | NA NA        | NA          | <2.5               | <2.5            | <2.5            | <2.5               | 3.8                | <3.2                | <2.5         | <2.5         | <2.5         | <2.5              | <2.5              | <2.5              | <2.5              | 4.2                | 3.8                | <2.5               | <2.5         | <2.5         |
| Acetone                                           | 870000       | 310000      | 35                 | 43              | 33              | 12                 | 12                 | 32.8                | 97           | 8.6          | 35           | 74                | 64                | 28                | 45                | 35                 | 25.1               | 13                 | 32           | 390          |
| Benzene                                           | 450          | 46          | <0.64              | 0.88            | 0.96            | 0.96               | 1.3                | 1.2                 | 1.1          | <0.64        | <0.64        | <0.64             | 0.75              | 0.84              | <0.64             | 1.4                | <0.74              | <0.64              | <0.64        | 0.72         |
| Benzyl chloride                                   | 30           | 10          | <2.6               | <2.6            | <2.6            | <2.6               | <2.6               | <3.3                | <2.6         | <2.6         | <2.6         | <2.6              | <2.6              | <2.6              | <2.6              | <2.6               | <2.4               | <2.6               | <2.6         | <2.6         |
| Bromodichloromethane                              | NA           | NA          | <3.4               | <3.4            | <3.4            | <3.4               | <3.4               | <4.3                | <3.4         | <3.4         | <3.4         | <3.4              | <3.4              | <3.4              | <3.4              | <3.4               | <3.1               | <3.4               | <3.4         | <3.4         |
| Bromoform                                         | 300          | 90          | <5.2               | <5.2            | <5.2            | <5.2               | <5.2               | <16.6               | <5.2         | <5.2         | <5.2         | <5.2              | <5.2              | <5.2              | <5.2              | <5.2               | <12.0              | <5.2               | <5.2         | <5.2         |
| Bromomethane                                      | 100          | 50          | <1.9               | <1.9            | <1.9            | <1.9               | <1.9               | <2.5                | <1.9         | <1.9         | <1.9         | <1.9              | <1.9              | <1.9              | <1.9              | <1.9               | <1.8               | <1.9               | <1.9         | <1.9         |
| Carbon disulfide                                  | 20000        | 7000        | <1.6               | <1.6            | <1.6            | <1.6               | <1.6               | <2.0                | <1.6         | <1.6         | <1.6         | <1.6              | <1.6              | <1.6              | <1.6              | <1.6               | <1.4               | <1.6               | <1.6         | <1.6         |
| Carbon tetrachloride                              | 160          | 17          | <3.1               | <3.1            | <3.1            | <3.1               | <3.1               | <2.0                | <3.1         | <3.1         | <3.1         | <3.1              | <3.1              | <3.1              | <3.1              | <3.1               | <1.5               | <3.1               | <3.1         | <3.1         |
| Chlorobenzene                                     | 1000         | 500         | <2.3               | <2.3            | <2.3            | <2.3               | <2.3               | <3.0                | <2.3         | <2.3         | <2.3         | <2.3              | <2.3              | <2.3              | <2.3              | <2.3               | <2.2               | <2.3               | <2.3         | <2.3         |
| Chloroethane                                      | 300000       | 100000      | <1.3               | <1.3            | <1.3            | <1.3               | <1.3               | <1.7                | <1.3         | <1.3         | <1.3         | <1.3              | <1.3              | <1.3              | <1.3              | <1.3               | <1.2               | <1.3               | <1.3         | <1.3         |
| Chloroform                                        | 3000         | 1000        | <2.4               | <2.4            | <2.4            | <2.4               | <2.4               | <1.6                | <2.4         | <2.4         | <2.4         | <2.4              | <2.4              | <2.4              | <2.4              | <2.4               | <1.1               | <2.4               | <2.4         | <2.4         |
| Chloromethane                                     | 3000         | 900         | 1.2                | <1.0            | <1.0            | <1.0               | <1.0               | <1.3                | <1.0         | <1.0         | <1.0         | 1.1               | <1.0              | <1.0              | <1.0              | <1.0               | <0.96              | <1.0               | <1.0         | <1.0         |
| cis-1,2-Dichloroethene                            | NA           | NA          | <2.0               | <2.0            | <2.0            | <2.0               | <2.0               | <2.6                | <2.0         | <2.0         | <2.0         | <2.0              | <2.0              | <2.0              | <2.0              | <2.0               | <1.9               | <2.0               | <2.0         | <2.0         |
| cis-1,3-Dichloropropene                           | 600          | 200         | <2.3               | <2.3            | <2.3            | <2.3               | <2.3               | <7.3                | <2.3         | <2.3         | <2.3         | <2.3              | <2.3              | <2.3              | <2.3              | <2.3               | <5.3               | <2.3               | <2.3         | <2.3         |
| Cyclohexane                                       | 200000       | 60000       | <1.7               | <1.7            | <1.7            | 6.2                | 2.2                | <5.5                | 10           | <1.7         | 11           | 1.8               | <1.7              | <1.7              | 7.8               | 11                 | 14.5               | 1.8                | 11           | 47           |
| Dibromochloromethane                              | NA           | NA          | <4.3               | <4.3            | <4.3            | <4.3               | <4.3               | <5.5                | <4.3         | <4.3         | <4.3         | <4.3              | <4.3              | <4.3              | <4.3              | <4.3               | <4.0               | <4.3               | <4.3         | <4.3         |
| Dichlorodifluoromethane Dichlorotetrafluoroethane | NA<br>NA     | NA<br>NA    | <b>4.1</b> <3.5    | <b>2.9</b> <3.5 | <b>2.7</b> <3.5 | <2.5<br><3.5       | <2.5<br><3.5       | <7.9<br><4.5        | <2.5<br><3.5 | <2.5<br><3.5 | <2.5<br><3.5 | <2.5<br><3.5      | <b>2.8</b> <3.5   | <b>2.8</b> <3.5   | <2.5<br><3.5      | <2.5<br><3.5       | <5.7<br><3.3       | <2.5<br><3.5       | <2.5<br><3.5 | <2.5<br><3.5 |
| Ethanol                                           | 420000       | 150000      | 1600               | 640             | 890             | 18                 | 210                | 4.5                 | 310          | 35           | 240          | 1100              | 330               | 590               | 35                | 190                | 22.8               | 120                | 85           | 1700         |
| Ethyl acetate                                     | 80000        | 30000       | <1.8               | 6.4             | 4.0             | <1.8               | <1.8               | <2.3                | 6.9          | <1.8         | <1.8         | <1.8              | 2.2               | 3.3               | <1.8              | <1.8               | <1.7               | <1.8               | <1.8         | <1.8         |
| Ethylbenzene                                      | 390          | 41          | 1.2                | 2.6             | 1.7             | 3.8                | 3.4                | 3.7                 | 2.5          | <0.87        | 0.96         | 1.7               | 1.8               | 2.1               | 2.7               | 3.4                | 2.8                | 1.6                | <0.87        | 3.2          |
| Hexachlorobutadiene                               | 10           | 5           | <5.3               | <5.3            | <5.3            | <5.3               | <5.3               | <7.0                | <5.3         | <5.3         | <5.3         | <5.3              | <5.3              | <5.3              | <5.3              | <5.3               | <5.0               | <5.3               | <5.3         | <5.3         |
| Isopropyl alcohol                                 | 200000       | 70000       | 890                | 450             | 250             | 40                 | 39                 | 9                   | 76           | 40           | 20           | 530               | 290               | 170               | 45                | 33                 | 37.8               | 11                 | 80           | 26           |
| m,p-Xylene                                        | 3000         | 1000        | 5.9                | 9.2             | 6.4             | 16                 | 14                 | 5.6                 | 5.9          | <1.7         | <1.7         | 9.2               | 6.8               | 7.4               | 11                | 14                 | 5                  | 6.3                | <1.7         | 3.2          |
| Methyl butyl ketone (2-Hexanone)                  | 1110         | 310         | <2.0               | <2.0            | <2.0            | <2.0               | <2.0               | <2.6                | <2.0         | <2.0         | <2.0         | <2.0              | <2.0              | <2.0              | <2.0              | <2.0               | <1.9               | <2.0               | <2.0         | 2.3          |
| Methyl isobutyl ketone                            | 80000        | 30000       | <2.0               | <2.0            | <2.0            | <2.0               | <2.0               | <2.6                | <2.0         | <2.0         | <2.0         | <2.0              | <2.0              | <2.0              | <2.0              | <2.0               | <1.9               | <2.0               | <2.0         | 2.6          |
| Methyl tert-butyl ether                           | 80000        | 30000       | <1.8               | <1.8            | <1.8            | <1.8               | <1.8               | <2.3                | <1.8         | <1.8         | <1.8         | <1.8              | <1.8              | <1.8              | <1.8              | <1.8               | <1.7               | <1.8               | <1.8         | <1.8         |
| Methylene chloride (Dichloromethane)              | 21,000       | 6,300       | <1.7               | <1.7            | <1.7            | 2.5                | <1.7               | <11.2               | 9.3          | <1.7         | 2.6          | 2.2               | 6.0               | <1.7              | <1.7              | <1.7               | 22.8               | <1.7               | <1.7         | 2.1          |
| Naphthalene                                       | 300          | 90          | <2.6               | <2.6            | <2.6            | 3.5                | 4.5                | <8.4                | <2.6         | <2.6         | <2.6         | <2.6              | <2.6              | <2.6              | 3.4               | 3.8                | <6.1               | <2.6               | <2.6         | <2.6         |
| n-Heptane                                         | NA           | NA          | <2.0               | <2.0            | <2.0            | <2.0               | 61                 | <2.6                | 2.1          | <2.0         | <2.0         | <2.0              | <2.0              | <2.0              | <2.0              | 56                 | 1.9                | <2.0               | <2.0         | <2.0         |
| n-Hexane                                          | 60000        | 20000       | <1.8               | <1.8            | <1.8            | 10                 | 2.1                | 6.8                 | 32           | <1.8         | 4.6          | 3.7               | 5.8               | 3.5               | 15                | 23                 | 43.2               | 2.5                | 37           | 220          |
| o-Xylene                                          | 3000         | 1000        | 3.1                | 3.1             | 1.9             | 5.9                | 5.8                | 4.1                 | <0.87        | <0.87        | <0.87        | 5.1               | 2.2               | 2.1               | 4.3               | 5.9                | 3.2                | 2.1                | <0.87        | 1.6          |
| Propylene                                         | 80000        | 30000       | <0.86              | <0.86           | <0.86           | <0.86              | <0.86              | <2.8<br><6.8        | <0.86        | <0.86        | <0.86        | <0.86             | <0.86             | <0.86             | <0.86             | <0.86              | <2.0               | <0.86              | <0.86        | <0.86        |
| Styrene                                           | 30000<br>330 | 10000       | <2.1<br><b>32</b>  | <2.1<br>9.3     | <2.1            | <2.1<br><b>90</b>  | <2.1               | <6.8<br><b>85.3</b> | 7.3          | <2.1         | <2.1         | <2.1              | <2.1<br><b>85</b> | <2.1<br><b>16</b> | <2.1<br><b>24</b> | <2.1               | <4.9               | <2.1               | <2.1         | 6.8          |
| Tetrachloroethene                                 |              | 33          |                    |                 | 15              |                    | 3200               |                     | 11           | 31           | 150          | <3.4              |                   |                   |                   | 1500               | 35.7               | 970                | 21           |              |
| Tetrahydrofuran<br>Toluene                        | NA<br>100000 | NA<br>50000 | <1.5<br><b>2.6</b> | 5.5<br>31       | 5.4<br>12       | 1.6<br>30          | <1.5<br><b>11</b>  | <1.9<br><b>18.3</b> | 5.1<br>200   | 6.1<br>1.7   | 6.9<br>21    | <1.5<br><b>32</b> | 4.1<br>62         | 4.8<br>12         | <1.5<br><b>55</b> | <1.5<br><b>150</b> | <1.4<br><b>175</b> | <1.5<br><b>6.4</b> | 6.9<br>110   | 3.7<br>3900  |
| trans-1,2-Dichloroethene                          | NA           | NA          | <b>2.6</b> <2.0    | <2.0            | <2.0            | <2.0               | <2.0               | <2.6                | <2.0         | <2.0         | <2.0         | <2.0              | <2.0              | <2.0              | <2.0              | <2.0               | <1.9               | <2.0               | <2.0         | <2.0         |
| trans-1,2-Dichloropene                            | 600          | 200         | <2.0               | <2.3            | <2.0            | <2.3               | <2.0               | <7.3                | <2.3         | <2.0         | <2.3         | <2.3              | <2.3              | <2.0              | <2.3              | <2.0               | <5.3               | <2.3               | <2.0         | <2.0         |
| Trichloroethene                                   | 70           | 21          | <1.1               | <1.1            | <1.1            | <1.1               | 4.3                | <1.7                | 3.2          | <1.1         | <2.7         | <1.1              | <1.1              | <1.1              | <1.1              | 1.7                | <1.3               | 1.4                | <1.1         | <2.7         |
| Trichlorofluoromethane                            | 20000        | 7000        | <2.8               | <2.8            | <2.8            | <2.8               | <2.8               | <3.6                | <2.8         | <2.8         | <2.8         | <2.8              | <2.8              | <2.8              | <2.8              | <2.8               | <2.6               | <2.8               | <2.8         | <2.8         |
| Trichlorotrifluoroethane                          | 800000       | 300000      | <3.8               | 15              | 61              | 6.3                | 1500               | 32                  | <3.8         | <3.8         | 1300         | <3.8              | 190               | 13                | <3.8              | 29                 | <3.7               | 42                 | <3.8         | 6.9          |
| Vinyl acetate                                     | 6000         | 2000        | <1.8               | <1.8            | <1.8            | <1.8               | <1.8               | <2.3                | <1.8         | <1.8         | <1.8         | <1.8              | <1.8              | <1.8              | <1.8              | <1.8               | <1.6               | <1.8               | <1.8         | <1.8         |
| Vinyl chloride                                    | 220          | 32          | <0.51              | <0.51           | <0.51           | <0.51              | <0.51              | <0.82               | <0.51        | <0.51        | <1.3         | <0.51             | <0.51             | <0.51             | <0.51             | <0.51              | <0.60              | <0.51              | <0.51        | <1.3         |
| Notes:                                            |              |             |                    |                 |                 |                    |                    |                     |              |              |              |                   |                   |                   |                   |                    |                    |                    |              |              |

Notes:
BOLD: exceeds laboratory method detection.

exceeds applicable MPCA 10X Commercial/Industrial ISV.

Interim MPCA ISVs, May 25, 2016.

7/29/20169:43 AM 2 of 3

#### Table 8 Soil Vapor Sampling Results MN Bio Business Center Rochester, MN (ug/m³)

|                                                   | MPCA           | MPCA           | SP-1               | SP-1         | SP-1              | SP-1             | SP-1               | SP-1               | SP-1         | SP-1         | SP-1          | SP-2               | SP-2          | SP-2              | SP-2               | SP-2                | SP-2               | SP-2          | SP-2               | SP-2               |
|---------------------------------------------------|----------------|----------------|--------------------|--------------|-------------------|------------------|--------------------|--------------------|--------------|--------------|---------------|--------------------|---------------|-------------------|--------------------|---------------------|--------------------|---------------|--------------------|--------------------|
|                                                   | Commercial     | Residential    | 6/23/2016          | 2/24/2016    | 3P-1<br>1/12/2016 | 5P-1<br>9/8/2015 | 2/26/2015          | 8/22/2014          | 3/14/2014    | 10/18/2013   | 12/21/2012    | 6/23/2016          | 2/24/2016     | 3P-2<br>1/12/2016 | 9/8/2015           | 2/26/2015           | 8/22/2014          | 3/14/2014     | 3P-2<br>10/18/2013 | 3P-2<br>12/21/2012 |
| Parameter                                         | 10X ISV        | 10X ISV        | Legend             | Legend       | Legend            | Legend           | Legend             | Pace               | Legend       | Legend       | Legend        | Legend             | Legend        | Legend            | Legend             | Legend              | Pace               | Legend        | Legend             | Legend             |
| 1,1,1-Trichloroethane                             | 100000         | 50000          | <2.7               | <2.7         | <2.7              | <2.7             | <2.7               | <2.5               | <2.7         | <2.7         | <2.7          | <2.7               | <2.7          | <2.7              | <2.7               | <2.7                | <3.3               | 3.3           | <2.7               | <2.7               |
| 1,1,2,2-Tetrachloroethane                         | 10             | 2              | <3.4               | <3.4         | <3.4              | <3.4             | <3.4               | <1.6               | <3.4         | <3.4         | <3.4          | <3.4               | <3.4          | <3.4              | <3.4               | <3.4                | <2.1               | <3.4          | <3.4               | <3.4               |
| 1,1,2-Trichloroethane                             | 20             | 6              | <2.7               | <2.7         | <2.7              | <2.7             | <2.7               | <1.3               | <2.7         | <2.7         | <2.7          | <2.7               | <2.7          | <2.7              | <2.7               | <2.7                | <1.6               | <2.7          | <2.7               | <2.7               |
| 1,1-Dichloroethane                                | 10000          | 5000           | <2.0               | <2.0         | <2.0              | <2.0             | <2.0               | <1.9               | <2.0         | <2.0         | <2.0          | <2.0               | <2.0          | <2.0              | <2.0               | <2.0                | <2.4               | <2.0          | <2.0               | <2.0               |
| 1,1-Dichloroethene                                | 6000           | 2000           | <2.0               | <2.0         | <2.0              | <2.0             | <2.0               | <1.9               | <2.0         | <2.0         | <2.0          | <2.0               | <2.0          | <2.0              | <2.0               | <2.0                | <2.4               | <2.0          | <2.0               | <2.0               |
| 1,2,4-Trichlorobenzene                            | 100            | 40             | <3.7               | <3.7         | <3.7              | <3.7             | <3.7               | <3.5               | <3.7         | <3.7         | <3.7          | <3.7               | <3.7          | <3.7              | 4.9                | <3.7                | <4.5               | <3.7          | <3.7               | <3.7               |
| 1,2,4-Trimethylbenzene                            | 200            | 70             | 1.1                | <1.0         | 1.5               | 6.0              | 16                 | 4.8                | 4.6          | <1.0         | <0.98         | <1.0               | <1.0          | <1.0              | 3.8                | 15                  | <3.0               | 4.8           | <1.0               | <0.98              |
| 1,2-Dibromoethane                                 | 1              | 0.2            | <3.8               | <3.8         | <3.8              | <3.8             | <3.8               | <3.6               | <3.8         | <3.8         | <3.8          | <3.8               | <3.8          | <3.8              | <3.8               | <3.8                | <4.6               | <3.8          | <3.8               | <3.8               |
| 1,2-Dichlorobenzene                               | 6000           | 2000           | <3.0               | <3.0         | <3.0              | <3.0             | <3.0               | <2.8               | <3.0         | <3.0         | <3.0          | <3.0               | <3.0          | <3.0              | <3.0               | <3.0                | <3.6               | <3.0          | <3.0               | <3.0               |
| 1,2-Dichloroethane                                | 10             | 4 40           | <2.0               | <2.0         | <2.0              | <2.0             | <2.0               | <0.94              | <2.0         | <2.0         | <2.0          | <2.0               | <2.0          | <2.0              | <2.0               | <2.0                | <1.2               | <2.0          | <2.0               | <2.0<br><2.3       |
| 1,2-Dichloropropane 1,3,5-Trimethylbenzene        | 100<br>200     | 60             | <2.3<br><1.0       | <2.3<br><1.0 | <2.3<br><1.0      | <2.3<br>1.8      | <2.3<br><b>2.4</b> | <2.2<br><b>3.5</b> | <2.3<br>1.2  | <2.3<br><1.0 | <2.3<br><0.98 | <2.3<br><1.0       | <2.3<br><1.0  | <2.3<br><1.0      | <2.3<br><b>1.2</b> | <2.3<br><b>2.6</b>  | <2.8<br><3.0       | <2.3<br><1.0  | <2.3<br><1.0       | <0.98              |
| 1,3-Butadiene                                     | 27             | 3              | <1.0               | <1.1         | <1.0              | <1.1             | <1.1               | <1.0               | <1.1         | <1.1         | <1.1          | <1.0               | <1.1          | <1.1              | <1.1               | <1.1                | <1.3               | <1.0          | <1.0               | <1.1               |
| 1,3-Dichlorobenzene                               | NA NA          | NA NA          | <3.0               | <3.0         | <3.0              | <3.0             | <3.0               | <2.8               | <3.0         | <3.0         | <3.0          | <3.0               | <3.0          | <3.0              | <3.0               | <3.0                | <3.6               | <3.0          | <3.0               | <3.0               |
| 1,4-Dichlorobenzene                               | 2000           | 600            | <3.0               | <3.0         | <3.0              | <3.0             | <3.0               | <2.8               | <3.0         | <3.0         | <3.0          | <3.0               | <3.0          | <3.0              | <3.0               | <3.0                | <3.6               | <3.0          | <3.0               | <3.0               |
| 2-Butanone                                        | 100000         | 50000          | 1.8                | 3.7          | 3.8               | 56               | 1.9                | 3                  | 6.3          | <1.5         | <1.5          | <1.5               | 4.0           | 2.7               | 32                 | <1.5                | 7.5                | 8.4           | 2.3                | 3.1                |
| 4-Ethyltoluene                                    | NA NA          | NA             | <2.5               | <2.5         | <2.5              | <2.5             | 3                  | 4.3                | <2.5         | <2.5         | <2.5          | <2.5               | <2.5          | <2.5              | <2.5               | <2.5                | <3.0               | <2.5          | <2.5               | <2.5               |
| Acetone                                           | 870000         | 310000         | 34                 | 43           | 35                | 45               | 12                 | 17.5               | 32           | 23           | 5.3           | 43                 | 37            | 17                | 42                 | 9.2                 | 17.7               | 45            | 35                 | 4.7                |
| Benzene                                           | 450            | 46             | 0.73               | 0.74         | 0.91              | 0.66             | 0.86               | 0.96               | 1.2          | <0.64        | <0.64         | <0.64              | 0.71          | 0.75              | <0.64              | 0.89                | <0.97              | 1.2           | <0.64              | 0.73               |
| Benzyl chloride                                   | 30             | 10             | <2.6               | <2.6         | <2.6              | <2.6             | <2.6               | <2.4               | <2.6         | <2.6         | <2.6          | <2.6               | <2.6          | <2.6              | <2.6               | <2.6                | <3.1               | <2.6          | <2.6               | <2.6               |
| Bromodichloromethane                              | NA             | NA             | <3.4               | <3.4         | <3.4              | <3.4             | <3.4               | <3.1               | <3.4         | <3.4         | <3.4          | <3.4               | <3.4          | <3.4              | <3.4               | <3.4                | <4.0               | <3.4          | <3.4               | <3.4               |
| Bromoform                                         | 300            | 90             | <5.2               | <5.2         | <5.2              | <5.2             | <5.2               | <12.0              | <5.2         | <5.2         | <5.2          | <5.2               | <5.2          | <5.2              | <5.2               | <5.2                | <15.6              | <5.2          | <5.2               | <5.2               |
| Bromomethane                                      | 100            | 50             | <1.9               | <1.9         | <1.9              | <1.9             | <1.9               | <1.8               | <1.9         | <1.9         | <1.9          | <1.9               | <1.9          | <1.9              | <1.9               | <1.9                | <2.3               | <1.9          | <1.9               | <1.9               |
| Carbon disulfide                                  | 20000          | 7000           | <1.6               | <1.6         | 2.8               | <1.6             | <1.6               | <1.4               | <1.6         | <1.6         | <1.6          | <1.6               | <1.6          | <1.6              | <1.6               | <1.6                | <1.9               | <1.6          | <1.6               | <1.6               |
| Carbon tetrachloride                              | 160            | 17             | <3.1               | <3.1         | <3.1              | <3.1             | <3.1               | <1.5               | <3.1         | <3.1         | <3.1          | <3.1               | <3.1          | <3.1              | <3.1               | <3.1                | <1.9               | <3.1          | <3.1               | <3.1               |
| Chlorobenzene                                     | 1000           | 500            | <2.3               | <2.3         | <2.3              | <2.3             | <2.3               | <2.2               | <2.3         | <2.3         | <2.3          | <2.3               | <2.3          | <2.3              | <2.3               | <2.3                | <2.8               | <2.3          | <2.3               | <2.3               |
| Chloroethane                                      | 300000         | 100000         | <1.3               | <1.3         | <1.3              | <1.3             | <1.3               | <1.2               | <1.3         | <1.3         | <1.3          | <1.3               | <1.3          | <1.3              | <1.3               | <1.3                | <1.6               | <1.3          | <1.3               | <1.3               |
| Chloroform                                        | 3000           | 1000           | <2.4               | <2.4         | <2.4              | <2.4             | <2.4               | <1.1               | 2.5          | <2.4         | <2.4          | <2.4               | <2.4          | <2.4              | <2.4               | <2.4                | <1.5               | <2.4          | <2.4               | <2.4               |
| Chloromethane                                     | 3000           | 900            | 1.2                | <1.0         | <1.0              | <1.0             | <1.0               | <0.96              | <1.0         | <1.0         | <1.0          | 1.1                | <1.0          | <1.0              | <1.0               | <1.0                | <1.2               | <1.0          | <1.0               | <1.0               |
| cis-1,2-Dichloroethene                            | NA             | NA             | <2.0               | <2.0         | <2.0              | <2.0             | <2.0               | <1.9               | 2.4          | <2.0         | <2.0          | <2.0               | <2.0          | <2.0              | <2.0               | 3.1                 | <2.4               | 7             | <2.0               | <2.0               |
| cis-1,3-Dichloropropene                           | 600<br>200000  | 200<br>60000   | <2.3<br><1.7       | <2.3<br><1.7 | <2.3<br><1.7      | <2.3<br><1.7     | <2.3<br><1.7       | <5.3<br><4.0       | <2.3<br><1.7 | <2.3<br><1.7 | <2.3<br><1.7  | <2.3<br><1.7       | <2.3<br><1.7  | <2.3<br><1.7      | <2.3<br><1.7       | <2.3<br><1.7        | <6.8<br><5.2       | <2.3<br><1.7  | <2.3<br><1.7       | <2.3<br><1.7       |
| Cyclohexane Dibromochloromethane                  | 200000<br>NA   | NA             | <4.3               | <4.3         | <4.3              | <4.3             | <4.3               | <4.0               | <4.3         | <4.3         | <4.3          | <4.3               | <4.3          | <4.3              | <4.3               | <4.3                | <5.1               | <4.3          | <4.3               | <4.3               |
| Dichlorodifluoromethane                           | NA<br>NA       | NA<br>NA       | <2.5               | 3.2          | 3.7               | <2.5             | <2.5               | <5.7               | 2.6          | <2.5         | <2.5          | <2.5               | 2.9           | 2.8               | <2.5               | <2.5                | <7.5               | 2.6           | <2.5               | <2.5               |
| Dichlorotetrafluoroethane                         | NA             | NA             | <3.5               | <3.5         | <3.5              | <3.5             | <3.5               | <3.3               | <3.5         | <3.5         | <3.5          | <3.5               | <3.5          | <3.5              | <3.5               | <3.5                | <4.2               | <3.5          | <3.5               | <3.5               |
| Ethanol                                           | 420000         | 150000         | 1500               | 440          | 320               | 66               | 100                | 6                  | 180          | 230          | 7.9           | 730                | 350           | 480               | 18                 | 60                  | 16.2               | 220           | 130                | 12                 |
| Ethyl acetate                                     | 80000          | 30000          | <1.8               | 2.3          | 2.4               | <1.8             | <1.8               | <1.7               | <1.8         | <1.8         | <1.8          | <1.8               | 2.5           | <1.8              | <1.8               | <1.8                | 4.1                | 2.1           | <1.8               | <1.8               |
| Ethylbenzene                                      | 390            | 41             | <0.87              | 1.8          | 1.5               | 3.5              | 2.2                | 2.8                | 3.9          | <0.87        | <0.87         | <0.87              | 1.8           | 1.6               | 1.7                | 1.6                 | <2.6               | 2.6           | <0.87              | <0.87              |
| Hexachlorobutadiene                               | 10             | 5              | <5.3               | <5.3         | <5.3              | <5.3             | <5.3               | <5.0               | <5.3         | <5.3         | <5.3          | <5.3               | <5.3          | <5.3              | <5.3               | <5.3                | <6.5               | <5.3          | <5.3               | <5.3               |
| Isopropyl alcohol                                 | 200000         | 70000          | 670                | 380          | 110               | 43               | 40                 | 26.9               | 420          | 240          | 3.8           | 690                | 330           | 130               | 16                 | 19                  | <3.7               | 790           | 170                | 4.8                |
| m,p-Xylene                                        | 3000           | 1000           | 2.2                | 6.9          | 5.2               | 13               | 8.1                | 6.5                | 21           | <1.7         | <1.7          | <1.7               | 6.8           | 5.4               | 6.8                | 6.1                 | <5.2               | 9             | <1.7               | <1.7               |
| Methyl butyl ketone (2-Hexanone)                  | 1110           | 310            | <2.0               | <2.0         | <2.0              | <2.0             | <2.0               | <1.9               | <2.0         | <2.0         | <2.0          | <2.0               | <2.0          | <2.0              | <2.0               | <2.0                | <2.5               | <2.0          | <2.0               | <2.0               |
| Methyl isobutyl ketone                            | 80000          | 30000          | <2.0               | <2.0         | <2.0              | <2.0             | <2.0               | <1.9               | 4.3          | <2.0         | <2.0          | <2.0               | <2.0          | <2.0              | <2.0               | <2.0                | <2.5               | 5             | <2.0               | <2.0               |
| Methyl tert-butyl ether                           | 80000          | 30000          | <1.8               | <1.8         | <1.8              | <1.8             | <1.8               | <1.7               | <1.8         | <1.8         | <1.8          | <1.8               | <1.8          | <1.8              | <1.8               | <1.8                | 2.7                | <1.8          | <1.8               | <1.8               |
| Methylene chloride (Dichloromethane)              | 21,000         | 6,300          | 5.1                | <1.7         | 51                | 3.7              | <1.7               | <8.1               | <1.7         | 2.6          | 2.6           | 2.9                | <1.7          | <1.7              | 4.5                | 3.7                 | 18.1               | <1.7          | 2.1                | 2.2                |
| Naphthalene                                       | 300            | 90             | <2.6               | <2.6         | <2.6              | 3.1              | 3.1                | <6.1               | 3.1          | <2.6         | <2.6          | <2.6               | <2.6          | <2.6              | 3.5                | 3.7                 | <7.9               | 3.3           | <2.6               | <2.6               |
| n-Heptane<br>                                     | NA             | NA             | <2.0               | <2.0         | <2.0              | <2.0             | 21                 | <1.9               | 4.3          | <2.0         | <2.0          | <2.0               | <2.0          | <2.0              | <2.0               | 13                  | <2.5               | <2.0          | <2.0               | <2.0               |
| n-Hexane                                          | 60000          | 20000          | <1.8               | <1.8         | 18                | <1.8             | <1.8               | 2.2                | 2.1          | <1.8         | <1.8          | <1.8               | <1.8          | <1.8              | <1.8               | 2.2                 | 5.9                | <1.8          | <1.8               | 2.8                |
| o-Xylene                                          | 3000           | 1000           | <0.87              | 2.2          | 1.6               | 4.7              | 3.8                | 3.2                | 6.9          | <0.87        | <0.87         | <0.87              | 2.3           | 1.4               | 2.6                | 2.8                 | <2.6               | 3.1           | <0.87              | <0.87              |
| Propylene                                         | 80000<br>30000 | 30000<br>10000 | <0.86              | <0.86        | <0.86             | <0.86<br><2.1    | <0.86              | <2.0<br><4.9       | <0.86        | <0.86        | <0.86         | <0.86              | <0.86<br><2.1 | <0.86<br><2.1     | <0.86<br><2.1      | <0.86               | <2.6<br><6.4       | <0.86<br><2.1 | <0.86              | <0.86<br><2.1      |
| Styrene<br>Totrachloroothono                      | _              |                | <2.1               | <2.1         | <2.1              |                  | <2.1<br>380        | 4                  | <2.1         | <2.1         | <2.1          | <2.1               | <u> </u>      |                   | 3300               | <2.1<br><b>2300</b> | <6.4<br><b>480</b> |               | <2.1               | 1                  |
| Tetrachloroethene Tetrachudrofuran                | 330<br>NA      | 33<br>NA       | <3.4               | 72           | 130               | 59               | <b>-</b>           | 14.9               | 250          | 9            | 47            | 360                | 83            | 14                |                    | +                   |                    | 120           | 10000              | 39                 |
| Tetrahydrofuran<br>Toluene                        | 100000         | NA<br>50000    | <1.5<br><b>2.9</b> | 3.8<br>68    | 2.9<br>9.5        | 18<br>28         | <1.5<br><b>21</b>  | <1.4<br><b>6.1</b> | 6<br>13      | 3.9<br>1.8   | <1.5<br><0.75 | <1.5<br><b>2.9</b> | 4.3<br>48     | 2.6<br>4.5        | 54<br>10           | <1.5<br>13          | 4.2<br>2.7         | 7.6<br>8.3    | <1.5<br>1.2        | 2.1<br>1.2         |
| trans-1,2-Dichloroethene                          | NA             | NA             | <2.0               | <2.0         | <2.0              | <2.0             | <2.0               | <1.9               | <2.0         | <2.0         | <2.0          | <2.0               | <2.0          | 2.1               | <2.0               | <2.0                | <2.4               | <2.0          | <2.0               | <2.0               |
| trans-1,3-Dichloropropene                         | 600            | 200            | <2.3               | <2.3         | <2.3              | <2.3             | <2.3               | <5.3               | <2.3         | <2.3         | <2.3          | <2.3               | <2.3          | <2.3              | <2.3               | <2.3                | <6.8               | <2.3          | <2.3               | <2.3               |
| Trichloroethene                                   | 70             | 21             | <1.1               | <1.1         | <1.1              | <1.1             | <1.1               | <1.3               | 1.9          | <1.1         | <2.7          | <1.1               | <1.1          | <1.1              | 3.0                | 4                   | <1.6               | 1.8           | 3.3                | <2.7               |
| Trichlorofluoromethane                            | 20000          | 7000           | <2.8               | <2.8         | <2.8              | <2.8             | <2.8               | <2.6               | <2.8         | <2.8         | <2.8          | <2.8               | <2.8          | <2.8              | <2.8               | <2.8                | <3.4               | <2.8          | <2.8               | <2.8               |
| Trichlorotrifluoroethane                          | 800000         | 300000         | <3.8               | 1000         | 640               | 61               | 16                 | 4.1                | 95           | <3.8         | 75            | 62                 | 45            | <3.8              | 450                | 650                 | 206                | 1600          | 900                | 6                  |
| Vinyl acetate                                     | 6000           | 2000           | <1.8               | <1.8         | <1.8              | <1.8             | <1.8               | <1.6               | <1.8         | <1.8         | <1.8          | <1.8               | <1.8          | <1.8              | <1.8               | <1.8                | <2.1               | <1.8          | <1.8               | <1.8               |
| Vinyl chloride                                    | 220            | 32             | <0.51              | <0.51        | <0.51             | <0.51            | <0.51              | <0.60              | <0.51        | <0.51        | <1.3          | <0.51              | <0.51         | <0.51             | <0.51              | <0.51               | <0.77              | <0.51         | <0.51              | <1.3               |
| Notes: BOLD: exceeds laboratory method detection. |                |                |                    |              |                   |                  |                    |                    |              |              |               |                    |               |                   |                    |                     |                    |               |                    |                    |

Notes:

BOLD: exceeds laboratory method detection.

exceeds applicable MPCA 10X Commercial/Industrial ISV.

Interim MPCA ISVs, May 25, 2016.

3 of 3 7/29/20169:43 AM

#### Table 9

#### **Soil Vapor and Venting System Field Monitoring Results**

MN Bio Business Cenetr 221 1st Avenue SW Rochester, Minnesota

|        |                        |              |                  |            |           | Lower     |            |           |           |
|--------|------------------------|--------------|------------------|------------|-----------|-----------|------------|-----------|-----------|
|        |                        |              | Static Pressure  |            | Methane   | Explosive |            | Hydrogen  | Carbon    |
|        | Date                   | Time         | (+/-) Inch in WC | PID (nnm)  |           | Limit     | Oxygen     | Sulfide   | Monoxide  |
| LSG-7  | 8/22/2014              | 1138         | 0.066            | 0.0        | 0.0       | 0.0       | 20.9       | 0.0       | 0.0       |
|        | 2/26/2015              | 927          | NR               | 1.0        | NR        | NR        | NR         | NR        | NR        |
|        | 9/8/2015               | NR           | NR               | NR         | 0.0       | 0.0       | 20.9       | 0.0       | 0.0       |
|        | 1/12/2016              | 1208         | 0.068            | 0.0        | 0.0       | 0.0       | 20.9       | 0.0       | 0.0       |
|        | 2/23/2016              | 1700         | NR               | 0.0        | NR        | NR        | NR         | NR        | NR        |
|        | 6/23/2016              | 1245         | -0.103           | 0.0        | 0.0       | 0.0       | 20.9       | 0.0       | 0.0       |
| LSG-8  | 8/22/2014              | 1155         | 0.051            | 0.0        | 0.0       | 0.0       | 20.9       | 0.0       | 0.0       |
|        | 2/26/2015              | 944          | NR               | 0.1        | NR        | NR        | NR         | NR        | NR        |
|        | 9/8/2015               | NR           | NR               | NR         | 0.0       | 0.0       | 20.5       | 0.0       | 0.0       |
|        | 1/12/2016              | 1115         | 0.092            | 0.0        | 0.0       | 0.0       | 20.9       | 0.0       | 0.0       |
|        | 2/23/2016              | 1723         | NR               | 0.0        | NR        | NR        | NR         | NR        | NR        |
|        | 6/23/2016              | 1259         | -0.425           | 0.0        | 0.0       | 0.0       | 20.9       | 0.0       | 0.0       |
| LSG-9  | 8/22/2014              | 1106         | 0.045            | 0.0        | 0.0       | 0.0       | 20.9       | 0.0       | 0.0       |
|        | 2/26/2015              | 856          | NR               | 2.8        | NR        | NR        | NR         | NR        | NR        |
|        | 9/8/2015               | NR           | NR               | NR         | 0.0       | 0.0       | 20.9       | 0.0       | 0.0       |
|        | 1/12/2016              | 1132         | 0.068            | 0.0        | 0.0       | 0.0       | 20.9       | 0.0       | 0.0       |
|        | 2/23/2016              | 1603         | NR               | 0.0        | NR        | NR        | NR         | NR        | NR        |
|        | 6/23/2016              | 1206         | -0.831           | 0.0        | 0.0       | 0.0       | 20.9       | 0.0       | 0.0       |
| LSG-10 | 8/22/2014              | 1122         | 0.048            | 0.0        | 0.0       | 0.0       | 20.9       | 0.0       | 0.0       |
|        | 2/26/2015              | 908          | NR               | 0.3        | NR        | NR        | NR         | NR        | NR        |
|        | 9/8/2015               | NR           | NR               | NR         | 0.0       | 0.0       | 20.9       | 0.0       | 0.0       |
|        | 1/12/2016              | 1147         | 0.089            | 0.0        | 0.0       | 0.0       | 20.9       | 0.0       | 0.0       |
|        | 2/23/2016              | 1632         | NR               | 0.0        | NR        | NR        | NR         | NR        | NR        |
| 0D 4   | 6/23/2016              | 1222         | -0.823           | 0.0        | 0.0       | 0.0       | 20.9       | 0.0       | 0.0       |
| SP-1   | 8/22/2014              | 1210         | 0.024            | 0.0        | 0.0       | 0.0       | 20.9       | 0.0       | 0.0       |
|        | 2/26/2015              | 956          | NR               | 0.2        | NR        | NR        | NR         | NR        | NR        |
|        | 9/8/2015               | NR           | NR               | NR         | NR        | NR        | NR         | NR        | NR        |
|        | 1/12/2016<br>2/23/2016 | 1253         | NR               | 0.0<br>1.1 | 0.0       | 0.0       | 20.9<br>NR | 0.0       | 0.0<br>NR |
|        | 6/23/2016              | 1620<br>1316 | NR<br>NR         | 0.0        | NR<br>0.0 | NR<br>0.0 | 20.9       | NR<br>0.0 | 0.0       |
| SP-2   | 8/22/2014              | 1220         | 0.000            | 0.0        | 0.0       | 0.0       | 20.9       | 0.0       | 0.0       |
| 3F-2   | 2/26/2015              | 1009         | NR               | 0.0        | NR        | NR        | NR         | NR        | NR        |
|        | 9/8/2015               | NR           | NR               | NR         | NR        | NR        | NR         | NR        | NR        |
|        | 1/12/2016              | 1236         | NR               | 0.0        | 0.0       | 0.0       | 20.9       | 0.0       | 0.0       |
|        | 2/23/2016              | 1711         | NR               | 0.0        | NR        | NR        | NR         | NR        | NR        |
|        | 6/23/2016              | 1122         | NR               | 0.0        | 0.0       | 0.0       | 20.9       | 0.0       | 0.0       |
| PV-1   | 8/22/2014              | NR           | 0.059            | 0.0        | 0.0       | 0.0       | 20.9       | 0.0       | 0.0       |
|        | 2/26/2015              | NR           | NR               | 0.0        | NR        | NR        | NR         | NR        | NR        |
|        | 9/8/2015               | NR           | NR               | 0.0        | NR        | NR        | NR         | NR        | NR        |
|        | 1/12/2016              | NR           | NR               | NR         | NR        | NR        | NR         | NR        | NR        |
| PV-2   | 8/22/2014              | NR           | 0.063            | 0.0        | 0.0       | 0.0       | 20.9       | 0.0       | 0.0       |
|        | 2/26/2015              | NR           | NR               | 0.0        | NR        | NR        | NR         | NR        | NR        |
|        | 9/8/2015               | NR           | NR               | 0.9        | NR        | NR        | NR         | NR        | NR        |
|        | 1/12/2016              | NR           | NR               | NR         | NR        | NR        | NR         | NR        | NR        |
| PV-3   | 8/22/2014              | NR           | 0.067            | 0.2        | 0.0       | 0.0       | 20.9       | 0.0       | 0.0       |
|        | 2/26/2015              | NR           | NR               | 0.0        | NR        | NR        | NR         | NR        | NR        |
|        | 9/8/2015               | NR           | NR               | NR         | NR        | NR        | NR         | NR        | NR        |
|        | 1/12/2016              | NR           | NR               | NR         | NR        | NR        | NR         | NR        | NR        |

Notes:

NR: Not recorded. NA: Not analyzed

### SYSTEM OPERATION AND MAINTENANCE SUMMARY MN Bio Business Center

#### 221 1st Avenue SW Rochester, Minnesota

| Date      | Approximate<br>Time | Sensophone<br>Call<br>Received? | Alarm<br>Condition                     | DPE<br>System<br>Status | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------|---------------------|---------------------------------|----------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9-Apr-09  | NA                  | NA                              | NA                                     | Off                     | DPE system temporary startup. Sampled initial DPE groundwater discharge and air emissions. System shut down to determine if air emissions and/or groundwater treatment were necessary.                                                                                                                                                                                                                                                                                                                                            |
| 4-Jun-09  | NA                  | NA                              | NA                                     | Off                     | Air stripper installed. Air stripper air emissions and influent and effluent groundwater samples collected.                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5-Jun-09  | NA                  | NA                              | NA                                     | Off/On                  | Installed temporary secondary containment around DPE room door way. DPE system left on.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6-Jun-09  | 19:00               | Y                               | MS High Level                          | On/Off                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8-Jun-09  | NA                  | NA                              | NA                                     | Off                     | Landmark on site to clean MS float switch assembly. DPE system left off per client request until elevator pit drain tile sump can be connected to the air stripper, a permanent secondary containment berm can be installed, and additional floor sump alarm and conductivity meter can be installed.                                                                                                                                                                                                                             |
| 19-Jun-09 | NA                  | NA                              | NA                                     | Off                     | Landmark onsite to monitor elevator pit sump water levels and PID readings.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 23-Jun-09 | NA                  | NA                              | NA                                     | Off                     | Landmark, SDE, and Muska on site to install permanent secondary containment berm and sump pit flow meter.                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 25-Jun-09 | NA                  | NA                              | NA                                     | Off                     | Landmark and PLC on site to terminate switches to the control panel. Noticed lower trilevel float switch is getting caught on the site tube. PLC to replace MS trilevel float assembly. Pumped 300 gallons of water from elevator drain tile sump through the air stripper. Sump appears to be recharging with water.                                                                                                                                                                                                             |
| 29-Jun-09 | NA                  | NA                              | NA                                     | Off/On                  | Landmark replaced MS trilevel float assembly. Bottom float still catches on site tube; therefore, Landmark installed JB-welded washers onto float assembly. Also compared flow meter readings with handheld monitor; replaced leaking air stripper hoses; recorded all system data from gauges and control panel. System restarted for permanent operation.                                                                                                                                                                       |
| 9-Jul-09  | NA                  | NA                              | NA                                     | On                      | Landmark onsite to troubleshoot low flowrate and vacuum readings observed remotely, to collect fluid level measurements at each well, to check the vacuum influence from DPE-1 operation at each DPE well head location; collect operational data during operation of DPE-1; to conduct a groundwater recovery test a DPE-1; modified the drop tube at DPE-3; and collected operational data wile operating on DPE-3. Kept system operating on DPE-1. Sampled groundwater discharge.                                              |
| 18-Jul-09 | NA                  | No                              | DPE Pump<br>Motor Fault                | On/Off                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20-Jul-09 | NA                  | NA                              | DPE Pump<br>Motor Fault                | Off                     | Received a call from Paramark stating the DPE was off and there was about 1 quart of oil leaking from the DPE pump.                                                                                                                                                                                                                                                                                                                                                                                                               |
| 22-Jul-09 | NA                  | NA                              | DPE Pump<br>Motor Fault                | Off                     | Landmark onsite to troubleshoot DPE system shut down and determine the source of the oil leak.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 24-Jul-09 | NA                  | NA                              | DPE Pump<br>Motor Fault                | Off                     | Landmark and PLC onsite to remove DPE pump and deliver to John Henry Foster for Repair.                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 11-Aug-09 | NA                  | NA                              | DPE Pump<br>Motor Fault                | Off/On                  | Landmark and PLC onsite to reinstall repaired DPE pump and restart the system. Landmark installed thermometer to monitor the ambient and max temperature in the DPE room in two different locations. Landmark swept, vacuumed, and mopped the floor several times to prevent dust from passing through the vacuum relief valve and clogging the pump inlet screen. PLC fixed the sensaphone. PLC and Landmark checked flow rate readings with blower curve. DPE system was restarted.                                             |
| 14-Aug-09 | 13:17               | Y                               | DPE Pump<br>High Inlet<br>Vacuum       | On/Off/On               | Paramark opened all of the individual DPE well bleed valves and restarted the system.                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 16-Aug-09 | 4:34                | Υ                               | DPE Pump High Outlet Temperature       | On/Off                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 17-Aug-09 | NA                  | NA                              | DPE Pump<br>High Outlet<br>Temperature | Off/On                  | Paramark checked max room temperature readings and all were OK. Paramark could not restart the DPE system. Landmark onsite to troubleshoot the pump and determined the inlet screen was plugged. Landmark cleaned the inlet screen, replaced the moisture separator filter, and restarted the system. The system was adjusted to run with the DPE pump bleed valve open 5% and the DPE-1 bleed valve open 20%.                                                                                                                    |
| 18-Aug-09 | 4:15                | Y                               | DPE Pump<br>High Inlet<br>Vacuum       | On/Off                  | Landmark tried restarting the system remotely, but the system would not operate for more than 30 seconds. A pressure drop was observed while trying to restart the system indicating the moisture separator filter or pump in                                                                                                                                                                                                                                                                                                     |
| 20-Aug-09 | NA                  | NA                              | DPE Pump<br>High Inlet<br>Vacuum       | Off/On                  | Landmark onsite to troubleshoot system shutdown. Landmark verified the shutdown was the result of a plugged pump intake screen. The screen was cleaned with hydrochloric acid and reinstalled. Landmark installed a pipe plug in place of the vacuum relief valve to determine if the material plugging the screen is entering through the vacuum relief valve. Landmark added slits to DPE-1 drop tube to facilitate dewatering of the well. System restarted with DPE-1 bleed air valve opened 50% and pump bleed valve closed. |
| 22-Aug-09 | 5:30                | Y                               | DPE Pump<br>High Inlet<br>Vacuum       | On/Off                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 24-Aug-09 | NA                  | NA                              | DPE Pump<br>High Inlet<br>Vacuum       | Off/On                  | Restarted system remotely. Directed Paramark to open DPE-1 bleed valve 100%.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

## SYSTEM OPERATION AND MAINTENANCE SUMMARY MN Bio Business Center 221 1st Avenue SW

### 221 1st Avenue SW Rochester, Minnesota

| Date                       | Approximate<br>Time | Sensophone<br>Call<br>Received? | Alarm<br>Condition                  | DPE<br>System<br>Status | Comments                                                                                                                                                                                                                                                                                                   |
|----------------------------|---------------------|---------------------------------|-------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4-Sep-09                   | NA                  | NA                              | NA                                  | On                      | Landmark on site to conduct monthly monitoring and sampling event, install 1 micron moisture separator filter, and install new pump intake screen.                                                                                                                                                         |
| 16-Sep-09                  | 19:26               | Y                               | DPE Pump<br>High Inlet<br>Vacuum    | On/Off                  |                                                                                                                                                                                                                                                                                                            |
| 17-Sep-09                  | NA                  | NA                              | DPE Pump<br>High Inlet<br>Vacuum    | Off/On                  | Restarted system remotely. Directed Paramark to open DPE-1 bleed valve 100%.                                                                                                                                                                                                                               |
|                            | NA                  | NA                              | NA                                  | On                      | Landmark on site to conduct <b>quarterly groundwater monitoring and sampling event</b> , and spray aluminum pump inlet components with dry lube to prevent corrosion.                                                                                                                                      |
| 28-Sep-09                  | 21:22               | Y                               | DPE Pump<br>High Inlet<br>Vacuum    | On/Off                  |                                                                                                                                                                                                                                                                                                            |
| 29-Sep-09                  | NA                  | NA                              | DPE Pump<br>High Inlet<br>Vacuum    | Off/On                  | Landmark and PLC on site to troubleshoot alarm. The rubber hose between the moisture separator and the DPE pump was found to be defective. The rubber hose was replaced and the system was restarted.                                                                                                      |
|                            | 6:32                | Y                               | MS High Level                       | Off                     |                                                                                                                                                                                                                                                                                                            |
| 30-Sep-09                  | NA                  | NA                              | MS High Level                       | Off/On                  | Landmark on site to finish quarterly groundwater monitoring and sampling event, and clean the float switches controlling the moisture separator transfer pump. The DPE system was restarted.                                                                                                               |
| 10/15/2009<br>and 10/16/09 | NA                  | NA                              | NA                                  | On                      | Landmark on site to conduct <b>monthly monitoring and sampling event</b> and modify all of the wells for sequential operation.                                                                                                                                                                             |
| 19-Oct-09                  | 18:00               | Y                               | MS High Level                       | On/Off                  |                                                                                                                                                                                                                                                                                                            |
| 23-Oct-09                  | NA                  | Yes                             | NA                                  | Off/On                  | Landmark on site to clean the MS float assembly, replace MS hose with SCH 80 pipe and union, and install bleed air port on DPE-3 water level drop tube.                                                                                                                                                    |
| 25-Oct-09                  | 8:15                | Y                               | MS High Level                       | On/Off                  |                                                                                                                                                                                                                                                                                                            |
| 27-Oct-09                  | NA                  | Yes                             | NA                                  | Off/On                  | Landmark on site to clean MS float assembly, remove sediment from the MS, collect a TCLP VOC sediment sample for haz waste characterization, and modify the drop tube for DPE-3.                                                                                                                           |
| 27 000 00                  | 14:15               | Y                               | Hi Vacuum<br>and Hi Inlet<br>Vacuum | On/Off                  | System shut down from DPE-4's solenoid valve which was stuck in the off position.                                                                                                                                                                                                                          |
| 28-Oct-09                  | NA                  | NA                              | Hi Vacuum<br>and Hi Inlet<br>Vacuum | Off/On                  | Under Landmark's direction, Paramark was able to get DPE-4's solenoid valve to work.                                                                                                                                                                                                                       |
| 2-Nov-09                   | 23:15               | Y                               | Hi Vacuum<br>and Hi Inlet<br>Vacuum | On/Off                  | System shut down from high inlet vacuum while operating at DPE-8.                                                                                                                                                                                                                                          |
| 3-Nov-09                   | 11:15               | NA                              | Hi Vacuum<br>and Hi Inlet<br>Vacuum | Off/On                  | System restarted remotely by Landmark.                                                                                                                                                                                                                                                                     |
|                            | 11:16               | Y                               | Hi Vacuum<br>and Hi Inlet<br>Vacuum | On/Off                  | System shut down from high inlet vacuum while operating at DPE-8.                                                                                                                                                                                                                                          |
| 5-Nov-09                   | 11:36               | NA                              | Hi Vacuum<br>and Hi Inlet<br>Vacuum | Off/On                  | System restarted remotely by Landmark. DPE-8 interval replaced by DPE-1 until Landmark is on site to modify the DPE-8's well head. Large pressure drop observed between VT1 an VT2. With Paramark's assistance, Landmark was able to determine the pressure drop was from a plugged DPE pump inlet screen. |
|                            | 13:00               | NA                              | NA                                  | On/Off                  | Large pressure drop observed between VT1 an VT2 while Landmark checked the system remotely. With Paramark's assistance, Landmark was able to determine the pressure drop was from a plugged DPE pump inlet screen. System shut down by Landmark until screen could be cleaned.                             |
| 6-Nov-09                   | NA                  | NA                              | NA                                  | Off/On                  | Landmark onsite to install new inlet screen on DPE pump, tighten air stripper rods, inspect and clean inside of DPE-1 and DPE-3 aluminum solenoid valves, and restart the system.                                                                                                                          |
| 7-Nov-09                   | 20:15               | Υ                               | Hi Vacuum<br>and Hi Inlet<br>Vacuum | On/Off                  | System shut down from high inlet vacuum while operating at DPE-4.                                                                                                                                                                                                                                          |
| 9-Nov-09                   | 10:58               | NA                              | Hi Vacuum<br>and Hi Inlet<br>Vacuum | Off/On                  | Landmark restarted the system remotely and adjusted the high vacuum alarm setpoints to 25 in. Hg.                                                                                                                                                                                                          |
| 15-Nov-09                  | 6:27                | Y                               | MS High Level                       | On/Off                  |                                                                                                                                                                                                                                                                                                            |
| 11/16/2009<br>and 11/17/09 | NA                  | NA                              | MS High Level                       | Off/On                  | Landmark on site to conduct monthly monitoring and sampling event and quarterly groundwater monitoring event. Removed sediment from moisture separator, and modified DPE-8 well head, and cleaned pump inlet screen.                                                                                       |

## SYSTEM OPERATION AND MAINTENANCE SUMMARY MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

| Date      | Approximate<br>Time | Sensophone<br>Call<br>Received? | Alarm<br>Condition                   | DPE<br>System<br>Status | Comments                                                                                                                                                                                                                                                                                                                                                |
|-----------|---------------------|---------------------------------|--------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26-Nov-09 | 3:45                | Y                               | DPE Pump Hi<br>Outlet<br>Temperature | On/Off                  |                                                                                                                                                                                                                                                                                                                                                         |
| 27-Nov-09 | NA                  | NA                              | DPE Pump Hi<br>Outlet<br>Temperature | Off/On                  | Landmark on site to clean the pump inlet screen and restart the system.                                                                                                                                                                                                                                                                                 |
| 4-Dec-09  | NA                  | NA                              | NA                                   | On/Off                  | Landmark on site to clean solenoid valves and apply corrosion resistant coating to valves; DPE-4 and DPE-5 well heads modified to entrain air through water level port.                                                                                                                                                                                 |
| 7-Dec-09  | NA                  | NA                              | NA                                   | Off/On                  | Landmark on site to reassemble solenoid valves; raise the manifold 1 foot; clean the pump inlet screen; and restart the system.                                                                                                                                                                                                                         |
| 17-Dec-09 | NA                  | NA                              | NA                                   | On                      | Landmark on site to <b>conduct monthly monitoring and sampling event,</b> replace pump inlet screen, clean moisture separator, and clean floats.                                                                                                                                                                                                        |
| 28-Dec-09 | NA                  | NA                              | NA                                   | On                      | Landmark on site to replace pump inlet screen after remote monitoring indicated it was about to shut down from being clogged.                                                                                                                                                                                                                           |
| 11-Jan-10 | NA                  | NA                              | NA                                   | On/Off                  | Landmark shut down the system remotely after the remote data indicated the pump inlet screen was clogged and about to shut down the system.                                                                                                                                                                                                             |
| 14-Jan-10 | NA                  | NA                              | NA                                   | Off/On                  | Landmark on site to <b>conduct monthly monitoring and sampling event,</b> clean pump inlet screen, and clean moisture separator floats.                                                                                                                                                                                                                 |
| 23-Jan-10 | 14:15               | Υ                               | DPE Pump<br>High Inlet<br>Vacuum     | On/Off                  |                                                                                                                                                                                                                                                                                                                                                         |
| 27-Jan-10 | NA                  | NA                              | DPE Pump<br>High Inlet<br>Vacuum     | Off/On                  | Landmark on site to clean the pump inlet screen and restart the system.                                                                                                                                                                                                                                                                                 |
| 30-Jan-10 | 18:58               | Y                               | MS High Level                        | On/Off                  |                                                                                                                                                                                                                                                                                                                                                         |
| 3-Feb-10  | NA                  | NA                              | MS High Level                        | Off/On                  | Landmark onsite to clean the transfer pump floats, clean the moisture separator, and clean the pump inlet screen.                                                                                                                                                                                                                                       |
| 3-Feb-10  | 22:09               | Y                               | MS High Level                        | On/Off                  |                                                                                                                                                                                                                                                                                                                                                         |
| 4-Feb-10  | 14:50               | NA                              | MS High Level                        | Off/On                  | Landmark directed Paramark to pour tap water through the site tube to dislodge the low level transfer pump float and restart the system.                                                                                                                                                                                                                |
| 6-Feb-10  | 7:22                | Y                               | MS High Level                        | On/Off                  |                                                                                                                                                                                                                                                                                                                                                         |
|           | NA                  | NA                              | MS High Level                        | Off/On                  | Landmark onsite to clean the transfer pump floats, the moisture separator, the moisture separator site tube elbow, discharge pump floats, and the pump inlet screen. Landmark also restarted the system.                                                                                                                                                |
| 10-Feb-10 | 16:47               | Y                               | MS High Level                        | On/Off                  |                                                                                                                                                                                                                                                                                                                                                         |
|           | 18:00               | NA                              | MS High Level                        | Off/On                  | Landmark restarted the system remotely.                                                                                                                                                                                                                                                                                                                 |
|           | 19:42               | Y                               | MS High Level                        | On/Off                  |                                                                                                                                                                                                                                                                                                                                                         |
| 11-Feb-10 | 10:34               | NA                              | MS High Level                        | Off/On                  | Landmark restarted the system remotely.                                                                                                                                                                                                                                                                                                                 |
| 11-Feb-10 | 12:54               | Y                               | MS High Level                        | On/Off                  |                                                                                                                                                                                                                                                                                                                                                         |
| 12-Feb-10 | NA                  | NA                              | MS High Level                        | Off/On                  | Landmark onsite to troubleshoot the MS High Level alarm. Landmark performed the following tasks: checked the MS level switch configurations; ran diagnostic tests to narrow down the cause of the MS High Level alarm; replaced the check valve upstream of the MS pump; and, took apart the MS pump head to inspect and clean the internal pump parts. |
| 16-Feb-10 | NA                  | NA                              | NA                                   | On                      | System is operational; however, remote monitoring of the system showed the MS transfer pump cycling every 2 minutes. Landmark onsite to replace the MS transfer pump stator, and troubleshoot the continuous cycling issue with the transfer pump.                                                                                                      |
| 22-Feb-10 | NA                  | NA                              | NA                                   | On                      | Landmark onsite to conduct monthly monitoring and sampling event, quarterly groundwater monitoring event, to disabled the sensaphone sound alarm, and remove sediment from the primary moisture separator (MS1).                                                                                                                                        |
| 23-Feb-10 | NA                  | NA                              | NA                                   | On/Off/On               | Landmark on site to finish the quarterly groundwater monitoring event, and to provide oversight while PLC installs the secondary moisture separator (MS2). MS2 level switch was determined to be faulty; however, the DPE system was restarted.                                                                                                         |
| 26-Feb-10 | NA                  | NA                              | NA                                   | On                      | Landmark and PLC were on site to replace the faulty level switch for MS2, and replace the MS1 and MS2 filters.                                                                                                                                                                                                                                          |
| 7-Mar-10  | 18:00               | Y                               | DPE Pump<br>High Inlet<br>Vacuum     | On/Off                  |                                                                                                                                                                                                                                                                                                                                                         |
| 9-Mar-10  | NA                  | NA                              | DPE Pump<br>High Inlet<br>Vacuum     | Off/On                  | Landmark onsite to permanently remove the DPE pump inlet screen and change the oil in the DPE pump. Oil in the DPE pump was changed after 4,472 hours of operation.                                                                                                                                                                                     |

## SYSTEM OPERATION AND MAINTENANCE SUMMARY MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

| Date      | Approximate<br>Time | Sensophone<br>Call<br>Received? | Alarm<br>Condition               | DPE<br>System<br>Status | Comments                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|-----------|---------------------|---------------------------------|----------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 25-Mar-10 | NA                  | NA                              | NA                               | On                      | Landmark on site to <b>conduct monthly monitoring and sampling event</b> , and clean the air stripper by adding 1 gallon of hydrochloric acid.                                                                                                                                                                                                                                |  |  |  |  |  |
|           | 5:16                | Υ                               | DPE Pump<br>High Inlet<br>Vacuum | On/Off/On               | System shut down during operation at DPE-8. System restarted remotely by Landmark.                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 26-Mar-10 | 11:15               | Y                               | DPE Pump<br>High Inlet<br>Vacuum | On/Off/On               | System shut down during operation at DPE-8. System restarted by Paramark as directed by Landmark after opening the bleed valve on DPE-8's well head.                                                                                                                                                                                                                          |  |  |  |  |  |
|           | 17:15               | Y                               | DPE Pump<br>High Inlet<br>Vacuum | On/Off                  | System shut down during operation at DPE-8.                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|           | 11:17               | Y                               | DPE Pump<br>High Inlet<br>Vacuum | Off/On                  | System shut down during operation at DPE-8. System restarted remotely by Landmark after troubleshooting the system.                                                                                                                                                                                                                                                           |  |  |  |  |  |
|           | 12:36               | Y                               | DPE Pump<br>High Inlet<br>Vacuum | On/Off/On               | System shut down during operation at DPE-8. System restarted remotely by Landmark after troubleshooting the system.                                                                                                                                                                                                                                                           |  |  |  |  |  |
| 29-Mar-10 | 13:41               | Y                               | DPE Pump<br>High Inlet<br>Vacuum | On/Off/On               | System shut down during operation at DPE-8. System restarted remotely by Landmark after troubleshooting the system.                                                                                                                                                                                                                                                           |  |  |  |  |  |
|           | 13:42               | Y                               | DPE Pump<br>High Inlet<br>Vacuum | On/Off/On               | System shut down during operation at DPE-8. System restarted remotely by Landmark after troubleshooting the system.                                                                                                                                                                                                                                                           |  |  |  |  |  |
|           | 13:56               | Y                               | DPE Pump<br>High Inlet<br>Vacuum | On/Off/On               | System shut down during operation at DPE-8. System restarted remotely by Landmark after troubleshooting the system. To prevent system shutdown's during operation of DPE-8, Landmark modified the DPE system to allow DPE-7 to operate any time that DPE-8 is operating.                                                                                                      |  |  |  |  |  |
| 30-Mar-10 | NA                  | NA                              | NA                               | On                      | Landmark on site to troubleshoot DPE-8.                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|           | NA                  | NA                              | NA                               | On                      | Landmark remote troubleshooting of DPE-8. Operated DPE-8 without DPE-7.                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| 8-Apr-10  | 11:35               | Y                               | DPE Pump<br>High Inlet<br>Vacuum | On/Off/On               | Landmark modified the DPE system to allow DPE-7 to operate any time that DPE-8 is operating.                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| 12-Apr-10 | 12:36               | Y                               | DPE Pump<br>High Inlet<br>Vacuum | On/Off/On               | Landmark tested DPE-8 remotely to see if it could operate on its own. Landmark modified the DPE system to allow DPE-7 to operate any time that DPE-8 is operating.                                                                                                                                                                                                            |  |  |  |  |  |
| 16-Apr-10 | NA                  | NA                              | NA                               | On/Off/On               | valve on the DPE-8 wellhead, and clean the air stripper by adding 1 gallon of hydrochloric acid.                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| 17-Apr-10 | 23:20               | Y                               | DPE Pump<br>High Inlet<br>Vacuum | On/Off/On               | Landmark tested DPE-8 remotely to see if it could operate on its own. The system shut down; therefore, Landmark modified the DPE system to allow DPE-7 to operate any time that DPE-8 is operating.                                                                                                                                                                           |  |  |  |  |  |
| 4-May-10  | NA                  | NA                              | NA                               | On/Off/On               | Landmark tested DPE-8 remotely to see if it could operate on its own. The system shut down; therefore, Landmark modified the DPE system to allow DPE-7 to operate any time that DPE-8 is operating.                                                                                                                                                                           |  |  |  |  |  |
| 5-May-10  | 11:27               | Y                               | DPE Pump<br>High Inlet<br>Vacuum | On/Off/On               | The system shut down from DPE-8 operation; therefore, Landmark modified the DPE system to allow DPE-7 to operate any time that DPE-8 is operating.                                                                                                                                                                                                                            |  |  |  |  |  |
| 13-May-10 | NA                  | NA                              | NA                               | On                      | Landmark on site to conduct <b>monthly monitoring and sampling event, quarterly groundwater sampling event,</b> cleaned the air stripper by adding 1/2 gallon of hydrochloric acid. Plastic debris was found on the inlet side of the piping leaving the wellhead for DPE-8. Plastic piece was removed and the system shutdowns resulting from DPE-8 operation were resolved. |  |  |  |  |  |
| 17-Jun-10 | NA                  | NA                              | NA                               | On                      | Landmark on site to conduct <b>monthly monitoring and sampling event</b> , cleaned the air stripper by adding 1/2 gallon of hydrochloric acid.                                                                                                                                                                                                                                |  |  |  |  |  |
| 29-Jun-10 | 6:04                | Y                               | DPE Pump<br>High Inlet<br>Vacuum | On/Off/On               | The system shut down after switching to DPE-1 operation. Landmark restarted the system remotely.                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| 30-Jun-10 | 12:07               | Y                               | DPE Pump<br>High Inlet<br>Vacuum | On/Off/On               | The system shut down after switching to DPE-1 operation. Landmark restarted the system remotely and temporarily changed the DPE pump high inlet vacuum alarm to 24.5 inches Hg.                                                                                                                                                                                               |  |  |  |  |  |
| 1-Jul-10  | 0:12                | Y                               | DPE Pump<br>High Inlet<br>Vacuum | On/Off/On               | I Landmark is on site for routine monitoring and can troubleshoot DPE-1. The DPE pump high inlet vacuum alarm was reset to 24 inches Hg.                                                                                                                                                                                                                                      |  |  |  |  |  |
| 8-Jul-10  | 0:27                | Y                               | DPE Pump<br>High Inlet<br>Vacuum | On/Off/On               | The system shut down after DPE-1 and DPE-8 operation switched to DPE-1 operation.  Landmark restarted the system remotely and modified the system to operate DPE-1 and DPE-8 at the same time during 30 minutes of the DPE-1 cycle.                                                                                                                                           |  |  |  |  |  |
| 9-Jul-10  | 0:37                | Y                               | DPE Pump<br>High Inlet<br>Vacuum | On/Off/On               | The system shut down after DPE-1 and DPE-8 operation switched to DPE-1 operation.  Landmark restarted the system remotely and modified the system to operate DPE-1 and DPE-8 at the same time during the entire DPE-1 cycle.                                                                                                                                                  |  |  |  |  |  |

### SYSTEM OPERATION AND MAINTENANCE SUMMARY MN Bio Business Center

#### 221 1st Avenue SW Rochester, Minnesota

| Date                   | Approximate<br>Time | Sensophone<br>Call<br>Received? | Alarm<br>Condition               | DPE<br>System<br>Status | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------|---------------------|---------------------------------|----------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26-Jul-10              | NA                  | NA                              | NA                               | On                      | Landmark on site to <b>conduct monthly monitoring and sampling event</b> , cleaned the air strippe by adding 1/2 gallon of hydrochloric acid. DPE-1 troubleshooting by pulling piping out of DPE-1 for cleaning and inspection. Sediments may have been clogging screen. Also noticed sanitary well seal was broken and missing rubber pieces. Fluid levels were not collected due to instrument malfunction. Air sampling flow controller malfunctioned and only operated for 3 hours. Therefore, a 3 hour composite air sample was collected. |
| 29-Jul-10              | 7:05                | Y                               | DPE Pump<br>Low Inlet<br>Vacuum  |                         | System shut down was actually due to a power outage in the building. This power outage may have also increased the elevator pit drain tile sump totalizer reading from 330 to 340 gallons. Paramark restarted the DPE system.                                                                                                                                                                                                                                                                                                                   |
| 18-Aug-10              | NA                  | NA                              | NA                               | On/Off                  | Landmark on site to conduct monthly monitoring and sampling event and quarterly groundwater monitoring event. Oil was observed to be leaking from the DPE pump; therefore the pump was turned off immediately for inspection and troubleshooting by Landmark. Monthly DPE system monitoring and sampling was not completed. The transfer pump stator was replaced.                                                                                                                                                                              |
| 20-Aug-10              | NA                  | NA                              | NA                               | Off                     | Landmark and John Henry Foster on site to troubleshoot DPE pump oil leak. The pump could not be fixed on site, so it was shipped back to John Henry Foster's shop for further inspection an repair.                                                                                                                                                                                                                                                                                                                                             |
| 27-Sep-10              | NA                  | NA                              | NA                               | Off/On                  | Landmark and John Henry Foster on site to reinstall DPE pump. Landmark <b>conducted monthly monitoring and sampling event</b> . Air sampling flow controller malfunctioned and only operated for 30 minutes. Therefore, a 30 minute composite air sample was collected.                                                                                                                                                                                                                                                                         |
| 18-Oct-10<br>16-Nov-10 | NA<br>11:20         | NA<br>NA                        | NA<br>NA                         | On<br>On/Off            | Landmark <b>conducted monthly monitoring and sampling event</b> . Replaced MS#1 and MS#2 filters and cleaned air stripper by adding 1 gallon of hydrochloric acid.  DPE system shut down due to a DPE pump oil leak discovered by Paramark.                                                                                                                                                                                                                                                                                                     |
| 18-Nov-10              | NA                  | NA<br>NA                        | NA<br>NA                         | Off                     | Landmark and John Henry Foster on site to troubleshoot DPE pump oil leak. The pump could not be fixed on site, so it was shipped back to John Henry Foster's shop for further inspection an repair.                                                                                                                                                                                                                                                                                                                                             |
|                        | NA                  | NA                              | NA                               | Off                     | Landmark onsite to conduct quarterly groundwater monitoring event for non-DPE wells.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 22-Dec-10              | NA                  | NA                              | NA                               | Off/On                  | Landmark and John Henry Foster on site to reinstall DPE pump. Landmark <b>conducted monthl monitoring and sampling event</b> . New oil in pump from repairs. Solenoid rebuild kits required for DPE-1, 2, and 8.                                                                                                                                                                                                                                                                                                                                |
| 23-Dec-10              | NA                  | NA                              | NA                               | Off                     | Landmark onsite to conduct <b>quarterly groundwater monitoring event for DPE wells.</b> Replaced 4" flex hose to air stripper.                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        | NA                  | NA                              | NA                               | On                      | Landmark on site to install solenoid rebuild kits for DPE-1, 2, and 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 6-Jan-11               | 15:45               | Y                               | DPE Pump<br>High Inlet<br>Vacuum | On/Off/On               | DPE system turned off when operating on DPE-6. Landmark restarted system remotely. DPE-6 was left off until the coil to the solenoid valve could be replaced.                                                                                                                                                                                                                                                                                                                                                                                   |
| 20-Jan-11              | NA                  | NA                              | NA                               | On                      | Landmark onsite to conduct <b>monthly system monitoring and sampling event</b> , and troubleshoot DPE-2, DPE-4, and DPE-6 which appear to be stuck open. Hunt Electric on site to trouble shoot solenoid valves. They had to reset a breaker in the DPE system control panel and fixed DPE-2 and DPE-4. DPE-6 appears to have a faulty coil.                                                                                                                                                                                                    |
|                        | NA                  | NA                              | NA                               | On                      | Paramark contacted Landmark about a leak from the line from DPE-8 in the boiler room. Leak appears to be from pressure gauge.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 16-Feb-11              | 12:49               | Υ                               | DPE Pump<br>Low Inlet<br>Vacuum  | On/Off                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                        | 13:49               | NA                              | NA                               | Off/On                  | Landmark restarted the DPE system remotely. DPE-8 taken offline.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 28-Feb-11              | NA                  | NA                              | NA                               | On                      | Landmark onsite to conduct monthly system monitoring and sampling event and quarterly groundwater sampling event, change oil in the DPE pump (10,989 hrs), replaced hose from ai stripper blower to the tank, fixed DPE-8 leak, put DPE-8 back on line, and installed solenoid valve rebuild kits at DPE-3, 5, and 7.                                                                                                                                                                                                                           |
| 2-Mar-11               | 13:28               | Y                               | MS High Level                    | On/Off                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 7-Mar-11               | NA                  | NA                              | NA                               | Off/On                  | Landmark onsite to replace the coil to DPE-6, clean the moisture separator, clean the moisture separator floats, and put DPE-8 back online.                                                                                                                                                                                                                                                                                                                                                                                                     |
| 18-Mar-11              | 13:30               | NA                              | NA                               | On/Off                  | Landmark onsite to repair DPE-8 (possible bonnet gasket pinched), clean the moisture separato floats, replaced transfer pump stator, and troubleshoot constant transfer pump operation. DPE system left off after it was determined that the floats were not operational.                                                                                                                                                                                                                                                                       |
| 23-Mar-11              | 9:00                | NA                              | NA                               | Off/On                  | Landmark onsite to conduct monthly monitoring and sampling event. Landmark also replace MS-1 tri-level floats, and changed oil at 11,276 hours.                                                                                                                                                                                                                                                                                                                                                                                                 |
| 22-Apr-11              | 9:10                | NA                              | NA                               | On                      | Landmark Onsite to conduct monthly monitoring and sampling event. Landmark also changed oil at 11,995 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3-May-11               | 21:00               | NA                              | NA                               | On                      | Landmark on site to troubleshoot and clean the discharge flow meter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5-May-11               | NA                  | NA                              | NA                               | On                      | Landmark on site to troubleshoot leaking solenoid valve. DPE-4 solenoid valve repaired.  Landmark onsite to conduct monthly monitoring and sampling event as well as quarterly                                                                                                                                                                                                                                                                                                                                                                  |
| 19-May-11              | 6:00                | NA                              | NA                               | On                      | groundwater sampling event. Landmark also changed oil at 12,645 hours.                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 16-Jun-11              | 12:00               | NA                              | NA                               | On                      | Landmark onsite to conduct <b>monthly monitoring and sampling event</b> . Landmark also change oil at 13,314 hours and installed new vacuum gauge in DPE 4 manifold.                                                                                                                                                                                                                                                                                                                                                                            |

### SYSTEM OPERATION AND MAINTENANCE SUMMARY MN Bio Business Center

#### 221 1st Avenue SW Rochester, Minnesota

| Date      | Approximate<br>Time | Sensophone<br>Call<br>Received? | Alarm<br>Condition                 | DPE<br>System<br>Status | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------|---------------------|---------------------------------|------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18-Jul-11 | 15:37               | Y                               | Lo Inlet<br>Vacuum                 | On/Off/On               | Contacted Paramark and the shutdown was due to a building power outage. Paramark restarted the system after the power returned.                                                                                                                                                                                                                                                                                                                                                   |
| 21-Jul-11 | 11:00               | Y                               | Air Stripper<br>High High<br>Level | On/Off                  | the system after the power returned.                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 21-Jui-11 | 14:16               | NA                              | NA                                 | Off/On                  | Paramark onsite and turned AS pump to the "hand" position until the water level in the air stripper was below the High Level switch. Paramark returned AS pump to auto position and restarted the DPE system.                                                                                                                                                                                                                                                                     |
|           | 2:26                | Y                               | Air Stripper<br>High High<br>Level | On/Off                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 22-Jul-11 | 8:00                | NA                              | NA                                 | Off/On                  | Paramark onsite and turned AS pump to the "hand" position until the water level in the air stripper was below the High Level switch. Paramark returned AS pump to auto position and restarted the DPE system.                                                                                                                                                                                                                                                                     |
|           | 9:06                | Y                               | Air Stripper<br>High High<br>Level | On/Off                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 27-Jul-11 | 9:00                | NA                              | NA                                 | On                      | Landmark onsite to conduct <b>monthly monitoring and sampling event</b> . Landmark also changed oil at 14,169 hours and installed installed new transfer pump stator as well as cleaned floats                                                                                                                                                                                                                                                                                    |
| 28-Aug-11 | 11:00               | NA                              | NA                                 | On                      | Landmark onsite to conduct <b>monthly monitoring and sampling event</b> . Landmark also changed oil at 14,962 hours and installed new transfer pump stator as well as rebuilt DPE-1 solonoid valve.                                                                                                                                                                                                                                                                               |
| 8-Sep-11  | 15:18               | NA                              | NA                                 | On                      | Landmark changed the operational configuration to focus operation on DPE-1, DPE_2, DPE-3, and DPE-4.                                                                                                                                                                                                                                                                                                                                                                              |
| 29-Sep-11 | 11:40               | NA                              | NA                                 | On                      | Landmark onsite to conduct monthly monitoring and sampling event as well as quarterly groundwater sampling event. Landmark also changed oil at 15,722 hours and installed new moisture separator filters (both 1 micron).                                                                                                                                                                                                                                                         |
| 2-Oct-11  | 14:11               | Y                               | Air Stripper<br>High High<br>Level | On/Off                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4-Oct-11  | 10:46               | NA                              | NA                                 | Off                     | Landmark onsite to troubleshoot system alarm. Air stripper floats cleaned. Landmark cleaned moisture separator floats at MS-1 and noticed the bottom float was causing the transfer pump to operate continuously. Hunt Electric onsite to troubleshoot MS-1 float issues and confirmed the bottom reed of the tri-level float assembly was causing electrical connection in any float position. Hunt checked wiring from the tri-level assembly to the panel and found no issues. |
| 11-Oct-11 | 12:28               | NA                              | NA                                 | Off                     | Landmark onsite replace the tri-level float switch for MS-1 and replace the transfer pump stator. The low float on the tri-level switch was 1/2-inch lower than previous switch and was allowing air through the transfer pump, preventing the low float from shutting down the transfer pump. The tri-level switch was returned to PLC to be rebuilt. Therefore the system could not be restarted.                                                                               |
| 18-Oct-11 | 10:00               | NA                              | NA                                 | Off/On                  | Landmark onsite to install a new float switch assembly for MS-1. System restarted.                                                                                                                                                                                                                                                                                                                                                                                                |
| 27-Oct-11 | 8:00                | NA                              | NA                                 | On                      | Landmark onsite to conduct <b>monthly monitoring and sampling event</b> . Landmark also changed oil at 16,013 hours.                                                                                                                                                                                                                                                                                                                                                              |
| 21-Nov-11 | 11:00               | NA                              | NA                                 | On                      | Landmark onsite to conduct <b>monthly monitoring and sampling event</b> . Landmark also changed oil at 16,619 hours.                                                                                                                                                                                                                                                                                                                                                              |
| 2-Dec-11  | 8:52                | Y                               | Lo Inlet<br>Vacuum                 | On/Off                  | DPE system shut down due to a low inlet vacuum alarm. Paramark inspected the DPE pump and observed an oil leak from the DPE pump.                                                                                                                                                                                                                                                                                                                                                 |
| 12-Dec-11 | 13:00               | NA                              | NA                                 | Off                     | Landmark and JHF onsite to remove the DPE pump for repair.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 21-Dec-11 | 11:00               | NA                              | NA                                 | Off                     | Landmark onsite to collect sump water sample and inspect corrosion on elevator support backets.                                                                                                                                                                                                                                                                                                                                                                                   |
| 20-Jan-12 | 8:00                | NA                              | NA                                 | Off/On                  | Landmark and JHF onsite to reinstall the DPE pump and restart the DPE system.                                                                                                                                                                                                                                                                                                                                                                                                     |
| 27-Jan-12 | 9:00                | NA                              | NA                                 | On                      | Landmark onsite to conduct monthly monitoring and sampling event.  Landmark onsite to conduct monthly monitoring and sampling event as well as quarterly                                                                                                                                                                                                                                                                                                                          |
| 16-Feb-12 | 9:00                | NA                              | NA                                 | On                      | groundwater sampling event. Landmark also changed oil at 17,520 hours.                                                                                                                                                                                                                                                                                                                                                                                                            |
| 16-Mar-12 | 11:00               | NA                              | NA                                 | On                      | Landmark onsite to conduct <b>monthly monitoring and sampling event</b> . Landmark also changed oil at 18,219 hours.                                                                                                                                                                                                                                                                                                                                                              |
| 25-Mar-12 | 19:58               | Y                               | Air Stripper<br>High High<br>Level | On/Off                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 27-Mar-12 | 7:00                | Y                               | Air Stripper<br>High High<br>Level | Off/On                  | Landmark onsite to clean the air stripper floats. System restarted.                                                                                                                                                                                                                                                                                                                                                                                                               |
| 17-Apr-12 | 10:25               | NA                              | NA                                 | On                      | Landmark onsite to conduct <b>monthly monitoring and sampling event</b> . Landmark also changed oil at 18,964 hours.                                                                                                                                                                                                                                                                                                                                                              |
| 17-May-12 | 10:00               | NA                              | NA                                 | On                      | Landmark onsite to conduct monthly monitoring and sampling event as well as quarterly groundwater sampling event. Solenoid for DPE-3 faulty and taken off-line. Landmark also changed oil at 19,660 hours.                                                                                                                                                                                                                                                                        |
| 31-May-12 | 10:59               | NA                              | NA                                 | On                      | Landmark onsite and replaced solenoid bonnet for DPE-2 and DPE-3, and inner seal on DPE-1. Landmark also changed oil at 19,950 hours.                                                                                                                                                                                                                                                                                                                                             |

### SYSTEM OPERATION AND MAINTENANCE SUMMARY MN Bio Business Center 221 1st Avenue SW

### 221 1st Avenue SW Rochester, Minnesota

| Date                  | Approximate<br>Time | Sensophone<br>Call<br>Received? | Alarm<br>Condition | DPE<br>System<br>Status | Comments                                                                                                                                                                                                                          |
|-----------------------|---------------------|---------------------------------|--------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14-Jun-12             | 10:17               | NA                              | NA                 | On                      | Landmark onsite to conduct <b>monthly monitoring and sampling event</b> . Landmark also changed oil at 20,279 hours.                                                                                                              |
| 18-Jun-12             | 14:18               | NA                              | NA                 | On                      | Landmark changed the DPE operational configuration from operating at DPE-1, DPE-2, DPE-3, and DPE-4 to operation of only DPE-3.                                                                                                   |
| 19-Jul-12             | 11:11               | NA                              | NA                 | On                      | Landmark onsite to conduct <b>monthly monitoring and sampling event</b> . Conducted troubleshooting of MS#1 and MS#2 pressure drop. Replaced DPE#3 solenoid components. Landmark also changed oil at 21,119 hours.                |
| 25-Jul-12             | NA                  | NA                              | NA                 | On                      | Landmark onsite to replace filters for MS#1 and MS#2; replace transfer pump stator; and clean flow meter.                                                                                                                         |
| 23-Aug-12             | 7:30                | NA                              | NA                 | On                      | Landmark onsite to conduct <b>monthly monitoring and sampling event</b> . Conducted troubleshooting of MS#1 and MS#2 pressure drop. Landmark also changed oil at 21,872 hours.                                                    |
| 26-Sep-12             | 20:12               | NA                              | NA                 | On                      | Landmark onsite to conduct monthly monitoring and sampling event as well as quarterly groundwater sampling event. Pressure drop issue determined to be clogged demister pad from MS#2. Landmark also changed oil at 22,695 hours. |
| 26-Oct-12             | 8:55                | NA                              | NA                 | On                      | Landmark onsite to conduct monthly monitoring and sampling event. Landmark also changed oil at ????? hours.                                                                                                                       |
| 26-Oct-12             | 13:53               | NA                              | NA                 | On                      | on at 1111 nous.                                                                                                                                                                                                                  |
| 31-Oct-12             | 10:00               | NA                              | NA                 | On                      | Landmark on site to remove demister pad from MS#2 and troubleshoot DPE system alarm.  Transfer pump failed; therefore, system shut down temporarily to conduct rebound sampling of DPE emissions and groundwater concentrations.  |
|                       |                     | NA                              | NA<br>NA           | On<br>On                |                                                                                                                                                                                                                                   |
|                       |                     | NA                              | NA<br>NA           |                         | Landmark onsite to conduct monthly monitoring and sampling event. Landmark turned DPE                                                                                                                                             |
| 26-Oct-12             | 6:00                | NA                              | NA                 | On/Off                  | system off to conduct rebound test. DPE-3 solenoid valve rebuilt.                                                                                                                                                                 |
| 31-Oct-12             | NA                  | NA                              | NA                 | Off                     | Landmark onsite to troubleshoot transfer pump.  Landmark onsite to conduct quarterly groundwater sampling event and soil gas sampling                                                                                             |
| 19-Dec-12             | NA                  | NA                              | NA                 | Off                     | event.                                                                                                                                                                                                                            |
| 21-Dec-12             | NA                  | NA                              | NA                 | Off/On                  | Landmark onsite to restart the DPE system for rebound emissions sampling and conduct monthly monitoring and sampling event. Landmark also changed oil at 23,442 hours.                                                            |
| 4-Jan-13              | 9:40                | NA                              | NA                 | On                      | Landmark onsite to replace transfer pump stator, clean air stripper, and rebuild DPE-3 solenoid.<br>Landmark also changed oil at 23,655 hours.                                                                                    |
| 9-Jan-13<br>18-Jan-13 | 9:40                | NA<br>NA                        | NA<br>NA           | On<br>On                | Landmark onsite to replace transfer pump coupling and key.                                                                                                                                                                        |
| 23-Jan-13             | 8:00<br>13:40       | NA<br>NA                        | NA<br>NA           | On                      | Landmark onsite to repair transfer pump.  DPE system switched from DPE-3 operation to operating on DPE-1, DPE-2, DPE-3, to DPE-                                                                                                   |
| 30-Jan-13             | 6:00                | NA                              | NA                 | On                      | Landmark onsite to conduct monthly monitoring and sampling event.                                                                                                                                                                 |
| 5-Feb-13              | 7:26                | Y                               | MS High Level      |                         | Restarted system remotely.                                                                                                                                                                                                        |
| 8-Feb-13              | 13:45               | Υ                               | MS High Level      | On/Off                  |                                                                                                                                                                                                                                   |
| 12-Feb-13             | NA                  | NA                              | NA                 | Off/On                  | Landmark onsite to replace transfer pump.                                                                                                                                                                                         |
| 26-Feb-13             | NA                  | NA                              | NA                 | On                      | Landmark onsite to conduct quarterly groundwater sampling event and monthly DPE system                                                                                                                                            |
| 21-Mar-13             | 8:00                | NA                              | NA                 | On                      | monitoring and sampling event.  Landmark onsite to conduct monthly monitoring and sampling event.                                                                                                                                 |
| 4-Apr-13              | NA                  | NA                              | NA                 | On/Off                  | DPE system shut down for rebound test.                                                                                                                                                                                            |
| 23-May-13             | 16:00               | NA                              | NA                 | Off/On                  | Landmark onsite to restart DPE system and conduct monthly monitoring and sampling event and quarterly groundwater sampling event. Rebuilt solenoids 2 and 4.                                                                      |
| 26-Jun-13             | 10:40               | NA                              | NA                 | On                      | Landmark onsite to conduct monthly monitoring and sampling event.                                                                                                                                                                 |
| 26-Aug-13             | 17:30               | NA                              | NA                 | On                      | Landmark onsite to conduct quarterly groundwater sampling event and monthly DPE system monitoring and sampling event. DPE system shut down.                                                                                       |
| 10-Dec-13             | 13:30               | NA                              | NA                 | Off                     | Landmark onsite to conduct quarterly groundwater sampling event. DPE system shut down.                                                                                                                                            |
| 18-Feb-14             | 10:30               | NA                              | NA                 | Off                     | Landmark onsite to conduct <b>quarterly groundwater sampling event</b> . <b>DPE system shut down</b> . Landmark also conducted the semi-annual soil vapor monitoring.                                                             |
| 20-May-14             | 10:00               | NA                              | NA                 | Off                     | Landmark onsite to conduct quarterly groundwater sampling event. DPE system shut down.                                                                                                                                            |
| 21-Aug-14             | 9:30                | NA                              | NA                 | Off                     | Landmark onsite to conduct <b>quarterly groundwater sampling event</b> . <b>DPE system shut down</b> . Landmark also conducted the semi-annual soil vapor monitoring.                                                             |
| 19-Nov-14             | 8:40                | NA                              | NA                 | Off                     | Landmark onsite to conduct quarterly groundwater sampling event. DPE system shut down.                                                                                                                                            |
| 25-Feb-15             | 14:45               | NA                              | NA                 | Off                     | Landmark onsite to conduct quarterly groundwater sampling event. DPE system shut down.  Landmark also conducted the semi-annual soil vapor monitoring.                                                                            |
| 3-Mar-15              | 3:20                | NA                              | NA                 | Off                     | Landmark onsite to resample groundwater at MW-14, MW-15, and DPE-2 due to broken vials from February visit.                                                                                                                       |
| 15-Jun-15             | 4:20                | NA                              | NA                 | Off                     | Landmark onsite to conduct quarterly groundwater sampling event. DPE system shut down.                                                                                                                                            |
| 20-Jul-15             | 9:00                | NA                              | NA                 | Off                     | Landmark and JHF onsite to remove the DPE pump for repair.                                                                                                                                                                        |

### SYSTEM OPERATION AND MAINTENANCE SUMMARY MN Bio Business Center

#### 221 1st Avenue SW Rochester, Minnesota

| Date                            | Approximate<br>Time | Sensophone<br>Call<br>Received? | Alarm<br>Condition                                         | DPE<br>System<br>Status | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|---------------------|---------------------------------|------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18-Aug-15                       | 8:40                | NA                              | NA                                                         | Off                     | Landmark onsite to conduct quarterly groundwater sampling event. DPE system shut down.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 8-Sep-15                        | 11:50               | NA                              | NA                                                         | Off                     | Landmark onsite to conduct semi-annual soil vapor monitoring.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 9-Sep-15                        | 7:00                | NA                              | NA                                                         | Off                     | Landmark & JHF onsite to reinstall DPE pump. JHF fixed the DPE pump and replaced the vacuum pump. Landmark replaced DPE system components. Replaced 5 of the 8 solenoid valves (#1, 2, 3, 4, & 6). Waiting on three additional solenoids for the 3 remaining repairs. Serviced water separator w/several gallons of muriatic acid. Removed significant sediment from water separator. Replaced the PVC well piping at all DPE wells.                                                                                                                                                    |
| 12-Oct-15                       | 11:30               | NA                              | NA                                                         | Off                     | Landmark onsite to repair the remaining 3 solenoid valves (#5, 7, & 8). Maintenance check of DPE system done as well. Replaced transfer pump stator and MS#1 filter.                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 13-Oct-15                       | 8:30                | NA                              | NA                                                         | Off/On/Off              | Landmark onsite to collect 6-hour air stripper air emissions and influent and effluent groundwater samples. System on while air emissions sample was collected.                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 12/14/2015<br>and<br>12/15/2015 | 11:00               | NA                              | NA                                                         | Off/On                  | Landmark onsite to conduct quarterly groundwater sampling event. DPE system was powered back on. Venting system shutdown.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1/11/2016 and<br>1/12/2016      | 9:25                | NA                              | NA                                                         | On                      | Landmark onsite to conduct quarterly groundwater sampling event, semi-annual soil vapor monitoring, collect 6-hour air stripper air emissions and influent and effluent groundwater samples. Drained oil in the DPE motor pump and put new oil in.                                                                                                                                                                                                                                                                                                                                      |
| 26-Jan-16                       | 12:57               | Υ                               | Air Stripper Lo<br>Airflow                                 | On/Off/On               | Restarted system via remote access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 20-Jan-10                       | 19:57               | Y                               | Air Stripper Lo<br>Airflow                                 | On/Off                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 27-Jan-16                       | NA                  | NA                              | Air Stripper Lo<br>Airflow                                 | Off                     | Site visit to troubleshoot AS alarm condition. AS exhaust pressure is 0 and should be 8-12 inches WC. Looked in AS and holes are plugged with scale build up.                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2/23/2016 and<br>2/24/2016      | 12:50               | NA                              | NA                                                         | Off/On                  | Landmark onsite to conduct quarterly groundwater sampling event, semi-annual soil vapor monitoring, collect 6-hour air stripper air emissions and influent and effluent groundwater samples. Air stripper was taken apart and cleaned and rubber gasquets were replaced.                                                                                                                                                                                                                                                                                                                |
| 21-Mar-16                       | 10:30               | Y                               | Air Stripper<br>High High<br>Level & floor<br>sensor alarm | Off/On                  | Site visit to troubleshoot AS alarm condition. Groundwater overflowed over the air stripper and caused the basement to flood. Cleaned up the basement and cleaned the air stripper floats. Wanted to dump muriatic acid into the air stripper to unplug and diminish scale build-up, but the MN Biobusiness building was locked and I didn't have keys to leave the building and come back. Turned system back on when I left.                                                                                                                                                          |
| 30-Mar-16                       | 9:00                | NA                              | NA                                                         | On/Off/On               | The air stripper overflowed onto the basement floor again (about 25 gallons of water) but the HHL air stripper alarm wasn't triggered. The floor sensor alarm wasn't triggered either because the water flowed away from the floor sensors based on the slope of the floor. The air stripper was plugged so we took the whole air stripper apart and cleaned off all the scale build-up with a garden hose, tools, and muriatic acid. Turned the system back on after the re-assembly of the AS. Collected 6-hour AS air emissions and influent and effluent groundwater samples.       |
| 20-Apr-16                       | 9:15                | NA                              | NA                                                         | On                      | Landmark onsite to collect 6-hour air stripper air emissions and influent and effluent groundwater samples. System on while air emissions sample was collected. Monthly maintainence checks were completed as well.                                                                                                                                                                                                                                                                                                                                                                     |
| 17-May-16                       | 10:00               | NA                              | Air Stripper<br>High High<br>Level & floor<br>sensor alarm | Off/On                  | Landmark onsite to conduct quarterly groundwater sampling event, collect 6-hour air stripper air emissions and influent and effluent groundwater samples. DPE System was powered back on. Muriatic acid was dumped into the air stripper to eliminate any scaling and mineral build-up. The high-level and high-high level float on the air stripper malfunctioned so the system shut down. All of the air stripper floats were removed and cleaned. Venting System powered back on.                                                                                                    |
| 16-Jun-16                       | 9:30                | Y                               | Zone 2 Alarm                                               | Off/On/Off              | the floats were cleaned and the system was turned back on. The system ran for over an hour and the moisture seperator filled up and was not draining even though the transfer pump to the air stripper was running. Appears to be something with the moisture seperator pump and may need a new rubber strator. The moisture seperator transfer pump appeared to work when it wasn't fighting against the air stripper blower. Shut system down before leaving and will bring a new strator on next site visit.                                                                         |
| 20-Jun-16                       | 9:00                | NA                              | NA                                                         | Off/On/Off              | Landmark onsite to fix moisture seperator issues. Old rubber strator was removed from the MS transfer pump and a new one was installed. System ran for an hour and we were still having issues with the MS tank emptying. Removed piping from the MS tank that connects to the transfer pump and it was very clogged with limestone build-up. Cleaned all of these parts and piping and the system appeared to work fine again.                                                                                                                                                         |
| 23-Jun-16                       | 8:45                | NA                              | NA                                                         | On                      | Landmark onsite to collect 6-hour air stripper air emissions sample. Semi-annual soil vapor samples were collected as well. Monthly maintainence checks were completed as well. Had a meeting with the plumber and got the south venting system fan working again. The fan started right up after the plumber went up to check it out. The tubing that lead to the digital manometer had moisture in it so that was cleared out and the digital reading worked again. The plumber also modified the DPE and AS exhaust stacks in the alleyway so rain water wouldn't get in the piping. |

#### SYSTEM OPERATION AND MAINTENANCE SUMMARY

#### **MN Bio Business Center** 221 1st Avenue SW Rochester, Minnesota

| Date      | Approximate<br>Time | Sensophone<br>Call<br>Received? | Alarm<br>Condition | DPE<br>System<br>Status | Comments                                                                                                                                                                                                                                                                                                                                                             |
|-----------|---------------------|---------------------------------|--------------------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 29-Jun-16 | 9:00                | NA                              | NA                 | On                      | Eric onsite and modified the plumbing piping so the MS transfer pump is pumping groundwater directly to the sanitary sewer instead of into the air stripper. The AS influent groundwater concentrations are well below discharge criteria and we've be having AS issues the past few months so the system is now modified to pump GW directly to the sanitary sewer. |
|           |                     |                                 |                    |                         |                                                                                                                                                                                                                                                                                                                                                                      |

9 of9

NA: Not Applicable. Y: Yes.

#### MASS REMOVAL FROM DPE EXHAUST

#### MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

| Monitorin               | ng Period               |                          |                   |                     |                           |                       | Total VOCs           |                   |                       | PCE                  |                      |
|-------------------------|-------------------------|--------------------------|-------------------|---------------------|---------------------------|-----------------------|----------------------|-------------------|-----------------------|----------------------|----------------------|
| Start Date              | End Date                | DPE Well(s)<br>Operating | DPE Pump<br>Hours | Hours Per<br>Period | Total Flow<br>Rate (scfm) | Concentration (ug/m³) | Pounds Per<br>Period | Cumulative pounds | Concentration (ug/m³) | Pounds Per<br>Period | Cumulative<br>Pounds |
|                         | 6/29/2009               |                          | 0                 | 0                   | 0                         | 0                     | 0                    | 0                 | 0                     | 0                    | 0                    |
| 6/29/2009 <sup>3</sup>  | 8/15/2009 <sup>1</sup>  | DPE-1                    | 478.5             | 478.5               | 24.3                      | 14,613,880            | 636.97               | 636.97            | 11,600,000            | 505.61               | 505.61               |
| 8/15/2009               | 9/4/2009 <sup>2</sup>   | DPE-1                    | 957               | 478.5               | 36.1                      | 3,795,092             | 245.74               | 882.71            | 3,630,000             | 235.05               | 740.66               |
| 9/4/2009                |                         | DPE-1                    | 1428              | 471                 | 36.1                      | 3,795,092             | 241.89               | 1,124.60          | 3,630,000             | 231.37               | 972.02               |
|                         | 10/15/2009 <sup>4</sup> | DPE-1                    | 1899              | 471                 | 31.6                      | 494,779               | 27.60                | 1,152.21          | 396,000               | 22.09                | 994.12               |
| 10/16/2009 <sup>5</sup> |                         | All Wells                | 1899              | 231                 | 48.9                      | 608,840               | 25.78                | 1,177.99          | 571,000               | 24.18                | 1018.30              |
|                         | 11/17/2009 <sup>5</sup> | All Wells                | 2361              | 231                 | 48.9                      | 453,479               | 19.20                | 1,197.19          | 381,000               | 16.13                | 1034.43              |
| 11/17/2009              | 12/17/2009 <sup>5</sup> | All Wells                | 2960              | 599                 | 48.9                      | 12,510                | 1.37                 | 1,198.56          | 6,790                 | 0.75                 | 1035.17              |
| 12/17/2009              | 1/14/2010 <sup>5</sup>  | All Wells                | 3568              | 608                 | 48.9                      | 11,403,200            | 1270.88              | 2,469.45          | 8,550,000             | 952.89               | 1988.07              |
| 1/14/2010               | 2/22/2010 <sup>6</sup>  | All Wells                | 4161              | 593                 | 69.4                      | 2,364,821             | 364.82               | 2,834.27          | 1,720,000             | 265.34               | 2253.41              |
| 2/22/2010               | 3/25/2010 <sup>7</sup>  | All Wells                | 4868              | 707                 | 69.4                      | 548                   | 0.10                 | 2,834.37          | 215,000               | 39.54                | 2292.96              |
| 3/25/2010               | 4/16/2010               | All Wells                | 5308              | 440                 | 77.9                      | 331,284               | 42.57                | 2,876.93          | 282,000               | 36.23                | 2329.19              |
| 4/16/2010               | 5/12/2010               | All Wells                | 5908              | 600                 | 86.9                      | 438,730               | 85.73                | 2,962.66          | 27,900                | 5.45                 | 2334.64              |
| 5/12/2010               | 6/17/2010               | All Wells                | 6768              | 860                 | 55.6                      | 50,553                | 9.06                 | 2,971.72          | 689,000               | 123.50               | 2458.14              |
| 6/17/2010               | 7/26/2010               | All Wells                | 7671              | 903                 | 75.6                      | 1,032,070             | 264.11               | 3,235.83          | 489,000               | 125.14               | 2583.28              |
| 7/26/2010               | 9/27/2010 <sup>8</sup>  | All Wells                | 8222              | 551                 | 86.8                      | 493,213               | 88.42                | 3,324.25          | 245,150               | 43.95                | 2627.23              |
| 9/27/2010               | 10/18/2010              | All Wells                | 8662              | 440                 | 77.4                      | 246,881               | 31.52                | 3,355.77          | 1,300                 | 0.17                 | 2627.39              |
| 10/18/2010              | 12/22/2010              | All Wells                | 9378              | 716                 | 94.1                      | 19,686                | 4.97                 | 3,360.74          | 2,680                 | 0.68                 | 2628.07              |
| 12/22/2010              | 1/20/2011               | All Wells                | 10034             | 656                 | 88.0                      | 46,334                | 10.03                | 3,370.77          | 5,040                 | 1.09                 | 2629.16              |
| 1/20/2011               | 2/28/2011               | All Wells                | 10969             | 935                 | 83.1                      | 61,844                | 18.02                | 3,388.79          | 4,590                 | 1.34                 | 2630.50              |
| 2/28/2011               | 3/23/2011               | All Wells                | 11277             | 308                 | 64.8                      | 21,690                | 1.62                 | 3,390.41          | 7,340                 | 0.55                 | 2631.05              |
| 3/23/2011               | 4/22/2011               | All Wells                | 11995             | 718                 | 65.8                      | 56,955                | 10.08                | 3,400.49          | 6,840                 | 1.21                 | 2632.26              |
| 4/22/2011               | 5/19/2011               | All Wells                | 12645             | 650                 | 61.3                      | 29,665                | 4.43                 | 3,404.92          | 6,270                 | 0.94                 | 2633.19              |
| 5/19/2011               | 6/16/2011               | All Wells                | 13314             | 669                 | 56.4                      | 25,270                | 3.57                 | 3,408.49          | 668                   | 0.09                 | 2633.29              |
| 6/16/2011               | 7/25/2011               | All Wells                | 14169             | 855                 | 59.5                      | 8,991                 | 1.71                 | 3,410.20          | 308                   | 0.06                 | 2633.35              |
| 7/25/2011               | 8/28/2011               | All Wells                | 14962             | 793                 | 68.7                      | 8,866                 | 1.81                 | 3,412.01          | 0                     | 0.00                 | 2633.35              |
| 8/28/2011               | 9/29/2011               | DPE-1, 2, 3, & 4         | 15722             | 760                 | 59.9                      | 8,324                 | 1.42                 | 3,413.44          | 3,420                 | 0.58                 | 2633.93              |
| 9/29/2011               | 10/27/2011              | DPE-1, 2, 3, & 4         | 16013             | 291                 | 52.3                      | 106,710               | 6.09                 | 3,419.52          | 180                   | 0.01                 | 2633.94              |
| 10/27/2011              | 11/21/2011              | DPE-1, 2, 3, & 4         | 16619             | 606                 | 57.6                      | 11,328                | 1.48                 | 3,421.01          | 22,100                | 2.89                 | 2636.83              |
| 11/21/2011              | 1/27/2012               | DPE-1, 2, 3, & 4         | 17042             | 423                 | 49.1                      | 268,469               | 20.90                | 3,441.91          | 29,100                | 2.27                 | 2639.10              |
| 1/27/2012               | 2/16//2012              | DPE-1, 2, 3, & 4         | 17520             | 478                 | 39.9                      | 85,733                | 6.13                 | 3,448.04          | 4,440                 | 0.32                 | 2639.41              |
| 2/16/2012               | 3/16/2012               | DPE-1, 2, 3, & 4         | 18219             | 699                 | 34.0                      | 59,394                | 5.29                 | 3,453.33          | 0                     | 0.00                 | 2639.41              |
| 3/16/2012               | 4/17/2012               | DPE-1, 2, 3, & 4         | 18964             | 745                 | 29.2                      | 71,800                | 5.86                 | 3,459.18          | 20,600                | 1.68                 | 2641.09              |
| 4/17/2012               | 5/17/2012               | DPE-1, 2, 3, & 4         | 19660             | 696                 | 32.3                      | 50,874                | 4.29                 | 3,463.47          | 25,200                | 2.12                 | 2643.22              |
| 5/17/2012               | 6/14/2012               | DPE-1, 2, 3, & 4         | 20279             | 619                 | 38.5                      | 41,142                | 3.68                 | 3,467.15          | 11,200                | 1.00                 | 2644.22              |

#### MASS REMOVAL FROM DPE EXHAUST

#### MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

| Monitorii  | ng Period               |                          |                   |      |                           |                       | Total VOCs           |                   |                       | PCE                  |                      |
|------------|-------------------------|--------------------------|-------------------|------|---------------------------|-----------------------|----------------------|-------------------|-----------------------|----------------------|----------------------|
| Start Date | End Date                | DPE Well(s)<br>Operating | DPE Pump<br>Hours |      | Total Flow<br>Rate (scfm) | Concentration (ug/m³) | Pounds Per<br>Period | Cumulative pounds | Concentration (ug/m³) | Pounds Per<br>Period | Cumulative<br>Pounds |
| 6/14/2012  | 7/19/2012               | DPE-3                    | 21119             | 840  | 49.2                      | 173,300               | 26.85                | 3,493.99          | 113,000               | 17.51                | 2661.72              |
| 7/19/2012  | 8/23/2012               | DPE-3                    | 21872             | 753  | 33.3                      | 54,700                | 5.14                 | 3,499.13          | 27,800                | 2.61                 | 2664.34              |
| 8/23/2012  | 9/26/2012               | DPE-3                    | 22695             | 823  | 45.9                      | 100,659               | 14.25                | 3,513.39          | 45,800                | 6.49                 | 2670.82              |
| 9/26/2012  | 10/26/2012 <sup>9</sup> | DPE-3                    | 23397             | 702  | 40.1                      | 1,099,548             | 116.03               | 3,629.42          | 664,000               | 70.07                | 2740.89              |
| 10/26/2012 | 12/21/2012              | DPE-3                    | 23442             | 45   | 48.1                      | 447,600               | 3.63                 | 3,633.05          | 358,000               | 2.90                 | 2743.80              |
| 12/21/2012 | 1/30/2013               | DPE-1, 2, 3, & 4         | 24138             | 696  | 38.1                      | 475,000               | 47.22                | 3,680.26          | 348,000               | 34.59                | 2778.39              |
| 1/30/2013  | 2/26/2013               | DPE-1, 2, 3, & 4         | 24625             | 487  | 44.1                      | 9,017                 | 0.73                 | 3,680.99          | 1,600                 | 0.13                 | 2778.52              |
| 2/26/2013  | 3/21/2013               | DPE-1, 2, 3, & 4         | 25176             | 551  | 39.1                      | 51,872                | 4.19                 | 3,685.18          | 17,500                | 1.41                 | 2779.93              |
| 3/21/2013  | 5/23/2013               | DPE-1, 2, 3, & 4         | 25691             | 515  | 100.0                     | 56,690                | 10.94                | 3,696.12          | 43,200                | 8.34                 | 2788.27              |
| 5/23/2013  | 6/26/2013               | DPE-1, 2, 3, & 4         | 26501             | 810  | 92.5                      | 215                   | 0.06                 | 3,696.18          | 102                   | 0.03                 | 2788.30              |
| 6/26/2013  | 8/26/2013               | DPE-1, 2, 3, & 4         | 27889             | 1388 | 80.6                      | 3,154                 | 1.32                 | 3,697.51          | 122                   | 0.05                 | 2788.35              |
| 10/12/2015 | 10/12/2015              | All Wells                | 27889             | 0    | NA                        | NA                    | NA                   | 3,697.51          | NA                    | NA                   | 2788.35              |
| 10/13/2015 | 10/13/2015              | All Wells                | 27898             | 9    | 48.8                      | 5,958                 | 0.01                 | 3,697.52          | 61                    | 0.00                 | 2788.35              |
| 12/15/2015 | 1/12/2016               | All Wells                | 28591             | 693  | 64.4                      | 13,567                | 2.27                 | 3,699.79          | 7,200                 | 1.20                 | 2789.55              |
| 1/12/2016  | 2/24/2016               | All Wells                | 29503             | 912  | 64.4                      | 15,685                | 3.45                 | 3,703.24          | 8,400                 | 1.85                 | 2791.40              |
| 2/24/2016  | 3/30/2016               | All Wells                | 30254             | 751  | 65.6                      | 26,073                | 4.82                 | 3,708.05          | 19,000                | 3.51                 | 2794.91              |
| 3/30/2016  | 4/20/2016               | All Wells                | 30758             | 504  | 64.4                      | 3,139                 | 0.38                 | 3,708.44          | 6                     | 0.00                 | 2794.91              |
| 4/20/2016  | 5/17/2016               | All Wells                | 31395             | 637  | 66.3                      | 3,041                 | 0.48                 | 3,708.92          | 18                    | 0.00                 | 2794.92              |
| 5/17/2016  | 6/23/2016 <sup>10</sup> | All Wells                | 32275             | 880  | 65.02                     | 2,699                 | 0.58                 | 3,709.50          | 230                   | 0.05                 | 2794.96              |

#### Notes:

- 1. The initial concentrations of total VOCs and PCE used for estimating the mass removed during the first 478.5 hours of system operation, which was estimated to be from, June 29, 2009, through August 15, 2009.
- 2. The concentrations of total VOCs and PCE from the September 4, 2009, sampling event were used for estimating the mass removed during the remaining 478.5 hours of system operation, which was estimated to be from August 15, 2009, through September 4, 2009.
- 3. The DPE system was temporarily started on April 9, 2009, for baseling DPE emissions sampling and analysis. The analytical data from April 4, 2009, was used for the emissions calculations on the estimated DPE system start date of June 29, 2009.
- 4. The flow rate used for the 10/15/09 calculations was from operation at DPE-1.
- 5. The flow rates used for the 10/16/09, 11/17/09, 12/17/09, and 1/14/10 calculations was from averaging the flowrates on 11/17/09 from each well during sequential operation of all DPE wells.
- 6. The flow rates used after 1/14/10 were averaged from the flow rates from each well during sequential operation of all DPE wells.
- 7: There was a typo when entering the DPE pump hours; therefore, this value was revised while entering the data from 4/16/10.
- 8: The 6-hr flow controller failed and only lasted 26 minutes during exhaust sample collection. Therefore, the concentrations used during this sampling event were averaged from the July 26 and October 18, 2010, sampling events.
- 9: Landmark believes the October 26, 2012, emissions results from Pace Analytical are suspect and are outliers from previous concentration trends.
- 10: Hours and flow rate values are calculated based on previous results

### AIR EMISSIONS ANALYTICAL RESULTS (micrograms per cubic meter) MN Bio Business Center 221 1st Avenue SW Rochester, MN

| Sample ID                                          | DPE-EXHAUST          | DPE-EXHAUST             | DPE-EXHAUST            | DPE-EXHAUST              | DPE-EXHAUST              | DPE-EXHAUST            | DPE-EXHAUST           | DPE-EXHAUST<br>2104   | DPE-EXHAUST<br>1068 | DPE-EXHAUST<br>0961    | DPE-EXHAUST<br>0836    | DPE-EXHAUST<br>1051   | DPE-EXHAUST<br>0531     | DPE-EXHAUST<br>0757    | DPE-EXHAUST<br>1264       | DPE-EXHAUST<br>0795     | DPE-EXHAUST<br>2048   |
|----------------------------------------------------|----------------------|-------------------------|------------------------|--------------------------|--------------------------|------------------------|-----------------------|-----------------------|---------------------|------------------------|------------------------|-----------------------|-------------------------|------------------------|---------------------------|-------------------------|-----------------------|
| Wells Operating                                    | All DPE Wells        | All DPE Wells           | All DPE Wells          | All DPE Wells            | All DPE Wells            | All DPE Wells          | All DPE Wells         | DPE-1,2,3 & 4         | DPE-1,2,3 & 4       | DPE-1,2,3 & 4          | DPE-1,2,3 & 4          | DPE-1,2,3 & 4         | DPE-1,2,3 & 4           | DPE3                   | DPE3                      | DPE3                    | 2046<br>DPE-3         |
| Sample Collection Method                           | 6-hr Composite       | 6-hr Composite          | 6-hr Composite         | 6-hr Composite           | 6-hr Composite           | 6-hr Composite         | 6-hr Composite        | 6-hr Composite        | 6-hr Composite      | 6-hr Composite         | 6-hr Composite         | 6-hr Composite        | 6-hr Composite          | 6-hr Composite         | 6-hr Composite            | 6-hr Composite          | 6-hr Composite        |
| Collected Date                                     | 6/23/2016            | 5/17/2016               | 4/20/2016              | 3/30/2016                | 2/24/2016                | 1/12/2016              | 10/13/2015            | 8/26/2013             | 6/26/2013           | 5/23/2013              | 3/21/2013              | 2/25/2013             | 1/30/2013               | 12/21/2012             | 10/26/2012                | 9/26/2012               | 8/23/2012             |
| 1.1.1-Trichloroethane                              | <2.7                 | <2.7                    | <2.7                   | 10                       | 5.3                      | <8.1                   | <2.7                  | 4.3                   | <3.0                | 5/23/2013<br><47.1     | <107                   | <52.1                 | <6400                   | <1380                  | <383                      | <298                    | <478                  |
| 1,1,2,2-Tetrachloroethane                          | <3.4                 | <3.4                    | <3.4                   | <3.4                     | <3.4                     | <10                    | <3.4                  | <1.5                  | <1.9                | <29.6                  | <67.0                  | <32.7                 | <4020                   | <867                   | <241                      | <188                    | <300                  |
| 1,1,2-Trichloroethane                              | <2.7                 | <2.7                    | <2.7                   | <2.7                     | <2.7                     | <8.1                   | <2.7                  | <1.2                  | <1.5                | <23.3                  | <52.8                  | <25.8                 | <3170                   | <683                   | <190                      | <148                    | <237                  |
| 1,1,2-Trichlorotrifluoroethane                     | 1500                 | 2100                    | 1900                   | 5300                     | 5600                     | 4500                   | 5400                  | 2820                  | 98.2                | 13100                  | 33300                  | 7040                  | 127000                  | 89600                  | 433000                    | 34800                   | 26900                 |
| 1,1-Dichloroethane 1,1-Dichloroethene              | <2.0<br><2.0         | <2.0<br><2.0            | <2.0<br><2.0           | <2.0<br><2.0             | <2.0<br><b>3.4</b>       | <6.0<br><6.0           | <2.0<br><b>3.3</b>    | <1.7<br><1.7          | <2.2<br><2.2        | <34.8<br><34.3         | <78.8<br><77.8         | <38.5<br><38.0        | <4730<br><4670          | <1020<br><1010         | <283<br><280              | <220<br><218            | <353<br><349          |
| 1,2,4-Trichlorobenzene                             | <3.7                 | <3.7                    | <3.7                   | <3.7                     | <3.7                     | <11                    | 5.7                   | <3.2                  | <4.1                | <64.0                  | <145                   | <70.8                 | <8700                   | <1870                  | <521                      | <406                    | <650                  |
| 1,2,4-Trimethylbenzene                             | <1.0                 | <1.0                    | <1.0                   | <1.0                     | <1.0                     | <3.0                   | 5.8                   | <2.1                  | <2.7                | <42.4                  | <96.0                  | <46.9                 | <5760                   | <1240                  | <345                      | <269                    | <430                  |
| 1,2-Dibromoethane (EDB)                            | <3.8                 | <3.8                    | <3.8                   | <3.8                     | <3.8                     | <11                    | <3.8                  | <3.3                  | <4.2                | <66.1                  | <150                   | <73.2                 | <8990                   | <1940                  | <538                      | <419                    | <671                  |
| 1,2-Dichlorobenzene                                | <3.0                 | <3.0                    | <3.0                   | <3.0                     | <3.0                     | <9.0                   | <3.0                  | <2.6                  | <3.3                | <51.7                  | <117                   | <57.2                 | <7030                   | <1510                  | <421                      | <328                    | <525                  |
| 1,2-Dichloroethane 1,2-Dichloropropane             | <2.0<br><2.3         | <2.0<br><2.3            | <2.0<br><2.3           | <2.0<br><2.3             | <2.0<br><2.3             | <6.0<br><6.9           | <2.0<br><2.3          | <0.87<br><2.0         | <1.1<br><2.5        | <17.4<br><39.9         | <39.4<br><90.3         | <19.2<br><44.1        | <2360<br><5420          | <509<br><1170          | <142<br><324              | <110<br><253            | <176<br><405          |
| 1,3,5-Trimethylbenzene                             | <1.0                 | <1.0                    | <1.0                   | <1.0                     | <1.0                     | <3.0                   | 1.3                   | <2.0                  | <2.7                | <42.4                  | <96.0                  | <46.9                 | <5760                   | <1240                  | <345                      | <269                    | <430                  |
| 1,3-Butadiene                                      | <1.1                 | <1.1                    | <1.1                   | <1.1                     | <1.1                     | <3.3                   | <1.1                  | <0.95                 | <1.2                | <19.1                  | <43.2                  | <21.1                 | <2590                   | <559                   | <155                      | <121                    | <194                  |
| 1,3-Dichlorobenzene                                | <3.0                 | <3.0                    | <3.0                   | <3.0                     | <3.0                     | <9.0                   | <3.0                  | <2.6                  | <3.3                | <51.7                  | <117                   | <57.2                 | <7030                   | <1510                  | <421                      | <328                    | <525                  |
| 1,4-Dichlorobenzene                                | <3.0                 | <3.0                    | <3.0                   | <3.0                     | <3.0                     | <9.0                   | <3.0                  | <2.6                  | <3.3                | <51.7                  | <117                   | <57.2                 | <7030                   | <1510                  | <421                      | <328                    | <525                  |
| 2-Butanone (MEK)<br>2-Hexanone                     | <b>2.1</b> <2.0      | <b>1.7</b> <2.0         | <b>16</b> <2.0         | <b>6.9</b><br><2.0       | <b>10</b> <2.0           | <b>17</b> <6.0         | 46<br>2.9             | <b>14.2</b><br><1.8   | <1.6<br><2.2        | <25.4<br><35.2         | <57.6<br><79.7         | <28.1<br><38.9        | <3460<br><4780          | <745<br><1030          | <207<br><286              | <161<br><223            | <258<br><357          |
| 2-Propanol                                         | <2.0<br>460          | <2.0<br><b>540</b>      | <2.0<br>710            | 920                      | ₹2.0<br><b>790</b>       | 380                    | 2.9<br>86             | <1.0                  | 1.6                 | 38.6                   | 126                    | <36.9                 | <4780                   | <621                   | 218                       | <134                    | <357                  |
| 4-Ethyltoluene                                     | <2.5                 | <2.5                    | <2.5                   | <2.5                     | <2.5                     | <7.5                   | <2.5                  | <2.1                  | <2.7                | <42.4                  | <96.0                  | <46.9                 | <5760                   | <1240                  | <345                      | <269                    | <430                  |
| 4-Methyl-2-pentanone (MIBK)                        | <2.0                 | <2.0                    | <2.0                   | <2.0                     | <2.0                     | <6.0                   | 3.1                   | <1.8                  | <2.2                | <35.2                  | <79.7                  | <38.9                 | <4780                   | <1030                  | <286                      | <223                    | <357                  |
| Acetone                                            | 43                   | 29                      | 58                     | 75                       | 94                       | 46                     | 120                   | 56.6                  | 2.2                 | 53.1                   | 71.2                   | 48.0                  | <2770                   | <596                   | <166                      | 169                     | <207                  |
| Benzene<br>Benzelehleride                          | <0.64<br><2.6        | 0.79                    | <0.64<br><2.6          | 1.1<br><2.6              | 1.2<br><2.6              | <1.9<br><7.8           | <b>2.1</b> <2.6       | <0.69<br><2.2         | <0.87               | <13.8<br><44.5         | <31.2<br><101          | <b>18.0</b> <49.2     | <1870<br><6050          | <404<br><1300          | <112<br><362              | <87.4<br><282           | <140<br><452          |
| Benzyl chloride Bromodichloromethane               | <2.6<br><3.4         | <2.6<br><3.4            | <2.6<br><3.4           | <2.6<br><3.4             | <2.6<br><3.4             | <7.8<br><10            | <2.6<br><3.4          | <2.2<br><2.9          | <2.8<br><3.7        | <44.5<br><57.7         | <101                   | <49.2<br><63.8        | <6050<br><7840          | <1300                  | <362<br><469              | <282<br><366            | <452<br><585          |
| Bromoform                                          | <5.2                 | <5.2                    | <5.2                   | <5.2                     | <5.2                     | <16                    | <5.2                  | <4.5                  | <5.6                | <89.0                  | <202                   | <98.5                 | <12100                  | <2610                  | <725                      | <564                    | <904                  |
| Bromomethane                                       | <1.9                 | <1.9                    | <1.9                   | <1.9                     | <1.9                     | <5.7                   | <1.9                  | <1.7                  | <2.1                | <33.5                  | <75.9                  | <37.1                 | <4550                   | <981                   | <273                      | <212                    | <340                  |
| Carbon disulfide                                   | <1.6                 | <1.6                    | <1.6                   | <1.6                     | <1.6                     | <4.8                   | <1.6                  | <1.3                  | <1.7                | <26.7                  | <60.5                  | <29.5                 | <3630                   | <782                   | <217                      | <169                    | <271                  |
| Carbon tetrachloride                               | <3.1                 | <3.1                    | <3.1                   | <3.1                     | <3.1                     | <9.3                   | <3.1                  | <1.4                  | <1.7                | <27.1                  | <61.5                  | <30.0                 | <3690                   | <795                   | <221                      | <172                    | <275                  |
| Chlorobenzene<br>Chloroethane                      | <2.3<br><1.3         | <2.3<br><1.3            | <2.3<br><1.3           | <2.3<br><1.3             | <2.3<br><1.3             | <6.9<br><3.9           | <2.3<br><1.3          | <2.0<br><1.1          | <2.5<br><1.5        | <39.9<br><22.9         | <90.3<br><51.9         | <44.1<br><25.3        | <5420<br><3110          | <1170<br><670          | <324<br><186              | <253<br><145            | <405<br><232          |
| Chloroform                                         | <2.4                 | <2.4                    | <2.4                   | 3                        | <2.4                     | <7.2                   | <2.4                  | 2.5                   | <2.7                | <42.0                  | <95.1                  | <46.4                 | <5710                   | <1230                  | <342                      | <266                    | <426                  |
| Chloromethane                                      | 1.2                  | 1.1                     | 1.4                    | 1.2                      | 1.5                      | <3.0                   | 1.2                   | 1.8                   | <1.1                | <17.8                  | <40.3                  | <19.7                 | <2420                   | <521                   | <145                      | <113                    | <181                  |
| cis-1,2-Dichloroethene                             | <2.0                 | <2.0                    | <2.0                   | 20                       | 5.7                      | 9.6                    | 2.8                   | 7.5                   | <2.2                | 93.9                   | 84.4                   | <38.0                 | <4670                   | <1010                  | 370                       | <218                    | <349                  |
| cis-1,3-Dichloropropene                            | <2.3<br><1.7         | <2.3                    | <2.3<br><1.7           | <2.3                     | <2.3<br><1.7             | <6.9                   | <2.3<br><1.7          | <2.0                  | <2.5<br><1.9        | <39.0                  | <88.4                  | <43.1<br><b>104</b>   | <5300                   | <1140<br><869          | <318                      | <247                    | <396                  |
| Cyclohexane Dibromochloromethane                   | <4.3                 | <1.7<br><4.3            | <4.3                   | <1.7<br><4.3             | <4.3                     | <5.1<br><13            | <4.3                  | <1.5<br><3.7          | <4.7                | <29.7<br><73.4         | <67.2<br><166          | <81.1                 | <4030<br><9970          | <2150                  | <242<br><597              | <188<br><465            | <301<br><745          |
| Dichlorodifluoromethane                            | <2.5                 | <2.5                    | 12                     | <2.5                     | 3.4                      | <7.5                   | <2.5                  | 4.2                   | <2.7                | <42.8                  | <97.0                  | <47.4                 | <5820                   | <1250                  | <349                      | <271                    | <435                  |
| Dichlorotetrafluoroethane                          | <3.5                 | <3.5                    | <3.5                   | <3.5                     | <3.5                     | <10                    | <3.5                  | <3.0                  | <3.8                | <60.2                  | <136                   | <66.6                 | <8180                   | <1760                  | <490                      | <382                    | <611                  |
| Ethanol                                            | 450                  | 340                     | 420                    | 670                      | 690                      | 1400                   | 170                   | 98.1                  | 11.1                | 123                    | 507                    | 105                   | <2190                   | <472                   | 1960                      | 18700                   | <164                  |
| Ethyl acetate                                      | <1.8<br><0.87        | <1.8                    | <1.8                   | <1.8                     | <1.8                     | <5.4                   | <1.8                  | <1.5                  | <2.0                | <31.0                  | <70.1                  | <34.2                 | <4210                   | <906                   | <252                      | 1190                    | <314<br><379          |
| Ethylbenzene Hexachloro-1,3-butadiene              | <0.87<br><5.3        | <0.87<br><5.3           | <0.87<br><5.3          | 1.1<br><5.3              | <b>7.2</b> <5.3          | <2.6<br><16            | <b>3.5</b><br><5.3    | <1.9<br><4.7          | <2.4<br><5.9        | <37.3<br><93.3         | <84.5<br><211          | <41.3<br><103         | <5070<br><12700         | <1090<br><2730         | <304<br><759              | <237<br><591            | <379<br><947          |
| m&p-Xylene                                         | 1.8                  | 1.9                     | 2.1                    | 4                        | 28                       | 6                      | 13                    | <3.7                  | <4.7                | <74.6                  | <169                   | <82.5                 | <10100                  | <2190                  | <608                      | <473                    | <758                  |
| Methylene Chloride                                 | 6.2                  | 2.5                     | 5.3                    | 4.2                      | 2.9                      | <5.1                   | 2.6                   | 5.3                   | <1.9                | <30.1                  | 80                     | 45.6                  | <4090                   | <882                   | <245                      | <191                    | <306                  |
| Methyl-tert-butyl ether                            | <1.8                 | <1.8                    | <1.8                   | <1.8                     | <1.8                     | <5.4                   | <1.8                  | <1.5                  | <2.0                | <31.0                  | <70.1                  | <34.2                 | <4210                   | <906                   | <252                      | <196                    | <314                  |
| Naphthalene                                        | <2.6                 | <2.6                    | <2.6                   | <2.6                     | <2.6                     | <7.8<br><6.0           | 4.8                   | <2.3                  | <2.9                | <45.4<br><35.2         | <103<br><79.7          | <50.2<br><38.9        | <6170<br><4780          | <1330                  | <369                      | <288                    | <461<br><357          |
| n-Heptane<br>n-Hexane                              | <2.0<br><1.8         | <2.0<br><1.8            | <2.0<br><b>2.3</b>     | <2.0<br><1.8             | <2.0<br><b>1.9</b>       | <6.0<br><5.4           | <2.0<br><b>2.9</b>    | <1.8<br><b>6.7</b>    | <2.2<br><1.9        | <35.2<br><30.5         | 9.7<br <b>89.2</b>     | <38.9<br><b>56.2</b>  | <4780<br><4150          | <1030<br><894          | <286<br><249              | <223<br><194            | <357<br><310          |
| o-Xylene                                           | <0.87                | <0.87                   | 0.9                    | 1.5                      | 8.1                      | <2.6                   | 5.4                   | <1.9                  | <2.4                | <37.3                  | <84.5                  | <41.3                 | <5070                   | <1090                  | <304                      | <237                    | <379                  |
| Propylene                                          | <0.86                | <0.86                   | <0.86                  | <0.86                    | <0.86                    | <2.6                   | <0.86                 | <0.74                 | <0.94               | <14.8                  | <33.6                  | <16.4                 | <2020                   | <435                   | <121                      | <94.1                   | <151                  |
| Styrene                                            | <2.1                 | <2.1                    | <2.1                   | <2.1                     | <2.1                     | <6.3                   | <2.1                  | <1.8                  | <2.3                | <36.9                  | <83.6                  | <40.8                 | <5010                   | <1080                  | <300                      | <234                    | <374                  |
| Tetrachloroethene                                  | 230                  | 18                      | 5.8                    | 19000                    | 8400                     | 7200                   | 61                    | 122                   | 102                 | 43200                  | 17500                  | 1600                  | 348000                  | 358000                 | 664000                    | 45800                   | 27800                 |
| Tetrahydrofuran Toluene                            | 1.9<br>2.8           | 2.3<br>3.3              | 3.6                    | 2.3                      | 6.7                      | <4.5<br><b>2.9</b>     | 1.6<br>13             | 2.9<br>5.7            | <1.6<br><2.1        | <25.4<br><b>37.4</b>   | <57.6<br>114           | <28.1<br><b>54.7</b>  | <3460<br><4440          | <745<br><956           | <207<br><266              | <161<br><207            | <258<br><331          |
| trans-1,2-Dichloroethene                           | <2.0                 | <2.0                    | <2.0                   | <2.0                     | <2.0                     | <6.0                   | <2.0                  | <b>5.7</b><br><1.7    | <2.1                | <34.3                  | <77.8                  | <38.0                 | <4440<br><4670          | <1010                  | <280                      | <207                    | <349                  |
| trans-1,3-Dichloropropene                          | <2.3                 | <2.3                    | <2.3                   | <2.3                     | <2.3                     | <6.9                   | <2.3                  | <2.0                  | <2.5                | <39.0                  | <88.4                  | <43.1                 | <5300                   | <1140                  | <318                      | <247                    | <396                  |
| Trichloroethene                                    | <1.1                 | <1.1                    | <1.1                   | 13                       | 5                        | 5.6                    | <1.1                  | 1.7                   | <1.5                | 43.7                   | <52.8                  | <25.8                 | <3170                   | <683                   | <190                      | <148                    | <237                  |
| Trichlorofluoromethane                             | <2.8                 | <2.8                    | <2.8                   | <2.8                     | <2.8                     | <8.4                   | <2.8                  | <2.4                  | <3.1                | <48.3                  | <109                   | <53.5                 | <6570                   | <1420                  | <394                      | <306                    | <491                  |
| Vinyl ablarida                                     | <1.8                 | <1.8                    | <1.8                   | <1.8                     | <1.8                     | <5.4                   | <1.8                  | <1.5                  | <1.9                | <30.4                  | <68.8                  | <33.6                 | <4130                   | <889                   | <247                      | <192                    | <308                  |
| Vinyl chloride<br>TOTAL VOCs                       | <0.51<br><b>2699</b> | <0.51<br><b>3040.59</b> | <0.51<br><b>3139.4</b> | <0.51<br><b>26073.30</b> | <0.51<br><b>15685.30</b> | <1.5<br><b>13567.1</b> | <0.51<br><b>5,958</b> | <0.55<br><b>3,154</b> | <0.70<br><b>215</b> | <11.0<br><b>56,690</b> | <25.0<br><b>51,872</b> | <12.2<br><b>9,017</b> | <1500<br><b>475,000</b> | <323<br><b>447,600</b> | <89.7<br><b>1,099,548</b> | <69.9<br><b>100,659</b> | <112<br><b>54,700</b> |
| Rold: Parameter detected above the reporting limit | 2099                 | 3040.33                 | 3133.4                 | 20073.30                 | 13003.30                 | 13307.1                | 3,330                 | J, 134                | Z 1 J               | 30,030                 | 31,012                 | 3,017                 | 47 3,000                | 441,000                | 1,033,340                 | 100,009                 | 34,700                |

TOTAL VOCS

Bold: Parameter detected above the reporting limit.

NA: Not analyzed

1. Flow Controller failed on 9/27/10; however, a 1/2 hour composite sample was still collected.

2. Landmark believes the October 26, 2012 emissions results from Pace Analytical are suspect and are outliers from previous concentration trends

### AIR EMISSIONS ANALYTICAL RESULTS (micrograms per cubic meter) MN Bio Business Center 221 1st Avenue SW Rochester, MN

| Sample ID                                          | DPE-EXHAUST<br>1660  | DPE-EXHAUST<br>0558    | DPE-EXHAUST<br>0361    | DPE-EXHAUST<br>1071    | DPE-EXHAUST<br>1637   | DPE-EXHAUST<br>1289   | DPE-EXHAUST<br>1250     | DPE-EXHAUST<br>1627    | DPE-EXHAUST<br>1105251-01 | DPE-EXHAUST<br>1214  | DPE-EXHAUST<br>0260   | DPE-EXHAUST<br>1571  | DPE EXHAUST<br>0727   | DPE EXHAUST<br>0416    | DPE EXHAUST<br>0514    | DPE EXHAUST<br>1186    | DPE EXHAUST<br>0798    |
|----------------------------------------------------|----------------------|------------------------|------------------------|------------------------|-----------------------|-----------------------|-------------------------|------------------------|---------------------------|----------------------|-----------------------|----------------------|-----------------------|------------------------|------------------------|------------------------|------------------------|
| Wells Operating                                    | DPE-3                | DPE-1,2,3 & 4          | DPE-1,2,3 & 4          | DPE-1,2,3 & 4          | DPE-1,2,3 & 4         | DPE-1,2,3 & 4         | DPE-1,2,3 & 4           | DPE-1,2,3 & 4          | DPE-1,2,3 & 4             | DPE-1,2,3 & 4        | All DPE Wells         | All DPE Wells        | All DPE Wells         | All DPE Wells          | All DPE Wells          | All DPE Wells          | All DPE Wells          |
| Sample Collection Method                           | 6-hr Composite       | 6-hr Composite         | 6-hr Composite         | 6-hr Composite         | 6-hr Composite        | 6-hr Composite        | 6-hr Composite          | 6-hr Composite         | 6-hr Composite            | 6-hr Composite       | 6-hr Composite        | 6-hr Composite       | 6-hr Composite        | 6-hr Composite         | 6-hr Composite         | 6-hr Composite         | 6-hr Composite         |
| Collected Date                                     | 7/19/2012            | 6/14/2012              | 5/17/2012              | 4/17/2012              | 3/16/2012             | 2/16/2012             | 1/27/2012               | 11/21/2011             | 10/27/2011                | 9/29/2011            | 8/28/2011             | 7/25/2011            | 6/16/2011             | 5/19/2011              | 4/22/2011              | 3/23/2011              | 2/28/2011              |
| 1,1,1-Trichloroethane                              | <1100                | <341                   | 13.1                   | <357                   | <682                  | <567                  | 51                      | <260                   | <14                       | <33.9                | <41.4                 | <39.6                | <33.9                 | <280                   | <36.5                  | <39.6                  | <140                   |
| 1,1,2,2-Tetrachloroethane                          | <692                 | <214                   | <1.2                   | <224                   | <429                  | <360                  | <1.3                    | <165                   | <17                       | <21.5                | <26.2                 | <25.1                | <21.5                 | <178                   | <46.5                  | <50.4                  | <88.8                  |
| 1,1,2-Trichloroethane                              | <546                 | <169                   | <0.92                  | <177                   | <338                  | <283                  | <1.1                    | <130                   | <14                       | <16.9                | <20.7                 | <19.8                | <16.9                 | <140                   | <36.5                  | <39.6                  | <70.0                  |
| 1,1,2-Trichlorotrifluoroethane 1.1-Dichloroethane  | <b>60300</b><br><813 | <b>29200</b> <252      | 25500<br><1.4          | <b>51200</b><br><264   | <b>58500</b><br><504  | <b>60400</b><br><422  | <b>56,100</b><br><1.6   | <b>244,000</b><br><194 | <b>11,000</b><br><10      | 103,000<br><25.3     | <b>8,150</b><br><30.8 | <b>8,250</b> <29.5   | <b>8,050</b> <25.3    | <b>19,000</b><br><209  | <b>22,600</b> <27.2    | <b>49,100</b><br><29.5 | <b>17,100</b> <104     |
| 1,1-Dichloroethene                                 | <804                 | <249                   | <1.4                   | <260                   | <498                  | <417                  | <1.6                    | <192                   | <10                       | <24.9                | <30.5                 | <29.2                | <24.9                 | <206                   | <26.9                  | <29.2                  | <103                   |
| 1,2,4-Trichlorobenzene                             | <1500                | <304                   | <1.7                   | <318                   | <608                  | <510                  | <1.9                    | <234                   | <18                       | <30.5                | <37.2                 | <35.6                | <30.5                 | <252                   | <32.9                  | <35.6                  | <126                   |
| 1,2,4-Trimethylbenzene                             | <991                 | <307                   | 2.2                    | <321                   | <614                  | <515                  | 5.6                     | <237                   | <4.9                      | 50.5                 | <37.6                 | <36.0                | <30.8                 | <254                   | <33.2                  | <36.0                  | <127                   |
| 1,2-Dibromoethane (EDB)                            | <1550                | <479                   | <2.6                   | <502                   | <958                  | <824                  | <3.1                    | <379                   | <19                       | <49.3                | <60.2<br><45.1        | <57.6                | <49.3                 | <407                   | <53.1                  | <57.6                  | <204                   |
| 1,2-Dichlorobenzene 1,2-Dichloroethane             | <1210<br><407        | <375<br><126           | <2.0<br><0.69          | <392<br><132           | <750<br><252          | <618<br><211          | <2.3<br><0.79           | <284<br><97.1          | <15<br><10                | <37.0<br><12.6       | <45.1<br><15.4        | <43.2<br><14.8       | <37.0<br><12.6        | <305<br><104           | <39.8<br><27.2         | <43.2<br><29.5         | <153<br><52.2          |
| 1,2-Dichloropropane                                | <932                 | <289                   | <1.6                   | <302                   | <578                  | <484                  | <1.8                    | <223                   | <12                       | <29.0                | <35.3                 | <33.8                | <29.0                 | <239                   | <31.2                  | <33.8                  | <120                   |
| 1,3,5-Trimethylbenzene                             | <991                 | <307                   | <1.7                   | <321                   | <614                  | <515                  | <1.9                    | <237                   | <4.9                      | <30.8                | <37.6                 | <36.0                | <30.8                 | <254                   | <33.2                  | <36.0                  | <127                   |
| 1,3-Butadiene                                      | <446                 | <138                   | <0.76                  | <145                   | <276                  | <232                  | <0.86                   | <107                   | <5.5                      | <13.9                | <16.9                 | <16.2                | <13.9                 | <114                   | <14.9                  | <16.2                  | <57.2                  |
| 1,3-Dichlorobenzene                                | <1210                | <375<br><375           | <2.0                   | <392                   | <750                  | <618<br><618          | <2.3                    | <284<br><284           | <15                       | <37.0<br><37.0       | <45.1                 | <43.2                | <37.0                 | <305                   | <39.8                  | <43.2                  | <153                   |
| 1,4-Dichlorobenzene 2-Butanone (MEK)               | <1210<br><595        | <375<br><184           | <2.0<br><1.0           | <392<br><193           | <750<br><369          | <618<br><309          | 5.4<br>5.2              | <284<br><b>343</b>     | <15<br><b>11</b>          | <37.0<br><b>80.1</b> | <45.1<br><22.6        | <43.2<br><b>27.1</b> | <37.0<br><18.5        | <305<br><153           | <39.8<br><19.9         | <43.2<br><21.6         | <153<br><76.3          |
| 2-Hexanone                                         | <823                 | <255                   | <1.4                   | <267                   | <510                  | <428                  | <1.6                    | <197                   | <10                       | <25.6                | <31.2                 | <29.9                | <25.6                 | <211                   | <27.6                  | <29.9                  | <106                   |
| 2-Propanol                                         | <496                 | <768                   | <4.2                   | <804                   | <1540                 | <1290                 | 17.5                    | <592                   | 16                        | <77.0                | <94.0                 | <90.0                | <77.0                 | <636                   | <83.0                  | <90.0                  | <318                   |
| 4-Ethyltoluene                                     | <992                 | <307                   | <1.7                   | <322                   | <614                  | <1290                 | <4.8                    | <592                   | <12                       | <77.0                | <94.0                 | <90.0                | <77.0                 | <636                   | <83.0                  | <90.0                  | <318                   |
| 4-Methyl-2-pentanone (MIBK)                        | <823                 | <255                   | <1.4                   | <267                   | <510                  | <428                  | <1.6                    | <197                   | <10                       | <25.6                | <31.2                 | <29.9                | <25.6                 | <211                   | <27.6                  | <29.9                  | <106                   |
| Acetone<br>Benzene                                 | <476<br><322         | <147<br><99.8          | <b>16.6</b> <0.55      | <154<br><105           | <295<br><200          | <247<br><167          | 43.6<br>1.4             | <b>693</b> <77.0       | <b>25</b> <3.2            | <b>58.3</b> <10.0    | <b>53.1</b> <12.2     | <b>83.1</b> <11.7    | <b>72.5</b> <10.0     | <122<br><82.7          | <b>88.4</b> <21.6      | <b>25.4</b> <23.4      | <61.1<br><41.3         |
| Benzyl chloride                                    | <1040                | <323                   | <1.8                   | <338                   | <645                  | <541                  | <2.0                    | <249                   | <13                       | <32.3                | <39.5                 | <37.8                | <32.3                 | <267                   | <34.9                  | <37.8                  | <134                   |
| Bromodichloromethane                               | <1350                | <418                   | <2.3                   | <437                   | <836                  | <721                  | <2.7                    | <332                   | <17                       | <43.1                | <52.6                 | <50.4                | <43.1                 | <356                   | <46.5                  | <50.4                  | <178                   |
| Bromoform                                          | <2080                | <645                   | <3.5                   | <675                   | <1290                 | <1080                 | <4.0                    | <497                   | <26                       | <64.7                | <79.0                 | <75.6                | <64.7                 | <534                   | <69.7                  | <75.6                  | <267                   |
| Bromomethane                                       | <784                 | <243                   | <1.3                   | <254                   | <485                  | <407                  | <1.5                    | <187                   | <9.5                      | <24.3                | <29.7                 | <28.4                | <24.3                 | <201                   | <26.2                  | <28.4                  | <100                   |
| Carbon disulfide                                   | <625                 | <194                   | <1.1                   | <203                   | <387                  | <325                  | <1.2                    | <149                   | <8.0                      | <19.4                | <23.7                 | <22.7                | <19.4                 | <160                   | <20.9                  | <22.7                  | <80.1                  |
| Carbon tetrachloride Chlorobenzene                 | <635<br><932         | <197<br><289           | <1.1<br><1.6           | <206<br><302           | <393<br><578          | <330<br><484          | <1.2<br><1.8            | <152<br><223           | <16<br><12                | <19.7<br><29.0       | <24.1<br><35.3        | <23.0<br><33.8       | <19.7<br><29.0        | <163<br><239           | <43.2<br><31.2         | <46.8<br><33.8         | <81.4<br><120          |
| Chloroethane                                       | <536                 | <166                   | <0.91                  | <174                   | <332                  | <278                  | <1.0                    | <128                   | <6.5                      | <16.6                | <20.3                 | <19.4                | <16.6                 | <137                   | <17.9                  | <19.4                  | <68.7                  |
| Chloroform                                         | <982                 | <304                   | <1.7                   | <318                   | <608                  | <510                  | 10.3                    | <234                   | <12                       | <30.5                | <37.2                 | <35.6                | <30.5                 | <252                   | <32.9                  | <35.6                  | <126                   |
| Chloromethane                                      | <417                 | <129                   | <0.71                  | <135                   | <258                  | <216                  | <0.81                   | <99.5                  | <5.0                      | <12.9                | <15.8                 | <15.1                | <12.9                 | <107                   | <13.9                  | <15.1                  | <53.4                  |
| cis-1,2-Dichloroethene                             | <804                 | <249                   | 34.8                   | <260                   | <498                  | <417                  | 80                      | 262                    | <10                       | 49.1                 | <30.5                 | <29.2                | <24.9                 | <206                   | <26.9                  | <29.2                  | <103                   |
| cis-1,3-Dichloropropene Cyclohexane                | <913<br><694         | <283<br><209           | <1.5<br><1.1           | <296<br><219           | <565<br><418          | <474<br><350          | <1.8<br><1.3            | <218<br><161           | <12<br><8.5               | <28.3<br><20.9       | <34.6<br><25.6        | <33.1<br><24.5       | <28.3<br><20.9        | <234<br><173           | <30.5<br><22.6         | <33.1<br><24.5         | <117<br><86.5          |
| Dibromochloromethane                               | <1720                | <531                   | <2.9                   | <556                   | <1060                 | <876                  | <3.3                    | <403                   | <22                       | <52.4                | <63.9                 | <61.2                | <52.4                 | <432                   | <56.4                  | <61.2                  | <216                   |
| Dichlorodifluoromethane                            | <1000                | <310                   | 1.8                    | <325                   | <621                  | <515                  | <1.9                    | <237                   | <12                       | <30.8                | <37.6                 | <36.0                | <30.8                 | <254                   | <33.2                  | <36.0                  | <127                   |
| Dichlorotetrafluoroethane                          | <1410                | <436                   | <2.4                   | <457                   | <872                  | <721                  | <2.7                    | <332                   | <18                       | <43.1                | <52.6                 | <50.4                | <43.1                 | <356                   | <46.5                  | <50.4                  | <178                   |
| Ethanol                                            | <377                 | 742                    | 51.8                   | <122                   | 894                   | <979                  | 249                     | 777                    | 81                        | <58.5                | 121                   | 198                  | 201                   | <483                   | 137                    | 139                    | <242                   |
| Ethyl acetate Ethylbenzene                         | <724<br><873         | <224<br><270           | <b>37.6</b> <1.5       | <235<br><283           | <449<br><541          | <376<br><453          | <1.4<br><b>3.1</b>      | <173<br><208           | <9.0<br><4.4              | <22.5<br><27.1       | <27.4<br><33.1        | <26.3<br><31.7       | <22.5<br><27.1        | <186<br><224           | <24.2<br><29.2         | <26.3<br><31.7         | <92.9<br><112          |
| Hexachloro-1,3-butadiene                           | <2180                | <676                   | <3.7                   | <708                   | <1350                 | <1130                 | <4.2                    | <521                   | <26                       | <67.8                | <82.7                 | <79.2                | <67.8                 | <560                   | <73.0                  | <79.2                  | <280                   |
| m&p-Xylene                                         | <1750                | <541                   | <3.0                   | <566                   | <1080                 | <907                  | 3.9                     | <417                   | <8.5                      | <54.2                | <66.2                 | <63.4                | <54.2                 | <448                   | <58.4                  | <63.4                  | <224                   |
| Methylene Chloride                                 | <704                 | <218                   | <1.2                   | <228                   | <436                  | 1390                  | <1.4                    | <168                   | 15                        | <21.9                | <26.7                 | <25.6                | <21.9                 | <181                   | <23.6                  | 310                    | <90.3                  |
| Methyl-tert-butyl ether                            | <724                 | <224                   | <1.2                   | <235                   | <449                  | <376                  | <1.4                    | <173                   | <9.0                      | <22.5                | <27.4                 | <26.3                | <22.5                 | <186                   | <24.2                  | <26.3                  | <92.9                  |
| Naphthalene<br>n-Heptane                           | <1060<br><823        | <329<br><255           | 1.8<br><1.4            | <344<br><267           | <657<br><510          | <1390<br><428         | <5.2<br><b>2.9</b>      | <639<br><197           | <13<br><10                | <83.2<br><25.6       | <102<br><31.2         | <97.2<br><29.9       | <83.2<br><25.6        | <687<br><211           | <89.6<br><27.6         | <97.2<br><29.9         | <343<br><106           |
| n-Hexane                                           | <714                 | <221                   | 1.6                    | <232                   | <442                  | 585                   | 6.9                     | <170                   | <9.0                      | <22.2                | <27.1                 | <25.9                | <22.2                 | <183                   | <23.9                  | 40.9                   | <91.6                  |
| o-Xylene                                           | <873                 | <270                   | <1.5                   | <283                   | <541                  | <453                  | 2.3                     | <208                   | <4.4                      | <27.1                | <33.1                 | <31.7                | <27.1                 | <224                   | <29.2                  | <31.7                  | <112                   |
| Propylene                                          | <347                 | <108                   | <0.59                  | <113                   | <215                  | <180                  | <0.67                   | <82.9                  | <4.3                      | <10.8                | <13.2                 | <12.6                | <10.8                 | <89.0                  | <11.6                  | <12.6                  | <44.5                  |
| Styrene                                            | <863                 | <267                   | <1.5                   | <280                   | <535                  | <448                  | <1.7                    | <206                   | <10                       | <26.8                | <32.7                 | <31.3                | <26.8                 | <221                   | <28.9                  | <31.3                  | <111                   |
| Tetrachloroethene                                  | 113000               | 11200                  | 25200                  | 20600                  | <423                  | <b>4440</b><br><309   | 29100                   | 22100                  | 180                       | 3420                 | <25.9                 | 308                  | 668                   | 6,270                  | 6,840                  | 7,340                  | 4,590                  |
| Tetrahydrofuran Toluene                            | <595<br><764         | <184<br><237           | <1.0<br><b>3.1</b>     | <193<br><248           | <369<br><473          | <309<br><397          | <1.2<br><b>7.5</b>      | <142<br><182           | <7.5<br><3.8              | <18.5<br><b>29.6</b> | <22.6<br><29.0        | <21.6<br><27.7       | <18.5<br><23.7        | <153<br><196           | <19.9<br><25.6         | <21.6<br><27.7         | <76.3<br><97.9         |
| trans-1,2-Dichloroethene                           | <804                 | <249                   | <1.4                   | <260                   | <498                  | <417                  | <1.6                    | <192                   | <10                       | <24.9                | <30.5                 | <29.2                | <24.9                 | <206                   | <26.9                  | <29.2                  | <103                   |
| trans-1,3-Dichloropropene                          | <913                 | <283                   | <1.5                   | <296                   | <565                  | <474                  | <1.8                    | <218                   | <12                       | <28.3                | <34.6                 | <33.1                | <28.3                 | <234                   | <30.5                  | <33.1                  | <117                   |
| Trichloroethene                                    | <546                 | <169                   | 9.6                    | <177                   | <338                  | <283                  | 36.9                    | 294                    | <14                       | 22.2                 | <20.7                 | <19.8                | <16.9                 | <140                   | <36.5                  | <39.6                  | <70.0                  |
| Trichlorofluoromethane                             | <1130                | <350                   | <1.9                   | <367                   | <700                  | <567                  | <2.1                    | <260                   | <14                       | <33.9                | <41.4                 | <39.6                | <33.9                 | <280                   | <36.5                  | <39.6                  | <140                   |
| Vinyl oblorida                                     | <710<br><258         | <218                   | <1.2                   | <228<br><83.6          | <436                  | <366<br><134          | <1.4<br><0.50           | <168<br><61.6          | <9.0<br><6.5              | <21.9                | <26.7                 | <25.6                | <21.9                 | <181<br><66.1          | <23.6<br><17.3         | <25.6<br><18.7         | <90.3<br><33.1         |
| Vinyl chloride TOTAL VOCs                          | <258<br>173,300      | <79.9<br><b>41,142</b> | <0.44<br><b>50,874</b> | <83.6<br><b>71,800</b> | <160<br><b>59,394</b> | <134<br><b>85,733</b> | <0.50<br><b>268,469</b> | <61.6<br>11,328        | <6.5<br>106,710           | <8.0<br><b>8,324</b> | <9.8<br><b>8,866</b>  | <9.4<br><b>8,991</b> | <8.0<br><b>25,270</b> | <66.1<br><b>29,665</b> | <17.3<br><b>56,955</b> | <18.7<br><b>21,690</b> | <33.1<br><b>61,844</b> |
| Rold: Parameter detected above the reporting limit | 113,300              | 71,174                 | 30,014                 | 11,000                 | JJ,JJ4                | 00,100                | 200,403                 | 11,320                 | 100,710                   | 0,324                | 0,000                 | 0,331                | 23,210                | 23,003                 | 30,333                 | 41,030                 | 01,044                 |

TOTAL VOCs
Bold: Parameter detected above the reporting limit.
NA: Not analyzed
1. Flow Controller failed on 9/27/10; however, a 1/2 hour composite sample was still collected.
2. Landmark believes the October 26, 2012 emissions results from Pace Analytical are suspect and are outliers from previous concentration trends

### AIR EMISSIONS ANALYTICAL RESULTS EMISSIONS ANALY IICAL RESU (micrograms per cubic meter) MN Bio Business Center 221 1st Avenue SW Rochester, MN

|                                                            | DPE EXHAUST         | DPE EXHAUST           | DPE EXHAUST           | DPE EXHAUST                   | DPE EXHAUST          | DPE EXHAUST            | DPE EXHAUST 764    | DPE EXHAUST          | DPE EXHAUST         | DPE EXHAUST       | DPE OUTLET                              | DPE-OUTLET         | DPE-OUTLET     | DPE-                    | DPE-EFFLUENT            | DPE -                |
|------------------------------------------------------------|---------------------|-----------------------|-----------------------|-------------------------------|----------------------|------------------------|--------------------|----------------------|---------------------|-------------------|-----------------------------------------|--------------------|----------------|-------------------------|-------------------------|----------------------|
| Sample ID                                                  | 1513                | 0224                  | 0965                  | 0096                          | 764                  | 1248                   | DI E EXTIAGOT 704  | 726                  | 1316                | 1037              | 1042                                    | 0903               | 1254           | EFFLUENT 519            | 253                     | EFFLUENT 0680        |
| Wells Operating                                            | All DPE Wells       | All DPE Wells         | All DPE Wells         | All DPE Wells                 | All DPE Wells        | All DPE Wells          | All DPE Wells      | All DPE Wells        | All DPE Wells       | All DPE Wells     | All DPE Wells                           | All DPE Wells      | All DPE Wells  | All DPE Wells           | DPE-1                   | DPE-1                |
| Sample Collection Method                                   | 6-hr Composite      | 6-hr Composite        | 6-hr Composite        | 1/2-hr Composite <sup>1</sup> | 6-hr Composite       | 6-hr Composite         | 6-hr Composite     | 6-hr Composite       | 6-hr Composite      | 6-hr Composite    | 6-hr Composite                          | 6-hr Composite     | 6-hr Composite | 6-hr                    | Grab                    | Grab                 |
| Collected Date                                             | 1/20/2011           | 12/23/2010            | 10/18/2010            | 9/27/2010                     | 7/26/2010            | 6/17/2010              | 5/12/2010          | 4/16/2010            | 3/25/2010           | 2/22/2010         | 1/14/2010                               | 12/17/2009         | 11/17/2009     | Composite<br>10/16/2009 | 10/15/2009              | 9/4/2009             |
| 1.1.1-Trichloroethane                                      | 20.8                | 45.6                  | <146                  | <2.3                          | <79.2                | <760                   | 12.9               | ND                   | 30.7                | 61                | ND                                      | 23.9               | ND             | 81.7                    | 4.2                     | 127                  |
| 1,1,2,2-Tetrachloroethane                                  | <2.2                | <46.5                 | <186                  | <3.0                          | <101                 | <968                   | <2.7               | ND                   | <2.5                | ND                | ND                                      | ND                 | ND             | <2.2                    | <2.1                    | <2.1                 |
| 1,1,2-Trichloroethane                                      | <1.7                | <36.5                 | <146                  | <2.3                          | <79.2                | <760                   | <2.1               | ND                   | <2.0                | ND                | ND                                      | ND                 | ND             | <1.7                    | <1.6                    | <1.6                 |
| 1,1,2-Trichlorotrifluoroethane                             | 56,200              | 42,700                | 16,300                | 9.2                           | 3,720                | 342,000                | 21,900             | 153,000              | 115,000             | 644,000           | 2,720,000                               | 4,440              | 72,100         | 172                     | 97,900                  | 153,000              |
| 1,1-Dichloroethane<br>1,1-Dichloroethene                   | <1.3<br><1.3        | <27.2<br><26.9        | <109<br><108          | <1.7<br><1.7                  | <59.0<br><58.3       | <567<br><560           | <1.6<br><1.6       | ND<br>ND             | <1.5<br><b>3.0</b>  | ND<br>7.66        | ND<br>ND                                | ND<br>ND           | ND<br>ND       | <1.3<br><b>13.9</b>     | <1.2<br><1.2            | <1.2<br>15.0         |
| 1,2,4-Trichlorobenzene                                     | <1.6                | <32.9                 | <131                  | <2.1                          | <71.3                | <684                   | <1.9               | ND                   | <1.8                | ND                | ND                                      | ND                 | ND             | <1.5                    | <1.5                    | <1.5                 |
| 1,2,4-Trimethylbenzene                                     | 3.3                 | <33.2                 | 153                   | <5.3                          | <180                 | <1730                  | <4.8               | ND                   | 12.8                | ND                | ND                                      | ND                 | ND             | <3.8                    | <3.7                    | 10.2                 |
| 1,2-Dibromoethane (EDB)                                    | <2.5                | <53.1                 | <212                  | <3.4                          | <115                 | <1110                  | <3.1               | ND                   | <2.9                | ND                | ND                                      | ND                 | ND             | <2.5                    | <2.4                    | <2.4                 |
| 1,2-Dichlorobenzene<br>1,2-Dichloroethane                  | <1.9<br><1.3        | <39.8<br><27.2        | <159<br><109          | <2.6<br><1.7                  | <86.4<br><59.0       | <829<br><567           | <b>5.5</b><br><1.6 | ND<br>ND             | <2.2<br><1.5        | ND<br>ND          | ND<br>ND                                | ND<br>ND           | ND<br>ND       | <1.8<br><1.3            | <1.8<br><1.2            | <1.8<br><1.2         |
| 1,2-Dichloropropane                                        | <1.5                | <31.2                 | <125                  | <2.0                          | <67.7                | <650                   | 2.5                | ND                   | <1.7                | 7.05              | ND                                      | ND<br>ND           | ND             | <1.4                    | <1.4                    | <1.4                 |
| 1,3,5-Trimethylbenzene                                     | <1.6                | <33.2                 | <133                  | <5.3                          | <180                 | <1730                  | <4.8               | ND                   | <4.5                | ND                | ND                                      | ND                 | ND             | <3.8                    | <3.7                    | 5.0                  |
| 1,3-Butadiene                                              | <0.72               | <14.9                 | <59.8                 | <0.96                         | <32.4                | <311                   | <0.87              | ND                   | <0.81               | ND                | ND                                      | ND                 | ND             | <0.69                   | <0.67                   | <0.67                |
| 1,3-Dichlorobenzene                                        | <1.9                | <39.8                 | <159                  | <2.6                          | <86.4                | <829                   | <2.3               | ND<br>ND             | <2.2                | ND<br>ND          | ND<br>ND                                | ND<br>ND           | ND<br>ND       | <1.8                    | <1.8                    | 6.0                  |
| 1,4-Dichlorobenzene<br>2-Butanone (MEK)                    | <1.9<br><b>41.4</b> | <39.8<br><b>26.9</b>  | <159<br><b>1,120</b>  | <2.6<br><b>12.1</b>           | <86.4<br><43.2       | <829<br><415           | 3.7<br>18.0        | ND<br>ND             | <2.2<br><b>44.2</b> | ND<br>12.9        | ND<br>ND                                | ND<br>ND           | ND<br>ND       | <1.8<br><b>12.2</b>     | <1.8<br><0.89           | 8.6<br>15.8          |
| 2-Hexanone                                                 | <1.3                | <27.6                 | <110                  | <1.8                          | <59.8                | <574                   | <1.6               | ND<br>ND             | <1.5                | ND                | ND                                      | ND<br>ND           | ND             | <1.3                    | <1.2                    | <1.2                 |
| 2-Propanol                                                 | 21.9                | <83.0                 | 484                   | 9.6                           | <180                 | <1730                  | 7.9                | ND                   | 19.0                | NA                | NA                                      | NA                 | NA             | 4.9                     | <3.7                    | <3.7                 |
| 4-Ethyltoluene                                             | <4.0                | <83.0                 | <332                  | <5.3                          | <180                 | <1730                  | <4.8               | ND                   | <4.5                | ND                | ND                                      | ND                 | ND             | <3.8                    | <3.7                    | 6.0                  |
| 4-Methyl-2-pentanone (MIBK) Acetone                        | 8.3<br>29.0         | <27.6<br><b>78.0</b>  | <110<br><b>227</b>    | <1.8<br><b>53.9</b>           | <59.8<br><b>74.8</b> | <574<br><332           | <1.6<br><b>509</b> | ND<br>ND             | <1.5<br><b>163</b>  | ND<br><b>84.5</b> | ND<br>76,800                            | ND<br>126          | ND<br>116      | <1.3<br><b>37.000</b>   | <1.2<br><b>501</b>      | <1.2<br><b>7,510</b> |
| Benzene                                                    | <1.0                | <21.6                 | <86.3                 | <1.4                          | <46.8                | <332<br><449           | <1.3               | ND<br>ND             | <1.2                | ND                | 76,800<br>ND                            | 16.2               | ND             | 1.1                     | 1.5                     | 2.3                  |
| Benzyl chloride                                            | <1.7                | <34.9                 | <139                  | <2.2                          | <1210                | <726                   | <2.0               | ND                   | <1.9                | NA NA             | NA                                      | NA NA              | NA NA          | NA                      | NA                      | NA NA                |
| Bromodichloromethane                                       | <2.2                | <46.5                 | <186                  | <3.0                          | <101                 | <968                   | <2.7               | ND                   | <2.5                | ND                | ND                                      | ND                 | ND             | <2.2                    | <2.1                    | <2.1                 |
| Bromoform                                                  | <3.3                | <69.7                 | <279                  | <4.5                          | <151                 | <1450                  | <4.1               | ND                   | <3.8                | ND                | ND                                      | ND                 | ND             | <3.2                    | <3.1                    | <3.1                 |
| Bromomethane Carbon disulfide                              | <1.3<br><1.0        | <26.2<br><20.9        | <105<br><83.7         | <1.7<br><1.3                  | <56.9<br><45.4       | <546<br><435           | <1.5<br><b>7.7</b> | ND<br>ND             | <1.4<br>1.3         | ND<br>ND          | ND<br>ND                                | ND<br>ND           | ND<br>ND       | <1.2<br><0.97           | <1.2<br><0.93           | <1.2<br><b>5.9</b>   |
| Carbon tetrachloride                                       | <2.1                | <43.2                 | <173                  | <2.8                          | <93.6                | <899                   | <2.5               | ND                   | <2.3                | ND                | ND                                      | ND                 | ND             | <2.0                    | <1.9                    | <1.9                 |
| Chlorobenzene                                              | <1.5                | <31.2                 | <125                  | <2.0                          | <67.7                | <650                   | 3.1                | ND                   | <1.7                | ND                | ND                                      | ND                 | ND             | <1.4                    | <1.4                    | <1.4                 |
| Chloroethane                                               | <0.86               | <17.9                 | <71.7                 | <1.2                          | <38.9                | <373                   | <1.0               | ND                   | <0.97               | ND                | ND                                      | ND                 | ND             | <0.83                   | <0.80                   | <0.80                |
| Chloroform<br>Chloromethane                                | <b>4.9</b><br><0.67 | <32.9<br><13.9        | <131<br><55.8         | <2.1<br>1.2                   | <71.3<br><30.2       | <684<br><290           | 4.9<br>9.6         | ND<br>ND             | <b>11.3</b> <0.76   | <b>15.4</b><br>ND | ND<br>ND                                | ND<br>ND           | ND<br>ND       | <b>25.8</b> <0.65       | <1.5<br><0.62           | <b>21.5</b><br><0.62 |
| cis-1,2-Dichloroethene                                     | 36.3                | 77.3                  | <108                  | <1.7                          | 272                  | 1,070                  | 33.6               | ND                   | 80.2                | 198               | ND                                      | 47.2               | 118            | 257                     | 21.5                    | 2,620                |
| cis-1,3-Dichloropropene                                    | <1.5                | <30.5                 | <122                  | <2.0                          | <66.2                | <636                   | <1.8               | ND                   | <1.7                | ND                | ND                                      | ND                 | ND             | <1.4                    | <1.4                    | <1.4                 |
| Cyclohexane                                                | <1.1                | <22.6                 | <90.3                 | <1.4                          | <49.0                | <470                   | 3.7                | ND                   | 2.2                 | 14.3              | ND                                      | 766                | ND             | <1.0                    | <1.0                    | 3.5                  |
| Dibromochloromethane Dichlorodifluoromethane               | <2.7<br><1.6        | <56.4<br><33.2        | <226<br><133          | <3.6<br><b>2.6</b>            | <122<br><72.0        | <1180<br><691          | <3.3<br><b>4.1</b> | ND<br>ND             | <3.1<br><b>11.0</b> | ND<br>ND          | ND<br>ND                                | ND<br>ND           | ND<br>ND       | <2.6<br><1.5            | <2.5<br><b>2.8</b>      | <2.5<br><1.5         |
| Dichlorotetrafluoroethane                                  | <2.2                | <46.5                 | <186                  | <3.0                          | <101                 | <968                   | <2.7               | ND                   | <2.5                | ND                | ND                                      | ND                 | ND             | <2.2                    | <2.1                    | <2.1                 |
| Ethanol                                                    | 286                 | 726                   | <252                  | 48.3                          | <2190                | <1310                  | 67.3               | ND                   | 26.1                | NA                | NA                                      | NA                 | NA             | 8.9                     | 8.4                     | 5.7                  |
| Ethyl acetate                                              | 3.4                 | <24.2                 | <96.9                 | <1.6                          | <52.6                | <505                   | <1.4               | ND                   | <1.3                | ND                | ND                                      | ND                 | ND             | <1.1                    | <1.1                    | <1.1                 |
| Ethylbenzene Hexachloro-1.3-butadiene                      | 2.0                 | <29.2                 | <117                  | <1.9                          | <63.4<br><158        | <608<br><1520          | <1.7<br><4.2       | ND<br>ND             | 118<br><4.0         | ND<br>ND          | ND<br>ND                                | ND<br>ND           | ND<br>ND       | <b>7.9</b> <3.4         | <1.3<br><3.3            | <1.3                 |
| m&p-Xylene                                                 | <3.5<br><b>6.9</b>  | <73.0<br><58.4        | <292<br><234          | <4.7<br><3.7                  | <158                 | <1520                  | <4.2<br>5.1        | ND<br>ND             | <4.0<br><b>456</b>  | ND<br>ND          | ND<br>ND                                | ND<br>ND           | ND<br>ND       | <3.4<br><b>25.0</b>     | <3.3<br><b>2.6</b>      | <3.3<br>14.2         |
| Methylene Chloride                                         | 101                 | <23.6                 | <94.3                 | 294                           | <51.1                | <491                   | <1.4               | ND                   | <1.3                | ND                | ND                                      | 270                | ND             | <1.1                    | 276                     | <1.1                 |
| Methyl-tert-butyl ether                                    | <1.2                | <24.2                 | <96.9                 | <1.6                          | <52.6                | <505                   | <1.4               | ND                   | <1.3                | ND                | ND                                      | ND                 | ND             | <1.1                    | <1.1                    | <1.1                 |
| Naphthalene                                                | <4.3                | <89.6                 | <359                  | <5.8                          | <194                 | <1870                  | <5.2               | ND<br>ND             | <4.9                | NA<br>ND          | NA<br>ND                                | NA<br>ND           | NA<br>ND       | 5.6                     | <4.0                    | 4.2                  |
| n-Heptane<br>n-Hexane                                      | <1.3<br><1.1        | <27.6<br><23.9        | <110<br><95.6         | <1.8<br><b>45.9</b>           | <59.8<br><51.8       | <574<br><498           | <b>2.0</b> <1.4    | ND<br>ND             | 2.7<br>4.7          | ND<br>135         | ND<br>ND                                | ND<br>ND           | ND<br>ND       | <1.3<br><b>2.1</b>      | <1.2<br><b>35.4</b>     | 2.6<br>3.4           |
| o-Xylene                                                   | 5.8                 | <29.2                 | <117                  | <1.9                          | <63.4                | <608                   | 1.8                | ND                   | 159                 | ND                | ND                                      | ND                 | ND             | 7.5                     | <1.3                    | 4.8                  |
| Propylene                                                  | <0.56               | <11.6                 | <46.5                 | 1.3                           | <25.2                | <242                   | <0.68              | ND                   | <0.63               | ND                | ND                                      | ND                 | ND             | <0.54                   | <0.52                   | <0.52                |
| Styrene                                                    | <1.4                | <28.9                 | <116                  | <1.9                          | <62.6                | <601                   | <1.7               | ND                   | <1.6                | ND                | ND                                      | ND<br>2 722        | ND             | <1.3                    | <1.3                    | <1.3                 |
| Tetrachloroethene Tetrahydrofuran                          | 5,040<br>6.3        | <b>2,680</b><br><19.9 | <b>1,300</b><br><79.7 | <b>6.5</b> <1.3               | 489,000<br>45.3      | <b>689,000</b><br><415 | 27,900<br>15.0     | <b>282,000</b><br>ND | 215,000<br>58.0     | 1,720,000<br>45.6 | 8,550,000<br>56,400                     | <b>6,790</b><br>ND | 381,000<br>145 | 571,000<br>36.2         | <b>396,000</b><br><0.89 | 3,630,000<br>31.1    |
| Tetranydrofuran<br>Toluene                                 | 12.3                | <19.9<br><25.6        | 102                   | <1.3<br>21.2                  | <b>45.3</b><br><55.4 | <415<br><532           | 8.0                | ND<br>ND             | 28.4                | 124               | 56,400<br>ND                            | 9.58               | ND             | 17.6                    | <0.89<br><b>10.3</b>    | 14.4                 |
| trans-1,2-Dichloroethene                                   | <1.3                | <26.9                 | <108                  | <1.7                          | <58.3                | <560                   | <1.6               | ND                   | <1.5                | ND                | ND                                      | ND ND              | ND             | <1.2                    | <1.2                    | 4.2                  |
| trans-1,3-Dichloropropene                                  | <1.5                | <30.5                 | <122                  | <2.0                          | <66.2                | <636                   | <1.8               | ND                   | <1.7                | ND                | ND                                      | ND                 | ND             | <1.4                    | <1.4                    | <1.4                 |
| Trichloroethene                                            | 14.8                | <36.5                 | <146                  | 42.3                          | 101                  | <760                   | 24.5               | 3,730                | 43.7                | 116               | ND                                      | 21.3               | ND             | 153                     | 13.6                    | 1,640                |
| Trichlorofluoromethane Vinyl acetate                       | <1.7<br><1.1        | <36.5<br><23.6        | <146<br><94.3         | <2.3<br><1.5                  | <79.2<br><51.1       | <760<br><491           | <2.1<br><b>3.0</b> | ND<br>ND             | <2.0<br><b>8.9</b>  | ND<br>ND          | ND<br>ND                                | ND<br>ND           | ND<br>ND       | <1.7<br><b>7.4</b>      | <b>1.7</b> <1.1         | 2.2<br>8.7           |
| Vinyl chloride                                             | <0.83               | <17.3                 | <69.1                 | <1.1                          | <37.4                | <359                   | <1.0               | ND<br>ND             | <0.94               | ND<br>ND          | ND                                      | ND                 | ND<br>ND       | <0.80                   | <0.77                   | <0.77                |
| TOTAL VOCs                                                 | 46,334              | 19,686                | 548                   | 493,213                       | 1,032,070            | 50,553                 | 438,730            | 331,284              | 2,364,821           | 11,403,200        | 12,510                                  | 453,479            | 608,840        | 494,779                 | 3,795,077               | 14,603,780           |
| <b>Bold:</b> Parameter detected above the reporting limit. | ,                   | . , , , , , , ,       |                       | , -                           |                      | ,                      |                    |                      |                     |                   | , , , , , , , , , , , , , , , , , , , , |                    |                |                         | · · · · ·               |                      |

TOTAL VOCs
Bold: Parameter detected above the reporting limit.

NA: Not analyzed

1. Flow Controller failed on 9/27/10; however, a 1/2 hour composite sample was still collected.

2. Landmark believes the October 26, 2012 emissions results from Pace Analytical are suspect and are outliers from previous concentration trends

#### **EMISSIONS RATES SUMMARY MN Bio Business Center** 221 1st Avenue SW Rochester, Minnesota

| Conc. (ug per (ug per (ug per (guideline Chronic Risk Acute Risk (ug per (ug per (ug per Hazard Hazard (guideline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                 |           |           |         |         | RRASS            | Emissions Sum                         | mary                                  |            |         | Р                                     | R Program        | Emissions | Summary |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|-----------|-----------|---------|---------|------------------|---------------------------------------|---------------------------------------|------------|---------|---------------------------------------|------------------|-----------|---------|---------------------------------------|
| 10192009   DFE-1   PCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date       |                 | Parameter |           | (ug per | (ug per | Specific (ug per | Lifetime<br>Cancer Risk<br>(guideline | Chronic Risk                          | Acute Risk | (ug per | (ug per                               | Specific (ug per | Hazard    | Hazard  | Lifetime<br>Cancer Risk<br>(guideline |
| 10192009   DPE-1   PCE   398,000   5,940   5,6   5,946   NA   16,300   5,980,000   NA   NA   NA   NA   NA   NA   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9/4/2009   | DPE-1           | PCE       | 3.630.000 | 61.710  | 70      | 61.780           | NA                                    | 16.300                                | 5.980.000  | NA      | NA                                    | NA               | NA        | NA      | NA                                    |
| 10195000   All Wells   PCE   571,000   8,966   S.6   8,671   NA   16,300   5,980,000   NA   NA   NA   NA   NA   NA   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 | PCE       |           |         |         |                  |                                       |                                       |            | NA      | NA                                    | NA               | NA        | NA      | NA                                    |
| 1117/2009 All Wells PCE 881,000 4,963 U.S 4,963 NA 16,300 5,880,000 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 12172000   All Wells   PCE   6.550,00   393,300   393,304   NA   16,300   5,980,000   NA   NA   NA   NA   NA   NA   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 1142010   All Wells   PCE   6,500,000   393,300   39, 393,304   NA   16,300   5,980,000   NA   NA   NA   NA   NA   NA   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12/17/2009 | All Wells       | PCE       | 6,790     | 197     | 0.5     |                  | NA                                    |                                       | 5,980,000  | NA      | NA                                    | NA               | NA        | NA      | NA                                    |
| 22222010 All Wels PCE 1720,000 82,560 1.3 82,561 NA 16,300 5,580,000 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | All Wells       | PCE       | 8.550.000 | 393.300 | 3.9     | 393.304          | NA                                    |                                       |            | NA      | NA                                    | NA               | NA        | NA      | NA                                    |
| 3052010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |           | , ,       |         | 1.3     |                  | NA                                    | · · · · · · · · · · · · · · · · · · · | , ,        | NA      | NA                                    | NA               | NA        | NA      | NA                                    |
| 4/16/2010   All Wells   PCE   220,000   9,588   1,3   9,589   NA   16,300   5,980,000   NA   NA   NA   NA   NA   NA   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 5/12/2010   All Wells   PCE   27;900   17,729   0.8   1,730   NA   16,300   5,980,000   NA   NA   NA   NA   NA   NA   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 617/2010   All Wells   PCE   689.000   11,713   3.9   11,717   NA   16,300   5,980.000   NA   NA   NA   NA   NA   NA   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 17/28/2010   All Wells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 12/23/2010   All Wells   PCE   2,680   64   3,2   68   NA   16,300   5,980,000   NA   NA   NA   NA   NA   NA   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 1/20/2011   All Wells   PCE   5,040   282   3.5   286   NA   16,300   5,880,000   NA   NA   NA   NA   NA   NA   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 2232(2011   All Wells   PCE   4,590   225   4,1   229   NA   16,300   5,980,000   NA   NA   NA   NA   NA   NA   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 3023/2011   All Wells   PCE   7,340   250   0.18   250   NA   16,300   5,980,000   NA   NA   NA   NA   NA   NA   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| A Z Z Z D11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 5/19/2011   All Wells   PCE   6,270   125   0.67   126   7.8E-08   16,300   5,990,000   121   1   122   0   0   0   9.8E-08   16/2011   All Wells   PCE   308   NA   NA   NA   NA   NA   NA   NA   N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 6/16/2011   All Wells   PCE   688                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                 |           | -,        |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 7/25/2011         All Wells         PCE         308         NA         NA         NA         NA         NA         NA         6         5         11         0         0         8,5E-09           9/28/2011         DPE-1,2,3,4         PCE         3,420         NA         NA         NA         NA         NA         NA         NA         NA         O         7         7         0         0         5,5E-09           9/28/2011         DPE-1,2,3,4         PCE         180         NA                                                                                                                                                                                          |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| SUBBOOT    All Wells   PCE   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 9/29/2011 DPE-1,2,3,4 PCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 10/27/2011   DPE-1,2,3.4   PCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  | -         |         |                                       |
| 11/21/2011   DPE-1,2,3.4   PCE   22,100   NA   NA   NA   NA   NA   NA   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  | -         |         |                                       |
| 1/27/2012   OPE-1,2,3.4   PCE   29,100   NA   NA   NA   NA   NA   NA   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 2/16/2012   DPE-1,2,3,4   PCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 3/16/2012   DPE-1,2,3,4   PCE   O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 4/17/2012 DPE-1,2,3,4 PCE 20,600 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 5/17/2012   DPE-1,2,3,4   PCE   25,200   NA   NA   NA   NA   NA   NA   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 6/14/2012   DPE-1,2,3,4   PCE   11,200   NA   NA   NA   NA   NA   NA   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| T/19/2012   DPE-3   PCE   113,000   NA   NA   NA   NA   NA   NA   NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 8/23/2012         DPE-3         PCE         27,800         NA                                                                                                                                                                                          |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 9/26/2012         DPE-3         PCE         45,800         NA                                                                                                                                                                                          |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 10/26/2012¹         DPE-3         PCE         664,000         NA         NA         NA         NA         NA         NA         NA         12,535         5         12,540         0         0.2         1.0E-05           12/21/2012         DPE-3         PCE         358,000         NA         <                                                                                                                                                                               |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 12/21/2012 DPE-3 PCE 358,000 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 1/30/2013         DPE-1,2,3,4         PCE         348,000         NA         N                                                                                                                                                                                    |            |                 |           | ,         |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 2/26/2013         DPE-1,2,3,4         PCE         1,600         NA         NA<                                                                                                                                                                                    |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 3/21/2013 DPE-1,2,3,4 PCE 17,500 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 5/23/2013         DPE-1,2,3,4         PCE         43,200         NA         NA         NA         NA         NA         2,039         1         2,040         0         0.0         1,6E-06           6/26/2013         DPE-1,2,3,4         PCE         102         NA         NA         NA         NA         NA         NA         56         1         57         0         0.0         4,3E-09           8/26/2013         DPE-1,2,3,4         PCE         122         NA         NA         NA         NA         NA         NA         5         1         6         0         0.0         4,3E-09           10/13/2015         All Wells         PCE         61         NA         NA         NA         NA         NA         NA         NA         1         1         0         0.0         1.7E-08           1/12/2016         All Wells         PCE         7,200         NA         NA         NA         NA         NA         NA         NA         1         1         0         0.0         1.8E-07           2/24/2016         All Wells         PCE         8,400         NA         NA         NA         NA         NA         NA         NA         <                                                                                                                                                                           |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  | -         |         |                                       |
| 6/26/2013 DPE-1,2,3,4 PCE 102 NA NA NA NA NA NA NA NA NA S6 1 57 0 0.0 4.3E-09 8/26/2013 DPE-1,2,3,4 PCE 122 NA NA NA NA NA NA NA NA S 5 1 6 0 0.0 4.3E-09 8/26/2013 DPE-1,2,3,4 PCE 122 NA NA NA NA NA NA NA NA NA S 5 1 6 0 0.0 4.3E-09 10/13/2015 All Wells PCE 61 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                 |           |           |         |         |                  |                                       |                                       |            |         | · · · · · · · · · · · · · · · · · · · |                  |           |         |                                       |
| 8/26/2013         DPE-1,2,3,4         PCE         122         NA         NA         NA         NA         NA         NA         S         1         6         0         0.0         4.3E-09           10/13/2015         All Wells         PCE         61         NA         NA         NA         NA         NA         NA         1         10         11         0         0.0         1.7E-08           1/12/2016         All Wells         PCE         7,200         NA         NA         NA         NA         NA         NA         219.00         0.00         219.00         0.00         0.00         1.8E-07           2/24/2016         All Wells         PCE         8,400         NA         NA         NA         NA         NA         NA         NA         255.00         7.00         262.00         0.00         0.00         2.1E-07           3/30/2016         All Wells         PCE         19,000         NA         NA         NA         NA         NA         NA         NA         0.00         262.00         0.00         0.00         2.1E-07           4/20/2016         All Wells         PCE         6         NA         NA         NA         NA <td></td> |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 10/13/2015   All Wells   PCE   61 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 1/12/2016         All Wells         PCE         7,200         NA         NA         NA         NA         NA         219.00         0.00         219.00         0.00         0.00         1.8E-07           2/24/2016         All Wells         PCE         8,400         NA         NA         NA         NA         NA         NA         255.00         7.00         262.00         0.00         0.00         2.1E-07           3/30/2016         All Wells         PCE         19,000         NA         NA         NA         NA         NA         NA         S88.00         1.00         589.00         0.00         0.00         4.8E-07           4/20/2016         All Wells         PCE         6         NA         NA         NA         NA         NA         NA         0.00         2.00         0.00         0.00         2.1E-09           5/18/2016         All Wells         PCE         18         NA         NA         NA         NA         NA         NA         1.00         0.00         1.00         0.00         6.5E-10                                                                                                                                                                                                                                                                                                  |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 2/24/2016         All Wells         PCE         8,400         NA         NA         NA         NA         NA         NA         NA         255.00         7.00         262.00         0.00         0.00         2.1E-07           3/30/2016         All Wells         PCE         19,000         NA         NA         NA         NA         NA         NA         S88.00         1.00         589.00         0.00         0.00         4.8E-07           4/20/2016         All Wells         PCE         6         NA         NA         NA         NA         NA         NA         0.00         2.00         0.00         0.00         2.1E-09           5/18/2016         All Wells         PCE         18         NA         NA         NA         NA         NA         NA         1.00         0.00         1.00         0.00         0.00         6.5E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 3/30/2016 All Wells PCE 19,000 NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 4/20/2016         All Wells         PCE         6         NA         NA         NA         NA         NA         NA         NA         0.00         2.00         2.00         0.00         0.00         2.1E-09           5/18/2016         All Wells         PCE         18         NA         NA         NA         NA         NA         1.00         0.00         1.00         0.00         0.00         6.5E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 5/18/2016 All Wells PCE 18 NA NA NA NA NA NA NA NA 1.00 0.00 1.00 0.00 6.5E-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
| 7.11 TOTAL 1-2- 2-00 1VA 1VA 1VA 1VA 1VA 1VA 1VA 1.00 0.00 7.00 0.00 0.00 0.00 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                 |           |           |         |         |                  |                                       |                                       |            |         |                                       |                  |           |         |                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5/20/2010  | 7 111 7 7 6 113 | . 52      | 200       | 14/7    | 14/3    | 14/7             | 14/5                                  | 14/4                                  | 14/1       | 7.00    | 0.00                                  | 7.00             | 0.00      | 0.00    | 0.0L-00                               |

Notes: SERs: MPCA Screening Emissions Rates

61,780 Emissions rate is above MPCA SER

NA: Not Applicable

<sup>1:</sup> Landmark believes the October 26, 2012, emissions results from Pace Analytical are suspect and are outliers from previous concentration trends.

Table 14

# Mass Removal from Groundwater Treatment System MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

| Monitorir                | ng Period                |                    |                     |                                       |                                        |                               |                                     | Total V                  | OCs                         |                |                                        |                                        |                                              |
|--------------------------|--------------------------|--------------------|---------------------|---------------------------------------|----------------------------------------|-------------------------------|-------------------------------------|--------------------------|-----------------------------|----------------|----------------------------------------|----------------------------------------|----------------------------------------------|
| Start Date <sup>1</sup>  | End Date                 | Days per<br>Period | Hours per<br>Period | Flow<br>Meter<br>Reading<br>(gallons) | Gallons<br>Treated<br>During<br>Period | Average<br>Flow Rate<br>(gpm) | Average<br>Flow Rate<br>(liter/sec) | Influent<br>Conc. (ug/L) | Effluent<br>Conc.<br>(ug/L) | %<br>Reduction | Mass<br>Removed<br>per Period<br>(lbs) | Cumulative<br>Mass<br>Removed<br>(lbs) | Addition to<br>Emission<br>Rate<br>(Ibs/day) |
| 4/9/2009 <sup>2</sup>    | 4/9/2009                 | 0                  | 2                   | 119                                   | 51                                     | 0.4                           | 0.027                               | 176,343                  | NA                          | NA             | NA                                     | NA                                     | NA                                           |
| 6/4/2009                 | 6/4/2009 <sup>3</sup>    | 0                  | 2                   | 192                                   | 73                                     | 0.6                           | 0.038                               | 4,630                    | 8,991                       | -94            | NA                                     | NA                                     | NA                                           |
| 6/4/2009                 | 7/9/2009                 | 11                 | 264                 | 16,115                                | 15,923                                 | 1.0                           | 0.063                               | 1,547                    | 479                         | 69             | 0.14                                   | 0.14                                   | 0.01                                         |
| 7/9/2009                 | 9/4/2009                 | 57                 | 1368                | 38,299                                | 22,184                                 | 0.3                           | 0.017                               | 191                      | 20                          | 90             | 0.03                                   | 0.17                                   | 0.001                                        |
| 9/4/2009                 | 10/15/2009               | 41                 | 984                 | 62,643                                | 24,344                                 | 0.4                           | 0.026                               | 238                      | 0                           | 100            | 0.05                                   | 0.22                                   | 0.001                                        |
| 10/15/2009               | 11/16/2009               | 32                 | 768                 | 73,800                                | 11,157                                 | 0.2                           | 0.015                               | 31                       | 0                           | 100            | 0.00                                   | 0.22                                   | 0.000                                        |
| 11/16/2009               | 12/17/2009 <sup>4</sup>  | 31                 | 744                 | 89,800                                | 16,000                                 | 0.4                           | 0.023                               | 24                       | 12                          | 50             | 0.00                                   | 0.23                                   | 0.000                                        |
| 12/17/2009               | 1/14/2010                | 28                 | 672                 | 106,024                               | 16,224                                 | 0.4                           | 0.025                               | 309                      | 32                          | 90             | 0.04                                   | 0.26                                   | 0.001                                        |
| 1/14/2010                | 2/22/2010                | 39                 | 936                 | 122,167                               | 16,143                                 | 0.3                           | 0.018                               | 73                       | 16                          | 78             | 0.01                                   | 0.27                                   | 0.000                                        |
| 2/22/2010                | 3/25/2010 <sup>5,6</sup> | 31                 | 744                 | 148,206                               | 26,039                                 | 0.6                           | 0.037                               | 507                      | 764                         | -51            | -0.06                                  | 0.27                                   | -0.002                                       |
| 3/25/2010 <sup>5,6</sup> | 4/16/2010 <sup>5</sup>   | 22                 | 528                 | 161,857                               | 13,651                                 | 0.4                           | 0.027                               | 61                       | 525                         | -765           | -0.05                                  | 0.27                                   | -0.002                                       |
| 4/16/2010                | 5/12/2010                | 26                 | 624                 | 170.079                               | 8,222                                  | 0.2                           | 0.014                               | 66                       | 0                           | 100            | 0.005                                  | 0.28                                   | 0.000                                        |
| 5/12/2010                | 6/17/2010                | 36                 | 864                 | 200,398                               | 30,319                                 | 0.6                           | 0.037                               | 119                      | 24                          | 80             | 0.024                                  | 0.30                                   | 0.001                                        |
| 6/17/2010                | 7/26/2010                | 39                 | 936                 | 226,504                               | 26,106                                 | 0.5                           | 0.029                               | 41                       | 0                           | 100            | 0.009                                  | 0.31                                   | 0.000                                        |
| 7/26/2010                | 9/27/2010                | 63                 | 1512                | 240,247                               | 13,743                                 | 0.2                           | 0.010                               | 84                       | 18                          | 79             | 0.008                                  | 0.32                                   | 0.000                                        |
| 9/27/2010                | 10/18/2010               | 21                 | 504                 | 255,417                               | 15,170                                 | 0.5                           | 0.032                               | 210                      | 6                           | 97             | 0.026                                  | 0.34                                   | 0.001                                        |
| 10/18/2010               | 12/22/2010               | 65                 | 1560                | 283,957                               | 28,540                                 | 0.3                           | 0.019                               | 173                      | 11                          | 94             | 0.038                                  | 0.38                                   | 0.001                                        |
| 12/22/2010               | 1/20/2011                | 29                 | 696                 | 328,912                               | 44,955                                 | 1.1                           | 0.068                               | 52                       | 0                           | 100            | 0.019                                  | 0.40                                   | 0.001                                        |
| 1/20/2011                | 3/1/2011                 | 40                 | 960                 | 357,774                               | 28,862                                 | 0.5                           | 0.032                               | 131                      | 0                           | 100            | 0.031                                  | 0.43                                   | 0.001                                        |
| 3/1/2011                 | 3/23/2011                | 22                 | 528                 | 369,603                               | 11,829                                 | 0.4                           | 0.024                               | 43                       | 7                           | 84             | 0.004                                  | 0.43                                   | 0.000                                        |
| 3/23/2011                | 4/22/2011                | 30                 | 720                 | 461,499                               | 91,896                                 | 2.1                           | 0.134                               | 41                       | 0                           | 100            | 0.032                                  | 0.47                                   | 0.001                                        |
| 4/22/2011                | 5/19/2011                | 27                 | 648                 | 480,836                               | 19,337                                 | 0.5                           | 0.031                               | 22                       | 0                           | 100            | 0.004                                  | 0.47                                   | 0.000                                        |
| 5/19/2011                | 6/16/2011                | 28                 | 672                 | 487,852                               | 7,016                                  | 0.2                           | 0.011                               | 43                       | 0                           | 100            | 0.003                                  | 0.47                                   | 0.000                                        |
| 6/16/2011                | 7/25/2011                | 39                 | 936                 | 606,917                               | 119,065                                | 2.1                           | 0.134                               | 37                       | 0                           | 100            | 0.037                                  | 0.51                                   | 0.001                                        |
| 7/25/2011                | 8/28/2011                | 34                 | 816                 | 645,249                               | 38,332                                 | 0.8                           | 0.049                               | 51                       | 5                           | 90             | 0.015                                  | 0.52                                   | 0.000                                        |
| 8/28/2011                | 9/29/2011                | 32                 | 768                 | 673,352                               | 28,103                                 | 0.6                           | 0.038                               | 45                       | 7                           | 86             | 0.009                                  | 0.53                                   | 0.000                                        |
| 9/29/2011                | 10/27/2011               | 28                 | 672                 | 694,330                               | 20,978                                 | 0.5                           | 0.033                               | 41                       | 0                           | 100            | 0.007                                  | 0.54                                   | 0.000                                        |
| 10/27/2011               | 11/21/2011               | 25                 | 600                 | 716,049                               | 21,719                                 | 0.6                           | 0.038                               | 32                       | 0                           | 100            | 0.006                                  | 0.55                                   | 0.000                                        |
| 11/21/2011               | 1/20/2012                | 60                 | 1440                | 725,742                               | 9,693                                  | 0.1                           | 0.007                               | 149                      | 45                          | 70             | 0.008                                  | 0.55                                   | 0.000                                        |
| 1/20/2012                | 1/27/2012                | 7                  | 168                 | 731,337                               | 5,595                                  | 0.6                           | 0.035                               | 76                       | 0                           | 100            | 0.004                                  | 0.56                                   | 0.001                                        |
| 1/27/2012                | 2/16/2012                | 20                 | 480                 | 746,725                               | 15,388                                 | 0.5                           | 0.034                               | 52                       | 0                           | 100            | 0.007                                  | 0.56                                   | 0.000                                        |
| 2/16/2012                | 3/16/2012                | 29                 | 696                 | 757,124                               | 10,399                                 | 0.2                           | 0.016                               | 87                       | 0                           | 100            | 0.007                                  | 0.57                                   | 0.000                                        |
| 3/16/2012                | 4/17/2012                | 32                 | 768                 | 783,562                               | 26,438                                 | 0.6                           | 0.036                               | 40                       | 0                           | 100            | 0.009                                  | 0.58                                   | 0.000                                        |
| 4/17/2012                | 5/17/2012                | 30                 | 720                 | 809,091                               | 25,529                                 | 0.6                           | 0.037                               | 23                       | 0                           | 100            | 0.005                                  | 0.58                                   | 0.000                                        |

#### Table 14

# Mass Removal from Groundwater Treatment System MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

| Monitorii               | ng Period  |                    |                     |                                       |                                        |                               |                                     | Total V                  | OCs                         |                |                                        |                                        |                                              |
|-------------------------|------------|--------------------|---------------------|---------------------------------------|----------------------------------------|-------------------------------|-------------------------------------|--------------------------|-----------------------------|----------------|----------------------------------------|----------------------------------------|----------------------------------------------|
| Start Date <sup>1</sup> | End Date   | Days per<br>Period | Hours per<br>Period | Flow<br>Meter<br>Reading<br>(gallons) | Gallons<br>Treated<br>During<br>Period | Average<br>Flow Rate<br>(gpm) | Average<br>Flow Rate<br>(liter/sec) | Influent<br>Conc. (ug/L) | Effluent<br>Conc.<br>(ug/L) | %<br>Reduction | Mass<br>Removed<br>per Period<br>(lbs) | Cumulative<br>Mass<br>Removed<br>(lbs) | Addition to<br>Emission<br>Rate<br>(Ibs/day) |
| 5/17/2012               | 6/14/2012  | 28                 | 672                 | 830,565                               | 21,474                                 | 0.5                           | 0.034                               | 39                       | 3                           | 92             | 0.006                                  | 0.59                                   | 0.000                                        |
| 6/14/2012               | 7/19/2012  | 35                 | 840                 | 835,414                               | 4,849                                  | 0.1                           | 0.006                               | 36                       | 35                          | 2              | 0.000                                  | 0.59                                   | 0.000                                        |
| 7/19/2012               | 8/23/2012  | 35                 | 840                 | 849,507                               | 14,093                                 | 0.3                           | 0.018                               | 46                       | 0                           | 100            | 0.005                                  | 0.60                                   | 0.000                                        |
| 8/23/2012               | 9/26/2012  | 34                 | 816                 | 860,318                               | 10,811                                 | 0.2                           | 0.014                               | 22                       | 2                           | 92             | 0.002                                  | 0.60                                   | 0.000                                        |
| 9/26/2012               | 10/26/2012 | 30                 | 720                 | 951,486                               | 91,168                                 | 2.1                           | 0.133                               | 36                       | 2                           | 95             | 0.026                                  | 0.62                                   | 0.001                                        |
| 10/26/2012              | 12/21/2012 | 56                 | 1344                | 951,486                               | 0                                      | 0.0                           | 0.000                               | 92                       | 15                          | 84             | 0.000                                  | 0.62                                   | 0.000                                        |
| 12/21/2012              | 1/30/2013  | 40                 | 960                 | 1,789,194                             | 11,387                                 | 0.2                           | 0.012                               | 26                       | 0                           | 100            | 0.002                                  | 0.63                                   | 0.000                                        |
| 1/30/2013               | 2/26/2013  | 27                 | 648                 | 1,905,916                             | 13,303                                 | 0.3                           | 0.022                               | 96                       | 114                         | -19            | -0.002                                 | 0.63                                   | 0.000                                        |
| 2/26/2013               | 3/21/2013  | 23                 | 552                 | 1,925,225                             | 19,309                                 | 0.6                           | 0.037                               | 32                       | 0                           | 100            | 0.005                                  | 0.63                                   | 0.000                                        |
| 3/21/2013               | 5/23/2013  | 63                 | 1512                | 1,941,137                             | 15,912                                 | 0.2                           | 0.011                               | 123                      | 17                          | 86             | 0.014                                  | 0.65                                   | 0.000                                        |
| 5/23/2013               | 6/26/2013  | 34                 | 816                 | 1,954,470                             | 13,333                                 | 0.3                           | 0.017                               | 56                       | 0                           | 100            | 0.006                                  | 0.65                                   | 0.000                                        |
| 6/26/2013               | 8/26/2013  | 61                 | 1464                | 1,981,481                             | 27,011                                 | 0.3                           | 0.019                               | 37                       | 7                           | 81             | 0.007                                  | 0.66                                   | 0.000                                        |
| 10/13/2015              | 10/13/2015 | 0.25               | 6                   | 1,982,572                             | 1,091                                  | 3.0                           | 0.191                               | 101                      | 0                           | 100            | 0.001                                  | 0.66                                   | 0.004                                        |
| 12/15/2015              | 12/15/2015 |                    |                     | 1,982,639                             | 67                                     |                               |                                     |                          |                             |                |                                        |                                        |                                              |
| 12/15/2015              | 1/12/2016  | 28.00              | 672                 | 1,993,342                             | 10,703                                 | 0.3                           | 0.017                               | 21                       | 56                          | -166           | -0.003                                 | 0.66                                   | 0.000                                        |
| 1/12/2016               | 2/24/2016  | 43.00              | 1032                | 2,232,374                             | 10,703                                 | 0.2                           | 0.011                               | 144                      | 344                         | -140           | -0.018                                 | 0.65                                   | 0.000                                        |
| 2/24/2016               | 3/30/2016  | 35.00              | 840                 | 2,489,395                             | 10,703                                 | 0.2                           | 0.013                               | 98                       | 71                          | 28             | 0.002                                  | 0.65                                   | 0.000                                        |
| 3/30/2016               | 4/20/2016  | 21.00              | 504                 | 2,716,043                             | 10,703                                 | 0.4                           | 0.022                               | 160                      | 121                         | 24             | 0.003                                  | 0.65                                   | 0.000                                        |
| 4/20/2016               | 5/18/2016  | 28.00              | 672                 | 3,068,238                             | 10,703                                 | 0.3                           | 0.017                               | 28                       | 45                          | -57            | -0.001                                 | 0.65                                   | 0.000                                        |
|                         |            |                    |                     |                                       |                                        |                               |                                     |                          |                             |                |                                        | ·                                      |                                              |

#### Notes:

- 1. The initial reading of the transfer pump totalizer was 68 gallons.
- 2. Initial sampling event to determine if groundwater treatment was necessary.
- 3. Increase in total VOCs was from PVC glue and cement that was used during the construction of the DPE system and air stripper.
- 4. Based on the PCE concentrations in the AS-Influent and AS-Effluent samples, it appears as if the samples were mislabeled or mixed up at the lab.

  Therefore, the influent and effluent total VOC data in this table has been changed to show the highest total VOC concentration data as the influent data and the lowest total VOC concentration as the effluent data.
- 5. Increase in total VOCs was from PVC glue and cement that was used during installation of the secondary demister moisture separator.
- 6. Flow totalizer reading switched from the analog flow meter reading to the field totalizer reading for better accuracy.
- 7. Discharge flow meter malfunction caused invalid field totalizer reading; therefore, analog flow totalizer was used starting on 4/22/11.
- 8. Analog flow totalizer reading on 10/27/11 was estimated from field readings from Oct. 27 and Sept 29, 2011.

Flow meter and totalizer not working. The DPE system was off from Oct. 26 through Dec. 21, 2012; therefore, the volume discharged during this period was 0 gallons.

Gallons treated during periods ending on Jan. 30 and Feb. 26, 2013, were calculated from field totalizer.

Flow meter failing therefore assumed same discharge volume on Feb. 24, March 30, April 20, and May 18, 2016, as the Jan. 12, 2016, value of 10,703 gallons.

|                                                     | ı                   |                     |                      |                    | <u> </u>            |                     |                    |                      | ı                |                      | ı                  |                  | ı                    |                    |                     |                    |
|-----------------------------------------------------|---------------------|---------------------|----------------------|--------------------|---------------------|---------------------|--------------------|----------------------|------------------|----------------------|--------------------|------------------|----------------------|--------------------|---------------------|--------------------|
| Sample ID                                           | AS-Influent         | AS-Effluent         | AS-Influent          | AS-Effluent        | AS-Influent         | AS-Effluent         | AS-Influent        | AS-Effluent          | AS-Influent      | AS-Effluent          | AS-Influent        | AS-Effluent      | AS-Influent          | AS-Effluent        | AS-Influent         | AS-Effluent        |
| Collected Date                                      | 5/18/2016           | 5/18/2016           | 4/20/2016            | 4/20/2016          | 3/30/2016           | 3/30/2016           | 2/24/2016          | 2/24/2016            | 1/11/2016        | 1/11/2016            | 10/13/2015         | 10/13/2015       | 9/9/2015             | 9/9/2015           | 8/26/2013           | 8/26/2013          |
| 1,1,1,2-Tetrachloroethane 1,1,1-Trichloroethane     | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0         | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0         | <1.0<br><1.0     | <1.0<br><1.0         | <1.0<br><1.0       | <1.0<br><1.0     | <1.0<br><1.0         | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       |
| 1,1,2,2-Tetrachloroethane                           | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| 1,1,2-Trichloroethane                               | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| 1,1,2-Trichlorotrifluoroethane 1,1-Dichloroethane   | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0         | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0         | <5.0<br><1.0     | <5.0<br><1.0         | <5.0<br><1.0       | <5.0<br><1.0     | 1.1<br><1.0          | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       |
| 1,1-Dichloroethene                                  | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| 1,1-Dichloropropene                                 | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| 1,2,3-Trichlorobenzene 1,2,3-Trichloropropane       | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0         | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0       | <1.0<br><4.0         | <5.0<br><1.0     | <5.0<br><1.0         | <5.0<br><1.0       | <5.0<br><1.0     | <1.0<br><4.0         | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0       |
| 1,2,4-Trichlorobenzene                              | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <5.0             | <5.0                 | <5.0               | <5.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| 1,2,4-Trimethylbenzene                              | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB) | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0         | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0         | <5.0<br><1.0     | <5.0<br><1.0         | <5.0<br><1.0       | <5.0<br><1.0     | <4.0<br><1.0         | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0       |
| 1,2-Dichlorobenzene                                 | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| 1,2-Dichloroethane                                  | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| 1,2-Dichloropropane 1,3,5-Trimethylbenzene          | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0         | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0         | <1.0<br><1.0     | <1.0<br><1.0         | <1.0<br><1.0       | <1.0<br><1.0     | <4.0<br><1.0         | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0       |
| 1,3-Dichlorobenzene                                 | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| 1,3-Dichloropropane                                 | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| 1,4-Dichlorobenzene 2,2-Dichloropropane             | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0         | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0       | <1.0<br><4.0         | <1.0<br><1.0     | <1.0<br><1.0         | <1.0<br><1.0       | <1.0<br><1.0     | <1.0<br><4.0         | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0       |
| 2-Butanone (MEK)                                    | <5.0                | <5.0                | <5.0                 | <5.0               | <5.0                | <5.0                | <5.0               | <5.0                 | <20.0            | <20.0                | <20.0              | <20.0            | <5.0                 | <5.0               | <5.0                | <5.0               |
| 2-Chloroethylvinyl ether                            | <10.0               | <10.0               | <10.0                | <10.0              | <10.0               | <10.0               | <10.0              | <10.0                | NA               | NA                   | NA                 | NA               | <10.0                | <10.0              | <10.0               | <10.0              |
| 2-Chlorotoluene<br>2-Hexanone                       | <1.0<br>NA          | <1.0<br>NA          | <1.0<br>NA           | <1.0<br>NA         | <1.0<br>NA          | <1.0<br>NA          | <1.0<br>NA         | <1.0<br>NA           | <1.0<br>NA       | <1.0<br>NA           | <1.0<br>NA         | <1.0<br>NA       | <1.0<br>NA           | <1.0<br>NA         | <1.0<br>NA          | <1.0<br>NA         |
| 2-Methylnaphthalene                                 | NA<br>NA            | NA NA               | NA NA                | NA NA              | NA<br>NA            | NA NA               | NA NA              | NA NA                | NA<br>NA         | NA NA                | NA NA              | NA NA            | NA<br>NA             | NA NA              | NA NA               | NA NA              |
| 4-Chlorotoluene                                     | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| 4-Methyl-2-pentanone (MIBK) Acetone                 | <5.0<br><b>25.2</b> | <5.0<br><b>44.5</b> | <5.0<br><b>53.9</b>  | <5.0<br><b>121</b> | <5.0<br><b>38.9</b> | <5.0<br><b>71.2</b> | <5.0<br><b>112</b> | <5.0<br><b>342</b>   | <20.0<br><20.0   | <20.0<br><b>56.3</b> | <5.0<br><20.0      | <5.0<br><20.0    | <5.0<br><20.0        | <5.0<br><20.0      | <5.0<br><20.0       | <5.0<br><20.0      |
| Acrolein                                            | NA                  | NA NA               | NA                   | NA NA              | NA                  | NA                  | NA NA              | NA                   | NA               | NA                   | NA                 | NA               | NA                   | NA                 | NA                  | NA                 |
| Acrylonitrile                                       | NA                  | NA                  | NA                   | NA                 | NA                  | NA                  | NA                 | NA                   | NA               | NA                   | NA                 | NA               | NA                   | NA                 | NA                  | NA                 |
| Allyl chloride Benzene                              | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0         | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0         | <5.0<br><1.0     | <5.0<br><1.0         | <5.0<br><1.0       | <5.0<br><1.0     | <4.0<br><1.0         | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0       |
| Bromobenzene                                        | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| Bromochloromethane                                  | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| Bromodichloromethane Bromoform                      | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0         | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0       | <1.0<br><4.0         | <1.0<br><5.0     | <1.0<br><5.0         | <1.0<br><5.0       | <1.0<br><5.0     | <1.0<br><4.0         | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0       |
| Bromomethane                                        | <4.0                | <4.0                | <4.0                 | <4.0               | <4.0<br><4.0        | <4.0                | <4.0               | <4.0                 | <5.0<br><5.0     | <5.0<br><5.0         | <5.0<br><5.0       | <5.0<br><5.0     | <4.0                 | <4.0               | <4.0                | <4.0               |
| Carbon disulfide                                    | NA                  | NA                  | NA                   | NA                 | NA                  | NA                  | NA                 | NA                   | NA               | NA                   | NA                 | NA               | NA                   | NA                 | NA                  | NA                 |
| Carbon tetrachloride Chlorobenzene                  | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0         | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0         | <1.0<br><1.0     | <1.0<br><1.0         | <1.0<br><1.0       | <1.0<br><1.0     | <1.0<br><1.0         | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       |
| Chloroethane                                        | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| Chloroform                                          | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <5.0             | <5.0                 | <5.0               | <5.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| Chloromethane<br>Chloroprene                        | <4.0<br>NA          | <4.0<br>NA          | <4.0<br>NA           | <4.0<br>NA         | <4.0<br>NA          | <4.0<br>NA          | <4.0<br>NA         | <4.0<br>NA           | <1.0<br>NA       | <1.0<br>NA           | <1.0<br>NA         | <1.0<br>NA       | <4.0<br>NA           | <4.0<br>NA         | <4.0<br>NA          | <b>6.9</b><br>NA   |
| cis-1,2-Dichloroethene                              | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | 1.0                  | <1.0               | <1.0                | <1.0               |
| cis-1,3-Dichloropropene                             | <4.0                | <4.0                | <4.0                 | <4.0               | <4.0                | <4.0                | <4.0               | <4.0                 | <5.0             | <5.0                 | <1.0               | <1.0             | <4.0                 | <4.0               | <4.0                | <4.0               |
| Dibromoethane Dibromomethane                        | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0         | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><4.0       | <1.0<br><4.0         | <5.0<br><1.0     | <5.0<br><1.0         | <1.0<br><1.0       | <1.0<br><1.0     | <1.0<br><4.0         | <1.0<br><4.0       | <1.0<br><4.0        | <1.0<br><4.0       |
| Dichlorodifluoromethane                             | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| Dichlorofluoromethane                               | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| Diethyl ether (Ethyl ether) Ethylbenzene            | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0         | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0         | <5.0<br><1.0     | <5.0<br><1.0         | <5.0<br><1.0       | <5.0<br><1.0     | <4.0<br><1.0         | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0       |
| Hexachloro-1,3-butadiene                            | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <5.0             | <5.0                 | <5.0               | <5.0             | <2.0                 | <2.0               | <1.0                | <1.0               |
| lodomethane                                         | NA<br>1.0           | NA                  | NA<br>1.0            | NA                 | NA<br>1.0           | NA<br>1.0           | NA<br>1.0          | NA                   | NA               | NA                   | NA<br>1.0          | NA               | NA<br>1.0            | NA                 | NA<br>1.0           | NA                 |
| Isopropylbenzene (Cumene) m&p-Xylene                | <1.0<br><2.0        | <1.0<br><2.0        | <1.0<br><2.0         | <1.0<br><2.0       | <1.0<br><2.0        | <1.0<br><2.0        | <1.0<br><2.0       | <1.0<br><2.0         | <1.0<br>NA       | <1.0<br>NA           | <1.0<br>NA         | <1.0<br>NA       | <1.0<br><2.0         | <1.0<br><2.0       | <1.0<br><2.0        | <1.0<br><2.0       |
| Methylene Chloride                                  | <4.0                | <4.0                | <4.0                 | <4.0               | <4.0                | <4.0                | <4.0               | <4.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <4.0                 | <4.0               | <4.0                | <4.0               |
| Methyl-tert-butyl ether Naphthalene                 | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| n-Butylbenzene                                      | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0         | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0         | <5.0<br><1.0     | <5.0<br><1.0         | <5.0<br><1.0       | <5.0<br><1.0     | <4.0<br><1.0         | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0       |
| n-Propylbenzene                                     | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| o-Xylene                                            | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | NA<br>4.0        | NA<br>4.0            | NA<br>4.0          | NA<br>4.0        | <1.0                 | <1.0               | <1.0                | <1.0               |
| p-Isopropyltoluene<br>sec-Butylbenzene              | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0         | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0         | <1.0<br><5.0     | <1.0<br><5.0         | <1.0<br><5.0       | <1.0<br><5.0     | <1.0<br><1.0         | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       |
| Styrene                                             | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| tert-Butylbenzene                                   | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| Tetrachloroethene Tetrahydrofuran                   | <b>3.1</b> <10.0    | <1.0<br><10.0       | <b>106</b> <10.0     | <1.0<br><10.0      | <b>59.5</b> <10.0   | <1.0<br><10.0       | <b>31.5</b> <10.0  | <b>1.8</b> <10.0     | <b>21.2</b> <5.0 | <1.0<br><5.0         | <b>101</b> <5.0    | <1.0<br><5.0     | <b>167</b> <10.0     | <b>2.5</b> <10.0   | <b>36.1</b> <10.0   | <1.0<br><10.0      |
| Toluene                                             | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| trans-1,2-Dichloroethene                            | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| trans-1,3-Dichloropropene Trichloroethene           | <4.0<br><0.40       | <4.0<br><0.40       | <4.0<br><0.40        | <4.0<br><0.40      | <4.0<br><0.40       | <4.0<br><0.40       | <4.0<br><0.40      | <4.0<br><0.40        | <20.0<br><1.0    | <20.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0     | <4.0<br><0.40        | <4.0<br><0.40      | <4.0<br><0.40       | <4.0<br><0.40      |
| Trichlorofluoromethane                              | <1.0                | <1.0                | <1.0                 | <1.0               | <1.0                | <1.0                | <1.0               | <1.0                 | <1.0             | <1.0                 | <1.0               | <1.0             | <1.0                 | <1.0               | <1.0                | <1.0               |
| Vinyl acetate                                       | NA                  | NA                  | NA                   | NA                 | NA                  | NA                  | NA                 | NA                   | NA               | NA                   | NA                 | NA               | NA                   | NA                 | NA                  | NA                 |
| Vinyl chloride  Xylene (Total)                      | <0.40<br><3.0       | <0.40<br><3.0       | <0.40<br><3.0        | <0.40<br><3.0      | <0.40<br><3.0       | <0.40<br><3.0       | <0.40<br><3.0      | <0.40<br><3.0        | <1.0<br><3.0     | <1.0<br><3.0         | <1.0<br><3.0       | <1.0<br><3.0     | <0.40<br><3.0        | <0.40<br><3.0      | <0.40<br><3.0       | <0.40<br><3.0      |
| Total VOC Concentration                             | <3.0<br>28.3        | <3.0<br><b>44.5</b> | <3.0<br><b>159.9</b> | <3.0<br>121        | <3.0<br>98.4        | <3.0<br><b>71.2</b> | <3.0<br>143.5      | <3.0<br><b>343.8</b> | <3.0<br>21.2     | <3.0<br><b>56.3</b>  | <3.0<br><b>101</b> | <3.0<br><b>0</b> | <3.0<br><b>169.1</b> | <3.0<br><b>2.5</b> | <3.0<br><b>36.1</b> | <3.0<br><b>6.9</b> |
| Pold : Parameter detected above the reporting limit | _0.0                |                     |                      |                    | U U U               |                     |                    | U 70.0               |                  |                      |                    |                  |                      |                    | V V. I              | <u> </u>           |

Bold : Parameter detected above the reporting limit.

Bold : Total VOC Concentration is above discharge limit of 2,140 ug/L.

1: Initial sampling event to determine if groundwater treatment was necessary.

<sup>&</sup>lt;sup>2</sup>: Increase in VOCs was from PVC glue and cement from construction of the DPE system and air stripper.

<sup>3.</sup> Increase in VOCs was from PVC glue and cement from installation of the secondary demister moisture separator.

| Sample ID                                             | AS-Influent       | AS-Effluent   | AS-Influent      | AS-Effluent       | AS-Influent       | AS-Effluent    | AS-Influent       | AS-Effluent   | AS-Influent       | AS-Effluent    | AS-Influent        | AS-Effluent        | AS-Influent       | AS-Effluent      | AS-Influent       | AS-Effluent      | AS-Influent       | AS-Effluent    | AS-Influent       | AS-Effluent       | AS-Influent       | AS-Effluent      |
|-------------------------------------------------------|-------------------|---------------|------------------|-------------------|-------------------|----------------|-------------------|---------------|-------------------|----------------|--------------------|--------------------|-------------------|------------------|-------------------|------------------|-------------------|----------------|-------------------|-------------------|-------------------|------------------|
| Collected Date                                        | 6/26/2013         | 6/26/2013     | 5/22/2013        | 5/22/2013         | 3/21/2012         | 3/21/2013      | 2/26/2013         | 2/26/2013     | 1/30/2013         | 1/30/2013      | 12/21/2012         | 12/21/2012         | 10/26/2012        | 10/26/2012       | 9/26/2012         | 9/26/2012        | 8/23/2012         | 8/23/2012      | 7/19/2012         | 7/19/2012         | 6/14/2012         | 6/14/2012        |
| 1,1,1,2-Tetrachloroethane                             | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| 1,1,1-Trichloroethane                                 | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane       | <1.0<br><1.0      | <1.0<br><1.0  | <1.0<br><1.0     | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0      | <1.0<br><1.0  | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0     | <1.0<br><1.0      | <1.0<br><1.0     | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0     |
| 1,1,2-Trichlorotrifluoroethane                        | <1.0              | <1.0          | <1.0             | 1.1               | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| 1,1-Dichloroethane                                    | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| 1,1-Dichloroethene                                    | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| 1,1-Dichloropropene 1,2,3-Trichlorobenzene            | <1.0<br><1.0      | <1.0<br><1.0  | <1.0<br><1.0     | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0      | <1.0<br><1.0  | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0     | <1.0<br><1.0      | <1.0<br><1.0     | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0     |
| 1,2,3-Trichloropropane                                | <4.0              | <4.0          | <4.0             | <4.0              | <4.0              | <4.0           | <4.0              | <4.0          | <4.0              | <4.0           | <4.0               | <4.0               | <4.0              | <4.0             | <4.0              | <4.0             | <4.0              | <4.0           | <4.0              | <4.0              | <4.0              | <4.0             |
| 1,2,4-Trichlorobenzene                                | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| 1,2,4-Trimethylbenzene<br>1,2-Dibromo-3-chloropropane | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0<br><4.0     |
| 1.2-Dibromoethane (EDB)                               | <4.0<br><1.0      | <4.0<br><1.0  | <4.0<br><1.0     | <4.0<br><1.0      | <4.0<br><1.0      | <4.0<br><1.0   | <4.0<br><1.0      | <4.0<br><1.0  | <4.0<br><1.0      | <4.0<br><1.0   | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0      | <4.0<br><1.0     | <4.0<br><1.0      | <4.0<br><1.0     | <4.0<br><1.0      | <4.0<br><1.0   | <4.0<br><1.0      | <4.0<br><1.0      | <4.0<br><1.0      | <1.0             |
| 1,2-Dichlorobenzene                                   | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| 1,2-Dichloroethane                                    | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| 1,2-Dichloropropane 1,3,5-Trimethylbenzene            | <4.0<br><1.0      | <4.0<br><1.0  | <4.0<br><1.0     | <4.0<br><1.0      | <4.0<br><1.0      | <4.0<br><1.0   | <4.0<br><1.0      | <4.0<br><1.0  | <4.0<br><1.0      | <4.0<br><1.0   | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0      | <4.0<br><1.0     | <4.0<br><1.0      | <4.0<br><1.0     | <4.0<br><1.0      | <4.0<br><1.0   | <4.0<br><1.0      | <4.0<br><1.0      | <4.0<br><1.0      | <4.0<br><1.0     |
| 1,3-Dichlorobenzene                                   | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| 1,3-Dichloropropane                                   | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| 1,4-Dichloropenzene                                   | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| 2,2-Dichloropropane 2-Butanone (MEK)                  | <4.0<br><5.0      | <4.0<br><5.0  | <4.0<br><5.0     | <4.0<br><5.0      | <4.0<br><5.0      | <4.0<br><5.0   | <4.0<br><5.0      | <4.0<br><5.0  | <4.0<br><4.0      | <4.0<br><4.0   | <4.0<br><b>4.5</b> | <4.0<br><b>7.4</b> | <4.0<br><4.0      | <4.0<br><4.0     | <4.0<br><4.0      | <4.0<br><4.0     | <4.0<br><4.0      | <4.0<br><4.0   | <4.0<br><4.0      | <4.0<br><4.0      | <4.0<br><4.0      | <4.0<br><4.0     |
| 2-Chloroethylvinyl ether                              | <10.0             | <10.0         | <10.0            | <10.0             | <10.0             | <10.0          | <10.0             | <10.0         | <10.0             | <10.0          | <10.0              | <10.0              | <10.0             | <10.0            | <10.0             | <10.0            | <10.0             | <10.0          | <10.0             | <10.0             | <10.0             | <10.0            |
| 2-Chlorotoluene                                       | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| 2-Hexanone<br>2-Methylnaphthalene                     | NA<br>NA          | NA<br>NA      | <5.0<br><5.0     | <5.0<br><5.0      | <5.0<br><5.0      | <5.0<br><5.0   | NA*<br>NA*        | NA*           | <4.0<br><5.0      | <4.0<br><5.0   | NA*<br>NA*         | NA*<br>NA*         | <4.0<br><5.0      | <4.0<br><5.0     | <4.0<br><5.0      | <4.0<br><5.0     | <4.0<br><5.0      | <4.0<br><5.0   | <4.0<br><5.0      | <4.0<br><5.0      | NA*<br>NA*        | NA*<br>NA*       |
| 4-Chlorotoluene                                       | <1.0              | <1.0          | <5.0<br><1.0     | <5.0<br><1.0      | <5.0<br><1.0      | <5.0<br><1.0   | <1.0              | <1.0          | <5.0<br><1.0      | <5.0<br><1.0   | <1.0               | <1.0               | <5.0<br><1.0      | <5.0<br><1.0     | <5.0<br><1.0      | <5.0<br><1.0     | <5.0<br><1.0      | <5.0<br><1.0   | <5.0<br><1.0      | <5.0<br><1.0      | <1.0              | NA"<br><1.0      |
| 4-Methyl-2-pentanone (MIBK)                           | <5.0              | <5.0          | <5.0             | <5.0              | <5.0              | <5.0           | <5.0              | <5.0          | <4.0              | <4.0           | <4.0               | <4.0               | <4.0              | <4.0             | <4.0              | <4.0             | <4.0              | <4.0           | <4.0              | <4.0              | <4.0              | <4.0             |
| Acetone                                               | <20.0             | <20.0         | <20.0            | <20.0             | <20.0             | <20.0          | 60.3              | 114           | <25.0             | <25.0          | <25.0              | <25.0              | <25.0             | <25.0            | <25.0             | <25.0            | <25.0             | <25.0          | <25.0             | <25.0             | <25.0             | <25.0            |
| Acrolein<br>Acrylonitrile                             | NA<br>NA          | NA<br>NA      | <10.0<br><10.0   | <10.0<br><10.0    | <10.0<br><10.0    | <10.0<br><10.0 | NA*<br>NA*        | NA*<br>NA*    | <10.0<br><10.0    | <10.0<br><10.0 | NA*<br>NA*         | NA*<br>NA*         | <10.0<br><10.0    | <10.0<br><10.0   | <10.0<br><10.0    | <10.0<br><10.0   | <10.0<br><10.0    | <10.0<br><10.0 | <10.0<br><10.0    | <10.0<br><10.0    | NA*<br>NA*        | NA*<br>NA*       |
| Allyl chloride                                        | <4.0              | <4.0          | <4.0             | <4.0              | <4.0              | <4.0           | <4.0              | <4.0          | <4.0              | <4.0           | <4.0               | <4.0               | <4.0              | <4.0             | <4.0              | <4.0             | <4.0              | <4.0           | <4.0              | <4.0              | <4.0              | <4.0             |
| Benzene                                               | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| Bromobenzene                                          | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| Bromochloromethane Bromodichloromethane               | <1.0<br><1.0      | <1.0<br><1.0  | <1.0<br><1.0     | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0      | <1.0<br><1.0  | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0     | <1.0<br><1.0      | <1.0<br><1.0     | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0     |
| Bromoform                                             | <4.0              | <4.0          | <4.0             | <4.0              | <4.0              | <4.0           | <4.0              | <4.0          | <4.0              | <4.0           | <4.0               | <4.0               | <4.0              | <4.0             | <4.0              | <4.0             | <4.0              | <4.0           | <4.0              | <4.0              | <4.0              | <4.0             |
| Bromomethane                                          | <10.0             | <10.0         | <4.0             | <4.0              | <10.0             | <10.0          | <10.0             | <10.0         | <4.0              | <4.0           | <4.0               | <4.0               | <4.0              | <4.0             | <10.0             | <10.0            | <4.0              | <4.0           | <4.0              | <4.0              | <4.0              | <4.0             |
| Carbon disulfide                                      | NA                | NA            | <1.0             | <1.0              | <1.0              | <1.0           | NA*               | NA*           | <1.0              | <1.0           | NA*                | NA*                | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | NA*               | NA*              |
| Carbon tetrachloride Chlorobenzene                    | <1.0<br><1.0      | <1.0<br><1.0  | <1.0<br><1.0     | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0      | <1.0<br><1.0  | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0     | <1.0<br><1.0      | <1.0<br><1.0     | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0     |
| Chloroethane                                          | <4.0              | <4.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| Chloroform                                            | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| Chloromethane                                         | <4.0              | <4.0          | <4.0             | <4.0              | <4.0              | <4.0           | <4.0              | <4.0          | <4.0              | <4.0           | <4.0               | <4.0               | <4.0              | <4.0             | <4.0              | <4.0             | <4.0              | <4.0           | <4.0              | <4.0              | <4.0              | <4.0             |
| Chloroprene<br>cis-1,2-Dichloroethene                 | NA<br><1.0        | NA<br><1.0    | <1.0<br><1.0     | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0   | NA*<br><1.0       | NA*<br><1.0   | <1.0<br><1.0      | <1.0<br><1.0   | NA*<br><1.0        | NA*<br><1.0        | <1.0<br><1.0      | <1.0<br><1.0     | <1.0<br><1.0      | <1.0<br><1.0     | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0      | <1.0<br><1.0      | NA*<br><1.0       | NA*<br><1.0      |
| cis-1,3-Dichloropropene                               | <4.0              | <4.0          | <4.0             | <4.0              | <4.0              | <4.0           | <4.0              | <4.0          | <4.0              | <4.0           | <4.0               | <4.0               | <4.0              | <4.0             | <4.0              | <4.0             | <4.0              | <4.0           | <4.0              | <4.0              | <4.0              | <4.0             |
| Dibromochloromethane                                  | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| Dibromomethane  Dichlorodifluoromethane               | <4.0<br><1.0      | <4.0<br><1.0  | <4.0<br><1.0     | <4.0<br><1.0      | <4.0<br><1.0      | <4.0<br><1.0   | <4.0<br><1.0      | <4.0<br><1.0  | <4.0<br><1.0      | <4.0<br><1.0   | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0      | <4.0<br><1.0     | <4.0<br><1.0      | <4.0<br><1.0     | <4.0<br><1.0      | <4.0<br><1.0   | <4.0<br><1.0      | <4.0<br><1.0      | <4.0<br><1.0      | <4.0<br><1.0     |
| Dichlorofluoromethane                                 | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| Diethyl ether (Ethyl ether)                           | <4.0              | <4.0          | <4.0             | <4.0              | <4.0              | <4.0           | <4.0              | <4.0          | <4.0              | <4.0           | <4.0               | <4.0               | <4.0              | <4.0             | <4.0              | <4.0             | <4.0              | <4.0           | <4.0              | <4.0              | <4.0              | <4.0             |
| Ethylbenzene                                          | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| Hexachloro-1,3-butadiene<br>Iodomethane               | <1.0<br>NA        | <1.0<br>NA    | <5.0<br><4.0     | <5.0<br><4.0      | <5.0<br><4.0      | <5.0<br><4.0   | <5.0<br>NA*       | <5.0<br>NA*   | <5.0<br><4.0      | <5.0<br><4.0   | <5.0<br>NA*        | <5.0<br>NA*        | <5.0<br><4.0      | <5.0<br><4.0     | <5.0<br><10.0     | <5.0<br><10.0    | <5.0<br><4.0      | <5.0<br><4.0   | <5.0<br><4.0      | <5.0<br><4.0      | <5.0<br>NA*       | <5.0<br>NA*      |
| Isopropylbenzene (Cumene)                             | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| m&p-Xylene                                            | <2.0              | <2.0          | <2.0             | <2.0              | <2.0              | <2.0           | <2.0              | <2.0          | <2.0              | <2.0           | <2.0               | <2.0               | <2.0              | <2.0             | <2.0              | <2.0             | <2.0              | <2.0           | <2.0              | <2.0              | <2.0              | <2.0             |
| Methylene Chloride Methyl-tert-butyl ether            | <4.0<br><1.0      | <4.0<br><1.0  | <4.0<br><1.0     | <4.0<br><1.0      | <4.0<br><1.0      | <4.0<br><1.0   | <4.0<br><1.0      | <4.0<br><1.0  | <4.0<br><1.0      | <4.0<br><1.0   | <4.0<br><1.0       | <4.0<br><1.0       | <4.0<br><1.0      | <4.0<br><1.0     | <4.0<br><1.0      | <4.0<br><1.0     | <4.0<br><1.0      | <4.0<br><1.0   | <4.0<br><1.0      | <4.0<br><1.0      | <4.0<br><1.0      | <4.0<br><1.0     |
| Naphthalene                                           | <4.0              | <4.0          | <4.0             | <1.0<br><4.0      | <4.0              | <1.0           | <4.0              | <4.0          | <1.0              | <4.0           | <4.0               | <4.0               | <1.0              | <1.0             | <1.0              | <4.0             | <4.0              | <4.0           | <1.0              | <4.0              | <4.0              | <1.0<br><4.0     |
| n-Butylbenzene                                        | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| n-Propylbenzene                                       | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| o-Xylene<br>p-Isopropyltoluene                        | <1.0<br><1.0      | <1.0<br><1.0  | <1.0<br><1.0     | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0      | <1.0<br><1.0  | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0     | <1.0<br><1.0      | <1.0<br><1.0     | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0     |
| sec-Butylbenzene                                      | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| Styrene                                               | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| tert-Butylbenzene                                     | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| Tetrachloroethene Tetrahydrofuran                     | <b>56.4</b> <10.0 | <1.0<br><10.0 | <b>123</b> <10.0 | <b>15.5</b> <10.0 | <b>31.5</b> <10.0 | <1.0<br><10.0  | <b>35.4</b> <10.0 | <1.0<br><10.0 | <b>26.3</b> <10.0 | <1.0<br><10.0  | 71.7<br>15.3       | <b>7.5</b> <10.0   | <b>35.7</b> <10.0 | <b>1.6</b> <10.0 | <b>21.8</b> <10.0 | <b>1.8</b> <10.0 | <b>45.5</b> <10.0 | <1.0<br><10.0  | <b>36.1</b> <10.0 | <b>35.2</b> <10.0 | <b>39.0</b> <10.0 | <b>3.3</b> <10.0 |
| Toluene                                               | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| trans-1,2-Dichloroethene                              | <1.0              | <1.0          | <1.0             | <1.0              | <1.0              | <1.0           | <1.0              | <1.0          | <1.0              | <1.0           | <1.0               | <1.0               | <1.0              | <1.0             | <1.0              | <1.0             | <1.0              | <1.0           | <1.0              | <1.0              | <1.0              | <1.0             |
| trans-1,3-Dichloropropene                             | <4.0              | <4.0          | <4.0             | <4.0              | <4.0              | <4.0           | <4.0              | <4.0          | <4.0              | <4.0           | <4.0               | <4.0               | <4.0              | <4.0             | <4.0              | <4.0             | <4.0              | <4.0           | <4.0              | <4.0              | <4.0              | <4.0             |
| Trichloroethene Trichlorofluoromethane                | <0.40<br><1.0     | <0.40<br><1.0 | <1.0<br><1.0     | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0      | <1.0<br><1.0  | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0     | <1.0<br><1.0      | <1.0<br><1.0     | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0      | <1.0<br><1.0     |
| Vinyl acetate                                         | NA                | NA            | <10.0            | <10.0             | <10.0             | <10.0          | ×1.0<br>NA*       | ×1.0<br>NA*   | <10.0             | <10.0          | <1.0<br>NA*        | <1.0<br>NA*        | <10.0             | <10.0            | <10.0             | <10.0            | <10.0             | <10.0          | <10.0             | <10.0             | <1.0<br>NA*       | ×1.0<br>NA*      |
| Vinyl chloride                                        | <0.40             | <0.40         | <0.40            | <0.40             | <0.40             | <0.40          | <0.40             | <0.40         | <0.40             | <0.40          | <0.40              | <0.40              | <0.40             | <0.40            | <0.40             | <0.40            | <0.40             | <0.40          | <0.40             | <0.40             | <0.40             | <0.40            |
| Xylene (Total)                                        | <3.0              | <3.0          | <3.0             | <3.0              | <3.0              | <3.0           | <3.0              | <3.0          | <3.0              | <3.0           | <3.0               | <3.0               | <3.0              | <3.0             | <3.0              | <3.0             | <3.0              | <3.0           | <3.0              | <3.0              | <3.0              | <3.0             |
| Total VOC Concentration                               | 56.4              | 0             | 123              | 16.6              | 31.5              | 0              | 95.7              | 114           | 26.3              | 0              | 91.5               | 14.9               | 35.7              | 1.6              | 21.8              | 1.8              | 45.5              | 0              | 36.1              | 35.2              | 39                | 3.3              |

Increase in VOCs was from PVC glue and cement from construction of the DPE system and air stripper.

<sup>3:</sup> Increase in VOCs was from PVC glue and cement from installation of the secondary demister moisture separator.

| Sample ID                                           | AS-Influent         | AS-Effluent      | AS-Influent         | AS-Effluent      | AS-Influent   | AS-Effluent      | AS-Influent         | AS-Effluent      | AS-Influent         | AS-Effluent      | AS-Influent    | AS-Effluent         | AS-Influent         | AS-Effluent      | AS-Influent         | AS-Effluent    | AS-Influent         | AS-Effluent        | AS-Influent         | AS-Effluent        | AS-Influent       | AS-Effluent      |
|-----------------------------------------------------|---------------------|------------------|---------------------|------------------|---------------|------------------|---------------------|------------------|---------------------|------------------|----------------|---------------------|---------------------|------------------|---------------------|----------------|---------------------|--------------------|---------------------|--------------------|-------------------|------------------|
| Collected Date                                      | 5/17/2012           | 5/17/2012        | 4/17/2012           | 4/17/2012        | 3/16/2012     | 3/16/2012        | 2/16/2012           | 2/16/2012        | 1/27/2012           | 1/27/2012        | 1/20/2012      | 1/20/2012           | 11/21/2011          | 11/21/2011       | 10/27/2011          | 10/27/2011     | 9/29/2011           | 9/29/2011          | 8/28/2011           | 8/28/2011          | 7/25/2011         | 7/25/2011        |
| 1,1,1,2-Tetrachloroethane                           | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| 1,1,1-Trichloroethane                               | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane     | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0  | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0   | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0   | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0     |
| 1,1,2-Trichlorotrifluoroethane                      | <1.0                | <1.0             | <1.0                | <1.0             | 1.2           | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | 2.9            | 6.4                 | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| 1,1-Dichloroethane                                  | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| 1,1-Dichloroethene                                  | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| 1,1-Dichloropropene<br>1,2,3-Trichlorobenzene       | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0  | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0   | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0   | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0     |
| 1,2,3-Trichloropropane                              | <4.0                | <4.0             | <4.0                | <4.0             | <4.0          | <4.0             | <4.0                | <4.0             | <4.0                | <4.0             | <4.0           | <4.0                | <4.0                | <4.0             | <4.0                | <4.0           | <4.0                | <4.0               | <4.0                | <4.0               | <4.0              | <4.0             |
| 1,2,4-Trichlorobenzene                              | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| 1,2,4-Trimethylbenzene                              | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| 1,2-Dibromo-3-chloropropane 1,2-Dibromoethane (EDB) | <4.0<br><1.0        | <4.0<br><1.0     | <4.0<br><1.0        | <4.0<br><1.0     | <4.0<br><1.0  | <4.0<br><1.0     | <4.0<br><1.0        | <4.0<br><1.0     | <4.0<br><1.0        | <4.0<br><1.0     | <4.0<br><1.0   | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0     | <4.0<br><1.0        | <4.0<br><1.0   | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0      | <4.0<br><1.0     |
| 1,2-Dichlorobenzene                                 | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| 1,2-Dichloroethane                                  | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| 1,2-Dichloropropane                                 | <4.0                | <4.0             | <4.0                | <4.0             | <4.0          | <4.0             | <4.0                | <4.0             | <4.0                | <4.0             | <4.0           | <4.0                | <4.0                | <4.0             | <4.0                | <4.0           | <4.0                | <4.0               | <4.0                | <4.0               | <4.0              | <4.0             |
| 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene          | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| 1,3-Dichloropropane                                 | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0  | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0   | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0   | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0     |
| 1,4-Dichlorobenzene                                 | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| 2,2-Dichloropropane                                 | <4.0                | <4.0             | <4.0                | <4.0             | <4.0          | <4.0             | <4.0                | <4.0             | <4.0                | <4.0             | <4.0           | <4.0                | <4.0                | <4.0             | <4.0                | <4.0           | <4.0                | <4.0               | <4.0                | <4.0               | <4.0              | <4.0             |
| 2-Butanone (MEK)                                    | <4.0                | <4.0             | <4.0                | <4.0             | <4.0          | <4.0             | <4.0                | <4.0             | <4.0                | <4.0             | 8.8            | <4.0                | <4.0                | <4.0             | <4.0                | <4.0           | <4.0                | 6.5                | <4.0                | <4.0               | <4.0              | <4.0             |
| 2-Chloroethylvinyl ether 2-Chlorotoluene            | <10.0<br><1.0       | <10.0<br><1.0    | <10.0<br><1.0       | <10.0<br><1.0    | <10.0<br><1.0 | <10.0<br><1.0    | <10.0<br><1.0       | <10.0<br><1.0    | <10.0<br><1.0       | <10.0<br><1.0    | <10.0<br><1.0  | <10.0<br><1.0       | <10.0<br><1.0       | <10.0<br><1.0    | <10.0<br><1.0       | <10.0<br><1.0  | <10.0<br><1.0       | <10.0<br><1.0      | <10.0<br><1.0       | <10.0<br><1.0      | <10.0<br><1.0     | <10.0<br><1.0    |
| 2-Hexanone                                          | <1.0<br>NA*         | <1.0<br>NA*      | <4.0                | <4.0             | <1.0<br>NA    | NA               | <4.0                | <4.0             | <4.0                | <1.0<br><4.0     | <4.0           | <4.0                | <1.0                | <4.0             | <4.0                | <4.0           | <4.0                | <4.0               | <4.0                | <4.0               | <4.0              | <4.0             |
| 2-Methylnaphthalene                                 | NA*                 | NA*              | <5.0                | <5.0             | NA            | NA               | <5.0                | <5.0             | <5.0                | <5.0             | <5.0           | <5.0                | <5.0                | <5.0             | <5.0                | <5.0           | <5.0                | <5.0               | <5.0                | <5.0               | <5.0              | <5.0             |
| 4-Chlorotoluene                                     | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| 4-Methyl-2-pentanone (MIBK) Acetone                 | <4.0                | <4.0             | <4.0                | <4.0             | <4.0          | <4.0             | <4.0                | <4.0             | <4.0                | <4.0             | <4.0           | <4.0                | <4.0                | <4.0             | <4.0                | <4.0           | <4.0                | <4.0               | <4.0                | <4.0               | <4.0              | <4.0             |
| Acrolein                                            | <25.0<br>NA*        | <25.0<br>NA*     | <25.0<br><10.0      | <25.0<br><10.0   | <25.0<br>NA   | <25.0<br>NA      | <25.0<br><10.0      | <25.0<br><10.0   | <25.0<br><10.0      | <25.0<br><10.0   | <25.0<br><10.0 | <25.0<br><10.0      | <25.0<br><10.0      | <25.0<br><10.0   | <25.0<br><10.0      | <25.0<br><10.0 | <25.0<br><10.0      | <25.0<br><10.0     | <25.0<br><10.0      | <25.0<br><10.0     | <25.0<br><10.0    | <25.0<br><10.0   |
| Acrylonitrile                                       | NA*                 | NA*              | <10.0               | <10.0            | NA<br>NA      | NA<br>NA         | <10.0               | <10.0            | <10.0               | <10.0            | <10.0          | <10.0               | <10.0               | <10.0            | <10.0               | <10.0          | <10.0               | <10.0              | <10.0               | <10.0              | <10.0             | <10.0            |
| Allyl chloride                                      | <4.0                | <4.0             | <4.0                | <4.0             | <4.0          | <4.0             | <4.0                | <4.0             | <4.0                | <4.0             | <4.0           | <4.0                | <4.0                | <4.0             | <4.0                | <4.0           | <4.0                | <4.0               | <4.0                | <4.0               | <4.0              | <4.0             |
| Benzene                                             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| Bromochloromethane                                  | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0  | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0   | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0   | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0     |
| Bromodichloromethane                                | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| Bromoform                                           | <4.0                | <4.0             | <4.0                | <4.0             | <4.0          | <4.0             | <4.0                | <4.0             | <4.0                | <4.0             | <4.0           | <4.0                | <4.0                | <4.0             | <4.0                | <4.0           | <4.0                | <4.0               | <4.0                | <4.0               | <4.0              | <4.0             |
| Bromomethane                                        | <4.0                | <4.0             | <4.0                | <4.0             | <4.0          | <4.0             | <4.0                | <4.0             | <4.0                | <4.0             | <4.0           | <4.0                | <4.0                | <4.0             | <4.0                | <4.0           | <4.0                | <4.0               | <4.0                | <4.0               | <4.0              | <4.0             |
| Carbon disulfide Carbon tetrachloride               | NA*<br><1.0         | NA*<br><1.0      | <1.0<br><1.0        | <1.0<br><1.0     | NA<br><1.0    | NA<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0   | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0   | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0     |
| Chlorobenzene                                       | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| Chloroethane                                        | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| Chloroform                                          | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| Chloromethane                                       | <4.0                | <4.0             | <4.0                | <4.0             | 4             | <4.0             | <4.0                | <4.0             | <4.0                | <4.0             | 9.4            | 7.8                 | <4.0                | <4.0             | <4.0                | <4.0           | <4.0                | <4.0               | <4.0                | 4.9                | <4.0              | <4.0             |
| Chloroprene<br>cis-1,2-Dichloroethene               | NA*<br><1.0         | NA*<br><1.0      | <1.0<br><1.0        | <1.0<br><1.0     | NA<br><1.0    | NA<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0   | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0   | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0     |
| cis-1,3-Dichloropropene                             | <4.0                | <4.0             | <4.0                | <4.0             | <4.0          | <4.0             | <4.0                | <4.0             | <4.0                | <4.0             | <4.0           | <4.0                | <4.0                | <4.0             | <4.0                | <4.0           | <4.0                | <4.0               | <4.0                | <4.0               | <4.0              | <4.0             |
| Dibromochloromethane                                | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| Dibromomethane Dichlorodifluoromethane              | <4.0                | <4.0             | <4.0                | <4.0             | <4.0          | <4.0             | <4.0                | <4.0             | <4.0                | <4.0             | <4.0           | <4.0                | <4.0                | <4.0             | <4.0                | <4.0           | <4.0                | <4.0               | <4.0                | <4.0               | <4.0              | <4.0             |
| Dichlorofluoromethane                               | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0  | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0   | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0   | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0     |
| Diethyl ether (Ethyl ether)                         | <4.0                | <4.0             | <4.0                | <4.0             | <4.0          | <4.0             | <4.0                | <4.0             | <4.0                | <4.0             | <4.0           | <4.0                | <4.0                | <4.0             | <4.0                | <4.0           | <4.0                | <4.0               | <4.0                | <4.0               | <4.0              | <4.0             |
| Ethylbenzene                                        | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| Hexachloro-1,3-butadiene                            | <5.0                | <5.0             | <5.0                | <5.0             | <5.0          | <5.0             | <5.0                | <5.0             | <5.0                | <5.0             | <5.0           | <5.0                | <5.0                | <5.0             | <5.0                | <5.0           | <5.0                | <5.0               | <5.0                | <5.0               | <5.0              | <5.0             |
| Isopropylbenzene (Cumene)                           | NA*<br><1.0         | NA*<br><1.0      | <4.0<br><1.0        | <4.0<br><1.0     | NA<br><1.0    | NA<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0     | <4.0<br><1.0        | <4.0<br><1.0     | <4.0<br><1.0   | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0     | <4.0<br><1.0        | <4.0<br><1.0   | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0      | <4.0<br><1.0     |
| m&p-Xylene                                          | <2.0                | <2.0             | <2.0                | <2.0             | <2.0          | <2.0             | <2.0                | <2.0             | <2.0                | <2.0             | <2.0           | <2.0                | <2.0                | <2.0             | <2.0                | <2.0           | <2.0                | <2.0               | <2.0                | <2.0               | <2.0              | <2.0             |
| Methylene Chloride                                  | <4.0                | <4.0             | <4.0                | <4.0             | <4.0          | <4.0             | <10.0               | <10.0            | <10.0               | <10.0            | <10.0          | <10.0               | <10.0               | <10.0            | <10.0               | <10.0          | <4.0                | <4.0               | <4.0                | <4.0               | <4.0              | <4.0             |
| Methyl-tert-butyl ether                             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| Naphthalene<br>n-Butylbenzene                       | <4.0<br><1.0        | <4.0<br><1.0     | <4.0<br><1.0        | <4.0<br><1.0     | <4.0<br><1.0  | <4.0<br><1.0     | <4.0<br><1.0        | <4.0<br><1.0     | <4.0<br><1.0        | <4.0<br><1.0     | <4.0<br><1.0   | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0     | <4.0<br><1.0        | <4.0<br><1.0   | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0        | <4.0<br><1.0       | <4.0<br><1.0      | <4.0<br><1.0     |
| n-Propylbenzene                                     | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| o-Xylene                                            | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| p-Isopropyltoluene                                  | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| sec-Butylbenzene Styrene                            | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0  | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0   | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0     | <1.0<br><1.0        | <1.0<br><1.0   | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0        | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0     |
| tert-Butylbenzene                                   | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| Tetrachloroethene                                   | 22.7                | <1.0             | 39.6                | <1.0             | 86.5          | <1.0             | 51.8                | <1.0             | 76.3                | <1.0             | 149            | 45.1                | 31.6                | <1.0             | 40.3                | <1.0           | 45.1                | <1.0               | 50.7                | <1.0               | 37.0              | <1.0             |
| Tetrahydrofuran                                     | <10.0               | <10.0            | <10.0               | <10.0            | <10.0         | <10.0            | <10.0               | <10.0            | <10.0               | <10.0            | <10.0          | <10.0               | <10.0               | <10.0            | <10.0               | <10.0          | <10.0               | <10.0              | <10.0               | <10.0              | <10.0             | <10.0            |
| Toluene<br>trans-1,2-Dichloroethene                 | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| trans-1,3-Dichloropene                              | <1.0<br><4.0        | <1.0<br><4.0     | <1.0<br><4.0        | <1.0<br><4.0     | <1.0<br><4.0  | <1.0<br><4.0     | <1.0<br><4.0        | <1.0<br><4.0     | <1.0<br><4.0        | <1.0<br><4.0     | <1.0<br><4.0   | <1.0<br><4.0        | <4.0<br><4.0        | <4.0<br><4.0     | <4.0<br><4.0        | <4.0<br><4.0   | <4.0<br><4.0        | <4.0<br><4.0       | <4.0<br><4.0        | <4.0<br><4.0       | <4.0<br><4.0      | <4.0<br><4.0     |
| Trichloroethene                                     | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| Trichlorofluoromethane                              | <1.0                | <1.0             | <1.0                | <1.0             | <1.0          | <1.0             | <1.0                | <1.0             | <1.0                | <1.0             | <1.0           | <1.0                | <1.0                | <1.0             | <1.0                | <1.0           | <1.0                | <1.0               | <1.0                | <1.0               | <1.0              | <1.0             |
| Vinyl acetate                                       | <0.40               | <0.40            | <10.0               | <10.0            | NA            | NA               | <10.0               | <10.0            | <10.0               | <10.0            | <10.0          | <10.0               | <10.0               | <10.0            | <10.0               | <10.0          | <10.0               | <10.0              | <10.0               | <10.0              | <10.0             | <10.0            |
| Vinyl chloride  Yylene (Total)                      | <3.0                | <3.0             | <0.40               | <0.40            | <0.40         | <0.40            | <0.40               | <0.40            | <0.40               | <0.40            | <0.40          | <0.40               | <0.40               | <0.40            | <0.40               | <0.40          | <0.40               | <0.40              | <0.40               | <0.40              | <0.40             | <0.40            |
| Xylene (Total) Total VOC Concentration              | <3.0<br><b>22.7</b> | <3.0<br><b>0</b> | <3.0<br><b>39.6</b> | <3.0<br><b>0</b> | <3.0<br>91.7  | <3.0<br><b>0</b> | <3.0<br><b>51.8</b> | <3.0<br><b>0</b> | <3.0<br><b>76.3</b> | <3.0<br><b>0</b> | <3.0<br>149    | <3.0<br><b>45.1</b> | <3.0<br><b>31.6</b> | <3.0<br><b>0</b> | <3.0<br><b>40.3</b> | <3.0<br>0      | <3.0<br><b>45.1</b> | <3.0<br><b>6.5</b> | <3.0<br><b>50.7</b> | <3.0<br><b>4.9</b> | <3.0<br><b>37</b> | <3.0<br><b>0</b> |
|                                                     | 22.1                | U                | აყ.ნ                | U                | 91./          | U                | J1.0                | V                | 10.3                | U                | 149            | 43.1                | 31.0                | U                | 40.3                | V              | 43.1                | 0.0                | JU./                | 4.9                | ા ગ               | U                |

Increase in VOCs was from PVC glue and cement from construction of the DPE system and air stripper.

<sup>3:</sup> Increase in VOCs was from PVC glue and cement from installation of the secondary demister moisture separator.

|                                                                              | _              |                |                |                |                |                |                |                    |                |                |                |                |                |                |                    |                    |                |                |                    |                   |                |                |
|------------------------------------------------------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------------|--------------------|----------------|----------------|--------------------|-------------------|----------------|----------------|
| Sample ID                                                                    | AS-Influent    | AS-Effluent    | AS-Influent    | AS-Effluent    | AS-Influent    | AS-Effluent    | AS-Influent    | AS-Effluent        | AS-Influent    | AS-Effluent    | AS-Influent    | AS-Effluent    | AS-Influent AS | -Effluent AS   | S-Influent         | AS-Effluent        | AS-Influent    | AS-Effluent    | AS-Influent        | AS-Effluent       | AS-Influent    | AS-Effluent    |
| Collected Date                                                               | 6/16/2011      | 6/16/2011      | 5/19/2011      | 5/19/2011      | 4/22/2011      | 4/22/2011      | 3/23/2011      | 3/23/2011          | 3/1/2011       | 3/1/2011       | 1/20/2011      | 1/20/2011      | 12/23/2010 12  | /23/2010 10    | /19/2010           | 10/19/2010         | 7/26/2010      | 7/26/2010      | 6/17/2010          | 6/17/2010         | 5/12/2010      | 5/12/2010      |
| 1,1,1,2-Tetrachloroethane                                                    | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0               | <1.0           | <1.0           | <1.0               | <1.0              | <1.0           | <1.0           |
| 1,1,1-Trichloroethane 1.1.2.2-Tetrachloroethane                              | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0           | <1.0           | <1.0           | <1.0           | <1.0<br><1.0   | <1.0           | <1.0               | <1.0               | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0   |
| 1,1,2-Trichloroethane                                                        | <1.0           | <1.0<br><1.0   | <1.0           | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0           | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <4.0           | <4.0           | <4.0               | <4.0              | <4.0           | <4.0           |
| 1,1,2-Trichlorotrifluoroethane                                               | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | 2.3            | <1.0           | <1.0           | <1.0           | 3.0            | <1.0           | 1.9                | <1.0               | <1.0           | <1.0           | 2.6                | <1.0              | 2.5            | <1.0           |
| 1,1-Dichloroethane 1,1-Dichloroethene                                        | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0               | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0   |
| 1,1-Dichloropropene                                                          | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0           | <1.0           | <1.0               | <1.0              | <1.0           | <1.0           |
| 1,2,3-Trichlorobenzene                                                       | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0               | <1.0           | <1.0           | <1.0               | <1.0              | <1.0           | <1.0           |
| 1,2,3-Trichloropropane<br>1,2,4-Trichlorobenzene                             | <4.0<br><1.0   | <4.0<br><1.0   | <4.0<br><1.0   | <4.0           | <4.0<br><1.0   | <4.0<br><1.0   | <1.0           | <1.0<br><1.0       | <1.0<br><1.0   | <1.0           | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0           | <1.0<br><1.0       | <1.0               | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0   |
| 1,2,4-Trimethylbenzene                                                       | <1.0           | <1.0           | <1.0           | <1.0<br><1.0   | <1.0           | <1.0           | <1.0<br><1.0   | <1.0               | <1.0           | <1.0<br><1.0   | <1.0           | <1.0           | <1.0           | <1.0<br><1.0   | <1.0               | <1.0<br><1.0       | <1.0           | <1.0           | <1.0               | <1.0              | <1.0           | <1.0           |
| 1,2-Dibromo-3-chloropropane                                                  | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0               | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0               | <4.0               | <4.0           | <4.0           | <4.0               | <4.0              | <4.0           | <4.0           |
| 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene                                  | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0   |
| 1,2-Dichloroethane                                                           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0               | <1.0           | <1.0           | <1.0               | <1.0              | <1.0           | <1.0           |
| 1,2-Dichloropropane                                                          | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0               | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0               | <1.0           | <1.0           | <1.0               | <1.0              | <1.0           | <1.0           |
| 1,3,5-Trimethylbenzene 1,3-Dichlorobenzene                                   | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0               | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0   |
| 1,3-Dichloropropane                                                          | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0               | <1.0           | <1.0           | <1.0               | <1.0              | <1.0           | <1.0           |
| 1,4-Dichlorobenzene                                                          | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0               | <1.0           | <1.0           | <1.0               | <1.0              | <1.0           | <1.0           |
| 2,2-Dichloropropane 2-Butanone (MEK)                                         | <4.0<br><4.0       | <4.0<br><4.0   | <4.0<br><4.0   | <4.0<br><4.0   | <4.0<br><4.0   | <4.0<br><4.0   | <4.0<br><4.0   | <4.0<br><b>4.5</b> | <4.0<br><b>5.6</b> | <4.0<br><4.0   | <4.0<br><4.0   | <4.0<br><4.0       | <4.0<br><4.0      | <4.0<br><4.0   | <4.0<br><4.0   |
| 2-Chloroethylvinyl ether                                                     | <4.0<br><10.0  | <4.0<br><10.0  | <4.0           | <4.0<br><10.0  | <4.0<br><10.0  | <4.0<br><10.0  | <4.0<br><10.0  | <4.0<br><10.0      | <4.0<br><10.0  | <4.0<br><10.0  | <4.0<br><10.0  | <4.0<br><10.0  |                | <10.0          | <b>4.5</b> <10.0   | <10.0              | <4.0           | <4.0<br><10.0  | <4.0<br><10.0      | <4.0<br><10.0     | <4.0<br><10.0  | <4.0<br><10.0  |
| 2-Chlorotoluene                                                              | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0               | <1.0           | <1.0           | <1.0               | <1.0              | <1.0           | <1.0           |
| 2-Hexanone<br>2-Methylnaphthalene                                            | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0               | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0               | <4.0               | <4.0           | <4.0<br><5.0   | <4.0<br><5.0       | <4.0              | <4.0           | <4.0<br><5.0   |
| 2-Methylnaphthalene<br>4-Chlorotoluene                                       | <5.0<br><1.0       | <5.0<br><1.0   | <5.0<br><1.0   | <5.0<br><1.0   | <5.0<br><1.0   | <5.0<br><1.0   | <5.0<br><1.0   | <5.0<br><1.0       | <5.0<br><1.0       | <5.0<br><1.0   | <5.0<br><1.0   | <5.0<br><1.0       | <5.0<br><1.0      | <5.0<br><1.0   | <5.0<br><1.0   |
| 4-Methyl-2-pentanone (MIBK)                                                  | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0               | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0               | <4.0               | <5.0           | <5.0           | <5.0               | <5.0              | <5.0           | <5.0           |
| Acrolein Acrolein                                                            | <25.0          | <25.0          | <25.0          | <25.0          | <25.0          | <25.0          | <25.0          | <25.0              | <25.0          | <25.0          | <25.0          | <25.0          | <10.0          | 11.1           | <10.0              | <10.0              | <10.0<br><40.0 | <10.0<br><40.0 | <10.0<br><40.0     | <b>13.3</b> <40.0 | <10.0<br><40.0 | <10.0<br><40.0 |
| Acrylonitrile                                                                | <10.0<br><10.0     | <10.0<br><10.0 | <10.0<br><10.0 | <10.0<br><10.0 | <10.0<br><10.0 |                | <10.0<br><10.0 | <10.0<br><10.0     | <10.0<br><10.0     | <10.0          | <10.0          | <10.0              | <10.0             | <40.0          | <10.0          |
| Allyl chloride                                                               | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0               | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0               | <4.0               | <4.0           | <4.0           | <4.0               | <4.0              | <4.0           | <4.0           |
| Benzene<br>Bromobenzene                                                      | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0   |
| Bromochloromethane                                                           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0               | <1.0           | <1.0           | <1.0               | <1.0              | <1.0           | <1.0           |
| Bromodichloromethane                                                         | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0               | <4.0           | <4.0           | <4.0               | <4.0              | <4.0           | <4.0           |
| Bromoform Bromomethane                                                       | <4.0<br><4.0       | <8.0<br><4.0       | <8.0<br><4.0       | <8.0<br><4.0   | <8.0<br><4.0   | <8.0<br><4.0       | <8.0<br><4.0      | <8.0<br><4.0   | <8.0<br><4.0   |
| Carbon disulfide                                                             | <1.0           | <4.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0           | <1.0           | <4.0           | <4.0<br><1.0   | <1.0           | <1.0           | <1.0               | <1.0               | <1.0           | <1.0           | <1.0               | <1.0              | <1.0           | <1.0           |
| Carbon tetrachloride                                                         | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0               | <4.0               | <4.0           | <4.0           | <4.0               | <4.0              | <4.0           | <4.0           |
| Chlorobenzene<br>Chloroethane                                                | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0   |
| Chloroform                                                                   | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0               | <1.0           | <1.0           | <1.0               | <1.0              | <1.0           | <1.0           |
| Chloromethane                                                                | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | 35.0           | <4.0               | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0               | <4.0               | <4.0           | <4.0           | 7.2                | 8.7               | <4.0           | <4.0           |
| Chloroprene<br>cis-1,2-Dichloroethene                                        | <1.0<br><1.0       | <1.0<br>1.3    | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br>1.8    | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><b>1.5</b> | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0   |
| cis-1,3-Dichloropropene                                                      | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0               | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0               | <4.0               | <4.0           | <4.0           | <4.0               | <4.0              | <4.0           | <4.0           |
| Dibromochloromethane                                                         | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0               | <1.0           | <1.0           | <1.0               | <1.0              | <1.0           | <1.0           |
| Dibromomethane Dichlorodifluoromethane                                       | <4.0<br><1.0       | <4.0<br><1.0   | <4.0<br><1.0   | <4.0<br><1.0   | <4.0<br><1.0   | <4.0<br><1.0   | <4.0<br><1.0   | <4.0<br><1.0       | <4.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0   |
| Dichlorofluoromethane                                                        | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0               | <1.0           | <1.0           | <1.0               | <1.0              | <1.0           | <1.0           |
| Diethyl ether (Ethyl ether)                                                  | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0               | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0               | <4.0               | <4.0           | <4.0           | <4.0               | <4.0              | <4.0           | <4.0           |
| Ethylbenzene Hexachloro-1,3-butadiene                                        | <1.0<br><5.0       | <1.0<br><4.0       | <1.0<br><4.0       | <1.0<br><4.0   | <1.0<br><4.0   | <1.0<br><4.0       | <1.0<br><4.0      | <1.0<br><4.0   | <1.0<br><4.0   |
| lodomethane                                                                  | <5.0<br><4.0       | <4.0<br><4.0   | <4.0           | <4.0           | <4.0<br><4.0   | <4.0<br><4.0   | <4.0           | <4.0               | <4.0               | <4.0           | <4.0           | <4.0               | <4.0              | <4.0           | <4.0           |
| Isopropylbenzene (Cumene)                                                    | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0               | <1.0           | <1.0           | <1.0               | <1.0              | <1.0           | <1.0           |
| m&p-Xylene Methylene Chloride                                                | <2.0<br><4.0   | <2.0<br><b>6.8</b> | <2.0<br><4.0       | <2.0<br><4.0       | <2.0<br><4.0   | <2.0<br><4.0   | <2.0<br><4.0       | <2.0<br><4.0      | <2.0<br><4.0   | <2.0<br><4.0   |
| Methyl-tert-butyl ether                                                      | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0               | <1.0           | <1.0           | <1.0               | <1.0              | <1.0           | <1.0           |
| Naphthalene                                                                  | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0               | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0               | <4.0               | <4.0           | <4.0           | <4.0               | <4.0              | <4.0           | <4.0           |
| n-Butylbenzene<br>n-Propylbenzene                                            | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0   |
| o-Xylene                                                                     | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0               | <1.0           | <1.0           | <1.0               | <1.0              | <1.0           | <1.0           |
| p-isopropyltoluene                                                           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0               | <1.0           | <1.0           | <1.0               | <1.0              | <1.0           | <1.0           |
| sec-Butylbenzene Styrene                                                     | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   |                | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0       | <1.0<br><1.0      | <1.0<br><1.0   | <1.0<br><1.0   |
| tert-Butylbenzene                                                            | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0           | <1.0           | <1.0           | <1.0           |                | <1.0           | <1.0               | <1.0               | <1.0           | <1.0           | <1.0               | <1.0              | <1.0           | <1.0           |
| Tetrachloroethene                                                            | 42.8           | <1.0           | 21.8           | <1.0           | 41.3           | <1.0           | 7.6            | <1.0               | 127            | <1.0           | 51.8           | <1.0           | 168            | <1.0           | 204                | <1.0               | <1.0           | 40.6           | 108                | 2.4               | 63.4           | <1.0           |
| Tetrahydrofuran Toluene                                                      | <10.0<br><1.0      | <10.0<br><1.0  | <10.0<br><1.0  | <10.0<br><1.0  | <10.0<br><1.0  |                | <10.0<br><1.0  | <10.0              | <10.0<br><1.0      | <10.0<br><1.0  | <10.0<br><1.0  | <10.0<br><1.0      | <10.0<br><1.0     | <10.0<br><1.0  | <10.0<br><1.0  |
| trans-1,2-Dichloroethene                                                     | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <1.0           | <1.0               | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0           | <1.0               | <1.0               | <1.0           | <1.0           | <1.0               | <1.0              | <1.0           | <1.0           |
| trans-1,3-Dichloropropene                                                    | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0               | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0           | <4.0               | <4.0               | <4.0           | <4.0           | <4.0               | <4.0              | <4.0           | <4.0           |
| Trichloroethene Trichlorofluoromethane                                       | <1.0           | <1.0           | <1.0<br><1.0   | <1.0           | <1.0<br><1.0   | <1.0           | <1.0<br><1.0   | <1.0               | <1.0           | <1.0           | <1.0           | <1.0<br><1.0   | <1.0           | <1.0           | <1.0               | <1.0               | <1.0<br><4.0   | <1.0<br><4.0   | <1.0<br><4.0       | <1.0<br><4.0      | <1.0<br><4.0   | <1.0<br><4.0   |
| Vinyl acetate                                                                | <1.0<br><10.0  | <1.0<br><10.0  | <1.0           | <1.0<br><10.0  | <1.0<br><10.0  | <1.0<br><10.0  | <1.0           | <1.0<br><10.0      | <1.0<br><20.0  | <1.0<br><20.0  | <1.0<br><20.0  | <1.0<br><20.0  |                | <1.0<br><20.0  | <1.0               | <1.0<br><20.0      | <20.0          | <20.0          | <20.0              | <20.0             | <20.0          | <20.0          |
| Vinyl chloride                                                               | <0.40          | <0.40          | <0.40          | <0.40          | <0.40          | <0.40          | <0.40          | <0.40              | <0.40          | <0.40          | <0.40          | <0.40          | <0.40          | <0.40          | <0.40              | <0.40              | <0.40          | <0.40          | <0.40              | <0.40             | <0.40          | <0.40          |
| Xylene (Total)                                                               | <3.0           | <3.0           | <3.0           | <3.0           | <3.0           | <3.0           | <3.0           | <3.0               | <3.0           | <3.0           | <3.0           | <3.0           | <3.0           | <3.0           | <3.0               | <3.0               | <3.0           | <3.0           | <3.0               | <3.0              | <3.0           | <3.0           |
| Total VOC Concentration  Bold: Parameter detected above the reporting limit. | 42.8           | 0              | 21.8           | 0              | 41.3           | 0              | 42.6           | 6.8                | 130.6          | 0              | 51.8           | 0              | 172.8          | 11.1           | 210.4              | 5.6                | 0              | 40.6           | 119.3              | 15.7              | 65.9           | 0              |

Increase in VOCs was from PVC glue and cement from construction of the DPE system and air stripper.

<sup>3:</sup> Increase in VOCs was from PVC glue and cement from installation of the secondary demister moisture separator.

## GROUNDWATER DISCHARGE ANALYTICAL RESULTS (micrograms per liter) MN Bio Business Center 221 1st Avenue SW Rochester, MN

|                                                      |                     |                          | 1                  | 1                        |                     |                     | 1                   |                | 1              |                     |                   | ı                    |                 | 1                  |                | ı              |                | 1                    |                     |                                         |                               |                               |
|------------------------------------------------------|---------------------|--------------------------|--------------------|--------------------------|---------------------|---------------------|---------------------|----------------|----------------|---------------------|-------------------|----------------------|-----------------|--------------------|----------------|----------------|----------------|----------------------|---------------------|-----------------------------------------|-------------------------------|-------------------------------|
| Sample ID                                            | AS-Influent         | AS-Effluent <sup>3</sup> | AS-Influent        | AS-Effluent <sup>3</sup> | AS-Influent         | AS-Effluent         | AS-Influent         | AS-Effluent    | AS-Influent    | AS-IN Vial 2        | AS-Effluent       | AS-INFLUENT          | AS-<br>EFFLUENT | AS-Influent        | AS-Effluent    | AS-Influent    | AS-Effluent    | AS-INFLUENT          | AS-<br>EFFLUENT     | AS INFLUENT                             | . AS<br>EFFLUENT <sup>2</sup> | DPE<br>Discharge <sup>1</sup> |
| Collected Date                                       | 4/16/2010           | 4/16/2010                | 3/25/2010          | 3/25/2010                | 2/22/2010           | 2/22/2010           | 1/14/2010           | 1/14/2010      | 12/17/2009     | 12/17/2009          | 12/17/2009        | 11/16/2009           | 11/16/2009      | 10/15/2009         | 10/15/2009     | 9/4/2009       | 9/4/2009       | 7/9/2009             | 7/9/2009            | 6/4/2009                                | 6/4/2009                      | 4/9/2009                      |
| 1,1,1,2-Tetrachloroethane                            | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| 1,1,1-Trichloroethane 1,1,2,2-Tetrachloroethane      | <1.0<br><1.0        | <1.0<br><1.0             | <1.0<br><1.0       | <1.0<br><1.0             | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0        | <1.0<br><1.0      | <1.0<br><1.0         | <1.0<br><1.0    | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <5.0<br><5.0         | <1.0<br><1.0        | <50.0<br><50.0                          | <1.0<br><1.0                  | <b>29.4</b> <5.0              |
| 1,1,2-Trichloroethane                                | <4.0                | <4.0                     | <4.0               | <4.0                     | <4.0                | <4.0                | <4.0                | <4.0           | <4.0           | <4.0                | <4.0              | <4.0                 | <4.0            | <4.0               | <4.0           | <4.0           | <4.0           | <20.0                | <4.0                | <200                                    | <4.0                          | <20.0                         |
| 1,1,2-Trichlorotrifluoroethane                       | 1.4                 | <1.0                     | 1.0                | <1.0                     | 2.1                 | <1.0                | 1.3                 | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | 1.4                | <1.0           | 1.2            | <1.0           | 10.4                 | <1.0                | 53.7                                    | <1.0                          | 7860                          |
| 1,1-Dichloroethane                                   | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| 1,1-Dichloroethene                                   | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| 1,1-Dichloropropene 1,2,3-Trichlorobenzene           | <1.0<br><1.0        | <1.0<br><1.0             | <1.0<br><1.0       | <1.0<br><1.0             | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0        | <1.0<br><1.0      | <1.0<br><1.0         | <1.0<br><1.0    | <1.0<br><1.0       | <1.0<br><1.0   | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| 1,2,3-Trichloropenee                                 | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0<br><1.0   | <1.0<br><1.0   | <5.0<br><5.0         | <1.0<br><1.0        | <50.0<br><50.0                          | <1.0<br><1.0                  | <5.0<br><5.0                  |
| 1,2,4-Trichlorobenzene                               | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| 1,2,4-Trimethylbenzene                               | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | 26.0                          |
| 1,2-Dibromo-3-chloropropane                          | <4.0                | <4.0                     | <4.0               | <4.0                     | <4.0                | <4.0                | <4.0                | <4.0           | <4.0           | <4.0                | <4.0              | <4.0                 | <4.0            | <4.0               | <4.0           | <4.0           | <4.0           | <20.0                | <4.0                | <200                                    | <4.0                          | <20.0                         |
| 1,2-Dibromoethane (EDB) 1,2-Dichlorobenzene          | <1.0<br><1.0        | <1.0<br><1.0             | <1.0               | <1.0                     | <1.0<br><1.0        | <1.0                | <1.0<br><1.0        | <1.0           | <1.0           | <1.0                | <1.0              | <1.0<br><1.0         | <1.0            | <1.0<br><1.0       | <1.0<br><1.0   | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| 1,2-Dichloroethane                                   | <1.0                | <1.0                     | <1.0<br><1.0       | <1.0<br><1.0             | <1.0                | <1.0<br><1.0        | <1.0                | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0        | <1.0<br><1.0      | <1.0                 | <1.0<br><1.0    | <1.0               | <1.0           | <1.0<br><1.0   | <1.0<br><1.0   | <5.0<br><5.0         | <1.0<br><1.0        | <50.0<br><50.0                          | <1.0<br><1.0                  | <5.0<br><5.0                  |
| 1,2-Dichloropropane                                  | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| 1,3,5-Trimethylbenzene                               | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | 7.1                           |
| 1,3-Dichlorobenzene                                  | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| 1,3-Dichloropropane                                  | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| 1,4-Dichlorobenzene 2,2-Dichloropropane              | <1.0<br><4.0        | <1.0<br><4.0             | <1.0<br><4.0       | <1.0<br><4.0             | <1.0<br><4.0        | <1.0<br><4.0        | <1.0<br><1.0        | <1.0<br><1.0   | <1.0           | <1.0<br><1.0        | <1.0              | <1.0<br><4.0         | <1.0<br><4.0    | <1.0<br><4.0       | <1.0<br><4.0   | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | 7.8                           |
| 2-Butanone (MEK)                                     | <4.0<br><4.0        | 4.9                      | <4.0<br><b>4.9</b> | <4.0<br><b>7.5</b>       | <4.0                | <4.0<br><4.0        | 7.0                 | <4.0           | <1.0<br><4.0   | <1.0                | <1.0<br><4.0      | <4.0<br><4.0         | <4.0            | <4.0<br><b>5.4</b> | <4.0<br><4.0   | <1.0<br>13.5   | <1.0<br>19.8   | <5.0<br><20.0        | <1.0<br><b>82.1</b> | <50.0<br><200                           | <1.0<br><b>1670</b>           | <5.0<br><b>392</b>            |
| 2-Chloroethylvinyl ether                             | <10.0               | <10.0                    | <10.0              | <10.0                    | <10.0               | <10.0               | <25.0               | <25.0          | <25.0          | <25.0               | <25.0             | <10.0                | <10.0           | <10.0              | <10.0          | <10.0          | <10.0          | <50.0                | <10.0               | <1250                                   | <25.0                         | <50.0                         |
| 2-Chlorotoluene                                      | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | 51.0                          |
| 2-Hexanone                                           | <4.0                | <4.0                     | <4.0               | <4.0                     | <4.0                | <4.0                | <4.0                | <4.0           | <4.0           | <4.0                | <4.0              | <4.0                 | <4.0            | <4.0               | <4.0           | <4.0           | <4.0           | <20.0                | <4.0                | <200                                    | <4.0                          | <20.0                         |
| 2-Methylnaphthalene                                  | <5.0                | <5.0                     | <5.0               | <5.0                     | <5.0                | <5.0                | <5.0                | <5.0           | <5.0           | <5.0                | <5.0              | <5.0                 | <5.0            | <5.0               | <5.0           | <5.0           | <5.0           | <25.0                | <5.0                | <250                                    | <5.0                          | <25.0                         |
| 4-Chlorotoluene 4-Methyl-2-pentanone (MIBK)          | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| Acetone                                              | <5.0<br><10.0       | <5.0<br><b>29.3</b>      | <5.0<br>11.2       | <5.0<br><b>29.8</b>      | <5.0<br><10.0       | <5.0<br><10.0       | <5.0<br><b>14.6</b> | <5.0<br><10.0  | <5.0<br><10.0  | <5.0<br><10.0       | <5.0<br><10.0     | <5.0<br><10.0        | <5.0<br><10.0   | <5.0<br><10.0      | <5.0<br><10.0  | <5.0<br><10.0  | <5.0<br><10.0  | <25.0<br><50.0       | <5.0<br><b>68.7</b> | <250<br><500                            | <5.0<br><b>987</b>            | <25.0<br><50.0                |
| Acrolein                                             | <40.0               | <40.0                    | <40.0              | <40.0                    | <40.0               | <40.0               | <40.0               | <40.0          | <40.0          | <40.0               | <40.0             | <40.0                | <40.0           | <40.0              | <40.0          | <40.0          | <40.0          | <200                 | <40.0               | <2000                                   | <40.0                         | <200                          |
| Acrylonitrile                                        | <10.0               | <10.0                    | <10.0              | <10.0                    | <10.0               | <10.0               | <10.0               | <10.0          | <10.0          | <10.0               | <10.0             | <10.0                | <10.0           | <10.0              | <10.0          | <10.0          | <10.0          | <50.0                | <10.0               | <500                                    | <10.0                         | <50.0                         |
| Allyl chloride                                       | <4.0                | <4.0                     | <4.0               | <4.0                     | <4.0                | <4.0                | <4.0                | <4.0           | <4.0           | <4.0                | <4.0              | <4.0                 | <4.0            | <4.0               | <4.0           | <4.0           | <4.0           | <20.0                | <4.0                | <200                                    | <4.0                          | <20.0                         |
| Benzene                                              | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| Bromochloromethane                                   | <1.0<br><1.0        | <1.0<br><1.0             | <1.0<br><1.0       | <1.0<br><1.0             | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0        | <1.0<br><1.0      | <1.0<br><1.0         | <1.0<br><1.0    | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <5.0                 | <1.0<br><1.0        | <50.0                                   | <1.0<br><1.0                  | <5.0                          |
| Bromodichloromethane                                 | <4.0                | <4.0                     | <4.0               | <4.0                     | <4.0                | <4.0                | <4.0                | <4.0           | <4.0           | <4.0                | <4.0              | <4.0                 | <4.0            | <4.0               | <4.0           | <4.0           | <4.0           | <5.0<br><20.0        | <4.0                | <50.0<br><200                           | <4.0                          | <5.0<br><20.0                 |
| Bromoform                                            | <8.0                | <8.0                     | <8.0               | <8.0                     | <8.0                | <8.0                | <8.0                | <8.0           | <8.0           | <8.0                | <8.0              | <8.0                 | <8.0            | <8.0               | <8.0           | <8.0           | <8.0           | <40.0                | <8.0                | <400                                    | <8.0                          | <40.0                         |
| Bromomethane                                         | <4.0                | <4.0                     | 37.3               | 38.0                     | <4.0                | <4.0                | <4.0                | <4.0           | <4.0           | <4.0                | <4.0              | <4.0                 | <4.0            | <4.0               | <4.0           | <4.0           | <4.0           | <20.0                | <4.0                | <200                                    | <4.0                          | <20.0                         |
| Carbon disulfide                                     | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| Carbon tetrachloride Chlorobenzene                   | <4.0                | <4.0                     | <4.0               | <4.0                     | <4.0                | <4.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <4.0                 | <4.0            | <4.0               | <4.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| Chloroethane                                         | <1.0<br><1.0        | <1.0<br><1.0             | <1.0<br><1.0       | <1.0<br><1.0             | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0        | <1.0<br><1.0      | <1.0<br><1.0         | <1.0<br><1.0    | <1.0<br><1.0       | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0   | <5.0<br><5.0         | <1.0<br><1.0        | <50.0<br><50.0                          | <1.0<br><1.0                  | <5.0<br><5.0                  |
| Chloroform                                           | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| Chloromethane                                        | 10.7                | 491                      | 380                | 644                      | <4.0                | <4.0                | 98.5                | 31.9           | <1.0           | <1.0                | 1.3               | <4.0                 | <4.0            | <1.0               | <1.0           | <1.0           | <1.0           | 63.3                 | 76.4                | <50.0                                   | <1.0                          | <5.0                          |
| Chloroprene                                          | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| cis-1,2-Dichloroethene                               | <1.0                | <1.0                     | <1.0               | <1.0                     | 1.3                 | <1.0                | 1.0                 | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | 1.5                | <1.0           | 1.5            | <1.0           | 13.0                 | <1.0                | 62.9                                    | <1.0                          | 206                           |
| cis-1,3-Dichloropropene Dibromochloromethane         | <4.0<br><1.0        | <4.0<br><1.0             | <4.0<br><1.0       | <4.0<br><1.0             | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0        | <4.0<br><1.0   | <4.0<br><1.0   | <4.0<br><1.0        | <4.0<br><1.0      | <4.0<br><1.0         | <4.0<br><1.0    | <4.0<br><1.0       | <4.0<br><1.0   | <4.0           | <4.0           | <20.0                | <4.0                | <200                                    | <4.0                          | <20.0                         |
| Dibromomethane                                       | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0<br><1.0   | <1.0<br><1.0   | <5.0<br><5.0         | <1.0<br><1.0        | <50.0<br><50.0                          | <1.0<br><1.0                  | <5.0<br><5.0                  |
| Dichlorodifluoromethane                              | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| Dichlorofluoromethane                                | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| Diethyl ether (Ethyl ether)                          | <4.0                | <4.0                     | <4.0               | <4.0                     | <4.0                | <4.0                | <4.0                | <4.0           | <4.0           | <4.0                | <4.0              | <4.0                 | <4.0            | <4.0               | <4.0           | <4.0           | <4.0           | <20.0                | <4.0                | <200                                    | <4.0                          | <20.0                         |
| Ethylbenzene                                         | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| Hexachloro-1,3-butadiene lodomethane                 | <4.0<br><4.0        | <4.0<br><4.0             | <4.0<br>17.3       | <4.0<br><b>18.9</b>      | <4.0<br><4.0        | <4.0<br><4.0        | <4.0<br><4.0        | <4.0<br><4.0   | <4.0<br><4.0   | <4.0<br><4.0        | <4.0<br><4.0      | <4.0<br><4.0         | <4.0<br><4.0    | <4.0<br><4.0       | <4.0<br><4.0   | <4.0<br><4.0   | <4.0<br><4.0   | <20.0<br><20.0       | <4.0<br><4.0        | <200<br><200                            | <4.0<br><4.0                  | <20.0<br><20.0                |
| Isopropylbenzene (Cumene)                            | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <20.0<br><5.0        | <4.0                | <50.0                                   | <4.0<br><1.0                  | <20.0<br><5.0                 |
| m&p-Xylene                                           | <2.0                | <2.0                     | <2.0               | 3.4                      | <2.0                | <2.0                | <2.0                | <2.0           | <2.0           | <2.0                | <2.0              | <2.0                 | <2.0            | <2.0               | <2.0           | <2.0           | <2.0           | <10.0                | <2.0                | <100                                    | <2.0                          | <10.0                         |
| Methylene Chloride                                   | <4.0                | <4.0                     | <4.0               | <4.0                     | <4.0                | <4.0                | <4.0                | <4.0           | <4.0           | <4.0                | <4.0              | <4.0                 | <4.0            | <4.0               | <4.0           | <4.0           | <4.0           | <20.0                | <4.0                | <200                                    | <4.0                          | <20.0                         |
| Methyl-tert-butyl ether                              | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| Naphthalene<br>n-Butylbenzene                        | <4.0                | <4.0<br><1.0             | <4.0               | <4.0                     | <4.0                | <4.0                | <4.0                | <4.0           | <4.0           | <4.0                | <4.0              | <4.0                 | <4.0            | <4.0               | <4.0<br><1.0   | <4.0           | <4.0           | <20.0                | <4.0                | <200                                    | <4.0                          | <20.0                         |
| n-Butylbenzene<br>n-Propylbenzene                    | <1.0<br><1.0        | <1.0<br><1.0             | <1.0<br><1.0       | <1.0<br><1.0             | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0        | <1.0<br><1.0   | <1.0<br><1.0   | <1.0<br><1.0        | <1.0<br><1.0      | <1.0<br><1.0         | <1.0<br><1.0    | <1.0<br><1.0       | <1.0           | <1.0<br><1.0   | <1.0<br><1.0   | <5.0<br><5.0         | <1.0<br><1.0        | <50.0<br><50.0                          | <1.0<br><1.0                  | 5.0<br><5.0                   |
| o-Xylene                                             | <1.0                | <1.0                     | <1.0               | 1.6                      | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0<br><5.0         | <1.0                | <50.0                                   | <1.0                          | <5.0<br><5.0                  |
| p-IsopropyItoluene                                   | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| sec-Butylbenzene                                     | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| Styrene                                              | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| tert-Butylbenzene Tetrachloroethene                  | <1.0<br><b>48.6</b> | <1.0                     | <1.0               | <1.0                     | <1.0<br><b>69.6</b> | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0<br><b>30.7</b>  | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0<br>1460         | <1.0                | <50.0                                   | <1.0                          | <5.0<br><b>167000</b>         |
| Tetrahydrofuran                                      | <b>48.6</b> <10.0   | <1.0<br><10.0            | <b>55.5</b> <10.0  | <1.0<br><b>20.3</b>      | <10.0               | <1.0<br><b>15.7</b> | 157<br>29.4         | <1.0<br><10.0  | <1.0<br>11.7   | <1.0<br><b>11.5</b> | <b>22.7</b> <10.0 | <b>30.7</b><br><10.0 | <1.0<br><10.0   | 214<br>15.7        | <1.0<br><10.0  | 175<br><10.0   | <1.0<br><10.0  | <b>1460</b><br><50.0 | <1.0<br><b>252</b>  | 3970<br>543                             | 33.8<br>6300                  | 600                           |
| Toluene                                              | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| trans-1,2-Dichloroethene                             | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | <5.0                          |
| trans-1,3-Dichloropropene                            | <4.0                | <4.0                     | <4.0               | <4.0                     | <4.0                | <4.0                | <4.0                | <4.0           | <4.0           | <4.0                | <4.0              | <4.0                 | <4.0            | <4.0               | <4.0           | <4.0           | <4.0           | <20.0                | <4.0                | <200                                    | <4.0                          | <20.0                         |
| Trichloroethene                                      | <1.0                | <1.0                     | <1.0               | <1.0                     | <1.0                | <1.0                | <1.0                | <1.0           | <1.0           | <1.0                | <1.0              | <1.0                 | <1.0            | <1.0               | <1.0           | <1.0           | <1.0           | <5.0                 | <1.0                | <50.0                                   | <1.0                          | 159                           |
| Trichlorofluoromethane Vinyl acetate                 | <4.0                | <4.0                     | <4.0               | <4.0                     | <4.0                | <4.0                | <4.0                | <4.0           | <4.0           | <4.0                | <4.0              | <4.0                 | <4.0            | <4.0               | <4.0           | <4.0           | <4.0           | <20.0                | <4.0                | <200                                    | <4.0                          | <20.0                         |
| Vinyl chloride                                       | <20.0<br><0.40      | <20.0<br><0.40           | <20.0<br><0.40     | <20.0<br><0.40           | <20.0<br><0.40      | <20.0<br><0.40      | <20.0<br><0.40      | <20.0<br><0.40 | <20.0<br><0.40 | <20.0<br><0.40      | <20.0<br><0.40    | <20.0<br><0.40       | <20.0<br><0.40  | <20.0<br><0.40     | <20.0<br><0.40 | <20.0<br><0.40 | <20.0<br><0.40 | <100<br><2.0         | <20.0<br><0.40      | <1000<br><20.0                          | <20.0<br><0.40                | <100<br><2.0                  |
| Xylene (Total)                                       | <3.0                | <3.0                     | <0.40              | <0.40<br><b>4.9</b>      | <3.0                | <3.0                | <3.0                | <3.0           | <3.0           | <3.0                | <3.0              | <3.0                 | <3.0            | <3.0               | <3.0           | <0.40          | <0.40          | <15.0                | <0.40               | <150                                    | <0.40                         | <2.0<br><15.0                 |
| Total VOC Concentration                              | 60.7                | 525.2                    | 507.2              | 763.5                    | 73                  | 15.7                | 308.8               | 31.9           | 11.7           | 11.5                | 24                | 30.7                 | 0               | 238                | 0              | 191.2          | 19.8           | 1,546.7              | 479.2               | 4,566.7                                 | 8,990.8                       | 176,338.3                     |
| Bold : Parameter detected above the reporting limit. |                     |                          |                    | . 50.0                   |                     |                     |                     |                |                |                     |                   |                      |                 |                    |                |                |                | , ,                  |                     | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                               |                               |

Bold : Parameter detected above the reporting limit.

Bold : Total VOC Concentration is above discharge limit of 2,140 ug/L.

1: Initial sampling event to determine if groundwater treatment was necessary.

Increase in VOCs was from PVC glue and cement from construction of the DPE system and air stripper.

<sup>3:</sup> Increase in VOCs was from PVC glue and cement from installation of the secondary demister moisture separator.

# Attachments

# Attachment A



88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

February 10, 2016

## REVISION

Mr. Jason Skramstad Landmark Environmental 2042 West 98th Street Bloomington, MN 55431

Work Order Number: 1600183

RE: TO-15

This is a revised report. The details of the revision are listed in the case narrative on the following page.

Enclosed are the results of analyses for samples received by the laboratory on 01/13/16. If you have any questions concerning this report, please feel free to contact me.

Samples will not be retained by LEGEND once the analyses are completed.

All internal quality assurance met the method requirements unless otherwise noted in the case narrative. Additionally, all samples were received in acceptable condition unless otherwise noted.

For the tentatively identified compounds (TICs), a computer generated library search was done comparing the spectra of the unknown compounds with spectra contained in the NIST (NBS) and Wiley reference libraries. A visual comparison was made of each unknown compound and the best library match. Quantitation was based on the response of the nearest internal standard. Unidentified peaks were quantified using 100 as the molecular weight. Both the identification of specific compounds and the quantities given should be considered approximations.

Chromatograms are included for samples containing detections.

MDH Accreditation #027-123-295

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham Client Manager II bpham@legend-group.com



Fax: 651-642-1239

| Landmark Environmental | Project:         | TO-15               |                |          |
|------------------------|------------------|---------------------|----------------|----------|
| 2042 West 98th Street  | Project Number:  | CRC                 | Work Order #:  | 1600183  |
| Bloomington, MN 55431  | Project Manager: | Mr. Jason Skramstad | Date Reported: | 02/10/16 |

#### **ANALYTICAL REPORT FOR SAMPLES**

| Sample ID   | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|-------------|---------------|--------|----------------|----------------|
| DPE-EXHAUST | 1600183-01    | Air    | 01/12/16 14:22 | 01/13/16 12:50 |
| LSG-7       | 1600183-02    | Air    | 01/12/16 12:14 | 01/13/16 12:50 |
| LSG-8       | 1600183-03    | Air    | 01/12/16 11:20 | 01/13/16 12:50 |
| LSG-9       | 1600183-04    | Air    | 01/12/16 11:38 | 01/13/16 12:50 |
| LSG-10      | 1600183-05    | Air    | 01/12/16 11:52 | 01/13/16 12:50 |
| SP-1 (ES)   | 1600183-06    | Air    | 01/12/16 12:58 | 01/13/16 12:50 |
| SP-2 (SSL)  | 1600183-07    | Air    | 01/12/16 12:42 | 01/13/16 12:50 |

#### **Case Narrative:**

Per the client's instructions, TICs were not included in this report.

At the client's request, this report was revised on February 2, 2016 to change the sample ID for laboaratory ID 1600183-01 to DPE-EXHAUST. This report supersedes the report dated January 26, 2016.

Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CRCWork Order #: 1600183Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 02/10/16

## VOC - AIR Legend Technical Services, Inc.

| Analyte (CAS#)                       | Result         | RL        | MDL    | Units      | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|--------------------------------------|----------------|-----------|--------|------------|----------|---------|----------|----------|----------|-------|
| DPE-EXHAUST (1600183-01) Air         | Received:01/13 | /16 12:50 | Sample | d:01/12/16 | 14:22    |         |          |          |          |       |
| 1,1,1-Trichloroethane (71-55-6)      | <8.1           | 8.1       | 0.13   | ug/m³      | 3        | B6A2216 | 01/21/16 | 01/22/16 | TO-15(M) |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)  | <10            | 10        | 0.22   | ug/m³      | 3        | "       | "        | "        | "        |       |
| 1,1,2-Trichloroethane (79-00-5)      | <8.1           | 8.1       | 0.33   | ug/m³      | 3        | "       | "        | "        | "        |       |
| 1,1-Dichloroethane (75-34-3)         | <6.0           | 6.0       | 0.33   | ug/m³      | 3        | "       | "        | "        | "        |       |
| 1,1-Dichloroethene (75-35-4)         | <6.0           | 6.0       | 0.23   | ug/m³      | 3        | "       | "        | ıı       | II .     |       |
| 1,2,4-Trichlorobenzene (120-82-1)    | <11            | 11        | 0.39   | ug/m³      | 3        | "       | n .      | "        | "        |       |
| 1,2,4-Trimethylbenzene (95-63-6)     | <3.0           | 3.0       | 0.22   | ug/m³      | 3        | "       | "        | "        | "        |       |
| 1,2-Dibromoethane (106-93-4)         | <11            | 11        | 0.48   | ug/m³      | 3        | "       | "        | "        | "        |       |
| 1,2-Dichlorobenzene (95-50-1)        | <9.0           | 9.0       | 0.21   | ug/m³      | 3        | "       | "        | "        | "        |       |
| 1,2-Dichloroethane (107-06-2)        | <6.0           | 6.0       | 0.16   | ug/m³      | 3        | "       | "        | "        | "        |       |
| 1,2-Dichloropropane (78-87-5)        | <6.9           | 6.9       | 0.24   | ug/m³      | 3        | "       | "        | ıı       | II .     |       |
| 1,3,5-Trimethylbenzene (108-67-8)    | <3.0           | 3.0       | 0.33   | ug/m³      | 3        | "       | "        | "        | "        |       |
| 1,3-Butadiene (106-99-0)             | <3.3           | 3.3       | 0.30   | ug/m³      | 3        | "       | "        | ıı       | II .     |       |
| 1,3-Dichlorobenzene (541-73-1)       | <9.0           | 9.0       | 0.42   | ug/m³      | 3        | "       | "        | ıı       | II .     |       |
| 1,4-Dichlorobenzene (106-46-7)       | <9.0           | 9.0       | 0.51   | ug/m³      | 3        | "       | "        | u u      | "        |       |
| 2-Butanone (78-93-9)                 | 17             | 4.5       | 0.23   | ug/m³      | 3        | "       | "        | u u      | "        |       |
| 4-Ethyltoluene (622-96-8)            | <7.5           | 7.5       | 0.33   | ug/m³      | 3        | "       | "        | "        | "        |       |
| Acetone (67-64-1)                    | 46             | 3.6       | 0.16   | ug/m³      | 3        | "       | "        | "        | "        |       |
| Benzene (71-43-2)                    | <1.9           | 1.9       | 0.15   | ug/m³      | 3        | "       | "        | II .     | "        |       |
| Benzyl chloride (100-44-7)           | <7.8           | 7.8       | 0.22   | ug/m³      | 3        | "       | "        | ıı .     | "        |       |
| Bromodichloromethane (75-27-4)       | <10            | 10        | 0.39   | ug/m³      | 3        | "       | "        | "        | "        |       |
| Bromoform (75-25-2)                  | <16            | 16        | 0.39   | ug/m³      | 3        | "       | "        | "        | "        |       |
| Bromomethane (74-83-9)               | <5.7           | 5.7       | 0.21   | ug/m³      | 3        | "       | "        | "        | "        |       |
| Carbon disulfide (75-15-0)           | <4.8           | 4.8       | 0.21   | ug/m³      | 3        | "       | "        | II .     | "        |       |
| Carbon tetrachloride (56-23-5)       | <9.3           | 9.3       | 0.26   | ug/m³      | 3        | "       | "        | "        | "        |       |
| Chlorobenzene (108-90-7)             | <6.9           | 6.9       | 0.24   | ug/m³      | 3        | "       | "        | "        | "        |       |
| Chloroethane (75-00-3)               | <3.9           | 3.9       | 0.11   | ug/m³      | 3        | "       | "        | "        | "        |       |
| Chloroform (67-66-3)                 | <7.2           | 7.2       | 0.16   | ug/m³      | 3        | "       | "        | "        | "        |       |
| Chloromethane (74-87-3)              | <3.0           | 3.0       | 0.13   | ug/m³      | 3        | "       | "        | "        | "        |       |
| cis-1,2-Dichloroethene (156-59-2)    | 9.6            | 6.0       | 0.27   | ug/m³      | 3        | "       | "        | "        | "        |       |
| cis-1,3-Dichloropropene (10061-01-5) | <6.9           | 6.9       | 0.36   | ug/m³      | 3        | "       | "        | "        | "        |       |
| Cyclohexane (110-82-7)               | <5.1           | 5.1       | 0.18   | ug/m³      | 3        | "       | "        | "        | "        |       |
| Dibromochloromethane (124-48-1)      | <13            | 13        | 0.48   | ug/m³      | 3        | "       | "        | "        | "        |       |
| Dichlorodifluoromethane (75-71-8)    | <7.5           | 7.5       | 0.36   | ug/m³      | 3        | "       | "        | "        | "        |       |
| Dichlorotetrafluoroethane (76-14-2)  | <10            | 10        | 0.19   | ug/m³      | 3        | "       | "        | "        | "        |       |

Legend Technical Services, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CRCWork Order #: 1600183Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 02/10/16

| Analyte (CAS#)                         | Result           | RL       | MDL       | Units      | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|----------------------------------------|------------------|----------|-----------|------------|----------|---------|----------|----------|----------|-------|
| DPE-EXHAUST (1600183-01) Air           | Received:01/13/  | 16 12:50 | Sample    | d:01/12/16 | 14:22    |         |          |          |          |       |
| Ethanol (64-17-5)                      | 1400             | 56       | 4.1       | ug/m³      | 60       | B6A2216 | 01/21/16 | 01/22/16 | TO-15(M) |       |
| Ethyl acetate (141-78-6)               | <5.4             | 5.4      | 0.33      | ug/m³      | 3        | "       | "        | 01/22/16 | "        |       |
| Ethylbenzene (100-41-4)                | <2.6             | 2.6      | 0.25      | ug/m³      | 3        | "       | "        | "        | "        |       |
| Hexachlorobutadiene (87-68-3)          | <16              | 16       | 0.81      | ug/m³      | 3        | "       | "        | "        | "        |       |
| Isopropyl alcohol (67-63-0)            | 380              | 72       | 4.5       | ug/m³      | 60       | "       | "        | 01/22/16 | "        |       |
| m,p-Xylene (136777-61-2)               | 6.0              | 5.1      | 0.45      | ug/m³      | 3        | "       | "        | 01/22/16 | "        |       |
| Methyl butyl ketone (591-78-6)         | <6.0             | 6.0      | 0.36      | ug/m³      | 3        | "       | "        | "        | "        |       |
| Methyl isobutyl ketone (108-10-1)      | <6.0             | 6.0      | 0.33      | ug/m³      | 3        | "       | "        | "        | "        |       |
| Methyl tert-butyl ether (1634-04-4)    | <5.4             | 5.4      | 0.33      | ug/m³      | 3        | "       | "        | "        | "        |       |
| Methylene chloride (75-09-2)           | <5.1             | 5.1      | 0.63      | ug/m³      | 3        | "       | "        | II .     | II .     |       |
| Naphthalene (91-20-3)                  | <7.8             | 7.8      | 0.33      | ug/m³      | 3        | "       | "        | "        | II .     |       |
| n-Heptane (142-82-5)                   | <6.0             | 6.0      | 0.23      | ug/m³      | 3        | "       | "        | "        | II .     |       |
| n-Hexane (110-54-3)                    | <5.4             | 5.4      | 0.22      | ug/m³      | 3        | "       | "        | "        | "        |       |
| o-Xylene (95-47-6)                     | <2.6             | 2.6      | 0.29      | ug/m³      | 3        | "       | "        | "        | "        |       |
| Propylene (115-07-1)                   | <2.6             | 2.6      | 0.081     | ug/m³      | 3        | "       | "        | "        | "        |       |
| Styrene (100-42-5)                     | <6.3             | 6.3      | 0.29      | ug/m³      | 3        | "       | "        | "        | "        |       |
| Tetrachloroethene (127-18-4)           | 7200             | 200      | 7.8       | ug/m³      | 60       | "       | "        | 01/22/16 | "        |       |
| Tetrahydrofuran (109-99-9)             | <4.5             | 4.5      | 0.11      | ug/m³      | 3        | "       | "        | 01/22/16 | "        |       |
| Toluene (108-88-3)                     | 2.9              | 2.2      | 0.18      | ug/m³      | 3        | "       | "        | II .     | II .     |       |
| trans-1,2-Dichloroethene (156-60-5)    | <6.0             | 6.0      | 0.33      | ug/m³      | 3        | "       | "        | u u      | "        |       |
| trans-1,3-Dichloropropene (10061-02-6) | <6.9             | 6.9      | 0.21      | ug/m³      | 3        | "       | "        | u u      | "        |       |
| Trichloroethene (79-01-6)              | 5.6              | 3.3      | 0.36      | ug/m³      | 3        | "       | "        | u u      | "        |       |
| Trichlorofluoromethane (75-69-4)       | <8.4             | 8.4      | 0.14      | ug/m³      | 3        | "       | "        | u u      | "        |       |
| Trichlorotrifluoroethane (76-13-1)     | 4500             | 230      | 10        | ug/m³      | 60       | "       | "        | 01/22/16 | "        |       |
| Vinyl acetate (108-05-4)               | <5.4             | 5.4      | 2.7       | ug/m³      | 3        | "       | "        | 01/22/16 | "        |       |
| Vinyl chloride (75-01-4)               | <1.5             | 1.5      | 0.15      | ug/m³      | 3        | "       | "        | "        | "        |       |
| LSG-7 (1600183-02) Air Receive         | d:01/13/16 12:50 | Sample   | d:01/12/1 | 6 12:14    |          |         |          |          |          |       |
| 1,1,1-Trichloroethane (71-55-6)        | <2.7             | 2.7      | 0.044     | ug/m³      | 1        | B6A2114 | 01/20/16 | 01/21/16 | TO-15(M) |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)    | <3.4             | 3.4      | 0.074     | ug/m³      | 1        | "       | "        | "        | "        |       |
| 1,1,2-Trichloroethane (79-00-5)        | <2.7             | 2.7      | 0.11      | ug/m³      | 1        | "       | "        | "        | "        |       |
| 1,1-Dichloroethane (75-34-3)           | <2.0             | 2.0      | 0.11      | ug/m³      | 1        | "       | "        | "        | II .     |       |
| 1,1-Dichloroethene (75-35-4)           | <2.0             | 2.0      | 0.078     | ug/m³      | 1        | "       | "        | "        | II .     |       |
| 1,2,4-Trichlorobenzene (120-82-1)      | <3.7             | 3.7      | 0.13      | ug/m³      | 1        |         | "        | "        | "        |       |
| 1,2,4-Trimethylbenzene (95-63-6)       | 2.2              | 1.0      | 0.073     | ug/m³      | 1        |         | "        | "        | "        |       |
| 1,2-Dibromoethane (106-93-4)           | <3.8             | 3.8      | 0.16      | ug/m³      | 1        | "       | "        | "        | "        |       |



Fax: 651-642-1239

Landmark Environmental TO-15 Project: 2042 West 98th Street Project Number: CRC Work Order #: 1600183 Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 02/10/16

| Analyte (CAS#)                       | Result        | RL    | MDL        | Units   | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|--------------------------------------|---------------|-------|------------|---------|----------|---------|----------|----------|----------|-------|
| LSG-7 (1600183-02) Air Received:0    | 1/13/16 12:50 | Sampl | ed:01/12/1 | 6 12:14 |          |         |          |          |          |       |
| 1,2-Dichlorobenzene (95-50-1)        | <3.0          | 3.0   | 0.071      | ug/m³   | 1        | B6A2114 | 01/20/16 | 01/21/16 | TO-15(M) |       |
| 1,2-Dichloroethane (107-06-2)        | <2.0          | 2.0   | 0.055      | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,2-Dichloropropane (78-87-5)        | <2.3          | 2.3   | 0.081      | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,3,5-Trimethylbenzene (108-67-8)    | <1.0          | 1.0   | 0.11       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,3-Butadiene (106-99-0)             | <1.1          | 1.1   | 0.10       | ug/m³   | 1        | "       | "        | "        | II .     |       |
| 1,3-Dichlorobenzene (541-73-1)       | <3.0          | 3.0   | 0.14       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,4-Dichlorobenzene (106-46-7)       | <3.0          | 3.0   | 0.17       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 2-Butanone (78-93-9)                 | 6.9           | 1.5   | 0.078      | ug/m³   | 1        | "       | "        | "        | "        |       |
| 4-Ethyltoluene (622-96-8)            | <2.5          | 2.5   | 0.11       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Acetone (67-64-1)                    | 31            | 1.2   | 0.055      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Benzene (71-43-2)                    | 0.85          | 0.64  | 0.050      | ug/m³   | 1        | "       | "        | II .     | II .     |       |
| Benzyl chloride (100-44-7)           | <2.6          | 2.6   | 0.073      | ug/m³   | 1        | "       | "        | ıı       | п        |       |
| Bromodichloromethane (75-27-4)       | <3.4          | 3.4   | 0.13       | ug/m³   | 1        | "       | "        | II .     | II .     |       |
| Bromoform (75-25-2)                  | <5.2          | 5.2   | 0.13       | ug/m³   | 1        | "       | "        | "        | II .     |       |
| Bromomethane (74-83-9)               | <1.9          | 1.9   | 0.069      | ug/m³   | 1        | "       | "        | "        | п        |       |
| Carbon disulfide (75-15-0)           | <1.6          | 1.6   | 0.070      | ug/m³   | 1        | "       | "        | ıı       | п        |       |
| Carbon tetrachloride (56-23-5)       | <3.1          | 3.1   | 0.087      | ug/m³   | 1        | "       | "        | "        | II .     |       |
| Chlorobenzene (108-90-7)             | <2.3          | 2.3   | 0.080      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Chloroethane (75-00-3)               | <1.3          | 1.3   | 0.037      | ug/m³   | 1        | "       | "        | "        | II .     |       |
| Chloroform (67-66-3)                 | <2.4          | 2.4   | 0.055      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Chloromethane (74-87-3)              | <1.0          | 1.0   | 0.044      | ug/m³   | 1        | "       | "        | ıı       | п        |       |
| cis-1,2-Dichloroethene (156-59-2)    | <2.0          | 2.0   | 0.089      | ug/m³   | 1        | "       | "        | "        | "        |       |
| cis-1,3-Dichloropropene (10061-01-5) | <2.3          | 2.3   | 0.12       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Cyclohexane (110-82-7)               | <1.7          | 1.7   | 0.059      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Dibromochloromethane (124-48-1)      | <4.3          | 4.3   | 0.16       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Dichlorodifluoromethane (75-71-8)    | <2.5          | 2.5   | 0.12       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Dichlorotetrafluoroethane (76-14-2)  | <3.5          | 3.5   | 0.063      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Ethanol (64-17-5)                    | 650           | 28    | 2.0        | ug/m³   | 30       | "       | "        | 01/21/16 | "        |       |
| Ethyl acetate (141-78-6)             | 3.8           | 1.8   | 0.11       | ug/m³   | 1        | "       | "        | 01/21/16 | "        |       |
| Ethylbenzene (100-41-4)              | 2.0           | 0.87  | 0.082      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Hexachlorobutadiene (87-68-3)        | <5.3          | 5.3   | 0.27       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Isopropyl alcohol (67-63-0)          | 190           | 36    | 2.2        | ug/m³   | 30       | "       | "        | 01/21/16 | "        |       |
| m,p-Xylene (136777-61-2)             | 7.0           | 1.7   | 0.15       | ug/m³   | 1        | "       | "        | 01/21/16 | II .     |       |
| Methyl butyl ketone (591-78-6)       | <2.0          | 2.0   | 0.12       | ug/m³   | 1        | "       | "        | II .     | II .     |       |
| Methyl isobutyl ketone (108-10-1)    | <2.0          | 2.0   | 0.11       | ug/m³   | 1        | "       | "        | "        | "        |       |

Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CRCWork Order #: 1600183Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 02/10/16

| Analyte (CAS#)                         | Result        | RL   | MDL         | Units   | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|----------------------------------------|---------------|------|-------------|---------|----------|---------|----------|----------|----------|-------|
| LSG-7 (1600183-02) Air Received:01     | 1/13/16 12:50 | Samp | led:01/12/1 | 6 12:14 |          |         |          |          |          |       |
| Methyl tert-butyl ether (1634-04-4)    | <1.8          | 1.8  | 0.11        | ug/m³   | 1        | B6A2114 | 01/20/16 | 01/21/16 | TO-15(M) |       |
| Methylene chloride (75-09-2)           | <1.7          | 1.7  | 0.21        | ug/m³   | 1        | "       | "        | "        | "        |       |
| Naphthalene (91-20-3)                  | <2.6          | 2.6  | 0.11        | ug/m³   | 1        | "       | "        | "        | "        |       |
| n-Heptane (142-82-5)                   | <2.0          | 2.0  | 0.078       | ug/m³   | 1        | "       | "        | "        | "        |       |
| n-Hexane (110-54-3)                    | 2.3           | 1.8  | 0.074       | ug/m³   | 1        | "       | n .      | "        | "        |       |
| o-Xylene (95-47-6)                     | 2.0           | 0.87 | 0.096       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Propylene (115-07-1)                   | <0.86         | 0.86 | 0.027       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Styrene (100-42-5)                     | <2.1          | 2.1  | 0.096       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Tetrachloroethene (127-18-4)           | 17            | 3.4  | 0.13        | ug/m³   | 1        | "       | "        | "        | "        |       |
| Tetrahydrofuran (109-99-9)             | 5.1           | 1.5  | 0.038       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Toluene (108-88-3)                     | 12            | 0.75 | 0.060       | ug/m³   | 1        | "       | "        | "        | "        |       |
| trans-1,2-Dichloroethene (156-60-5)    | <2.0          | 2.0  | 0.11        | ug/m³   | 1        | "       | "        | "        | "        |       |
| trans-1,3-Dichloropropene (10061-02-6) | <2.3          | 2.3  | 0.070       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Trichloroethene (79-01-6)              | <1.1          | 1.1  | 0.12        | ug/m³   | 1        | "       | "        | "        | "        |       |
| Trichlorofluoromethane (75-69-4)       | <2.8          | 2.8  | 0.048       | ug/m³   | 1        | "       | n .      | "        | "        |       |
| Trichlorotrifluoroethane (76-13-1)     | 4.7           | 3.8  | 0.17        | ug/m³   | 1        | "       | n .      | "        | "        |       |
| Vinyl acetate (108-05-4)               | <1.8          | 1.8  | 0.90        | ug/m³   | 1        | "       | "        | "        | "        |       |
| Vinyl chloride (75-01-4)               | <0.51         | 0.51 | 0.051       | ug/m³   | 1        | "       | "        | "        | "        |       |
| LSG-8 (1600183-03) Air Received:01     | //13/16 12:50 | Samp | led:01/12/1 | 6 11:20 |          |         |          |          |          |       |
| 1,1,1-Trichloroethane (71-55-6)        | <2.7          | 2.7  | 0.044       | ug/m³   | 1        | B6A2114 | 01/20/16 | 01/21/16 | TO-15(M) |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)    | <3.4          | 3.4  | 0.074       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,1,2-Trichloroethane (79-00-5)        | <2.7          | 2.7  | 0.11        | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,1-Dichloroethane (75-34-3)           | <2.0          | 2.0  | 0.11        | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,1-Dichloroethene (75-35-4)           | <2.0          | 2.0  | 0.078       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,2,4-Trichlorobenzene (120-82-1)      | <3.7          | 3.7  | 0.13        | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,2,4-Trimethylbenzene (95-63-6)       | 1.6           | 1.0  | 0.073       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,2-Dibromoethane (106-93-4)           | <3.8          | 3.8  | 0.16        | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,2-Dichlorobenzene (95-50-1)          | <3.0          | 3.0  | 0.071       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,2-Dichloroethane (107-06-2)          | <2.0          | 2.0  | 0.055       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,2-Dichloropropane (78-87-5)          | <2.3          | 2.3  | 0.081       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,3,5-Trimethylbenzene (108-67-8)      | <1.0          | 1.0  | 0.11        | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,3-Butadiene (106-99-0)               | <1.1          | 1.1  | 0.10        | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,3-Dichlorobenzene (541-73-1)         | <3.0          | 3.0  | 0.14        | ug/m³   | 1        | "       | "        | "        |          |       |
| 1,4-Dichlorobenzene (106-46-7)         | <3.0          | 3.0  | 0.17        | ug/m³   | 1        | "       | "        | "        | "        |       |
| 2-Butanone (78-93-9)                   | 8.4           | 1.5  | 0.078       | ug/m³   | 1        | "       | "        | "        | "        |       |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CRCWork Order #: 1600183Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 02/10/16

| Analyte (CAS#)                       | Result        | RL   | MDL         | Units   | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|--------------------------------------|---------------|------|-------------|---------|----------|---------|----------|----------|----------|-------|
| LSG-8 (1600183-03) Air Received:0    | 1/13/16 12:50 | Samp | led:01/12/1 | 6 11:20 |          |         |          |          |          |       |
| 4-Ethyltoluene (622-96-8)            | <2.5          | 2.5  | 0.11        | ug/m³   | 1        | B6A2114 | 01/20/16 | 01/21/16 | TO-15(M) |       |
| Acetone (67-64-1)                    | 45            | 1.2  | 0.055       | ug/m³   | 1        | "       | "        | "        | II .     |       |
| Benzene (71-43-2)                    | 1.1           | 0.64 | 0.050       | ug/m³   | 1        | "       | "        | "        | II .     |       |
| Benzyl chloride (100-44-7)           | <2.6          | 2.6  | 0.073       | ug/m³   | 1        | "       | "        | "        | II .     |       |
| Bromodichloromethane (75-27-4)       | <3.4          | 3.4  | 0.13        | ug/m³   | 1        | "       | "        | "        | II .     |       |
| Bromoform (75-25-2)                  | <5.2          | 5.2  | 0.13        | ug/m³   | 1        | "       | "        | "        | II .     |       |
| Bromomethane (74-83-9)               | <1.9          | 1.9  | 0.069       | ug/m³   | 1        | "       | "        | "        | II .     |       |
| Carbon disulfide (75-15-0)           | <1.6          | 1.6  | 0.070       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Carbon tetrachloride (56-23-5)       | <3.1          | 3.1  | 0.087       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Chlorobenzene (108-90-7)             | <2.3          | 2.3  | 0.080       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Chloroethane (75-00-3)               | <1.3          | 1.3  | 0.037       | ug/m³   | 1        | "       | "        | •        | "        |       |
| Chloroform (67-66-3)                 | <2.4          | 2.4  | 0.055       | ug/m³   | 1        | "       | "        |          | "        |       |
| Chloromethane (74-87-3)              | <1.0          | 1.0  | 0.044       | ug/m³   | 1        | "       | "        |          | "        |       |
| cis-1,2-Dichloroethene (156-59-2)    | <2.0          | 2.0  | 0.089       | ug/m³   | 1        | "       | "        | •        | "        |       |
| cis-1,3-Dichloropropene (10061-01-5) | <2.3          | 2.3  | 0.12        | ug/m³   | 1        | "       | "        |          | "        |       |
| Cyclohexane (110-82-7)               | <1.7          | 1.7  | 0.059       | ug/m³   | 1        | "       | "        |          | "        |       |
| Dibromochloromethane (124-48-1)      | <4.3          | 4.3  | 0.16        | ug/m³   | 1        | "       | "        |          | "        |       |
| Dichlorodifluoromethane (75-71-8)    | 2.7           | 2.5  | 0.12        | ug/m³   | 1        | "       | "        |          | "        |       |
| Dichlorotetrafluoroethane (76-14-2)  | <3.5          | 3.5  | 0.063       | ug/m³   | 1        | "       | "        |          | "        |       |
| Ethanol (64-17-5)                    | 1200          | 56   | 4.1         | ug/m³   | 60       | "       | "        | 01/21/16 | "        |       |
| Ethyl acetate (141-78-6)             | 4.3           | 1.8  | 0.11        | ug/m³   | 1        | "       | n .      | 01/21/16 | II .     |       |
| Ethylbenzene (100-41-4)              | 1.7           | 0.87 | 0.082       | ug/m³   | 1        | "       | n .      | "        | II .     |       |
| Hexachlorobutadiene (87-68-3)        | <5.3          | 5.3  | 0.27        | ug/m³   | 1        | "       | "        |          | "        |       |
| sopropyl alcohol (67-63-0)           | 300           | 72   | 4.5         | ug/m³   | 60       | "       | "        | 01/21/16 | "        |       |
| n,p-Xylene (136777-61-2)             | 6.0           | 1.7  | 0.15        | ug/m³   | 1        | "       | n .      | 01/21/16 | ıı       |       |
| Methyl butyl ketone (591-78-6)       | <2.0          | 2.0  | 0.12        | ug/m³   | 1        | "       | "        |          | "        |       |
| Methyl isobutyl ketone (108-10-1)    | <2.0          | 2.0  | 0.11        | ug/m³   | 1        | "       | "        |          | "        |       |
| Methyl tert-butyl ether (1634-04-4)  | <1.8          | 1.8  | 0.11        | ug/m³   | 1        | "       | "        |          | "        |       |
| Methylene chloride (75-09-2)         | 5.0           | 1.7  | 0.21        | ug/m³   | 1        | "       | "        |          | "        |       |
| Naphthalene (91-20-3)                | <2.6          | 2.6  | 0.11        | ug/m³   | 1        | "       | n .      | "        | ıı       |       |
| n-Heptane (142-82-5)                 | <2.0          | 2.0  | 0.078       | ug/m³   | 1        | "       | "        | "        | "        |       |
| n-Hexane (110-54-3)                  | 2.8           | 1.8  | 0.074       | ug/m³   | 1        | "       | "        | "        | "        |       |
| o-Xylene (95-47-6)                   | 1.9           | 0.87 | 0.096       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Propylene (115-07-1)                 | <0.86         | 0.86 | 0.027       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Styrene (100-42-5)                   | <2.1          | 2.1  | 0.096       | ug/m³   | 1        | "       | "        | "        | п        |       |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CRCWork Order #: 1600183Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 02/10/16

| Analyte (CAS#)                         | Result      | RL   | MDL         | Units   | Services,<br>Dilution | Batch   | Prepared  | Analyzed  | Method   | Notes  |
|----------------------------------------|-------------|------|-------------|---------|-----------------------|---------|-----------|-----------|----------|--------|
|                                        |             |      |             |         | Dilution              | Dalti   | i repareu | Allalyzeu | IVICUIOU | 140162 |
| LSG-8 (1600183-03) Air Received:01/    | 13/16 12:50 | Samp | led:01/12/1 | 6 11:20 |                       |         |           |           |          |        |
| Tetrachloroethene (127-18-4)           | 15          | 3.4  | 0.13        | ug/m³   | 1                     | B6A2114 | 01/20/16  | 01/21/16  | TO-15(M) |        |
| Tetrahydrofuran (109-99-9)             | 5.1         | 1.5  | 0.038       | ug/m³   | 1                     | "       | "         | "         | "        |        |
| Toluene (108-88-3)                     | 11          | 0.75 | 0.060       | ug/m³   | 1                     | "       | "         | "         | "        |        |
| trans-1,2-Dichloroethene (156-60-5)    | <2.0        | 2.0  | 0.11        | ug/m³   | 1                     | "       | "         | "         | "        |        |
| trans-1,3-Dichloropropene (10061-02-6) | <2.3        | 2.3  | 0.070       | ug/m³   | 1                     | "       | "         | "         | "        |        |
| Trichloroethene (79-01-6)              | <1.1        | 1.1  | 0.12        | ug/m³   | 1                     | "       | "         | "         | "        |        |
| Trichlorofluoromethane (75-69-4)       | <2.8        | 2.8  | 0.048       | ug/m³   | 1                     | "       | "         | "         | "        |        |
| Trichlorotrifluoroethane (76-13-1)     | <3.8        | 3.8  | 0.17        | ug/m³   | 1                     | "       | "         | "         | "        |        |
| Vinyl acetate (108-05-4)               | <1.8        | 1.8  | 0.90        | ug/m³   | 1                     | "       | "         | "         | "        |        |
| Vinyl chloride (75-01-4)               | <0.51       | 0.51 | 0.051       | ug/m³   | 1                     | "       | "         | "         | "        |        |
| LSG-9 (1600183-04) Air Received:01/    | 13/16 12:50 | Samp | led:01/12/1 | 6 11:38 |                       |         |           |           |          |        |
| 1,1,1-Trichloroethane (71-55-6)        | <2.7        | 2.7  | 0.044       | ug/m³   | 1                     | B6A2114 | 01/20/16  | 01/21/16  | TO-15(M) |        |
| 1,1,2,2-Tetrachloroethane (79-34-5)    | <3.4        | 3.4  | 0.074       | ug/m³   | 1                     | "       | "         | "         | "        |        |
| 1,1,2-Trichloroethane (79-00-5)        | <2.7        | 2.7  | 0.11        | ug/m³   | 1                     | "       | "         | "         | "        |        |
| 1,1-Dichloroethane (75-34-3)           | <2.0        | 2.0  | 0.11        | ug/m³   | 1                     | "       | "         | "         | "        |        |
| 1,1-Dichloroethene (75-35-4)           | <2.0        | 2.0  | 0.078       | ug/m³   | 1                     | "       | "         | "         | "        |        |
| 1,2,4-Trichlorobenzene (120-82-1)      | <3.7        | 3.7  | 0.13        | ug/m³   | 1                     | "       | "         | "         | "        |        |
| 1,2,4-Trimethylbenzene (95-63-6)       | 1.7         | 1.0  | 0.073       | ug/m³   | 1                     | "       | "         | "         | "        |        |
| 1,2-Dibromoethane (106-93-4)           | <3.8        | 3.8  | 0.16        | ug/m³   | 1                     | "       | "         | "         | "        |        |
| 1,2-Dichlorobenzene (95-50-1)          | <3.0        | 3.0  | 0.071       | ug/m³   | 1                     | "       | "         | "         | "        |        |
| 1,2-Dichloroethane (107-06-2)          | <2.0        | 2.0  | 0.055       | ug/m³   | 1                     | "       | "         | "         | "        |        |
| 1,2-Dichloropropane (78-87-5)          | <2.3        | 2.3  | 0.081       | ug/m³   | 1                     | "       | "         | "         | m .      |        |
| 1,3,5-Trimethylbenzene (108-67-8)      | <1.0        | 1.0  | 0.11        | ug/m³   | 1                     | "       | "         | "         | m .      |        |
| 1,3-Butadiene (106-99-0)               | <1.1        | 1.1  | 0.10        | ug/m³   | 1                     | "       | "         | "         | m .      |        |
| 1,3-Dichlorobenzene (541-73-1)         | <3.0        | 3.0  | 0.14        | ug/m³   | 1                     | "       | "         | "         | "        |        |
| 1,4-Dichlorobenzene (106-46-7)         | <3.0        | 3.0  | 0.17        | ug/m³   | 1                     | "       | "         | "         | п        |        |
| 2-Butanone (78-93-9)                   | 8.2         | 1.5  | 0.078       | ug/m³   | 1                     | "       | "         | "         | "        |        |
| 4-Ethyltoluene (622-96-8)              | <2.5        | 2.5  | 0.11        | ug/m³   | 1                     | "       | "         | "         | п        |        |
| Acetone (67-64-1)                      | 33          | 1.2  | 0.055       | ug/m³   | 1                     | "       | "         | "         | п        |        |
| Benzene (71-43-2)                      | 0.96        | 0.64 | 0.050       | ug/m³   | 1                     | "       | "         | "         | "        |        |
| Benzyl chloride (100-44-7)             | <2.6        | 2.6  | 0.073       | ug/m³   | 1                     | "       | "         | "         | "        |        |
| Bromodichloromethane (75-27-4)         | <3.4        | 3.4  | 0.13        | ug/m³   | 1                     | "       | "         | "         | п        |        |
| Bromoform (75-25-2)                    | <5.2        | 5.2  | 0.13        | ug/m³   | 1                     | "       | "         | "         | п        |        |
| Bromomethane (74-83-9)                 | <1.9        | 1.9  | 0.069       | ug/m³   | 1                     | "       | "         | "         | II .     |        |
| Carbon disulfide (75-15-0)             | <1.6        | 1.6  | 0.070       | ug/m³   | 1                     | "       |           |           |          |        |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CRCWork Order #: 1600183Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 02/10/16

| Analyte (CAS#)                         | Result       | RL    | MDL        | Units   | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|----------------------------------------|--------------|-------|------------|---------|----------|---------|----------|----------|----------|-------|
| LSG-9 (1600183-04) Air Received:01     | /13/16 12:50 | Sampl | ed:01/12/1 | 6 11:38 |          |         |          |          |          |       |
| Carbon tetrachloride (56-23-5)         | <3.1         | 3.1   | 0.087      | ug/m³   | 1        | B6A2114 | 01/20/16 | 01/21/16 | TO-15(M) |       |
| Chlorobenzene (108-90-7)               | <2.3         | 2.3   | 0.080      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Chloroethane (75-00-3)                 | <1.3         | 1.3   | 0.037      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Chloroform (67-66-3)                   | <2.4         | 2.4   | 0.055      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Chloromethane (74-87-3)                | <1.0         | 1.0   | 0.044      | ug/m³   | 1        | "       | "        | "        | "        |       |
| cis-1,2-Dichloroethene (156-59-2)      | <2.0         | 2.0   | 0.089      | ug/m³   | 1        | "       | "        | "        | "        |       |
| cis-1,3-Dichloropropene (10061-01-5)   | <2.3         | 2.3   | 0.12       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Cyclohexane (110-82-7)                 | <1.7         | 1.7   | 0.059      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Dibromochloromethane (124-48-1)        | <4.3         | 4.3   | 0.16       | ug/m³   | 1        | "       | n .      | n .      | "        |       |
| Dichlorodifluoromethane (75-71-8)      | 2.7          | 2.5   | 0.12       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Dichlorotetrafluoroethane (76-14-2)    | <3.5         | 3.5   | 0.063      | ug/m³   | 1        | "       | "        | n .      | "        |       |
| Ethanol (64-17-5)                      | 890          | 56    | 4.1        | ug/m³   | 60       | "       | "        | 01/21/16 | "        |       |
| Ethyl acetate (141-78-6)               | 4.0          | 1.8   | 0.11       | ug/m³   | 1        | "       | "        | 01/21/16 | "        |       |
| Ethylbenzene (100-41-4)                | 1.7          | 0.87  | 0.082      | ug/m³   | 1        | "       | n .      | n .      | "        |       |
| Hexachlorobutadiene (87-68-3)          | <5.3         | 5.3   | 0.27       | ug/m³   | 1        | "       | "        | "        | "        |       |
| sopropyl alcohol (67-63-0)             | 250          | 72    | 4.5        | ug/m³   | 60       | "       | "        | 01/21/16 | "        |       |
| m,p-Xylene (136777-61-2)               | 6.4          | 1.7   | 0.15       | ug/m³   | 1        | "       | "        | 01/21/16 | "        |       |
| Methyl butyl ketone (591-78-6)         | <2.0         | 2.0   | 0.12       | ug/m³   | 1        | "       | "        | n .      | "        |       |
| Methyl isobutyl ketone (108-10-1)      | <2.0         | 2.0   | 0.11       | ug/m³   | 1        | "       | n .      | n .      | "        |       |
| Methyl tert-butyl ether (1634-04-4)    | <1.8         | 1.8   | 0.11       | ug/m³   | 1        | "       | n .      | n .      | "        |       |
| Methylene chloride (75-09-2)           | <1.7         | 1.7   | 0.21       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Naphthalene (91-20-3)                  | <2.6         | 2.6   | 0.11       | ug/m³   | 1        | "       | "        | "        | "        |       |
| n-Heptane (142-82-5)                   | <2.0         | 2.0   | 0.078      | ug/m³   | 1        | "       | "        | "        | "        |       |
| n-Hexane (110-54-3)                    | <1.8         | 1.8   | 0.074      | ug/m³   | 1        | "       | "        | n .      | "        |       |
| o-Xylene (95-47-6)                     | 1.9          | 0.87  | 0.096      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Propylene (115-07-1)                   | <0.86        | 0.86  | 0.027      | ug/m³   | 1        | "       | "        | n .      | "        |       |
| Styrene (100-42-5)                     | <2.1         | 2.1   | 0.096      | ug/m³   | 1        | "       | "        | n .      | "        |       |
| Tetrachloroethene (127-18-4)           | 15           | 3.4   | 0.13       | ug/m³   | 1        | "       | "        | n .      | "        |       |
| Tetrahydrofuran (109-99-9)             | 5.4          | 1.5   | 0.038      | ug/m³   | 1        | "       | "        | n .      | "        |       |
| Toluene (108-88-3)                     | 12           | 0.75  | 0.060      | ug/m³   | 1        | "       | "        | n .      | "        |       |
| trans-1,2-Dichloroethene (156-60-5)    | <2.0         | 2.0   | 0.11       | ug/m³   | 1        | "       | "        | "        | "        |       |
| trans-1,3-Dichloropropene (10061-02-6) | <2.3         | 2.3   | 0.070      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Trichloroethene (79-01-6)              | <1.1         | 1.1   | 0.12       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Trichlorofluoromethane (75-69-4)       | <2.8         | 2.8   | 0.048      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Trichlorotrifluoroethane (76-13-1)     | 61           | 3.8   | 0.17       | ug/m³   | 1        | "       | "        | "        | "        |       |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CRCWork Order #: 1600183Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 02/10/16

| Analyte (CAS#)                       | Result        | RL     | MDL         | Units    | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|--------------------------------------|---------------|--------|-------------|----------|----------|---------|----------|----------|----------|-------|
| LSG-9 (1600183-04) Air Received:0    | 1/13/16 12:50 | Samp   | led:01/12/1 | 6 11:38  |          |         |          |          |          |       |
| Vinyl acetate (108-05-4)             | <1.8          | 1.8    | 0.90        | ug/m³    | 1        | B6A2114 | 01/20/16 | 01/21/16 | TO-15(M) |       |
| Vinyl chloride (75-01-4)             | <0.51         | 0.51   | 0.051       | ug/m³    | 1        | "       | "        | "        | "        |       |
| LSG-10 (1600183-05) Air Received:    | 01/13/16 12:5 | 0 Samı | pled:01/12/ | 16 11:52 |          |         |          |          |          |       |
| 1,1,1-Trichloroethane (71-55-6)      | <2.7          | 2.7    | 0.044       | ug/m³    | 1        | B6A2114 | 01/20/16 | 01/21/16 | TO-15(M) |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)  | <3.4          | 3.4    | 0.074       | ug/m³    | 1        | "       | "        | "        | "        |       |
| 1,1,2-Trichloroethane (79-00-5)      | <2.7          | 2.7    | 0.11        | ug/m³    | 1        | "       | "        | "        | "        |       |
| 1,1-Dichloroethane (75-34-3)         | <2.0          | 2.0    | 0.11        | ug/m³    | 1        | "       | "        | "        | "        |       |
| 1,1-Dichloroethene (75-35-4)         | <2.0          | 2.0    | 0.078       | ug/m³    | 1        | "       | "        | "        | "        |       |
| 1,2,4-Trichlorobenzene (120-82-1)    | <3.7          | 3.7    | 0.13        | ug/m³    | 1        | "       | "        | "        | "        |       |
| 1,2,4-Trimethylbenzene (95-63-6)     | 2.1           | 1.0    | 0.073       | ug/m³    | 1        | "       | "        | "        | "        |       |
| 1,2-Dibromoethane (106-93-4)         | <3.8          | 3.8    | 0.16        | ug/m³    | 1        | "       | "        | "        | "        |       |
| 1,2-Dichlorobenzene (95-50-1)        | <3.0          | 3.0    | 0.071       | ug/m³    | 1        | "       | "        | "        | "        |       |
| 1,2-Dichloroethane (107-06-2)        | <2.0          | 2.0    | 0.055       | ug/m³    | 1        | "       | "        | "        | "        |       |
| 1,2-Dichloropropane (78-87-5)        | <2.3          | 2.3    | 0.081       | ug/m³    | 1        | n n     | "        | "        | "        |       |
| 1,3,5-Trimethylbenzene (108-67-8)    | <1.0          | 1.0    | 0.11        | ug/m³    | 1        | n n     | n .      | "        | "        |       |
| 1,3-Butadiene (106-99-0)             | <1.1          | 1.1    | 0.10        | ug/m³    | 1        | "       | "        | n .      | "        |       |
| 1,3-Dichlorobenzene (541-73-1)       | <3.0          | 3.0    | 0.14        | ug/m³    | 1        | "       | "        | n .      | "        |       |
| 1,4-Dichlorobenzene (106-46-7)       | <3.0          | 3.0    | 0.17        | ug/m³    | 1        | "       | "        | n .      | "        |       |
| 2-Butanone (78-93-9)                 | 6.5           | 1.5    | 0.078       | ug/m³    | 1        | n n     | n .      | "        | "        |       |
| 4-Ethyltoluene (622-96-8)            | <2.5          | 2.5    | 0.11        | ug/m³    | 1        | "       | "        | n .      | "        |       |
| Acetone (67-64-1)                    | 28            | 1.2    | 0.055       | ug/m³    | 1        | n n     | m .      | "        | "        |       |
| Benzene (71-43-2)                    | 0.84          | 0.64   | 0.050       | ug/m³    | 1        | n n     | m .      | "        | "        |       |
| Benzyl chloride (100-44-7)           | <2.6          | 2.6    | 0.073       | ug/m³    | 1        | n n     | "        | "        | "        |       |
| Bromodichloromethane (75-27-4)       | <3.4          | 3.4    | 0.13        | ug/m³    | 1        | n n     | "        | "        | "        |       |
| 3romoform (75-25-2)                  | <5.2          | 5.2    | 0.13        | ug/m³    | 1        | "       | "        | n .      | "        |       |
| Bromomethane (74-83-9)               | <1.9          | 1.9    | 0.069       | ug/m³    | 1        | "       | "        | n .      | "        |       |
| Carbon disulfide (75-15-0)           | <1.6          | 1.6    | 0.070       | ug/m³    | 1        | "       | "        | n .      | "        |       |
| Carbon tetrachloride (56-23-5)       | <3.1          | 3.1    | 0.087       | ug/m³    | 1        | "       | "        | "        | "        |       |
| Chlorobenzene (108-90-7)             | <2.3          | 2.3    | 0.080       | ug/m³    | 1        | n n     | m .      | "        | "        |       |
| Chloroethane (75-00-3)               | <1.3          | 1.3    | 0.037       | ug/m³    | 1        | n n     | m .      | "        | "        |       |
| Chloroform (67-66-3)                 | <2.4          | 2.4    | 0.055       | ug/m³    | 1        | n n     | m .      | "        | "        |       |
| Chloromethane (74-87-3)              | <1.0          | 1.0    | 0.044       | ug/m³    | 1        | n n     | m .      | "        | "        |       |
| cis-1,2-Dichloroethene (156-59-2)    | <2.0          | 2.0    | 0.089       | ug/m³    | 1        | "       | "        | "        | "        |       |
| cis-1,3-Dichloropropene (10061-01-5) | <2.3          | 2.3    | 0.12        | ug/m³    | 1        | "       | "        | "        | "        |       |
| Cyclohexane (110-82-7)               | <1.7          | 1.7    | 0.059       | ug/m³    | 1        | "       | "        | "        |          |       |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CRCWork Order #: 1600183Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 02/10/16

| Analyte (CAS#)                         | Result        | RL      | MDL         | Units      | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|----------------------------------------|---------------|---------|-------------|------------|----------|---------|----------|----------|----------|-------|
| LSG-10 (1600183-05) Air Received:0     | 1/13/16 12:5  | i0 Sam  | pled:01/12/ | 16 11:52   |          |         |          |          |          |       |
| Dibromochloromethane (124-48-1)        | <4.3          | 4.3     | 0.16        | ug/m³      | 1        | B6A2114 | 01/20/16 | 01/21/16 | TO-15(M) |       |
| Dichlorodifluoromethane (75-71-8)      | 2.8           | 2.5     | 0.12        | ug/m³      | 1        | "       | n .      | "        | "        |       |
| Dichlorotetrafluoroethane (76-14-2)    | <3.5          | 3.5     | 0.063       | ug/m³      | 1        | "       | "        | "        | "        |       |
| Ethanol (64-17-5)                      | 590           | 28      | 2.0         | ug/m³      | 30       | "       | "        | 01/21/16 | "        |       |
| Ethyl acetate (141-78-6)               | 3.3           | 1.8     | 0.11        | ug/m³      | 1        | "       | "        | 01/21/16 | "        |       |
| Ethylbenzene (100-41-4)                | 2.1           | 0.87    | 0.082       | ug/m³      | 1        | "       | "        | "        | "        |       |
| Hexachlorobutadiene (87-68-3)          | <5.3          | 5.3     | 0.27        | ug/m³      | 1        | "       | "        | "        | "        |       |
| Isopropyl alcohol (67-63-0)            | 170           | 36      | 2.2         | ug/m³      | 30       | "       | "        | 01/21/16 | "        |       |
| m,p-Xylene (136777-61-2)               | 7.4           | 1.7     | 0.15        | ug/m³      | 1        | "       | "        | 01/21/16 | "        |       |
| Methyl butyl ketone (591-78-6)         | <2.0          | 2.0     | 0.12        | ug/m³      | 1        | "       | "        | "        | "        |       |
| Methyl isobutyl ketone (108-10-1)      | <2.0          | 2.0     | 0.11        | ug/m³      | 1        | "       | "        | "        | "        |       |
| Methyl tert-butyl ether (1634-04-4)    | <1.8          | 1.8     | 0.11        | ug/m³      | 1        | "       | "        | "        | "        |       |
| Methylene chloride (75-09-2)           | <1.7          | 1.7     | 0.21        | ug/m³      | 1        | "       | "        | "        | "        |       |
| Naphthalene (91-20-3)                  | <2.6          | 2.6     | 0.11        | ug/m³      | 1        | "       | "        | "        | "        |       |
| n-Heptane (142-82-5)                   | <2.0          | 2.0     | 0.078       | ug/m³      | 1        | "       | "        | "        | "        |       |
| n-Hexane (110-54-3)                    | 3.5           | 1.8     | 0.074       | ug/m³      | 1        | "       | "        | "        | "        |       |
| o-Xylene (95-47-6)                     | 2.1           | 0.87    | 0.096       | ug/m³      | 1        | "       | "        | "        | "        |       |
| Propylene (115-07-1)                   | <0.86         | 0.86    | 0.027       | ug/m³      | 1        | "       | "        | "        | "        |       |
| Styrene (100-42-5)                     | <2.1          | 2.1     | 0.096       | ug/m³      | 1        | "       | "        | "        | "        |       |
| Tetrachloroethene (127-18-4)           | 16            | 3.4     | 0.13        | ug/m³      | 1        | "       | "        | "        | "        |       |
| Tetrahydrofuran (109-99-9)             | 4.8           | 1.5     | 0.038       | ug/m³      | 1        | "       | "        | "        | "        |       |
| Toluene (108-88-3)                     | 12            | 0.75    | 0.060       | ug/m³      | 1        | "       | "        | "        | "        |       |
| trans-1,2-Dichloroethene (156-60-5)    | <2.0          | 2.0     | 0.11        | ug/m³      | 1        | "       | "        | "        | "        |       |
| trans-1,3-Dichloropropene (10061-02-6) | <2.3          | 2.3     | 0.070       | ug/m³      | 1        | "       | "        | "        | "        |       |
| Trichloroethene (79-01-6)              | <1.1          | 1.1     | 0.12        | ug/m³      | 1        | "       | "        | "        | "        |       |
| Trichlorofluoromethane (75-69-4)       | <2.8          | 2.8     | 0.048       | ug/m³      | 1        | "       | "        | "        | "        |       |
| Trichlorotrifluoroethane (76-13-1)     | 13            | 3.8     | 0.17        | ug/m³      | 1        | "       | "        | "        | "        |       |
| Vinyl acetate (108-05-4)               | <1.8          | 1.8     | 0.90        | ug/m³      | 1        | "       | "        | "        | "        |       |
| Vinyl chloride (75-01-4)               | <0.51         | 0.51    | 0.051       | ug/m³      | 1        | "       | "        | "        | "        |       |
| SP-1 (ES) (1600183-06) Air Received    | 1:01/13/16 12 | 2:50 Sa | mpled:01/1  | 2/16 12:58 |          |         |          |          |          |       |
| 1,1,1-Trichloroethane (71-55-6)        | <2.7          | 2.7     | 0.044       | ug/m³      | 1        | B6A2114 | 01/20/16 | 01/21/16 | TO-15(M) |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)    | <3.4          | 3.4     | 0.074       | ug/m³      | 1        | "       | "        | "        | "        |       |
| 1,1,2-Trichloroethane (79-00-5)        | <2.7          | 2.7     | 0.11        | ug/m³      | 1        | "       | "        | "        | "        |       |
| 1,1-Dichloroethane (75-34-3)           | <2.0          | 2.0     | 0.11        | ug/m³      | 1        | "       | "        | "        | "        |       |
| 1,1-Dichloroethene (75-35-4)           | <2.0          | 2.0     | 0.078       | ug/m³      | 1        | "       | "        | "        | · ·      |       |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CRCWork Order #: 1600183Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 02/10/16

| Analyte (CAS#)                       | Result        | RL      | MDL        | Units      | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|--------------------------------------|---------------|---------|------------|------------|----------|---------|----------|----------|----------|-------|
| SP-1 (ES) (1600183-06) Air Receive   | d:01/13/16 12 | 2:50 Sa | mpled:01/1 | 2/16 12:58 |          |         |          |          |          |       |
| 1,2,4-Trichlorobenzene (120-82-1)    | <3.7          | 3.7     | 0.13       | ug/m³      | 1        | B6A2114 | 01/20/16 | 01/21/16 | TO-15(M) |       |
| 1,2,4-Trimethylbenzene (95-63-6)     | 1.5           | 1.0     | 0.073      | ug/m³      | 1        | "       | "        | "        | "        |       |
| 1,2-Dibromoethane (106-93-4)         | <3.8          | 3.8     | 0.16       | ug/m³      | 1        | "       | "        | "        | "        |       |
| 1,2-Dichlorobenzene (95-50-1)        | <3.0          | 3.0     | 0.071      | ug/m³      | 1        | "       | "        | "        | "        |       |
| 1,2-Dichloroethane (107-06-2)        | <2.0          | 2.0     | 0.055      | ug/m³      | 1        | "       | "        | "        | "        |       |
| 1,2-Dichloropropane (78-87-5)        | <2.3          | 2.3     | 0.081      | ug/m³      | 1        | "       | "        | "        | "        |       |
| 1,3,5-Trimethylbenzene (108-67-8)    | <1.0          | 1.0     | 0.11       | ug/m³      | 1        | "       | "        | "        | "        |       |
| 1,3-Butadiene (106-99-0)             | <1.1          | 1.1     | 0.10       | ug/m³      | 1        | "       | "        | "        | "        |       |
| 1,3-Dichlorobenzene (541-73-1)       | <3.0          | 3.0     | 0.14       | ug/m³      | 1        | "       | "        | "        | "        |       |
| 1,4-Dichlorobenzene (106-46-7)       | <3.0          | 3.0     | 0.17       | ug/m³      | 1        | "       | "        | "        | "        |       |
| 2-Butanone (78-93-9)                 | 3.8           | 1.5     | 0.078      | ug/m³      | 1        | "       | II .     | "        | II .     |       |
| 4-Ethyltoluene (622-96-8)            | <2.5          | 2.5     | 0.11       | ug/m³      | 1        | "       | II .     | "        | II .     |       |
| Acetone (67-64-1)                    | 35            | 1.2     | 0.055      | ug/m³      | 1        | "       | II .     | "        | II .     |       |
| Benzene (71-43-2)                    | 0.91          | 0.64    | 0.050      | ug/m³      | 1        | "       | "        | "        | n .      |       |
| Benzyl chloride (100-44-7)           | <2.6          | 2.6     | 0.073      | ug/m³      | 1        | "       | "        | "        | u u      |       |
| Bromodichloromethane (75-27-4)       | <3.4          | 3.4     | 0.13       | ug/m³      | 1        | "       | "        | "        | u u      |       |
| Bromoform (75-25-2)                  | <5.2          | 5.2     | 0.13       | ug/m³      | 1        | "       | "        | "        | u u      |       |
| Bromomethane (74-83-9)               | <1.9          | 1.9     | 0.069      | ug/m³      | 1        | "       | "        | "        | n .      |       |
| Carbon disulfide (75-15-0)           | 2.8           | 1.6     | 0.070      | ug/m³      | 1        | "       | II .     | "        | II .     |       |
| Carbon tetrachloride (56-23-5)       | <3.1          | 3.1     | 0.087      | ug/m³      | 1        | "       | "        | "        | u u      |       |
| Chlorobenzene (108-90-7)             | <2.3          | 2.3     | 0.080      | ug/m³      | 1        | "       | "        | "        | u u      |       |
| Chloroethane (75-00-3)               | <1.3          | 1.3     | 0.037      | ug/m³      | 1        | "       | "        | "        | u u      |       |
| Chloroform (67-66-3)                 | <2.4          | 2.4     | 0.055      | ug/m³      | 1        | "       | "        | "        | "        |       |
| Chloromethane (74-87-3)              | <1.0          | 1.0     | 0.044      | ug/m³      | 1        | "       | "        | "        | u u      |       |
| cis-1,2-Dichloroethene (156-59-2)    | <2.0          | 2.0     | 0.089      | ug/m³      | 1        | "       | "        | "        | "        |       |
| cis-1,3-Dichloropropene (10061-01-5) | <2.3          | 2.3     | 0.12       | ug/m³      | 1        | "       | "        | "        | "        |       |
| Cyclohexane (110-82-7)               | <1.7          | 1.7     | 0.059      | ug/m³      | 1        | "       | "        | "        | "        |       |
| Dibromochloromethane (124-48-1)      | <4.3          | 4.3     | 0.16       | ug/m³      | 1        | "       | "        | "        | "        |       |
| Dichlorodifluoromethane (75-71-8)    | 3.7           | 2.5     | 0.12       | ug/m³      | 1        | "       | "        | "        | "        |       |
| Dichlorotetrafluoroethane (76-14-2)  | <3.5          | 3.5     | 0.063      | ug/m³      | 1        | "       | "        | "        | "        |       |
| Ethanol (64-17-5)                    | 320           | 19      | 1.4        | ug/m³      | 20       | "       | "        | 01/22/16 | "        |       |
| Ethyl acetate (141-78-6)             | 2.4           | 1.8     | 0.11       | ug/m³      | 1        | "       | "        | 01/21/16 | "        |       |
| Ethylbenzene (100-41-4)              | 1.5           | 0.87    | 0.082      | ug/m³      | 1        | "       | "        | "        | п        |       |
| Hexachlorobutadiene (87-68-3)        | <5.3          | 5.3     | 0.27       | ug/m³      | 1        | "       | "        | "        | п        |       |
| Isopropyl alcohol (67-63-0)          | 110           | 24      | 1.5        | ug/m³      | 20       | ,       | "        | 01/22/16 |          |       |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CRCWork Order #: 1600183Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 02/10/16

| Analyte (CAS#)                         | Result       | RL      | MDL        | Units       | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|----------------------------------------|--------------|---------|------------|-------------|----------|---------|----------|----------|----------|-------|
| SP-1 (ES) (1600183-06) Air Receive     | d:01/13/16 1 | 2:50 Sa | mpled:01/1 | 2/16 12:58  |          |         |          |          |          |       |
| m,p-Xylene (136777-61-2)               | 5.2          | 1.7     | 0.15       | ug/m³       | 1        | B6A2114 | 01/20/16 | 01/21/16 | TO-15(M) |       |
| Methyl butyl ketone (591-78-6)         | <2.0         | 2.0     | 0.12       | ug/m³       | 1        | "       | "        | "        | "        |       |
| Methyl isobutyl ketone (108-10-1)      | <2.0         | 2.0     | 0.11       | ug/m³       | 1        | "       | "        | "        | II .     |       |
| Methyl tert-butyl ether (1634-04-4)    | <1.8         | 1.8     | 0.11       | ug/m³       | 1        | "       | "        | "        | "        |       |
| Methylene chloride (75-09-2)           | 51           | 1.7     | 0.21       | ug/m³       | 1        | "       | "        | n .      | "        |       |
| Naphthalene (91-20-3)                  | <2.6         | 2.6     | 0.11       | ug/m³       | 1        | "       | "        | "        | "        |       |
| n-Heptane (142-82-5)                   | <2.0         | 2.0     | 0.078      | ug/m³       | 1        | "       | "        | n .      | "        |       |
| n-Hexane (110-54-3)                    | 18           | 1.8     | 0.074      | ug/m³       | 1        | "       | "        | n .      | "        |       |
| o-Xylene (95-47-6)                     | 1.6          | 0.87    | 0.096      | ug/m³       | 1        | "       | "        | n .      | "        |       |
| Propylene (115-07-1)                   | <0.86        | 0.86    | 0.027      | ug/m³       | 1        | "       | "        | "        | II .     |       |
| Styrene (100-42-5)                     | <2.1         | 2.1     | 0.096      | ug/m³       | 1        | "       | "        | "        | "        |       |
| Tetrachloroethene (127-18-4)           | 130          | 3.4     | 0.13       | ug/m³       | 1        | "       | "        | "        | "        |       |
| Tetrahydrofuran (109-99-9)             | 2.9          | 1.5     | 0.038      | ug/m³       | 1        | "       | "        | "        | "        |       |
| Toluene (108-88-3)                     | 9.5          | 0.75    | 0.060      | ug/m³       | 1        | "       | "        | "        | "        |       |
| trans-1,2-Dichloroethene (156-60-5)    | <2.0         | 2.0     | 0.11       | ug/m³       | 1        | "       | "        | "        | "        |       |
| trans-1,3-Dichloropropene (10061-02-6) | <2.3         | 2.3     | 0.070      | ug/m³       | 1        | "       | "        | "        | "        |       |
| Trichloroethene (79-01-6)              | <1.1         | 1.1     | 0.12       | ug/m³       | 1        | "       | "        | "        | "        |       |
| Trichlorofluoromethane (75-69-4)       | <2.8         | 2.8     | 0.048      | ug/m³       | 1        | "       | "        | "        | "        |       |
| Trichlorotrifluoroethane (76-13-1)     | 640          | 76      | 3.4        | ug/m³       | 20       | "       | "        | 01/22/16 | m .      |       |
| Vinyl acetate (108-05-4)               | <1.8         | 1.8     | 0.90       | ug/m³       | 1        | "       | "        | 01/21/16 | m .      |       |
| Vinyl chloride (75-01-4)               | <0.51        | 0.51    | 0.051      | ug/m³       | 1        | "       | "        | "        | m .      |       |
| SP-2 (SSL) (1600183-07) Air Receiv     | red:01/13/16 | 12:50 S | ampled:01  | /12/16 12:4 | 2        |         |          |          |          |       |
| 1,1,1-Trichloroethane (71-55-6)        | <2.7         | 2.7     | 0.044      | ug/m³       | 1        | B6A2114 | 01/20/16 | 01/21/16 | TO-15(M) |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)    | <3.4         | 3.4     | 0.074      | ug/m³       | 1        | "       | "        | "        | "        |       |
| 1,1,2-Trichloroethane (79-00-5)        | <2.7         | 2.7     | 0.11       | ug/m³       | 1        | "       | "        | n .      | "        |       |
| 1,1-Dichloroethane (75-34-3)           | <2.0         | 2.0     | 0.11       | ug/m³       | 1        | "       | "        | n .      | "        |       |
| 1,1-Dichloroethene (75-35-4)           | <2.0         | 2.0     | 0.078      | ug/m³       | 1        | "       | "        | n .      | "        |       |
| 1,2,4-Trichlorobenzene (120-82-1)      | <3.7         | 3.7     | 0.13       | ug/m³       | 1        | "       | "        | "        | "        |       |
| 1,2,4-Trimethylbenzene (95-63-6)       | <1.0         | 1.0     | 0.073      | ug/m³       | 1        | "       | "        | "        | "        |       |
| 1,2-Dibromoethane (106-93-4)           | <3.8         | 3.8     | 0.16       | ug/m³       | 1        | "       | "        | "        | "        |       |
| 1,2-Dichlorobenzene (95-50-1)          | <3.0         | 3.0     | 0.071      | ug/m³       | 1        | "       | "        | "        | "        |       |
| 1,2-Dichloroethane (107-06-2)          | <2.0         | 2.0     | 0.055      | ug/m³       | 1        | "       | "        | "        | "        |       |
| 1,2-Dichloropropane (78-87-5)          | <2.3         | 2.3     | 0.081      | ug/m³       | 1        | "       | "        | "        | "        |       |
| 1,3,5-Trimethylbenzene (108-67-8)      | <1.0         | 1.0     | 0.11       | ug/m³       | 1        | "       | "        | "        | "        |       |
| 1,3-Butadiene (106-99-0)               | <1.1         | 1.1     | 0.10       | ug/m³       | 1        |         |          |          |          |       |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CRCWork Order #: 1600183Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 02/10/16

| Analyte (CAS#)                       | Result         | RL    | MDL        | Units       | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|--------------------------------------|----------------|-------|------------|-------------|----------|---------|----------|----------|----------|-------|
| SP-2 (SSL) (1600183-07) Air Recei    | ved:01/13/16 1 | 12:50 | Sampled:01 | /12/16 12:4 | 12       |         |          |          |          |       |
| 1,3-Dichlorobenzene (541-73-1)       | <3.0           | 3.0   | 0.14       | ug/m³       | 1        | B6A2114 | 01/20/16 | 01/21/16 | TO-15(M) |       |
| 1,4-Dichlorobenzene (106-46-7)       | <3.0           | 3.0   | 0.17       | ug/m³       | 1        | "       | "        | "        | "        |       |
| 2-Butanone (78-93-9)                 | 2.7            | 1.5   | 0.078      | ug/m³       | 1        | "       | "        | "        | "        |       |
| 4-Ethyltoluene (622-96-8)            | <2.5           | 2.5   | 0.11       | ug/m³       | 1        | "       | "        | "        | "        |       |
| Acetone (67-64-1)                    | 17             | 1.2   | 0.055      | ug/m³       | 1        | "       | "        | "        | "        |       |
| Benzene (71-43-2)                    | 0.75           | 0.64  | 0.050      | ug/m³       | 1        | "       | "        | "        | "        |       |
| Benzyl chloride (100-44-7)           | <2.6           | 2.6   | 0.073      | ug/m³       | 1        | "       | "        | "        | "        |       |
| Bromodichloromethane (75-27-4)       | <3.4           | 3.4   | 0.13       | ug/m³       | 1        | "       | "        | "        | "        |       |
| Bromoform (75-25-2)                  | <5.2           | 5.2   | 0.13       | ug/m³       | 1        | "       | "        | "        | "        |       |
| Bromomethane (74-83-9)               | <1.9           | 1.9   | 0.069      | ug/m³       | 1        | "       | "        | "        | "        |       |
| Carbon disulfide (75-15-0)           | <1.6           | 1.6   | 0.070      | ug/m³       | 1        | "       | "        | "        | "        |       |
| Carbon tetrachloride (56-23-5)       | <3.1           | 3.1   | 0.087      | ug/m³       | 1        | "       | "        | "        | "        |       |
| Chlorobenzene (108-90-7)             | <2.3           | 2.3   | 0.080      | ug/m³       | 1        | "       | "        | "        | "        |       |
| Chloroethane (75-00-3)               | <1.3           | 1.3   | 0.037      | ug/m³       | 1        | "       | "        | "        | "        |       |
| Chloroform (67-66-3)                 | <2.4           | 2.4   | 0.055      | ug/m³       | 1        | "       | "        | "        | "        |       |
| Chloromethane (74-87-3)              | <1.0           | 1.0   | 0.044      | ug/m³       | 1        | "       | "        | "        | "        |       |
| cis-1,2-Dichloroethene (156-59-2)    | <2.0           | 2.0   | 0.089      | ug/m³       | 1        | "       | "        | "        | "        |       |
| cis-1,3-Dichloropropene (10061-01-5) | <2.3           | 2.3   | 0.12       | ug/m³       | 1        | "       | "        | "        | "        |       |
| Cyclohexane (110-82-7)               | <1.7           | 1.7   | 0.059      | ug/m³       | 1        | "       | "        | "        | "        |       |
| Dibromochloromethane (124-48-1)      | <4.3           | 4.3   | 0.16       | ug/m³       | 1        | "       | "        | "        | "        |       |
| Dichlorodifluoromethane (75-71-8)    | 2.8            | 2.5   | 0.12       | ug/m³       | 1        | "       | "        | "        | "        |       |
| Dichlorotetrafluoroethane (76-14-2)  | <3.5           | 3.5   | 0.063      | ug/m³       | 1        | "       | "        | "        | "        |       |
| Ethanol (64-17-5)                    | 480            | 19    | 1.4        | ug/m³       | 20       | "       | "        | 01/22/16 | "        |       |
| Ethyl acetate (141-78-6)             | <1.8           | 1.8   | 0.11       | ug/m³       | 1        | "       | "        | 01/21/16 | "        |       |
| Ethylbenzene (100-41-4)              | 1.6            | 0.87  | 0.082      | ug/m³       | 1        | "       | "        | "        | "        |       |
| Hexachlorobutadiene (87-68-3)        | <5.3           | 5.3   | 0.27       | ug/m³       | 1        | "       | "        | "        | "        |       |
| Isopropyl alcohol (67-63-0)          | 130            | 24    | 1.5        | ug/m³       | 20       | "       | "        | 01/22/16 | "        |       |
| m,p-Xylene (136777-61-2)             | 5.4            | 1.7   | 0.15       | ug/m³       | 1        | "       | "        | 01/21/16 | "        |       |
| Methyl butyl ketone (591-78-6)       | <2.0           | 2.0   | 0.12       | ug/m³       | 1        | "       | "        | "        | "        |       |
| Methyl isobutyl ketone (108-10-1)    | <2.0           | 2.0   | 0.11       | ug/m³       | 1        | "       | "        | "        | "        |       |
| Methyl tert-butyl ether (1634-04-4)  | <1.8           | 1.8   | 0.11       | ug/m³       | 1        | "       | "        | "        | "        |       |
| Methylene chloride (75-09-2)         | <1.7           | 1.7   | 0.21       | ug/m³       | 1        | "       | "        | "        | "        |       |
| Naphthalene (91-20-3)                | <2.6           | 2.6   | 0.11       | ug/m³       | 1        | "       | "        | "        | "        |       |
| n-Heptane (142-82-5)                 | <2.0           | 2.0   | 0.078      | ug/m³       | 1        | "       | "        | "        | "        |       |
| n-Hexane (110-54-3)                  | <1.8           | 1.8   | 0.074      | ug/m³       | 1        | "       | n        | II .     | II .     |       |
|                                      |                |       |            |             |          |         |          |          |          |       |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CRCWork Order #: 1600183Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 02/10/16

| Analyte (CAS#)                         | Result      | RL    | MDL        | Units        | Dilution | Batch   | Prepared | Analyzed | Method   | Note |
|----------------------------------------|-------------|-------|------------|--------------|----------|---------|----------|----------|----------|------|
| SP-2 (SSL) (1600183-07) Air Receiv     | ed:01/13/16 | 12:50 | Sampled:01 | /12/16 12:42 | 2        |         |          |          |          |      |
| o-Xylene (95-47-6)                     | 1.4         | 0.87  | 0.096      | ug/m³        | 1        | B6A2114 | 01/20/16 | 01/21/16 | TO-15(M) |      |
| Propylene (115-07-1)                   | <0.86       | 0.86  | 0.027      | ug/m³        | 1        | "       | "        | "        | "        |      |
| Styrene (100-42-5)                     | <2.1        | 2.1   | 0.096      | ug/m³        | 1        | "       | "        | "        | "        |      |
| Tetrachloroethene (127-18-4)           | 14          | 3.4   | 0.13       | ug/m³        | 1        | "       | "        | "        | "        |      |
| Tetrahydrofuran (109-99-9)             | 2.6         | 1.5   | 0.038      | ug/m³        | 1        | "       | "        | "        | "        |      |
| Toluene (108-88-3)                     | 4.5         | 0.75  | 0.060      | ug/m³        | 1        | "       | "        | "        | "        |      |
| trans-1,2-Dichloroethene (156-60-5)    | 2.1         | 2.0   | 0.11       | ug/m³        | 1        | "       | "        | "        | "        |      |
| trans-1,3-Dichloropropene (10061-02-6) | <2.3        | 2.3   | 0.070      | ug/m³        | 1        | "       | "        | "        | "        |      |
| Trichloroethene (79-01-6)              | <1.1        | 1.1   | 0.12       | ug/m³        | 1        | "       | "        | "        | "        |      |
| Trichlorofluoromethane (75-69-4)       | <2.8        | 2.8   | 0.048      | ug/m³        | 1        | "       | "        | "        | "        |      |
| Trichlorotrifluoroethane (76-13-1)     | <3.8        | 3.8   | 0.17       | ug/m³        | 1        | "       | "        | "        | "        |      |
| Vinyl acetate (108-05-4)               | <1.8        | 1.8   | 0.90       | ug/m³        | 1        | "       | "        | "        | "        |      |
| /inyl chloride (75-01-4)               | <0.51       | 0.51  | 0.051      | ug/m³        | 1        | II .    | "        | n .      | · ·      |      |



Fax: 651-642-1239

Landmark Environmental Project: TO-15 2042 West 98th Street Project Number: CRC Work Order #: 1600183 Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 02/10/16

### **VOC - AIR - Quality Control** Legend Technical Services, Inc.

| Analyte                   | Result | RL   | MDL   | Units | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | %RPD | %RPD<br>Limit | Notes |
|---------------------------|--------|------|-------|-------|----------------|------------------|------------|----------------|------|---------------|-------|
| Batch B6A2114 - TO-15     |        |      |       |       |                |                  |            |                |      |               |       |
| Blank (B6A2114-BLK1)      |        |      |       |       | Prepared       | d & Analyze      | ed: 01/20/ | 16             |      |               |       |
| 1,1,1-Trichloroethane     | < 2.7  | 2.7  | 0.044 | ug/m³ |                |                  |            |                |      |               |       |
| 1,1,2,2-Tetrachloroethane | < 3.4  | 3.4  | 0.074 | ug/m³ |                |                  |            |                |      |               |       |
| 1,1,2-Trichloroethane     | < 2.7  | 2.7  | 0.11  | ug/m³ |                |                  |            |                |      |               |       |
| 1,1-Dichloroethane        | < 2.0  | 2.0  | 0.11  | ug/m³ |                |                  |            |                |      |               |       |
| 1,1-Dichloroethene        | < 2.0  | 2.0  | 0.078 | ug/m³ |                |                  |            |                |      |               |       |
| 1,2,4-Trichlorobenzene    | < 3.7  | 3.7  | 0.13  | ug/m³ |                |                  |            |                |      |               |       |
| 1,2,4-Trimethylbenzene    | < 1.0  | 1.0  | 0.073 | ug/m³ |                |                  |            |                |      |               |       |
| 1,2-Dibromoethane         | < 3.8  | 3.8  | 0.16  | ug/m³ |                |                  |            |                |      |               |       |
| 1,2-Dichlorobenzene       | < 3.0  | 3.0  | 0.071 | ug/m³ |                |                  |            |                |      |               |       |
| 1,2-Dichloroethane        | < 2.0  | 2.0  | 0.055 | ug/m³ |                |                  |            |                |      |               |       |
| 1,2-Dichloropropane       | < 2.3  | 2.3  | 0.081 | ug/m³ |                |                  |            |                |      |               |       |
| 1,3,5-Trimethylbenzene    | < 1.0  | 1.0  | 0.11  | ug/m³ |                |                  |            |                |      |               |       |
| 1,3-Butadiene             | < 1.1  | 1.1  | 0.10  | ug/m³ |                |                  |            |                |      |               |       |
| 1,3-Dichlorobenzene       | < 3.0  | 3.0  | 0.14  | ug/m³ |                |                  |            |                |      |               |       |
| 1,4-Dichlorobenzene       | < 3.0  | 3.0  | 0.17  | ug/m³ |                |                  |            |                |      |               |       |
| 2-Butanone                | < 1.5  | 1.5  | 0.078 | ug/m³ |                |                  |            |                |      |               |       |
| 4-Ethyltoluene            | < 2.5  | 2.5  | 0.11  | ug/m³ |                |                  |            |                |      |               |       |
| Acetone                   | < 1.2  | 1.2  | 0.055 | ug/m³ |                |                  |            |                |      |               |       |
| Benzene                   | < 0.64 | 0.64 | 0.050 | ug/m³ |                |                  |            |                |      |               |       |
| Benzyl chloride           | < 2.6  | 2.6  | 0.073 | ug/m³ |                |                  |            |                |      |               |       |
| Bromodichloromethane      | < 3.4  | 3.4  | 0.13  | ug/m³ |                |                  |            |                |      |               |       |
| Bromoform                 | < 5.2  | 5.2  | 0.13  | ug/m³ |                |                  |            |                |      |               |       |
| Bromomethane              | < 1.9  | 1.9  | 0.069 | ug/m³ |                |                  |            |                |      |               |       |
| Carbon disulfide          | < 1.6  | 1.6  | 0.070 | ug/m³ |                |                  |            |                |      |               |       |
| Carbon tetrachloride      | < 3.1  | 3.1  | 0.087 | ug/m³ |                |                  |            |                |      |               |       |
| Chlorobenzene             | < 2.3  | 2.3  | 0.080 | ug/m³ |                |                  |            |                |      |               |       |
| Chloroethane              | < 1.3  | 1.3  | 0.037 | ug/m³ |                |                  |            |                |      |               |       |
| Chloroform                | < 2.4  | 2.4  | 0.055 | ug/m³ |                |                  |            |                |      |               |       |
| Chloromethane             | < 1.0  | 1.0  | 0.044 | ug/m³ |                |                  |            |                |      |               |       |
| cis-1,2-Dichloroethene    | < 2.0  | 2.0  | 0.089 | ug/m³ |                |                  |            |                |      |               |       |
| cis-1,3-Dichloropropene   | < 2.3  | 2.3  | 0.12  | ug/m³ |                |                  |            |                |      |               |       |
| Cyclohexane               | < 1.7  | 1.7  | 0.059 | ug/m³ |                |                  |            |                |      |               |       |
| Dibromochloromethane      | < 4.3  | 4.3  | 0.16  | ug/m³ |                |                  |            |                |      |               |       |
| Dichlorodifluoromethane   | < 2.5  | 2.5  | 0.12  | ug/m³ |                |                  |            |                |      |               |       |
| Dichlorotetrafluoroethane | < 3.5  | 3.5  | 0.063 | ug/m³ |                |                  |            |                |      |               |       |
| Ethanol                   | < 0.94 | 0.94 | 0.068 | ug/m³ |                |                  |            |                |      |               |       |
| Ethyl acetate             | < 1.8  | 1.8  | 0.11  | ug/m³ |                |                  |            |                |      |               |       |
| Ethylbenzene              | < 0.87 | 0.87 | 0.082 | ug/m³ |                |                  |            |                |      |               |       |
| Hexachlorobutadiene       | < 5.3  | 5.3  | 0.27  | ug/m³ |                |                  |            |                |      |               |       |
| Isopropyl alcohol         | < 1.2  | 1.2  | 0.075 | ug/m³ |                |                  |            |                |      |               |       |

Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CRCWork Order #: 1600183Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 02/10/16

#### VOC - AIR - Quality Control Legend Technical Services, Inc.

|                           |        |      |       |       | Cnilco         | Course           |             | 0/ DEC         |      | 0/ DDD        |       |
|---------------------------|--------|------|-------|-------|----------------|------------------|-------------|----------------|------|---------------|-------|
| Analyte                   | Result | RL   | MDL   | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | %RPD | %RPD<br>Limit | Notes |
| Batch B6A2114 - TO-15     |        |      |       |       |                |                  |             |                |      |               |       |
| Blank (B6A2114-BLK1)      |        |      |       |       | Prepared       | l & Analyze      | ed: 01/20/1 | 16             |      |               |       |
| m,p-Xylene                | < 1.7  | 1.7  | 0.15  | ug/m³ |                |                  |             |                |      |               |       |
| Methyl butyl ketone       | < 2.0  | 2.0  | 0.12  | ug/m³ |                |                  |             |                |      |               |       |
| Methyl isobutyl ketone    | < 2.0  | 2.0  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| Methyl tert-butyl ether   | < 1.8  | 1.8  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| Methylene chloride        | < 1.7  | 1.7  | 0.21  | ug/m³ |                |                  |             |                |      |               |       |
| Naphthalene               | < 2.6  | 2.6  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| n-Heptane                 | < 2.0  | 2.0  | 0.078 | ug/m³ |                |                  |             |                |      |               |       |
| n-Hexane                  | < 1.8  | 1.8  | 0.074 | ug/m³ |                |                  |             |                |      |               |       |
| o-Xylene                  | < 0.87 | 0.87 | 0.096 | ug/m³ |                |                  |             |                |      |               |       |
| Propylene                 | < 0.86 | 0.86 | 0.027 | ug/m³ |                |                  |             |                |      |               |       |
| Styrene                   | < 2.1  | 2.1  | 0.096 | ug/m³ |                |                  |             |                |      |               |       |
| Tetrachloroethene         | < 3.4  | 3.4  | 0.13  | ug/m³ |                |                  |             |                |      |               |       |
| Tetrahydrofuran           | < 1.5  | 1.5  | 0.038 | ug/m³ |                |                  |             |                |      |               |       |
| Toluene                   | < 0.75 | 0.75 | 0.060 | ug/m³ |                |                  |             |                |      |               |       |
| trans-1,2-Dichloroethene  | < 2.0  | 2.0  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| trans-1,3-Dichloropropene | < 2.3  | 2.3  | 0.070 | ug/m³ |                |                  |             |                |      |               |       |
| Trichloroethene           | < 1.1  | 1.1  | 0.12  | ug/m³ |                |                  |             |                |      |               |       |
| Trichlorofluoromethane    | < 2.8  | 2.8  | 0.048 | ug/m³ |                |                  |             |                |      |               |       |
| Trichlorotrifluoroethane  | < 3.8  | 3.8  | 0.17  | ug/m³ |                |                  |             |                |      |               |       |
| Vinyl acetate             | < 1.8  | 1.8  | 0.90  | ug/m³ |                |                  |             |                |      |               |       |
| Vinyl chloride            | < 0.51 | 0.51 | 0.051 | ug/m³ |                |                  |             |                |      |               |       |
| LCS (B6A2114-BS1)         |        |      |       |       | Prepared       | l & Analyze      | ed: 01/20/1 | 16             |      |               |       |
| 1,1,1-Trichloroethane     | 52.3   | 2.7  | 0.044 | ug/m³ | 54.6           |                  | 95.9        | 70-130         |      |               |       |
| 1,1,2,2-Tetrachloroethane | 68.4   | 3.4  | 0.074 | ug/m³ | 68.6           |                  | 99.7        | 70-130         |      |               |       |
| 1,1,2-Trichloroethane     | 52.4   | 2.7  | 0.11  | ug/m³ | 54.6           |                  | 96.0        | 70-130         |      |               |       |
| 1,1-Dichloroethane        | 41.7   | 2.0  | 0.11  | ug/m³ | 40.5           |                  | 103         | 70-130         |      |               |       |
| 1,1-Dichloroethene        | 42.8   | 2.0  | 0.078 | ug/m³ | 39.6           |                  | 108         | 70-130         |      |               |       |
| 1,2,4-Trichlorobenzene    | 78.7   | 3.7  | 0.13  | ug/m³ | 74.2           |                  | 106         | 70-130         |      |               |       |
| 1,2,4-Trimethylbenzene    | 49.2   | 1.0  | 0.073 | ug/m³ | 49.2           |                  | 100         | 70-130         |      |               |       |
| 1,2-Dibromoethane         | 74.6   | 3.8  | 0.16  | ug/m³ | 76.8           |                  | 97.1        | 70-130         |      |               |       |
| 1,2-Dichlorobenzene       | 60.1   | 3.0  | 0.071 | ug/m³ | 60.1           |                  | 100         | 70-130         |      |               |       |
| 1,2-Dichloroethane        | 40.4   | 2.0  | 0.055 | ug/m³ | 40.5           |                  | 99.8        | 70-130         |      |               |       |
| 1,2-Dichloropropane       | 44.7   | 2.3  | 0.081 | ug/m³ | 46.2           |                  | 96.8        | 70-130         |      |               |       |
| 1,3,5-Trimethylbenzene    | 47.3   | 1.0  | 0.11  | ug/m³ | 49.2           |                  | 96.3        | 70-130         |      |               |       |
| 1,3-Butadiene             | 23.5   | 1.1  | 0.10  | ug/m³ | 22.1           |                  | 106         | 70-130         |      |               |       |
| 1,3-Dichlorobenzene       | 61.9   | 3.0  | 0.14  | ug/m³ | 60.1           |                  | 103         | 70-130         |      |               |       |
| 1,4-Dichlorobenzene       | 62.5   | 3.0  | 0.17  | ug/m³ | 60.1           |                  | 104         | 70-130         |      |               |       |
| 2-Butanone                | 28.9   | 1.5  | 0.078 | ug/m³ | 29.5           |                  | 98.0        | 70-130         |      |               |       |
| 4-Ethyltoluene            | 48.4   | 2.5  | 0.11  | ug/m³ | 49.2           |                  | 98.4        | 70-130         |      |               |       |

Fax: 651-642-1239

Landmark Environmental Project: TO-15 2042 West 98th Street Project Number: CRC Work Order #: 1600183 Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 02/10/16

#### **VOC - AIR - Quality Control** Legend Technical Services, Inc.

| Analyte                   | Result | RL   | MDL   | Units | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | %RPD | %RPD<br>Limit | Notes |
|---------------------------|--------|------|-------|-------|----------------|------------------|------------|----------------|------|---------------|-------|
| Batch B6A2114 - TO-15     |        |      |       |       |                |                  |            |                |      |               |       |
| LCS (B6A2114-BS1)         |        |      |       |       | Prepared       | l & Analyze      | ed: 01/20/ | 16             |      |               |       |
| Acetone                   | 28.5   | 1.2  | 0.055 | ug/m³ | 23.8           | , =              | 120        | 70-130         |      |               |       |
| Benzene                   | 29.0   | 0.64 | 0.050 | ug/m³ | 31.9           |                  | 90.8       | 70-130         |      |               |       |
| Benzyl chloride           | 61.1   | 2.6  | 0.073 | ug/m³ | 51.8           |                  | 118        | 70-130         |      |               |       |
| Bromodichloromethane      | 69.7   | 3.4  | 0.13  | ug/m³ | 67.0           |                  | 104        | 70-130         |      |               |       |
| Bromoform                 | 111    | 5.2  | 0.13  | ug/m³ | 103            |                  | 107        | 70-130         |      |               |       |
| Bromomethane              | 40.8   | 1.9  | 0.069 | ug/m³ | 38.8           |                  | 105        | 70-130         |      |               |       |
| Carbon disulfide          | 33.0   | 1.6  | 0.070 | ug/m³ | 31.1           |                  | 106        | 70-130         |      |               |       |
| Carbon tetrachloride      | 62.9   | 3.1  | 0.087 | ug/m³ | 62.9           |                  | 100        | 70-130         |      |               |       |
| Chlorobenzene             | 45.5   | 2.3  | 0.080 | ug/m³ | 46.0           |                  | 98.8       | 70-130         |      |               |       |
| Chloroethane              | 26.4   | 1.3  | 0.037 | ug/m³ | 26.4           |                  | 100        | 70-130         |      |               |       |
| Chloroform                | 45.8   | 2.4  | 0.055 | ug/m³ | 48.8           |                  | 93.8       | 70-130         |      |               |       |
| Chloromethane             | 20.0   | 1.0  | 0.044 | ug/m³ | 20.6           |                  | 96.9       | 70-130         |      |               |       |
| cis-1,2-Dichloroethene    | 40.4   | 2.0  | 0.089 | ug/m³ | 39.6           |                  | 102        | 70-130         |      |               |       |
| cis-1,3-Dichloropropene   | 43.1   | 2.3  | 0.12  | ug/m³ | 45.4           |                  | 95.0       | 70-130         |      |               |       |
| Cyclohexane               | 32.8   | 1.7  | 0.059 | ug/m³ | 34.4           |                  | 95.3       | 70-130         |      |               |       |
| Dibromochloromethane      | 86.9   | 4.3  | 0.16  | ug/m³ | 85.2           |                  | 102        | 70-130         |      |               |       |
| Dichlorodifluoromethane   | 47.9   | 2.5  | 0.12  | ug/m³ | 49.5           |                  | 96.9       | 70-130         |      |               |       |
| Dichlorotetrafluoroethane | 72.0   | 3.5  | 0.063 | ug/m³ | 69.9           |                  | 103        | 70-130         |      |               |       |
| Ethanol                   | 19.8   | 0.94 | 0.068 | ug/m³ | 18.8           |                  | 105        | 70-130         |      |               |       |
| Ethyl acetate             | 33.5   | 1.8  | 0.11  | ug/m³ | 36.0           |                  | 93.0       | 70-130         |      |               |       |
| Ethylbenzene              | 43.4   | 0.87 | 0.082 | ug/m³ | 43.4           |                  | 100        | 70-130         |      |               |       |
| Hexachlorobutadiene       | 96.8   | 5.3  | 0.27  | ug/m³ | 107            |                  | 90.8       | 70-130         |      |               |       |
| Isopropyl alcohol         | 27.0   | 1.2  | 0.075 | ug/m³ | 24.6           |                  | 110        | 70-130         |      |               |       |
| m,p-Xylene                | 84.7   | 1.7  | 0.15  | ug/m³ | 86.8           |                  | 97.5       | 70-130         |      |               |       |
| Methyl butyl ketone       | 43.0   | 2.0  | 0.12  | ug/m³ | 41.0           |                  | 105        | 70-130         |      |               |       |
| Methyl isobutyl ketone    | 36.0   | 2.0  | 0.11  | ug/m³ | 41.0           |                  | 87.9       | 70-130         |      |               |       |
| Methyl tert-butyl ether   | 38.2   | 1.8  | 0.11  | ug/m³ | 36.1           |                  | 106        | 70-130         |      |               |       |
| Methylene chloride        | 39.9   | 1.7  | 0.21  | ug/m³ | 34.7           |                  | 115        | 70-130         |      |               |       |
| Naphthalene               | 54.0   | 2.6  | 0.11  | ug/m³ | 55.0           |                  | 98.1       | 70-130         |      |               |       |
| n-Heptane                 | 39.4   | 2.0  | 0.078 | ug/m³ | 41.0           |                  | 96.1       | 70-130         |      |               |       |
| n-Hexane                  | 38.1   | 1.8  | 0.074 | ug/m³ | 35.2           |                  | 108        | 70-130         |      |               |       |
| o-Xylene                  | 41.8   | 0.87 | 0.096 | ug/m³ | 43.4           |                  | 96.3       | 70-130         |      |               |       |
| Propylene                 | 18.8   | 0.86 | 0.027 | ug/m³ | 17.2           |                  | 109        | 70-130         |      |               |       |
| Styrene                   | 42.3   | 2.1  | 0.096 | ug/m³ | 42.6           |                  | 99.4       | 70-130         |      |               |       |
| Tetrachloroethene         | 63.5   | 3.4  | 0.13  | ug/m³ | 67.8           |                  | 93.6       | 70-130         |      |               |       |
| Tetrahydrofuran           | 33.3   | 1.5  | 0.038 | ug/m³ | 29.5           |                  | 113        | 70-130         |      |               |       |
| Toluene                   | 36.8   | 0.75 | 0.060 | ug/m³ | 37.7           |                  | 97.6       | 70-130         |      |               |       |
| trans-1,2-Dichloroethene  | 42.4   | 2.0  | 0.11  | ug/m³ | 39.6           |                  | 107        | 70-130         |      |               |       |
| trans-1,3-Dichloropropene | 44.6   | 2.3  | 0.070 | ug/m³ | 45.4           |                  | 98.2       | 70-130         |      |               |       |
| Trichloroethene           | 52.7   | 1.1  | 0.12  | ug/m³ | 53.7           |                  | 98.0       | 70-130         |      |               |       |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CRCWork Order #:1600183Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported:02/10/16

### VOC - AIR - Quality Control Legend Technical Services, Inc.

| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Result | RL         | MDL           | Units          | Spike<br>Level | Source<br>Result     | %REC        | %REC<br>Limits | %RPD       | %RPD<br>Limit | Notes |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|---------------|----------------|----------------|----------------------|-------------|----------------|------------|---------------|-------|
| Batch B6A2114 - TO-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |            |               |                |                |                      |             |                | , <u>-</u> |               |       |
| LCS (B6A2114-BS1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |            |               |                | Prepared       | ł & Analyze          | ed: 01/20/1 | 16             |            |               |       |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 61.8   | 2.8        | 0.048         | ug/m³          | 56.2           | a Analyzo            | 110         | 70-130         |            |               |       |
| Trichlorotrifluoroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 80.5   | 3.8        | 0.17          | ug/m³          | 76.6           |                      | 105         | 70-130         |            |               |       |
| Vinyl acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 41.5   | 1.8        | 0.17          | ug/m³          | 35.2           |                      | 118         | 70-130         |            |               |       |
| Vinyl acetate Vinyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26.6   | 0.51       | 0.90          | ug/m³          | 25.6           |                      | 104         | 70-130         |            |               |       |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |            |               |                |                | 1 0 Analys           |             |                |            |               |       |
| Duplicate (B6A2114-DUP1) 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 2.7  | 2.7        | 0.044         |                | Prepared       | l & Analyze<br><2.7  | ea: 01/20/1 | 16             | NA         | 25            |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 3.4  |            |               | ug/m³          |                | <3.4                 |             |                | NA         | 25<br>25      |       |
| 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 2.7  | 3.4<br>2.7 | 0.074<br>0.11 | ug/m³<br>ug/m³ |                | <3.4<br><2.7         |             |                | NA         | 25<br>25      |       |
| 1,1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 2.0  | 2.7        | 0.11          | ug/m³          |                | <2. <i>1</i><br><2.0 |             |                | NA         | 25<br>25      |       |
| 1,1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 2.0  | 2.0        | 0.11          | ug/m³          |                | <2.0<br><2.0         |             |                | NA         | 25<br>25      |       |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 3.7  | 3.7        | 0.078         | ug/m³          |                | <3.7                 |             |                | NA         | 25<br>25      |       |
| 1,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.01   | 1.0        | 0.13          | ug/m³          |                | <3.7<br>8.49         |             |                | 5.81       | 25<br>25      |       |
| 1,2-Dibromoethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 3.8  | 3.8        | 0.16          | ug/m³          |                | <3.8                 |             |                | NA         | 25            |       |
| 1,2-Distribution of the state o | < 3.0  | 3.0        | 0.10          | ug/m³          |                | <3.0                 |             |                | NA         | 25            |       |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 2.0  | 2.0        | 0.055         | ug/m³          |                | <2.0                 |             |                | NA         | 25            |       |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 2.3  | 2.3        | 0.081         | ug/m³          |                | <2.3                 |             |                | NA         | 25            |       |
| 1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.08   | 1.0        | 0.11          | ug/m³          |                | 2.20                 |             |                | 5.59       | 25            |       |
| 1,3-Butadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 1.1  | 1.1        | 0.10          | ug/m³          |                | <1.1                 |             |                | NA         | 25            |       |
| 1,3-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 3.0  | 3.0        | 0.14          | ug/m³          |                | <3.0                 |             |                | NA         | 25            |       |
| 1,4-Dichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | < 3.0  | 3.0        | 0.17          | ug/m³          |                | <3.0                 |             |                | NA         | 25            |       |
| 2-Butanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.56   | 1.5        | 0.078         | ug/m³          |                | 4.07                 |             |                | 13.3       | 25            |       |
| 4-Ethyltoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | < 2.5  | 2.5        | 0.11          | ug/m³          |                | <2.5                 |             |                | NA         | 25            |       |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15.7   | 1.2        | 0.055         | ug/m³          |                | 17.4                 |             |                | 10.6       | 25            |       |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 0.64 | 0.64       | 0.050         | ug/m³          |                | <0.64                |             |                | NA         | 25            |       |
| Benzyl chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | < 2.6  | 2.6        | 0.073         | ug/m³          |                | <2.6                 |             |                | NA         | 25            |       |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.28   | 3.4        | 0.13          | ug/m³          |                | 8.02                 |             |                | 3.18       | 25            |       |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | < 5.2  | 5.2        | 0.13          | ug/m³          |                | <5.2                 |             |                | NA         | 25            |       |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 1.9  | 1.9        | 0.069         | ug/m³          |                | <1.9                 |             |                | NA         | 25            |       |
| Carbon disulfide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | < 1.6  | 1.6        | 0.070         | ug/m³          |                | <1.6                 |             |                | NA         | 25            |       |
| Carbon tetrachloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 3.1  | 3.1        | 0.087         | ug/m³          |                | <3.1                 |             |                | NA         | 25            |       |
| Chlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 2.3  | 2.3        | 0.080         | ug/m³          |                | <2.3                 |             |                | NA         | 25            |       |
| Chloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | < 1.3  | 1.3        | 0.037         | ug/m³          |                | <1.3                 |             |                | NA         | 25            |       |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29.4   | 2.4        | 0.055         | ug/m³          |                | 30.2                 |             |                | 2.69       | 25            |       |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | < 1.0  | 1.0        | 0.044         | ug/m³          |                | <1.0                 |             |                | NA         | 25            |       |
| cis-1,2-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | < 2.0  | 2.0        | 0.089         | ug/m³          |                | <2.0                 |             |                | NA         | 25            |       |
| cis-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 2.3  | 2.3        | 0.12          | ug/m³          |                | <2.3                 |             |                | NA         | 25            |       |
| Cyclohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | < 1.7  | 1.7        | 0.059         | ug/m³          |                | <1.7                 |             |                | NA         | 25            |       |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < 4.3  | 4.3        | 0.16          | ug/m³          |                | <4.3                 |             |                | NA         | 25            |       |
| Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.23   | 2.5        | 0.12          | ug/m³          |                | 2.78                 |             |                | 22.1       | 25            |       |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CRCWork Order #: 1600183Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 02/10/16

### VOC - AIR - Quality Control Legend Technical Services, Inc.

| Analysis                  | D !    | D.        | MDI      | 1.1-21 | Spike    | Source      | 0/ DEC      | %REC   | 0/ DDD | %RPD  | Mata  |
|---------------------------|--------|-----------|----------|--------|----------|-------------|-------------|--------|--------|-------|-------|
| Analyte                   | Result | RL        | MDL      | Units  | Level    | Result      | %REC        | Limits | %RPD   | Limit | Notes |
| Batch B6A2114 - TO-15     |        |           |          |        |          |             |             |        |        |       |       |
| Duplicate (B6A2114-DUP1)  | •      | Source: 1 | 600286-0 | )1     | Prepared | ł & Analyze | ed: 01/20/1 | 16     |        |       |       |
| Dichlorotetrafluoroethane | < 3.5  | 3.5       | 0.063    | ug/m³  |          | <3.5        |             |        | NA     | 25    |       |
| Ethanol                   | 2.46   | 0.94      | 0.068    | ug/m³  |          | 2.73        |             |        | 10.4   | 25    |       |
| Ethyl acetate             | < 1.8  | 1.8       | 0.11     | ug/m³  |          | <1.8        |             |        | NA     | 25    |       |
| Ethylbenzene              | 2.35   | 0.87      | 0.082    | ug/m³  |          | 2.55        |             |        | 8.43   | 25    |       |
| Hexachlorobutadiene       | < 5.3  | 5.3       | 0.27     | ug/m³  |          | <5.3        |             |        | NA     | 25    |       |
| Isopropyl alcohol         | 3.08   | 1.2       | 0.075    | ug/m³  |          | 3.18        |             |        | 3.07   | 25    |       |
| m,p-Xylene                | 10.1   | 1.7       | 0.15     | ug/m³  |          | 10.9        |             |        | 7.49   | 25    |       |
| Methyl butyl ketone       | < 2.0  | 2.0       | 0.12     | ug/m³  |          | <2.0        |             |        | NA     | 25    |       |
| Methyl isobutyl ketone    | < 2.0  | 2.0       | 0.11     | ug/m³  |          | <2.0        |             |        | NA     | 25    |       |
| Methyl tert-butyl ether   | < 1.8  | 1.8       | 0.11     | ug/m³  |          | <1.8        |             |        | NA     | 25    |       |
| Methylene chloride        | < 1.7  | 1.7       | 0.21     | ug/m³  |          | <1.7        |             |        | NA     | 25    |       |
| Naphthalene               | 3.21   | 2.6       | 0.11     | ug/m³  |          | 3.28        |             |        | 2.17   | 25    |       |
| n-Heptane                 | < 2.0  | 2.0       | 0.078    | ug/m³  |          | <2.0        |             |        | NA     | 25    |       |
| n-Hexane                  | < 1.8  | 1.8       | 0.074    | ug/m³  |          | <1.8        |             |        | NA     | 25    |       |
| o-Xylene                  | 4.57   | 0.87      | 0.096    | ug/m³  |          | 4.90        |             |        | 6.97   | 25    |       |
| Propylene                 | < 0.86 | 0.86      | 0.027    | ug/m³  |          | <0.86       |             |        | NA     | 25    |       |
| Styrene                   | < 2.1  | 2.1       | 0.096    | ug/m³  |          | <2.1        |             |        | NA     | 25    |       |
| Tetrachloroethene         | 4.92   | 3.4       | 0.13     | ug/m³  |          | 4.73        |             |        | 3.89   | 25    |       |
| Tetrahydrofuran           | < 1.5  | 1.5       | 0.038    | ug/m³  |          | <1.5        |             |        | NA     | 25    |       |
| Toluene                   | 6.14   | 0.75      | 0.060    | ug/m³  |          | 6.21        |             |        | 1.16   | 25    |       |
| trans-1,2-Dichloroethene  | < 2.0  | 2.0       | 0.11     | ug/m³  |          | <2.0        |             |        | NA     | 25    |       |
| trans-1,3-Dichloropropene | < 2.3  | 2.3       | 0.070    | ug/m³  |          | <2.3        |             |        | NA     | 25    |       |
| Trichloroethene           | < 1.1  | 1.1       | 0.12     | ug/m³  |          | <1.1        |             |        | NA     | 25    |       |
| Trichlorofluoromethane    | < 2.8  | 2.8       | 0.048    | ug/m³  |          | <2.8        |             |        | NA     | 25    |       |
| Trichlorotrifluoroethane  | < 3.8  | 3.8       | 0.17     | ug/m³  |          | <3.8        |             |        | NA     | 25    |       |
| Vinyl acetate             | < 1.8  | 1.8       | 0.90     | ug/m³  |          | <1.8        |             |        | NA     | 25    |       |
| Vinyl chloride            | < 0.51 | 0.51      | 0.051    | ug/m³  |          | <0.51       |             |        | NA     | 25    |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15 2042 West 98th Street Project Number: CRC Work Order #: 1600183 Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 02/10/16

### **VOC - AIR - Quality Control** Legend Technical Services, Inc.

| Analyte                   | Result | RL   | MDL   | Units | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | %RPD | %RPD<br>Limit | Notes |
|---------------------------|--------|------|-------|-------|----------------|------------------|------------|----------------|------|---------------|-------|
| Batch B6A2216 - TO-15     |        |      |       |       |                |                  |            |                |      |               |       |
| Blank (B6A2216-BLK1)      |        |      |       |       | Prepared       | ł & Analyze      | ed: 01/21/ | 16             |      |               |       |
| 1,1,1-Trichloroethane     | < 2.7  | 2.7  | 0.044 | ug/m³ | -              | •                |            |                |      |               |       |
| 1,1,2,2-Tetrachloroethane | < 3.4  | 3.4  | 0.074 | ug/m³ |                |                  |            |                |      |               |       |
| 1,1,2-Trichloroethane     | < 2.7  | 2.7  | 0.11  | ug/m³ |                |                  |            |                |      |               |       |
| 1,1-Dichloroethane        | < 2.0  | 2.0  | 0.11  | ug/m³ |                |                  |            |                |      |               |       |
| 1,1-Dichloroethene        | < 2.0  | 2.0  | 0.078 | ug/m³ |                |                  |            |                |      |               |       |
| 1,2,4-Trichlorobenzene    | < 3.7  | 3.7  | 0.13  | ug/m³ |                |                  |            |                |      |               |       |
| 1,2,4-Trimethylbenzene    | < 1.0  | 1.0  | 0.073 | ug/m³ |                |                  |            |                |      |               |       |
| 1,2-Dibromoethane         | < 3.8  | 3.8  | 0.16  | ug/m³ |                |                  |            |                |      |               |       |
| 1,2-Dichlorobenzene       | < 3.0  | 3.0  | 0.071 | ug/m³ |                |                  |            |                |      |               |       |
| 1,2-Dichloroethane        | < 2.0  | 2.0  | 0.055 | ug/m³ |                |                  |            |                |      |               |       |
| 1,2-Dichloropropane       | < 2.3  | 2.3  | 0.081 | ug/m³ |                |                  |            |                |      |               |       |
| 1,3,5-Trimethylbenzene    | < 1.0  | 1.0  | 0.11  | ug/m³ |                |                  |            |                |      |               |       |
| 1,3-Butadiene             | < 1.1  | 1.1  | 0.10  | ug/m³ |                |                  |            |                |      |               |       |
| 1,3-Dichlorobenzene       | < 3.0  | 3.0  | 0.14  | ug/m³ |                |                  |            |                |      |               |       |
| 1,4-Dichlorobenzene       | < 3.0  | 3.0  | 0.17  | ug/m³ |                |                  |            |                |      |               |       |
| 2-Butanone                | < 1.5  | 1.5  | 0.078 | ug/m³ |                |                  |            |                |      |               |       |
| 4-Ethyltoluene            | < 2.5  | 2.5  | 0.11  | ug/m³ |                |                  |            |                |      |               |       |
| Acetone                   | < 1.2  | 1.2  | 0.055 | ug/m³ |                |                  |            |                |      |               |       |
| Benzene                   | < 0.64 | 0.64 | 0.050 | ug/m³ |                |                  |            |                |      |               |       |
| Benzyl chloride           | < 2.6  | 2.6  | 0.073 | ug/m³ |                |                  |            |                |      |               |       |
| Bromodichloromethane      | < 3.4  | 3.4  | 0.13  | ug/m³ |                |                  |            |                |      |               |       |
| Bromoform                 | < 5.2  | 5.2  | 0.13  | ug/m³ |                |                  |            |                |      |               |       |
| Bromomethane              | < 1.9  | 1.9  | 0.069 | ug/m³ |                |                  |            |                |      |               |       |
| Carbon disulfide          | < 1.6  | 1.6  | 0.070 | ug/m³ |                |                  |            |                |      |               |       |
| Carbon tetrachloride      | < 3.1  | 3.1  | 0.087 | ug/m³ |                |                  |            |                |      |               |       |
| Chlorobenzene             | < 2.3  | 2.3  | 0.080 | ug/m³ |                |                  |            |                |      |               |       |
| Chloroethane              | < 1.3  | 1.3  | 0.037 | ug/m³ |                |                  |            |                |      |               |       |
| Chloroform                | < 2.4  | 2.4  | 0.055 | ug/m³ |                |                  |            |                |      |               |       |
| Chloromethane             | < 1.0  | 1.0  | 0.044 | ug/m³ |                |                  |            |                |      |               |       |
| cis-1,2-Dichloroethene    | < 2.0  | 2.0  | 0.089 | ug/m³ |                |                  |            |                |      |               |       |
| cis-1,3-Dichloropropene   | < 2.3  | 2.3  | 0.12  | ug/m³ |                |                  |            |                |      |               |       |
| Cyclohexane               | < 1.7  | 1.7  | 0.059 | ug/m³ |                |                  |            |                |      |               |       |
| Dibromochloromethane      | < 4.3  | 4.3  | 0.16  | ug/m³ |                |                  |            |                |      |               |       |
| Dichlorodifluoromethane   | < 2.5  | 2.5  | 0.12  | ug/m³ |                |                  |            |                |      |               |       |
| Dichlorotetrafluoroethane | < 3.5  | 3.5  | 0.063 | ug/m³ |                |                  |            |                |      |               |       |
| Ethanol                   | < 0.94 | 0.94 | 0.068 | ug/m³ |                |                  |            |                |      |               |       |
| Ethyl acetate             | < 1.8  | 1.8  | 0.11  | ug/m³ |                |                  |            |                |      |               |       |
| Ethylbenzene              | < 0.87 | 0.87 | 0.082 | ug/m³ |                |                  |            |                |      |               |       |
| Hexachlorobutadiene       | < 5.3  | 5.3  | 0.27  | ug/m³ |                |                  |            |                |      |               |       |
| Isopropyl alcohol         | < 1.2  | 1.2  | 0.075 | ug/m³ |                |                  |            |                |      |               |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15 2042 West 98th Street Project Number: CRC Work Order #: 1600183 Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 02/10/16

### **VOC - AIR - Quality Control** Legend Technical Services, Inc.

| Analyte                   | Result | RL   | MDL   | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | %RPD | %RPD<br>Limit | Notes |
|---------------------------|--------|------|-------|-------|----------------|------------------|-------------|----------------|------|---------------|-------|
| Batch B6A2216 - TO-15     |        |      |       |       |                |                  |             |                |      |               |       |
| Blank (B6A2216-BLK1)      |        |      |       |       | Prepared       | l & Analyze      | ed: 01/21/1 | 6              |      |               |       |
| m,p-Xylene                | < 1.7  | 1.7  | 0.15  | ug/m³ |                |                  |             |                |      |               |       |
| Methyl butyl ketone       | < 2.0  | 2.0  | 0.12  | ug/m³ |                |                  |             |                |      |               |       |
| Methyl isobutyl ketone    | < 2.0  | 2.0  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| Methyl tert-butyl ether   | < 1.8  | 1.8  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| Methylene chloride        | < 1.7  | 1.7  | 0.21  | ug/m³ |                |                  |             |                |      |               |       |
| Naphthalene               | < 2.6  | 2.6  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| n-Heptane                 | < 2.0  | 2.0  | 0.078 | ug/m³ |                |                  |             |                |      |               |       |
| n-Hexane                  | < 1.8  | 1.8  | 0.074 | ug/m³ |                |                  |             |                |      |               |       |
| o-Xylene                  | < 0.87 | 0.87 | 0.096 | ug/m³ |                |                  |             |                |      |               |       |
| Propylene                 | < 0.86 | 0.86 | 0.027 | ug/m³ |                |                  |             |                |      |               |       |
| Styrene                   | < 2.1  | 2.1  | 0.096 | ug/m³ |                |                  |             |                |      |               |       |
| Tetrachloroethene         | < 3.4  | 3.4  | 0.13  | ug/m³ |                |                  |             |                |      |               |       |
| Tetrahydrofuran           | < 1.5  | 1.5  | 0.038 | ug/m³ |                |                  |             |                |      |               |       |
| Toluene                   | < 0.75 | 0.75 | 0.060 | ug/m³ |                |                  |             |                |      |               |       |
| trans-1,2-Dichloroethene  | < 2.0  | 2.0  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| trans-1,3-Dichloropropene | < 2.3  | 2.3  | 0.070 | ug/m³ |                |                  |             |                |      |               |       |
| Trichloroethene           | < 1.1  | 1.1  | 0.12  | ug/m³ |                |                  |             |                |      |               |       |
| Trichlorofluoromethane    | < 2.8  | 2.8  | 0.048 | ug/m³ |                |                  |             |                |      |               |       |
| Trichlorotrifluoroethane  | < 3.8  | 3.8  | 0.17  | ug/m³ |                |                  |             |                |      |               |       |
| Vinyl acetate             | < 1.8  | 1.8  | 0.90  | ug/m³ |                |                  |             |                |      |               |       |
| Vinyl chloride            | < 0.51 | 0.51 | 0.051 | ug/m³ |                |                  |             |                |      |               |       |
| LCS (B6A2216-BS1)         |        |      |       |       | Prepared       | l & Analyze      | ed: 01/21/1 | 6              |      |               |       |
| 1,1,1-Trichloroethane     | 58.9   | 2.7  | 0.044 | ug/m³ | 54.6           |                  | 108         | 70-130         |      |               |       |
| 1,1,2,2-Tetrachloroethane | 67.2   | 3.4  | 0.074 | ug/m³ | 68.6           |                  | 97.9        | 70-130         |      |               |       |
| 1,1,2-Trichloroethane     | 54.0   | 2.7  | 0.11  | ug/m³ | 54.6           |                  | 99.0        | 70-130         |      |               |       |
| 1,1-Dichloroethane        | 39.8   | 2.0  | 0.11  | ug/m³ | 40.5           |                  | 98.3        | 70-130         |      |               |       |
| 1,1-Dichloroethene        | 39.5   | 2.0  | 0.078 | ug/m³ | 39.6           |                  | 99.6        | 70-130         |      |               |       |
| 1,2,4-Trichlorobenzene    | 74.2   | 3.7  | 0.13  | ug/m³ | 74.2           |                  | 100         | 70-130         |      |               |       |
| 1,2,4-Trimethylbenzene    | 48.2   | 1.0  | 0.073 | ug/m³ | 49.2           |                  | 98.0        | 70-130         |      |               |       |
| 1,2-Dibromoethane         | 76.5   | 3.8  | 0.16  | ug/m³ | 76.8           |                  | 99.5        | 70-130         |      |               |       |
| 1,2-Dichlorobenzene       | 56.6   | 3.0  | 0.071 | ug/m³ | 60.1           |                  | 94.2        | 70-130         |      |               |       |
| 1,2-Dichloroethane        | 42.1   | 2.0  | 0.055 | ug/m³ | 40.5           |                  | 104         | 70-130         |      |               |       |
| 1,2-Dichloropropane       | 44.2   | 2.3  | 0.081 | ug/m³ | 46.2           |                  | 95.7        | 70-130         |      |               |       |
| 1,3,5-Trimethylbenzene    | 48.3   | 1.0  | 0.11  | ug/m³ | 49.2           |                  | 98.2        | 70-130         |      |               |       |
| 1,3-Butadiene             | 21.7   | 1.1  | 0.10  | ug/m³ | 22.1           |                  | 98.1        | 70-130         |      |               |       |
| 1,3-Dichlorobenzene       | 58.3   | 3.0  | 0.14  | ug/m³ | 60.1           |                  | 96.9        | 70-130         |      |               |       |
| 1,4-Dichlorobenzene       | 59.3   | 3.0  | 0.17  | ug/m³ | 60.1           |                  | 98.7        | 70-130         |      |               |       |
| 2-Butanone                | 27.8   | 1.5  | 0.078 | ug/m³ | 29.5           |                  | 94.4        | 70-130         |      |               |       |
| 4-Ethyltoluene            | 48.8   | 2.5  | 0.11  | ug/m³ | 49.2           |                  | 99.3        | 70-130         |      |               |       |

Fax: 651-642-1239

Landmark Environmental Project: TO-15 2042 West 98th Street Project Number: CRC Work Order #: 1600183 Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 02/10/16

#### **VOC - AIR - Quality Control** Legend Technical Services, Inc.

| Analyte                   | Result | RL   | MDL   | Units | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | %RPD | %RPD<br>Limit | Notes |
|---------------------------|--------|------|-------|-------|----------------|------------------|------------|----------------|------|---------------|-------|
| Batch B6A2216 - TO-15     |        |      |       |       |                |                  |            |                |      |               |       |
| LCS (B6A2216-BS1)         |        |      |       |       | Prepared       | ł & Analyze      | ed: 01/21/ | 16             |      |               |       |
| Acetone                   | 27.6   | 1.2  | 0.055 | ug/m³ | 23.8           | ,                | 116        | 70-130         |      |               |       |
| Benzene                   | 30.3   | 0.64 | 0.050 | ug/m³ | 31.9           |                  | 94.8       | 70-130         |      |               |       |
| Benzyl chloride           | 63.7   | 2.6  | 0.073 | ug/m³ | 51.8           |                  | 123        | 70-130         |      |               |       |
| Bromodichloromethane      | 71.0   | 3.4  | 0.13  | ug/m³ | 67.0           |                  | 106        | 70-130         |      |               |       |
| Bromoform                 | 116    | 5.2  | 0.13  | ug/m³ | 103            |                  | 112        | 70-130         |      |               |       |
| Bromomethane              | 38.6   | 1.9  | 0.069 | ug/m³ | 38.8           |                  | 99.5       | 70-130         |      |               |       |
| Carbon disulfide          | 30.7   | 1.6  | 0.070 | ug/m³ | 31.1           |                  | 98.6       | 70-130         |      |               |       |
| Carbon tetrachloride      | 70.5   | 3.1  | 0.087 | ug/m³ | 62.9           |                  | 112        | 70-130         |      |               |       |
| Chlorobenzene             | 44.7   | 2.3  | 0.080 | ug/m³ | 46.0           |                  | 97.1       | 70-130         |      |               |       |
| Chloroethane              | 24.9   | 1.3  | 0.037 | ug/m³ | 26.4           |                  | 94.4       | 70-130         |      |               |       |
| Chloroform                | 49.3   | 2.4  | 0.055 | ug/m³ | 48.8           |                  | 101        | 70-130         |      |               |       |
| Chloromethane             | 19.1   | 1.0  | 0.044 | ug/m³ | 20.6           |                  | 92.5       | 70-130         |      |               |       |
| cis-1,2-Dichloroethene    | 39.1   | 2.0  | 0.089 | ug/m³ | 39.6           |                  | 98.7       | 70-130         |      |               |       |
| cis-1,3-Dichloropropene   | 45.8   | 2.3  | 0.12  | ug/m³ | 45.4           |                  | 101        | 70-130         |      |               |       |
| Cyclohexane               | 35.1   | 1.7  | 0.059 | ug/m³ | 34.4           |                  | 102        | 70-130         |      |               |       |
| Dibromochloromethane      | 93.7   | 4.3  | 0.16  | ug/m³ | 85.2           |                  | 110        | 70-130         |      |               |       |
| Dichlorodifluoromethane   | 51.4   | 2.5  | 0.12  | ug/m³ | 49.5           |                  | 104        | 70-130         |      |               |       |
| Dichlorotetrafluoroethane | 74.8   | 3.5  | 0.063 | ug/m³ | 69.9           |                  | 107        | 70-130         |      |               |       |
| Ethanol                   | 20.0   | 0.94 | 0.068 | ug/m³ | 18.8           |                  | 106        | 70-130         |      |               |       |
| Ethyl acetate             | 32.3   | 1.8  | 0.11  | ug/m³ | 36.0           |                  | 89.6       | 70-130         |      |               |       |
| Ethylbenzene              | 43.9   | 0.87 | 0.082 | ug/m³ | 43.4           |                  | 101        | 70-130         |      |               |       |
| Hexachlorobutadiene       | 93.9   | 5.3  | 0.27  | ug/m³ | 107            |                  | 88.0       | 70-130         |      |               |       |
| Isopropyl alcohol         | 26.3   | 1.2  | 0.075 | ug/m³ | 24.6           |                  | 107        | 70-130         |      |               |       |
| m,p-Xylene                | 83.4   | 1.7  | 0.15  | ug/m³ | 86.8           |                  | 96.0       | 70-130         |      |               |       |
| Methyl butyl ketone       | 42.6   | 2.0  | 0.12  | ug/m³ | 41.0           |                  | 104        | 70-130         |      |               |       |
| Methyl isobutyl ketone    | 38.3   | 2.0  | 0.11  | ug/m³ | 41.0           |                  | 93.6       | 70-130         |      |               |       |
| Methyl tert-butyl ether   | 36.1   | 1.8  | 0.11  | ug/m³ | 36.1           |                  | 100        | 70-130         |      |               |       |
| Methylene chloride        | 35.4   | 1.7  | 0.21  | ug/m³ | 34.7           |                  | 102        | 70-130         |      |               |       |
| Naphthalene               | 51.5   | 2.6  | 0.11  | ug/m³ | 55.0           |                  | 93.6       | 70-130         |      |               |       |
| n-Heptane                 | 41.0   | 2.0  | 0.078 | ug/m³ | 41.0           |                  | 100        | 70-130         |      |               |       |
| n-Hexane                  | 36.0   | 1.8  | 0.074 | ug/m³ | 35.2           |                  | 102        | 70-130         |      |               |       |
| o-Xylene                  | 41.6   | 0.87 | 0.096 | ug/m³ | 43.4           |                  | 95.8       | 70-130         |      |               |       |
| Propylene                 | 19.4   | 0.86 | 0.027 | ug/m³ | 17.2           |                  | 113        | 70-130         |      |               |       |
| Styrene                   | 42.1   | 2.1  | 0.096 | ug/m³ | 42.6           |                  | 98.9       | 70-130         |      |               |       |
| Tetrachloroethene         | 64.6   | 3.4  | 0.13  | ug/m³ | 67.8           |                  | 95.2       | 70-130         |      |               |       |
| Tetrahydrofuran           | 34.2   | 1.5  | 0.038 | ug/m³ | 29.5           |                  | 116        | 70-130         |      |               |       |
| Toluene                   | 36.7   | 0.75 | 0.060 | ug/m³ | 37.7           |                  | 97.5       | 70-130         |      |               |       |
| trans-1,2-Dichloroethene  | 38.7   | 2.0  | 0.11  | ug/m³ | 39.6           |                  | 97.7       | 70-130         |      |               |       |
| trans-1,3-Dichloropropene | 48.6   | 2.3  | 0.070 | ug/m³ | 45.4           |                  | 107        | 70-130         |      |               |       |
| Trichloroethene           | 53.5   | 1.1  | 0.12  | ug/m³ | 53.7           |                  | 99.6       | 70-130         |      |               |       |

Legend Technical Services, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CRCWork Order #:1600183Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported:02/10/16

#### VOC - AIR - Quality Control Legend Technical Services, Inc.

| Analyte                   | Result | RL        | MDL      | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | %RPD  | %RPD<br>Limit | Notes |
|---------------------------|--------|-----------|----------|-------|----------------|------------------|-------------|----------------|-------|---------------|-------|
| Batch B6A2216 - TO-15     |        |           |          |       |                |                  |             |                |       |               |       |
| LCS (B6A2216-BS1)         |        |           |          |       | Prepared       | l & Analyze      | ed: 01/21/1 | 6              |       |               |       |
| Trichlorofluoromethane    | 59.6   | 2.8       | 0.048    | ug/m³ | 56.2           | -                | 106         | 70-130         |       |               |       |
| Trichlorotrifluoroethane  | 73.7   | 3.8       | 0.17     | ug/m³ | 76.6           |                  | 96.2        | 70-130         |       |               |       |
| Vinyl acetate             | 43.0   | 1.8       | 0.90     | ug/m³ | 35.2           |                  | 122         | 70-130         |       |               |       |
| Vinyl chloride            | 24.6   | 0.51      | 0.051    | ug/m³ | 25.6           |                  | 96.4        | 70-130         |       |               |       |
| Duplicate (B6A2216-DUP1)  | ,      | Source: 1 | 600305-0 | )1    | Prepared       | I: 01/21/16      | Analyzed    | l: 01/22/16    |       |               |       |
| 1,1,1-Trichloroethane     | < 2.7  | 2.7       | 0.044    | ug/m³ |                | <2.7             |             |                | NA    | 25            |       |
| 1,1,2,2-Tetrachloroethane | < 3.4  | 3.4       | 0.074    | ug/m³ |                | <3.4             |             |                | NA    | 25            |       |
| 1,1,2-Trichloroethane     | < 2.7  | 2.7       | 0.11     | ug/m³ |                | <2.7             |             |                | NA    | 25            |       |
| I,1-Dichloroethane        | < 2.0  | 2.0       | 0.11     | ug/m³ |                | <2.0             |             |                | NA    | 25            |       |
| ,1-Dichloroethene         | < 2.0  | 2.0       | 0.078    | ug/m³ |                | <2.0             |             |                | NA    | 25            |       |
| ,2,4-Trichlorobenzene     | < 3.7  | 3.7       | 0.13     | ug/m³ |                | <3.7             |             |                | NA    | 25            |       |
| ,2,4-Trimethylbenzene     | < 1.0  | 1.0       | 0.073    | ug/m³ |                | <1.0             |             |                | NA    | 25            |       |
| ,2-Dibromoethane          | < 3.8  | 3.8       | 0.16     | ug/m³ |                | <3.8             |             |                | NA    | 25            |       |
| ,2-Dichlorobenzene        | < 3.0  | 3.0       | 0.071    | ug/m³ |                | <3.0             |             |                | NA    | 25            |       |
| ,2-Dichloroethane         | < 2.0  | 2.0       | 0.055    | ug/m³ |                | <2.0             |             |                | NA    | 25            |       |
| ,2-Dichloropropane        | < 2.3  | 2.3       | 0.081    | ug/m³ |                | <2.3             |             |                | NA    | 25            |       |
| ,3,5-Trimethylbenzene     | < 1.0  | 1.0       | 0.11     | ug/m³ |                | <1.0             |             |                | NA    | 25            |       |
| ,3-Butadiene              | < 1.1  | 1.1       | 0.10     | ug/m³ |                | <1.1             |             |                | NA    | 25            |       |
| ,3-Dichlorobenzene        | < 3.0  | 3.0       | 0.14     | ug/m³ |                | <3.0             |             |                | NA    | 25            |       |
| ,4-Dichlorobenzene        | < 3.0  | 3.0       | 0.17     | ug/m³ |                | <3.0             |             |                | NA    | 25            |       |
| -Butanone                 | < 1.5  | 1.5       | 0.078    | ug/m³ |                | <1.5             |             |                | NA    | 25            |       |
| -Ethyltoluene             | < 2.5  | 2.5       | 0.11     | ug/m³ |                | <2.5             |             |                | NA    | 25            |       |
| Acetone                   | 8.76   | 1.2       | 0.055    | ug/m³ |                | 8.80             |             |                | 0.529 | 25            |       |
| Benzene                   | 0.807  | 0.64      | 0.050    | ug/m³ |                | 0.821            |             |                | 1.76  | 25            |       |
| Benzyl chloride           | < 2.6  | 2.6       | 0.073    | ug/m³ |                | <2.6             |             |                | NA    | 25            |       |
| Bromodichloromethane      | < 3.4  | 3.4       | 0.13     | ug/m³ |                | <3.4             |             |                | NA    | 25            |       |
| Bromoform                 | < 5.2  | 5.2       | 0.13     | ug/m³ |                | <5.2             |             |                | NA    | 25            |       |
| Bromomethane              | < 1.9  | 1.9       | 0.069    | ug/m³ |                | <1.9             |             |                | NA    | 25            |       |
| Carbon disulfide          | < 1.6  | 1.6       | 0.070    | ug/m³ |                | <1.6             |             |                | NA    | 25            |       |
| Carbon tetrachloride      | < 3.1  | 3.1       | 0.087    | ug/m³ |                | <3.1             |             |                | NA    | 25            |       |
| Chlorobenzene             | < 2.3  | 2.3       | 0.080    | ug/m³ |                | <2.3             |             |                | NA    | 25            |       |
| Chloroethane              | < 1.3  | 1.3       | 0.037    | ug/m³ |                | <1.3             |             |                | NA    | 25            |       |
| Chloroform                | < 2.4  | 2.4       | 0.055    | ug/m³ |                | <2.4             |             |                | NA    | 25            |       |
| Chloromethane             | 0.990  | 1.0       | 0.044    | ug/m³ |                | 1.11             |             |                | 11.1  | 25            |       |
| is-1,2-Dichloroethene     | < 2.0  | 2.0       | 0.089    | ug/m³ |                | <2.0             |             |                | NA    | 25            |       |
| sis-1,3-Dichloropropene   | < 2.3  | 2.3       | 0.12     | ug/m³ |                | <2.3             |             |                | NA    | 25            |       |
| Cyclohexane               | < 1.7  | 1.7       | 0.059    | ug/m³ |                | <1.7             |             |                | NA    | 25            |       |
| Dibromochloromethane      | < 4.3  | 4.3       | 0.16     | ug/m³ |                | <4.3             |             |                | NA    | 25            |       |
| Dichlorodifluoromethane   | 2.78   | 2.5       | 0.12     | ug/m³ |                | 2.98             |             |                | 6.93  | 25            |       |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CRCWork Order #:1600183Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported:02/10/16

### VOC - AIR - Quality Control Legend Technical Services, Inc.

|                           |        |           |          |       | Spike    | Source      |          | %REC        |       | %RPD  |       |
|---------------------------|--------|-----------|----------|-------|----------|-------------|----------|-------------|-------|-------|-------|
| Analyte                   | Result | RL        | MDL      | Units | Level    | Result      | %REC     | Limits      | %RPD  | Limit | Notes |
| Batch B6A2216 - TO-15     |        |           |          |       |          |             |          |             |       |       |       |
| Duplicate (B6A2216-DUP1)  | •      | Source: 1 | 600305-0 | 1     | Prepared | l: 01/21/16 | Analyzed | I: 01/22/16 | ;     |       |       |
| Dichlorotetrafluoroethane | < 3.5  | 3.5       | 0.063    | ug/m³ |          | <3.5        |          |             | NA    | 25    |       |
| Ethanol                   | 25.7   | 0.94      | 0.068    | ug/m³ |          | 25.9        |          |             | 0.624 | 25    |       |
| Ethyl acetate             | < 1.8  | 1.8       | 0.11     | ug/m³ |          | <1.8        |          |             | NA    | 25    |       |
| Ethylbenzene              | < 0.87 | 0.87      | 0.082    | ug/m³ |          | <0.87       |          |             | NA    | 25    |       |
| Hexachlorobutadiene       | < 5.3  | 5.3       | 0.27     | ug/m³ |          | <5.3        |          |             | NA    | 25    |       |
| Isopropyl alcohol         | 10.1   | 1.2       | 0.075    | ug/m³ |          | 10.8        |          |             | 6.52  | 25    |       |
| m,p-Xylene                | < 1.7  | 1.7       | 0.15     | ug/m³ |          | <1.7        |          |             | NA    | 25    |       |
| Methyl butyl ketone       | < 2.0  | 2.0       | 0.12     | ug/m³ |          | <2.0        |          |             | NA    | 25    |       |
| Methyl isobutyl ketone    | < 2.0  | 2.0       | 0.11     | ug/m³ |          | <2.0        |          |             | NA    | 25    |       |
| Methyl tert-butyl ether   | < 1.8  | 1.8       | 0.11     | ug/m³ |          | <1.8        |          |             | NA    | 25    |       |
| Methylene chloride        | 1.97   | 1.7       | 0.21     | ug/m³ |          | 2.30        |          |             | 15.4  | 25    |       |
| Naphthalene               | < 2.6  | 2.6       | 0.11     | ug/m³ |          | <2.6        |          |             | NA    | 25    |       |
| n-Heptane                 | < 2.0  | 2.0       | 0.078    | ug/m³ |          | <2.0        |          |             | NA    | 25    |       |
| n-Hexane                  | < 1.8  | 1.8       | 0.074    | ug/m³ |          | <1.8        |          |             | NA    | 25    |       |
| o-Xylene                  | < 0.87 | 0.87      | 0.096    | ug/m³ |          | <0.87       |          |             | NA    | 25    |       |
| Propylene                 | < 0.86 | 0.86      | 0.027    | ug/m³ |          | <0.86       |          |             | NA    | 25    |       |
| Styrene                   | < 2.1  | 2.1       | 0.096    | ug/m³ |          | <2.1        |          |             | NA    | 25    |       |
| Tetrachloroethene         | < 3.4  | 3.4       | 0.13     | ug/m³ |          | <3.4        |          |             | NA    | 25    |       |
| Tetrahydrofuran           | < 1.5  | 1.5       | 0.038    | ug/m³ |          | <1.5        |          |             | NA    | 25    |       |
| Toluene                   | 0.841  | 0.75      | 0.060    | ug/m³ |          | 0.891       |          |             | 5.86  | 25    |       |
| trans-1,2-Dichloroethene  | < 2.0  | 2.0       | 0.11     | ug/m³ |          | <2.0        |          |             | NA    | 25    |       |
| trans-1,3-Dichloropropene | < 2.3  | 2.3       | 0.070    | ug/m³ |          | <2.3        |          |             | NA    | 25    |       |
| Trichloroethene           | < 1.1  | 1.1       | 0.12     | ug/m³ |          | <1.1        |          |             | NA    | 25    |       |
| Trichlorofluoromethane    | < 2.8  | 2.8       | 0.048    | ug/m³ |          | <2.8        |          |             | NA    | 25    |       |
| Trichlorotrifluoroethane  | < 3.8  | 3.8       | 0.17     | ug/m³ |          | <3.8        |          |             | NA    | 25    |       |
| Vinyl acetate             | < 1.8  | 1.8       | 0.90     | ug/m³ |          | <1.8        |          |             | NA    | 25    |       |
| Vinyl chloride            | < 0.51 | 0.51      | 0.051    | ug/m³ |          | <0.51       |          |             | NA    | 25    |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15 2042 West 98th Street Project Number: CRC Work Order #: 1600183 Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 02/10/16

#### **Notes and Definitions**

Less than value listed

NA Not applicable. The %RPD is not calculated from values less than the reporting limit.

MDL Method Detection Limit

RL Reporting Limit

RPD Relative Percent Difference

LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)

88 Empire Drive

St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

| Client Name | Variet                           |                      | Bill To:                    |                               |                    | LEGEND Projects              |             | 500182        | ~     | TO-15 (M) w       | TO-15 (M) w/ TICs Air Analysis |                |
|-------------|----------------------------------|----------------------|-----------------------------|-------------------------------|--------------------|------------------------------|-------------|---------------|-------|-------------------|--------------------------------|----------------|
| 1           | andmuth.                         |                      | $\uparrow$                  |                               |                    | Turn Around Time             | U           | RUSH          |       | Project Comminds: |                                |                |
| Address     | 36                               |                      | Address:                    |                               |                    | Requested Due Dillie         |             |               |       |                   | i,                             |                |
| 1           | Atte JEKonorsty Eladomokens Com  | WEERV.COM            | *00                         |                               |                    | Chart Project Number         | 140         |               |       |                   |                                |                |
| Phone       |                                  |                      | 5mm & Kust Chadmageons, con | Charlena                      | otenv.co           | Charl Project Name Cy.C.     | Crc         |               |       |                   | Į.                             |                |
| Per u       | Paid ID / Sumpler ID             | Curtister<br>Sunat # | Flow Commoller<br>Santal #  | Pressure (* Hg)<br>Start Stop | Dalin<br>Collected | Time Collected<br>Start Step | Na.         | Grab<br>Gomp. | PID   | a                 | Sumple Cerments                | 27177          |
| +           | 6-hour                           | oohoo                | 601                         | €- 5.62-                      |                    | 1/12/16 8:22 1:12            | 6 hrs       | \             | 152.5 | V10               |                                |                |
| 24          | L-56-7                           | 14400                | lh.                         | - 67-                         | 5                  | 12:08 12:1H                  | from g      | >             | 0.0   | V to              | +                              | De.            |
| 173         | 8-857                            | 378                  | 13                          | -15.9-5                       |                    | 1515 11:20                   | S ming      | >             | 0.0   | 1 50              |                                | - 1            |
|             | LC.6-9                           | 413                  | ī                           | -50 -5                        | L/I                | 11,33 11:36                  | 11:38 (mile | >             | 0.0   | 70                |                                | 5%             |
| 10          | 01-957                           | 300                  | 99                          | -25-                          | 2                  | 11:47 17:52 5 min            | Z g min     | 5             | 0.0   | 8                 |                                |                |
| 10          | SP-1 (ES)                        | 375                  | 07)                         | -24 -                         | 5-                 | 12:53 12:58 5 mile           | B 5 mile    | \             | 0.0   | 90                | 7.                             |                |
| *           | SP-2 (55L)                       | 346                  | 3.4                         | -29                           | > 5-               | 12/3 U.142                   | 12142 6000  | >             | 0'0   | 10                |                                |                |
| ia:         |                                  |                      |                             |                               |                    |                              |             |               |       |                   |                                |                |
|             |                                  |                      |                             |                               |                    |                              |             |               |       |                   |                                |                |
| 2           |                                  |                      |                             |                               |                    |                              |             |               | Ā     |                   |                                |                |
| Sample      | Sample Collector (pluta appoint) | Kuck                 | Refinguished By             | *                             | \                  | 1/13/16                      | Time:       | Accepted by   |       |                   | Date: Time                     | Application of |
| Cirmming    |                                  |                      | Swinquished By              |                               |                    |                              | ž.          | 2             | 16~   | 7                 | 1/3/16 17                      | 12:56          |



























88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

March 09, 2016

## REVISION

Mr. Jason Skramstad Landmark Environmental 2042 West 98th Street Bloomington, MN 55431

Work Order Number: 1600901

RE: TO-15

This is a revised report. The details of the revision are listed in the case narrative on the following page.

Enclosed are the results of analyses for samples received by the laboratory on 02/25/16. If you have any questions concerning this report, please feel free to contact me.

Samples will not be retained by LEGEND once the analyses are completed.

All internal quality assurance met the method requirements unless otherwise noted in the case narrative. Additionally, all samples were received in acceptable condition unless otherwise noted.

For the tentatively identified compounds (TICs), a computer generated library search was done comparing the spectra of the unknown compounds with spectra contained in the NIST (NBS) and Wiley reference libraries. A visual comparison was made of each unknown compound and the best library match. Quantitation was based on the response of the nearest internal standard. Unidentified peaks were quantified using 100 as the molecular weight. Both the identification of specific compounds and the quantities given should be considered approximations.

Chromatograms are included for samples containing detections.

MDH Accreditation #027-123-295

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham Client Manager II bpham@legend-group.com



Fax: 651-642-1239

| Landmark Environmental | Project:         | TO-15                 |                |          |
|------------------------|------------------|-----------------------|----------------|----------|
| 2042 West 98th Street  | Project Number:  | City of Rochester CRC | Work Order #:  | 1600901  |
| Bloomington, MN 55431  | Project Manager: | Mr. Jason Skramstad   | Date Reported: | 03/09/16 |

#### **ANALYTICAL REPORT FOR SAMPLES**

| Sample ID   | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|-------------|---------------|--------|----------------|----------------|
| LSG-7       | 1600901-01    | Air    | 02/24/16 05:05 | 02/25/16 10:55 |
| LSG-8       | 1600901-02    | Air    | 02/24/16 05:30 | 02/25/16 10:55 |
| LSG-9       | 1600901-03    | Air    | 02/24/16 04:08 | 02/25/16 10:55 |
| LSG-10      | 1600901-04    | Air    | 02/24/16 04:38 | 02/25/16 10:55 |
| SP-1 ES     | 1600901-05    | Air    | 02/24/16 04:26 | 02/25/16 10:55 |
| SP-2 SSL    | 1600901-06    | Air    | 02/24/16 05:18 | 02/25/16 10:55 |
| DPE-EXHAUST | 1600901-07    | Air    | 02/24/16 09:55 | 02/25/16 10:55 |

#### **Case Narrative:**

The %RPD results for 2-butanone, Ethly Acetate, Ethylbenzene, m&p-Xylene, and o-Xylene in the TO-15 extraction batch B6C0116 duplicate exceeded methods limits.

Per the client's instructions, TICs were not included in this report.

At the client's request, this report was revised on March 9, 2016 to change the sample ID for laboratory ID 1600901-07. This report supersedes the report dated March 8, 2016.



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: City of Rochester CRC Work Order #: 1600901
Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 03/09/16

# VOC - AIR Legend Technical Services, Inc.

| Analyte (CAS#)                       | Result        | RL    | MDL        | Units   | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|--------------------------------------|---------------|-------|------------|---------|----------|---------|----------|----------|----------|-------|
| LSG-7 (1600901-01) Air Received:0    | 2/25/16 10:55 | Sampl | ed:02/24/1 | 6 05:05 |          |         |          |          |          |       |
| 1,1,1-Trichloroethane (71-55-6)      | <2.7          | 2.7   | 0.044      | ug/m³   | 1        | B6C0116 | 02/29/16 | 03/01/16 | TO-15(M) |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)  | <3.4          | 3.4   | 0.074      | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,1,2-Trichloroethane (79-00-5)      | <2.7          | 2.7   | 0.11       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,1-Dichloroethane (75-34-3)         | <2.0          | 2.0   | 0.11       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,1-Dichloroethene (75-35-4)         | <2.0          | 2.0   | 0.078      | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,2,4-Trichlorobenzene (120-82-1)    | <3.7          | 3.7   | 0.13       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,2,4-Trimethylbenzene (95-63-6)     | <1.0          | 1.0   | 0.073      | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,2-Dibromoethane (106-93-4)         | <3.8          | 3.8   | 0.16       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,2-Dichlorobenzene (95-50-1)        | <3.0          | 3.0   | 0.071      | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,2-Dichloroethane (107-06-2)        | <2.0          | 2.0   | 0.055      | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,2-Dichloropropane (78-87-5)        | <2.3          | 2.3   | 0.081      | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,3,5-Trimethylbenzene (108-67-8)    | <1.0          | 1.0   | 0.11       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,3-Butadiene (106-99-0)             | <1.1          | 1.1   | 0.10       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,3-Dichlorobenzene (541-73-1)       | <3.0          | 3.0   | 0.14       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,4-Dichlorobenzene (106-46-7)       | <3.0          | 3.0   | 0.17       | ug/m³   | 1        |         | "        | "        | "        |       |
| 2-Butanone (78-93-3)                 | 5.9           | 1.5   | 0.078      | ug/m³   | 1        | "       | "        | "        | "        | R8    |
| 4-Ethyltoluene (622-96-8)            | <2.5          | 2.5   | 0.11       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Acetone (67-64-1)                    | 64            | 18    | 0.82       | ug/m³   | 15       | "       | "        | 03/01/16 | "        |       |
| Benzene (71-43-2)                    | 0.78          | 0.64  | 0.050      | ug/m³   | 1        | "       | "        | 03/01/16 | "        |       |
| Benzyl chloride (100-44-7)           | <2.6          | 2.6   | 0.073      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Bromodichloromethane (75-27-4)       | <3.4          | 3.4   | 0.13       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Bromoform (75-25-2)                  | <5.2          | 5.2   | 0.13       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Bromomethane (74-83-9)               | <1.9          | 1.9   | 0.069      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Carbon disulfide (75-15-0)           | <1.6          | 1.6   | 0.070      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Carbon tetrachloride (56-23-5)       | <3.1          | 3.1   | 0.087      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Chlorobenzene (108-90-7)             | <2.3          | 2.3   | 0.080      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Chloroethane (75-00-3)               | <1.3          | 1.3   | 0.037      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Chloroform (67-66-3)                 | <2.4          | 2.4   | 0.055      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Chloromethane (74-87-3)              | <1.0          | 1.0   | 0.044      | ug/m³   | 1        | "       | "        | "        | "        |       |
| cis-1,2-Dichloroethene (156-59-2)    | <2.0          | 2.0   | 0.089      | ug/m³   | 1        | "       | "        | "        | "        |       |
| cis-1,3-Dichloropropene (10061-01-5) | <2.3          | 2.3   | 0.12       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Cyclohexane (110-82-7)               | <1.7          | 1.7   | 0.059      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Dibromochloromethane (124-48-1)      | <4.3          | 4.3   | 0.16       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Dichlorodifluoromethane (75-71-8)    | 3.1           | 2.5   | 0.12       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Dichlorotetrafluoroethane (76-14-2)  | <3.5          | 3.5   | 0.063      | ug/m³   | 1        | "       | "        | "        | "        |       |

Legend Technical Services, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: City of Rochester CRC Work Order #: 1600901 Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 03/09/16

| Analyte (CAS#)                         | Result        | RL   | MDL         | Units   | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|----------------------------------------|---------------|------|-------------|---------|----------|---------|----------|----------|----------|-------|
| LSG-7 (1600901-01) Air Received:02     | 2/25/16 10:55 | Samp | led:02/24/1 | 6 05:05 |          |         |          |          |          |       |
| Ethanol (64-17-5)                      | 340           | 14   | 1.0         | ug/m³   | 15       | B6C0116 | 02/29/16 | 03/01/16 | TO-15(M) |       |
| Ethyl acetate (141-78-6)               | 3.7           | 1.8  | 0.11        | ug/m³   | 1        | "       | "        | 03/01/16 | "        | R8    |
| Ethylbenzene (100-41-4)                | 1.8           | 0.87 | 0.082       | ug/m³   | 1        | "       | "        | "        | "        | R8    |
| Hexachlorobutadiene (87-68-3)          | <5.3          | 5.3  | 0.27        | ug/m³   | 1        | "       | "        | "        | "        |       |
| Isopropyl alcohol (67-63-0)            | 300           | 18   | 1.1         | ug/m³   | 15       | "       | n .      | 03/01/16 | "        |       |
| m,p-Xylene (136777-61-2)               | 6.9           | 1.7  | 0.15        | ug/m³   | 1        | "       | "        | 03/01/16 | "        | R8    |
| Methyl butyl ketone (591-78-6)         | <2.0          | 2.0  | 0.12        | ug/m³   | 1        | "       | "        | "        | "        |       |
| Methyl isobutyl ketone (108-10-1)      | <2.0          | 2.0  | 0.11        | ug/m³   | 1        | "       | "        | "        | "        |       |
| Methyl tert-butyl ether (1634-04-4)    | <1.8          | 1.8  | 0.11        | ug/m³   | 1        | "       | "        | "        | "        |       |
| Methylene chloride (75-09-2)           | 2.2           | 1.7  | 0.21        | ug/m³   | 1        | "       | "        | "        | "        |       |
| Naphthalene (91-20-3)                  | <2.6          | 2.6  | 0.11        | ug/m³   | 1        | "       | u u      | u u      | "        |       |
| n-Heptane (142-82-5)                   | <2.0          | 2.0  | 0.078       | ug/m³   | 1        | "       | u u      | u u      | "        |       |
| n-Hexane (110-54-3)                    | 2.6           | 1.8  | 0.074       | ug/m³   | 1        | "       | u u      | u u      | "        |       |
| o-Xylene (95-47-6)                     | 2.4           | 0.87 | 0.096       | ug/m³   | 1        | "       | u u      | u u      | "        | R8    |
| Propylene (115-07-1)                   | <0.86         | 0.86 | 0.027       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Styrene (100-42-5)                     | <2.1          | 2.1  | 0.096       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Tetrachloroethene (127-18-4)           | 87            | 3.4  | 0.13        | ug/m³   | 1        | "       | u u      | u u      | "        |       |
| Tetrahydrofuran (109-99-9)             | 5.3           | 1.5  | 0.038       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Toluene (108-88-3)                     | 54            | 0.75 | 0.060       | ug/m³   | 1        | "       | "        | "        |          |       |
| trans-1,2-Dichloroethene (156-60-5)    | <2.0          | 2.0  | 0.11        | ug/m³   | 1        | "       | "        | "        |          |       |
| trans-1,3-Dichloropropene (10061-02-6) | <2.3          | 2.3  | 0.070       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Trichloroethene (79-01-6)              | <1.1          | 1.1  | 0.12        | ug/m³   | 1        | "       | "        | "        | "        |       |
| Trichlorofluoromethane (75-69-4)       | <2.8          | 2.8  | 0.048       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Trichlorotrifluoroethane (76-13-1)     | 56            | 3.8  | 0.17        | ug/m³   | 1        | "       | "        | "        | "        |       |
| Vinyl acetate (108-05-4)               | <1.8          | 1.8  | 0.90        | ug/m³   | 1        | "       | u u      | u u      | "        |       |
| Vinyl chloride (75-01-4)               | <0.51         | 0.51 | 0.051       | ug/m³   | 1        | "       | "        | "        | "        |       |
| LSG-8 (1600901-02) Air Received:02     | 2/25/16 10:55 | Samp | led:02/24/1 | 6 05:30 |          |         |          |          |          |       |
| 1,1,1-Trichloroethane (71-55-6)        | <2.7          | 2.7  | 0.044       | ug/m³   | 1        | B6C0116 | 02/29/16 | 03/01/16 | TO-15(M) |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)    | <3.4          | 3.4  | 0.074       | ug/m³   | 1        | "       | u u      | u u      | "        |       |
| 1,1,2-Trichloroethane (79-00-5)        | <2.7          | 2.7  | 0.11        | ug/m³   | 1        | "       | u u      | u u      | "        |       |
| 1,1-Dichloroethane (75-34-3)           | <2.0          | 2.0  | 0.11        | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,1-Dichloroethene (75-35-4)           | <2.0          | 2.0  | 0.078       | ug/m³   | 1        | "       | m .      | II .     | "        |       |
| 1,2,4-Trichlorobenzene (120-82-1)      | <3.7          | 3.7  | 0.13        | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,2,4-Trimethylbenzene (95-63-6)       | 1.1           | 1.0  | 0.073       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,2-Dibromoethane (106-93-4)           | <3.8          | 3.8  | 0.16        | ug/m³   | 1        | "       | "        | u .      | "        |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: City of Rochester CRC Work Order #: 1600901 Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 03/09/16

| Analyte (CAS#)                       | Result        | RL    | MDL        | Units   | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|--------------------------------------|---------------|-------|------------|---------|----------|---------|----------|----------|----------|-------|
| LSG-8 (1600901-02) Air Received:0    | 2/25/16 10:55 | Sampl | ed:02/24/1 | 6 05:30 | _        | _       |          |          |          | _     |
| 1,2-Dichlorobenzene (95-50-1)        | <3.0          | 3.0   | 0.071      | ug/m³   | 1        | B6C0116 | 02/29/16 | 03/01/16 | TO-15(M) |       |
| 1,2-Dichloroethane (107-06-2)        | <2.0          | 2.0   | 0.055      | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,2-Dichloropropane (78-87-5)        | <2.3          | 2.3   | 0.081      | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,3,5-Trimethylbenzene (108-67-8)    | <1.0          | 1.0   | 0.11       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,3-Butadiene (106-99-0)             | <1.1          | 1.1   | 0.10       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,3-Dichlorobenzene (541-73-1)       | <3.0          | 3.0   | 0.14       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,4-Dichlorobenzene (106-46-7)       | <3.0          | 3.0   | 0.17       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 2-Butanone (78-93-3)                 | 4.0           | 1.5   | 0.078      | ug/m³   | 1        | "       | "        | "        | "        |       |
| 4-Ethyltoluene (622-96-8)            | <2.5          | 2.5   | 0.11       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Acetone (67-64-1)                    | 33            | 1.2   | 0.055      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Benzene (71-43-2)                    | <0.64         | 0.64  | 0.050      | ug/m³   | 1        | "       | "        | n .      | "        |       |
| Benzyl chloride (100-44-7)           | <2.6          | 2.6   | 0.073      | ug/m³   | 1        | "       | "        | n .      | "        |       |
| Bromodichloromethane (75-27-4)       | <3.4          | 3.4   | 0.13       | ug/m³   | 1        | "       | "        | n .      | "        |       |
| Bromoform (75-25-2)                  | <5.2          | 5.2   | 0.13       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Bromomethane (74-83-9)               | <1.9          | 1.9   | 0.069      | ug/m³   | 1        | "       | "        | n .      | "        |       |
| Carbon disulfide (75-15-0)           | <1.6          | 1.6   | 0.070      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Carbon tetrachloride (56-23-5)       | <3.1          | 3.1   | 0.087      | ug/m³   | 1        | "       | "        | n .      | "        |       |
| Chlorobenzene (108-90-7)             | <2.3          | 2.3   | 0.080      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Chloroethane (75-00-3)               | <1.3          | 1.3   | 0.037      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Chloroform (67-66-3)                 | <2.4          | 2.4   | 0.055      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Chloromethane (74-87-3)              | <1.0          | 1.0   | 0.044      | ug/m³   | 1        | "       | "        | n .      | "        |       |
| cis-1,2-Dichloroethene (156-59-2)    | <2.0          | 2.0   | 0.089      | ug/m³   | 1        | "       | "        | n .      | "        |       |
| cis-1,3-Dichloropropene (10061-01-5) | <2.3          | 2.3   | 0.12       | ug/m³   | 1        | "       | "        | n .      | "        |       |
| Cyclohexane (110-82-7)               | <1.7          | 1.7   | 0.059      | ug/m³   | 1        | "       | "        | n .      | "        |       |
| Dibromochloromethane (124-48-1)      | <4.3          | 4.3   | 0.16       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Dichlorodifluoromethane (75-71-8)    | 3.1           | 2.5   | 0.12       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Dichlorotetrafluoroethane (76-14-2)  | <3.5          | 3.5   | 0.063      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Ethanol (64-17-5)                    | 280           | 14    | 1.0        | ug/m³   | 15       | "       | "        | 03/02/16 | "        |       |
| Ethyl acetate (141-78-6)             | 2.3           | 1.8   | 0.11       | ug/m³   | 1        | "       | "        | 03/01/16 | "        |       |
| Ethylbenzene (100-41-4)              | 1.4           | 0.87  | 0.082      | ug/m³   | 1        | "       | "        | "        | "        |       |
| Hexachlorobutadiene (87-68-3)        | <5.3          | 5.3   | 0.27       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Isopropyl alcohol (67-63-0)          | 210           | 18    | 1.1        | ug/m³   | 15       | "       | "        | 03/02/16 | "        |       |
| m,p-Xylene (136777-61-2)             | 5.2           | 1.7   | 0.15       | ug/m³   | 1        | "       | "        | 03/01/16 | "        |       |
| Methyl butyl ketone (591-78-6)       | <2.0          | 2.0   | 0.12       | ug/m³   | 1        | "       | "        | n .      | "        |       |
| Methyl isobutyl ketone (108-10-1)    | <2.0          | 2.0   | 0.11       | ug/m³   | 1        | "       | "        | n .      | "        |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: City of Rochester CRC Work Order #: 1600901
Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 03/09/16

| Analyte (CAS#)                         | Result       | RL   | MDL         | Units   | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|----------------------------------------|--------------|------|-------------|---------|----------|---------|----------|----------|----------|-------|
| LSG-8 (1600901-02) Air Received:02     | /25/16 10:55 | Samp | led:02/24/1 | 6 05:30 |          |         |          |          |          |       |
| Methyl tert-butyl ether (1634-04-4)    | <1.8         | 1.8  | 0.11        | ug/m³   | 1        | B6C0116 | 02/29/16 | 03/01/16 | TO-15(M) |       |
| Methylene chloride (75-09-2)           | <1.7         | 1.7  | 0.21        | ug/m³   | 1        | "       | "        | "        | "        |       |
| Naphthalene (91-20-3)                  | <2.6         | 2.6  | 0.11        | ug/m³   | 1        | "       | "        | "        | "        |       |
| n-Heptane (142-82-5)                   | <2.0         | 2.0  | 0.078       | ug/m³   | 1        | "       | "        | "        | "        |       |
| n-Hexane (110-54-3)                    | <1.8         | 1.8  | 0.074       | ug/m³   | 1        | "       | "        | "        |          |       |
| o-Xylene (95-47-6)                     | 1.9          | 0.87 | 0.096       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Propylene (115-07-1)                   | <0.86        | 0.86 | 0.027       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Styrene (100-42-5)                     | <2.1         | 2.1  | 0.096       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Tetrachloroethene (127-18-4)           | 880          | 51   | 2.0         | ug/m³   | 15       | "       | "        | 03/02/16 | "        |       |
| Tetrahydrofuran (109-99-9)             | 4.0          | 1.5  | 0.038       | ug/m³   | 1        | "       | "        | 03/01/16 | "        |       |
| Toluene (108-88-3)                     | 24           | 0.75 | 0.060       | ug/m³   | 1        | "       | "        | n .      | "        |       |
| trans-1,2-Dichloroethene (156-60-5)    | <2.0         | 2.0  | 0.11        | ug/m³   | 1        | "       | "        | n .      | "        |       |
| trans-1,3-Dichloropropene (10061-02-6) | <2.3         | 2.3  | 0.070       | ug/m³   | 1        | "       | "        | n .      | "        |       |
| Trichloroethene (79-01-6)              | 1.5          | 1.1  | 0.12        | ug/m³   | 1        | "       | "        | n .      | "        |       |
| Trichlorofluoromethane (75-69-4)       | <2.8         | 2.8  | 0.048       | ug/m³   | 1        | "       | n .      | n .      | "        |       |
| Trichlorotrifluoroethane (76-13-1)     | 33           | 3.8  | 0.17        | ug/m³   | 1        | "       | "        | n .      | "        |       |
| Vinyl acetate (108-05-4)               | <1.8         | 1.8  | 0.90        | ug/m³   | 1        | "       | "        | "        |          |       |
| Vinyl chloride (75-01-4)               | <0.51        | 0.51 | 0.051       | ug/m³   | 1        | "       | "        | "        | "        |       |
| LSG-9 (1600901-03) Air Received:02     | /25/16 10:55 | Samp | led:02/24/1 | 6 04:08 |          |         |          |          |          |       |
| 1,1,1-Trichloroethane (71-55-6)        | <2.7         | 2.7  | 0.044       | ug/m³   | 1        | B6C0116 | 02/29/16 | 03/01/16 | TO-15(M) |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)    | <3.4         | 3.4  | 0.074       | ug/m³   | 1        | "       | "        | n .      | "        |       |
| 1,1,2-Trichloroethane (79-00-5)        | <2.7         | 2.7  | 0.11        | ug/m³   | 1        | "       | "        | n .      | "        |       |
| 1,1-Dichloroethane (75-34-3)           | <2.0         | 2.0  | 0.11        | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,1-Dichloroethene (75-35-4)           | <2.0         | 2.0  | 0.078       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,2,4-Trichlorobenzene (120-82-1)      | <3.7         | 3.7  | 0.13        | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,2,4-Trimethylbenzene (95-63-6)       | 1.2          | 1.0  | 0.073       | ug/m³   | 1        | "       | "        | n .      | "        |       |
| 1,2-Dibromoethane (106-93-4)           | <3.8         | 3.8  | 0.16        | ug/m³   | 1        | "       | "        | n .      | "        |       |
| 1,2-Dichlorobenzene (95-50-1)          | <3.0         | 3.0  | 0.071       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,2-Dichloroethane (107-06-2)          | <2.0         | 2.0  | 0.055       | ug/m³   | 1        | "       | "        | "        | "        |       |
| 1,2-Dichloropropane (78-87-5)          | <2.3         | 2.3  | 0.081       | ug/m³   | 1        | "       | m .      | n .      | "        |       |
| 1,3,5-Trimethylbenzene (108-67-8)      | <1.0         | 1.0  | 0.11        | ug/m³   | 1        | "       | m .      | n .      | "        |       |
| 1,3-Butadiene (106-99-0)               | <1.1         | 1.1  | 0.10        | ug/m³   | 1        | "       | m .      | n .      | "        |       |
| 1,3-Dichlorobenzene (541-73-1)         | <3.0         | 3.0  | 0.14        | ug/m³   | 1        | "       | m .      | n .      | "        |       |
| 1,4-Dichlorobenzene (106-46-7)         | <3.0         | 3.0  | 0.17        | ug/m³   | 1        | "       | m .      | n .      | "        |       |
| 2-Butanone (78-93-3)                   | 6.6          | 1.5  | 0.078       | ug/m³   | 1        | "       | "        | "        | "        |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: City of Rochester CRC Work Order #: 1600901 Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 03/09/16

| Analyte (CAS#)                       | Result        | RL   | MDL         | Units   | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|--------------------------------------|---------------|------|-------------|---------|----------|---------|----------|----------|----------|-------|
| LSG-9 (1600901-03) Air Received:02   | 2/25/16 10:55 | Samp | led:02/24/1 | 6 04:08 |          | _       |          |          |          |       |
| 4-Ethyltoluene (622-96-8)            | <2.5          | 2.5  | 0.11        | ug/m³   | 1        | B6C0116 | 02/29/16 | 03/01/16 | TO-15(M) |       |
| Acetone (67-64-1)                    | 43            | 1.2  | 0.055       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Benzene (71-43-2)                    | 0.88          | 0.64 | 0.050       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Benzyl chloride (100-44-7)           | <2.6          | 2.6  | 0.073       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Bromodichloromethane (75-27-4)       | <3.4          | 3.4  | 0.13        | ug/m³   | 1        | "       | "        | "        | "        |       |
| Bromoform (75-25-2)                  | <5.2          | 5.2  | 0.13        | ug/m³   | 1        | "       | "        | "        | "        |       |
| Bromomethane (74-83-9)               | <1.9          | 1.9  | 0.069       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Carbon disulfide (75-15-0)           | <1.6          | 1.6  | 0.070       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Carbon tetrachloride (56-23-5)       | <3.1          | 3.1  | 0.087       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Chlorobenzene (108-90-7)             | <2.3          | 2.3  | 0.080       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Chloroethane (75-00-3)               | <1.3          | 1.3  | 0.037       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Chloroform (67-66-3)                 | <2.4          | 2.4  | 0.055       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Chloromethane (74-87-3)              | <1.0          | 1.0  | 0.044       | ug/m³   | 1        | "       | "        | n .      | "        |       |
| cis-1,2-Dichloroethene (156-59-2)    | <2.0          | 2.0  | 0.089       | ug/m³   | 1        | "       | "        | n .      | "        |       |
| cis-1,3-Dichloropropene (10061-01-5) | <2.3          | 2.3  | 0.12        | ug/m³   | 1        | "       | n .      | "        | "        |       |
| Cyclohexane (110-82-7)               | <1.7          | 1.7  | 0.059       | ug/m³   | 1        | "       | "        | n .      | "        |       |
| Dibromochloromethane (124-48-1)      | <4.3          | 4.3  | 0.16        | ug/m³   | 1        | "       | "        | n .      | "        |       |
| Dichlorodifluoromethane (75-71-8)    | 2.9           | 2.5  | 0.12        | ug/m³   | 1        | "       | "        | "        | "        |       |
| Dichlorotetrafluoroethane (76-14-2)  | <3.5          | 3.5  | 0.063       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Ethanol (64-17-5)                    | 640           | 28   | 2.0         | ug/m³   | 30       | "       | "        | 03/02/16 | "        |       |
| Ethyl acetate (141-78-6)             | 6.4           | 1.8  | 0.11        | ug/m³   | 1        | "       | "        | 03/01/16 | "        |       |
| Ethylbenzene (100-41-4)              | 2.6           | 0.87 | 0.082       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Hexachlorobutadiene (87-68-3)        | <5.3          | 5.3  | 0.27        | ug/m³   | 1        | "       | "        | "        | "        |       |
| Isopropyl alcohol (67-63-0)          | 450           | 36   | 2.2         | ug/m³   | 30       | "       | "        | 03/02/16 | "        |       |
| m,p-Xylene (136777-61-2)             | 9.2           | 1.7  | 0.15        | ug/m³   | 1        | "       | "        | 03/01/16 | "        |       |
| Methyl butyl ketone (591-78-6)       | <2.0          | 2.0  | 0.12        | ug/m³   | 1        | "       | "        | "        | "        |       |
| Methyl isobutyl ketone (108-10-1)    | <2.0          | 2.0  | 0.11        | ug/m³   | 1        | "       | "        | "        | "        |       |
| Methyl tert-butyl ether (1634-04-4)  | <1.8          | 1.8  | 0.11        | ug/m³   | 1        | "       | "        | "        | "        |       |
| Methylene chloride (75-09-2)         | <1.7          | 1.7  | 0.21        | ug/m³   | 1        | "       | "        | "        | "        |       |
| Naphthalene (91-20-3)                | <2.6          | 2.6  | 0.11        | ug/m³   | 1        | "       | "        | "        | "        |       |
| n-Heptane (142-82-5)                 | <2.0          | 2.0  | 0.078       | ug/m³   | 1        | "       | "        | n .      | "        |       |
| n-Hexane (110-54-3)                  | <1.8          | 1.8  | 0.074       | ug/m³   | 1        | "       | "        | "        | "        |       |
| o-Xylene (95-47-6)                   | 3.1           | 0.87 | 0.096       | ug/m³   | 1        | "       | "        | "        | "        |       |
| Propylene (115-07-1)                 | <0.86         | 0.86 | 0.027       | ug/m³   | 1        | "       | m .      | "        | "        |       |
| Styrene (100-42-5)                   | <2.1          | 2.1  | 0.096       | ug/m³   | 1        | "       | "        | "        | "        |       |
|                                      |               |      |             |         |          |         |          |          |          |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: City of Rochester CRC Work Order #: 1600901
Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 03/09/16

| Analyte (CAS#)                         | Result       | RL    | MDL         | Units    | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|----------------------------------------|--------------|-------|-------------|----------|----------|---------|----------|----------|----------|-------|
| LSG-9 (1600901-03) Air Received:02     | /25/16 10:55 | Samp  | led:02/24/1 | 6 04:08  |          |         |          |          |          |       |
| Tetrachloroethene (127-18-4)           | 9.3          | 3.4   | 0.13        | ug/m³    | 1        | B6C0116 | 02/29/16 | 03/01/16 | TO-15(M) |       |
| Tetrahydrofuran (109-99-9)             | 5.5          | 1.5   | 0.038       | ug/m³    | 1        | "       | "        | "        |          |       |
| Toluene (108-88-3)                     | 31           | 0.75  | 0.060       | ug/m³    | 1        | "       | "        | "        | "        |       |
| trans-1,2-Dichloroethene (156-60-5)    | <2.0         | 2.0   | 0.11        | ug/m³    | 1        | "       | "        | "        | "        |       |
| trans-1,3-Dichloropropene (10061-02-6) | <2.3         | 2.3   | 0.070       | ug/m³    | 1        | "       | "        | "        |          |       |
| Trichloroethene (79-01-6)              | <1.1         | 1.1   | 0.12        | ug/m³    | 1        | "       | "        | "        | "        |       |
| Trichlorofluoromethane (75-69-4)       | <2.8         | 2.8   | 0.048       | ug/m³    | 1        | "       | "        | "        | "        |       |
| Trichlorotrifluoroethane (76-13-1)     | 15           | 3.8   | 0.17        | ug/m³    | 1        | "       | "        | "        | "        |       |
| Vinyl acetate (108-05-4)               | <1.8         | 1.8   | 0.90        | ug/m³    | 1        | "       | "        | "        | "        |       |
| Vinyl chloride (75-01-4)               | <0.51        | 0.51  | 0.051       | ug/m³    | 1        | "       | "        | "        | "        |       |
| LSG-10 (1600901-04) Air Received:0     | 2/25/16 10:5 | 5 Sam | pled:02/24/ | 16 04:38 |          |         |          |          |          |       |
| 1,1,1-Trichloroethane (71-55-6)        | <2.7         | 2.7   | 0.044       | ug/m³    | 1        | B6C0116 | 02/29/16 | 03/01/16 | TO-15(M) |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)    | <3.4         | 3.4   | 0.074       | ug/m³    | 1        | "       | "        | "        | "        |       |
| 1,1,2-Trichloroethane (79-00-5)        | <2.7         | 2.7   | 0.11        | ug/m³    | 1        | "       | "        | "        | "        |       |
| 1,1-Dichloroethane (75-34-3)           | <2.0         | 2.0   | 0.11        | ug/m³    | 1        | "       | "        | "        | "        |       |
| 1,1-Dichloroethene (75-35-4)           | <2.0         | 2.0   | 0.078       | ug/m³    | 1        | "       | "        | "        | "        |       |
| 1,2,4-Trichlorobenzene (120-82-1)      | <3.7         | 3.7   | 0.13        | ug/m³    | 1        | "       | "        | "        | "        |       |
| 1,2,4-Trimethylbenzene (95-63-6)       | <1.0         | 1.0   | 0.073       | ug/m³    | 1        | "       | "        | "        | "        |       |
| 1,2-Dibromoethane (106-93-4)           | <3.8         | 3.8   | 0.16        | ug/m³    | 1        | "       | "        | "        | "        |       |
| 1,2-Dichlorobenzene (95-50-1)          | <3.0         | 3.0   | 0.071       | ug/m³    | 1        | "       | "        | "        | "        |       |
| 1,2-Dichloroethane (107-06-2)          | <2.0         | 2.0   | 0.055       | ug/m³    | 1        | "       | "        | "        |          |       |
| 1,2-Dichloropropane (78-87-5)          | <2.3         | 2.3   | 0.081       | ug/m³    | 1        | "       | "        | "        |          |       |
| 1,3,5-Trimethylbenzene (108-67-8)      | <1.0         | 1.0   | 0.11        | ug/m³    | 1        | "       | "        | "        |          |       |
| 1,3-Butadiene (106-99-0)               | <1.1         | 1.1   | 0.10        | ug/m³    | 1        | "       | "        | "        |          |       |
| 1,3-Dichlorobenzene (541-73-1)         | <3.0         | 3.0   | 0.14        | ug/m³    | 1        | "       | "        | "        | "        |       |
| 1,4-Dichlorobenzene (106-46-7)         | <3.0         | 3.0   | 0.17        | ug/m³    | 1        | "       | "        | "        | "        |       |
| 2-Butanone (78-93-3)                   | 4.0          | 1.5   | 0.078       | ug/m³    | 1        | "       | "        | "        | "        |       |
| 4-Ethyltoluene (622-96-8)              | <2.5         | 2.5   | 0.11        | ug/m³    | 1        | "       | "        | "        | "        |       |
| Acetone (67-64-1)                      | 64           | 18    | 0.82        | ug/m³    | 15       | "       | "        | 03/02/16 |          |       |
| Benzene (71-43-2)                      | 0.75         | 0.64  | 0.050       | ug/m³    | 1        | "       | "        | 03/01/16 |          |       |
| Benzyl chloride (100-44-7)             | <2.6         | 2.6   | 0.073       | ug/m³    | 1        | "       | "        | "        | "        |       |
| Bromodichloromethane (75-27-4)         | <3.4         | 3.4   | 0.13        | ug/m³    | 1        | "       | "        | "        | "        |       |
| Bromoform (75-25-2)                    | <5.2         | 5.2   | 0.13        | ug/m³    | 1        | "       | "        | "        | "        |       |
| Bromomethane (74-83-9)                 | <1.9         | 1.9   | 0.069       | ug/m³    | 1        | "       | "        | "        |          |       |
| Carbon disulfide (75-15-0)             | <1.6         | 1.6   | 0.070       | ug/m³    | 1        | "       | "        | "        | "        |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: City of Rochester CRC Work Order #: 1600901 Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 03/09/16

| Analyte (CAS#)                         | Result        | RL     | MDL         | Units    | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|----------------------------------------|---------------|--------|-------------|----------|----------|---------|----------|----------|----------|-------|
| LSG-10 (1600901-04) Air Received:0     | )2/25/16 10:5 | 5 Samı | pled:02/24/ | 16 04:38 |          |         |          |          |          |       |
| Carbon tetrachloride (56-23-5)         | <3.1          | 3.1    | 0.087       | ug/m³    | 1        | B6C0116 | 02/29/16 | 03/01/16 | TO-15(M) |       |
| Chlorobenzene (108-90-7)               | <2.3          | 2.3    | 0.080       | ug/m³    | 1        | "       | "        | "        | "        |       |
| Chloroethane (75-00-3)                 | <1.3          | 1.3    | 0.037       | ug/m³    | 1        | "       | "        | "        | "        |       |
| Chloroform (67-66-3)                   | <2.4          | 2.4    | 0.055       | ug/m³    | 1        | "       | "        | "        | "        |       |
| Chloromethane (74-87-3)                | <1.0          | 1.0    | 0.044       | ug/m³    | 1        | "       | "        | "        | "        |       |
| cis-1,2-Dichloroethene (156-59-2)      | <2.0          | 2.0    | 0.089       | ug/m³    | 1        | "       | "        | "        | "        |       |
| cis-1,3-Dichloropropene (10061-01-5)   | <2.3          | 2.3    | 0.12        | ug/m³    | 1        | "       | "        | "        | "        |       |
| Cyclohexane (110-82-7)                 | <1.7          | 1.7    | 0.059       | ug/m³    | 1        | "       | "        | "        | "        |       |
| Dibromochloromethane (124-48-1)        | <4.3          | 4.3    | 0.16        | ug/m³    | 1        | "       | "        | "        | "        |       |
| Dichlorodifluoromethane (75-71-8)      | 2.8           | 2.5    | 0.12        | ug/m³    | 1        | "       | "        | "        | "        |       |
| Dichlorotetrafluoroethane (76-14-2)    | <3.5          | 3.5    | 0.063       | ug/m³    | 1        | "       | "        | "        | "        |       |
| Ethanol (64-17-5)                      | 330           | 14     | 1.0         | ug/m³    | 15       | "       | "        | 03/02/16 | "        |       |
| Ethyl acetate (141-78-6)               | 2.2           | 1.8    | 0.11        | ug/m³    | 1        | "       | "        | 03/01/16 | "        |       |
| Ethylbenzene (100-41-4)                | 1.8           | 0.87   | 0.082       | ug/m³    | 1        | "       | "        | "        | "        |       |
| Hexachlorobutadiene (87-68-3)          | <5.3          | 5.3    | 0.27        | ug/m³    | 1        | "       | "        | "        | "        |       |
| Isopropyl alcohol (67-63-0)            | 290           | 18     | 1.1         | ug/m³    | 15       | "       | "        | 03/02/16 | "        |       |
| m,p-Xylene (136777-61-2)               | 6.8           | 1.7    | 0.15        | ug/m³    | 1        | "       | "        | 03/01/16 | "        |       |
| Methyl butyl ketone (591-78-6)         | <2.0          | 2.0    | 0.12        | ug/m³    | 1        | "       | "        | "        | "        |       |
| Methyl isobutyl ketone (108-10-1)      | <2.0          | 2.0    | 0.11        | ug/m³    | 1        | "       | "        | "        | "        |       |
| Methyl tert-butyl ether (1634-04-4)    | <1.8          | 1.8    | 0.11        | ug/m³    | 1        | "       | "        | "        | u u      |       |
| Methylene chloride (75-09-2)           | 6.0           | 1.7    | 0.21        | ug/m³    | 1        | "       | "        | "        | "        |       |
| Naphthalene (91-20-3)                  | <2.6          | 2.6    | 0.11        | ug/m³    | 1        | "       | "        | "        | "        |       |
| n-Heptane (142-82-5)                   | <2.0          | 2.0    | 0.078       | ug/m³    | 1        | "       | "        | "        | "        |       |
| n-Hexane (110-54-3)                    | 5.8           | 1.8    | 0.074       | ug/m³    | 1        | "       | "        | "        | "        |       |
| o-Xylene (95-47-6)                     | 2.2           | 0.87   | 0.096       | ug/m³    | 1        | "       | "        | "        | "        |       |
| Propylene (115-07-1)                   | <0.86         | 0.86   | 0.027       | ug/m³    | 1        | "       | "        | "        | "        |       |
| Styrene (100-42-5)                     | <2.1          | 2.1    | 0.096       | ug/m³    | 1        | "       | "        | "        | "        |       |
| Tetrachloroethene (127-18-4)           | 85            | 3.4    | 0.13        | ug/m³    | 1        | "       | "        | "        | "        |       |
| Tetrahydrofuran (109-99-9)             | 4.1           | 1.5    | 0.038       | ug/m³    | 1        | "       | "        | "        | "        |       |
| Toluene (108-88-3)                     | 62            | 0.75   | 0.060       | ug/m³    | 1        | "       | "        | "        | "        |       |
| trans-1,2-Dichloroethene (156-60-5)    | <2.0          | 2.0    | 0.11        | ug/m³    | 1        | "       | "        | "        | "        |       |
| trans-1,3-Dichloropropene (10061-02-6) | <2.3          | 2.3    | 0.070       | ug/m³    | 1        | "       | "        | "        | "        |       |
| Trichloroethene (79-01-6)              | <1.1          | 1.1    | 0.12        | ug/m³    | 1        | "       | "        | "        | "        |       |
| Trichlorofluoromethane (75-69-4)       | <2.8          | 2.8    | 0.048       | ug/m³    | 1        | "       | "        | "        | "        |       |
| Trichlorotrifluoroethane (76-13-1)     | 190           | 57     | 2.6         | ug/m³    | 15       | "       | "        | 03/02/16 | u u      |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: City of Rochester CRC Work Order #: 1600901
Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 03/09/16

| Analyte (CAS#)                       | Result        | RL     | MDL          | Units     | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|--------------------------------------|---------------|--------|--------------|-----------|----------|---------|----------|----------|----------|-------|
| LSG-10 (1600901-04) Air Received:    | 02/25/16 10:5 | 5 Sam  | pled:02/24/  | 16 04:38  |          |         |          |          |          |       |
| Vinyl acetate (108-05-4)             | <1.8          | 1.8    | 0.90         | ug/m³     | 1        | B6C0116 | 02/29/16 | 03/01/16 | TO-15(M) |       |
| Vinyl chloride (75-01-4)             | <0.51         | 0.51   | 0.051        | ug/m³     | 1        | "       | "        | "        | "        |       |
| SP-1 ES (1600901-05) Air Received    | :02/25/16 10: | 55 San | npled:02/24/ | /16 04:26 |          |         |          |          |          |       |
| 1,1,1-Trichloroethane (71-55-6)      | <2.7          | 2.7    | 0.044        | ug/m³     | 1        | B6C0116 | 02/29/16 | 03/01/16 | TO-15(M) |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)  | <3.4          | 3.4    | 0.074        | ug/m³     | 1        | "       | "        | n .      | II .     |       |
| 1,1,2-Trichloroethane (79-00-5)      | <2.7          | 2.7    | 0.11         | ug/m³     | 1        | "       | "        | "        | "        |       |
| 1,1-Dichloroethane (75-34-3)         | <2.0          | 2.0    | 0.11         | ug/m³     | 1        | "       | "        | "        | "        |       |
| 1,1-Dichloroethene (75-35-4)         | <2.0          | 2.0    | 0.078        | ug/m³     | 1        | "       | "        | "        | "        |       |
| 1,2,4-Trichlorobenzene (120-82-1)    | <3.7          | 3.7    | 0.13         | ug/m³     | 1        | "       | "        | "        | "        |       |
| 1,2,4-Trimethylbenzene (95-63-6)     | <1.0          | 1.0    | 0.073        | ug/m³     | 1        | "       | "        | "        | "        |       |
| 1,2-Dibromoethane (106-93-4)         | <3.8          | 3.8    | 0.16         | ug/m³     | 1        | "       | "        | "        | "        |       |
| 1,2-Dichlorobenzene (95-50-1)        | <3.0          | 3.0    | 0.071        | ug/m³     | 1        | "       | "        | "        | "        |       |
| 1,2-Dichloroethane (107-06-2)        | <2.0          | 2.0    | 0.055        | ug/m³     | 1        | "       | "        | "        | "        |       |
| 1,2-Dichloropropane (78-87-5)        | <2.3          | 2.3    | 0.081        | ug/m³     | 1        | "       | "        | "        | "        |       |
| 1,3,5-Trimethylbenzene (108-67-8)    | <1.0          | 1.0    | 0.11         | ug/m³     | 1        | "       | "        | "        | "        |       |
| 1,3-Butadiene (106-99-0)             | <1.1          | 1.1    | 0.10         | ug/m³     | 1        | "       | "        | "        | "        |       |
| 1,3-Dichlorobenzene (541-73-1)       | <3.0          | 3.0    | 0.14         | ug/m³     | 1        | "       | "        | "        | "        |       |
| 1,4-Dichlorobenzene (106-46-7)       | <3.0          | 3.0    | 0.17         | ug/m³     | 1        | "       | "        | "        | "        |       |
| 2-Butanone (78-93-3)                 | 3.7           | 1.5    | 0.078        | ug/m³     | 1        | "       | "        | "        | "        |       |
| 4-Ethyltoluene (622-96-8)            | <2.5          | 2.5    | 0.11         | ug/m³     | 1        | "       | "        | "        | "        |       |
| Acetone (67-64-1)                    | 43            | 1.2    | 0.055        | ug/m³     | 1        | "       | "        | "        | "        |       |
| Benzene (71-43-2)                    | 0.74          | 0.64   | 0.050        | ug/m³     | 1        | "       | "        | "        | "        |       |
| Benzyl chloride (100-44-7)           | <2.6          | 2.6    | 0.073        | ug/m³     | 1        | "       | "        | "        | "        |       |
| Bromodichloromethane (75-27-4)       | <3.4          | 3.4    | 0.13         | ug/m³     | 1        | "       | "        | "        | "        |       |
| Bromoform (75-25-2)                  | <5.2          | 5.2    | 0.13         | ug/m³     | 1        | "       | "        | "        | "        |       |
| Bromomethane (74-83-9)               | <1.9          | 1.9    | 0.069        | ug/m³     | 1        | "       | "        | "        | "        |       |
| Carbon disulfide (75-15-0)           | <1.6          | 1.6    | 0.070        | ug/m³     | 1        | "       | "        | n .      | "        |       |
| Carbon tetrachloride (56-23-5)       | <3.1          | 3.1    | 0.087        | ug/m³     | 1        | "       | "        | "        | "        |       |
| Chlorobenzene (108-90-7)             | <2.3          | 2.3    | 0.080        | ug/m³     | 1        | "       | "        | "        | "        |       |
| Chloroethane (75-00-3)               | <1.3          | 1.3    | 0.037        | ug/m³     | 1        | "       | "        | "        | "        |       |
| Chloroform (67-66-3)                 | <2.4          | 2.4    | 0.055        | ug/m³     | 1        | "       | "        | "        | "        |       |
| Chloromethane (74-87-3)              | <1.0          | 1.0    | 0.044        | ug/m³     | 1        | "       | "        | "        | "        |       |
| cis-1,2-Dichloroethene (156-59-2)    | <2.0          | 2.0    | 0.089        | ug/m³     | 1        | "       | "        | "        | "        |       |
| cis-1,3-Dichloropropene (10061-01-5) | <2.3          | 2.3    | 0.12         | ug/m³     | 1        | "       | "        | "        | "        |       |
| Cyclohexane (110-82-7)               | <1.7          | 1.7    | 0.059        | ug/m³     | 1        | "       | "        | "        | "        |       |
|                                      |               |        |              |           |          |         |          |          |          |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: City of Rochester CRC Work Order #: 1600901
Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 03/09/16

| Analyte (CAS#)                         | Result       | RL      | MDL        | Units      | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|----------------------------------------|--------------|---------|------------|------------|----------|---------|----------|----------|----------|-------|
| SP-1 ES (1600901-05) Air Received:0    | )2/25/16 10: | 55 Sam  | pled:02/24 | /16 04:26  |          |         |          |          |          |       |
| Dibromochloromethane (124-48-1)        | <4.3         | 4.3     | 0.16       | ug/m³      | 1        | B6C0116 | 02/29/16 | 03/01/16 | TO-15(M) |       |
| Dichlorodifluoromethane (75-71-8)      | 3.2          | 2.5     | 0.12       | ug/m³      | 1        | "       | "        | "        | "        |       |
| Dichlorotetrafluoroethane (76-14-2)    | <3.5         | 3.5     | 0.063      | ug/m³      | 1        | "       | "        | "        | "        |       |
| Ethanol (64-17-5)                      | 440          | 14      | 1.0        | ug/m³      | 15       | "       | "        | 03/02/16 | "        |       |
| Ethyl acetate (141-78-6)               | 2.3          | 1.8     | 0.11       | ug/m³      | 1        | "       | "        | 03/01/16 | "        |       |
| Ethylbenzene (100-41-4)                | 1.8          | 0.87    | 0.082      | ug/m³      | 1        | "       | "        | "        | "        |       |
| Hexachlorobutadiene (87-68-3)          | <5.3         | 5.3     | 0.27       | ug/m³      | 1        | "       | "        | "        | "        |       |
| Isopropyl alcohol (67-63-0)            | 380          | 18      | 1.1        | ug/m³      | 15       | "       | "        | 03/02/16 | "        |       |
| m,p-Xylene (136777-61-2)               | 6.9          | 1.7     | 0.15       | ug/m³      | 1        | "       | "        | 03/01/16 | "        |       |
| Methyl butyl ketone (591-78-6)         | <2.0         | 2.0     | 0.12       | ug/m³      | 1        | "       | "        | "        | "        |       |
| Methyl isobutyl ketone (108-10-1)      | <2.0         | 2.0     | 0.11       | ug/m³      | 1        | "       | n .      | "        | II .     |       |
| Methyl tert-butyl ether (1634-04-4)    | <1.8         | 1.8     | 0.11       | ug/m³      | 1        | "       | n .      | "        | II .     |       |
| Methylene chloride (75-09-2)           | <1.7         | 1.7     | 0.21       | ug/m³      | 1        | "       | n .      | "        | II .     |       |
| Naphthalene (91-20-3)                  | <2.6         | 2.6     | 0.11       | ug/m³      | 1        | "       | "        | n .      | п        |       |
| n-Heptane (142-82-5)                   | <2.0         | 2.0     | 0.078      | ug/m³      | 1        | "       | "        | "        | "        |       |
| n-Hexane (110-54-3)                    | <1.8         | 1.8     | 0.074      | ug/m³      | 1        | "       | "        | "        | "        |       |
| o-Xylene (95-47-6)                     | 2.2          | 0.87    | 0.096      | ug/m³      | 1        | "       | "        | "        | "        |       |
| Propylene (115-07-1)                   | <0.86        | 0.86    | 0.027      | ug/m³      | 1        | "       | "        | "        | n .      |       |
| Styrene (100-42-5)                     | <2.1         | 2.1     | 0.096      | ug/m³      | 1        | "       | "        | "        | п        |       |
| Tetrachloroethene (127-18-4)           | 72           | 3.4     | 0.13       | ug/m³      | 1        | "       | "        | n .      | п        |       |
| Tetrahydrofuran (109-99-9)             | 3.8          | 1.5     | 0.038      | ug/m³      | 1        | "       | "        | "        | "        |       |
| Toluene (108-88-3)                     | 68           | 0.75    | 0.060      | ug/m³      | 1        | "       | "        | "        | п        |       |
| trans-1,2-Dichloroethene (156-60-5)    | <2.0         | 2.0     | 0.11       | ug/m³      | 1        | "       | "        | "        | п        |       |
| trans-1,3-Dichloropropene (10061-02-6) | <2.3         | 2.3     | 0.070      | ug/m³      | 1        | "       | "        | "        | п        |       |
| Trichloroethene (79-01-6)              | <1.1         | 1.1     | 0.12       | ug/m³      | 1        | "       | "        | "        | "        |       |
| Trichlorofluoromethane (75-69-4)       | <2.8         | 2.8     | 0.048      | ug/m³      | 1        | "       | "        | "        | п        |       |
| Trichlorotrifluoroethane (76-13-1)     | 1000         | 57      | 2.6        | ug/m³      | 15       | "       | "        | 03/02/16 | n .      |       |
| Vinyl acetate (108-05-4)               | <1.8         | 1.8     | 0.90       | ug/m³      | 1        | "       | "        | 03/01/16 | "        |       |
| Vinyl chloride (75-01-4)               | <0.51        | 0.51    | 0.051      | ug/m³      | 1        | "       | "        | "        | n .      |       |
| SP-2 SSL (1600901-06) Air Received     | :02/25/16 10 | ):55 Sa | mpled:02/2 | 4/16 05:18 |          |         |          |          |          |       |
| 1,1,1-Trichloroethane (71-55-6)        | <2.7         | 2.7     | 0.044      | ug/m³      | 1        | B6C0116 | 02/29/16 | 03/01/16 | TO-15(M) |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)    | <3.4         | 3.4     | 0.074      | ug/m³      | 1        | "       | "        | "        | "        |       |
| 1,1,2-Trichloroethane (79-00-5)        | <2.7         | 2.7     | 0.11       | ug/m³      | 1        | "       | "        | n .      | II .     |       |
| 1,1-Dichloroethane (75-34-3)           | <2.0         | 2.0     | 0.11       | ug/m³      | 1        | "       | "        | n .      | II .     |       |
| 1,1-Dichloroethene (75-35-4)           | <2.0         | 2.0     | 0.078      | ug/m³      | 1        | "       | "        | "        | "        |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: City of Rochester CRC Work Order #: 1600901 Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 03/09/16

| Analyte (CAS#)                       | Result      | RL     | MDL        | Units      | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|--------------------------------------|-------------|--------|------------|------------|----------|---------|----------|----------|----------|-------|
| SP-2 SSL (1600901-06) Air Received:  | 02/25/16 10 | :55 Sa | mpled:02/2 | 4/16 05:18 |          |         |          |          |          |       |
| 1,2,4-Trichlorobenzene (120-82-1)    | <3.7        | 3.7    | 0.13       | ug/m³      | 1        | B6C0116 | 02/29/16 | 03/01/16 | TO-15(M) |       |
| 1,2,4-Trimethylbenzene (95-63-6)     | <1.0        | 1.0    | 0.073      | ug/m³      | 1        | "       | "        | "        | "        |       |
| 1,2-Dibromoethane (106-93-4)         | <3.8        | 3.8    | 0.16       | ug/m³      | 1        | "       | "        | "        | "        |       |
| 1,2-Dichlorobenzene (95-50-1)        | <3.0        | 3.0    | 0.071      | ug/m³      | 1        | "       | "        | "        | "        |       |
| 1,2-Dichloroethane (107-06-2)        | <2.0        | 2.0    | 0.055      | ug/m³      | 1        | "       | "        | "        | "        |       |
| 1,2-Dichloropropane (78-87-5)        | <2.3        | 2.3    | 0.081      | ug/m³      | 1        | "       | "        | "        | "        |       |
| 1,3,5-Trimethylbenzene (108-67-8)    | <1.0        | 1.0    | 0.11       | ug/m³      | 1        | "       | "        | "        | "        |       |
| 1,3-Butadiene (106-99-0)             | <1.1        | 1.1    | 0.10       | ug/m³      | 1        | "       | "        | "        | "        |       |
| 1,3-Dichlorobenzene (541-73-1)       | <3.0        | 3.0    | 0.14       | ug/m³      | 1        | "       | "        | "        | "        |       |
| 1,4-Dichlorobenzene (106-46-7)       | <3.0        | 3.0    | 0.17       | ug/m³      | 1        | "       | "        | "        | "        |       |
| 2-Butanone (78-93-3)                 | 4.0         | 1.5    | 0.078      | ug/m³      | 1        | "       | "        |          | "        |       |
| 4-Ethyltoluene (622-96-8)            | <2.5        | 2.5    | 0.11       | ug/m³      | 1        | "       | "        |          | "        |       |
| Acetone (67-64-1)                    | 37          | 1.2    | 0.055      | ug/m³      | 1        | "       | "        |          | "        |       |
| Benzene (71-43-2)                    | 0.71        | 0.64   | 0.050      | ug/m³      | 1        | "       | "        |          | "        |       |
| Benzyl chloride (100-44-7)           | <2.6        | 2.6    | 0.073      | ug/m³      | 1        | "       | "        | "        | n        |       |
| Bromodichloromethane (75-27-4)       | <3.4        | 3.4    | 0.13       | ug/m³      | 1        | "       | "        |          | "        |       |
| Bromoform (75-25-2)                  | <5.2        | 5.2    | 0.13       | ug/m³      | 1        | "       | "        |          | "        |       |
| Bromomethane (74-83-9)               | <1.9        | 1.9    | 0.069      | ug/m³      | 1        | "       | "        |          | "        |       |
| Carbon disulfide (75-15-0)           | <1.6        | 1.6    | 0.070      | ug/m³      | 1        | "       | "        |          | "        |       |
| Carbon tetrachloride (56-23-5)       | <3.1        | 3.1    | 0.087      | ug/m³      | 1        | "       | "        | "        | "        |       |
| Chlorobenzene (108-90-7)             | <2.3        | 2.3    | 0.080      | ug/m³      | 1        | "       | "        |          | "        |       |
| Chloroethane (75-00-3)               | <1.3        | 1.3    | 0.037      | ug/m³      | 1        | "       | "        |          | "        |       |
| Chloroform (67-66-3)                 | <2.4        | 2.4    | 0.055      | ug/m³      | 1        | "       | "        |          | "        |       |
| Chloromethane (74-87-3)              | <1.0        | 1.0    | 0.044      | ug/m³      | 1        | "       | "        |          | "        |       |
| cis-1,2-Dichloroethene (156-59-2)    | <2.0        | 2.0    | 0.089      | ug/m³      | 1        | "       | "        |          | "        |       |
| cis-1,3-Dichloropropene (10061-01-5) | <2.3        | 2.3    | 0.12       | ug/m³      | 1        | "       | "        |          | "        |       |
| Cyclohexane (110-82-7)               | <1.7        | 1.7    | 0.059      | ug/m³      | 1        | "       | "        |          | "        |       |
| Dibromochloromethane (124-48-1)      | <4.3        | 4.3    | 0.16       | ug/m³      | 1        | "       | "        |          | "        |       |
| Dichlorodifluoromethane (75-71-8)    | 2.9         | 2.5    | 0.12       | ug/m³      | 1        | "       | "        |          | "        |       |
| Dichlorotetrafluoroethane (76-14-2)  | <3.5        | 3.5    | 0.063      | ug/m³      | 1        | "       | "        | "        | n        |       |
| Ethanol (64-17-5)                    | 350         | 14     | 1.0        | ug/m³      | 15       | "       | "        | 03/02/16 | п        |       |
| Ethyl acetate (141-78-6)             | 2.5         | 1.8    | 0.11       | ug/m³      | 1        | "       | "        | 03/01/16 | п        |       |
| Ethylbenzene (100-41-4)              | 1.8         | 0.87   | 0.082      | ug/m³      | 1        | "       | "        | "        | n .      |       |
| Hexachlorobutadiene (87-68-3)        | <5.3        | 5.3    | 0.27       | ug/m³      | 1        | "       | "        | "        | n .      |       |
| Isopropyl alcohol (67-63-0)          | 330         | 18     | 1.1        | ug/m³      | 15       | "       | "        | 03/02/16 | "        |       |
|                                      |             |        |            |            |          |         |          |          |          |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: City of Rochester CRC Work Order #: 1600901
Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 03/09/16

| Analyte (CAS#)                         | Result        | RL         | MDL       | Units       | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|----------------------------------------|---------------|------------|-----------|-------------|----------|---------|----------|----------|----------|-------|
| SP-2 SSL (1600901-06) Air Received     | d:02/25/16 10 | ):55 Sam   | pled:02/2 | 24/16 05:18 |          |         |          |          |          |       |
| m,p-Xylene (136777-61-2)               | 6.8           | 1.7        | 0.15      | ug/m³       | 1        | B6C0116 | 02/29/16 | 03/01/16 | TO-15(M) |       |
| Methyl butyl ketone (591-78-6)         | <2.0          | 2.0        | 0.12      | ug/m³       | 1        | "       | ı        | "        | II .     |       |
| Methyl isobutyl ketone (108-10-1)      | <2.0          | 2.0        | 0.11      | ug/m³       | 1        | "       | ı        | "        | II .     |       |
| Methyl tert-butyl ether (1634-04-4)    | <1.8          | 1.8        | 0.11      | ug/m³       | 1        | "       | ı        | "        | II .     |       |
| Methylene chloride (75-09-2)           | <1.7          | 1.7        | 0.21      | ug/m³       | 1        | "       | п        | u u      | n .      |       |
| Naphthalene (91-20-3)                  | <2.6          | 2.6        | 0.11      | ug/m³       | 1        | "       | п        | u u      | n .      |       |
| n-Heptane (142-82-5)                   | <2.0          | 2.0        | 0.078     | ug/m³       | 1        | "       | п        | u u      | n .      |       |
| n-Hexane (110-54-3)                    | <1.8          | 1.8        | 0.074     | ug/m³       | 1        | "       | п        | u u      | n .      |       |
| o-Xylene (95-47-6)                     | 2.3           | 0.87       | 0.096     | ug/m³       | 1        | "       | п        | u u      | n .      |       |
| Propylene (115-07-1)                   | <0.86         | 0.86       | 0.027     | ug/m³       | 1        | "       | "        | "        | "        |       |
| Styrene (100-42-5)                     | <2.1          | 2.1        | 0.096     | ug/m³       | 1        | "       | "        | "        | "        |       |
| Tetrachloroethene (127-18-4)           | 83            | 3.4        | 0.13      | ug/m³       | 1        | "       | "        | "        | "        |       |
| Tetrahydrofuran (109-99-9)             | 4.3           | 1.5        | 0.038     | ug/m³       | 1        | "       | "        | "        | "        |       |
| Toluene (108-88-3)                     | 48            | 0.75       | 0.060     | ug/m³       | 1        | "       | "        | "        | "        |       |
| trans-1,2-Dichloroethene (156-60-5)    | <2.0          | 2.0        | 0.11      | ug/m³       | 1        | "       | "        | "        | "        |       |
| trans-1,3-Dichloropropene (10061-02-6) | <2.3          | 2.3        | 0.070     | ug/m³       | 1        | "       | "        | "        | "        |       |
| Trichloroethene (79-01-6)              | <1.1          | 1.1        | 0.12      | ug/m³       | 1        | "       | "        | "        | "        |       |
| Trichlorofluoromethane (75-69-4)       | <2.8          | 2.8        | 0.048     | ug/m³       | 1        | "       | "        | "        | "        |       |
| Trichlorotrifluoroethane (76-13-1)     | 45            | 3.8        | 0.17      | ug/m³       | 1        | "       | "        | "        | "        |       |
| Vinyl acetate (108-05-4)               | <1.8          | 1.8        | 0.90      | ug/m³       | 1        | "       | "        | "        | "        |       |
| Vinyl chloride (75-01-4)               | <0.51         | 0.51       | 0.051     | ug/m³       | 1        | "       | "        | "        | "        |       |
| DPE-EXHAUST (1600901-07) Air Re        | ceived:02/25  | 5/16 10:55 | Sample    | ed:02/24/16 | 09:55    |         |          |          |          |       |
| 1,1,1-Trichloroethane (71-55-6)        | 5.3           | 2.7        | 0.044     | ug/m³       | 1        | B6C0116 | 02/29/16 | 03/01/16 | TO-15(M) |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)    | <3.4          | 3.4        | 0.074     | ug/m³       | 1        | "       | II .     | "        | "        |       |
| 1,1,2-Trichloroethane (79-00-5)        | <2.7          | 2.7        | 0.11      | ug/m³       | 1        | "       | II .     | "        | "        |       |
| 1,1-Dichloroethane (75-34-3)           | <2.0          | 2.0        | 0.11      | ug/m³       | 1        | "       | "        | "        | "        |       |
| 1,1-Dichloroethene (75-35-4)           | 3.4           | 2.0        | 0.078     | ug/m³       | 1        | "       | "        | "        | "        |       |
| 1,2,4-Trichlorobenzene (120-82-1)      | <3.7          | 3.7        | 0.13      | ug/m³       | 1        | "       | "        | "        | "        |       |
| 1,2,4-Trimethylbenzene (95-63-6)       | <1.0          | 1.0        | 0.073     | ug/m³       | 1        | "       | "        | "        | "        |       |
| 1,2-Dibromoethane (106-93-4)           | <3.8          | 3.8        | 0.16      | ug/m³       | 1        | "       | "        | "        | "        |       |
| 1,2-Dichlorobenzene (95-50-1)          | <3.0          | 3.0        | 0.071     | ug/m³       | 1        | "       | "        | "        | n        |       |
| 1,2-Dichloroethane (107-06-2)          | <2.0          | 2.0        | 0.055     | ug/m³       | 1        | "       | II .     | n .      | п        |       |
| 1,2-Dichloropropane (78-87-5)          | <2.3          | 2.3        | 0.081     | ug/m³       | 1        | "       | "        | "        | "        |       |
| 1,3,5-Trimethylbenzene (108-67-8)      | <1.0          | 1.0        | 0.11      | ug/m³       | 1        | "       | "        | "        | "        |       |
| 1,3-Butadiene (106-99-0)               | <1.1          | 1.1        | 0.10      | ug/m³       | 1        | "       | "        | "        | "        |       |
|                                        |               |            |           |             |          |         |          |          |          |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: City of Rochester CRC Work Order #: 1600901 Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 03/09/16

| Analyte (CAS#)                       | Result         | RL        | MDL    | Units      | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|--------------------------------------|----------------|-----------|--------|------------|----------|---------|----------|----------|----------|-------|
| DPE-EXHAUST (1600901-07) Air         | Received:02/25 | /16 10:55 | Sample | d:02/24/16 | 09:55    |         |          |          |          |       |
| 1,3-Dichlorobenzene (541-73-1)       | <3.0           | 3.0       | 0.14   | ug/m³      | 1        | B6C0116 | 02/29/16 | 03/01/16 | TO-15(M) |       |
| 1,4-Dichlorobenzene (106-46-7)       | <3.0           | 3.0       | 0.17   | ug/m³      | 1        | "       | "        | "        | "        |       |
| 2-Butanone (78-93-3)                 | 10             | 1.5       | 0.078  | ug/m³      | 1        | "       | "        | "        | "        |       |
| 4-Ethyltoluene (622-96-8)            | <2.5           | 2.5       | 0.11   | ug/m³      | 1        | "       | "        | "        | "        |       |
| Acetone (67-64-1)                    | 94             | 3.6       | 0.16   | ug/m³      | 3        | "       | "        | 03/02/16 | "        |       |
| Benzene (71-43-2)                    | 1.2            | 0.64      | 0.050  | ug/m³      | 1        | "       | "        | 03/01/16 | II .     |       |
| Benzyl chloride (100-44-7)           | <2.6           | 2.6       | 0.073  | ug/m³      | 1        | "       | "        | ıı       | II .     |       |
| Bromodichloromethane (75-27-4)       | <3.4           | 3.4       | 0.13   | ug/m³      | 1        | "       | "        | II .     | "        |       |
| Bromoform (75-25-2)                  | <5.2           | 5.2       | 0.13   | ug/m³      | 1        | "       | "        | "        | "        |       |
| Bromomethane (74-83-9)               | <1.9           | 1.9       | 0.069  | ug/m³      | 1        | "       | "        | "        | "        |       |
| Carbon disulfide (75-15-0)           | <1.6           | 1.6       | 0.070  | ug/m³      | 1        | "       | "        | II .     | "        |       |
| Carbon tetrachloride (56-23-5)       | <3.1           | 3.1       | 0.087  | ug/m³      | 1        | "       | "        | II .     | "        |       |
| Chlorobenzene (108-90-7)             | <2.3           | 2.3       | 0.080  | ug/m³      | 1        | "       | "        | II .     | "        |       |
| Chloroethane (75-00-3)               | <1.3           | 1.3       | 0.037  | ug/m³      | 1        | "       | "        | ıı .     | "        |       |
| Chloroform (67-66-3)                 | <2.4           | 2.4       | 0.055  | ug/m³      | 1        | "       | "        | "        | "        |       |
| Chloromethane (74-87-3)              | 1.5            | 1.0       | 0.044  | ug/m³      | 1        | "       | "        | II .     | "        |       |
| cis-1,2-Dichloroethene (156-59-2)    | 5.7            | 2.0       | 0.089  | ug/m³      | 1        | "       | "        | ıı .     | "        |       |
| cis-1,3-Dichloropropene (10061-01-5) | <2.3           | 2.3       | 0.12   | ug/m³      | 1        | "       | "        | "        | "        |       |
| Cyclohexane (110-82-7)               | <1.7           | 1.7       | 0.059  | ug/m³      | 1        | "       | "        | "        | "        |       |
| Dibromochloromethane (124-48-1)      | <4.3           | 4.3       | 0.16   | ug/m³      | 1        | "       | "        | "        | "        |       |
| Dichlorodifluoromethane (75-71-8)    | 3.4            | 2.5       | 0.12   | ug/m³      | 1        | "       | "        | "        | "        |       |
| Dichlorotetrafluoroethane (76-14-2)  | <3.5           | 3.5       | 0.063  | ug/m³      | 1        | "       | "        | ıı .     | "        |       |
| Ethanol (64-17-5)                    | 690            | 56        | 4.1    | ug/m³      | 60       | "       | "        | 03/02/16 | "        |       |
| Ethyl acetate (141-78-6)             | <1.8           | 1.8       | 0.11   | ug/m³      | 1        | "       | "        | 03/01/16 | "        |       |
| Ethylbenzene (100-41-4)              | 7.2            | 0.87      | 0.082  | ug/m³      | 1        | "       | "        | II .     | "        |       |
| Hexachlorobutadiene (87-68-3)        | <5.3           | 5.3       | 0.27   | ug/m³      | 1        | "       | "        | II .     | "        |       |
| Isopropyl alcohol (67-63-0)          | 790            | 72        | 4.5    | ug/m³      | 60       | "       | "        | 03/02/16 | "        |       |
| m,p-Xylene (136777-61-2)             | 28             | 1.7       | 0.15   | ug/m³      | 1        | "       | "        | 03/01/16 | "        |       |
| Methyl butyl ketone (591-78-6)       | <2.0           | 2.0       | 0.12   | ug/m³      | 1        | "       | "        | II .     | "        |       |
| Methyl isobutyl ketone (108-10-1)    | <2.0           | 2.0       | 0.11   | ug/m³      | 1        | "       | "        | "        | "        |       |
| Methyl tert-butyl ether (1634-04-4)  | <1.8           | 1.8       | 0.11   | ug/m³      | 1        | "       | "        | II .     | "        |       |
| Methylene chloride (75-09-2)         | 2.9            | 1.7       | 0.21   | ug/m³      | 1        | "       | "        | II .     | "        |       |
| Naphthalene (91-20-3)                | <2.6           | 2.6       | 0.11   | ug/m³      | 1        | "       | "        | II .     | "        |       |
| n-Heptane (142-82-5)                 | <2.0           | 2.0       | 0.078  | ug/m³      | 1        | "       | "        | "        | "        |       |
| n-Hexane (110-54-3)                  | 1.9            | 1.8       | 0.074  | ug/m³      | 1        | "       | "        | "        | "        |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th StreetProject Number:City of Rochester CRCWork Order #:1600901Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported:03/09/16

| Analyte (CAS#)                         | Result         | RL        | MDL    | Units      | Dilution | Batch   | Prepared | Analyzed | Method   | Notes |
|----------------------------------------|----------------|-----------|--------|------------|----------|---------|----------|----------|----------|-------|
| DPE-EXHAUST (1600901-07) Air           | Received:02/25 | /16 10:55 | Sample | d:02/24/16 | 09:55    |         |          |          |          |       |
| o-Xylene (95-47-6)                     | 8.1            | 0.87      | 0.096  | ug/m³      | 1        | B6C0116 | 02/29/16 | 03/01/16 | TO-15(M) |       |
| Propylene (115-07-1)                   | <0.86          | 0.86      | 0.027  | ug/m³      | 1        | "       | "        | "        | "        |       |
| Styrene (100-42-5)                     | <2.1           | 2.1       | 0.096  | ug/m³      | 1        | "       | "        | "        | "        |       |
| Tetrachloroethene (127-18-4)           | 8400           | 310       | 12     | ug/m³      | 90       | "       | "        | 03/02/16 | "        |       |
| Tetrahydrofuran (109-99-9)             | 6.7            | 1.5       | 0.038  | ug/m³      | 1        | "       | "        | 03/01/16 | "        |       |
| Toluene (108-88-3)                     | 21             | 0.75      | 0.060  | ug/m³      | 1        | "       | "        | "        | "        |       |
| trans-1,2-Dichloroethene (156-60-5)    | <2.0           | 2.0       | 0.11   | ug/m³      | 1        | "       | "        | "        | "        |       |
| trans-1,3-Dichloropropene (10061-02-6) | <2.3           | 2.3       | 0.070  | ug/m³      | 1        | "       | "        | "        | "        |       |
| Trichloroethene (79-01-6)              | 5.0            | 1.1       | 0.12   | ug/m³      | 1        | "       | "        | "        | "        |       |
| Trichlorofluoromethane (75-69-4)       | <2.8           | 2.8       | 0.048  | ug/m³      | 1        | "       | "        | "        | "        |       |
| Trichlorotrifluoroethane (76-13-1)     | 5600           | 230       | 10     | ug/m³      | 60       | "       | "        | 03/02/16 | "        |       |
| Vinyl acetate (108-05-4)               | <1.8           | 1.8       | 0.90   | ug/m³      | 1        | "       | "        | 03/01/16 | "        |       |
| Vinyl chloride (75-01-4)               | <0.51          | 0.51      | 0.051  | ug/m³      | 1        | "       | "        | "        | m .      |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: City of Rochester CRC Work Order #: 1600901 Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 03/09/16

#### **VOC - AIR - Quality Control** Legend Technical Services, Inc.

| Analyte                   | Result | RL   | MDL   | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | %RPD | %RPD<br>Limit | Notes |
|---------------------------|--------|------|-------|-------|----------------|------------------|-------------|----------------|------|---------------|-------|
| Batch B6C0116 - TO-15     |        |      |       |       |                |                  |             |                |      |               |       |
| Blank (B6C0116-BLK1)      |        |      |       |       | Prepared       | l & Analyze      | ed: 02/29/1 | 6              |      |               |       |
| 1,1,1-Trichloroethane     | < 2.7  | 2.7  | 0.044 | ug/m³ | •              |                  |             |                |      |               |       |
| 1,1,2,2-Tetrachloroethane | < 3.4  | 3.4  | 0.074 | ug/m³ |                |                  |             |                |      |               |       |
| 1,1,2-Trichloroethane     | < 2.7  | 2.7  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| 1,1-Dichloroethane        | < 2.0  | 2.0  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| 1,1-Dichloroethene        | < 2.0  | 2.0  | 0.078 | ug/m³ |                |                  |             |                |      |               |       |
| 1,2,4-Trichlorobenzene    | < 3.7  | 3.7  | 0.13  | ug/m³ |                |                  |             |                |      |               |       |
| 1,2,4-Trimethylbenzene    | < 1.0  | 1.0  | 0.073 | ug/m³ |                |                  |             |                |      |               |       |
| 1,2-Dibromoethane         | < 3.8  | 3.8  | 0.16  | ug/m³ |                |                  |             |                |      |               |       |
| 1,2-Dichlorobenzene       | < 3.0  | 3.0  | 0.071 | ug/m³ |                |                  |             |                |      |               |       |
| 1,2-Dichloroethane        | < 2.0  | 2.0  | 0.055 | ug/m³ |                |                  |             |                |      |               |       |
| 1,2-Dichloropropane       | < 2.3  | 2.3  | 0.081 | ug/m³ |                |                  |             |                |      |               |       |
| 1,3,5-Trimethylbenzene    | < 1.0  | 1.0  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| 1,3-Butadiene             | < 1.1  | 1.1  | 0.10  | ug/m³ |                |                  |             |                |      |               |       |
| 1,3-Dichlorobenzene       | < 3.0  | 3.0  | 0.14  | ug/m³ |                |                  |             |                |      |               |       |
| 1,4-Dichlorobenzene       | < 3.0  | 3.0  | 0.17  | ug/m³ |                |                  |             |                |      |               |       |
| 2-Butanone                | < 1.5  | 1.5  | 0.078 | ug/m³ |                |                  |             |                |      |               |       |
| 4-Ethyltoluene            | < 2.5  | 2.5  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| Acetone                   | < 1.2  | 1.2  | 0.055 | ug/m³ |                |                  |             |                |      |               |       |
| Benzene                   | < 0.64 | 0.64 | 0.050 | ug/m³ |                |                  |             |                |      |               |       |
| Benzyl chloride           | < 2.6  | 2.6  | 0.073 | ug/m³ |                |                  |             |                |      |               |       |
| Bromodichloromethane      | < 3.4  | 3.4  | 0.13  | ug/m³ |                |                  |             |                |      |               |       |
| Bromoform                 | < 5.2  | 5.2  | 0.13  | ug/m³ |                |                  |             |                |      |               |       |
| Bromomethane              | < 1.9  | 1.9  | 0.069 | ug/m³ |                |                  |             |                |      |               |       |
| Carbon disulfide          | < 1.6  | 1.6  | 0.070 | ug/m³ |                |                  |             |                |      |               |       |
| Carbon tetrachloride      | < 3.1  | 3.1  | 0.087 | ug/m³ |                |                  |             |                |      |               |       |
| Chlorobenzene             | < 2.3  | 2.3  | 0.080 | ug/m³ |                |                  |             |                |      |               |       |
| Chloroethane              | < 1.3  | 1.3  | 0.037 | ug/m³ |                |                  |             |                |      |               |       |
| Chloroform                | < 2.4  | 2.4  | 0.055 | ug/m³ |                |                  |             |                |      |               |       |
| Chloromethane             | < 1.0  | 1.0  | 0.044 | ug/m³ |                |                  |             |                |      |               |       |
| cis-1,2-Dichloroethene    | < 2.0  | 2.0  | 0.089 | ug/m³ |                |                  |             |                |      |               |       |
| cis-1,3-Dichloropropene   | < 2.3  | 2.3  | 0.12  | ug/m³ |                |                  |             |                |      |               |       |
| Cyclohexane               | < 1.7  | 1.7  | 0.059 | ug/m³ |                |                  |             |                |      |               |       |
| Dibromochloromethane      | < 4.3  | 4.3  | 0.16  | ug/m³ |                |                  |             |                |      |               |       |
| Dichlorodifluoromethane   | < 2.5  | 2.5  | 0.12  | ug/m³ |                |                  |             |                |      |               |       |
| Dichlorotetrafluoroethane | < 3.5  | 3.5  | 0.063 | ug/m³ |                |                  |             |                |      |               |       |
| Ethanol                   | < 0.94 | 0.94 | 0.068 | ug/m³ |                |                  |             |                |      |               |       |
| Ethyl acetate             | < 1.8  | 1.8  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| Ethylbenzene              | < 0.87 | 0.87 | 0.082 | ug/m³ |                |                  |             |                |      |               |       |
| Hexachlorobutadiene       | < 5.3  | 5.3  | 0.27  | ug/m³ |                |                  |             |                |      |               |       |
| Isopropyl alcohol         | < 1.2  | 1.2  | 0.075 | ug/m³ |                |                  |             |                |      |               |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: City of Rochester CRC Work Order #: 1600901 Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 03/09/16

#### **VOC - AIR - Quality Control** Legend Technical Services, Inc.

| Analyte                   | Result | RL   | MDL   | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | %RPD | %RPD<br>Limit | Notes |
|---------------------------|--------|------|-------|-------|----------------|------------------|-------------|----------------|------|---------------|-------|
| Batch B6C0116 - TO-15     |        |      |       |       |                |                  |             |                |      |               |       |
| Blank (B6C0116-BLK1)      |        |      |       |       | Prepared       | l & Analyze      | ed: 02/29/1 | 6              |      |               |       |
| m,p-Xylene                | < 1.7  | 1.7  | 0.15  | ug/m³ | -              | •                |             |                |      |               |       |
| Methyl butyl ketone       | < 2.0  | 2.0  | 0.12  | ug/m³ |                |                  |             |                |      |               |       |
| Methyl isobutyl ketone    | < 2.0  | 2.0  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| Methyl tert-butyl ether   | < 1.8  | 1.8  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| Methylene chloride        | < 1.7  | 1.7  | 0.21  | ug/m³ |                |                  |             |                |      |               |       |
| Naphthalene               | < 2.6  | 2.6  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| n-Heptane                 | < 2.0  | 2.0  | 0.078 | ug/m³ |                |                  |             |                |      |               |       |
| n-Hexane                  | < 1.8  | 1.8  | 0.074 | ug/m³ |                |                  |             |                |      |               |       |
| o-Xylene                  | < 0.87 | 0.87 | 0.096 | ug/m³ |                |                  |             |                |      |               |       |
| Propylene                 | < 0.86 | 0.86 | 0.027 | ug/m³ |                |                  |             |                |      |               |       |
| Styrene                   | < 2.1  | 2.1  | 0.096 | ug/m³ |                |                  |             |                |      |               |       |
| Tetrachloroethene         | < 3.4  | 3.4  | 0.13  | ug/m³ |                |                  |             |                |      |               |       |
| Tetrahydrofuran           | < 1.5  | 1.5  | 0.038 | ug/m³ |                |                  |             |                |      |               |       |
| Toluene                   | < 0.75 | 0.75 | 0.060 | ug/m³ |                |                  |             |                |      |               |       |
| trans-1,2-Dichloroethene  | < 2.0  | 2.0  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| trans-1,3-Dichloropropene | < 2.3  | 2.3  | 0.070 | ug/m³ |                |                  |             |                |      |               |       |
| Trichloroethene           | < 1.1  | 1.1  | 0.12  | ug/m³ |                |                  |             |                |      |               |       |
| Trichlorofluoromethane    | < 2.8  | 2.8  | 0.048 | ug/m³ |                |                  |             |                |      |               |       |
| Trichlorotrifluoroethane  | < 3.8  | 3.8  | 0.17  | ug/m³ |                |                  |             |                |      |               |       |
| Vinyl acetate             | < 1.8  | 1.8  | 0.90  | ug/m³ |                |                  |             |                |      |               |       |
| Vinyl chloride            | < 0.51 | 0.51 | 0.051 | ug/m³ |                |                  |             |                |      |               |       |
| LCS (B6C0116-BS1)         |        |      |       |       | Prepared       | l & Analyze      | ed: 02/29/1 | 6              |      |               |       |
| 1,1,1-Trichloroethane     | 51.3   | 2.7  | 0.044 | ug/m³ | 54.6           |                  | 94.0        | 70-130         |      |               |       |
| 1,1,2,2-Tetrachloroethane | 58.9   | 3.4  | 0.074 | ug/m³ | 68.6           |                  | 85.8        | 70-130         |      |               |       |
| 1,1,2-Trichloroethane     | 46.5   | 2.7  | 0.11  | ug/m³ | 54.6           |                  | 85.2        | 70-130         |      |               |       |
| 1,1-Dichloroethane        | 35.2   | 2.0  | 0.11  | ug/m³ | 40.5           |                  | 86.9        | 70-130         |      |               |       |
| 1,1-Dichloroethene        | 35.2   | 2.0  | 0.078 | ug/m³ | 39.6           |                  | 88.7        | 70-130         |      |               |       |
| 1,2,4-Trichlorobenzene    | 74.2   | 3.7  | 0.13  | ug/m³ | 74.2           |                  | 100         | 70-130         |      |               |       |
| 1,2,4-Trimethylbenzene    | 43.7   | 1.0  | 0.073 | ug/m³ | 49.2           |                  | 88.9        | 70-130         |      |               |       |
| 1,2-Dibromoethane         | 65.2   | 3.8  | 0.16  | ug/m³ | 76.8           |                  | 84.9        | 70-130         |      |               |       |
| 1,2-Dichlorobenzene       | 54.5   | 3.0  | 0.071 | ug/m³ | 60.1           |                  | 90.6        | 70-130         |      |               |       |
| 1,2-Dichloroethane        | 39.5   | 2.0  | 0.055 | ug/m³ | 40.5           |                  | 97.7        | 70-130         |      |               |       |
| 1,2-Dichloropropane       | 40.3   | 2.3  | 0.081 | ug/m³ | 46.2           |                  | 87.2        | 70-130         |      |               |       |
| 1,3,5-Trimethylbenzene    | 42.4   | 1.0  | 0.11  | ug/m³ | 49.2           |                  | 86.2        | 70-130         |      |               |       |
| 1,3-Butadiene             | 22.6   | 1.1  | 0.10  | ug/m³ | 22.1           |                  | 102         | 70-130         |      |               |       |
| 1,3-Dichlorobenzene       | 55.0   | 3.0  | 0.14  | ug/m³ | 60.1           |                  | 91.4        | 70-130         |      |               |       |
| 1,4-Dichlorobenzene       | 55.4   | 3.0  | 0.17  | ug/m³ | 60.1           |                  | 92.1        | 70-130         |      |               |       |
| 2-Butanone                | 24.5   | 1.5  | 0.078 | ug/m³ | 29.5           |                  | 83.2        | 70-130         |      |               |       |
| 4-Ethyltoluene            | 41.7   | 2.5  | 0.11  | ug/m³ | 49.2           |                  | 84.9        | 70-130         |      |               |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: City of Rochester CRC Work Order #: 1600901
Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 03/09/16

#### VOC - AIR - Quality Control Legend Technical Services, Inc.

| Analyte                   | Result | RL   | MDL   | Units | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | %RPD | %RPD<br>Limit | Notes |
|---------------------------|--------|------|-------|-------|----------------|------------------|------------|----------------|------|---------------|-------|
| Batch B6C0116 - TO-15     |        |      |       |       |                |                  |            |                |      |               |       |
| LCS (B6C0116-BS1)         |        |      |       |       | Prepared       | l & Analyze      | ed: 02/29/ | 16             |      |               |       |
| Acetone                   | 23.1   | 1.2  | 0.055 | ug/m³ | 23.8           |                  | 97.1       | 70-130         |      |               |       |
| Benzene                   | 27.7   | 0.64 | 0.050 | ug/m³ | 31.9           |                  | 86.7       | 70-130         |      |               |       |
| Benzyl chloride           | 52.3   | 2.6  | 0.073 | ug/m³ | 51.8           |                  | 101        | 70-130         |      |               |       |
| Bromodichloromethane      | 61.4   | 3.4  | 0.13  | ug/m³ | 67.0           |                  | 91.7       | 70-130         |      |               |       |
| Bromoform                 | 94.4   | 5.2  | 0.13  | ug/m³ | 103            |                  | 91.3       | 70-130         |      |               |       |
| Bromomethane              | 39.2   | 1.9  | 0.069 | ug/m³ | 38.8           |                  | 101        | 70-130         |      |               |       |
| Carbon disulfide          | 27.2   | 1.6  | 0.070 | ug/m³ | 31.1           |                  | 87.4       | 70-130         |      |               |       |
| Carbon tetrachloride      | 59.8   | 3.1  | 0.087 | ug/m³ | 62.9           |                  | 95.1       | 70-130         |      |               |       |
| Chlorobenzene             | 38.9   | 2.3  | 0.080 | ug/m³ | 46.0           |                  | 84.5       | 70-130         |      |               |       |
| Chloroethane              | 24.6   | 1.3  | 0.037 | ug/m³ | 26.4           |                  | 93.4       | 70-130         |      |               |       |
| Chloroform                | 44.6   | 2.4  | 0.055 | ug/m³ | 48.8           |                  | 91.4       | 70-130         |      |               |       |
| Chloromethane             | 21.9   | 1.0  | 0.044 | ug/m³ | 20.6           |                  | 106        | 70-130         |      |               |       |
| cis-1,2-Dichloroethene    | 33.2   | 2.0  | 0.089 | ug/m³ | 39.6           |                  | 83.8       | 70-130         |      |               |       |
| cis-1,3-Dichloropropene   | 39.8   | 2.3  | 0.12  | ug/m³ | 45.4           |                  | 87.6       | 70-130         |      |               |       |
| Cyclohexane               | 29.7   | 1.7  | 0.059 | ug/m³ | 34.4           |                  | 86.4       | 70-130         |      |               |       |
| Dibromochloromethane      | 76.0   | 4.3  | 0.16  | ug/m³ | 85.2           |                  | 89.2       | 70-130         |      |               |       |
| Dichlorodifluoromethane   | 53.4   | 2.5  | 0.12  | ug/m³ | 49.5           |                  | 108        | 70-130         |      |               |       |
| Dichlorotetrafluoroethane | 74.1   | 3.5  | 0.063 | ug/m³ | 69.9           |                  | 106        | 70-130         |      |               |       |
| Ethanol                   | 18.1   | 0.94 | 0.068 | ug/m³ | 18.8           |                  | 96.3       | 70-130         |      |               |       |
| Ethyl acetate             | 29.1   | 1.8  | 0.11  | ug/m³ | 36.0           |                  | 80.8       | 70-130         |      |               |       |
| Ethylbenzene              | 37.6   | 0.87 | 0.082 | ug/m³ | 43.4           |                  | 86.5       | 70-130         |      |               |       |
| Hexachlorobutadiene       | 96.4   | 5.3  | 0.27  | ug/m³ | 107            |                  | 90.4       | 70-130         |      |               |       |
| Isopropyl alcohol         | 22.9   | 1.2  | 0.075 | ug/m³ | 24.6           |                  | 93.2       | 70-130         |      |               |       |
| m,p-Xylene                | 72.9   | 1.7  | 0.15  | ug/m³ | 86.8           |                  | 84.0       | 70-130         |      |               |       |
| Methyl butyl ketone       | 37.6   | 2.0  | 0.12  | ug/m³ | 41.0           |                  | 91.9       | 70-130         |      |               |       |
| Methyl isobutyl ketone    | 34.0   | 2.0  | 0.11  | ug/m³ | 41.0           |                  | 82.9       | 70-130         |      |               |       |
| Methyl tert-butyl ether   | 31.3   | 1.8  | 0.11  | ug/m³ | 36.1           |                  | 86.7       | 70-130         |      |               |       |
| Methylene chloride        | 31.1   | 1.7  | 0.21  | ug/m³ | 34.7           |                  | 89.4       | 70-130         |      |               |       |
| Naphthalene               | 52.4   | 2.6  | 0.11  | ug/m³ | 55.0           |                  | 95.1       | 70-130         |      |               |       |
| n-Heptane                 | 35.4   | 2.0  | 0.078 | ug/m³ | 41.0           |                  | 86.4       | 70-130         |      |               |       |
| n-Hexane                  | 29.5   | 1.8  | 0.074 | ug/m³ | 35.2           |                  | 83.7       | 70-130         |      |               |       |
| o-Xylene                  | 36.9   | 0.87 | 0.096 | ug/m³ | 43.4           |                  | 85.0       | 70-130         |      |               |       |
| Propylene                 | 17.0   | 0.86 | 0.027 | ug/m³ | 17.2           |                  | 98.6       | 70-130         |      |               |       |
| Styrene                   | 37.3   | 2.1  | 0.096 | ug/m³ | 42.6           |                  | 87.6       | 70-130         |      |               |       |
| Tetrachloroethene         | 56.2   | 3.4  | 0.13  | ug/m³ | 67.8           |                  | 82.9       | 70-130         |      |               |       |
| Tetrahydrofuran           | 27.8   | 1.5  | 0.038 | ug/m³ | 29.5           |                  | 94.2       | 70-130         |      |               |       |
| Toluene                   | 32.2   | 0.75 | 0.060 | ug/m³ | 37.7           |                  | 85.5       | 70-130         |      |               |       |
| trans-1,2-Dichloroethene  | 33.0   | 2.0  | 0.11  | ug/m³ | 39.6           |                  | 83.2       | 70-130         |      |               |       |
| trans-1,3-Dichloropropene | 39.8   | 2.3  | 0.070 | ug/m³ | 45.4           |                  | 87.8       | 70-130         |      |               |       |
| Trichloroethene           | 46.8   | 1.1  | 0.12  | ug/m³ | 53.7           |                  | 87.0       | 70-130         |      |               |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: City of Rochester CRC Work Order #: 1600901 Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 03/09/16

#### **VOC - AIR - Quality Control** Legend Technical Services, Inc.

| Analyte                   | Result | RL        | MDL       | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | %RPD | %RPD<br>Limit | Notes |
|---------------------------|--------|-----------|-----------|-------|----------------|------------------|-------------|----------------|------|---------------|-------|
| Batch B6C0116 - TO-15     |        |           |           |       |                |                  |             |                |      |               |       |
| LCS (B6C0116-BS1)         |        |           |           |       | Prepared       | l & Analyze      | ed: 02/29/1 | 16             |      |               |       |
| Trichlorofluoromethane    | 52.7   | 2.8       | 0.048     | ug/m³ | 56.2           | ,                | 93.8        | 70-130         |      |               |       |
| Trichlorotrifluoroethane  | 63.1   | 3.8       | 0.17      | ug/m³ | 76.6           |                  | 82.4        | 70-130         |      |               |       |
| Vinyl acetate             | 38.0   | 1.8       | 0.90      | ug/m³ | 35.2           |                  | 108         | 70-130         |      |               |       |
| Vinyl chloride            | 26.3   | 0.51      | 0.051     | ug/m³ | 25.6           |                  | 103         | 70-130         |      |               |       |
| Duplicate (B6C0116-DUP1)  |        | Source: 1 | 1600901-0 | )1    | Prepared       | l: 02/29/16      | Analyzed    | I: 03/01/16    | i    |               |       |
| 1,1,1-Trichloroethane     | < 2.7  | 2.7       | 0.044     | ug/m³ |                | <2.7             | •           |                | NA   | 25            |       |
| 1,1,2,2-Tetrachloroethane | < 3.4  | 3.4       | 0.074     | ug/m³ |                | <3.4             |             |                | NA   | 25            |       |
| 1,1,2-Trichloroethane     | < 2.7  | 2.7       | 0.11      | ug/m³ |                | <2.7             |             |                | NA   | 25            |       |
| I,1-Dichloroethane        | < 2.0  | 2.0       | 0.11      | ug/m³ |                | <2.0             |             |                | NA   | 25            |       |
| 1,1-Dichloroethene        | < 2.0  | 2.0       | 0.078     | ug/m³ |                | <2.0             |             |                | NA   | 25            |       |
| I,2,4-Trichlorobenzene    | < 3.7  | 3.7       | 0.13      | ug/m³ |                | <3.7             |             |                | NA   | 25            |       |
| ,2,4-Trimethylbenzene     | < 1.0  | 1.0       | 0.073     | ug/m³ |                | <1.0             |             |                | NA   | 25            |       |
| ,2-Dibromoethane          | < 3.8  | 3.8       | 0.16      | ug/m³ |                | <3.8             |             |                | NA   | 25            |       |
| ,2-Dichlorobenzene        | < 3.0  | 3.0       | 0.071     | ug/m³ |                | <3.0             |             |                | NA   | 25            |       |
| ,2-Dichloroethane         | < 2.0  | 2.0       | 0.055     | ug/m³ |                | <2.0             |             |                | NA   | 25            |       |
| ,2-Dichloropropane        | < 2.3  | 2.3       | 0.081     | ug/m³ |                | <2.3             |             |                | NA   | 25            |       |
| ,3,5-Trimethylbenzene     | < 1.0  | 1.0       | 0.11      | ug/m³ |                | <1.0             |             |                | NA   | 25            |       |
| ,3-Butadiene              | < 1.1  | 1.1       | 0.10      | ug/m³ |                | <1.1             |             |                | NA   | 25            |       |
| ,3-Dichlorobenzene        | < 3.0  | 3.0       | 0.14      | ug/m³ |                | <3.0             |             |                | NA   | 25            |       |
| ,4-Dichlorobenzene        | < 3.0  | 3.0       | 0.17      | ug/m³ |                | <3.0             |             |                | NA   | 25            |       |
| 2-Butanone                | 8.13   | 1.5       | 0.078     | ug/m³ |                | 5.86             |             |                | 32.4 | 25            | R8    |
| -Ethyltoluene             | < 2.5  | 2.5       | 0.11      | ug/m³ |                | <2.5             |             |                | NA   | 25            |       |
| Acetone                   | 61.0   | 18        | 0.82      | ug/m³ |                | 64.0             |             |                | 4.83 | 25            |       |
| Benzene                   | 0.859  | 0.64      | 0.050     | ug/m³ |                | 0.783            |             |                | 9.32 | 25            |       |
| Benzyl chloride           | < 2.6  | 2.6       | 0.073     | ug/m³ |                | <2.6             |             |                | NA   | 25            |       |
| Bromodichloromethane      | < 3.4  | 3.4       | 0.13      | ug/m³ |                | <3.4             |             |                | NA   | 25            |       |
| Bromoform                 | < 5.2  | 5.2       | 0.13      | ug/m³ |                | <5.2             |             |                | NA   | 25            |       |
| Bromomethane              | < 1.9  | 1.9       | 0.069     | ug/m³ |                | <1.9             |             |                | NA   | 25            |       |
| Carbon disulfide          | < 1.6  | 1.6       | 0.070     | ug/m³ |                | <1.6             |             |                | NA   | 25            |       |
| Carbon tetrachloride      | < 3.1  | 3.1       | 0.087     | ug/m³ |                | <3.1             |             |                | NA   | 25            |       |
| Chlorobenzene             | < 2.3  | 2.3       | 0.080     | ug/m³ |                | <2.3             |             |                | NA   | 25            |       |
| Chloroethane              | < 1.3  | 1.3       | 0.037     | ug/m³ |                | <1.3             |             |                | NA   | 25            |       |
| Chloroform                | < 2.4  | 2.4       | 0.055     | ug/m³ |                | <2.4             |             |                | NA   | 25            |       |
| Chloromethane             | < 1.0  | 1.0       | 0.044     | ug/m³ |                | <1.0             |             |                | NA   | 25            |       |
| sis-1,2-Dichloroethene    | < 2.0  | 2.0       | 0.089     | ug/m³ |                | <2.0             |             |                | NA   | 25            |       |
| sis-1,3-Dichloropropene   | < 2.3  | 2.3       | 0.12      | ug/m³ |                | <2.3             |             |                | NA   | 25            |       |
| Cyclohexane               | < 1.7  | 1.7       | 0.059     | ug/m³ |                | <1.7             |             |                | NA   | 25            |       |
| Dibromochloromethane      | < 4.3  | 4.3       | 0.16      | ug/m³ |                | <4.3             |             |                | NA   | 25            |       |
| Dichlorodifluoromethane   | 3.36   | 2.5       | 0.12      | ug/m³ |                | 3.07             |             |                | 8.99 | 25            |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: City of Rochester CRC Work Order #: 1600901 Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 03/09/16

#### **VOC - AIR - Quality Control** Legend Technical Services, Inc.

| Analyta                   | الم منالة | -         | MD:       | - I loite | Spike    | Source      | 0/ DEC   | %REC        | 0/ DDD | %RPD  | Notes |
|---------------------------|-----------|-----------|-----------|-----------|----------|-------------|----------|-------------|--------|-------|-------|
| Analyte                   | Result    | RL        | MDL       | Units     | Level    | Result      | %REC     | Limits      | %RPD   | Limit | Notes |
| Batch B6C0116 - TO-15     |           |           |           |           |          |             |          |             |        |       |       |
| Duplicate (B6C0116-DUP1)  | 5         | 3ource: 1 | 1600901-0 | )1        | Prepared | d: 02/29/16 | Analyzed | 1: 03/01/16 |        |       |       |
| Dichlorotetrafluoroethane | < 3.5     | 3.5       | 0.063     | ug/m³     |          | <3.5        |          |             | NA     | 25    |       |
| Ethanol                   | 361       | 14        | 1.0       | ug/m³     |          | 335         |          |             | 7.34   | 25    |       |
| Ethyl acetate             | 4.95      | 1.8       | 0.11      | ug/m³     |          | 3.66        |          |             | 30.0   | 25    | R8    |
| Ethylbenzene              | 2.85      | 0.87      | 0.082     | ug/m³     |          | 1.84        |          |             | 42.9   | 25    | R8    |
| Hexachlorobutadiene       | < 5.3     | 5.3       | 0.27      | ug/m³     |          | <5.3        |          |             | NA     | 25    |       |
| Isopropyl alcohol         | 333       | 18        | 1.1       | ug/m³     |          | 303         |          |             | 9.56   | 25    |       |
| m,p-Xylene                | 9.88      | 1.7       | 0.15      | ug/m³     |          | 6.92        |          |             | 35.2   | 25    | R8    |
| Methyl butyl ketone       | < 2.0     | 2.0       | 0.12      | ug/m³     |          | <2.0        |          |             | NA     | 25    |       |
| Methyl isobutyl ketone    | < 2.0     | 2.0       | 0.11      | ug/m³     |          | <2.0        |          |             | NA     | 25    |       |
| Methyl tert-butyl ether   | < 1.8     | 1.8       | 0.11      | ug/m³     |          | <1.8        |          |             | NA     | 25    |       |
| Methylene chloride        | 2.34      | 1.7       | 0.21      | ug/m³     |          | 2.18        |          |             | 7.31   | 25    |       |
| Naphthalene               | < 2.6     | 2.6       | 0.11      | ug/m³     |          | <2.6        |          |             | NA     | 25    |       |
| n-Heptane                 | < 2.0     | 2.0       | 0.078     | ug/m³     |          | <2.0        |          |             | NA     | 25    |       |
| n-Hexane                  | 2.81      | 1.8       | 0.074     | ug/m³     |          | 2.57        |          |             | 8.91   | 25    |       |
| o-Xylene                  | 3.38      | 0.87      | 0.096     | ug/m³     |          | 2.37        |          |             | 35.3   | 25    | R8    |
| Propylene                 | < 0.86    | 0.86      | 0.027     | ug/m³     |          | <0.86       |          |             | NA     | 25    |       |
| Styrene                   | < 2.1     | 2.1       | 0.096     | ug/m³     |          | <2.1        |          |             | NA     | 25    |       |
| Tetrachloroethene         | 95.9      | 3.4       | 0.13      | ug/m³     |          | 86.8        |          |             | 9.97   | 25    |       |
| Tetrahydrofuran           | 6.10      | 1.5       | 0.038     | ug/m³     |          | 5.28        |          |             | 14.4   | 25    |       |
| Toluene                   | 60.3      | 0.75      | 0.060     | ug/m³     |          | 53.8        |          |             | 11.4   | 25    |       |
| trans-1,2-Dichloroethene  | < 2.0     | 2.0       | 0.11      | ug/m³     |          | <2.0        |          |             | NA     | 25    |       |
| trans-1,3-Dichloropropene | < 2.3     | 2.3       | 0.070     | ug/m³     |          | <2.3        |          |             | NA     | 25    |       |
| Trichloroethene           | < 1.1     | 1.1       | 0.12      | ug/m³     |          | <1.1        |          |             | NA     | 25    |       |
| Trichlorofluoromethane    | < 2.8     | 2.8       | 0.048     | ug/m³     |          | <2.8        |          |             | NA     | 25    |       |
| Trichlorotrifluoroethane  | 60.1      | 3.8       | 0.17      | ug/m³     |          | 56.3        |          |             | 6.52   | 25    |       |
| Vinyl acetate             | < 1.8     | 1.8       | 0.90      | ug/m³     |          | <1.8        |          |             | NA     | 25    |       |
| Vinyl chloride            | < 0.51    | 0.51      | 0.051     | ug/m³     |          | <0.51       |          |             | NA     | 25    |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: City of Rochester CRC Work Order #: 1600901 Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 03/09/16

#### **Notes and Definitions**

R8 Sample RPD exceeded the method acceptance limit.

Less than value listed <

NA Not applicable. The %RPD is not calculated from values less than the reporting limit.

MDL Method Detection Limit

RL Reporting Limit

RPD Relative Percent Difference

LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)

88 Empire Drive Tel: 651-642-1150

St Paul, MN 55103 Fax: 651-642-1239

| Clent Name  | Name                                                |                      | ENI To:                      |                  |       |                           | LEGEND Projectiff            |                      | 1060001       | 1060             |                          | TO-15 (M) w/ TiCs Air Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lyais     |
|-------------|-----------------------------------------------------|----------------------|------------------------------|------------------|-------|---------------------------|------------------------------|----------------------|---------------|------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 5           | LANDMARK ENVIRONI                                   | v.Ronmenth.          | ž.                           |                  |       |                           | Turn Appund Time             | the Landson          |               | RUSH             |                          | Project Controlling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14 ×      |
| Addm        | TS 484 M Char ST                                    | ts the               | Address                      |                  |       |                           | Roganiting                   | Poquenting Duo Dide  |               |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| ₽ ∰         | MIN JASON SKREFNITHD                                | RANN SSYS/           | #0e                          |                  |       |                           | Clent Proj                   | Clent Project Number |               | 1                |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Phone       | PHONE JSKNAMSTONG CANDINGULARY COM                  | G Landnish           | Email Cal's                  |                  |       |                           | Cilent Proj                  | Client Project Nume. | C. ty 0       | ag u             | City of Rochester<br>CRC |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| Non         | Flekt ID / Sampler ID:                              | Contiste<br>Sector # | Flavy Controller<br>Secal ff | Pressures (* Mg) | Slag. | Date                      | Time Collected<br>Start Stop | Stop                 | Total         | denið            | Pig                      | Sample Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| æ           | 1-957                                               | 396                  | 60                           | 54-              | 75    | 3/34/14 5:40 5:45         | 5:00                         | -                    | الله الله     | >                | 0.0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A 10      |
| n           | 156-8                                               | - 397                | (3                           | -36              | 3     | 7/24/16 S.33 S.30 71,00   | S.33                         | 5:30                 | 7             | >                | 0.0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 02.       |
| m           | 156-9                                               | 3506                 | 9                            | 36               | p     | 1/nc/c 4:08 4:08 5:"      | 4:03                         | 小的                   | 50            | 2                | 00                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63        |
| æ           | 156-10                                              | 293                  | 89                           | 000              | 9     | 0 % de to 88 to 91/16/e   | 4:33                         | 4:30                 | 30            | >                | 0.0                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ठ         |
| in          | SP-1 ES                                             | 362                  | 20                           | 70               | 5     | 1/16 42 4 26 Win          | o€:-†                        | 75 h                 | 20.           | >                | 1.1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18        |
| 9           | Sp.2 55L                                            | 3509                 | 1                            | 4                |       | -6 2/24/14 5:11 5:18 Prin | II:S                         | 81:15                | . F. E        | >                | 0.0                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | è         |
| *           | (o-Hour                                             | 377                  | 1197                         | -29              | 1     | 424/16 3:50 9:55 6hrs     | 3:50                         | 9.55                 | Smith         | >                | 3.8                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S. Ko     |
| 60          |                                                     |                      |                              |                  |       |                           |                              |                      |               |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >         |
| æ           |                                                     |                      |                              |                  |       |                           |                              |                      |               |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 9           |                                                     |                      |                              | T                |       |                           |                              |                      |               |                  |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
| 1           | Service Colorate galvane prints<br>SHANNEN RUSS ELL | SEUL                 | Heirspunds By.               | 1                | week  |                           | n/kih                        | 3                    | Tine.<br>9.55 | Accepted by      | , Kaj                    | amiz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Time      |
| Corturnitis | NAME:                                               |                      | Relinquished By:             |                  |       |                           | Date                         | Time                 |               | Received by Life | 12/1                     | Sum of the state o | Date Time |





























88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

April 13, 2016

Mr. Aaron Kuck Landmark Environmental 2042 West 98th Street Bloomington, MN 55431

Work Order Number: 1601431

RE: TO-15

Enclosed are the results of analyses for samples received by the laboratory on 03/31/16. If you have any questions concerning this report, please feel free to contact me.

Samples will not be retained by LEGEND once the analyses are completed.

All internal quality assurance met the method requirements unless otherwise noted in the case narrative. Additionally, all samples were received in acceptable condition unless otherwise noted.

For the tentatively identified compounds (TICs), a computer generated library search was done comparing the spectra of the unknown compounds with spectra contained in the NIST (NBS) and Wiley reference libraries. A visual comparison was made of each unknown compound and the best library match. Quantitation was based on the response of the nearest internal standard. Unidentified peaks were quantified using 100 as the molecular weight. Both the identification of specific compounds and the quantities given should be considered approximations.

Chromatograms are included for samples containing detections.

MDH Accreditation #027-123-295

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham
Client Manager II
bpham@legend-group.com



Fax: 651-642-1239

| Landmark Environmental | Project:         | TO-15                 |                |          |
|------------------------|------------------|-----------------------|----------------|----------|
| 2042 West 98th Street  | Project Number:  | Crc-City of Rochester | Work Order #:  | 1601431  |
| Bloomington, MN 55431  | Project Manager: | Mr. Aaron Kuck        | Date Reported: | 04/13/16 |

#### **ANALYTICAL REPORT FOR SAMPLES**

| Sample ID   | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|-------------|---------------|--------|----------------|----------------|
| DPE-Exhaust | 1601431-01    | Air    | 03/30/16 21:18 | 03/31/16 11:40 |

#### **Case Narrative:**

Per the client's instructions, TICs were not included in this report.



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: Crc-City of Rochester Work Order #: 1601431 Bloomington, MN 55431 Project Manager: Mr. Aaron Kuck Date Reported: 04/13/16

## **VOC - AIR** Legend Technical Services, Inc.

| Analyte (CAS#)                       | Result            | RL      | MDL      | Units       | Dilution | Batch   | Prepared | Analyzed | Method | Notes |
|--------------------------------------|-------------------|---------|----------|-------------|----------|---------|----------|----------|--------|-------|
| DPE-Exhaust (1601431-01) Air         | Received:03/31/10 | 5 11:40 | Sampled: | 03/30/16 21 | 1:18     |         |          |          |        |       |
| 1,1,1-Trichloroethane (71-55-6)      | 10                | 2.7     | 0.044    | ug/m³       | 1        | B6D1119 | 04/11/16 | 04/11/16 | TO-15  |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)  | <3.4              | 3.4     | 0.074    | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,1,2-Trichloroethane (79-00-5)      | <2.7              | 2.7     | 0.11     | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,1-Dichloroethane (75-34-3)         | <2.0              | 2.0     | 0.11     | ug/m³       | 1        | "       | "        |          | "      |       |
| 1,1-Dichloroethene (75-35-4)         | <2.0              | 2.0     | 0.078    | ug/m³       | 1        | "       | "        | "        | п      |       |
| 1,2,4-Trichlorobenzene (120-82-1)    | <3.7              | 3.7     | 0.13     | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,2,4-Trimethylbenzene (95-63-6)     | <1.0              | 1.0     | 0.073    | ug/m³       | 1        | "       | "        |          | "      |       |
| 1,2-Dibromoethane (106-93-4)         | <3.8              | 3.8     | 0.16     | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,2-Dichlorobenzene (95-50-1)        | <3.0              | 3.0     | 0.071    | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,2-Dichloroethane (107-06-2)        | <2.0              | 2.0     | 0.055    | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,2-Dichloropropane (78-87-5)        | <2.3              | 2.3     | 0.081    | ug/m³       | 1        | "       | "        |          | "      |       |
| 1,3,5-Trimethylbenzene (108-67-8)    | <1.0              | 1.0     | 0.11     | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,3-Butadiene (106-99-0)             | <1.1              | 1.1     | 0.10     | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,3-Dichlorobenzene (541-73-1)       | <3.0              | 3.0     | 0.14     | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,4-Dichlorobenzene (106-46-7)       | <3.0              | 3.0     | 0.17     | ug/m³       | 1        | "       | "        | "        | "      |       |
| 2-Butanone (78-93-3)                 | 6.9               | 1.5     | 0.078    | ug/m³       | 1        | "       | "        | "        | "      |       |
| 4-Ethyltoluene (622-96-8)            | <2.5              | 2.5     | 0.11     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Acetone (67-64-1)                    | 75                | 11      | 0.50     | ug/m³       | 9        | "       | "        | 04/12/16 | "      |       |
| Benzene (71-43-2)                    | 1.1               | 0.64    | 0.050    | ug/m³       | 1        | "       | "        | 04/11/16 | "      |       |
| Benzyl chloride (100-44-7)           | <2.6              | 2.6     | 0.073    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Bromodichloromethane (75-27-4)       | <3.4              | 3.4     | 0.13     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Bromoform (75-25-2)                  | <5.2              | 5.2     | 0.13     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Bromomethane (74-83-9)               | <1.9              | 1.9     | 0.069    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Carbon disulfide (75-15-0)           | <1.6              | 1.6     | 0.070    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Carbon tetrachloride (56-23-5)       | <3.1              | 3.1     | 0.087    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Chlorobenzene (108-90-7)             | <2.3              | 2.3     | 0.080    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Chloroethane (75-00-3)               | <1.3              | 1.3     | 0.037    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Chloroform (67-66-3)                 | 3.0               | 2.4     | 0.055    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Chloromethane (74-87-3)              | 1.2               | 1.0     | 0.044    | ug/m³       | 1        | "       | "        | "        | "      |       |
| cis-1,2-Dichloroethene (156-59-2)    | 20                | 2.0     | 0.089    | ug/m³       | 1        | "       | "        | "        | "      |       |
| cis-1,3-Dichloropropene (10061-01-5) | <2.3              | 2.3     | 0.12     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Cyclohexane (110-82-7)               | <1.7              | 1.7     | 0.059    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Dibromochloromethane (124-48-1)      | <4.3              | 4.3     | 0.16     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Dichlorodifluoromethane (75-71-8)    | <2.5              | 2.5     | 0.12     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Dichlorotetrafluoroethane (76-14-2)  | <3.5              | 3.5     | 0.063    | ug/m³       | 1        | "       | "        | "        | u      |       |
|                                      |                   |         |          |             |          |         |          |          |        |       |

Legend Technical Services, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Fax: 651-642-1139

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: Crc-City of Rochester Work Order #: 1601431
Bloomington, MN 55431 Project Manager: Mr. Aaron Kuck Date Reported: 04/13/16

| Analyte (CAS#)                        | Result           | RL      | MDL      | Units                  | Dilution | Batch   | Prepared | Analyzed | Method | Notes |  |  |
|---------------------------------------|------------------|---------|----------|------------------------|----------|---------|----------|----------|--------|-------|--|--|
| DPE-Exhaust (1601431-01) Air I        | Received:03/31/1 | 6 11:40 | Sampled: | Sampled:03/30/16 21:18 |          |         |          |          |        |       |  |  |
| Ethanol (64-17-5)                     | 670              | 85      | 6.1      | ug/m³                  | 90       | B6D1119 | 04/11/16 | 04/12/16 | TO-15  |       |  |  |
| Ethyl acetate (141-78-6)              | <1.8             | 1.8     | 0.11     | ug/m³                  | 1        | "       | "        | 04/11/16 | "      |       |  |  |
| Ethylbenzene (100-41-4)               | 1.1              | 0.87    | 0.082    | ug/m³                  | 1        | "       | "        | "        | "      |       |  |  |
| Hexachlorobutadiene (87-68-3)         | <5.3             | 5.3     | 0.27     | ug/m³                  | 1        | "       | "        | "        | "      |       |  |  |
| Isopropyl alcohol (67-63-0)           | 920              | 110     | 6.8      | ug/m³                  | 90       | "       | "        | 04/12/16 | "      |       |  |  |
| m,p-Xylene (136777-61-2)              | 4.0              | 1.7     | 0.15     | ug/m³                  | 1        | "       | "        | 04/11/16 | "      |       |  |  |
| Methyl butyl ketone (591-78-6)        | <2.0             | 2.0     | 0.12     | ug/m³                  | 1        | "       | "        | "        | "      |       |  |  |
| Methyl isobutyl ketone (108-10-1)     | <2.0             | 2.0     | 0.11     | ug/m³                  | 1        | "       | "        | "        | "      |       |  |  |
| Methyl tert-butyl ether (1634-04-4)   | <1.8             | 1.8     | 0.11     | ug/m³                  | 1        | "       | "        | "        | "      |       |  |  |
| Methylene chloride (75-09-2)          | 4.2              | 1.7     | 0.21     | ug/m³                  | 1        | "       | "        | "        | "      |       |  |  |
| Naphthalene (91-20-3)                 | <2.6             | 2.6     | 0.11     | ug/m³                  | 1        | "       | "        | "        | "      |       |  |  |
| n-Heptane (142-82-5)                  | <2.0             | 2.0     | 0.078    | ug/m³                  | 1        | "       | "        | "        | "      |       |  |  |
| n-Hexane (110-54-3)                   | <1.8             | 1.8     | 0.074    | ug/m³                  | 1        | "       | "        | "        | "      |       |  |  |
| o-Xylene (95-47-6)                    | 1.5              | 0.87    | 0.096    | ug/m³                  | 1        | "       | "        | "        | "      |       |  |  |
| Propylene (115-07-1)                  | <0.86            | 0.86    | 0.027    | ug/m³                  | 1        | "       | "        | "        | "      |       |  |  |
| Styrene (100-42-5)                    | <2.1             | 2.1     | 0.096    | ug/m³                  | 1        | "       | "        | "        | "      |       |  |  |
| Tetrachloroethene (127-18-4)          | 19000            | 610     | 23       | ug/m³                  | 180      | "       | "        | 04/12/16 | "      |       |  |  |
| Tetrahydrofuran (109-99-9)            | 2.3              | 1.5     | 0.038    | ug/m³                  | 1        | "       | "        | 04/11/16 | "      |       |  |  |
| Toluene (108-88-3)                    | 40               | 0.75    | 0.060    | ug/m³                  | 1        | "       | "        | "        | "      |       |  |  |
| trans-1,2-Dichloroethene (156-60-5)   | <2.0             | 2.0     | 0.11     | ug/m³                  | 1        | "       | "        | "        | "      |       |  |  |
| trans-1,3-Dichloropropene (10061-02-6 | ) <2.3           | 2.3     | 0.070    | ug/m³                  | 1        | "       | "        | "        | "      |       |  |  |
| Trichloroethene (79-01-6)             | 13               | 1.1     | 0.12     | ug/m³                  | 1        | "       | "        | "        | II .   |       |  |  |
| Trichlorofluoromethane (75-69-4)      | <2.8             | 2.8     | 0.048    | ug/m³                  | 1        | "       | "        | "        | II .   |       |  |  |
| Trichlorotrifluoroethane (76-13-1)    | 5300             | 340     | 15       | ug/m³                  | 90       | "       | "        | 04/12/16 | II .   |       |  |  |
| Vinyl acetate (108-05-4)              | <1.8             | 1.8     | 0.90     | ug/m³                  | 1        | "       | "        | 04/11/16 | n .    |       |  |  |
| Vinyl chloride (75-01-4)              | <0.51            | 0.51    | 0.051    | ug/m³                  | 1        | "       | "        | "        | "      |       |  |  |



Fax: 651-642-1139

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: Crc-City of Rochester Work Order #: 1601431
Bloomington, MN 55431 Project Manager: Mr. Aaron Kuck Date Reported: 04/13/16

#### VOC - AIR - Quality Control Legend Technical Services, Inc.

| Analyte                   | Result | RL   | MDL   | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | %RPD | %RPD<br>Limit | Notes |
|---------------------------|--------|------|-------|-------|----------------|------------------|-------------|----------------|------|---------------|-------|
| Batch B6D1119 - TO-15     |        |      |       |       |                |                  |             |                |      |               |       |
| Blank (B6D1119-BLK1)      |        |      |       |       | Prepared       | ł & Analyze      | ed: 04/11/1 | 6              |      |               |       |
| 1,1,1-Trichloroethane     | < 2.7  | 2.7  | 0.044 | ug/m³ |                |                  |             |                |      |               |       |
| 1,1,2,2-Tetrachloroethane | < 3.4  | 3.4  | 0.074 | ug/m³ |                |                  |             |                |      |               |       |
| 1,1,2-Trichloroethane     | < 2.7  | 2.7  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| 1,1-Dichloroethane        | < 2.0  | 2.0  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| 1,1-Dichloroethene        | < 2.0  | 2.0  | 0.078 | ug/m³ |                |                  |             |                |      |               |       |
| 1,2,4-Trichlorobenzene    | < 3.7  | 3.7  | 0.13  | ug/m³ |                |                  |             |                |      |               |       |
| 1,2,4-Trimethylbenzene    | < 1.0  | 1.0  | 0.073 | ug/m³ |                |                  |             |                |      |               |       |
| 1,2-Dibromoethane         | < 3.8  | 3.8  | 0.16  | ug/m³ |                |                  |             |                |      |               |       |
| 1,2-Dichlorobenzene       | < 3.0  | 3.0  | 0.071 | ug/m³ |                |                  |             |                |      |               |       |
| 1,2-Dichloroethane        | < 2.0  | 2.0  | 0.055 | ug/m³ |                |                  |             |                |      |               |       |
| 1,2-Dichloropropane       | < 2.3  | 2.3  | 0.081 | ug/m³ |                |                  |             |                |      |               |       |
| 1,3,5-Trimethylbenzene    | < 1.0  | 1.0  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| 1,3-Butadiene             | < 1.1  | 1.1  | 0.10  | ug/m³ |                |                  |             |                |      |               |       |
| 1,3-Dichlorobenzene       | < 3.0  | 3.0  | 0.14  | ug/m³ |                |                  |             |                |      |               |       |
| 1,4-Dichlorobenzene       | < 3.0  | 3.0  | 0.17  | ug/m³ |                |                  |             |                |      |               |       |
| 2-Butanone                | < 1.5  | 1.5  | 0.078 | ug/m³ |                |                  |             |                |      |               |       |
| 4-Ethyltoluene            | < 2.5  | 2.5  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| Acetone                   | < 1.2  | 1.2  | 0.055 | ug/m³ |                |                  |             |                |      |               |       |
| Benzene                   | < 0.64 | 0.64 | 0.050 | ug/m³ |                |                  |             |                |      |               |       |
| Benzyl chloride           | < 2.6  | 2.6  | 0.073 | ug/m³ |                |                  |             |                |      |               |       |
| Bromodichloromethane      | < 3.4  | 3.4  | 0.13  | ug/m³ |                |                  |             |                |      |               |       |
| Bromoform                 | < 5.2  | 5.2  | 0.13  | ug/m³ |                |                  |             |                |      |               |       |
| Bromomethane              | < 1.9  | 1.9  | 0.069 | ug/m³ |                |                  |             |                |      |               |       |
| Carbon disulfide          | < 1.6  | 1.6  | 0.070 | ug/m³ |                |                  |             |                |      |               |       |
| Carbon tetrachloride      | < 3.1  | 3.1  | 0.087 | ug/m³ |                |                  |             |                |      |               |       |
| Chlorobenzene             | < 2.3  | 2.3  | 0.080 | ug/m³ |                |                  |             |                |      |               |       |
| Chloroethane              | < 1.3  | 1.3  | 0.037 | ug/m³ |                |                  |             |                |      |               |       |
| Chloroform                | < 2.4  | 2.4  | 0.055 | ug/m³ |                |                  |             |                |      |               |       |
| Chloromethane             | < 1.0  | 1.0  | 0.044 | ug/m³ |                |                  |             |                |      |               |       |
| cis-1,2-Dichloroethene    | < 2.0  | 2.0  | 0.089 | ug/m³ |                |                  |             |                |      |               |       |
| cis-1,3-Dichloropropene   | < 2.3  | 2.3  | 0.12  | ug/m³ |                |                  |             |                |      |               |       |
| Cyclohexane               | < 1.7  | 1.7  | 0.059 | ug/m³ |                |                  |             |                |      |               |       |
| Dibromochloromethane      | < 4.3  | 4.3  | 0.16  | ug/m³ |                |                  |             |                |      |               |       |
| Dichlorodifluoromethane   | < 2.5  | 2.5  | 0.12  | ug/m³ |                |                  |             |                |      |               |       |
| Dichlorotetrafluoroethane | < 3.5  | 3.5  | 0.063 | ug/m³ |                |                  |             |                |      |               |       |
| Ethanol                   | < 0.94 | 0.94 | 0.068 | ug/m³ |                |                  |             |                |      |               |       |
| Ethyl acetate             | < 1.8  | 1.8  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| Ethylbenzene              | < 0.87 | 0.87 | 0.082 | ug/m³ |                |                  |             |                |      |               |       |
| Hexachlorobutadiene       | < 5.3  | 5.3  | 0.27  | ug/m³ |                |                  |             |                |      |               |       |
| Isopropyl alcohol         | < 1.2  | 1.2  | 0.075 | ug/m³ |                |                  |             |                |      |               |       |

Legend Technical Services, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Fax: 651-642-1139

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: Crc-City of Rochester Work Order #: 1601431
Bloomington, MN 55431 Project Manager: Mr. Aaron Kuck Date Reported: 04/13/16

#### VOC - AIR - Quality Control Legend Technical Services, Inc.

| Analyte                   | Result | RL   | MDL   | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | %RPD | %RPD<br>Limit | Notes |
|---------------------------|--------|------|-------|-------|----------------|------------------|-------------|----------------|------|---------------|-------|
| Batch B6D1119 - TO-15     |        |      |       |       |                |                  |             |                |      |               |       |
| Blank (B6D1119-BLK1)      |        |      |       |       | Prepared       | l & Analyze      | nd: 04/11/1 | 6              |      |               |       |
| m,p-Xylene                | < 1.7  | 1.7  | 0.15  | ug/m³ | -              | •                |             |                |      |               |       |
| Methyl butyl ketone       | < 2.0  | 2.0  | 0.12  | ug/m³ |                |                  |             |                |      |               |       |
| Methyl isobutyl ketone    | < 2.0  | 2.0  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| Methyl tert-butyl ether   | < 1.8  | 1.8  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| Methylene chloride        | < 1.7  | 1.7  | 0.21  | ug/m³ |                |                  |             |                |      |               |       |
| Naphthalene               | < 2.6  | 2.6  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| n-Heptane                 | < 2.0  | 2.0  | 0.078 | ug/m³ |                |                  |             |                |      |               |       |
| n-Hexane                  | < 1.8  | 1.8  | 0.074 | ug/m³ |                |                  |             |                |      |               |       |
| o-Xylene                  | < 0.87 | 0.87 | 0.096 | ug/m³ |                |                  |             |                |      |               |       |
| Propylene                 | < 0.86 | 0.86 | 0.027 | ug/m³ |                |                  |             |                |      |               |       |
| Styrene                   | < 2.1  | 2.1  | 0.096 | ug/m³ |                |                  |             |                |      |               |       |
| Tetrachloroethene         | < 3.4  | 3.4  | 0.13  | ug/m³ |                |                  |             |                |      |               |       |
| Tetrahydrofuran           | < 1.5  | 1.5  | 0.038 | ug/m³ |                |                  |             |                |      |               |       |
| Toluene                   | < 0.75 | 0.75 | 0.060 | ug/m³ |                |                  |             |                |      |               |       |
| trans-1,2-Dichloroethene  | < 2.0  | 2.0  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| trans-1,3-Dichloropropene | < 2.3  | 2.3  | 0.070 | ug/m³ |                |                  |             |                |      |               |       |
| Trichloroethene           | < 1.1  | 1.1  | 0.12  | ug/m³ |                |                  |             |                |      |               |       |
| Trichlorofluoromethane    | < 2.8  | 2.8  | 0.048 | ug/m³ |                |                  |             |                |      |               |       |
| Trichlorotrifluoroethane  | < 3.8  | 3.8  | 0.17  | ug/m³ |                |                  |             |                |      |               |       |
| Vinyl acetate             | < 1.8  | 1.8  | 0.90  | ug/m³ |                |                  |             |                |      |               |       |
| Vinyl chloride            | < 0.51 | 0.51 | 0.051 | ug/m³ |                |                  |             |                |      |               |       |
| LCS (B6D1119-BS1)         |        |      |       |       | Prepared       | l & Analyze      | ed: 04/11/1 | 6              |      |               |       |
| 1,1,1-Trichloroethane     | 56.7   | 2.7  | 0.044 | ug/m³ | 54.6           |                  | 104         | 70-130         |      |               |       |
| 1,1,2,2-Tetrachloroethane | 60.1   | 3.4  | 0.074 | ug/m³ | 68.6           |                  | 87.5        | 70-130         |      |               |       |
| 1,1,2-Trichloroethane     | 55.1   | 2.7  | 0.11  | ug/m³ | 54.6           |                  | 101         | 70-130         |      |               |       |
| 1,1-Dichloroethane        | 42.9   | 2.0  | 0.11  | ug/m³ | 40.5           |                  | 106         | 70-130         |      |               |       |
| 1,1-Dichloroethene        | 40.8   | 2.0  | 0.078 | ug/m³ | 39.6           |                  | 103         | 70-130         |      |               |       |
| 1,2,4-Trichlorobenzene    | 67.9   | 3.7  | 0.13  | ug/m³ | 74.2           |                  | 91.5        | 70-130         |      |               |       |
| 1,2,4-Trimethylbenzene    | 43.0   | 1.0  | 0.073 | ug/m³ | 49.2           |                  | 87.4        | 70-130         |      |               |       |
| 1,2-Dibromoethane         | 77.6   | 3.8  | 0.16  | ug/m³ | 76.8           |                  | 101         | 70-130         |      |               |       |
| 1,2-Dichlorobenzene       | 51.2   | 3.0  | 0.071 | ug/m³ | 60.1           |                  | 85.2        | 70-130         |      |               |       |
| 1,2-Dichloroethane        | 39.3   | 2.0  | 0.055 | ug/m³ | 40.5           |                  | 97.0        | 70-130         |      |               |       |
| 1,2-Dichloropropane       | 45.6   | 2.3  | 0.081 | ug/m³ | 46.2           |                  | 98.7        | 70-130         |      |               |       |
| 1,3,5-Trimethylbenzene    | 41.8   | 1.0  | 0.11  | ug/m³ | 49.2           |                  | 85.1        | 70-130         |      |               |       |
| 1,3-Butadiene             | 22.3   | 1.1  | 0.10  | ug/m³ | 22.1           |                  | 101         | 70-130         |      |               |       |
| 1,3-Dichlorobenzene       | 52.9   | 3.0  | 0.14  | ug/m³ | 60.1           |                  | 88.0        | 70-130         |      |               |       |
| 1,4-Dichlorobenzene       | 53.3   | 3.0  | 0.17  | ug/m³ | 60.1           |                  | 88.6        | 70-130         |      |               |       |
| 2-Butanone                | 26.7   | 1.5  | 0.078 | ug/m³ | 29.5           |                  | 90.7        | 70-130         |      |               |       |
| 4-Ethyltoluene            | 43.2   | 2.5  | 0.11  | ug/m³ | 49.2           |                  | 87.9        | 70-130         |      |               |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: Crc-City of Rochester Work Order #: 1601431
Bloomington, MN 55431 Project Manager: Mr. Aaron Kuck Date Reported: 04/13/16

#### VOC - AIR - Quality Control Legend Technical Services, Inc.

| Analyte                   | Result | RL   | MDL   | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | %RPD | %RPD<br>Limit | Notes |
|---------------------------|--------|------|-------|-------|----------------|------------------|-------------|----------------|------|---------------|-------|
| Batch B6D1119 - TO-15     |        |      |       |       |                |                  |             |                |      |               |       |
| LCS (B6D1119-BS1)         |        |      |       |       | Prepared       | l & Analyze      | ed: 04/11/1 | 6              |      |               |       |
| Acetone                   | 29.2   | 1.2  | 0.055 | ug/m³ | 23.8           |                  | 123         | 70-130         |      |               |       |
| Benzene                   | 33.2   | 0.64 | 0.050 | ug/m³ | 31.9           |                  | 104         | 70-130         |      |               |       |
| Benzyl chloride           | 48.5   | 2.6  | 0.073 | ug/m³ | 51.8           |                  | 93.7        | 70-130         |      |               |       |
| Bromodichloromethane      | 69.0   | 3.4  | 0.13  | ug/m³ | 67.0           |                  | 103         | 70-130         |      |               |       |
| Bromoform                 | 97.4   | 5.2  | 0.13  | ug/m³ | 103            |                  | 94.2        | 70-130         |      |               |       |
| Bromomethane              | 43.9   | 1.9  | 0.069 | ug/m³ | 38.8           |                  | 113         | 70-130         |      |               |       |
| Carbon disulfide          | 33.0   | 1.6  | 0.070 | ug/m³ | 31.1           |                  | 106         | 70-130         |      |               |       |
| Carbon tetrachloride      | 66.1   | 3.1  | 0.087 | ug/m³ | 62.9           |                  | 105         | 70-130         |      |               |       |
| Chlorobenzene             | 43.7   | 2.3  | 0.080 | ug/m³ | 46.0           |                  | 95.0        | 70-130         |      |               |       |
| Chloroethane              | 27.7   | 1.3  | 0.037 | ug/m³ | 26.4           |                  | 105         | 70-130         |      |               |       |
| Chloroform                | 49.8   | 2.4  | 0.055 | ug/m³ | 48.8           |                  | 102         | 70-130         |      |               |       |
| Chloromethane             | 21.5   | 1.0  | 0.044 | ug/m³ | 20.6           |                  | 104         | 70-130         |      |               |       |
| cis-1,2-Dichloroethene    | 44.0   | 2.0  | 0.089 | ug/m³ | 39.6           |                  | 111         | 70-130         |      |               |       |
| cis-1,3-Dichloropropene   | 46.7   | 2.3  | 0.12  | ug/m³ | 45.4           |                  | 103         | 70-130         |      |               |       |
| Cyclohexane               | 34.8   | 1.7  | 0.059 | ug/m³ | 34.4           |                  | 101         | 70-130         |      |               |       |
| Dibromochloromethane      | 87.7   | 4.3  | 0.16  | ug/m³ | 85.2           |                  | 103         | 70-130         |      |               |       |
| Dichlorodifluoromethane   | 47.5   | 2.5  | 0.12  | ug/m³ | 49.5           |                  | 96.1        | 70-130         |      |               |       |
| Dichlorotetrafluoroethane | 76.2   | 3.5  | 0.063 | ug/m³ | 69.9           |                  | 109         | 70-130         |      |               |       |
| Ethanol                   | 20.2   | 0.94 | 0.068 | ug/m³ | 18.8           |                  | 107         | 70-130         |      |               |       |
| Ethyl acetate             | 33.4   | 1.8  | 0.11  | ug/m³ | 36.0           |                  | 92.6        | 70-130         |      |               |       |
| Ethylbenzene              | 40.8   | 0.87 | 0.082 | ug/m³ | 43.4           |                  | 94.0        | 70-130         |      |               |       |
| Hexachlorobutadiene       | 83.3   | 5.3  | 0.27  | ug/m³ | 107            |                  | 78.1        | 70-130         |      |               |       |
| Isopropyl alcohol         | 24.8   | 1.2  | 0.075 | ug/m³ | 24.6           |                  | 101         | 70-130         |      |               |       |
| m,p-Xylene                | 82.1   | 1.7  | 0.15  | ug/m³ | 86.8           |                  | 94.5        | 70-130         |      |               |       |
| Methyl butyl ketone       | 44.7   | 2.0  | 0.12  | ug/m³ | 41.0           |                  | 109         | 70-130         |      |               |       |
| Methyl isobutyl ketone    | 40.2   | 2.0  | 0.11  | ug/m³ | 41.0           |                  | 98.1        | 70-130         |      |               |       |
| Methyl tert-butyl ether   | 35.9   | 1.8  | 0.11  | ug/m³ | 36.1           |                  | 99.6        | 70-130         |      |               |       |
| Methylene chloride        | 41.3   | 1.7  | 0.21  | ug/m³ | 34.7           |                  | 119         | 70-130         |      |               |       |
| Naphthalene               | 49.4   | 2.6  | 0.11  | ug/m³ | 55.0           |                  | 89.8        | 70-130         |      |               |       |
| n-Heptane                 | 41.8   | 2.0  | 0.078 | ug/m³ | 41.0           |                  | 102         | 70-130         |      |               |       |
| n-Hexane                  | 37.7   | 1.8  | 0.074 | ug/m³ | 35.2           |                  | 107         | 70-130         |      |               |       |
| o-Xylene                  | 40.2   | 0.87 | 0.096 | ug/m³ | 43.4           |                  | 92.6        | 70-130         |      |               |       |
| Propylene                 | 16.5   | 0.86 | 0.027 | ug/m³ | 17.2           |                  | 95.9        | 70-130         |      |               |       |
| Styrene                   | 39.6   | 2.1  | 0.096 | ug/m³ | 42.6           |                  | 92.9        | 70-130         |      |               |       |
| Tetrachloroethene         | 68.5   | 3.4  | 0.13  | ug/m³ | 67.8           |                  | 101         | 70-130         |      |               |       |
| Tetrahydrofuran           | 31.0   | 1.5  | 0.038 | ug/m³ | 29.5           |                  | 105         | 70-130         |      |               |       |
| Toluene                   | 37.6   | 0.75 | 0.060 | ug/m³ | 37.7           |                  | 99.7        | 70-130         |      |               |       |
| trans-1,2-Dichloroethene  | 42.8   | 2.0  | 0.11  | ug/m³ | 39.6           |                  | 108         | 70-130         |      |               |       |
| trans-1,3-Dichloropropene | 45.2   | 2.3  | 0.070 | ug/m³ | 45.4           |                  | 99.5        | 70-130         |      |               |       |
| Trichloroethene           | 53.7   | 1.1  | 0.12  | ug/m³ | 53.7           |                  | 100         | 70-130         |      |               |       |

Legend Technical Services, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: Crc-City of Rochester Work Order #: 1601431
Bloomington, MN 55431 Project Manager: Mr. Aaron Kuck Date Reported: 04/13/16

| Analyte                   | Result | RL        | MDL       | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | %RPD | %RPD<br>Limit | Notes |
|---------------------------|--------|-----------|-----------|-------|----------------|------------------|-------------|----------------|------|---------------|-------|
| Batch B6D1119 - TO-15     |        |           |           |       |                |                  |             |                |      |               |       |
| LCS (B6D1119-BS1)         |        |           |           |       | Prepared       | I & Analyze      | ed: 04/11/1 | 6              |      |               |       |
| Trichlorofluoromethane    | 62.9   | 2.8       | 0.048     | ug/m³ | 56.2           | •                | 112         | 70-130         |      |               |       |
| Trichlorotrifluoroethane  | 85.1   | 3.8       | 0.17      | ug/m³ | 76.6           |                  | 111         | 70-130         |      |               |       |
| √inyl acetate             | 37.0   | 1.8       | 0.90      | ug/m³ | 35.2           |                  | 105         | 70-130         |      |               |       |
| √inyl chloride            | 27.4   | 0.51      | 0.051     | ug/m³ | 25.6           |                  | 107         | 70-130         |      |               |       |
| Duplicate (B6D1119-DUP1)  |        | Source: 1 | 1601540-0 | 1     | Prepared       | I & Analyze      | ed: 04/11/1 | 6              |      |               |       |
| ,1,1-Trichloroethane      | < 2.7  | 2.7       | 0.044     | ug/m³ | •              | <2.7             |             |                | NA   | 25            |       |
| 1,1,2,2-Tetrachloroethane | < 3.4  | 3.4       | 0.074     | ug/m³ |                | <3.4             |             |                | NA   | 25            |       |
| ,1,2-Trichloroethane      | < 2.7  | 2.7       | 0.11      | ug/m³ |                | <2.7             |             |                | NA   | 25            |       |
| ,1-Dichloroethane         | < 2.0  | 2.0       | 0.11      | ug/m³ |                | <2.0             |             |                | NA   | 25            |       |
| ,1-Dichloroethene         | < 2.0  | 2.0       | 0.078     | ug/m³ |                | <2.0             |             |                | NA   | 25            |       |
| ,2,4-Trichlorobenzene     | < 3.7  | 3.7       | 0.13      | ug/m³ |                | <3.7             |             |                | NA   | 25            |       |
| ,2,4-Trimethylbenzene     | < 1.0  | 1.0       | 0.073     | ug/m³ |                | <1.0             |             |                | NA   | 25            |       |
| ,2-Dibromoethane          | < 3.8  | 3.8       | 0.16      | ug/m³ |                | <3.8             |             |                | NA   | 25            |       |
| ,2-Dichlorobenzene        | < 3.0  | 3.0       | 0.071     | ug/m³ |                | <3.0             |             |                | NA   | 25            |       |
| ,2-Dichloroethane         | < 2.0  | 2.0       | 0.055     | ug/m³ |                | <2.0             |             |                | NA   | 25            |       |
| ,2-Dichloropropane        | < 2.3  | 2.3       | 0.081     | ug/m³ |                | <2.3             |             |                | NA   | 25            |       |
| ,3,5-Trimethylbenzene     | < 1.0  | 1.0       | 0.11      | ug/m³ |                | <1.0             |             |                | NA   | 25            |       |
| ,3-Butadiene              | < 1.1  | 1.1       | 0.10      | ug/m³ |                | <1.1             |             |                | NA   | 25            |       |
| ,3-Dichlorobenzene        | < 3.0  | 3.0       | 0.14      | ug/m³ |                | <3.0             |             |                | NA   | 25            |       |
| ,4-Dichlorobenzene        | < 3.0  | 3.0       | 0.17      | ug/m³ |                | <3.0             |             |                | NA   | 25            |       |
| -Butanone                 | < 1.5  | 1.5       | 0.078     | ug/m³ |                | <1.5             |             |                | NA   | 25            |       |
| -Ethyltoluene             | < 2.5  | 2.5       | 0.11      | ug/m³ |                | <2.5             |             |                | NA   | 25            |       |
| cetone                    | 8.45   | 1.2       | 0.055     | ug/m³ |                | 8.33             |             |                | 1.42 | 25            |       |
| Benzene                   | < 0.64 | 0.64      | 0.050     | ug/m³ |                | < 0.64           |             |                | NA   | 25            |       |
| senzyl chloride           | < 2.6  | 2.6       | 0.073     | ug/m³ |                | <2.6             |             |                | NA   | 25            |       |
| romodichloromethane       | < 3.4  | 3.4       | 0.13      | ug/m³ |                | <3.4             |             |                | NA   | 25            |       |
| Bromoform                 | < 5.2  | 5.2       | 0.13      | ug/m³ |                | <5.2             |             |                | NA   | 25            |       |
| Bromomethane              | < 1.9  | 1.9       | 0.069     | ug/m³ |                | <1.9             |             |                | NA   | 25            |       |
| Carbon disulfide          | < 1.6  | 1.6       | 0.070     | ug/m³ |                | <1.6             |             |                | NA   | 25            |       |
| Carbon tetrachloride      | < 3.1  | 3.1       | 0.087     | ug/m³ |                | <3.1             |             |                | NA   | 25            |       |
| Chlorobenzene             | < 2.3  | 2.3       | 0.080     | ug/m³ |                | <2.3             |             |                | NA   | 25            |       |
| Chloroethane              | < 1.3  | 1.3       | 0.037     | ug/m³ |                | <1.3             |             |                | NA   | 25            |       |
| Chloroform                | < 2.4  | 2.4       | 0.055     | ug/m³ |                | <2.4             |             |                | NA   | 25            |       |
| Chloromethane             | < 1.0  | 1.0       | 0.044     | ug/m³ |                | <1.0             |             |                | NA   | 25            |       |
| is-1,2-Dichloroethene     | < 2.0  | 2.0       | 0.089     | ug/m³ |                | <2.0             |             |                | NA   | 25            |       |
| is-1,3-Dichloropropene    | < 2.3  | 2.3       | 0.12      | ug/m³ |                | <2.3             |             |                | NA   | 25            |       |
| Cyclohexane               | < 1.7  | 1.7       | 0.059     | ug/m³ |                | <1.7             |             |                | NA   | 25            |       |
| Dibromochloromethane      | < 4.3  | 4.3       | 0.16      | ug/m³ |                | <4.3             |             |                | NA   | 25            |       |
| Dichlorodifluoromethane   | < 2.5  | 2.5       | 0.12      | ug/m³ |                | <2.5             |             |                | NA   | 25            |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: Crc-City of Rochester Work Order #: 1601431 Bloomington, MN 55431 Project Manager: Mr. Aaron Kuck Date Reported: 04/13/16

| Analys                    | D "    | D.        | MDI      | 1.1-21 | Spike    | Source      | 0/ DEC      | %REC   | 0/ DDC | %RPD  | Neter |
|---------------------------|--------|-----------|----------|--------|----------|-------------|-------------|--------|--------|-------|-------|
| Analyte                   | Result | RL        | MDL      | Units  | Level    | Result      | %REC        | Limits | %RPD   | Limit | Notes |
| Batch B6D1119 - TO-15     |        |           |          |        |          |             |             |        |        |       |       |
| Duplicate (B6D1119-DUP1)  | ,      | Source: 1 | 601540-0 | )1     | Prepared | ł & Analyze | ed: 04/11/1 | 6      |        |       |       |
| Dichlorotetrafluoroethane | < 3.5  | 3.5       | 0.063    | ug/m³  |          | <3.5        |             |        | NA     | 25    |       |
| Ethanol                   | 1.08   | 0.94      | 0.068    | ug/m³  |          | 1.16        |             |        | 7.21   | 25    |       |
| Ethyl acetate             | < 1.8  | 1.8       | 0.11     | ug/m³  |          | <1.8        |             |        | NA     | 25    |       |
| Ethylbenzene              | < 0.87 | 0.87      | 0.082    | ug/m³  |          | <0.87       |             |        | NA     | 25    |       |
| Hexachlorobutadiene       | < 5.3  | 5.3       | 0.27     | ug/m³  |          | <5.3        |             |        | NA     | 25    |       |
| Isopropyl alcohol         | 4.65   | 1.2       | 0.075    | ug/m³  |          | 5.03        |             |        | 7.79   | 25    |       |
| m,p-Xylene                | < 1.7  | 1.7       | 0.15     | ug/m³  |          | <1.7        |             |        | NA     | 25    |       |
| Methyl butyl ketone       | < 2.0  | 2.0       | 0.12     | ug/m³  |          | <2.0        |             |        | NA     | 25    |       |
| Methyl isobutyl ketone    | < 2.0  | 2.0       | 0.11     | ug/m³  |          | <2.0        |             |        | NA     | 25    |       |
| Methyl tert-butyl ether   | < 1.8  | 1.8       | 0.11     | ug/m³  |          | <1.8        |             |        | NA     | 25    |       |
| Methylene chloride        | 1.78   | 1.7       | 0.21     | ug/m³  |          | 1.75        |             |        | 1.73   | 25    |       |
| Naphthalene               | < 2.6  | 2.6       | 0.11     | ug/m³  |          | <2.6        |             |        | NA     | 25    |       |
| n-Heptane                 | < 2.0  | 2.0       | 0.078    | ug/m³  |          | <2.0        |             |        | NA     | 25    |       |
| n-Hexane                  | < 1.8  | 1.8       | 0.074    | ug/m³  |          | <1.8        |             |        | NA     | 25    |       |
| o-Xylene                  | < 0.87 | 0.87      | 0.096    | ug/m³  |          | <0.87       |             |        | NA     | 25    |       |
| Propylene                 | < 0.86 | 0.86      | 0.027    | ug/m³  |          | <0.86       |             |        | NA     | 25    |       |
| Styrene                   | < 2.1  | 2.1       | 0.096    | ug/m³  |          | <2.1        |             |        | NA     | 25    |       |
| Tetrachloroethene         | < 3.4  | 3.4       | 0.13     | ug/m³  |          | <3.4        |             |        | NA     | 25    |       |
| Tetrahydrofuran           | < 1.5  | 1.5       | 0.038    | ug/m³  |          | <1.5        |             |        | NA     | 25    |       |
| Toluene                   | < 0.75 | 0.75      | 0.060    | ug/m³  |          | < 0.75      |             |        | NA     | 25    |       |
| trans-1,2-Dichloroethene  | < 2.0  | 2.0       | 0.11     | ug/m³  |          | <2.0        |             |        | NA     | 25    |       |
| trans-1,3-Dichloropropene | < 2.3  | 2.3       | 0.070    | ug/m³  |          | <2.3        |             |        | NA     | 25    |       |
| Trichloroethene           | < 1.1  | 1.1       | 0.12     | ug/m³  |          | <1.1        |             |        | NA     | 25    |       |
| Trichlorofluoromethane    | < 2.8  | 2.8       | 0.048    | ug/m³  |          | <2.8        |             |        | NA     | 25    |       |
| Trichlorotrifluoroethane  | < 3.8  | 3.8       | 0.17     | ug/m³  |          | <3.8        |             |        | NA     | 25    |       |
| Vinyl acetate             | < 1.8  | 1.8       | 0.90     | ug/m³  |          | <1.8        |             |        | NA     | 25    |       |
| Vinyl chloride            | < 0.51 | 0.51      | 0.051    | ug/m³  |          | <0.51       |             |        | NA     | 25    |       |



Fax: 651-642-1239

| Landmark Environmental | Project:         | IO-15                 |                |          |
|------------------------|------------------|-----------------------|----------------|----------|
| 2042 West 98th Street  | Project Number:  | Crc-City of Rochester | Work Order #:  | 1601431  |
| Bloomington, MN 55431  | Project Manager: | Mr. Aaron Kuck        | Date Reported: | 04/13/16 |

#### **Notes and Definitions**

Less than value listed

NA Not applicable. The %RPD is not calculated from values less than the reporting limit.

MDL Method Detection Limit

RLReporting Limit

RPD Relative Percent Difference

LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

TO-15 (M) w/ TICs Air Analysis Sample Comments Pink Copy - Customer or Field Copy Climit Propert Harms Cre-City of Rochest LEGEND TECHNICAL SERVICES, INC 88 Empire Drive, St. Paul, MN 55103 - Telephone: 651-542-1150, Fax: 651-642-1239 CHAIN-OF-CUSTODY RECORD 20.7 Reading PLEASE REVIEW TERMS AND CONDITIONS ON BACK BEFORE SIGNING Received by Liftx RUSH courte gusp 55.6 Total Part Yellow Copy - Lab Requested Due Date 21:18 ESSEND Proporte Stop Time Colorand Furn Around Time 3/1/16 M 51:51 91 06/5 Start 調の Date White Copy - Original Ancompanies Shipment to Lab 0 Presumer ("Hgg Shop Star 20 Flow Controller Serial # 4224 BILTO E-mail: # Od Serial# 39 Environmental Client Name. Landmark Aaron Kuck Shannon Bussell Flaid ID / Sampler ID OF - Exhaust Form LAB-364.2 (05/14) 18



88 Empire Drive St Paul, MN 55103

Tel: 651-642-1150 Fax: 651-642-1239





88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

May 05, 2016

Mr. Jason Skramstad Landmark Environmental 2042 West 98th Street Bloomington, MN 55431

Work Order Number: 1601751

RE: TO-15

Enclosed are the results of analyses for samples received by the laboratory on 04/22/16. If you have any questions concerning this report, please feel free to contact me.

Samples will not be retained by LEGEND once the analyses are completed.

All internal quality assurance met the method requirements unless otherwise noted in the case narrative. Additionally, all samples were received in acceptable condition unless otherwise noted.

For the tentatively identified compounds (TICs), a computer generated library search was done comparing the spectra of the unknown compounds with spectra contained in the NIST (NBS) and Wiley reference libraries. A visual comparison was made of each unknown compound and the best library match. Quantitation was based on the response of the nearest internal standard. Unidentified peaks were quantified using 100 as the molecular weight. Both the identification of specific compounds and the quantities given should be considered approximations.

Chromatograms are included for samples containing detections.

MDH Accreditation #027-123-295

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham
Client Manager II
bpham@legend-group.com



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CrCWork Order #: 1601751Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 05/05/16

### **ANALYTICAL REPORT FOR SAMPLES**

| Sample ID   | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|-------------|---------------|--------|----------------|----------------|
| DPE-Exhaust | 1601751-01    | Air    | 04/22/16 09:10 | 04/22/16 13:00 |

#### **Case Narrative:**

Per the client's instructions, TICs were not included in this report.



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CrCWork Order #: 1601751Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 05/05/16

# VOC - AIR Legend Technical Services, Inc.

| Analyte (CAS#)                       | Result           | RL      | MDL      | Units      | Dilution | Batch   | Prepared | Analyzed | Method | Notes |
|--------------------------------------|------------------|---------|----------|------------|----------|---------|----------|----------|--------|-------|
| DPE-Exhaust (1601751-01) Air         | Received:04/22/1 | 6 13:00 | Sampled: | 04/22/16 0 | 9:10     |         |          |          |        |       |
| 1,1,1-Trichloroethane (71-55-6)      | <2.7             | 2.7     | 0.044    | ug/m³      | 1        | B6D2914 | 04/27/16 | 04/28/16 | TO-15  |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)  | <3.4             | 3.4     | 0.074    | ug/m³      | 1        | "       | "        |          | "      |       |
| 1,1,2-Trichloroethane (79-00-5)      | <2.7             | 2.7     | 0.11     | ug/m³      | 1        | "       | "        | "        | "      |       |
| 1,1-Dichloroethane (75-34-3)         | <2.0             | 2.0     | 0.11     | ug/m³      | 1        | "       | "        | "        | "      |       |
| 1,1-Dichloroethene (75-35-4)         | <2.0             | 2.0     | 0.078    | ug/m³      | 1        | II .    | "        | "        | m .    |       |
| 1,2,4-Trichlorobenzene (120-82-1)    | <3.7             | 3.7     | 0.13     | ug/m³      | 1        | II .    | "        | "        | m .    |       |
| 1,2,4-Trimethylbenzene (95-63-6)     | <1.0             | 1.0     | 0.073    | ug/m³      | 1        | "       | "        | "        | "      |       |
| 1,2-Dibromoethane (106-93-4)         | <3.8             | 3.8     | 0.16     | ug/m³      | 1        | "       | "        | "        | "      |       |
| 1,2-Dichlorobenzene (95-50-1)        | <3.0             | 3.0     | 0.071    | ug/m³      | 1        | "       | "        |          | "      |       |
| 1,2-Dichloroethane (107-06-2)        | <2.0             | 2.0     | 0.055    | ug/m³      | 1        | "       | "        | "        | "      |       |
| 1,2-Dichloropropane (78-87-5)        | <2.3             | 2.3     | 0.081    | ug/m³      | 1        | "       | "        | "        | "      |       |
| 1,3,5-Trimethylbenzene (108-67-8)    | <1.0             | 1.0     | 0.11     | ug/m³      | 1        | "       | "        | "        | "      |       |
| 1,3-Butadiene (106-99-0)             | <1.1             | 1.1     | 0.10     | ug/m³      | 1        | "       | "        |          | "      |       |
| 1,3-Dichlorobenzene (541-73-1)       | <3.0             | 3.0     | 0.14     | ug/m³      | 1        | "       | "        |          | "      |       |
| 1,4-Dichlorobenzene (106-46-7)       | <3.0             | 3.0     | 0.17     | ug/m³      | 1        | "       | "        | "        | "      |       |
| 2-Butanone (78-93-3)                 | 16               | 1.5     | 0.078    | ug/m³      | 1        | "       | "        | "        | "      |       |
| 4-Ethyltoluene (622-96-8)            | <2.5             | 2.5     | 0.11     | ug/m³      | 1        | "       | "        | "        | "      |       |
| Acetone (67-64-1)                    | 58               | 3.6     | 0.16     | ug/m³      | 3        | "       | "        | 04/29/16 | "      |       |
| Benzene (71-43-2)                    | <0.64            | 0.64    | 0.050    | ug/m³      | 1        | "       | "        | 04/28/16 | "      |       |
| Benzyl chloride (100-44-7)           | <2.6             | 2.6     | 0.073    | ug/m³      | 1        | "       | "        | "        | "      |       |
| Bromodichloromethane (75-27-4)       | <3.4             | 3.4     | 0.13     | ug/m³      | 1        | "       | "        |          | "      |       |
| Bromoform (75-25-2)                  | <5.2             | 5.2     | 0.13     | ug/m³      | 1        | "       | "        | "        | "      |       |
| Bromomethane (74-83-9)               | <1.9             | 1.9     | 0.069    | ug/m³      | 1        | "       | "        |          | "      |       |
| Carbon disulfide (75-15-0)           | <1.6             | 1.6     | 0.070    | ug/m³      | 1        | "       | "        |          | "      |       |
| Carbon tetrachloride (56-23-5)       | <3.1             | 3.1     | 0.087    | ug/m³      | 1        | "       | "        | "        | "      |       |
| Chlorobenzene (108-90-7)             | <2.3             | 2.3     | 0.080    | ug/m³      | 1        | "       | "        |          | "      |       |
| Chloroethane (75-00-3)               | <1.3             | 1.3     | 0.037    | ug/m³      | 1        | "       | "        |          | "      |       |
| Chloroform (67-66-3)                 | <2.4             | 2.4     | 0.055    | ug/m³      | 1        | "       | "        |          | "      |       |
| Chloromethane (74-87-3)              | 1.4              | 1.0     | 0.044    | ug/m³      | 1        | "       | "        | "        | "      |       |
| cis-1,2-Dichloroethene (156-59-2)    | <2.0             | 2.0     | 0.089    | ug/m³      | 1        | "       | "        | "        | "      |       |
| cis-1,3-Dichloropropene (10061-01-5) | <2.3             | 2.3     | 0.12     | ug/m³      | 1        | "       | "        |          | "      |       |
| Cyclohexane (110-82-7)               | <1.7             | 1.7     | 0.059    | ug/m³      | 1        | "       | "        | "        | "      |       |
| Dibromochloromethane (124-48-1)      | <4.3             | 4.3     | 0.16     | ug/m³      | 1        | "       | "        | "        | "      |       |
| Dichlorodifluoromethane (75-71-8)    | 12               | 2.5     | 0.12     | ug/m³      | 1        | "       | "        |          | "      |       |
| Dichlorotetrafluoroethane (76-14-2)  | <3.5             | 3.5     | 0.063    | ug/m³      | 1        | "       | "        | "        | "      |       |

Legend Technical Services, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CrCBloomington, MN 55431Project Manager:Mr. Jason Skramstad

Work Order #: 1601751
Date Reported: 05/05/16

| Analyte (CAS#)                        | Result           | RL      | MDL      | Units       | Dilution | Batch   | Prepared | Analyzed | Method | Notes |
|---------------------------------------|------------------|---------|----------|-------------|----------|---------|----------|----------|--------|-------|
| DPE-Exhaust (1601751-01) Air          | Received:04/22/1 | 6 13:00 | Sampled: | 04/22/16 09 | 9:10     |         |          |          |        |       |
| Ethanol (64-17-5)                     | 420              | 28      | 2.0      | ug/m³       | 30       | B6D2914 | 04/27/16 | 04/29/16 | TO-15  |       |
| Ethyl acetate (141-78-6)              | <1.8             | 1.8     | 0.11     | ug/m³       | 1        | "       | "        | 04/28/16 | "      |       |
| Ethylbenzene (100-41-4)               | <0.87            | 0.87    | 0.082    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Hexachlorobutadiene (87-68-3)         | <5.3             | 5.3     | 0.27     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Isopropyl alcohol (67-63-0)           | 710              | 36      | 2.2      | ug/m³       | 30       | "       | "        | 04/29/16 | "      |       |
| m,p-Xylene (136777-61-2)              | 2.1              | 1.7     | 0.15     | ug/m³       | 1        | "       | "        | 04/28/16 | "      |       |
| Methyl butyl ketone (591-78-6)        | <2.0             | 2.0     | 0.12     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Methyl isobutyl ketone (108-10-1)     | <2.0             | 2.0     | 0.11     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Methyl tert-butyl ether (1634-04-4)   | <1.8             | 1.8     | 0.11     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Methylene chloride (75-09-2)          | 5.3              | 1.7     | 0.21     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Naphthalene (91-20-3)                 | <2.6             | 2.6     | 0.11     | ug/m³       | 1        | "       | "        |          | "      |       |
| n-Heptane (142-82-5)                  | <2.0             | 2.0     | 0.078    | ug/m³       | 1        | "       | "        |          | "      |       |
| n-Hexane (110-54-3)                   | 2.3              | 1.8     | 0.074    | ug/m³       | 1        | "       | "        |          | "      |       |
| o-Xylene (95-47-6)                    | 0.90             | 0.87    | 0.096    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Propylene (115-07-1)                  | <0.86            | 0.86    | 0.027    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Styrene (100-42-5)                    | <2.1             | 2.1     | 0.096    | ug/m³       | 1        | "       | "        |          | "      |       |
| Tetrachloroethene (127-18-4)          | 5.8              | 3.4     | 0.13     | ug/m³       | 1        | "       | "        |          | "      |       |
| Tetrahydrofuran (109-99-9)            | 2.0              | 1.5     | 0.038    | ug/m³       | 1        | "       | "        |          | "      |       |
| Toluene (108-88-3)                    | 3.6              | 0.75    | 0.060    | ug/m³       | 1        | "       | "        |          | "      |       |
| trans-1,2-Dichloroethene (156-60-5)   | <2.0             | 2.0     | 0.11     | ug/m³       | 1        | "       | "        |          | "      |       |
| trans-1,3-Dichloropropene (10061-02-6 | 3) <2.3          | 2.3     | 0.070    | ug/m³       | 1        | n .     | "        | "        | п      |       |
| Trichloroethene (79-01-6)             | <1.1             | 1.1     | 0.12     | ug/m³       | 1        | n .     | "        | "        | п      |       |
| Trichlorofluoromethane (75-69-4)      | <2.8             | 2.8     | 0.048    | ug/m³       | 1        | n .     | "        | "        | п      |       |
| Trichlorotrifluoroethane (76-13-1)    | 1900             | 110     | 5.1      | ug/m³       | 30       | "       | "        | 04/29/16 | п      |       |
| Vinyl acetate (108-05-4)              | <1.8             | 1.8     | 0.90     | ug/m³       | 1        | n .     | "        | 04/28/16 | п      |       |
| Vinyl chloride (75-01-4)              | <0.51            | 0.51    | 0.051    | ug/m³       | 1        | "       | "        | "        | "      |       |



Bloomington, MN 55431

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150

Fax: 651-642-1239

Landmark Environmental Project: TO-15 2042 West 98th Street Project Number: CrC

Project Manager: Mr. Jason Skramstad

Work Order #: 1601751 Date Reported: 05/05/16

# **VOC - AIR - Quality Control** Legend Technical Services, Inc.

| Analyte                   | Result | RL   | MDL   | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | %RPD | %RPD<br>Limit | Notes |
|---------------------------|--------|------|-------|-------|----------------|------------------|-------------|----------------|------|---------------|-------|
| Batch B6D2914 - TO-15     |        |      |       |       |                |                  |             |                |      |               |       |
| Blank (B6D2914-BLK1)      |        |      |       |       | Prepared       | l & Analyze      | ed: 04/27/1 | 16             |      |               |       |
| 1,1,1-Trichloroethane     | < 2.7  | 2.7  | 0.044 | ug/m³ | ·              | •                |             |                |      |               |       |
| 1,1,2,2-Tetrachloroethane | < 3.4  | 3.4  | 0.074 | ug/m³ |                |                  |             |                |      |               |       |
| 1,1,2-Trichloroethane     | < 2.7  | 2.7  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| 1,1-Dichloroethane        | < 2.0  | 2.0  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| 1,1-Dichloroethene        | < 2.0  | 2.0  | 0.078 | ug/m³ |                |                  |             |                |      |               |       |
| 1,2,4-Trichlorobenzene    | < 3.7  | 3.7  | 0.13  | ug/m³ |                |                  |             |                |      |               |       |
| 1,2,4-Trimethylbenzene    | < 1.0  | 1.0  | 0.073 | ug/m³ |                |                  |             |                |      |               |       |
| 1,2-Dibromoethane         | < 3.8  | 3.8  | 0.16  | ug/m³ |                |                  |             |                |      |               |       |
| 1,2-Dichlorobenzene       | < 3.0  | 3.0  | 0.071 | ug/m³ |                |                  |             |                |      |               |       |
| 1,2-Dichloroethane        | < 2.0  | 2.0  | 0.055 | ug/m³ |                |                  |             |                |      |               |       |
| 1,2-Dichloropropane       | < 2.3  | 2.3  | 0.081 | ug/m³ |                |                  |             |                |      |               |       |
| 1,3,5-Trimethylbenzene    | < 1.0  | 1.0  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| 1,3-Butadiene             | < 1.1  | 1.1  | 0.10  | ug/m³ |                |                  |             |                |      |               |       |
| 1,3-Dichlorobenzene       | < 3.0  | 3.0  | 0.14  | ug/m³ |                |                  |             |                |      |               |       |
| 1,4-Dichlorobenzene       | < 3.0  | 3.0  | 0.17  | ug/m³ |                |                  |             |                |      |               |       |
| 2-Butanone                | < 1.5  | 1.5  | 0.078 | ug/m³ |                |                  |             |                |      |               |       |
| 4-Ethyltoluene            | < 2.5  | 2.5  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| Acetone                   | < 1.2  | 1.2  | 0.055 | ug/m³ |                |                  |             |                |      |               |       |
| Benzene                   | < 0.64 | 0.64 | 0.050 | ug/m³ |                |                  |             |                |      |               |       |
| Benzyl chloride           | < 2.6  | 2.6  | 0.073 | ug/m³ |                |                  |             |                |      |               |       |
| Bromodichloromethane      | < 3.4  | 3.4  | 0.13  | ug/m³ |                |                  |             |                |      |               |       |
| Bromoform                 | < 5.2  | 5.2  | 0.13  | ug/m³ |                |                  |             |                |      |               |       |
| Bromomethane              | < 1.9  | 1.9  | 0.069 | ug/m³ |                |                  |             |                |      |               |       |
| Carbon disulfide          | < 1.6  | 1.6  | 0.070 | ug/m³ |                |                  |             |                |      |               |       |
| Carbon tetrachloride      | < 3.1  | 3.1  | 0.087 | ug/m³ |                |                  |             |                |      |               |       |
| Chlorobenzene             | < 2.3  | 2.3  | 0.080 | ug/m³ |                |                  |             |                |      |               |       |
| Chloroethane              | < 1.3  | 1.3  | 0.037 | ug/m³ |                |                  |             |                |      |               |       |
| Chloroform                | < 2.4  | 2.4  | 0.055 | ug/m³ |                |                  |             |                |      |               |       |
| Chloromethane             | < 1.0  | 1.0  | 0.044 | ug/m³ |                |                  |             |                |      |               |       |
| cis-1,2-Dichloroethene    | < 2.0  | 2.0  | 0.089 | ug/m³ |                |                  |             |                |      |               |       |
| cis-1,3-Dichloropropene   | < 2.3  | 2.3  | 0.12  | ug/m³ |                |                  |             |                |      |               |       |
| Cyclohexane               | < 1.7  | 1.7  | 0.059 | ug/m³ |                |                  |             |                |      |               |       |
| Dibromochloromethane      | < 4.3  | 4.3  | 0.16  | ug/m³ |                |                  |             |                |      |               |       |
| Dichlorodifluoromethane   | < 2.5  | 2.5  | 0.12  | ug/m³ |                |                  |             |                |      |               |       |
| Dichlorotetrafluoroethane | < 3.5  | 3.5  | 0.063 | ug/m³ |                |                  |             |                |      |               |       |
| Ethanol                   | < 0.94 | 0.94 | 0.068 | ug/m³ |                |                  |             |                |      |               |       |
| Ethyl acetate             | < 1.8  | 1.8  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| Ethylbenzene              | < 0.87 | 0.87 | 0.082 | ug/m³ |                |                  |             |                |      |               |       |
| Hexachlorobutadiene       | < 5.3  | 5.3  | 0.27  | ug/m³ |                |                  |             |                |      |               |       |
| Isopropyl alcohol         | < 1.2  | 1.2  | 0.075 | ug/m³ |                |                  |             |                |      |               |       |

Legend Technical Services, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CrCBloomington, MN 55431Project Manager:Mr. Jason Skramstad

Work Order #: 1601751
Date Reported: 05/05/16

| Analyte                   | Result           | RL         | MDL   | Units          | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | %RPD | %RPD<br>Limit | Notes |
|---------------------------|------------------|------------|-------|----------------|----------------|------------------|-------------|----------------|------|---------------|-------|
| Batch B6D2914 - TO-15     |                  |            |       |                |                |                  |             |                |      |               |       |
| Blank (B6D2914-BLK1)      |                  |            |       |                | Prenared       | ł & Analyze      | id: 04/27/1 | 6              |      |               |       |
| m,p-Xylene                | < 1.7            | 1.7        | 0.15  | ug/m³          | . roparet      | maiy2t           | .w. U7/21/1 | . •            |      |               |       |
| Methyl butyl ketone       | < 1.7<br>< 2.0   | 2.0        | 0.15  | ug/m³          |                |                  |             |                |      |               |       |
| Methyl isobutyl ketone    | < 2.0<br>< 2.0   | 2.0        | 0.12  | ug/m³<br>ug/m³ |                |                  |             |                |      |               |       |
| Methyl tert-butyl ether   | < 2.0<br>< 1.8   | 1.8        | 0.11  | ug/m³          |                |                  |             |                |      |               |       |
| Methylene chloride        | < 1.8<br>< 1.7   | 1.0        | 0.11  | ug/m³          |                |                  |             |                |      |               |       |
| Naphthalene               | < 2.6            | 2.6        | 0.21  | ug/m³          |                |                  |             |                |      |               |       |
| n-Heptane                 | < 2.0            | 2.0        | 0.11  | ug/m³          |                |                  |             |                |      |               |       |
| n-Hexane                  | < 2.0<br>< 1.8   | 1.8        | 0.078 | ug/m³          |                |                  |             |                |      |               |       |
| o-Xylene                  | < 0.87           | 0.87       | 0.074 | ug/m³          |                |                  |             |                |      |               |       |
| o-xylene<br>Propylene     | < 0.87<br>< 0.86 | 0.87       | 0.096 | ug/m³<br>ug/m³ |                |                  |             |                |      |               |       |
| Propylene<br>Styrene      | < 0.86<br>< 2.1  | 2.1        | 0.027 | ug/m³<br>ug/m³ |                |                  |             |                |      |               |       |
| Tetrachloroethene         | < 2.1<br>< 3.4   | 3.4        | 0.096 | ug/m³          |                |                  |             |                |      |               |       |
| Tetrahydrofuran           | < 3.4<br>< 1.5   | 3.4<br>1.5 | 0.13  | ug/m³<br>ug/m³ |                |                  |             |                |      |               |       |
| Toluene                   | < 0.75           | 0.75       | 0.060 | ug/m³          |                |                  |             |                |      |               |       |
| trans-1,2-Dichloroethene  | < 2.0            | 2.0        | 0.000 | ug/m³          |                |                  |             |                |      |               |       |
| trans-1,3-Dichloropropene | < 2.3            | 2.3        | 0.11  | ug/m³          |                |                  |             |                |      |               |       |
| Trichloroethene           | < 1.1            | 1.1        | 0.070 | ug/m³          |                |                  |             |                |      |               |       |
| Trichlorofluoromethane    | < 2.8            | 2.8        | 0.12  | ug/m³          |                |                  |             |                |      |               |       |
| Trichlorotrifluoroethane  | < 3.8            | 3.8        | 0.048 | ug/m³          |                |                  |             |                |      |               |       |
| Vinyl acetate             | < 1.8            | 1.8        | 0.17  | ug/m³          |                |                  |             |                |      |               |       |
| Vinyl chloride            | < 0.51           | 0.51       | 0.051 | ug/m³          |                |                  |             |                |      |               |       |
| LCS (B6D2914-BS1)         |                  |            |       |                | Prepared       | ł & Analyze      | ed: 04/27/1 | 6              |      |               |       |
| 1,1,1-Trichloroethane     | 56.7             | 2.7        | 0.044 | ug/m³          | 54.6           | ,                | 104         | 70-130         |      |               |       |
| 1,1,2,2-Tetrachloroethane | 65.8             | 3.4        | 0.074 | ug/m³          | 68.6           |                  | 95.8        | 70-130         |      |               |       |
| 1,1,2-Trichloroethane     | 53.1             | 2.7        | 0.11  | ug/m³          | 54.6           |                  | 97.4        | 70-130         |      |               |       |
| 1,1-Dichloroethane        | 38.7             | 2.0        | 0.11  | ug/m³          | 40.5           |                  | 95.5        | 70-130         |      |               |       |
| 1,1-Dichloroethene        | 37.5             | 2.0        | 0.078 | ug/m³          | 39.6           |                  | 94.6        | 70-130         |      |               |       |
| 1,2,4-Trichlorobenzene    | 92.0             | 3.7        | 0.13  | ug/m³          | 74.2           |                  | 124         | 70-130         |      |               |       |
| 1,2,4-Trimethylbenzene    | 48.1             | 1.0        | 0.073 | ug/m³          | 49.2           |                  | 97.8        | 70-130         |      |               |       |
| 1,2-Dibromoethane         | 75.6             | 3.8        | 0.16  | ug/m³          | 76.8           |                  | 98.4        | 70-130         |      |               |       |
| 1,2-Dichlorobenzene       | 59.5             | 3.0        | 0.071 | ug/m³          | 60.1           |                  | 99.0        | 70-130         |      |               |       |
| 1,2-Dichloroethane        | 43.7             | 2.0        | 0.055 | ug/m³          | 40.5           |                  | 108         | 70-130         |      |               |       |
| 1,2-Dichloropropane       | 46.2             | 2.3        | 0.081 | ug/m³          | 46.2           |                  | 100         | 70-130         |      |               |       |
| 1,3,5-Trimethylbenzene    | 47.8             | 1.0        | 0.11  | ug/m³          | 49.2           |                  | 97.2        | 70-130         |      |               |       |
| 1,3-Butadiene             | 22.3             | 1.1        | 0.10  | ug/m³          | 22.1           |                  | 101         | 70-130         |      |               |       |
| 1,3-Dichlorobenzene       | 60.7             | 3.0        | 0.14  | ug/m³          | 60.1           |                  | 101         | 70-130         |      |               |       |
| 1,4-Dichlorobenzene       | 61.3             | 3.0        | 0.17  | ug/m³          | 60.1           |                  | 102         | 70-130         |      |               |       |
| 2-Butanone                | 26.2             | 1.5        | 0.17  | ug/m³          | 29.5           |                  | 88.8        | 70-130         |      |               |       |
| 4-Ethyltoluene            | 48.2             | 2.5        | 0.11  | ug/m³          | 49.2           |                  | 98.0        | 70-130         |      |               |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15
2042 West 98th Street Project Number: CrC

Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad

Work Order #: 1601751
Date Reported: 05/05/16

# VOC - AIR - Quality Control Legend Technical Services, Inc.

| Analyte                   | Result | RL   | MDL   | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | %RPD | %RPD<br>Limit | Notes |
|---------------------------|--------|------|-------|-------|----------------|------------------|-------------|----------------|------|---------------|-------|
| Batch B6D2914 - TO-15     |        |      |       |       |                |                  |             |                |      |               |       |
| LCS (B6D2914-BS1)         |        |      |       |       | Prepared       | l & Analyze      | ed: 04/27/1 | 6              |      |               |       |
| Acetone                   | 26.4   | 1.2  | 0.055 | ug/m³ | 23.8           | ,                | 111         | 70-130         |      |               |       |
| Benzene                   | 31.7   | 0.64 | 0.050 | ug/m³ | 31.9           |                  | 99.2        | 70-130         |      |               |       |
| Benzyl chloride           | 56.4   | 2.6  | 0.073 | ug/m³ | 51.8           |                  | 109         | 70-130         |      |               |       |
| Bromodichloromethane      | 69.0   | 3.4  | 0.13  | ug/m³ | 67.0           |                  | 103         | 70-130         |      |               |       |
| Bromoform                 | 102    | 5.2  | 0.13  | ug/m³ | 103            |                  | 98.5        | 70-130         |      |               |       |
| Bromomethane              | 36.6   | 1.9  | 0.069 | ug/m³ | 38.8           |                  | 94.3        | 70-130         |      |               |       |
| Carbon disulfide          | 28.1   | 1.6  | 0.070 | ug/m³ | 31.1           |                  | 90.3        | 70-130         |      |               |       |
| Carbon tetrachloride      | 66.7   | 3.1  | 0.087 | ug/m³ | 62.9           |                  | 106         | 70-130         |      |               |       |
| Chlorobenzene             | 44.1   | 2.3  | 0.080 | ug/m³ | 46.0           |                  | 95.8        | 70-130         |      |               |       |
| Chloroethane              | 24.3   | 1.3  | 0.037 | ug/m³ | 26.4           |                  | 92.2        | 70-130         |      |               |       |
| Chloroform                | 48.8   | 2.4  | 0.055 | ug/m³ | 48.8           |                  | 100         | 70-130         |      |               |       |
| Chloromethane             | 19.3   | 1.0  | 0.044 | ug/m³ | 20.6           |                  | 93.4        | 70-130         |      |               |       |
| cis-1,2-Dichloroethene    | 37.1   | 2.0  | 0.089 | ug/m³ | 39.6           |                  | 93.6        | 70-130         |      |               |       |
| cis-1,3-Dichloropropene   | 46.3   | 2.3  | 0.12  | ug/m³ | 45.4           |                  | 102         | 70-130         |      |               |       |
| Cyclohexane               | 34.4   | 1.7  | 0.059 | ug/m³ | 34.4           |                  | 99.8        | 70-130         |      |               |       |
| Dibromochloromethane      | 86.9   | 4.3  | 0.16  | ug/m³ | 85.2           |                  | 102         | 70-130         |      |               |       |
| Dichlorodifluoromethane   | 48.5   | 2.5  | 0.12  | ug/m³ | 49.5           |                  | 98.0        | 70-130         |      |               |       |
| Dichlorotetrafluoroethane | 64.0   | 3.5  | 0.063 | ug/m³ | 69.9           |                  | 91.6        | 70-130         |      |               |       |
| Ethanol                   | 18.6   | 0.94 | 0.068 | ug/m³ | 18.8           |                  | 98.5        | 70-130         |      |               |       |
| Ethyl acetate             | 29.3   | 1.8  | 0.11  | ug/m³ | 36.0           |                  | 81.2        | 70-130         |      |               |       |
| Ethylbenzene              | 42.2   | 0.87 | 0.082 | ug/m³ | 43.4           |                  | 97.2        | 70-130         |      |               |       |
| Hexachlorobutadiene       | 106    | 5.3  | 0.27  | ug/m³ | 107            |                  | 99.7        | 70-130         |      |               |       |
| Isopropyl alcohol         | 23.4   | 1.2  | 0.075 | ug/m³ | 24.6           |                  | 95.1        | 70-130         |      |               |       |
| m,p-Xylene                | 85.1   | 1.7  | 0.15  | ug/m³ | 86.8           |                  | 98.0        | 70-130         |      |               |       |
| Methyl butyl ketone       | 44.7   | 2.0  | 0.12  | ug/m³ | 41.0           |                  | 109         | 70-130         |      |               |       |
| Methyl isobutyl ketone    | 39.3   | 2.0  | 0.11  | ug/m³ | 41.0           |                  | 95.9        | 70-130         |      |               |       |
| Methyl tert-butyl ether   | 34.4   | 1.8  | 0.11  | ug/m³ | 36.1           |                  | 95.3        | 70-130         |      |               |       |
| Methylene chloride        | 33.2   | 1.7  | 0.21  | ug/m³ | 34.7           |                  | 95.7        | 70-130         |      |               |       |
| Naphthalene               | 65.0   | 2.6  | 0.11  | ug/m³ | 55.0           |                  | 118         | 70-130         |      |               |       |
| n-Heptane                 | 41.8   | 2.0  | 0.078 | ug/m³ | 41.0           |                  | 102         | 70-130         |      |               |       |
| n-Hexane                  | 34.1   | 1.8  | 0.074 | ug/m³ | 35.2           |                  | 96.7        | 70-130         |      |               |       |
| o-Xylene                  | 41.9   | 0.87 | 0.096 | ug/m³ | 43.4           |                  | 96.4        | 70-130         |      |               |       |
| Propylene                 | 15.9   | 0.86 | 0.027 | ug/m³ | 17.2           |                  | 92.1        | 70-130         |      |               |       |
| Styrene                   | 41.7   | 2.1  | 0.096 | ug/m³ | 42.6           |                  | 98.0        | 70-130         |      |               |       |
| Tetrachloroethene         | 66.7   | 3.4  | 0.13  | ug/m³ | 67.8           |                  | 98.4        | 70-130         |      |               |       |
| Tetrahydrofuran           | 32.4   | 1.5  | 0.038 | ug/m³ | 29.5           |                  | 110         | 70-130         |      |               |       |
| Toluene                   | 37.3   | 0.75 | 0.060 | ug/m³ | 37.7           |                  | 98.9        | 70-130         |      |               |       |
| trans-1,2-Dichloroethene  | 37.5   | 2.0  | 0.11  | ug/m³ | 39.6           |                  | 94.5        | 70-130         |      |               |       |
| trans-1,3-Dichloropropene | 46.3   | 2.3  | 0.070 | ug/m³ | 45.4           |                  | 102         | 70-130         |      |               |       |
| Trichloroethene           | 53.7   | 1.1  | 0.12  | ug/m³ | 53.7           |                  | 100         | 70-130         |      |               |       |

Legend Technical Services, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CrCBloomington, MN 55431Project Manager:Mr. Jason Skramstad

Work Order #: 1601751
Date Reported: 05/05/16

| Analyta                  | Daard  | Di        | MDI       | مناما ا | Spike    | Source      | 0/ DEC      | %REC   | 0/ DDD | %RPD  | Nate - |
|--------------------------|--------|-----------|-----------|---------|----------|-------------|-------------|--------|--------|-------|--------|
| Analyte                  | Result | RL        | MDL       | Units   | Level    | Result      | %REC        | Limits | %RPD   | Limit | Notes  |
| Batch B6D2914 - TO-15    |        |           |           |         |          |             |             |        |        |       |        |
| LCS (B6D2914-BS1)        |        |           |           |         | Prepared | ł & Analyze | ed: 04/27/1 | 16     |        |       |        |
| Trichlorofluoromethane   | 52.6   | 2.8       | 0.048     | ug/m³   | 56.2     |             | 93.7        | 70-130 |        |       |        |
| Trichlorotrifluoroethane | 71.1   | 3.8       | 0.17      | ug/m³   | 76.6     |             | 92.8        | 70-130 |        |       |        |
| Vinyl acetate            | 35.9   | 1.8       | 0.90      | ug/m³   | 35.2     |             | 102         | 70-130 |        |       |        |
| /inyl chloride           | 24.6   | 0.51      | 0.051     | ug/m³   | 25.6     |             | 96.1        | 70-130 |        |       |        |
| Ouplicate (B6D2914-DUP1) | ,      | Source: 1 | 1601813-0 | )2      | Prepared | l & Analyze | ed: 04/27/1 | 16     |        |       |        |
| ,1,1-Trichloroethane     | < 2.7  | 2.7       | 0.044     | ug/m³   | •        | <2.7        |             |        | NA     | 25    |        |
| ,1,2,2-Tetrachloroethane | < 3.4  | 3.4       | 0.074     | ug/m³   |          | <3.4        |             |        | NA     | 25    |        |
| ,1,2-Trichloroethane     | < 2.7  | 2.7       | 0.11      | ug/m³   |          | <2.7        |             |        | NA     | 25    |        |
| ,1-Dichloroethane        | < 2.0  | 2.0       | 0.11      | ug/m³   |          | <2.0        |             |        | NA     | 25    |        |
| ,1-Dichloroethene        | < 2.0  | 2.0       | 0.078     | ug/m³   |          | <2.0        |             |        | NA     | 25    |        |
| ,2,4-Trichlorobenzene    | < 3.7  | 3.7       | 0.13      | ug/m³   |          | <3.7        |             |        | NA     | 25    |        |
| ,2,4-Trimethylbenzene    | 2.95   | 1.0       | 0.073     | ug/m³   |          | 2.41        |             |        | 20.1   | 25    |        |
| ,2-Dibromoethane         | < 3.8  | 3.8       | 0.16      | ug/m³   |          | <3.8        |             |        | NA     | 25    |        |
| 2-Dichlorobenzene        | < 3.0  | 3.0       | 0.071     | ug/m³   |          | <3.0        |             |        | NA     | 25    |        |
| 2-Dichloroethane         | < 2.0  | 2.0       | 0.055     | ug/m³   |          | <2.0        |             |        | NA     | 25    |        |
| 2-Dichloropropane        | < 2.3  | 2.3       | 0.081     | ug/m³   |          | <2.3        |             |        | NA     | 25    |        |
| <br>3,5-Trimethylbenzene | 1.14   | 1.0       | 0.11      | ug/m³   |          | <1.0        |             |        | 16.6   | 25    |        |
| ,3-Butadiene             | 2.67   | 1.1       | 0.10      | ug/m³   |          | 2.18        |             |        | 20.2   | 25    |        |
| 3-Dichlorobenzene        | < 3.0  | 3.0       | 0.14      | ug/m³   |          | <3.0        |             |        | NA     | 25    |        |
| ,4-Dichlorobenzene       | < 3.0  | 3.0       | 0.17      | ug/m³   |          | <3.0        |             |        | NA     | 25    |        |
| -Butanone                | 4.78   | 1.5       | 0.078     | ug/m³   |          | 4.42        |             |        | 7.73   | 25    |        |
| -Ethyltoluene            | < 2.5  | 2.5       | 0.11      | ug/m³   |          | <2.5        |             |        | NA     | 25    |        |
| cetone                   | 15.9   | 1.2       | 0.055     | ug/m³   |          | 14.2        |             |        | 11.3   | 25    |        |
| enzene                   | 2.75   | 0.64      | 0.050     | ug/m³   |          | 2.64        |             |        | 4.34   | 25    |        |
| enzyl chloride           | < 2.6  | 2.6       | 0.073     | ug/m³   |          | <2.6        |             |        | NA     | 25    |        |
| romodichloromethane      | < 3.4  | 3.4       | 0.13      | ug/m³   |          | <3.4        |             |        | NA     | 25    |        |
| romoform                 | < 5.2  | 5.2       | 0.13      | ug/m³   |          | <5.2        |             |        | NA     | 25    |        |
| romomethane              | < 1.9  | 1.9       | 0.069     | ug/m³   |          | <1.9        |             |        | NA     | 25    |        |
| arbon disulfide          | 2.10   | 1.6       | 0.070     | ug/m³   |          | 2.15        |             |        | 2.35   | 25    |        |
| arbon tetrachloride      | < 3.1  | 3.1       | 0.087     | ug/m³   |          | <3.1        |             |        | NA     | 25    |        |
| hlorobenzene             | < 2.3  | 2.3       | 0.080     | ug/m³   |          | <2.3        |             |        | NA     | 25    |        |
| hloroethane              | < 1.3  | 1.3       | 0.037     | ug/m³   |          | <1.3        |             |        | NA     | 25    |        |
| hloroform                | 16.3   | 2.4       | 0.055     | ug/m³   |          | 15.2        |             |        | 7.37   | 25    |        |
| hloromethane             | < 1.0  | 1.0       | 0.044     | ug/m³   |          | <1.0        |             |        | NA     | 25    |        |
| is-1,2-Dichloroethene    | < 2.0  | 2.0       | 0.089     | ug/m³   |          | <2.0        |             |        | NA     | 25    |        |
| is-1,3-Dichloropropene   | < 2.3  | 2.3       | 0.12      | ug/m³   |          | <2.3        |             |        | NA     | 25    |        |
| yclohexane               | < 1.7  | 1.7       | 0.059     | ug/m³   |          | <1.7        |             |        | NA     | 25    |        |
| ibromochloromethane      | < 4.3  | 4.3       | 0.16      | ug/m³   |          | <4.3        |             |        | NA     | 25    |        |
| Dichlorodifluoromethane  | 4.66   | 2.5       | 0.12      | ug/m³   |          | 4.51        |             |        | 3.32   | 25    |        |



Fax: 651-642-1239

Landmark Environmental Project: TO-15
2042 West 98th Street Project Number: CrC

2042 West 98th Street Project Number: CrC Work Order #: 1601751 Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Date Reported: 05/05/16

| Analyte                   | D "    | DI.       | MDI      | 1.1-21 | Spike    | Source      | 0/ DEC      | %REC   | 0/ DDD | %RPD  | Neter |
|---------------------------|--------|-----------|----------|--------|----------|-------------|-------------|--------|--------|-------|-------|
| Analyte                   | Result | RL        | MDL      | Units  | Level    | Result      | %REC        | Limits | %RPD   | Limit | Notes |
| Batch B6D2914 - TO-15     |        |           |          |        |          |             |             |        |        |       |       |
| Duplicate (B6D2914-DUP1)  | •      | Source: 1 | 601813-0 | )2     | Prepared | ł & Analyze | ed: 04/27/1 | 16     |        |       |       |
| Dichlorotetrafluoroethane | < 3.5  | 3.5       | 0.063    | ug/m³  |          | <3.5        |             |        | NA     | 25    |       |
| Ethanol                   | 2.69   | 0.94      | 0.068    | ug/m³  |          | 2.55        |             |        | 5.22   | 25    |       |
| Ethyl acetate             | < 1.8  | 1.8       | 0.11     | ug/m³  |          | <1.8        |             |        | NA     | 25    |       |
| Ethylbenzene              | 11.7   | 0.87      | 0.082    | ug/m³  |          | 10.5        |             |        | 11.5   | 25    |       |
| Hexachlorobutadiene       | < 5.3  | 5.3       | 0.27     | ug/m³  |          | <5.3        |             |        | NA     | 25    |       |
| Isopropyl alcohol         | 3.57   | 1.2       | 0.075    | ug/m³  |          | 3.39        |             |        | 4.99   | 25    |       |
| m,p-Xylene                | 41.1   | 1.7       | 0.15     | ug/m³  |          | 36.9        |             |        | 10.9   | 25    |       |
| Methyl butyl ketone       | < 2.0  | 2.0       | 0.12     | ug/m³  |          | <2.0        |             |        | NA     | 25    |       |
| Methyl isobutyl ketone    | 2.96   | 2.0       | 0.11     | ug/m³  |          | 2.69        |             |        | 9.43   | 25    |       |
| Methyl tert-butyl ether   | < 1.8  | 1.8       | 0.11     | ug/m³  |          | <1.8        |             |        | NA     | 25    |       |
| Methylene chloride        | < 1.7  | 1.7       | 0.21     | ug/m³  |          | <1.7        |             |        | NA     | 25    |       |
| Naphthalene               | < 2.6  | 2.6       | 0.11     | ug/m³  |          | <2.6        |             |        | NA     | 25    |       |
| n-Heptane                 | 4.78   | 2.0       | 0.078    | ug/m³  |          | 4.43        |             |        | 7.67   | 25    |       |
| n-Hexane                  | 3.72   | 1.8       | 0.074    | ug/m³  |          | 3.78        |             |        | 1.63   | 25    |       |
| o-Xylene                  | 11.6   | 0.87      | 0.096    | ug/m³  |          | 10.0        |             |        | 14.9   | 25    |       |
| Propylene                 | 15.3   | 0.86      | 0.027    | ug/m³  |          | 12.9        |             |        | 16.6   | 25    |       |
| Styrene                   | < 2.1  | 2.1       | 0.096    | ug/m³  |          | <2.1        |             |        | NA     | 25    |       |
| Tetrachloroethene         | < 3.4  | 3.4       | 0.13     | ug/m³  |          | <3.4        |             |        | NA     | 25    |       |
| Tetrahydrofuran           | < 1.5  | 1.5       | 0.038    | ug/m³  |          | <1.5        |             |        | NA     | 25    |       |
| Toluene                   | 22.6   | 0.75      | 0.060    | ug/m³  |          | 22.0        |             |        | 2.87   | 25    |       |
| trans-1,2-Dichloroethene  | < 2.0  | 2.0       | 0.11     | ug/m³  |          | <2.0        |             |        | NA     | 25    |       |
| trans-1,3-Dichloropropene | < 2.3  | 2.3       | 0.070    | ug/m³  |          | <2.3        |             |        | NA     | 25    |       |
| Trichloroethene           | < 1.1  | 1.1       | 0.12     | ug/m³  |          | <1.1        |             |        | NA     | 25    |       |
| Trichlorofluoromethane    | < 2.8  | 2.8       | 0.048    | ug/m³  |          | <2.8        |             |        | NA     | 25    |       |
| Trichlorotrifluoroethane  | < 3.8  | 3.8       | 0.17     | ug/m³  |          | <3.8        |             |        | NA     | 25    |       |
| Vinyl acetate             | < 1.8  | 1.8       | 0.90     | ug/m³  |          | <1.8        |             |        | NA     | 25    |       |
| Vinyl chloride            | < 0.51 | 0.51      | 0.051    | ug/m³  |          | <0.51       |             |        | NA     | 25    |       |



Fax: 651-642-1239

| Landmark Environmental | Project:         | TO-15               |                |          |
|------------------------|------------------|---------------------|----------------|----------|
| 2042 West 98th Street  | Project Number:  | CrC                 | Work Order #:  | 1601751  |
| Bloomington, MN 55431  | Project Manager: | Mr. Jason Skramstad | Date Reported: | 05/05/16 |

#### **Notes and Definitions**

Less than value listed

NA Not applicable. The %RPD is not calculated from values less than the reporting limit.

MDL Method Detection Limit

RL Reporting Limit

RPD Relative Percent Difference

LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)

88 Empire Drive

St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239





88 Empire Drive St Paul, MN 55103

Tel: 651-642-1150 Fax: 651-642-1239





88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

May 24, 2016

Mr. Jason Skramstad Landmark Environmental 2042 West 98th Street Bloomington, MN 55431

Work Order Number: 1602154

RE: TO-15

Enclosed are the results of analyses for samples received by the laboratory on 05/18/16. If you have any questions concerning this report, please feel free to contact me.

Samples will not be retained by LEGEND once the analyses are completed.

All internal quality assurance met the method requirements unless otherwise noted in the case narrative. Additionally, all samples were received in acceptable condition unless otherwise noted.

For the tentatively identified compounds (TICs), a computer generated library search was done comparing the spectra of the unknown compounds with spectra contained in the NIST (NBS) and Wiley reference libraries. A visual comparison was made of each unknown compound and the best library match. Quantitation was based on the response of the nearest internal standard. Unidentified peaks were quantified using 100 as the molecular weight. Both the identification of specific compounds and the quantities given should be considered approximations.

Chromatograms are included for samples containing detections.

MDH Accreditation #027-123-295

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham
Client Manager II
bpham@legend-group.com



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CrCWork Order #: 1602154Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 05/24/16

### **ANALYTICAL REPORT FOR SAMPLES**

| Sample ID   | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|-------------|---------------|--------|----------------|----------------|
| DPE-Exhaust | 1602154-01    | Air    | 05/18/16 14:00 | 05/18/16 16:20 |

#### **Case Narrative:**

Per the client's instructions, TICs were not included in this report.



Fax: 651-642-1239

Work Order #: 1602154

Landmark Environmental Project: TO-15 2042 West 98th Street Project Number: CrC Bloomington, MN 55431

Project Manager: Mr. Jason Skramstad Date Reported: 05/24/16

| Analyte (CAS#)                       | Result            | RL      | MDL      | Units       | Dilution | Batch   | Prepared | Analyzed | Method | Notes |
|--------------------------------------|-------------------|---------|----------|-------------|----------|---------|----------|----------|--------|-------|
| DPE-Exhaust (1602154-01) Air         | Received:05/18/16 | 3 16:20 | Sampled: | :05/18/16 1 | 4:00     |         |          |          |        |       |
| 1,1,1-Trichloroethane (71-55-6)      | <2.7              | 2.7     | 0.044    | ug/m³       | 1        | B6E2417 | 05/18/16 | 05/18/16 | TO-15  |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)  | <3.4              | 3.4     | 0.074    | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,1,2-Trichloroethane (79-00-5)      | <2.7              | 2.7     | 0.11     | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,1-Dichloroethane (75-34-3)         | <2.0              | 2.0     | 0.11     | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,1-Dichloroethene (75-35-4)         | <2.0              | 2.0     | 0.078    | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,2,4-Trichlorobenzene (120-82-1)    | <3.7              | 3.7     | 0.13     | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,2,4-Trimethylbenzene (95-63-6)     | <1.0              | 1.0     | 0.073    | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,2-Dibromoethane (106-93-4)         | <3.8              | 3.8     | 0.16     | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,2-Dichlorobenzene (95-50-1)        | <3.0              | 3.0     | 0.071    | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,2-Dichloroethane (107-06-2)        | <2.0              | 2.0     | 0.055    | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,2-Dichloropropane (78-87-5)        | <2.3              | 2.3     | 0.081    | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,3,5-Trimethylbenzene (108-67-8)    | <1.0              | 1.0     | 0.11     | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,3-Butadiene (106-99-0)             | <1.1              | 1.1     | 0.10     | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,3-Dichlorobenzene (541-73-1)       | <3.0              | 3.0     | 0.14     | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,4-Dichlorobenzene (106-46-7)       | <3.0              | 3.0     | 0.17     | ug/m³       | 1        | "       | "        | "        | "      |       |
| 2-Butanone (78-93-3)                 | 1.7               | 1.5     | 0.078    | ug/m³       | 1        | "       | "        | "        | "      |       |
| 4-Ethyltoluene (622-96-8)            | <2.5              | 2.5     | 0.11     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Acetone (67-64-1)                    | 29                | 1.2     | 0.055    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Benzene (71-43-2)                    | 0.79              | 0.64    | 0.050    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Benzyl chloride (100-44-7)           | <2.6              | 2.6     | 0.073    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Bromodichloromethane (75-27-4)       | <3.4              | 3.4     | 0.13     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Bromoform (75-25-2)                  | <5.2              | 5.2     | 0.13     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Bromomethane (74-83-9)               | <1.9              | 1.9     | 0.069    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Carbon disulfide (75-15-0)           | <1.6              | 1.6     | 0.070    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Carbon tetrachloride (56-23-5)       | <3.1              | 3.1     | 0.087    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Chlorobenzene (108-90-7)             | <2.3              | 2.3     | 0.080    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Chloroethane (75-00-3)               | <1.3              | 1.3     | 0.037    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Chloroform (67-66-3)                 | <2.4              | 2.4     | 0.055    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Chloromethane (74-87-3)              | 1.1               | 1.0     | 0.044    | ug/m³       | 1        | "       | "        | "        | "      |       |
| cis-1,2-Dichloroethene (156-59-2)    | <2.0              | 2.0     | 0.089    | ug/m³       | 1        | "       | "        | "        | "      |       |
| cis-1,3-Dichloropropene (10061-01-5) | <2.3              | 2.3     | 0.12     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Cyclohexane (110-82-7)               | <1.7              | 1.7     | 0.059    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Dibromochloromethane (124-48-1)      | <4.3              | 4.3     | 0.16     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Dichlorodifluoromethane (75-71-8)    | <2.5              | 2.5     | 0.12     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Dichlorotetrafluoroethane (76-14-2)  | <3.5              | 3.5     | 0.063    | ug/m³       | 1        | "       | "        | "        | u      |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15 2042 West 98th Street Project Number: CrC Bloomington, MN 55431

Project Manager: Mr. Jason Skramstad

Work Order #: 1602154 Date Reported: 05/24/16

| Analyte (CAS#)                        | Result           | RL      | MDL      | Units       | Dilution | Batch   | Prepared | Analyzed | Method | Notes |
|---------------------------------------|------------------|---------|----------|-------------|----------|---------|----------|----------|--------|-------|
| DPE-Exhaust (1602154-01) Air          | Received:05/18/1 | 6 16:20 | Sampled: | 05/18/16 14 | 4:00     |         |          |          |        |       |
| Ethanol (64-17-5)                     | 340              | 14      | 1.0      | ug/m³       | 15       | B6E2417 | 05/18/16 | 05/19/16 | TO-15  |       |
| Ethyl acetate (141-78-6)              | <1.8             | 1.8     | 0.11     | ug/m³       | 1        | "       | "        | 05/18/16 | "      |       |
| Ethylbenzene (100-41-4)               | <0.87            | 0.87    | 0.082    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Hexachlorobutadiene (87-68-3)         | <5.3             | 5.3     | 0.27     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Isopropyl alcohol (67-63-0)           | 540              | 18      | 1.1      | ug/m³       | 15       | "       | "        | 05/19/16 | "      |       |
| m,p-Xylene (136777-61-2)              | 1.9              | 1.7     | 0.15     | ug/m³       | 1        | "       | "        | 05/18/16 | "      |       |
| Methyl butyl ketone (591-78-6)        | <2.0             | 2.0     | 0.12     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Methyl isobutyl ketone (108-10-1)     | <2.0             | 2.0     | 0.11     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Methyl tert-butyl ether (1634-04-4)   | <1.8             | 1.8     | 0.11     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Methylene chloride (75-09-2)          | 2.5              | 1.7     | 0.21     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Naphthalene (91-20-3)                 | <2.6             | 2.6     | 0.11     | ug/m³       | 1        | "       | "        | "        | "      |       |
| n-Heptane (142-82-5)                  | <2.0             | 2.0     | 0.078    | ug/m³       | 1        | "       | "        | "        | "      |       |
| n-Hexane (110-54-3)                   | <1.8             | 1.8     | 0.074    | ug/m³       | 1        | "       | "        | "        | "      |       |
| o-Xylene (95-47-6)                    | <0.87            | 0.87    | 0.096    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Propylene (115-07-1)                  | <0.86            | 0.86    | 0.027    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Styrene (100-42-5)                    | <2.1             | 2.1     | 0.096    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Tetrachloroethene (127-18-4)          | 18               | 3.4     | 0.13     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Tetrahydrofuran (109-99-9)            | 2.3              | 1.5     | 0.038    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Toluene (108-88-3)                    | 3.3              | 0.75    | 0.060    | ug/m³       | 1        | "       | "        | "        | "      |       |
| trans-1,2-Dichloroethene (156-60-5)   | <2.0             | 2.0     | 0.11     | ug/m³       | 1        | "       | "        | "        | "      |       |
| trans-1,3-Dichloropropene (10061-02-6 | 6) <2.3          | 2.3     | 0.070    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Trichloroethene (79-01-6)             | <1.1             | 1.1     | 0.12     | ug/m³       | 1        | "       | "        | "        | "      |       |
| Trichlorofluoromethane (75-69-4)      | <2.8             | 2.8     | 0.048    | ug/m³       | 1        | "       | "        | "        | "      |       |
| Trichlorotrifluoroethane (76-13-1)    | 2100             | 57      | 2.6      | ug/m³       | 15       | "       | "        | 05/19/16 | "      |       |
| Vinyl acetate (108-05-4)              | <1.8             | 1.8     | 0.90     | ug/m³       | 1        | "       | "        | 05/18/16 | п      |       |
| Vinyl chloride (75-01-4)              | <0.51            | 0.51    | 0.051    | ug/m³       | 1        | "       | "        | "        | n .    |       |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CrCWork Order #: 1602154Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 05/24/16

# VOC - AIR - Quality Control Legend Technical Services, Inc.

| Analyte                   | Result | RL   | MDL   | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | %RPD | %RPD<br>Limit | Notes |
|---------------------------|--------|------|-------|-------|----------------|------------------|-------------|----------------|------|---------------|-------|
| Batch B6E2417 - TO-15     |        |      |       |       |                |                  |             |                |      |               |       |
| Blank (B6E2417-BLK1)      |        |      |       |       | Prepared       | l & Analyze      | ed: 05/18/1 | 16             |      |               |       |
| 1,1,1-Trichloroethane     | < 2.7  | 2.7  | 0.044 | ug/m³ |                |                  |             |                |      |               |       |
| 1,1,2,2-Tetrachloroethane | < 3.4  | 3.4  | 0.074 | ug/m³ |                |                  |             |                |      |               |       |
| 1,1,2-Trichloroethane     | < 2.7  | 2.7  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| 1,1-Dichloroethane        | < 2.0  | 2.0  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| 1,1-Dichloroethene        | < 2.0  | 2.0  | 0.078 | ug/m³ |                |                  |             |                |      |               |       |
| 1,2,4-Trichlorobenzene    | < 3.7  | 3.7  | 0.13  | ug/m³ |                |                  |             |                |      |               |       |
| 1,2,4-Trimethylbenzene    | < 1.0  | 1.0  | 0.073 | ug/m³ |                |                  |             |                |      |               |       |
| 1,2-Dibromoethane         | < 3.8  | 3.8  | 0.16  | ug/m³ |                |                  |             |                |      |               |       |
| 1,2-Dichlorobenzene       | < 3.0  | 3.0  | 0.071 | ug/m³ |                |                  |             |                |      |               |       |
| 1,2-Dichloroethane        | < 2.0  | 2.0  | 0.055 | ug/m³ |                |                  |             |                |      |               |       |
| 1,2-Dichloropropane       | < 2.3  | 2.3  | 0.081 | ug/m³ |                |                  |             |                |      |               |       |
| 1,3,5-Trimethylbenzene    | < 1.0  | 1.0  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| 1,3-Butadiene             | < 1.1  | 1.1  | 0.10  | ug/m³ |                |                  |             |                |      |               |       |
| 1,3-Dichlorobenzene       | < 3.0  | 3.0  | 0.14  | ug/m³ |                |                  |             |                |      |               |       |
| 1,4-Dichlorobenzene       | < 3.0  | 3.0  | 0.17  | ug/m³ |                |                  |             |                |      |               |       |
| 2-Butanone                | < 1.5  | 1.5  | 0.078 | ug/m³ |                |                  |             |                |      |               |       |
| 4-Ethyltoluene            | < 2.5  | 2.5  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| Acetone                   | < 1.2  | 1.2  | 0.055 | ug/m³ |                |                  |             |                |      |               |       |
| Benzene                   | < 0.64 | 0.64 | 0.050 | ug/m³ |                |                  |             |                |      |               |       |
| Benzyl chloride           | < 2.6  | 2.6  | 0.073 | ug/m³ |                |                  |             |                |      |               |       |
| Bromodichloromethane      | < 3.4  | 3.4  | 0.13  | ug/m³ |                |                  |             |                |      |               |       |
| Bromoform                 | < 5.2  | 5.2  | 0.13  | ug/m³ |                |                  |             |                |      |               |       |
| Bromomethane              | < 1.9  | 1.9  | 0.069 | ug/m³ |                |                  |             |                |      |               |       |
| Carbon disulfide          | < 1.6  | 1.6  | 0.070 | ug/m³ |                |                  |             |                |      |               |       |
| Carbon tetrachloride      | < 3.1  | 3.1  | 0.087 | ug/m³ |                |                  |             |                |      |               |       |
| Chlorobenzene             | < 2.3  | 2.3  | 0.080 | ug/m³ |                |                  |             |                |      |               |       |
| Chloroethane              | < 1.3  | 1.3  | 0.037 | ug/m³ |                |                  |             |                |      |               |       |
| Chloroform                | < 2.4  | 2.4  | 0.055 | ug/m³ |                |                  |             |                |      |               |       |
| Chloromethane             | < 1.0  | 1.0  | 0.044 | ug/m³ |                |                  |             |                |      |               |       |
| cis-1,2-Dichloroethene    | < 2.0  | 2.0  | 0.089 | ug/m³ |                |                  |             |                |      |               |       |
| cis-1,3-Dichloropropene   | < 2.3  | 2.3  | 0.12  | ug/m³ |                |                  |             |                |      |               |       |
| Cyclohexane               | < 1.7  | 1.7  | 0.059 | ug/m³ |                |                  |             |                |      |               |       |
| Dibromochloromethane      | < 4.3  | 4.3  | 0.16  | ug/m³ |                |                  |             |                |      |               |       |
| Dichlorodifluoromethane   | < 2.5  | 2.5  | 0.12  | ug/m³ |                |                  |             |                |      |               |       |
| Dichlorotetrafluoroethane | < 3.5  | 3.5  | 0.063 | ug/m³ |                |                  |             |                |      |               |       |
| Ethanol                   | < 0.94 | 0.94 | 0.068 | ug/m³ |                |                  |             |                |      |               |       |
| Ethyl acetate             | < 1.8  | 1.8  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| Ethylbenzene              | < 0.87 | 0.87 | 0.082 | ug/m³ |                |                  |             |                |      |               |       |
| Hexachlorobutadiene       | < 5.3  | 5.3  | 0.27  | ug/m³ |                |                  |             |                |      |               |       |
| Isopropyl alcohol         | < 1.2  | 1.2  | 0.075 | ug/m³ |                |                  |             |                |      |               |       |

Legend Technical Services, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CrCWork Order #: 1602154Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 05/24/16

| Analyta                   | Danill | DI   | MDI   | l loite | Spike    | Source      | 0/ DEC     | %REC   | 0/ DDD | %RPD  | Nlate - |
|---------------------------|--------|------|-------|---------|----------|-------------|------------|--------|--------|-------|---------|
| Analyte                   | Result | RL   | MDL   | Units   | Level    | Result      | %REC       | Limits | %RPD   | Limit | Notes   |
| Batch B6E2417 - TO-15     |        |      |       |         |          |             |            |        |        |       |         |
| Blank (B6E2417-BLK1)      |        |      |       |         | Prepared | ł & Analyze | d: 05/18/1 | 6      |        |       |         |
| m,p-Xylene                | < 1.7  | 1.7  | 0.15  | ug/m³   |          | -           |            |        |        |       |         |
| Methyl butyl ketone       | < 2.0  | 2.0  | 0.12  | ug/m³   |          |             |            |        |        |       |         |
| Methyl isobutyl ketone    | < 2.0  | 2.0  | 0.11  | ug/m³   |          |             |            |        |        |       |         |
| Methyl tert-butyl ether   | < 1.8  | 1.8  | 0.11  | ug/m³   |          |             |            |        |        |       |         |
| Methylene chloride        | < 1.7  | 1.7  | 0.21  | ug/m³   |          |             |            |        |        |       |         |
| Naphthalene               | < 2.6  | 2.6  | 0.11  | ug/m³   |          |             |            |        |        |       |         |
| n-Heptane                 | < 2.0  | 2.0  | 0.078 | ug/m³   |          |             |            |        |        |       |         |
| n-Hexane                  | < 1.8  | 1.8  | 0.074 | ug/m³   |          |             |            |        |        |       |         |
| o-Xylene                  | < 0.87 | 0.87 | 0.096 | ug/m³   |          |             |            |        |        |       |         |
| Propylene                 | < 0.86 | 0.86 | 0.027 | ug/m³   |          |             |            |        |        |       |         |
| Styrene                   | < 2.1  | 2.1  | 0.096 | ug/m³   |          |             |            |        |        |       |         |
| Tetrachloroethene         | < 3.4  | 3.4  | 0.13  | ug/m³   |          |             |            |        |        |       |         |
| Tetrahydrofuran           | < 1.5  | 1.5  | 0.038 | ug/m³   |          |             |            |        |        |       |         |
| Toluene                   | < 0.75 | 0.75 | 0.060 | ug/m³   |          |             |            |        |        |       |         |
| trans-1,2-Dichloroethene  | < 2.0  | 2.0  | 0.11  | ug/m³   |          |             |            |        |        |       |         |
| trans-1,3-Dichloropropene | < 2.3  | 2.3  | 0.070 | ug/m³   |          |             |            |        |        |       |         |
| Trichloroethene           | < 1.1  | 1.1  | 0.12  | ug/m³   |          |             |            |        |        |       |         |
| Trichlorofluoromethane    | < 2.8  | 2.8  | 0.048 | ug/m³   |          |             |            |        |        |       |         |
| Trichlorotrifluoroethane  | < 3.8  | 3.8  | 0.17  | ug/m³   |          |             |            |        |        |       |         |
| Vinyl acetate             | < 1.8  | 1.8  | 0.90  | ug/m³   |          |             |            |        |        |       |         |
| Vinyl chloride            | < 0.51 | 0.51 | 0.051 | ug/m³   |          |             |            |        |        |       |         |
| LCS (B6E2417-BS1)         |        |      |       |         | Prepared | ł & Analyze | d: 05/18/1 | 6      |        |       |         |
| 1,1,1-Trichloroethane     | 56.2   | 2.7  | 0.044 | ug/m³   | 54.6     | •           | 103        | 70-130 |        |       |         |
| 1,1,2,2-Tetrachloroethane | 67.8   | 3.4  | 0.074 | ug/m³   | 68.6     |             | 98.7       | 70-130 |        |       |         |
| 1,1,2-Trichloroethane     | 54.5   | 2.7  | 0.11  | ug/m³   | 54.6     |             | 99.8       | 70-130 |        |       |         |
| 1,1-Dichloroethane        | 40.3   | 2.0  | 0.11  | ug/m³   | 40.5     |             | 99.5       | 70-130 |        |       |         |
| 1,1-Dichloroethene        | 39.6   | 2.0  | 0.078 | ug/m³   | 39.6     |             | 99.8       | 70-130 |        |       |         |
| 1,2,4-Trichlorobenzene    | 77.2   | 3.7  | 0.13  | ug/m³   | 74.2     |             | 104        | 70-130 |        |       |         |
| 1,2,4-Trimethylbenzene    | 49.2   | 1.0  | 0.073 | ug/m³   | 49.2     |             | 100        | 70-130 |        |       |         |
| 1,2-Dibromoethane         | 76.8   | 3.8  | 0.16  | ug/m³   | 76.8     |             | 100        | 70-130 |        |       |         |
| 1,2-Dichlorobenzene       | 60.0   | 3.0  | 0.071 | ug/m³   | 60.1     |             | 99.8       | 70-130 |        |       |         |
| 1,2-Dichloroethane        | 42.1   | 2.0  | 0.055 | ug/m³   | 40.5     |             | 104        | 70-130 |        |       |         |
| 1,2-Dichloropropane       | 46.2   | 2.3  | 0.081 | ug/m³   | 46.2     |             | 100        | 70-130 |        |       |         |
| 1,3,5-Trimethylbenzene    | 48.9   | 1.0  | 0.11  | ug/m³   | 49.2     |             | 99.4       | 70-130 |        |       |         |
| 1,3-Butadiene             | 22.8   | 1.1  | 0.10  | ug/m³   | 22.1     |             | 103        | 70-130 |        |       |         |
| 1,3-Dichlorobenzene       | 61.3   | 3.0  | 0.14  | ug/m³   | 60.1     |             | 102        | 70-130 |        |       |         |
| 1,4-Dichlorobenzene       | 62.5   | 3.0  | 0.17  | ug/m³   | 60.1     |             | 104        | 70-130 |        |       |         |
| 2-Butanone                | 24.2   | 1.5  | 0.078 | ug/m³   | 29.5     |             | 82.0       | 70-130 |        |       |         |
| 4-Ethyltoluene            | 49.2   | 2.5  | 0.11  | ug/m³   | 49.2     |             | 100        | 70-130 |        |       |         |



Fax: 651-642-1239

Landmark Environmental Project: TO-15
2042 West 98th Street Project Number: CrC
Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad

Work Order #: 1602154

Date Reported: 05/24/16

| Analyte                   | Result | RL   | MDL   | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | %RPD | %RPD<br>Limit | Notes |
|---------------------------|--------|------|-------|-------|----------------|------------------|-------------|----------------|------|---------------|-------|
| Batch B6E2417 - TO-15     |        |      |       |       |                |                  |             |                |      |               |       |
| LCS (B6E2417-BS1)         |        |      |       |       | Prepared       | l & Analyze      | ed: 05/18/1 | 16             |      |               |       |
| Acetone                   | 24.9   | 1.2  | 0.055 | ug/m³ | 23.8           | -                | 105         | 70-130         |      |               |       |
| Benzene                   | 31.8   | 0.64 | 0.050 | ug/m³ | 31.9           |                  | 99.6        | 70-130         |      |               |       |
| Benzyl chloride           | 54.9   | 2.6  | 0.073 | ug/m³ | 51.8           |                  | 106         | 70-130         |      |               |       |
| Bromodichloromethane      | 69.0   | 3.4  | 0.13  | ug/m³ | 67.0           |                  | 103         | 70-130         |      |               |       |
| Bromoform                 | 103    | 5.2  | 0.13  | ug/m³ | 103            |                  | 100         | 70-130         |      |               |       |
| Bromomethane              | 40.4   | 1.9  | 0.069 | ug/m³ | 38.8           |                  | 104         | 70-130         |      |               |       |
| Carbon disulfide          | 30.6   | 1.6  | 0.070 | ug/m³ | 31.1           |                  | 98.3        | 70-130         |      |               |       |
| Carbon tetrachloride      | 64.8   | 3.1  | 0.087 | ug/m³ | 62.9           |                  | 103         | 70-130         |      |               |       |
| Chlorobenzene             | 45.7   | 2.3  | 0.080 | ug/m³ | 46.0           |                  | 99.2        | 70-130         |      |               |       |
| Chloroethane              | 27.2   | 1.3  | 0.037 | ug/m³ | 26.4           |                  | 103         | 70-130         |      |               |       |
| Chloroform                | 51.3   | 2.4  | 0.055 | ug/m³ | 48.8           |                  | 105         | 70-130         |      |               |       |
| Chloromethane             | 20.5   | 1.0  | 0.044 | ug/m³ | 20.6           |                  | 99.2        | 70-130         |      |               |       |
| cis-1,2-Dichloroethene    | 38.7   | 2.0  | 0.089 | ug/m³ | 39.6           |                  | 97.7        | 70-130         |      |               |       |
| cis-1,3-Dichloropropene   | 45.4   | 2.3  | 0.12  | ug/m³ | 45.4           |                  | 100         | 70-130         |      |               |       |
| Cyclohexane               | 35.8   | 1.7  | 0.059 | ug/m³ | 34.4           |                  | 104         | 70-130         |      |               |       |
| Dibromochloromethane      | 86.9   | 4.3  | 0.16  | ug/m³ | 85.2           |                  | 102         | 70-130         |      |               |       |
| Dichlorodifluoromethane   | 47.7   | 2.5  | 0.12  | ug/m³ | 49.5           |                  | 96.4        | 70-130         |      |               |       |
| Dichlorotetrafluoroethane | 69.6   | 3.5  | 0.063 | ug/m³ | 69.9           |                  | 99.5        | 70-130         |      |               |       |
| Ethanol                   | 20.0   | 0.94 | 0.068 | ug/m³ | 18.8           |                  | 106         | 70-130         |      |               |       |
| Ethyl acetate             | 29.3   | 1.8  | 0.11  | ug/m³ | 36.0           |                  | 81.3        | 70-130         |      |               |       |
| Ethylbenzene              | 43.9   | 0.87 | 0.082 | ug/m³ | 43.4           |                  | 101         | 70-130         |      |               |       |
| Hexachlorobutadiene       | 102    | 5.3  | 0.27  | ug/m³ | 107            |                  | 95.6        | 70-130         |      |               |       |
| Isopropyl alcohol         | 25.1   | 1.2  | 0.075 | ug/m³ | 24.6           |                  | 102         | 70-130         |      |               |       |
| m,p-Xylene                | 88.6   | 1.7  | 0.15  | ug/m³ | 86.8           |                  | 102         | 70-130         |      |               |       |
| Methyl butyl ketone       | 47.1   | 2.0  | 0.12  | ug/m³ | 41.0           |                  | 115         | 70-130         |      |               |       |
| Methyl isobutyl ketone    | 41.8   | 2.0  | 0.11  | ug/m³ | 41.0           |                  | 102         | 70-130         |      |               |       |
| Methyl tert-butyl ether   | 35.9   | 1.8  | 0.11  | ug/m³ | 36.1           |                  | 99.6        | 70-130         |      |               |       |
| Methylene chloride        | 35.8   | 1.7  | 0.21  | ug/m³ | 34.7           |                  | 103         | 70-130         |      |               |       |
| Naphthalene               | 55.6   | 2.6  | 0.11  | ug/m³ | 55.0           |                  | 101         | 70-130         |      |               |       |
| n-Heptane                 | 42.6   | 2.0  | 0.078 | ug/m³ | 41.0           |                  | 104         | 70-130         |      |               |       |
| n-Hexane                  | 35.1   | 1.8  | 0.074 | ug/m³ | 35.2           |                  | 99.5        | 70-130         |      |               |       |
| o-Xylene                  | 43.4   | 0.87 | 0.096 | ug/m³ | 43.4           |                  | 100         | 70-130         |      |               |       |
| Propylene                 | 16.5   | 0.86 | 0.027 | ug/m³ | 17.2           |                  | 95.6        | 70-130         |      |               |       |
| Styrene                   | 44.3   | 2.1  | 0.096 | ug/m³ | 42.6           |                  | 104         | 70-130         |      |               |       |
| Tetrachloroethene         | 67.1   | 3.4  | 0.13  | ug/m³ | 67.8           |                  | 99.0        | 70-130         |      |               |       |
| Tetrahydrofuran           | 31.9   | 1.5  | 0.038 | ug/m³ | 29.5           |                  | 108         | 70-130         |      |               |       |
| Toluene                   | 38.4   | 0.75 | 0.060 | ug/m³ | 37.7           |                  | 102         | 70-130         |      |               |       |
| trans-1,2-Dichloroethene  | 39.3   | 2.0  | 0.11  | ug/m³ | 39.6           |                  | 99.0        | 70-130         |      |               |       |
| trans-1,3-Dichloropropene | 46.3   | 2.3  | 0.070 | ug/m³ | 45.4           |                  | 102         | 70-130         |      |               |       |
| Trichloroethene           | 54.3   | 1.1  | 0.12  | ug/m³ | 53.7           |                  | 101         | 70-130         |      |               |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15
2042 West 98th Street Project Number: CrC

Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad

Work Order #: 1602154
Date Reported: 05/24/16

| Analyte                   | Result | RL        | MDL       | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | %RPD  | %RPD<br>Limit | Notes |
|---------------------------|--------|-----------|-----------|-------|----------------|------------------|-------------|----------------|-------|---------------|-------|
| Batch B6E2417 - TO-15     |        |           |           |       |                |                  |             |                |       |               |       |
| LCS (B6E2417-BS1)         |        |           |           |       | Prepared       | l & Analyze      | ed: 05/18/1 | 16             |       |               |       |
| Trichlorofluoromethane    | 58.4   | 2.8       | 0.048     | ug/m³ | 56.2           | •                | 104         | 70-130         |       |               |       |
| Trichlorotrifluoroethane  | 74.7   | 3.8       | 0.17      | ug/m³ | 76.6           |                  | 97.5        | 70-130         |       |               |       |
| Vinyl acetate             | 37.3   | 1.8       | 0.90      | ug/m³ | 35.2           |                  | 106         | 70-130         |       |               |       |
| Vinyl chloride            | 26.1   | 0.51      | 0.051     | ug/m³ | 25.6           |                  | 102         | 70-130         |       |               |       |
| Duplicate (B6E2417-DUP1)  | ;      | Source: 1 | 1602070-0 | )1    | Prepared       | I & Analyze      | ed: 05/18/1 | 16             |       |               |       |
| 1,1,1-Trichloroethane     | < 2.7  | 2.7       | 0.044     | ug/m³ |                | <2.7             |             |                | NA    | 25            |       |
| 1,1,2,2-Tetrachloroethane | < 3.4  | 3.4       | 0.074     | ug/m³ |                | <3.4             |             |                | NA    | 25            |       |
| 1,1,2-Trichloroethane     | < 2.7  | 2.7       | 0.11      | ug/m³ |                | <2.7             |             |                | NA    | 25            |       |
| 1,1-Dichloroethane        | < 2.0  | 2.0       | 0.11      | ug/m³ |                | <2.0             |             |                | NA    | 25            |       |
| ,1-Dichloroethene         | < 2.0  | 2.0       | 0.078     | ug/m³ |                | <2.0             |             |                | NA    | 25            |       |
| ,2,4-Trichlorobenzene     | < 3.7  | 3.7       | 0.13      | ug/m³ |                | <3.7             |             |                | NA    | 25            |       |
| ,2,4-Trimethylbenzene     | < 1.0  | 1.0       | 0.073     | ug/m³ |                | <1.0             |             |                | NA    | 25            |       |
| ,2-Dibromoethane          | < 3.8  | 3.8       | 0.16      | ug/m³ |                | <3.8             |             |                | NA    | 25            |       |
| ,2-Dichlorobenzene        | < 3.0  | 3.0       | 0.071     | ug/m³ |                | <3.0             |             |                | NA    | 25            |       |
| ,2-Dichloroethane         | < 2.0  | 2.0       | 0.055     | ug/m³ |                | <2.0             |             |                | NA    | 25            |       |
| ,2-Dichloropropane        | < 2.3  | 2.3       | 0.081     | ug/m³ |                | <2.3             |             |                | NA    | 25            |       |
| ,3,5-Trimethylbenzene     | < 1.0  | 1.0       | 0.11      | ug/m³ |                | <1.0             |             |                | NA    | 25            |       |
| ,3-Butadiene              | < 1.1  | 1.1       | 0.10      | ug/m³ |                | <1.1             |             |                | NA    | 25            |       |
| ,3-Dichlorobenzene        | < 3.0  | 3.0       | 0.14      | ug/m³ |                | <3.0             |             |                | NA    | 25            |       |
| ,4-Dichlorobenzene        | < 3.0  | 3.0       | 0.17      | ug/m³ |                | <3.0             |             |                | NA    | 25            |       |
| -Butanone                 | < 1.5  | 1.5       | 0.078     | ug/m³ |                | <1.5             |             |                | NA    | 25            |       |
| -Ethyltoluene             | < 2.5  | 2.5       | 0.11      | ug/m³ |                | <2.5             |             |                | NA    | 25            |       |
| cetone                    | 31.5   | 1.2       | 0.055     | ug/m³ |                | 31.6             |             |                | 0.467 | 25            |       |
| Benzene                   | < 0.64 | 0.64      | 0.050     | ug/m³ |                | < 0.64           |             |                | NA    | 25            |       |
| senzyl chloride           | < 2.6  | 2.6       | 0.073     | ug/m³ |                | <2.6             |             |                | NA    | 25            |       |
| romodichloromethane       | < 3.4  | 3.4       | 0.13      | ug/m³ |                | <3.4             |             |                | NA    | 25            |       |
| Bromoform                 | < 5.2  | 5.2       | 0.13      | ug/m³ |                | <5.2             |             |                | NA    | 25            |       |
| Bromomethane              | < 1.9  | 1.9       | 0.069     | ug/m³ |                | <1.9             |             |                | NA    | 25            |       |
| Carbon disulfide          | < 1.6  | 1.6       | 0.070     | ug/m³ |                | <1.6             |             |                | NA    | 25            |       |
| Carbon tetrachloride      | < 3.1  | 3.1       | 0.087     | ug/m³ |                | <3.1             |             |                | NA    | 25            |       |
| Chlorobenzene             | < 2.3  | 2.3       | 0.080     | ug/m³ |                | <2.3             |             |                | NA    | 25            |       |
| Chloroethane              | < 1.3  | 1.3       | 0.037     | ug/m³ |                | <1.3             |             |                | NA    | 25            |       |
| chloroform                | < 2.4  | 2.4       | 0.055     | ug/m³ |                | <2.4             |             |                | NA    | 25            |       |
| Chloromethane             | 1.11   | 1.0       | 0.044     | ug/m³ |                | 1.17             |             |                | 5.93  | 25            |       |
| is-1,2-Dichloroethene     | < 2.0  | 2.0       | 0.089     | ug/m³ |                | <2.0             |             |                | NA    | 25            |       |
| sis-1,3-Dichloropropene   | < 2.3  | 2.3       | 0.12      | ug/m³ |                | <2.3             |             |                | NA    | 25            |       |
| Cyclohexane               | < 1.7  | 1.7       | 0.059     | ug/m³ |                | <1.7             |             |                | NA    | 25            |       |
| Dibromochloromethane      | < 4.3  | 4.3       | 0.16      | ug/m³ |                | <4.3             |             |                | NA    | 25            |       |
| Dichlorodifluoromethane   | < 2.5  | 2.5       | 0.12      | ug/m³ |                | 2.65             |             |                |       | 25            |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15 2042 West 98th Street Project Number: CrC

Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Work Order #: 1602154 Date Reported: 05/24/16

| Analyte                   | Desult | DI        | MDI      | I limite | Spike    | Source      | 0/ DEC      | %REC   | 0/ DDD | %RPD  | Natas |
|---------------------------|--------|-----------|----------|----------|----------|-------------|-------------|--------|--------|-------|-------|
| Analyte                   | Result | RL        | MDL      | Units    | Level    | Result      | %REC        | Limits | %RPD   | Limit | Notes |
| Batch B6E2417 - TO-15     |        |           |          |          |          |             |             |        |        |       |       |
| Duplicate (B6E2417-DUP1)  | 5      | Source: 1 | 602070-0 | )1       | Prepared | l & Analyze | ed: 05/18/1 | 6      |        |       |       |
| Dichlorotetrafluoroethane | < 3.5  | 3.5       | 0.063    | ug/m³    |          | <3.5        |             |        | NA     | 25    |       |
| Ethanol                   | 741    | 28        | 2.0      | ug/m³    |          | 760         |             |        | 2.55   | 25    |       |
| Ethyl acetate             | < 1.8  | 1.8       | 0.11     | ug/m³    |          | <1.8        |             |        | NA     | 25    |       |
| Ethylbenzene              | < 0.87 | 0.87      | 0.082    | ug/m³    |          | <0.87       |             |        | NA     | 25    |       |
| Hexachlorobutadiene       | < 5.3  | 5.3       | 0.27     | ug/m³    |          | <5.3        |             |        | NA     | 25    |       |
| Isopropyl alcohol         | 667    | 36        | 2.2      | ug/m³    |          | 679         |             |        | 1.89   | 25    |       |
| m,p-Xylene                | < 1.7  | 1.7       | 0.15     | ug/m³    |          | <1.7        |             |        | NA     | 25    |       |
| Methyl butyl ketone       | < 2.0  | 2.0       | 0.12     | ug/m³    |          | <2.0        |             |        | NA     | 25    |       |
| Methyl isobutyl ketone    | < 2.0  | 2.0       | 0.11     | ug/m³    |          | <2.0        |             |        | NA     | 25    |       |
| Methyl tert-butyl ether   | < 1.8  | 1.8       | 0.11     | ug/m³    |          | <1.8        |             |        | NA     | 25    |       |
| Methylene chloride        | 2.97   | 1.7       | 0.21     | ug/m³    |          | 2.88        |             |        | 3.15   | 25    |       |
| Naphthalene               | < 2.6  | 2.6       | 0.11     | ug/m³    |          | <2.6        |             |        | NA     | 25    |       |
| n-Heptane                 | < 2.0  | 2.0       | 0.078    | ug/m³    |          | <2.0        |             |        | NA     | 25    |       |
| n-Hexane                  | 2.18   | 1.8       | 0.074    | ug/m³    |          | 2.27        |             |        | 4.02   | 25    |       |
| o-Xylene                  | < 0.87 | 0.87      | 0.096    | ug/m³    |          | <0.87       |             |        | NA     | 25    |       |
| Propylene                 | < 0.86 | 0.86      | 0.027    | ug/m³    |          | <0.86       |             |        | NA     | 25    |       |
| Styrene                   | < 2.1  | 2.1       | 0.096    | ug/m³    |          | <2.1        |             |        | NA     | 25    |       |
| Tetrachloroethene         | < 3.4  | 3.4       | 0.13     | ug/m³    |          | <3.4        |             |        | NA     | 25    |       |
| Tetrahydrofuran           | < 1.5  | 1.5       | 0.038    | ug/m³    |          | <1.5        |             |        | NA     | 25    |       |
| Toluene                   | 1.39   | 0.75      | 0.060    | ug/m³    |          | 1.39        |             |        | 0.0216 | 25    |       |
| trans-1,2-Dichloroethene  | < 2.0  | 2.0       | 0.11     | ug/m³    |          | <2.0        |             |        | NA     | 25    |       |
| trans-1,3-Dichloropropene | < 2.3  | 2.3       | 0.070    | ug/m³    |          | <2.3        |             |        | NA     | 25    |       |
| Trichloroethene           | < 1.1  | 1.1       | 0.12     | ug/m³    |          | <1.1        |             |        | NA     | 25    |       |
| Trichlorofluoromethane    | < 2.8  | 2.8       | 0.048    | ug/m³    |          | <2.8        |             |        | NA     | 25    |       |
| Trichlorotrifluoroethane  | < 3.8  | 3.8       | 0.17     | ug/m³    |          | <3.8        |             |        | NA     | 25    |       |
| Vinyl acetate             | < 1.8  | 1.8       | 0.90     | ug/m³    |          | <1.8        |             |        | NA     | 25    |       |
| Vinyl chloride            | < 0.51 | 0.51      | 0.051    | ug/m³    |          | <0.51       |             |        | NA     | 25    |       |



Fax: 651-642-1239

| Landmark Environmental | Project:         | TO-15               |                |          |
|------------------------|------------------|---------------------|----------------|----------|
| 2042 West 98th Street  | Project Number:  | CrC                 | Work Order #:  | 1602154  |
| Bloomington, MN 55431  | Project Manager: | Mr. Jason Skramstad | Date Reported: | 05/24/16 |

#### **Notes and Definitions**

Less than value listed

NA Not applicable. The %RPD is not calculated from values less than the reporting limit.

MDL Method Detection Limit

RL Reporting Limit

RPD Relative Percent Difference

LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)

88 Empire Drive Tel: 651-642-1150

St Paul, MN 55103 Fax: 651-642-1239





88 Empire Drive St Paul, MN 55103

Tel: 651-642-1150 Fax: 651-642-1239





88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

July 08, 2016

Mr. Jason Skramstad Landmark Environmental 2042 West 98th Street Bloomington, MN 55431

Work Order Number: 1602754

RE: TO-15

Enclosed are the results of analyses for samples received by the laboratory on 06/24/16. If you have any questions concerning this report, please feel free to contact me.

Samples will not be retained by LEGEND once the analyses are completed.

All internal quality assurance met the method requirements unless otherwise noted in the case narrative. Additionally, all samples were received in acceptable condition unless otherwise noted.

For the tentatively identified compounds (TICs), a computer generated library search was done comparing the spectra of the unknown compounds with spectra contained in the NIST (NBS) and Wiley reference libraries. A visual comparison was made of each unknown compound and the best library match. Quantitation was based on the response of the nearest internal standard. Unidentified peaks were quantified using 100 as the molecular weight. Both the identification of specific compounds and the quantities given should be considered approximations.

Chromatograms are included for samples containing detections.

MDH Accreditation #027-123-295

Prepared by, LEGEND TECHNICAL SERVICES, INC

Bach Pham
Client Manager II
bpham@legend-group.com



Fax: 651-642-1239

| Landmark Environmental | Project:         | TO-15               |                |          |
|------------------------|------------------|---------------------|----------------|----------|
| 2042 West 98th Street  | Project Number:  | CrC                 | Work Order #:  | 1602754  |
| Bloomington, MN 55431  | Project Manager: | Mr. Jason Skramstad | Date Reported: | 07/08/16 |

### **ANALYTICAL REPORT FOR SAMPLES**

| Sample ID   | Laboratory ID | Matrix | Date Sampled   | Date Received  |
|-------------|---------------|--------|----------------|----------------|
| LSG-7       | 1602754-01    | Air    | 06/23/16 12:51 | 06/24/16 12:50 |
| LSG-8       | 1602754-02    | Air    | 06/23/16 13:10 | 06/24/16 12:50 |
| LSG-9       | 1602754-03    | Air    | 06/23/16 12:13 | 06/24/16 12:50 |
| LSG-10      | 1602754-04    | Air    | 06/23/16 12:38 | 06/24/16 12:50 |
| SP-1 (SSL)  | 1602754-05    | Air    | 06/23/16 13:21 | 06/24/16 12:50 |
| SP-2 (ES)   | 1602754-06    | Air    | 06/23/16 11:27 | 06/24/16 12:50 |
| DPE-Exhaust | 1602754-07    | Air    | 06/23/16 15:01 | 06/24/16 12:50 |

#### **Case Narrative:**

Hydrocarbon patterns were observed in samples LSG-7, LSG-8, and LSG-10 between the retention times of 22 and 28 minutes.

Per the client's instructions, TICs were not included in this report.



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CrCWork Order #: 1602754Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 07/08/16

# VOC - AIR Legend Technical Services, Inc.

| Analyte (CAS#)                       | Result         | RL    | MDL        | Units   | Dilution | Batch   | Prepared | Analyzed | Method | Notes |
|--------------------------------------|----------------|-------|------------|---------|----------|---------|----------|----------|--------|-------|
| LSG-7 (1602754-01) Air Received:0    | 06/24/16 12:50 | Sampl | ed:06/23/1 | 6 12:51 |          |         |          |          |        |       |
| 1,1,1-Trichloroethane (71-55-6)      | <2.7           | 2.7   | 0.044      | ug/m³   | 1        | B6G0719 | 07/02/16 | 07/03/16 | TO-15  |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)  | <3.4           | 3.4   | 0.074      | ug/m³   | 1        | "       | "        | "        | "      |       |
| 1,1,2-Trichloroethane (79-00-5)      | <2.7           | 2.7   | 0.11       | ug/m³   | 1        | "       | "        | "        | "      |       |
| 1,1-Dichloroethane (75-34-3)         | <2.0           | 2.0   | 0.11       | ug/m³   | 1        | "       | "        | "        | "      |       |
| 1,1-Dichloroethene (75-35-4)         | <2.0           | 2.0   | 0.078      | ug/m³   | 1        | "       | "        |          | "      |       |
| 1,2,4-Trichlorobenzene (120-82-1)    | <3.7           | 3.7   | 0.13       | ug/m³   | 1        | "       | "        |          | "      |       |
| 1,2,4-Trimethylbenzene (95-63-6)     | 1.6            | 1.0   | 0.073      | ug/m³   | 1        | "       | "        |          | "      |       |
| 1,2-Dibromoethane (106-93-4)         | <3.8           | 3.8   | 0.16       | ug/m³   | 1        | "       | "        |          | "      |       |
| 1,2-Dichlorobenzene (95-50-1)        | <3.0           | 3.0   | 0.071      | ug/m³   | 1        | "       | "        |          | "      |       |
| 1,2-Dichloroethane (107-06-2)        | <2.0           | 2.0   | 0.055      | ug/m³   | 1        | "       | "        |          | "      |       |
| 1,2-Dichloropropane (78-87-5)        | <2.3           | 2.3   | 0.081      | ug/m³   | 1        | "       | n .      | "        | II .   |       |
| 1,3,5-Trimethylbenzene (108-67-8)    | <1.0           | 1.0   | 0.11       | ug/m³   | 1        | "       | n .      | "        | II .   |       |
| 1,3-Butadiene (106-99-0)             | 1.2            | 1.1   | 0.10       | ug/m³   | 1        | n n     | n .      | "        | II .   |       |
| 1,3-Dichlorobenzene (541-73-1)       | <3.0           | 3.0   | 0.14       | ug/m³   | 1        | "       | n .      | "        | II .   |       |
| 1,4-Dichlorobenzene (106-46-7)       | <3.0           | 3.0   | 0.17       | ug/m³   | 1        | "       | n .      | "        | II .   |       |
| 2-Butanone (78-93-3)                 | 3.1            | 1.5   | 0.078      | ug/m³   | 1        | n n     | n .      | "        | II .   |       |
| 4-Ethyltoluene (622-96-8)            | <2.5           | 2.5   | 0.11       | ug/m³   | 1        | "       | n .      | "        | II .   |       |
| Acetone (67-64-1)                    | 51             | 11    | 0.50       | ug/m³   | 9        | "       | "        | 07/04/16 | "      |       |
| Benzene (71-43-2)                    | 5.4            | 0.64  | 0.050      | ug/m³   | 1        | "       | "        | 07/03/16 | "      |       |
| Benzyl chloride (100-44-7)           | <2.6           | 2.6   | 0.073      | ug/m³   | 1        | "       | "        |          | "      |       |
| Bromodichloromethane (75-27-4)       | <3.4           | 3.4   | 0.13       | ug/m³   | 1        | "       | n .      | "        | II .   |       |
| Bromoform (75-25-2)                  | <5.2           | 5.2   | 0.13       | ug/m³   | 1        | "       | "        | "        | "      |       |
| Bromomethane (74-83-9)               | <1.9           | 1.9   | 0.069      | ug/m³   | 1        | "       | n .      | "        | II .   |       |
| Carbon disulfide (75-15-0)           | <1.6           | 1.6   | 0.070      | ug/m³   | 1        | "       | "        |          | "      |       |
| Carbon tetrachloride (56-23-5)       | <3.1           | 3.1   | 0.087      | ug/m³   | 1        | n n     | "        | "        | п      |       |
| Chlorobenzene (108-90-7)             | <2.3           | 2.3   | 0.080      | ug/m³   | 1        | n n     | "        | "        | п      |       |
| Chloroethane (75-00-3)               | <1.3           | 1.3   | 0.037      | ug/m³   | 1        | "       | "        | "        | "      |       |
| Chloroform (67-66-3)                 | <2.4           | 2.4   | 0.055      | ug/m³   | 1        | n .     | "        | "        | II .   |       |
| Chloromethane (74-87-3)              | 1.2            | 1.0   | 0.044      | ug/m³   | 1        | п       | "        | "        | п      |       |
| cis-1,2-Dichloroethene (156-59-2)    | <2.0           | 2.0   | 0.089      | ug/m³   | 1        | "       | "        | "        | "      |       |
| cis-1,3-Dichloropropene (10061-01-5) | <2.3           | 2.3   | 0.12       | ug/m³   | 1        | n n     | "        | "        | п      |       |
| Cyclohexane (110-82-7)               | <1.7           | 1.7   | 0.059      | ug/m³   | 1        | n n     | "        | "        | п      |       |
| Dibromochloromethane (124-48-1)      | <4.3           | 4.3   | 0.16       | ug/m³   | 1        | n n     | "        | "        | п      |       |
| Dichlorodifluoromethane (75-71-8)    | 2.7            | 2.5   | 0.12       | ug/m³   | 1        | n n     | "        | "        | п      |       |
| Dichlorotetrafluoroethane (76-14-2)  | <3.5           | 3.5   | 0.063      | ug/m³   | 1        | "       | "        | "        | п      |       |

Legend Technical Services, Inc.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CrCWork Order #: 1602754Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported:07/08/16

| Legend Technical Services, Inc.        |              |      |             |         |          |         |          |          |        |       |
|----------------------------------------|--------------|------|-------------|---------|----------|---------|----------|----------|--------|-------|
| Analyte (CAS#)                         | Result       | RL   | MDL         | Units   | Dilution | Batch   | Prepared | Analyzed | Method | Notes |
| LSG-7 (1602754-01) Air Received:06     | /24/16 12:50 | Samp | led:06/23/1 | 6 12:51 |          |         |          |          |        |       |
| Ethanol (64-17-5)                      | 1200         | 85   | 6.1         | ug/m³   | 90       | B6G0719 | 07/02/16 | 07/04/16 | TO-15  |       |
| Ethyl acetate (141-78-6)               | 2.0          | 1.8  | 0.11        | ug/m³   | 1        | "       | m .      | 07/03/16 | II .   |       |
| Ethylbenzene (100-41-4)                | 0.99         | 0.87 | 0.082       | ug/m³   | 1        | "       | "        | "        | "      |       |
| Hexachlorobutadiene (87-68-3)          | <5.3         | 5.3  | 0.27        | ug/m³   | 1        | "       | "        | "        | "      |       |
| Isopropyl alcohol (67-63-0)            | 540          | 110  | 6.8         | ug/m³   | 90       | "       | "        | 07/04/16 | "      |       |
| m,p-Xylene (136777-61-2)               | 3.3          | 1.7  | 0.15        | ug/m³   | 1        | "       | "        | 07/03/16 | "      |       |
| Methyl butyl ketone (591-78-6)         | <2.0         | 2.0  | 0.12        | ug/m³   | 1        | "       | "        | "        | "      |       |
| Methyl isobutyl ketone (108-10-1)      | <2.0         | 2.0  | 0.11        | ug/m³   | 1        | "       | "        | "        | "      |       |
| Methyl tert-butyl ether (1634-04-4)    | <1.8         | 1.8  | 0.11        | ug/m³   | 1        | "       | "        | "        | "      |       |
| Methylene chloride (75-09-2)           | 2.4          | 1.7  | 0.21        | ug/m³   | 1        | "       | "        | "        | "      |       |
| Naphthalene (91-20-3)                  | <2.6         | 2.6  | 0.11        | ug/m³   | 1        | "       | "        | "        | "      |       |
| n-Heptane (142-82-5)                   | <2.0         | 2.0  | 0.078       | ug/m³   | 1        | "       | "        | "        | "      |       |
| n-Hexane (110-54-3)                    | <1.8         | 1.8  | 0.074       | ug/m³   | 1        | "       | "        | "        | "      |       |
| o-Xylene (95-47-6)                     | 1.2          | 0.87 | 0.096       | ug/m³   | 1        | "       | "        | "        | "      |       |
| Propylene (115-07-1)                   | <0.86        | 0.86 | 0.027       | ug/m³   | 1        | "       | "        | "        | "      |       |
| Styrene (100-42-5)                     | <2.1         | 2.1  | 0.096       | ug/m³   | 1        | "       | "        | "        | "      |       |
| Tetrachloroethene (127-18-4)           | <3.4         | 3.4  | 0.13        | ug/m³   | 1        | "       | "        | "        | "      |       |
| Tetrahydrofuran (109-99-9)             | <1.5         | 1.5  | 0.038       | ug/m³   | 1        | "       | "        | "        | "      |       |
| Toluene (108-88-3)                     | 13           | 0.75 | 0.060       | ug/m³   | 1        | "       | "        | "        | "      |       |
| trans-1,2-Dichloroethene (156-60-5)    | <2.0         | 2.0  | 0.11        | ug/m³   | 1        | "       | "        | "        | "      |       |
| trans-1,3-Dichloropropene (10061-02-6) | <2.3         | 2.3  | 0.070       | ug/m³   | 1        | "       | "        | "        | "      |       |
| Trichloroethene (79-01-6)              | <1.1         | 1.1  | 0.12        | ug/m³   | 1        | "       | "        | "        | "      |       |
| Trichlorofluoromethane (75-69-4)       | <2.8         | 2.8  | 0.048       | ug/m³   | 1        | "       | "        | "        | "      |       |
| Trichlorotrifluoroethane (76-13-1)     | <3.8         | 3.8  | 0.17        | ug/m³   | 1        | "       | "        | "        | "      |       |
| Vinyl acetate (108-05-4)               | <1.8         | 1.8  | 0.90        | ug/m³   | 1        | "       | "        | "        | "      |       |
| Vinyl chloride (75-01-4)               | <0.51        | 0.51 | 0.051       | ug/m³   | 1        | "       | "        | "        | "      |       |
| LSG-8 (1602754-02) Air Received:06     | /24/16 12:50 | Samp | led:06/23/1 | 6 13:10 |          |         |          |          |        |       |
| 1,1,1-Trichloroethane (71-55-6)        | <2.7         | 2.7  | 0.044       | ug/m³   | 1        | B6G0719 | 07/02/16 | 07/03/16 | TO-15  |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)    | <3.4         | 3.4  | 0.074       | ug/m³   | 1        | "       | m .      | II .     | II .   |       |
| 1,1,2-Trichloroethane (79-00-5)        | <2.7         | 2.7  | 0.11        | ug/m³   | 1        | "       | m .      | II .     | II .   |       |
| 1,1-Dichloroethane (75-34-3)           | <2.0         | 2.0  | 0.11        | ug/m³   | 1        | "       | m .      | II .     | II .   |       |
| 1,1-Dichloroethene (75-35-4)           | <2.0         | 2.0  | 0.078       | ug/m³   | 1        | "       | "        | "        | "      |       |
| 1,2,4-Trichlorobenzene (120-82-1)      | <3.7         | 3.7  | 0.13        | ug/m³   | 1        | "       | m .      | II .     | II .   |       |
| 1,2,4-Trimethylbenzene (95-63-6)       | 1.7          | 1.0  | 0.073       | ug/m³   | 1        | "       | "        | m .      | II .   |       |
| 1,2-Dibromoethane (106-93-4)           | <3.8         | 3.8  | 0.16        | ug/m³   | 1        | "       | m .      | II .     | II .   |       |
|                                        |              |      |             |         |          |         |          |          |        |       |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CrCWork Order #: 1602754Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 07/08/16

| Analyte (CAS#)                       | Result        | RL    | MDL        | Units   | Dilution | Batch   | Prepared | Analyzed | Method | Notes |
|--------------------------------------|---------------|-------|------------|---------|----------|---------|----------|----------|--------|-------|
| LSG-8 (1602754-02) Air Received:0    | 6/24/16 12:50 | Sampl | ed:06/23/1 | 6 13:10 |          |         |          |          |        |       |
| 1,2-Dichlorobenzene (95-50-1)        | <3.0          | 3.0   | 0.071      | ug/m³   | 1        | B6G0719 | 07/02/16 | 07/03/16 | TO-15  |       |
| 1,2-Dichloroethane (107-06-2)        | <2.0          | 2.0   | 0.055      | ug/m³   | 1        | "       | "        | "        | "      |       |
| 1,2-Dichloropropane (78-87-5)        | <2.3          | 2.3   | 0.081      | ug/m³   | 1        | "       | "        | "        | "      |       |
| 1,3,5-Trimethylbenzene (108-67-8)    | <1.0          | 1.0   | 0.11       | ug/m³   | 1        | "       | "        | "        | "      |       |
| 1,3-Butadiene (106-99-0)             | <1.1          | 1.1   | 0.10       | ug/m³   | 1        | "       | "        | "        | "      |       |
| 1,3-Dichlorobenzene (541-73-1)       | <3.0          | 3.0   | 0.14       | ug/m³   | 1        | "       | "        | "        | "      |       |
| 1,4-Dichlorobenzene (106-46-7)       | <3.0          | 3.0   | 0.17       | ug/m³   | 1        | "       | "        | "        | "      |       |
| 2-Butanone (78-93-3)                 | 2.1           | 1.5   | 0.078      | ug/m³   | 1        | "       | "        | "        | "      |       |
| 4-Ethyltoluene (622-96-8)            | <2.5          | 2.5   | 0.11       | ug/m³   | 1        | "       | "        | "        | "      |       |
| Acetone (67-64-1)                    | 21            | 1.2   | 0.055      | ug/m³   | 1        | "       | "        | "        | "      |       |
| Benzene (71-43-2)                    | <0.64         | 0.64  | 0.050      | ug/m³   | 1        | "       | "        | "        | "      |       |
| Benzyl chloride (100-44-7)           | <2.6          | 2.6   | 0.073      | ug/m³   | 1        | "       | "        | "        | "      |       |
| Bromodichloromethane (75-27-4)       | <3.4          | 3.4   | 0.13       | ug/m³   | 1        | "       | "        | "        | "      |       |
| Bromoform (75-25-2)                  | <5.2          | 5.2   | 0.13       | ug/m³   | 1        | "       | "        | "        | "      |       |
| Bromomethane (74-83-9)               | <1.9          | 1.9   | 0.069      | ug/m³   | 1        | "       | "        | "        | "      |       |
| Carbon disulfide (75-15-0)           | <1.6          | 1.6   | 0.070      | ug/m³   | 1        | "       | "        | "        | "      |       |
| Carbon tetrachloride (56-23-5)       | <3.1          | 3.1   | 0.087      | ug/m³   | 1        | "       | "        | "        | "      |       |
| Chlorobenzene (108-90-7)             | <2.3          | 2.3   | 0.080      | ug/m³   | 1        | "       | "        | "        | "      |       |
| Chloroethane (75-00-3)               | <1.3          | 1.3   | 0.037      | ug/m³   | 1        | "       | "        | "        | "      |       |
| Chloroform (67-66-3)                 | <2.4          | 2.4   | 0.055      | ug/m³   | 1        | "       | "        | "        | "      |       |
| Chloromethane (74-87-3)              | <1.0          | 1.0   | 0.044      | ug/m³   | 1        | "       | "        | "        | "      |       |
| cis-1,2-Dichloroethene (156-59-2)    | <2.0          | 2.0   | 0.089      | ug/m³   | 1        | "       | "        | "        | "      |       |
| cis-1,3-Dichloropropene (10061-01-5) | <2.3          | 2.3   | 0.12       | ug/m³   | 1        | "       | "        | "        | "      |       |
| Cyclohexane (110-82-7)               | <1.7          | 1.7   | 0.059      | ug/m³   | 1        | "       | "        | "        | "      |       |
| Dibromochloromethane (124-48-1)      | <4.3          | 4.3   | 0.16       | ug/m³   | 1        | "       | "        | "        | "      |       |
| Dichlorodifluoromethane (75-71-8)    | 3.3           | 2.5   | 0.12       | ug/m³   | 1        | "       | "        | "        | "      |       |
| Dichlorotetrafluoroethane (76-14-2)  | <3.5          | 3.5   | 0.063      | ug/m³   | 1        | "       | "        |          | "      |       |
| Ethanol (64-17-5)                    | 210           | 14    | 1.0        | ug/m³   | 15       | "       | "        | 07/04/16 | "      |       |
| Ethyl acetate (141-78-6)             | 4.7           | 1.8   | 0.11       | ug/m³   | 1        | "       | "        | 07/03/16 | "      |       |
| Ethylbenzene (100-41-4)              | 0.92          | 0.87  | 0.082      | ug/m³   | 1        | "       | "        | "        | "      |       |
| Hexachlorobutadiene (87-68-3)        | <5.3          | 5.3   | 0.27       | ug/m³   | 1        | "       | "        | "        | "      |       |
| Isopropyl alcohol (67-63-0)          | 110           | 18    | 1.1        | ug/m³   | 15       | "       | "        | 07/04/16 | п      |       |
| m,p-Xylene (136777-61-2)             | 3.6           | 1.7   | 0.15       | ug/m³   | 1        | "       | n .      | 07/03/16 | п      |       |
| Methyl butyl ketone (591-78-6)       | <2.0          | 2.0   | 0.12       | ug/m³   | 1        | "       | "        | "        | п      |       |
| Methyl isobutyl ketone (108-10-1)    | <2.0          | 2.0   | 0.11       | ug/m³   | 1        | "       | "        | "        | "      |       |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CrCWork Order #: 1602754Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported:07/08/16

| Analyte (CAS#)                         | Result       | RL   | MDL         | Units   | Dilution | Batch   | Prepared | Analyzed | Method | Notes |
|----------------------------------------|--------------|------|-------------|---------|----------|---------|----------|----------|--------|-------|
| LSG-8 (1602754-02) Air Received:06     | /24/16 12:50 | Samp | led:06/23/1 | 6 13:10 |          |         |          |          |        |       |
| Methyl tert-butyl ether (1634-04-4)    | <1.8         | 1.8  | 0.11        | ug/m³   | 1        | B6G0719 | 07/02/16 | 07/03/16 | TO-15  |       |
| Methylene chloride (75-09-2)           | 1.8          | 1.7  | 0.21        | ug/m³   | 1        | "       | "        | "        | "      |       |
| Naphthalene (91-20-3)                  | <2.6         | 2.6  | 0.11        | ug/m³   | 1        | "       | "        | ıı       | II .   |       |
| n-Heptane (142-82-5)                   | <2.0         | 2.0  | 0.078       | ug/m³   | 1        | "       | n .      | "        | "      |       |
| n-Hexane (110-54-3)                    | <1.8         | 1.8  | 0.074       | ug/m³   | 1        | "       | "        | "        | "      |       |
| o-Xylene (95-47-6)                     | 1.3          | 0.87 | 0.096       | ug/m³   | 1        | "       | "        | ıı       | II .   |       |
| Propylene (115-07-1)                   | <0.86        | 0.86 | 0.027       | ug/m³   | 1        | "       | "        | "        | "      |       |
| Styrene (100-42-5)                     | <2.1         | 2.1  | 0.096       | ug/m³   | 1        | "       | "        | "        | "      |       |
| Tetrachloroethene (127-18-4)           | <3.4         | 3.4  | 0.13        | ug/m³   | 1        | "       | "        | ıı       | II .   |       |
| Tetrahydrofuran (109-99-9)             | <1.5         | 1.5  | 0.038       | ug/m³   | 1        | "       | n .      | "        | "      |       |
| Toluene (108-88-3)                     | 6.1          | 0.75 | 0.060       | ug/m³   | 1        | "       | "        | "        | "      |       |
| trans-1,2-Dichloroethene (156-60-5)    | <2.0         | 2.0  | 0.11        | ug/m³   | 1        | "       | "        | "        | "      |       |
| trans-1,3-Dichloropropene (10061-02-6) | <2.3         | 2.3  | 0.070       | ug/m³   | 1        | "       | "        | "        | "      |       |
| Trichloroethene (79-01-6)              | <1.1         | 1.1  | 0.12        | ug/m³   | 1        | "       | "        | ıı       | II .   |       |
| Trichlorofluoromethane (75-69-4)       | <2.8         | 2.8  | 0.048       | ug/m³   | 1        | "       | "        | "        | "      |       |
| Trichlorotrifluoroethane (76-13-1)     | <3.8         | 3.8  | 0.17        | ug/m³   | 1        | "       | "        | "        | "      |       |
| Vinyl acetate (108-05-4)               | <1.8         | 1.8  | 0.90        | ug/m³   | 1        | "       | "        | ıı       | II .   |       |
| Vinyl chloride (75-01-4)               | <0.51        | 0.51 | 0.051       | ug/m³   | 1        | "       | "        | "        | "      |       |
| LSG-9 (1602754-03) Air Received:06     | /24/16 12:50 | Samp | led:06/23/1 | 6 12:13 |          |         |          |          |        |       |
| 1,1,1-Trichloroethane (71-55-6)        | <2.7         | 2.7  | 0.044       | ug/m³   | 1        | B6G0719 | 07/02/16 | 07/03/16 | TO-15  |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)    | <3.4         | 3.4  | 0.074       | ug/m³   | 1        | "       | "        | "        | "      |       |
| 1,1,2-Trichloroethane (79-00-5)        | <2.7         | 2.7  | 0.11        | ug/m³   | 1        | "       | "        | "        | "      |       |
| 1,1-Dichloroethane (75-34-3)           | <2.0         | 2.0  | 0.11        | ug/m³   | 1        | "       | "        | "        | "      |       |
| 1,1-Dichloroethene (75-35-4)           | <2.0         | 2.0  | 0.078       | ug/m³   | 1        | "       | "        | "        | "      |       |
| 1,2,4-Trichlorobenzene (120-82-1)      | <3.7         | 3.7  | 0.13        | ug/m³   | 1        | "       | "        | "        | "      |       |
| 1,2,4-Trimethylbenzene (95-63-6)       | 1.1          | 1.0  | 0.073       | ug/m³   | 1        | "       | "        | "        | "      |       |
| 1,2-Dibromoethane (106-93-4)           | <3.8         | 3.8  | 0.16        | ug/m³   | 1        | "       | "        | "        | "      |       |
| 1,2-Dichlorobenzene (95-50-1)          | <3.0         | 3.0  | 0.071       | ug/m³   | 1        | "       | "        | "        | "      |       |
| 1,2-Dichloroethane (107-06-2)          | <2.0         | 2.0  | 0.055       | ug/m³   | 1        | "       | "        | "        | "      |       |
| 1,2-Dichloropropane (78-87-5)          | <2.3         | 2.3  | 0.081       | ug/m³   | 1        | "       | "        | "        | "      |       |
| 1,3,5-Trimethylbenzene (108-67-8)      | <1.0         | 1.0  | 0.11        | ug/m³   | 1        | "       | "        | "        | "      |       |
| 1,3-Butadiene (106-99-0)               | <1.1         | 1.1  | 0.10        | ug/m³   | 1        | "       | "        | II .     | u u    |       |
| 1,3-Dichlorobenzene (541-73-1)         | <3.0         | 3.0  | 0.14        | ug/m³   | 1        | "       | "        | "        | "      |       |
| 1,4-Dichlorobenzene (106-46-7)         | <3.0         | 3.0  | 0.17        | ug/m³   | 1        | "       | "        | "        | "      |       |
| 2-Butanone (78-93-3)                   | 2.0          | 1.5  | 0.078       | ug/m³   | 1        | "       | "        | "        | "      |       |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CrCBloomington, MN 55431Project Manager:Mr. Jason Skramstad

Work Order #: 1602754

Date Reported: 07/08/16

| Analyte (CAS#)                       | Result | RL                     | MDL   | Units | Dilution | Batch   | Prepared | Analyzed | Method | Notes |
|--------------------------------------|--------|------------------------|-------|-------|----------|---------|----------|----------|--------|-------|
| LSG-9 (1602754-03) Air Received:00   | Samp   | Sampled:06/23/16 12:13 |       |       |          |         |          |          |        |       |
| 4-Ethyltoluene (622-96-8)            | <2.5   | 2.5                    | 0.11  | ug/m³ | 1        | B6G0719 | 07/02/16 | 07/03/16 | TO-15  |       |
| Acetone (67-64-1)                    | 35     | 11                     | 0.50  | ug/m³ | 9        | "       | "        | 07/05/16 | "      |       |
| Benzene (71-43-2)                    | <0.64  | 0.64                   | 0.050 | ug/m³ | 1        | "       | "        | 07/03/16 | "      |       |
| Benzyl chloride (100-44-7)           | <2.6   | 2.6                    | 0.073 | ug/m³ | 1        | "       | "        | "        | "      |       |
| Bromodichloromethane (75-27-4)       | <3.4   | 3.4                    | 0.13  | ug/m³ | 1        | "       | "        | "        | "      |       |
| Bromoform (75-25-2)                  | <5.2   | 5.2                    | 0.13  | ug/m³ | 1        | "       | "        | "        | "      |       |
| Bromomethane (74-83-9)               | <1.9   | 1.9                    | 0.069 | ug/m³ | 1        | "       | "        | "        | "      |       |
| Carbon disulfide (75-15-0)           | <1.6   | 1.6                    | 0.070 | ug/m³ | 1        | "       | "        | "        | "      |       |
| Carbon tetrachloride (56-23-5)       | <3.1   | 3.1                    | 0.087 | ug/m³ | 1        | "       | "        | "        | "      |       |
| Chlorobenzene (108-90-7)             | <2.3   | 2.3                    | 0.080 | ug/m³ | 1        | "       | "        | "        | "      |       |
| Chloroethane (75-00-3)               | <1.3   | 1.3                    | 0.037 | ug/m³ | 1        | "       | "        | "        | m .    |       |
| Chloroform (67-66-3)                 | <2.4   | 2.4                    | 0.055 | ug/m³ | 1        | "       | "        | "        | m .    |       |
| Chloromethane (74-87-3)              | 1.2    | 1.0                    | 0.044 | ug/m³ | 1        | "       | "        | "        | m .    |       |
| cis-1,2-Dichloroethene (156-59-2)    | <2.0   | 2.0                    | 0.089 | ug/m³ | 1        | "       | "        | "        | "      |       |
| cis-1,3-Dichloropropene (10061-01-5) | <2.3   | 2.3                    | 0.12  | ug/m³ | 1        | "       | "        | "        | m .    |       |
| Cyclohexane (110-82-7)               | <1.7   | 1.7                    | 0.059 | ug/m³ | 1        | "       | "        | "        | m .    |       |
| Dibromochloromethane (124-48-1)      | <4.3   | 4.3                    | 0.16  | ug/m³ | 1        | "       | "        | "        | m .    |       |
| Dichlorodifluoromethane (75-71-8)    | 4.1    | 2.5                    | 0.12  | ug/m³ | 1        | "       | "        | "        | m .    |       |
| Dichlorotetrafluoroethane (76-14-2)  | <3.5   | 3.5                    | 0.063 | ug/m³ | 1        | "       | "        | "        | "      |       |
| Ethanol (64-17-5)                    | 1600   | 85                     | 6.1   | ug/m³ | 90       | "       | "        | 07/05/16 | "      |       |
| Ethyl acetate (141-78-6)             | <1.8   | 1.8                    | 0.11  | ug/m³ | 1        | "       | "        | 07/03/16 | m .    |       |
| Ethylbenzene (100-41-4)              | 1.2    | 0.87                   | 0.082 | ug/m³ | 1        | "       | "        | "        | m .    |       |
| Hexachlorobutadiene (87-68-3)        | <5.3   | 5.3                    | 0.27  | ug/m³ | 1        | "       | "        | "        | m .    |       |
| Isopropyl alcohol (67-63-0)          | 890    | 110                    | 6.8   | ug/m³ | 90       | "       | "        | 07/05/16 | m .    |       |
| m,p-Xylene (136777-61-2)             | 5.9    | 1.7                    | 0.15  | ug/m³ | 1        | "       | "        | 07/03/16 | m .    |       |
| Methyl butyl ketone (591-78-6)       | <2.0   | 2.0                    | 0.12  | ug/m³ | 1        | "       | "        | ıı       | m .    |       |
| Methyl isobutyl ketone (108-10-1)    | <2.0   | 2.0                    | 0.11  | ug/m³ | 1        | "       | "        | "        | m .    |       |
| Methyl tert-butyl ether (1634-04-4)  | <1.8   | 1.8                    | 0.11  | ug/m³ | 1        | "       | "        | "        | m .    |       |
| Methylene chloride (75-09-2)         | <1.7   | 1.7                    | 0.21  | ug/m³ | 1        | "       | "        | "        | m .    |       |
| Naphthalene (91-20-3)                | <2.6   | 2.6                    | 0.11  | ug/m³ | 1        | "       | "        | "        | m .    |       |
| n-Heptane (142-82-5)                 | <2.0   | 2.0                    | 0.078 | ug/m³ | 1        | "       | "        | "        | "      |       |
| n-Hexane (110-54-3)                  | <1.8   | 1.8                    | 0.074 | ug/m³ | 1        | "       | "        | "        | "      |       |
| o-Xylene (95-47-6)                   | 3.1    | 0.87                   | 0.096 | ug/m³ | 1        | "       | "        | "        | "      |       |
| Propylene (115-07-1)                 | <0.86  | 0.86                   | 0.027 | ug/m³ | 1        | "       | "        | "        | "      |       |
| Styrene (100-42-5)                   | <2.1   | 2.1                    | 0.096 | ug/m³ | 1        | "       | "        | "        | п      |       |
|                                      |        |                        |       | -     |          |         |          |          |        |       |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CrCBloomington, MN 55431Project Manager:Mr. Jason

Work Order #: 1602754
Skramstad Date Reported: 07/08/16

Project Manager: Mr. Jason Skramstad

| Analyte (CAS#)                         | Result       | RL     | MDL         | Units    | Dilution | Batch   | Prepared | Analyzed | Method | Notes |
|----------------------------------------|--------------|--------|-------------|----------|----------|---------|----------|----------|--------|-------|
| LSG-9 (1602754-03) Air Received:06     | /24/16 12:50 | Samp   | led:06/23/1 | 6 12:13  |          |         |          |          |        |       |
| Tetrachloroethene (127-18-4)           | 32           | 3.4    | 0.13        | ug/m³    | 1        | B6G0719 | 07/02/16 | 07/03/16 | TO-15  |       |
| Tetrahydrofuran (109-99-9)             | <1.5         | 1.5    | 0.038       | ug/m³    | 1        | "       | "        | "        | "      |       |
| Toluene (108-88-3)                     | 2.6          | 0.75   | 0.060       | ug/m³    | 1        | "       | "        | "        | "      |       |
| trans-1,2-Dichloroethene (156-60-5)    | <2.0         | 2.0    | 0.11        | ug/m³    | 1        | "       | "        | "        | "      |       |
| trans-1,3-Dichloropropene (10061-02-6) | <2.3         | 2.3    | 0.070       | ug/m³    | 1        | "       | "        | "        | "      |       |
| Trichloroethene (79-01-6)              | <1.1         | 1.1    | 0.12        | ug/m³    | 1        | "       | "        | "        | "      |       |
| Trichlorofluoromethane (75-69-4)       | <2.8         | 2.8    | 0.048       | ug/m³    | 1        | "       | "        | "        | "      |       |
| Trichlorotrifluoroethane (76-13-1)     | <3.8         | 3.8    | 0.17        | ug/m³    | 1        | "       | "        | "        | "      |       |
| Vinyl acetate (108-05-4)               | <1.8         | 1.8    | 0.90        | ug/m³    | 1        | "       | "        | "        | "      |       |
| Vinyl chloride (75-01-4)               | <0.51        | 0.51   | 0.051       | ug/m³    | 1        | "       | "        | "        | "      |       |
| LSG-10 (1602754-04) Air Received:0     | 6/24/16 12:5 | 0 Samı | pled:06/23/ | 16 12:38 |          |         |          |          |        | ,     |
| 1,1,1-Trichloroethane (71-55-6)        | <2.7         | 2.7    | 0.044       | ug/m³    | 1        | B6G0719 | 07/02/16 | 07/03/16 | TO-15  |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)    | <3.4         | 3.4    | 0.074       | ug/m³    | 1        | "       | n .      | ıı       | II .   |       |
| 1,1,2-Trichloroethane (79-00-5)        | <2.7         | 2.7    | 0.11        | ug/m³    | 1        | "       | "        | "        | "      |       |
| 1,1-Dichloroethane (75-34-3)           | <2.0         | 2.0    | 0.11        | ug/m³    | 1        | "       | "        | "        | "      |       |
| 1,1-Dichloroethene (75-35-4)           | <2.0         | 2.0    | 0.078       | ug/m³    | 1        | "       | "        | "        | "      |       |
| 1,2,4-Trichlorobenzene (120-82-1)      | <3.7         | 3.7    | 0.13        | ug/m³    | 1        | "       | "        | "        | "      |       |
| 1,2,4-Trimethylbenzene (95-63-6)       | 2.2          | 1.0    | 0.073       | ug/m³    | 1        | "       | n .      | "        | "      |       |
| 1,2-Dibromoethane (106-93-4)           | <3.8         | 3.8    | 0.16        | ug/m³    | 1        | "       | "        | "        | "      |       |
| 1,2-Dichlorobenzene (95-50-1)          | <3.0         | 3.0    | 0.071       | ug/m³    | 1        | "       | "        | "        | "      |       |
| 1,2-Dichloroethane (107-06-2)          | <2.0         | 2.0    | 0.055       | ug/m³    | 1        | "       | "        | "        | "      |       |
| 1,2-Dichloropropane (78-87-5)          | <2.3         | 2.3    | 0.081       | ug/m³    | 1        | "       | "        | "        | "      |       |
| 1,3,5-Trimethylbenzene (108-67-8)      | <1.0         | 1.0    | 0.11        | ug/m³    | 1        | "       | n .      | "        | "      |       |
| 1,3-Butadiene (106-99-0)               | <1.1         | 1.1    | 0.10        | ug/m³    | 1        | "       | n .      | "        | "      |       |
| 1,3-Dichlorobenzene (541-73-1)         | <3.0         | 3.0    | 0.14        | ug/m³    | 1        | "       | "        | "        | "      |       |
| 1,4-Dichlorobenzene (106-46-7)         | <3.0         | 3.0    | 0.17        | ug/m³    | 1        | "       | "        | "        | "      |       |
| 2-Butanone (78-93-3)                   | 3.6          | 1.5    | 0.078       | ug/m³    | 1        | "       | "        | "        | "      |       |
| 4-Ethyltoluene (622-96-8)              | <2.5         | 2.5    | 0.11        | ug/m³    | 1        | "       | n .      | "        | "      |       |
| Acetone (67-64-1)                      | 74           | 11     | 0.50        | ug/m³    | 9        | "       | n .      | 07/05/16 | II .   |       |
| Benzene (71-43-2)                      | <0.64        | 0.64   | 0.050       | ug/m³    | 1        | "       | n .      | 07/03/16 | "      |       |
| Benzyl chloride (100-44-7)             | <2.6         | 2.6    | 0.073       | ug/m³    | 1        | "       | "        | II .     | "      |       |
| Bromodichloromethane (75-27-4)         | <3.4         | 3.4    | 0.13        | ug/m³    | 1        | "       | "        | "        | "      |       |
| Bromoform (75-25-2)                    | <5.2         | 5.2    | 0.13        | ug/m³    | 1        | "       | n .      | II .     | "      |       |
| Bromomethane (74-83-9)                 | <1.9         | 1.9    | 0.069       | ug/m³    | 1        | "       | n .      | II .     | "      |       |
| Carbon disulfide (75-15-0)             | <1.6         | 1.6    | 0.070       | ug/m³    | 1        | "       | "        | "        | "      |       |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CrCBloomington, MN 55431Project Manager:Mr. Jason Skramstad

Work Order #: 1602754
Date Reported: 07/08/16

| Analyte (CAS#)                         | Result        | RL     | MDL          | Units    | Dilution  | Batch         | Prepared      | Analyzed | Method | Notes |
|----------------------------------------|---------------|--------|--------------|----------|-----------|---------------|---------------|----------|--------|-------|
| LSG-10 (1602754-04) Air Received:0     | 16/24/16 12:5 | 0 Samı | oled:06/23/1 | 16 12:38 | _ <b></b> | _ <del></del> | _ <del></del> |          |        |       |
| Carbon tetrachloride (56-23-5)         | <3.1          | 3.1    | 0.087        | ug/m³    | 1         | B6G0719       | 07/02/16      | 07/03/16 | TO-15  |       |
| Chlorobenzene (108-90-7)               | <2.3          | 2.3    | 0.080        | ug/m³    | 1         | "             | "             | "        | u u    |       |
| Chloroethane (75-00-3)                 | <1.3          | 1.3    | 0.037        | ug/m³    | 1         | "             | "             | "        | "      |       |
| Chloroform (67-66-3)                   | <2.4          | 2.4    | 0.055        | ug/m³    | 1         | "             | "             | "        | "      |       |
| Chloromethane (74-87-3)                | 1.1           | 1.0    | 0.044        | ug/m³    | 1         | "             | "             | "        | "      |       |
| cis-1,2-Dichloroethene (156-59-2)      | <2.0          | 2.0    | 0.089        | ug/m³    | 1         | "             | "             | "        | "      |       |
| cis-1,3-Dichloropropene (10061-01-5)   | <2.3          | 2.3    | 0.12         | ug/m³    | 1         | "             | "             | "        | "      |       |
| Cyclohexane (110-82-7)                 | 1.8           | 1.7    | 0.059        | ug/m³    | 1         | "             | "             | "        | "      |       |
| Dibromochloromethane (124-48-1)        | <4.3          | 4.3    | 0.16         | ug/m³    | 1         | "             | "             | "        | "      |       |
| Dichlorodifluoromethane (75-71-8)      | <2.5          | 2.5    | 0.12         | ug/m³    | 1         | "             | "             | "        | "      |       |
| Dichlorotetrafluoroethane (76-14-2)    | <3.5          | 3.5    | 0.063        | ug/m³    | 1         | "             | "             | п        | II .   |       |
| Ethanol (64-17-5)                      | 1100          | 85     | 6.1          | ug/m³    | 90        | "             | "             | 07/05/16 | II .   |       |
| Ethyl acetate (141-78-6)               | <1.8          | 1.8    | 0.11         | ug/m³    | 1         | "             | "             | 07/03/16 | II .   |       |
| Ethylbenzene (100-41-4)                | 1.7           | 0.87   | 0.082        | ug/m³    | 1         | "             | n .           | "        | n .    |       |
| Hexachlorobutadiene (87-68-3)          | <5.3          | 5.3    | 0.27         | ug/m³    | 1         | "             | "             | "        | u u    |       |
| Isopropyl alcohol (67-63-0)            | 530           | 110    | 6.8          | ug/m³    | 90        | "             | "             | 07/05/16 | u u    |       |
| m,p-Xylene (136777-61-2)               | 9.2           | 1.7    | 0.15         | ug/m³    | 1         | "             | "             | 07/03/16 | n .    |       |
| Methyl butyl ketone (591-78-6)         | <2.0          | 2.0    | 0.12         | ug/m³    | 1         | "             | "             | "        | n .    |       |
| Methyl isobutyl ketone (108-10-1)      | <2.0          | 2.0    | 0.11         | ug/m³    | 1         | "             | n .           | п        | II .   |       |
| Methyl tert-butyl ether (1634-04-4)    | <1.8          | 1.8    | 0.11         | ug/m³    | 1         | "             | n .           | "        | n .    |       |
| Methylene chloride (75-09-2)           | 2.2           | 1.7    | 0.21         | ug/m³    | 1         | "             | "             | "        | "      |       |
| Naphthalene (91-20-3)                  | <2.6          | 2.6    | 0.11         | ug/m³    | 1         | "             | "             | "        | u u    |       |
| n-Heptane (142-82-5)                   | <2.0          | 2.0    | 0.078        | ug/m³    | 1         | "             | "             | "        | n .    |       |
| n-Hexane (110-54-3)                    | 3.7           | 1.8    | 0.074        | ug/m³    | 1         | "             | "             | "        | n .    |       |
| o-Xylene (95-47-6)                     | 5.1           | 0.87   | 0.096        | ug/m³    | 1         | "             | "             | "        | "      |       |
| Propylene (115-07-1)                   | <0.86         | 0.86   | 0.027        | ug/m³    | 1         | "             | "             | "        | "      |       |
| Styrene (100-42-5)                     | <2.1          | 2.1    | 0.096        | ug/m³    | 1         | "             | "             | "        | "      |       |
| Tetrachloroethene (127-18-4)           | <3.4          | 3.4    | 0.13         | ug/m³    | 1         | "             | "             | "        | "      |       |
| Tetrahydrofuran (109-99-9)             | <1.5          | 1.5    | 0.038        | ug/m³    | 1         | "             | "             | "        | "      |       |
| Toluene (108-88-3)                     | 32            | 0.75   | 0.060        | ug/m³    | 1         | "             | "             | "        | "      |       |
| trans-1,2-Dichloroethene (156-60-5)    | <2.0          | 2.0    | 0.11         | ug/m³    | 1         | "             | "             | "        | "      |       |
| trans-1,3-Dichloropropene (10061-02-6) | <2.3          | 2.3    | 0.070        | ug/m³    | 1         | "             | "             | "        | "      |       |
| Trichloroethene (79-01-6)              | <1.1          | 1.1    | 0.12         | ug/m³    | 1         | "             | "             | "        | "      |       |
| Trichlorofluoromethane (75-69-4)       | <2.8          | 2.8    | 0.048        | ug/m³    | 1         | "             | "             | п        | п      |       |
| Frichlorotrifluoroethane (76-13-1)     | <3.8          | 3.8    | 0.17         | ug/m³    | 1         | "             | n .           | "        | u u    |       |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CrCWork Order #: 1602754Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 07/08/16

| Analyte (CAS#)                       | Result                  | RL    | MDL          | Units      | Dilution | Batch   | Prepared | Analyzed | Method | Notes |
|--------------------------------------|-------------------------|-------|--------------|------------|----------|---------|----------|----------|--------|-------|
| LSG-10 (1602754-04) Air Received:0   | 6/24/16 12:5            | 0 Sam | npled:06/23/ | 16 12:38   |          |         |          |          |        |       |
| Vinyl acetate (108-05-4)             | <1.8                    | 1.8   | 0.90         | ug/m³      | 1        | B6G0719 | 07/02/16 | 07/03/16 | TO-15  |       |
| Vinyl chloride (75-01-4)             | <0.51                   | 0.51  | 0.051        | ug/m³      | 1        | "       | "        | "        | n      |       |
| SP-1 (SSL) (1602754-05) Air Receive  | d:06/24/16 <sup>^</sup> | 2:50  | Sampled:06/  | 23/16 13:2 | 1        |         |          |          |        |       |
| 1,1,1-Trichloroethane (71-55-6)      | <2.7                    | 2.7   | 0.044        | ug/m³      | 1        | B6G0719 | 07/02/16 | 07/03/16 | TO-15  |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)  | <3.4                    | 3.4   | 0.074        | ug/m³      | 1        | "       | "        | "        | "      |       |
| 1,1,2-Trichloroethane (79-00-5)      | <2.7                    | 2.7   | 0.11         | ug/m³      | 1        | "       | "        | "        | "      |       |
| 1,1-Dichloroethane (75-34-3)         | <2.0                    | 2.0   | 0.11         | ug/m³      | 1        | "       | "        | п        | "      |       |
| 1,1-Dichloroethene (75-35-4)         | <2.0                    | 2.0   | 0.078        | ug/m³      | 1        | "       | "        | "        | "      |       |
| 1,2,4-Trichlorobenzene (120-82-1)    | <3.7                    | 3.7   | 0.13         | ug/m³      | 1        | "       | "        | II .     | u u    |       |
| 1,2,4-Trimethylbenzene (95-63-6)     | 1.1                     | 1.0   | 0.073        | ug/m³      | 1        | "       | "        | H .      | n .    |       |
| 1,2-Dibromoethane (106-93-4)         | <3.8                    | 3.8   | 0.16         | ug/m³      | 1        | "       | "        | H .      | n .    |       |
| 1,2-Dichlorobenzene (95-50-1)        | <3.0                    | 3.0   | 0.071        | ug/m³      | 1        | "       | n .      | п        | п      |       |
| 1,2-Dichloroethane (107-06-2)        | <2.0                    | 2.0   | 0.055        | ug/m³      | 1        | "       | "        | H .      | n .    |       |
| 1,2-Dichloropropane (78-87-5)        | <2.3                    | 2.3   | 0.081        | ug/m³      | 1        | "       | "        | п        | "      |       |
| 1,3,5-Trimethylbenzene (108-67-8)    | <1.0                    | 1.0   | 0.11         | ug/m³      | 1        | "       | n .      | п        | п      |       |
| 1,3-Butadiene (106-99-0)             | <1.1                    | 1.1   | 0.10         | ug/m³      | 1        | "       | n .      | "        | II .   |       |
| 1,3-Dichlorobenzene (541-73-1)       | <3.0                    | 3.0   | 0.14         | ug/m³      | 1        | "       | "        | "        | "      |       |
| 1,4-Dichlorobenzene (106-46-7)       | <3.0                    | 3.0   | 0.17         | ug/m³      | 1        | "       | "        | "        | "      |       |
| 2-Butanone (78-93-3)                 | 1.8                     | 1.5   | 0.078        | ug/m³      | 1        | "       | "        | "        | "      |       |
| 4-Ethyltoluene (622-96-8)            | <2.5                    | 2.5   | 0.11         | ug/m³      | 1        | "       | "        | "        | "      |       |
| Acetone (67-64-1)                    | 34                      | 1.2   | 0.055        | ug/m³      | 1        | "       | "        | "        | "      |       |
| Benzene (71-43-2)                    | 0.73                    | 0.64  | 0.050        | ug/m³      | 1        | "       | "        | "        | "      |       |
| Benzyl chloride (100-44-7)           | <2.6                    | 2.6   | 0.073        | ug/m³      | 1        | "       | "        | "        | "      |       |
| Bromodichloromethane (75-27-4)       | <3.4                    | 3.4   | 0.13         | ug/m³      | 1        | "       | "        | "        | "      |       |
| Bromoform (75-25-2)                  | <5.2                    | 5.2   | 0.13         | ug/m³      | 1        | "       | "        | "        | "      |       |
| Bromomethane (74-83-9)               | <1.9                    | 1.9   | 0.069        | ug/m³      | 1        | "       | "        | "        | "      |       |
| Carbon disulfide (75-15-0)           | <1.6                    | 1.6   | 0.070        | ug/m³      | 1        | "       | "        | "        | "      |       |
| Carbon tetrachloride (56-23-5)       | <3.1                    | 3.1   | 0.087        | ug/m³      | 1        | "       | n .      | п        | п      |       |
| Chlorobenzene (108-90-7)             | <2.3                    | 2.3   | 0.080        | ug/m³      | 1        | "       | "        | "        | "      |       |
| Chloroethane (75-00-3)               | <1.3                    | 1.3   | 0.037        | ug/m³      | 1        | "       | "        | "        | "      |       |
| Chloroform (67-66-3)                 | <2.4                    | 2.4   | 0.055        | ug/m³      | 1        | "       | n .      | п        | п      |       |
| Chloromethane (74-87-3)              | 1.2                     | 1.0   | 0.044        | ug/m³      | 1        | "       | "        | "        | "      |       |
| cis-1,2-Dichloroethene (156-59-2)    | <2.0                    | 2.0   | 0.089        | ug/m³      | 1        | "       | n .      | п        | п      |       |
| cis-1,3-Dichloropropene (10061-01-5) | <2.3                    | 2.3   | 0.12         | ug/m³      | 1        | "       | n .      | п        | п      |       |
| Cyclohexane (110-82-7)               | <1.7                    | 1.7   | 0.059        | ug/m³      | 1        | "       | "        | "        | "      |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15
2042 West 98th Street Project Number: CrC

Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad

Work Order #: 1602754
Date Reported: 07/08/16

| Analyte (CAS#)                         | Result      | RL     | MDL          | Units       | Dilution | Batch   | Prepared | Analyzed | Method | Notes |
|----------------------------------------|-------------|--------|--------------|-------------|----------|---------|----------|----------|--------|-------|
| SP-1 (SSL) (1602754-05) Air Receive    | d:06/24/16  | 12:50  | Sampled:06/  | /23/16 13:2 | 1        |         |          |          |        |       |
| Dibromochloromethane (124-48-1)        | <4.3        | 4.3    | 0.16         | ug/m³       | 1        | B6G0719 | 07/02/16 | 07/03/16 | TO-15  |       |
| Dichlorodifluoromethane (75-71-8)      | <2.5        | 2.5    | 0.12         | ug/m³       | 1        | "       | "        | "        | "      |       |
| Dichlorotetrafluoroethane (76-14-2)    | <3.5        | 3.5    | 0.063        | ug/m³       | 1        | "       | "        | "        | "      |       |
| Ethanol (64-17-5)                      | 1500        | 85     | 6.1          | ug/m³       | 90       | "       | "        | 07/04/16 | "      |       |
| Ethyl acetate (141-78-6)               | <1.8        | 1.8    | 0.11         | ug/m³       | 1        | "       | "        | 07/03/16 | "      |       |
| Ethylbenzene (100-41-4)                | <0.87       | 0.87   | 0.082        | ug/m³       | 1        | "       | "        | "        | "      |       |
| Hexachlorobutadiene (87-68-3)          | <5.3        | 5.3    | 0.27         | ug/m³       | 1        | "       | "        | "        | "      |       |
| Isopropyl alcohol (67-63-0)            | 670         | 110    | 6.8          | ug/m³       | 90       | "       | "        | 07/04/16 | "      |       |
| m,p-Xylene (136777-61-2)               | 2.2         | 1.7    | 0.15         | ug/m³       | 1        | "       | "        | 07/03/16 | "      |       |
| Methyl butyl ketone (591-78-6)         | <2.0        | 2.0    | 0.12         | ug/m³       | 1        | "       | "        | "        | "      |       |
| Methyl isobutyl ketone (108-10-1)      | <2.0        | 2.0    | 0.11         | ug/m³       | 1        | "       | "        | "        | m .    |       |
| Methyl tert-butyl ether (1634-04-4)    | <1.8        | 1.8    | 0.11         | ug/m³       | 1        | "       | "        | "        | m .    |       |
| Methylene chloride (75-09-2)           | 5.1         | 1.7    | 0.21         | ug/m³       | 1        | "       | "        | "        | m .    |       |
| Naphthalene (91-20-3)                  | <2.6        | 2.6    | 0.11         | ug/m³       | 1        | "       | "        | m .      | п      |       |
| n-Heptane (142-82-5)                   | <2.0        | 2.0    | 0.078        | ug/m³       | 1        | "       | "        | "        | m .    |       |
| n-Hexane (110-54-3)                    | <1.8        | 1.8    | 0.074        | ug/m³       | 1        | "       | "        | "        | m .    |       |
| o-Xylene (95-47-6)                     | <0.87       | 0.87   | 0.096        | ug/m³       | 1        | "       | "        | m .      | п      |       |
| Propylene (115-07-1)                   | <0.86       | 0.86   | 0.027        | ug/m³       | 1        | "       | "        | "        | m .    |       |
| Styrene (100-42-5)                     | <2.1        | 2.1    | 0.096        | ug/m³       | 1        | "       | "        | "        | "      |       |
| Tetrachloroethene (127-18-4)           | <3.4        | 3.4    | 0.13         | ug/m³       | 1        | "       | "        | "        | m .    |       |
| Tetrahydrofuran (109-99-9)             | <1.5        | 1.5    | 0.038        | ug/m³       | 1        | "       | "        | m .      | п      |       |
| Toluene (108-88-3)                     | 2.9         | 0.75   | 0.060        | ug/m³       | 1        | "       | "        | "        | m .    |       |
| trans-1,2-Dichloroethene (156-60-5)    | <2.0        | 2.0    | 0.11         | ug/m³       | 1        | "       | "        | "        | m .    |       |
| trans-1,3-Dichloropropene (10061-02-6) | <2.3        | 2.3    | 0.070        | ug/m³       | 1        | "       | "        | m .      | п      |       |
| Trichloroethene (79-01-6)              | <1.1        | 1.1    | 0.12         | ug/m³       | 1        | "       | "        | "        | m .    |       |
| Trichlorofluoromethane (75-69-4)       | <2.8        | 2.8    | 0.048        | ug/m³       | 1        | "       | "        | "        | m .    |       |
| Trichlorotrifluoroethane (76-13-1)     | <3.8        | 3.8    | 0.17         | ug/m³       | 1        | "       | "        | "        | II .   |       |
| Vinyl acetate (108-05-4)               | <1.8        | 1.8    | 0.90         | ug/m³       | 1        | "       | "        | "        | m .    |       |
| Vinyl chloride (75-01-4)               | <0.51       | 0.51   | 0.051        | ug/m³       | 1        | "       | "        | m .      | п      |       |
| SP-2 (ES) (1602754-06) Air Received    | :06/24/16 1 | 2:50 S | Sampled:06/2 | 3/16 11:27  |          |         |          |          |        |       |
| 1,1,1-Trichloroethane (71-55-6)        | <2.7        | 2.7    | 0.044        | ug/m³       | 1        | B6G0719 | 07/02/16 | 07/02/16 | TO-15  |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)    | <3.4        | 3.4    | 0.074        | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,1,2-Trichloroethane (79-00-5)        | <2.7        | 2.7    | 0.11         | ug/m³       | 1        | "       | "        | II .     | п      |       |
| 1,1-Dichloroethane (75-34-3)           | <2.0        | 2.0    | 0.11         | ug/m³       | 1        | "       | "        | II .     | п      |       |
| 1,1-Dichloroethene (75-35-4)           | <2.0        | 2.0    | 0.078        | ug/m³       | 1        | "       | "        | "        | "      |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15 2042 West 98th Street Project Number: CrC

Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Work Order #: 1602754 Date Reported: 07/08/16

| Analyte (CAS#)                       | Result       | RL      | MDL        | Units      | Dilution | Batch   | Prepared | Analyzed | Method | Notes |
|--------------------------------------|--------------|---------|------------|------------|----------|---------|----------|----------|--------|-------|
| SP-2 (ES) (1602754-06) Air Received  | :06/24/16 12 | 2:50 Sa | mpled:06/2 | 3/16 11:27 |          |         |          |          |        |       |
| 1,2,4-Trichlorobenzene (120-82-1)    | <3.7         | 3.7     | 0.13       | ug/m³      | 1        | B6G0719 | 07/02/16 | 07/02/16 | TO-15  |       |
| 1,2,4-Trimethylbenzene (95-63-6)     | <1.0         | 1.0     | 0.073      | ug/m³      | 1        | "       | "        | "        | "      |       |
| 1,2-Dibromoethane (106-93-4)         | <3.8         | 3.8     | 0.16       | ug/m³      | 1        | "       | "        | "        | "      |       |
| 1,2-Dichlorobenzene (95-50-1)        | <3.0         | 3.0     | 0.071      | ug/m³      | 1        | "       | "        | "        | "      |       |
| 1,2-Dichloroethane (107-06-2)        | <2.0         | 2.0     | 0.055      | ug/m³      | 1        | "       | "        | "        | "      |       |
| 1,2-Dichloropropane (78-87-5)        | <2.3         | 2.3     | 0.081      | ug/m³      | 1        | "       | "        | "        | "      |       |
| 1,3,5-Trimethylbenzene (108-67-8)    | <1.0         | 1.0     | 0.11       | ug/m³      | 1        | "       | "        | "        | "      |       |
| 1,3-Butadiene (106-99-0)             | <1.1         | 1.1     | 0.10       | ug/m³      | 1        | "       | "        | "        | "      |       |
| 1,3-Dichlorobenzene (541-73-1)       | <3.0         | 3.0     | 0.14       | ug/m³      | 1        | "       | "        | "        | "      |       |
| 1,4-Dichlorobenzene (106-46-7)       | <3.0         | 3.0     | 0.17       | ug/m³      | 1        | "       | "        | "        | "      |       |
| 2-Butanone (78-93-3)                 | <1.5         | 1.5     | 0.078      | ug/m³      | 1        | "       | "        | "        | "      |       |
| 4-Ethyltoluene (622-96-8)            | <2.5         | 2.5     | 0.11       | ug/m³      | 1        | "       | "        | "        | "      |       |
| Acetone (67-64-1)                    | 43           | 11      | 0.50       | ug/m³      | 9        | "       | "        | 07/05/16 | "      |       |
| Benzene (71-43-2)                    | <0.64        | 0.64    | 0.050      | ug/m³      | 1        | "       | "        | 07/02/16 | "      |       |
| Benzyl chloride (100-44-7)           | <2.6         | 2.6     | 0.073      | ug/m³      | 1        | "       | "        | "        | "      |       |
| Bromodichloromethane (75-27-4)       | <3.4         | 3.4     | 0.13       | ug/m³      | 1        | "       | "        | "        | "      |       |
| Bromoform (75-25-2)                  | <5.2         | 5.2     | 0.13       | ug/m³      | 1        | "       | "        | "        | "      |       |
| Bromomethane (74-83-9)               | <1.9         | 1.9     | 0.069      | ug/m³      | 1        | "       | "        | "        | "      |       |
| Carbon disulfide (75-15-0)           | <1.6         | 1.6     | 0.070      | ug/m³      | 1        | "       | "        | "        | "      |       |
| Carbon tetrachloride (56-23-5)       | <3.1         | 3.1     | 0.087      | ug/m³      | 1        | "       | "        | "        | "      |       |
| Chlorobenzene (108-90-7)             | <2.3         | 2.3     | 0.080      | ug/m³      | 1        | "       | "        | "        | "      |       |
| Chloroethane (75-00-3)               | <1.3         | 1.3     | 0.037      | ug/m³      | 1        | "       | "        | "        | "      |       |
| Chloroform (67-66-3)                 | <2.4         | 2.4     | 0.055      | ug/m³      | 1        | "       | "        | "        | "      |       |
| Chloromethane (74-87-3)              | 1.1          | 1.0     | 0.044      | ug/m³      | 1        | "       | "        | "        | "      |       |
| cis-1,2-Dichloroethene (156-59-2)    | <2.0         | 2.0     | 0.089      | ug/m³      | 1        | "       | "        | "        | "      |       |
| cis-1,3-Dichloropropene (10061-01-5) | <2.3         | 2.3     | 0.12       | ug/m³      | 1        | "       | "        | "        | "      |       |
| Cyclohexane (110-82-7)               | <1.7         | 1.7     | 0.059      | ug/m³      | 1        | "       | "        | "        | "      |       |
| Dibromochloromethane (124-48-1)      | <4.3         | 4.3     | 0.16       | ug/m³      | 1        | "       | "        | "        | "      |       |
| Dichlorodifluoromethane (75-71-8)    | <2.5         | 2.5     | 0.12       | ug/m³      | 1        | "       | "        |          | "      |       |
| Dichlorotetrafluoroethane (76-14-2)  | <3.5         | 3.5     | 0.063      | ug/m³      | 1        | "       | "        | "        | "      |       |
| Ethanol (64-17-5)                    | 730          | 85      | 6.1        | ug/m³      | 90       | "       | "        | 07/05/16 | "      |       |
| Ethyl acetate (141-78-6)             | <1.8         | 1.8     | 0.11       | ug/m³      | 1        | "       | "        | 07/02/16 | "      |       |
| Ethylbenzene (100-41-4)              | <0.87        | 0.87    | 0.082      | ug/m³      | 1        | "       | "        | "        | II .   |       |
| Hexachlorobutadiene (87-68-3)        | <5.3         | 5.3     | 0.27       | ug/m³      | 1        | "       | "        | "        | II .   |       |
| Isopropyl alcohol (67-63-0)          | 690          | 110     | 6.8        | ug/m³      | 90       | "       | "        | 07/05/16 | u      |       |



Bloomington, MN 55431

88 Empire Drive St Paul, MN 55103 Tel: 651-642-1150

Fax: 651-642-1239

Landmark Environmental Project: TO-15
2042 West 98th Street Project Number: CrC

Project Manager: Mr. Jason Skramstad

Work Order #: 1602754
Date Reported: 07/08/16

| Methyl butyl ketone (581-78-6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Analyte (CAS#)                         | Result        | RL      | MDL        | Units       | Dilution | Batch   | Prepared | Analyzed | Method | Notes |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------|---------|------------|-------------|----------|---------|----------|----------|--------|-------|
| Methyl butyl ketone (381-78-6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SP-2 (ES) (1602754-06) Air Received    | d:06/24/16 12 | 2:50 Sa | mpled:06/2 | 3/16 11:27  |          |         |          |          |        |       |
| Methyl isobuly ketone (108-10-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | m,p-Xylene (136777-61-2)               | <1.7          | 1.7     | 0.15       | ug/m³       | 1        | B6G0719 | 07/02/16 | 07/02/16 | TO-15  |       |
| Methyl terb buyl ether (1634-04-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Methyl butyl ketone (591-78-6)         | <2.0          | 2.0     | 0.12       | ug/m³       | 1        | "       | "        | "        | "      |       |
| Methylene chloride (75-09-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Methyl isobutyl ketone (108-10-1)      | <2.0          | 2.0     | 0.11       | ug/m³       | 1        | "       | "        | "        | "      |       |
| Naphthalene (91-20-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Methyl tert-butyl ether (1634-04-4)    | <1.8          | 1.8     | 0.11       | ug/m³       | 1        | "       | "        | "        | "      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Methylene chloride (75-09-2)           | 2.9           | 1.7     | 0.21       | ug/m³       | 1        | n n     | "        | "        | "      |       |
| n-Hexane (110-54-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Naphthalene (91-20-3)                  | <2.6          | 2.6     | 0.11       | ug/m³       | 1        | "       | "        | "        | "      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n-Heptane (142-82-5)                   | <2.0          | 2.0     | 0.078      | ug/m³       | 1        | "       | "        | "        | "      |       |
| Propylene (115-07-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n-Hexane (110-54-3)                    | <1.8          | 1.8     | 0.074      | ug/m³       | 1        | "       | "        | "        | "      |       |
| Stylene (100-42-5)   -2.1   2.1   0.096   ug/m³   1   "   "   "   "   "   Tetrachloroethene (127-18-4)   360   31   1.2   ug/m³   9   "   0.705/16   "   Tetrachloroethene (127-18-4)   360   31   1.2   ug/m³   9   "   0.705/16   "   Tetrachloroethene (127-18-4)   360   31   1.2   ug/m³   1   "   "   0.702/16   "   Toluene (108-8-3)   2.9   0.75   0.060   ug/m³   1   "   "   "   0.702/16   "   Toluene (108-8-3)   2.9   0.75   0.060   ug/m³   1   "   "   "   "   "   "   "   "   "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | o-Xylene (95-47-6)                     | <0.87         | 0.87    | 0.096      | ug/m³       | 1        | "       | "        | "        | "      |       |
| Tetrachloroethene (127-18-4) 360 31 1.2 ug/m³ 9 " 0706/16 " 0706/16 " 1 Tetrachydrofuran (109-99-9) 1.5 1.5 0.038 ug/m³ 1 " 0706/16 " 07002/16 " 1 Tetrachydrofuran (109-99-9) 1.5 1.5 0.080 ug/m³ 1 " 07002/16 " 07002/16 " 1 Tetrachydrofuran (109-99-9) 1.2 0.05 0.060 ug/m³ 1 " 0 " 0 " 07002/16 " 0 Tetrachydrofuran (106-60-5) 2.0 0.01 ug/m³ 1 " 0 " 0 " 0 " 0 Tetrachydrofuran (106-60-5) 2.3 0.3 0.070 ug/m³ 1 0 " 0 " 0 " 0 " 0 Tetrachydrofunan (79-01-6) 2.3 0.3 0.070 ug/m³ 1 0 " 0 " 0 " 0 " 0 " 0 Tetrachydrofunan (79-01-6) 2.3 0.3 0.070 ug/m³ 1 0 " 0 " 0 " 0 " 0 " 0 Tetrachydrofunan (79-01-6) 2.3 0.8 0.048 ug/m³ 1 0 " 0 " 0 " 0 " 0 " 0 " 0 Tetrachydrofunan (79-01-6) 2.3 0.8 0.048 ug/m³ 1 0 " 0 " 0 " 0 " 0 " 0 " 0 Tetrachydrofunan (79-01-4) 2.8 0.51 0.51 0.051 ug/m³ 1 0 " 0 " 0 " 0 " 0 " 0 " 0 Tetrachydrofunan (79-01-4) 2.5 0.51 0.051 0.051 ug/m³ 1 0 " 0 " 0 " 0 " 0 " 0 " 0 Tetrachydrofunan (79-01-4) 2.5 0.51 0.051 ug/m³ 1 0 " 0 " 0 " 0 " 0 " 0 " 0 Tetrachydrofunan (79-01-4) 2.5 0.51 0.051 ug/m³ 1 0 " 0 " 0 " 0 " 0 " 0 " 0 " 0 Tetrachydrofunan (79-01-4) 2.5 0 Tetrachydrofunan (79-01-4) 2.7 0.7 0.044 ug/m³ 1 0 " 0 " 0 " 0 " 0 " 0 " 0 " 0 Tetrachydrofunan (79-01-5) 2.7 0.044 ug/m³ 1 0 " 0 " 0 " 0 " 0 " 0 " 0 " 0 " 0 Tetrachydrofunan (79-01-5) 2.7 0.044 ug/m³ 1 0 " 0 " 0 " 0 " 0 " 0 " 0 " 0 " 0 Tetrachydrofunan (79-01-5) 2.7 0.041 ug/m³ 1 0 " 0 " 0 " 0 " 0 " 0 " 0 " 0 " 0 " 0 | Propylene (115-07-1)                   | <0.86         | 0.86    | 0.027      | ug/m³       | 1        | "       | "        | "        | "      |       |
| Tetrahydrofuran (109-99-9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Styrene (100-42-5)                     | <2.1          | 2.1     | 0.096      | ug/m³       | 1        | n n     | "        | "        | II .   |       |
| Columne (108-88-3)   Columne (108-108-108-108-108-108-108-108-108-108-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tetrachloroethene (127-18-4)           | 360           | 31      | 1.2        | ug/m³       | 9        | n n     | "        | 07/05/16 | II .   |       |
| trans-1,2-Dichloroethene (156-60-5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tetrahydrofuran (109-99-9)             | <1.5          | 1.5     | 0.038      | ug/m³       | 1        | n n     | "        | 07/02/16 | II .   |       |
| Trichloroethene (79-01-6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Toluene (108-88-3)                     | 2.9           | 0.75    | 0.060      | ug/m³       | 1        | n n     | "        | "        | II .   |       |
| Trichloroethene (79-01-6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | trans-1,2-Dichloroethene (156-60-5)    | <2.0          | 2.0     | 0.11       | ug/m³       | 1        | "       | "        | "        | "      |       |
| Trichlorofluoromethane (75-69-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | trans-1,3-Dichloropropene (10061-02-6) | <2.3          | 2.3     | 0.070      | ug/m³       | 1        | "       | "        | "        | "      |       |
| Trichlorotrifluoroethane (76-13-1) 62 3.8 0.17 ug/m³ 1 " " " " " " " " " " " " " " " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Trichloroethene (79-01-6)              | <1.1          | 1.1     | 0.12       | ug/m³       | 1        | "       | "        | "        | "      |       |
| Vinyl acetate (108-05-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Trichlorofluoromethane (75-69-4)       | <2.8          | 2.8     | 0.048      | ug/m³       | 1        | "       | "        | "        | "      |       |
| Vinyl chloride (75-01-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Trichlorotrifluoroethane (76-13-1)     | 62            | 3.8     | 0.17       | ug/m³       | 1        | n n     | "        | "        | II .   |       |
| DPE-Exhaust (1602754-07) Air   Received:06/24/16 12:50   Sampled:06/23/16 15:01     1,1,1-Trichloroethane (71-55-6)   <2.7   2.7   0.044   ug/m³   1   B6G0719   07/02/16   07/03/16   TO-15     1,1,2-Tetrachloroethane (79-34-5)   <3.4   3.4   0.074   ug/m³   1   "   "   "   "   "   "     1,1,2-Trichloroethane (79-00-5)   <2.7   2.7   0.11   ug/m³   1   "   "   "   "   "   "   "     1,1-Dichloroethane (75-34-3)   <2.0   2.0   0.11   ug/m³   1   "   "   "   "   "   "   "     1,2,4-Trichloroethane (75-35-4)   <2.0   2.0   0.078   ug/m³   1   "   "   "   "   "   "   "     1,2,4-Trichlorobenzene (120-82-1)   <3.7   3.7   0.13   ug/m³   1   "   "   "   "   "   "   "   "     1,2,4-Trimethylbenzene (95-63-6)   <1.0   1.0   0.073   ug/m³   1   "   "   "   "   "   "   "   "     1,2-Dichlorobenzene (95-50-1)   <3.0   3.0   0.071   ug/m³   1   "   "   "   "   "   "   "   "     1,2-Dichloroethane (107-06-2)   <2.0   2.0   0.055   ug/m³   1   "   "   "   "   "   "   "   "   "                                                                                                                                                                                                                                                                                                                                                                                                                               | Vinyl acetate (108-05-4)               | <1.8          | 1.8     | 0.90       | ug/m³       | 1        | II .    | "        | m .      | "      |       |
| 1,1,1-Trichloroethane (71-55-6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Vinyl chloride (75-01-4)               | <0.51         | 0.51    | 0.051      | ug/m³       | 1        | II .    | "        | m .      | "      |       |
| 1,1,2,2-Tetrachloroethane (79-34-5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DPE-Exhaust (1602754-07) Air Rece      | eived:06/24/1 | 6 12:50 | Sampled:   | 06/23/16 15 | 5:01     |         |          |          |        |       |
| 1,1,2-Trichloroethane (79-00-5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,1,1-Trichloroethane (71-55-6)        | <2.7          | 2.7     | 0.044      | ug/m³       | 1        | B6G0719 | 07/02/16 | 07/03/16 | TO-15  |       |
| 1,1-Dichloroethane (75-34-3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,1,2,2-Tetrachloroethane (79-34-5)    | <3.4          | 3.4     | 0.074      | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,1-Dichloroethene (75-35-4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,1,2-Trichloroethane (79-00-5)        | <2.7          | 2.7     | 0.11       | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,2,4-Trichlorobenzene (120-82-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1-Dichloroethane (75-34-3)           | <2.0          | 2.0     | 0.11       | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,2,4-Trimethylbenzene (95-63-6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,1-Dichloroethene (75-35-4)           | <2.0          | 2.0     | 0.078      | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,2-Dibromoethane (106-93-4)  43.8 3.8 0.16 ug/m³ 1 """"""""""""""""""""""""""""""""""                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,2,4-Trichlorobenzene (120-82-1)      | <3.7          | 3.7     | 0.13       | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,2-Dichlorobenzene (95-50-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,2,4-Trimethylbenzene (95-63-6)       | <1.0          | 1.0     | 0.073      | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,2-Dichloroethane (107-06-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,2-Dibromoethane (106-93-4)           | <3.8          | 3.8     | 0.16       | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,2-Dichloropropane (78-87-5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,2-Dichlorobenzene (95-50-1)          | <3.0          | 3.0     | 0.071      | ug/m³       | 1        | n .     | "        | n        | "      |       |
| 1,3,5-Trimethylbenzene (108-67-8) <1.0 1.0 0.11 ug/m³ 1 " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2-Dichloroethane (107-06-2)          | <2.0          | 2.0     | 0.055      | ug/m³       | 1        | n n     | "        | II .     | "      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,2-Dichloropropane (78-87-5)          | <2.3          | 2.3     | 0.081      | ug/m³       | 1        | "       | "        | "        | "      |       |
| 1,3-Butadiene (106-99-0) <1.1 1.1 0.10 ug/m³ 1 " " " "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1,3,5-Trimethylbenzene (108-67-8)      | <1.0          | 1.0     | 0.11       | ug/m³       | 1        | "       | "        | "        | "      |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,3-Butadiene (106-99-0)               | <1.1          | 1.1     | 0.10       | ug/m³       | 1        | II .    | ıı       | "        | "      |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15

2042 West 98th Street Project Number: CrC

Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad

Work Order #: 1602754
Date Reported: 07/08/16

| Analyte (CAS#)                       | Result        | RL      | MDL      | Units      | Dilution | Batch   | Prepared | Analyzed | Method | Notes |
|--------------------------------------|---------------|---------|----------|------------|----------|---------|----------|----------|--------|-------|
| DPE-Exhaust (1602754-07) Air Rece    | eived:06/24/1 | 6 12:50 | Sampled: | 06/23/16 1 | 5:01     |         |          |          |        |       |
| 1,3-Dichlorobenzene (541-73-1)       | <3.0          | 3.0     | 0.14     | ug/m³      | 1        | B6G0719 | 07/02/16 | 07/03/16 | TO-15  |       |
| 1,4-Dichlorobenzene (106-46-7)       | <3.0          | 3.0     | 0.17     | ug/m³      | 1        | "       | "        | "        | "      |       |
| 2-Butanone (78-93-3)                 | 2.1           | 1.5     | 0.078    | ug/m³      | 1        | "       | "        | "        | "      |       |
| 4-Ethyltoluene (622-96-8)            | <2.5          | 2.5     | 0.11     | ug/m³      | 1        | "       | "        | "        | "      |       |
| Acetone (67-64-1)                    | 43            | 1.2     | 0.055    | ug/m³      | 1        | "       | "        | "        | "      |       |
| Benzene (71-43-2)                    | <0.64         | 0.64    | 0.050    | ug/m³      | 1        | "       | "        | "        | "      |       |
| Benzyl chloride (100-44-7)           | <2.6          | 2.6     | 0.073    | ug/m³      | 1        | "       | "        | "        | "      |       |
| Bromodichloromethane (75-27-4)       | <3.4          | 3.4     | 0.13     | ug/m³      | 1        | "       | "        | "        | "      |       |
| Bromoform (75-25-2)                  | <5.2          | 5.2     | 0.13     | ug/m³      | 1        | "       | "        | "        | "      |       |
| Bromomethane (74-83-9)               | <1.9          | 1.9     | 0.069    | ug/m³      | 1        | "       | "        | "        | "      |       |
| Carbon disulfide (75-15-0)           | <1.6          | 1.6     | 0.070    | ug/m³      | 1        | "       | "        | "        | m .    |       |
| Carbon tetrachloride (56-23-5)       | <3.1          | 3.1     | 0.087    | ug/m³      | 1        | "       | "        | "        | m .    |       |
| Chlorobenzene (108-90-7)             | <2.3          | 2.3     | 0.080    | ug/m³      | 1        | "       | "        | "        | m .    |       |
| Chloroethane (75-00-3)               | <1.3          | 1.3     | 0.037    | ug/m³      | 1        | "       | "        | m .      | п      |       |
| Chloroform (67-66-3)                 | <2.4          | 2.4     | 0.055    | ug/m³      | 1        | "       | "        | "        | "      |       |
| Chloromethane (74-87-3)              | 1.2           | 1.0     | 0.044    | ug/m³      | 1        | "       | "        | "        | "      |       |
| cis-1,2-Dichloroethene (156-59-2)    | <2.0          | 2.0     | 0.089    | ug/m³      | 1        | "       | "        | "        | II .   |       |
| cis-1,3-Dichloropropene (10061-01-5) | <2.3          | 2.3     | 0.12     | ug/m³      | 1        | "       | "        | "        | II .   |       |
| Cyclohexane (110-82-7)               | <1.7          | 1.7     | 0.059    | ug/m³      | 1        | "       | "        | "        | m .    |       |
| Dibromochloromethane (124-48-1)      | <4.3          | 4.3     | 0.16     | ug/m³      | 1        | "       | "        | "        | m .    |       |
| Dichlorodifluoromethane (75-71-8)    | <2.5          | 2.5     | 0.12     | ug/m³      | 1        | "       | "        | "        | "      |       |
| Dichlorotetrafluoroethane (76-14-2)  | <3.5          | 3.5     | 0.063    | ug/m³      | 1        | "       | "        | "        | m .    |       |
| Ethanol (64-17-5)                    | 450           | 19      | 1.4      | ug/m³      | 20       | "       | "        | 07/04/16 | m .    |       |
| Ethyl acetate (141-78-6)             | <1.8          | 1.8     | 0.11     | ug/m³      | 1        | "       | "        | 07/03/16 | m .    |       |
| Ethylbenzene (100-41-4)              | <0.87         | 0.87    | 0.082    | ug/m³      | 1        | "       | "        | "        | "      |       |
| Hexachlorobutadiene (87-68-3)        | <5.3          | 5.3     | 0.27     | ug/m³      | 1        | "       | "        | "        | m .    |       |
| Isopropyl alcohol (67-63-0)          | 460           | 24      | 1.5      | ug/m³      | 20       | "       | "        | 07/04/16 | II .   |       |
| m,p-Xylene (136777-61-2)             | 1.8           | 1.7     | 0.15     | ug/m³      | 1        | "       | "        | 07/03/16 | "      |       |
| Methyl butyl ketone (591-78-6)       | <2.0          | 2.0     | 0.12     | ug/m³      | 1        | "       | "        | "        | "      |       |
| Methyl isobutyl ketone (108-10-1)    | <2.0          | 2.0     | 0.11     | ug/m³      | 1        | "       | "        | "        | II .   |       |
| Methyl tert-butyl ether (1634-04-4)  | <1.8          | 1.8     | 0.11     | ug/m³      | 1        | "       | "        | "        | "      |       |
| Methylene chloride (75-09-2)         | 6.2           | 1.7     | 0.21     | ug/m³      | 1        | "       | "        | "        | "      |       |
| Naphthalene (91-20-3)                | <2.6          | 2.6     | 0.11     | ug/m³      | 1        | "       | "        | "        | "      |       |
| n-Heptane (142-82-5)                 | <2.0          | 2.0     | 0.078    | ug/m³      | 1        | "       | "        | "        | "      |       |
| n-Hexane (110-54-3)                  | <1.8          | 1.8     | 0.074    | ug/m³      | 1        | "       | "        | п        | п      |       |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CrCWork Order #: 1602754Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 07/08/16

|                                        |              |         | 90       | o            |          | ,       |          |          |        | -     |
|----------------------------------------|--------------|---------|----------|--------------|----------|---------|----------|----------|--------|-------|
| Analyte (CAS#)                         | Result       | RL      | MDL      | Units        | Dilution | Batch   | Prepared | Analyzed | Method | Notes |
| DPE-Exhaust (1602754-07) Air Recei     | ived:06/24/1 | 6 12:50 | Sampled: | :06/23/16 15 | 5:01     |         |          |          |        |       |
| o-Xylene (95-47-6)                     | <0.87        | 0.87    | 0.096    | ug/m³        | 1        | B6G0719 | 07/02/16 | 07/03/16 | TO-15  |       |
| Propylene (115-07-1)                   | <0.86        | 0.86    | 0.027    | ug/m³        | 1        | "       | "        | "        | "      |       |
| Styrene (100-42-5)                     | <2.1         | 2.1     | 0.096    | ug/m³        | 1        | "       | "        | "        | "      |       |
| Tetrachloroethene (127-18-4)           | 230          | 68      | 2.6      | ug/m³        | 20       | "       | "        | 07/04/16 | "      |       |
| Tetrahydrofuran (109-99-9)             | 1.9          | 1.5     | 0.038    | ug/m³        | 1        | "       | "        | 07/03/16 | "      |       |
| Toluene (108-88-3)                     | 2.8          | 0.75    | 0.060    | ug/m³        | 1        | "       | "        | "        | "      |       |
| trans-1,2-Dichloroethene (156-60-5)    | <2.0         | 2.0     | 0.11     | ug/m³        | 1        | "       | "        | "        | "      |       |
| trans-1,3-Dichloropropene (10061-02-6) | <2.3         | 2.3     | 0.070    | ug/m³        | 1        | "       | "        | "        | "      |       |
| Trichloroethene (79-01-6)              | <1.1         | 1.1     | 0.12     | ug/m³        | 1        | "       | "        | "        | "      |       |
| Trichlorofluoromethane (75-69-4)       | <2.8         | 2.8     | 0.048    | ug/m³        | 1        | "       | "        | "        | "      |       |
| Trichlorotrifluoroethane (76-13-1)     | 1500         | 76      | 3.4      | ug/m³        | 20       | "       | ıı .     | 07/04/16 | "      |       |
| Vinyl acetate (108-05-4)               | <1.8         | 1.8     | 0.90     | ug/m³        | 1        | "       | ıı .     | 07/03/16 | "      |       |
| Vinyl chloride (75-01-4)               | <0.51        | 0.51    | 0.051    | ug/m³        | 1        | "       | ıı       | "        | "      |       |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CrCWork Order #: 1602754Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 07/08/16

| Analyte                   | Result | RL   | MDL   | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | %RPD | %RPD<br>Limit | Notes |
|---------------------------|--------|------|-------|-------|----------------|------------------|-------------|----------------|------|---------------|-------|
| Batch B6G0719 - TO-15     |        |      |       |       |                |                  |             |                |      |               |       |
| Blank (B6G0719-BLK1)      |        |      |       |       | Prepared       | d & Analyze      | ed: 07/02/1 | 16             |      |               |       |
| 1,1,1-Trichloroethane     | < 2.7  | 2.7  | 0.044 | ug/m³ |                | •                |             |                |      |               |       |
| 1,1,2,2-Tetrachloroethane | < 3.4  | 3.4  | 0.074 | ug/m³ |                |                  |             |                |      |               |       |
| 1,1,2-Trichloroethane     | < 2.7  | 2.7  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| 1,1-Dichloroethane        | < 2.0  | 2.0  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| 1,1-Dichloroethene        | < 2.0  | 2.0  | 0.078 | ug/m³ |                |                  |             |                |      |               |       |
| 1,2,4-Trichlorobenzene    | < 3.7  | 3.7  | 0.13  | ug/m³ |                |                  |             |                |      |               |       |
| 1,2,4-Trimethylbenzene    | < 1.0  | 1.0  | 0.073 | ug/m³ |                |                  |             |                |      |               |       |
| 1,2-Dibromoethane         | < 3.8  | 3.8  | 0.16  | ug/m³ |                |                  |             |                |      |               |       |
| 1,2-Dichlorobenzene       | < 3.0  | 3.0  | 0.071 | ug/m³ |                |                  |             |                |      |               |       |
| 1,2-Dichloroethane        | < 2.0  | 2.0  | 0.055 | ug/m³ |                |                  |             |                |      |               |       |
| 1,2-Dichloropropane       | < 2.3  | 2.3  | 0.081 | ug/m³ |                |                  |             |                |      |               |       |
| 1,3,5-Trimethylbenzene    | < 1.0  | 1.0  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| 1,3-Butadiene             | < 1.1  | 1.1  | 0.10  | ug/m³ |                |                  |             |                |      |               |       |
| 1,3-Dichlorobenzene       | < 3.0  | 3.0  | 0.14  | ug/m³ |                |                  |             |                |      |               |       |
| 1,4-Dichlorobenzene       | < 3.0  | 3.0  | 0.17  | ug/m³ |                |                  |             |                |      |               |       |
| 2-Butanone                | < 1.5  | 1.5  | 0.078 | ug/m³ |                |                  |             |                |      |               |       |
| 4-Ethyltoluene            | < 2.5  | 2.5  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| Acetone                   | < 1.2  | 1.2  | 0.055 | ug/m³ |                |                  |             |                |      |               |       |
| Benzene                   | < 0.64 | 0.64 | 0.050 | ug/m³ |                |                  |             |                |      |               |       |
| Benzyl chloride           | < 2.6  | 2.6  | 0.073 | ug/m³ |                |                  |             |                |      |               |       |
| Bromodichloromethane      | < 3.4  | 3.4  | 0.13  | ug/m³ |                |                  |             |                |      |               |       |
| Bromoform                 | < 5.2  | 5.2  | 0.13  | ug/m³ |                |                  |             |                |      |               |       |
| Bromomethane              | < 1.9  | 1.9  | 0.069 | ug/m³ |                |                  |             |                |      |               |       |
| Carbon disulfide          | < 1.6  | 1.6  | 0.070 | ug/m³ |                |                  |             |                |      |               |       |
| Carbon tetrachloride      | < 3.1  | 3.1  | 0.087 | ug/m³ |                |                  |             |                |      |               |       |
| Chlorobenzene             | < 2.3  | 2.3  | 0.080 | ug/m³ |                |                  |             |                |      |               |       |
| Chloroethane              | < 1.3  | 1.3  | 0.037 | ug/m³ |                |                  |             |                |      |               |       |
| Chloroform                | < 2.4  | 2.4  | 0.055 | ug/m³ |                |                  |             |                |      |               |       |
| Chloromethane             | < 1.0  | 1.0  | 0.044 | ug/m³ |                |                  |             |                |      |               |       |
| cis-1,2-Dichloroethene    | < 2.0  | 2.0  | 0.089 | ug/m³ |                |                  |             |                |      |               |       |
| cis-1,3-Dichloropropene   | < 2.3  | 2.3  | 0.12  | ug/m³ |                |                  |             |                |      |               |       |
| Cyclohexane               | < 1.7  | 1.7  | 0.059 | ug/m³ |                |                  |             |                |      |               |       |
| Dibromochloromethane      | < 4.3  | 4.3  | 0.16  | ug/m³ |                |                  |             |                |      |               |       |
| Dichlorodifluoromethane   | < 2.5  | 2.5  | 0.12  | ug/m³ |                |                  |             |                |      |               |       |
| Dichlorotetrafluoroethane | < 3.5  | 3.5  | 0.063 | ug/m³ |                |                  |             |                |      |               |       |
| Ethanol                   | < 0.94 | 0.94 | 0.068 | ug/m³ |                |                  |             |                |      |               |       |
| Ethyl acetate             | < 1.8  | 1.8  | 0.11  | ug/m³ |                |                  |             |                |      |               |       |
| Ethylbenzene              | < 0.87 | 0.87 | 0.082 | ug/m³ |                |                  |             |                |      |               |       |
| Hexachlorobutadiene       | < 5.3  | 5.3  | 0.27  | ug/m³ |                |                  |             |                |      |               |       |
| Isopropyl alcohol         | < 1.2  | 1.2  | 0.075 | ug/m³ |                |                  |             |                |      |               |       |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CrCWork Order #: 1602754Bloomington, MN 55431Project Manager:Mr. Jason SkramstadDate Reported: 07/08/16

| Analyte                   | Result | RL   | MDL   | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | %RPD    | %RPD<br>Limit | Notes  |
|---------------------------|--------|------|-------|-------|----------------|------------------|-------------|----------------|---------|---------------|--------|
| Batch B6G0719 - TO-15     | rtodat | 112  |       | Ormo  | 20101          | rtocar           | 701120      | Limito         | 70111 2 |               | 110100 |
|                           |        |      |       |       |                |                  | 1 07/00/    |                |         |               |        |
| Blank (B6G0719-BLK1)      |        |      |       |       | Prepared       | l & Analyze      | ed: 07/02/1 | 6              |         |               |        |
| m,p-Xylene                | < 1.7  | 1.7  | 0.15  | ug/m³ |                |                  |             |                |         |               |        |
| Methyl butyl ketone       | < 2.0  | 2.0  | 0.12  | ug/m³ |                |                  |             |                |         |               |        |
| Methyl isobutyl ketone    | < 2.0  | 2.0  | 0.11  | ug/m³ |                |                  |             |                |         |               |        |
| Methyl tert-butyl ether   | < 1.8  | 1.8  | 0.11  | ug/m³ |                |                  |             |                |         |               |        |
| Methylene chloride        | < 1.7  | 1.7  | 0.21  | ug/m³ |                |                  |             |                |         |               |        |
| Naphthalene               | < 2.6  | 2.6  | 0.11  | ug/m³ |                |                  |             |                |         |               |        |
| n-Heptane                 | < 2.0  | 2.0  | 0.078 | ug/m³ |                |                  |             |                |         |               |        |
| n-Hexane                  | < 1.8  | 1.8  | 0.074 | ug/m³ |                |                  |             |                |         |               |        |
| o-Xylene                  | < 0.87 | 0.87 | 0.096 | ug/m³ |                |                  |             |                |         |               |        |
| Propylene                 | < 0.86 | 0.86 | 0.027 | ug/m³ |                |                  |             |                |         |               |        |
| Styrene                   | < 2.1  | 2.1  | 0.096 | ug/m³ |                |                  |             |                |         |               |        |
| Tetrachloroethene         | < 3.4  | 3.4  | 0.13  | ug/m³ |                |                  |             |                |         |               |        |
| Tetrahydrofuran           | < 1.5  | 1.5  | 0.038 | ug/m³ |                |                  |             |                |         |               |        |
| Toluene                   | < 0.75 | 0.75 | 0.060 | ug/m³ |                |                  |             |                |         |               |        |
| trans-1,2-Dichloroethene  | < 2.0  | 2.0  | 0.11  | ug/m³ |                |                  |             |                |         |               |        |
| trans-1,3-Dichloropropene | < 2.3  | 2.3  | 0.070 | ug/m³ |                |                  |             |                |         |               |        |
| Trichloroethene           | < 1.1  | 1.1  | 0.12  | ug/m³ |                |                  |             |                |         |               |        |
| Trichlorofluoromethane    | < 2.8  | 2.8  | 0.048 | ug/m³ |                |                  |             |                |         |               |        |
| Trichlorotrifluoroethane  | < 3.8  | 3.8  | 0.17  | ug/m³ |                |                  |             |                |         |               |        |
| Vinyl acetate             | < 1.8  | 1.8  | 0.90  | ug/m³ |                |                  |             |                |         |               |        |
| Vinyl chloride            | < 0.51 | 0.51 | 0.051 | ug/m³ |                |                  |             |                |         |               |        |
| LCS (B6G0719-BS1)         |        |      |       |       | Prepared       | l & Analyze      | ed: 07/02/1 | 6              |         |               |        |
| 1,1,1-Trichloroethane     | 48.9   | 2.7  | 0.044 | ug/m³ | 54.6           |                  | 89.6        | 70-130         |         |               |        |
| 1,1,2,2-Tetrachloroethane | 57.0   | 3.4  | 0.074 | ug/m³ | 68.6           |                  | 83.0        | 70-130         |         |               |        |
| 1,1,2-Trichloroethane     | 50.4   | 2.7  | 0.11  | ug/m³ | 54.6           |                  | 92.4        | 70-130         |         |               |        |
| 1,1-Dichloroethane        | 35.8   | 2.0  | 0.11  | ug/m³ | 40.5           |                  | 88.5        | 70-130         |         |               |        |
| 1,1-Dichloroethene        | 34.8   | 2.0  | 0.078 | ug/m³ | 39.6           |                  | 87.7        | 70-130         |         |               |        |
| 1,2,4-Trichlorobenzene    | 76.4   | 3.7  | 0.13  | ug/m³ | 74.2           |                  | 103         | 70-130         |         |               |        |
| 1,2,4-Trimethylbenzene    | 41.0   | 1.0  | 0.073 | ug/m³ | 49.2           |                  | 83.4        | 70-130         |         |               |        |
| 1,2-Dibromoethane         | 71.3   | 3.8  | 0.16  | ug/m³ | 76.8           |                  | 92.8        | 70-130         |         |               |        |
| 1,2-Dichlorobenzene       | 56.9   | 3.0  | 0.071 | ug/m³ | 60.1           |                  | 94.6        | 70-130         |         |               |        |
| 1,2-Dichloroethane        | 35.8   | 2.0  | 0.055 | ug/m³ | 40.5           |                  | 88.4        | 70-130         |         |               |        |
| 1,2-Dichloropropane       | 42.7   | 2.3  | 0.081 | ug/m³ | 46.2           |                  | 92.3        | 70-130         |         |               |        |
| 1,3,5-Trimethylbenzene    | 39.8   | 1.0  | 0.11  | ug/m³ | 49.2           |                  | 80.9        | 70-130         |         |               |        |
| 1,3-Butadiene             | 19.9   | 1.1  | 0.10  | ug/m³ | 22.1           |                  | 90.1        | 70-130         |         |               |        |
| 1,3-Dichlorobenzene       | 51.6   | 3.0  | 0.14  | ug/m³ | 60.1           |                  | 85.9        | 70-130         |         |               |        |
| 1,4-Dichlorobenzene       | 51.1   | 3.0  | 0.17  | ug/m³ | 60.1           |                  | 85.0        | 70-130         |         |               |        |
| 2-Butanone                | 24.3   | 1.5  | 0.078 | ug/m³ | 29.5           |                  | 82.5        | 70-130         |         |               |        |
| 4-Ethyltoluene            | 42.1   | 2.5  | 0.11  | ug/m³ | 49.2           |                  | 85.6        | 70-130         |         |               |        |

Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CrC

Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad

Work Order #: 1602754
Date Reported: 07/08/16

| Analyte                   | Result | RL   | MDL   | Units | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | %RPD | %RPD<br>Limit | Notes |
|---------------------------|--------|------|-------|-------|----------------|------------------|------------|----------------|------|---------------|-------|
| Batch B6G0719 - TO-15     |        |      |       |       |                |                  |            |                |      |               |       |
| LCS (B6G0719-BS1)         |        |      |       |       | Prepared       | l & Analyze      | ed: 07/02/ | 16             |      |               |       |
| Acetone                   | 23.2   | 1.2  | 0.055 | ug/m³ | 23.8           | •                | 97.5       | 70-130         |      |               |       |
| Benzene                   | 28.5   | 0.64 | 0.050 | ug/m³ | 31.9           |                  | 89.2       | 70-130         |      |               |       |
| Benzyl chloride           | 47.0   | 2.6  | 0.073 | ug/m³ | 51.8           |                  | 90.7       | 70-130         |      |               |       |
| Bromodichloromethane      | 61.7   | 3.4  | 0.13  | ug/m³ | 67.0           |                  | 92.1       | 70-130         |      |               |       |
| Bromoform                 | 87.4   | 5.2  | 0.13  | ug/m³ | 103            |                  | 84.6       | 70-130         |      |               |       |
| Bromomethane              | 33.9   | 1.9  | 0.069 | ug/m³ | 38.8           |                  | 87.2       | 70-130         |      |               |       |
| Carbon disulfide          | 27.3   | 1.6  | 0.070 | ug/m³ | 31.1           |                  | 87.8       | 70-130         |      |               |       |
| Carbon tetrachloride      | 57.2   | 3.1  | 0.087 | ug/m³ | 62.9           |                  | 90.9       | 70-130         |      |               |       |
| Chlorobenzene             | 38.7   | 2.3  | 0.080 | ug/m³ | 46.0           |                  | 84.1       | 70-130         |      |               |       |
| Chloroethane              | 22.4   | 1.3  | 0.037 | ug/m³ | 26.4           |                  | 85.0       | 70-130         |      |               |       |
| Chloroform                | 45.1   | 2.4  | 0.055 | ug/m³ | 48.8           |                  | 92.4       | 70-130         |      |               |       |
| Chloromethane             | 18.9   | 1.0  | 0.044 | ug/m³ | 20.6           |                  | 91.5       | 70-130         |      |               |       |
| cis-1,2-Dichloroethene    | 35.6   | 2.0  | 0.089 | ug/m³ | 39.6           |                  | 89.8       | 70-130         |      |               |       |
| cis-1,3-Dichloropropene   | 40.8   | 2.3  | 0.12  | ug/m³ | 45.4           |                  | 89.8       | 70-130         |      |               |       |
| Cyclohexane               | 30.7   | 1.7  | 0.059 | ug/m³ | 34.4           |                  | 89.2       | 70-130         |      |               |       |
| Dibromochloromethane      | 78.2   | 4.3  | 0.16  | ug/m³ | 85.2           |                  | 91.8       | 70-130         |      |               |       |
| Dichlorodifluoromethane   | 51.4   | 2.5  | 0.12  | ug/m³ | 49.5           |                  | 104        | 70-130         |      |               |       |
| Dichlorotetrafluoroethane | 65.8   | 3.5  | 0.063 | ug/m³ | 69.9           |                  | 94.1       | 70-130         |      |               |       |
| Ethanol                   | 18.8   | 0.94 | 0.068 | ug/m³ | 18.8           |                  | 99.8       | 70-130         |      |               |       |
| Ethyl acetate             | 29.0   | 1.8  | 0.11  | ug/m³ | 36.0           |                  | 80.6       | 70-130         |      |               |       |
| Ethylbenzene              | 36.7   | 0.87 | 0.082 | ug/m³ | 43.4           |                  | 84.6       | 70-130         |      |               |       |
| Hexachlorobutadiene       | 99.3   | 5.3  | 0.27  | ug/m³ | 107            |                  | 93.1       | 70-130         |      |               |       |
| Isopropyl alcohol         | 22.6   | 1.2  | 0.075 | ug/m³ | 24.6           |                  | 91.8       | 70-130         |      |               |       |
| m,p-Xylene                | 72.1   | 1.7  | 0.15  | ug/m³ | 86.8           |                  | 83.0       | 70-130         |      |               |       |
| Methyl butyl ketone       | 39.9   | 2.0  | 0.12  | ug/m³ | 41.0           |                  | 97.4       | 70-130         |      |               |       |
| Methyl isobutyl ketone    | 37.2   | 2.0  | 0.11  | ug/m³ | 41.0           |                  | 90.8       | 70-130         |      |               |       |
| Methyl tert-butyl ether   | 31.5   | 1.8  | 0.11  | ug/m³ | 36.1           |                  | 87.4       | 70-130         |      |               |       |
| Methylene chloride        | 31.6   | 1.7  | 0.21  | ug/m³ | 34.7           |                  | 91.0       | 70-130         |      |               |       |
| Naphthalene               | 50.1   | 2.6  | 0.11  | ug/m³ | 55.0           |                  | 91.0       | 70-130         |      |               |       |
| n-Heptane                 | 37.0   | 2.0  | 0.078 | ug/m³ | 41.0           |                  | 90.2       | 70-130         |      |               |       |
| n-Hexane                  | 30.9   | 1.8  | 0.074 | ug/m³ | 35.2           |                  | 87.8       | 70-130         |      |               |       |
| o-Xylene                  | 36.4   | 0.87 | 0.096 | ug/m³ | 43.4           |                  | 83.8       | 70-130         |      |               |       |
| Propylene                 | 15.7   | 0.86 | 0.027 | ug/m³ | 17.2           |                  | 91.5       | 70-130         |      |               |       |
| Styrene                   | 36.5   | 2.1  | 0.096 | ug/m³ | 42.6           |                  | 85.8       | 70-130         |      |               |       |
| Tetrachloroethene         | 62.8   | 3.4  | 0.13  | ug/m³ | 67.8           |                  | 92.6       | 70-130         |      |               |       |
| Tetrahydrofuran           | 28.0   | 1.5  | 0.038 | ug/m³ | 29.5           |                  | 95.0       | 70-130         |      |               |       |
| Toluene                   | 33.9   | 0.75 | 0.060 | ug/m³ | 37.7           |                  | 90.0       | 70-130         |      |               |       |
| trans-1,2-Dichloroethene  | 34.5   | 2.0  | 0.11  | ug/m³ | 39.6           |                  | 87.1       | 70-130         |      |               |       |
| trans-1,3-Dichloropropene | 41.8   | 2.3  | 0.070 | ug/m³ | 45.4           |                  | 92.1       | 70-130         |      |               |       |
| Trichloroethene           | 47.6   | 1.1  | 0.12  | ug/m³ | 53.7           |                  | 88.6       | 70-130         |      |               |       |



Fax: 651-642-1239

Landmark EnvironmentalProject:TO-152042 West 98th StreetProject Number:CrC

Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad

Work Order #: 1602754
Date Reported: 07/08/16

| Analyte                   | Result | RL        | MDL       | Units | Spike<br>Level | Source<br>Result | %REC        | %REC<br>Limits | %RPD  | %RPD<br>Limit | Notes |
|---------------------------|--------|-----------|-----------|-------|----------------|------------------|-------------|----------------|-------|---------------|-------|
| Batch B6G0719 - TO-15     |        |           |           |       |                |                  |             |                |       |               |       |
| LCS (B6G0719-BS1)         |        |           |           |       | Prepared       | l & Analyze      | ed: 07/02/1 | 16             |       |               |       |
| Trichlorofluoromethane    | 50.3   | 2.8       | 0.048     | ug/m³ | 56.2           | •                | 89.5        | 70-130         |       |               |       |
| Trichlorotrifluoroethane  | 68.7   | 3.8       | 0.17      | ug/m³ | 76.6           |                  | 89.7        | 70-130         |       |               |       |
| Vinyl acetate             | 40.8   | 1.8       | 0.90      | ug/m³ | 35.2           |                  | 116         | 70-130         |       |               |       |
| /inyl chloride            | 22.4   | 0.51      | 0.051     | ug/m³ | 25.6           |                  | 87.6        | 70-130         |       |               |       |
| Duplicate (B6G0719-DUP1)  | ;      | Source: 1 | 1602832-0 | )1    | Prepared       | l & Analyze      | ed: 07/02/1 | 16             |       |               |       |
| ,1,1-Trichloroethane      | 3.44   | 2.7       | 0.044     | ug/m³ |                | 3.46             |             |                | 0.658 | 25            |       |
| I,1,2,2-Tetrachloroethane | < 3.4  | 3.4       | 0.074     | ug/m³ |                | <3.4             |             |                | NA    | 25            |       |
| ,1,2-Trichloroethane      | < 2.7  | 2.7       | 0.11      | ug/m³ |                | <2.7             |             |                | NA    | 25            |       |
| ,1-Dichloroethane         | < 2.0  | 2.0       | 0.11      | ug/m³ |                | <2.0             |             |                | NA    | 25            |       |
| ,1-Dichloroethene         | < 2.0  | 2.0       | 0.078     | ug/m³ |                | <2.0             |             |                | NA    | 25            |       |
| ,2,4-Trichlorobenzene     | < 3.7  | 3.7       | 0.13      | ug/m³ |                | <3.7             |             |                | NA    | 25            |       |
| ,2,4-Trimethylbenzene     | 3.69   | 1.0       | 0.073     | ug/m³ |                | 3.74             |             |                | 1.50  | 25            |       |
| ,2-Dibromoethane          | < 3.8  | 3.8       | 0.16      | ug/m³ |                | <3.8             |             |                | NA    | 25            |       |
| ,2-Dichlorobenzene        | < 3.0  | 3.0       | 0.071     | ug/m³ |                | <3.0             |             |                | NA    | 25            |       |
| ,2-Dichloroethane         | 2.24   | 2.0       | 0.055     | ug/m³ |                | 2.22             |             |                | 0.936 | 25            |       |
| ,2-Dichloropropane        | < 2.3  | 2.3       | 0.081     | ug/m³ |                | <2.3             |             |                | NA    | 25            |       |
| ,3,5-Trimethylbenzene     | < 1.0  | 1.0       | 0.11      | ug/m³ |                | <1.0             |             |                | NA    | 25            |       |
| ,3-Butadiene              | < 1.1  | 1.1       | 0.10      | ug/m³ |                | <1.1             |             |                | NA    | 25            |       |
| ,3-Dichlorobenzene        | < 3.0  | 3.0       | 0.14      | ug/m³ |                | <3.0             |             |                | NA    | 25            |       |
| ,4-Dichlorobenzene        | < 3.0  | 3.0       | 0.17      | ug/m³ |                | <3.0             |             |                | NA    | 25            |       |
| -Butanone                 | 2.90   | 1.5       | 0.078     | ug/m³ |                | 2.86             |             |                | 1.31  | 25            |       |
| -Ethyltoluene             | < 2.5  | 2.5       | 0.11      | ug/m³ |                | <2.5             |             |                | NA    | 25            |       |
| Acetone                   | 83.6   | 54        | 2.5       | ug/m³ |                | 73.6             |             |                | 12.6  | 25            |       |
| Benzene                   | 1.42   | 0.64      | 0.050     | ug/m³ |                | 1.44             |             |                | 1.05  | 25            |       |
| Benzyl chloride           | < 2.6  | 2.6       | 0.073     | ug/m³ |                | <2.6             |             |                | NA    | 25            |       |
| Bromodichloromethane      | < 3.4  | 3.4       | 0.13      | ug/m³ |                | <3.4             |             |                | NA    | 25            |       |
| Bromoform                 | < 5.2  | 5.2       | 0.13      | ug/m³ |                | <5.2             |             |                | NA    | 25            |       |
| Bromomethane              | < 1.9  | 1.9       | 0.069     | ug/m³ |                | <1.9             |             |                | NA    | 25            |       |
| Carbon disulfide          | < 1.6  | 1.6       | 0.070     | ug/m³ |                | <1.6             |             |                | NA    | 25            |       |
| Carbon tetrachloride      | < 3.1  | 3.1       | 0.087     | ug/m³ |                | <3.1             |             |                | NA    | 25            |       |
| Chlorobenzene             | < 2.3  | 2.3       | 0.080     | ug/m³ |                | <2.3             |             |                | NA    | 25            |       |
| Chloroethane              | < 1.3  | 1.3       | 0.037     | ug/m³ |                | <1.3             |             |                | NA    | 25            |       |
| Chloroform                | < 2.4  | 2.4       | 0.055     | ug/m³ |                | <2.4             |             |                | NA    | 25            |       |
| Chloromethane             | 1.07   | 1.0       | 0.044     | ug/m³ |                | 1.09             |             |                | 1.50  | 25            |       |
| is-1,2-Dichloroethene     | < 2.0  | 2.0       | 0.089     | ug/m³ |                | <2.0             |             |                | NA    | 25            |       |
| sis-1,3-Dichloropropene   | < 2.3  | 2.3       | 0.12      | ug/m³ |                | <2.3             |             |                | NA    | 25            |       |
| Cyclohexane               | 2.22   | 1.7       | 0.059     | ug/m³ |                | 2.19             |             |                | 1.37  | 25            |       |
| Dibromochloromethane      | < 4.3  | 4.3       | 0.16      | ug/m³ |                | <4.3             |             |                | NA    | 25            |       |
| Dichlorodifluoromethane   | 39.8   | 2.5       | 0.12      | ug/m³ |                | 44.5             |             |                | 11.1  | 25            |       |



Fax: 651-642-1239

Landmark Environmental Project: TO-15 2042 West 98th Street Project Number: CrC

Bloomington, MN 55431 Project Manager: Mr. Jason Skramstad Work Order #: 1602754 Date Reported: 07/08/16

| Analyte                   | Result | RL        | MDL      | Units | Spike<br>Level | Source<br>Result | %REC       | %REC<br>Limits | %RPD  | %RPD<br>Limit | Notes |
|---------------------------|--------|-----------|----------|-------|----------------|------------------|------------|----------------|-------|---------------|-------|
| Batch B6G0719 - TO-15     |        |           |          |       |                |                  |            |                |       |               |       |
| Duplicate (B6G0719-DUP1)  | 5      | Source: 1 | 602832-0 | )1    | Prepared       | l & Analyze      | ed: 07/02/ | 16             |       |               |       |
| Dichlorotetrafluoroethane | < 3.5  | 3.5       | 0.063    | ug/m³ |                | <3.5             |            |                | NA    | 25            |       |
| Ethanol                   | 141    | 42        | 3.1      | ug/m³ |                | 144              |            |                | 2.25  | 25            |       |
| Ethyl acetate             | 3.29   | 1.8       | 0.11     | ug/m³ |                | 3.27             |            |                | 0.333 | 25            |       |
| Ethylbenzene              | 1.34   | 0.87      | 0.082    | ug/m³ |                | 1.31             |            |                | 1.82  | 25            |       |
| Hexachlorobutadiene       | < 5.3  | 5.3       | 0.27     | ug/m³ |                | <5.3             |            |                | NA    | 25            |       |
| Isopropyl alcohol         | 1750   | 54        | 3.4      | ug/m³ |                | 1770             |            |                | 1.28  | 25            |       |
| m,p-Xylene                | 4.43   | 1.7       | 0.15     | ug/m³ |                | 4.38             |            |                | 1.15  | 25            |       |
| Methyl butyl ketone       | < 2.0  | 2.0       | 0.12     | ug/m³ |                | <2.0             |            |                | NA    | 25            |       |
| Methyl isobutyl ketone    | < 2.0  | 2.0       | 0.11     | ug/m³ |                | <2.0             |            |                | NA    | 25            |       |
| Methyl tert-butyl ether   | < 1.8  | 1.8       | 0.11     | ug/m³ |                | <1.8             |            |                | NA    | 25            |       |
| Methylene chloride        | 3.91   | 1.7       | 0.21     | ug/m³ |                | 3.94             |            |                | 0.867 | 25            |       |
| Naphthalene               | < 2.6  | 2.6       | 0.11     | ug/m³ |                | <2.6             |            |                | NA    | 25            |       |
| n-Heptane                 | 1.87   | 2.0       | 0.078    | ug/m³ |                | <2.0             |            |                | NA    | 25            |       |
| n-Hexane                  | 3.54   | 1.8       | 0.074    | ug/m³ |                | 3.57             |            |                | 0.997 | 25            |       |
| o-Xylene                  | 1.45   | 0.87      | 0.096    | ug/m³ |                | 1.46             |            |                | 0.720 | 25            |       |
| Propylene                 | < 0.86 | 0.86      | 0.027    | ug/m³ |                | <0.86            |            |                | NA    | 25            |       |
| Styrene                   | < 2.1  | 2.1       | 0.096    | ug/m³ |                | <2.1             |            |                | NA    | 25            |       |
| Tetrachloroethene         | < 3.4  | 3.4       | 0.13     | ug/m³ |                | <3.4             |            |                | NA    | 25            |       |
| Tetrahydrofuran           | < 1.5  | 1.5       | 0.038    | ug/m³ |                | <1.5             |            |                | NA    | 25            |       |
| Toluene                   | 11.3   | 0.75      | 0.060    | ug/m³ |                | 11.8             |            |                | 3.78  | 25            |       |
| trans-1,2-Dichloroethene  | < 2.0  | 2.0       | 0.11     | ug/m³ |                | <2.0             |            |                | NA    | 25            |       |
| trans-1,3-Dichloropropene | < 2.3  | 2.3       | 0.070    | ug/m³ |                | <2.3             |            |                | NA    | 25            |       |
| Trichloroethene           | < 1.1  | 1.1       | 0.12     | ug/m³ |                | <1.1             |            |                | NA    | 25            |       |
| Trichlorofluoromethane    | < 2.8  | 2.8       | 0.048    | ug/m³ |                | <2.8             |            |                | NA    | 25            |       |
| Trichlorotrifluoroethane  | < 3.8  | 3.8       | 0.17     | ug/m³ |                | <3.8             |            |                | NA    | 25            |       |
| Vinyl acetate             | < 1.8  | 1.8       | 0.90     | ug/m³ |                | <1.8             |            |                | NA    | 25            |       |
| Vinyl chloride            | < 0.51 | 0.51      | 0.051    | ug/m³ |                | <0.51            |            |                | NA    | 25            |       |



Fax: 651-642-1239

| Landmark Environmental | Project:         | TO-15               |                |          |
|------------------------|------------------|---------------------|----------------|----------|
| 2042 West 98th Street  | Project Number:  | CrC                 | Work Order #:  | 1602754  |
| Bloomington, MN 55431  | Project Manager: | Mr. Jason Skramstad | Date Reported: | 07/08/16 |

#### **Notes and Definitions**

Less than value listed

NA Not applicable. The %RPD is not calculated from values less than the reporting limit.

MDL Method Detection Limit

RL Reporting Limit

RPD Relative Percent Difference

LCS Laboratory Control Spike = Blank Spike (BS) = Laboratory Fortified Blank (LFB)

88 Empire Drive

St Paul, MN 55103 Tel: 651-642-1150 Fax: 651-642-1239

| Client Name.                  |                      | Burton                            |                |       | *                             | LEGEND                        | PLESEND French / 1/2022 | 003       | 己            |                 | TO-15 (A            | TO-15 (M) w/ TICs Air Analysis | lysis   |
|-------------------------------|----------------------|-----------------------------------|----------------|-------|-------------------------------|-------------------------------|-------------------------|-----------|--------------|-----------------|---------------------|--------------------------------|---------|
| 2 Cardina                     | 111                  | ^                                 |                |       |                               | Turn Around Time              | ormal ormal             |           | RUSH         |                 | Project Contraction |                                |         |
| Address                       |                      | Address                           |                |       |                               | Requested the take            | Durchim                 |           |              | 1               |                     |                                |         |
| Alm Jasa Siles                | Skur sty             | # Od                              |                |       | iet                           | Chent Proje                   | Chent Project Number    |           |              | 122             |                     |                                |         |
| Phone                         |                      | Email arkuch @ fondomer Kann, com | 6/11/9         | IN Co | 70,00                         | Clent Project Name.           | act Name.               | 3         | J            |                 |                     |                                |         |
| llam Fleid ID / Sampler ID    | Canillar<br>Serial # | Picie Controlle<br>Serial #       | Preprint (140) |       | Collected                     | Time Collected<br>Start Start | flocted                 | 100       | Greats       | Pilip           |                     | Sample Comments                |         |
| 1-957 ,                       | · 1004000.           | 6                                 | Ä              | 5     | 6/21/12 1/24)                 |                               | 1521                    | 5         | >            | 0.0             |                     |                                | 0/ 4    |
| 8-957 :                       | 00443                | 7.                                | -20            |       | 6/21/16 1159 17:10 11mg       | 125                           | 17.16                   | 100       | 1            | 0.0             |                     |                                | 8       |
| 4-957                         | 3477                 | 0                                 | -28            | 3     | 8/21/6 (204 1213)             | 107                           | -                       | ₩.E       | >            | 0,0             |                     |                                | 2       |
| 1 66-10                       | . 60380              | 73                                | - 28           | 'n    | - 28 -5 Wastle 1222 1238 1250 | 122                           | 1238                    | Sign Sign | 5            | 0.0             |                     |                                | d       |
| (785) 1-35 5                  | 87600 (              | 62                                | 27.            | 4     | 6/23/14 1:16 1:21 5_ 30       | 프                             | 11                      | State     | 5            | 0.0             |                     |                                | 15      |
| 0 51-2 (85)                   | 00438                | 7                                 | -26            | 4     | 6/21/16 11:32 11:327 Gus      | 4:11                          | 11327                   | A KING    | 5            | 0.0             | 8                   |                                | 8       |
| 1 PPE-Exhast                  | 55h00 7              | [00]                              | -29515         | 10.   | 9//22/9                       | \$200 15.0V                   |                         | 57        | >            | 1.1             |                     |                                | B       |
| 60                            |                      |                                   | 744            |       |                               |                               |                         |           | -4           |                 |                     |                                | 6       |
|                               |                      |                                   |                |       |                               |                               |                         |           |              |                 |                     |                                |         |
| 2                             |                      |                                   |                |       |                               |                               |                         |           |              |                 |                     |                                | 10      |
| Sampe Colleger (please print) | 2                    | Reinquinhed By                    | 1              | 1.)   | -                             | 21/12/2                       | Time<br>1               |           | Accepted by: | SAG.            |                     | Chartec                        | Titolek |
| Convinentia                   |                      | Relinquished By:                  |                |       |                               | # 2                           | AL.                     |           | Baccelon     | Facewood By get | 3                   | 19/1/P                         | 17:30   |







Fax: 651-642-1239



























December 23, 2015

Mr. Jason Skramstad Landmark Environmental 2042 W. 98th. St. Minneapolis, MN 55431

RE: Project: CrC

Pace Project No.: 10333461

# Dear Mr. Skramstad:

Enclosed are the analytical results for sample(s) received by the laboratory on December 15, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Oyeyemi Odujole oyeyemi.odujole@pacelabs.com Project Manager

**Enclosures** 





1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700



#### **CERTIFICATIONS**

Project: CrC Pace Project No.: 10333461

#### **Minnesota Certification IDs**

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605

Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368

Kansas Certification #: E-10167 Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322

Michigan DEPH Certification #: 9909

Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN\_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647

North Carolina Certification #: 530 North Carolina State Public Health #: 27700

North Dakota Certification #: R-036

Ohio EPA #: 4150 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Washington Certification #: C486 West Virginia Certification #: 382 West Virginia DHHR #:9952C

Wisconsin Certification #: 999407970





# **SAMPLE SUMMARY**

Project: CrC
Pace Project No.: 10333461

| Lab ID      | Sample ID  | Matrix | Date Collected | Date Received  |
|-------------|------------|--------|----------------|----------------|
| 10333461001 | DPE-1      | Water  | 12/14/15 10:15 | 12/15/15 16:38 |
| 10333461002 | DPE-2      | Water  | 12/14/15 17:15 | 12/15/15 16:38 |
| 10333461003 | DPE-3      | Water  | 12/14/15 09:55 | 12/15/15 16:38 |
| 10333461004 | DPE-4      | Water  | 12/14/15 17:05 | 12/15/15 16:38 |
| 10333461005 | DPE-5      | Water  | 12/14/15 16:25 | 12/15/15 16:38 |
| 10333461006 | DPE-6      | Water  | 12/14/15 16:05 | 12/15/15 16:38 |
| 10333461007 | DPE-7      | Water  | 12/14/15 15:00 | 12/15/15 16:38 |
| 10333461008 | DPE-8      | Water  | 12/14/15 16:50 | 12/15/15 16:38 |
| 10333461009 | MW-14      | Water  | 12/14/15 15:15 | 12/15/15 16:38 |
| 10333461010 | MW-15      | Water  | 12/14/15 15:50 | 12/15/15 16:38 |
| 10333461011 | MW-16      | Water  | 12/14/15 16:35 | 12/15/15 16:38 |
| 10333461012 | MW-17      | Water  | 12/14/15 11:30 | 12/15/15 16:38 |
| 10333461013 | MW-18      | Water  | 12/14/15 11:45 | 12/15/15 16:38 |
| 10333461014 | MW-19      | Water  | 12/14/15 14:45 | 12/15/15 16:38 |
| 10333461015 | MW-20      | Water  | 12/14/15 15:25 | 12/15/15 16:38 |
| 10333461016 | Trip Blank | Water  | 12/14/15 00:00 | 12/15/15 16:38 |





# **SAMPLE ANALYTE COUNT**

Project: CrC
Pace Project No.: 10333461

| Lab ID      | Sample ID  | Method    | Analysts | Analytes<br>Reported |
|-------------|------------|-----------|----------|----------------------|
| 10333461001 | DPE-1      | EPA 8260B | DJB      | 70                   |
| 10333461002 | DPE-2      | EPA 8260B | DJB      | 70                   |
| 10333461003 | DPE-3      | EPA 8260B | DJB      | 70                   |
| 10333461004 | DPE-4      | EPA 8260B | LPM      | 70                   |
| 10333461005 | DPE-5      | EPA 8260B | LPM      | 70                   |
| 10333461006 | DPE-6      | EPA 8260B | DJB      | 70                   |
| 10333461007 | DPE-7      | EPA 8260B | DJB      | 70                   |
| 10333461008 | DPE-8      | EPA 8260B | DJB      | 70                   |
| 10333461009 | MW-14      | EPA 8260B | DJB      | 70                   |
| 10333461010 | MW-15      | EPA 8260B | DJB      | 70                   |
| 10333461011 | MW-16      | EPA 8260B | DJB      | 70                   |
| 10333461012 | MW-17      | EPA 8260B | DJB      | 70                   |
| 10333461013 | MW-18      | EPA 8260B | DJB      | 70                   |
| 10333461014 | MW-19      | EPA 8260B | LPM      | 70                   |
| 10333461015 | MW-20      | EPA 8260B | LPM      | 70                   |
| 10333461016 | Trip Blank | EPA 8260B | DJB      | 70                   |





Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: DPE-1                          | Lab ID: 103    | 33461001     | Collected: 12/14/1 | 5 10:15  | Received: | 12/15/15 16:38 | Matrix: Water |     |
|----------------------------------------|----------------|--------------|--------------------|----------|-----------|----------------|---------------|-----|
| Parameters                             | Results        | Units        | Report Limit       | DF       | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260B VOC                              | Analytical Met | hod: EPA 82  | 260B               |          |           |                |               |     |
| Acetone                                | ND             | ug/L         | 1000               | 50       |           | 12/18/15 16:1  | 6 67-64-1     |     |
| Allyl chloride                         | ND             | ug/L         | 200                | 50       |           | 12/18/15 16:1  | 6 107-05-1    |     |
| Benzene                                | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  | 6 71-43-2     |     |
| Bromobenzene                           | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  | 6 108-86-1    |     |
| Bromochloromethane                     | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  | 6 74-97-5     |     |
| Bromodichloromethane                   | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  | 6 75-27-4     |     |
| Bromoform                              | ND             | ug/L         | 200                | 50       |           | 12/18/15 16:1  | 6 75-25-2     |     |
| Bromomethane                           | ND             | ug/L         | 200                | 50       |           | 12/18/15 16:1  | 6 74-83-9     |     |
| 2-Butanone (MEK)                       | ND             | ug/L         | 250                | 50       |           | 12/18/15 16:1  | 6 78-93-3     | L3  |
| n-Butylbenzene                         | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  | 6 104-51-8    |     |
| sec-Butylbenzene                       | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  |               |     |
| tert-Butylbenzene                      | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  |               |     |
| Carbon tetrachloride                   | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  |               |     |
| Chlorobenzene                          | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  |               |     |
| Chloroethane                           | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  |               |     |
| Chloroform                             | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  |               |     |
| Chloromethane                          | ND             | ug/L         | 200                | 50       |           | 12/18/15 16:1  |               |     |
| 2-Chlorotoluene                        | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  |               |     |
| 4-Chlorotoluene                        | ND             | ug/L<br>ug/L | 50.0               | 50       |           | 12/18/15 16:1  |               |     |
| 1,2-Dibromo-3-chloropropane            | ND             | _            | 200                | 50       |           | 12/18/15 16:1  |               |     |
|                                        |                | ug/L         |                    |          |           | 12/18/15 16:1  |               |     |
| Dibromochloromethane                   | ND<br>ND       | ug/L         | 50.0<br>50.0       | 50<br>50 |           | 12/18/15 16:1  | -             |     |
| 1,2-Dibromoethane (EDB) Dibromomethane |                | ug/L         |                    |          |           |                |               |     |
|                                        | ND             | ug/L         | 200                | 50       |           | 12/18/15 16:1  |               |     |
| 1,2-Dichlorobenzene                    | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  |               |     |
| 1,3-Dichlorobenzene                    | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  |               |     |
| 1,4-Dichlorobenzene                    | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  |               |     |
| Dichlorodifluoromethane                | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  |               |     |
| 1,1-Dichloroethane                     | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  |               |     |
| 1,2-Dichloroethane                     | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  |               |     |
| 1,1-Dichloroethene                     | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  |               |     |
| cis-1,2-Dichloroethene                 | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  |               |     |
| trans-1,2-Dichloroethene               | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  |               |     |
| Dichlorofluoromethane                  | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  |               |     |
| 1,2-Dichloropropane                    | ND             | ug/L         | 200                | 50       |           | 12/18/15 16:1  | 6 78-87-5     |     |
| 1,3-Dichloropropane                    | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  | 6 142-28-9    |     |
| 2,2-Dichloropropane                    | ND             | ug/L         | 200                | 50       |           | 12/18/15 16:1  | 6 594-20-7    |     |
| 1,1-Dichloropropene                    | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  | 6 563-58-6    |     |
| cis-1,3-Dichloropropene                | ND             | ug/L         | 200                | 50       |           | 12/18/15 16:1  | 6 10061-01-5  |     |
| trans-1,3-Dichloropropene              | ND             | ug/L         | 200                | 50       |           | 12/18/15 16:1  | 6 10061-02-6  |     |
| Diethyl ether (Ethyl ether)            | ND             | ug/L         | 200                | 50       |           | 12/18/15 16:1  | 6 60-29-7     |     |
| Ethylbenzene                           | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  | 6 100-41-4    |     |
| Hexachloro-1,3-butadiene               | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  | 6 87-68-3     |     |
| Isopropylbenzene (Cumene)              | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  | 6 98-82-8     |     |
| p-Isopropyltoluene                     | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  | 6 99-87-6     |     |
| Methylene Chloride                     | ND             | ug/L         | 200                | 50       |           | 12/18/15 16:1  |               |     |
| 4-Methyl-2-pentanone (MIBK)            | ND             | ug/L         | 250                | 50       |           | 12/18/15 16:1  |               | L3  |
| Methyl-tert-butyl ether                | ND             | ug/L         | 50.0               | 50       |           | 12/18/15 16:1  |               |     |





Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: DPE-1                  | Lab ID: 103     | 33461001    | Collected: 12/14/1 | 15 10:15 | Received: 1 | 2/15/15 16:38  | Matrix: Water |     |
|--------------------------------|-----------------|-------------|--------------------|----------|-------------|----------------|---------------|-----|
| Parameters                     | Results         | Units       | Report Limit       | DF       | Prepared    | Analyzed       | CAS No.       | Qua |
| 8260B VOC                      | Analytical Meth | nod: EPA 82 | 260B               |          |             |                |               |     |
| Naphthalene                    | ND              | ug/L        | 200                | 50       |             | 12/18/15 16:16 | 6 91-20-3     |     |
| n-Propylbenzene                | ND              | ug/L        | 50.0               | 50       |             | 12/18/15 16:16 | 5 103-65-1    |     |
| Styrene                        | ND              | ug/L        | 50.0               | 50       |             | 12/18/15 16:16 | 6 100-42-5    |     |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 50.0               | 50       |             | 12/18/15 16:16 | 6 630-20-6    |     |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 50.0               | 50       |             | 12/18/15 16:16 | 6 79-34-5     | L3  |
| Tetrachloroethene              | 5490            | ug/L        | 50.0               | 50       |             | 12/18/15 16:16 | 6 127-18-4    |     |
| Tetrahydrofuran                | ND              | ug/L        | 500                | 50       |             | 12/18/15 16:16 | 6 109-99-9    |     |
| Toluene                        | ND              | ug/L        | 50.0               | 50       |             | 12/18/15 16:16 | 6 108-88-3    |     |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 50.0               | 50       |             | 12/18/15 16:16 | 6 87-61-6     |     |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 50.0               | 50       |             | 12/18/15 16:16 | 5 120-82-1    |     |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 50.0               | 50       |             | 12/18/15 16:16 | 6 71-55-6     |     |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 50.0               | 50       |             | 12/18/15 16:16 | 6 79-00-5     |     |
| Trichloroethene                | ND              | ug/L        | 20.0               | 50       |             | 12/18/15 16:16 | 6 79-01-6     |     |
| Trichlorofluoromethane         | ND              | ug/L        | 50.0               | 50       |             | 12/18/15 16:16 | 5 75-69-4     |     |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 200                | 50       |             | 12/18/15 16:16 | 96-18-4       |     |
| 1,1,2-Trichlorotrifluoroethane | ND              | ug/L        | 50.0               | 50       |             | 12/18/15 16:16 | 6 76-13-1     |     |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 50.0               | 50       |             | 12/18/15 16:16 | 95-63-6       |     |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 50.0               | 50       |             | 12/18/15 16:16 | 6 108-67-8    |     |
| Vinyl chloride                 | ND              | ug/L        | 20.0               | 50       |             | 12/18/15 16:16 | 6 75-01-4     |     |
| Xylene (Total)                 | ND              | ug/L        | 150                | 50       |             | 12/18/15 16:16 | 6 1330-20-7   |     |
| Surrogates                     |                 |             |                    |          |             |                |               |     |
| 1,2-Dichloroethane-d4 (S)      | 102             | %.          | 75-125             | 50       |             | 12/18/15 16:16 | 5 17060-07-0  |     |
| Toluene-d8 (S)                 | 96              | %.          | 75-125             | 50       |             | 12/18/15 16:16 | 6 2037-26-5   |     |
| 4-Bromofluorobenzene (S)       | 107             | %.          | 75-125             | 50       |             | 12/18/15 16:16 | 6 460-00-4    |     |





Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: DPE-2               | Lab ID: 103     | 33461002    | Collected: 12/14/1 | 5 17:15  | Received: | 12/15/15 16:38 | Matrix: Water |     |
|-----------------------------|-----------------|-------------|--------------------|----------|-----------|----------------|---------------|-----|
| Parameters                  | Results         | Units       | Report Limit       | DF       | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260B VOC                   | Analytical Meth | nod: EPA 82 | 260B               |          |           |                |               |     |
| Acetone                     | ND              | ug/L        | 1000               | 50       |           | 12/18/15 16:3  | 2 67-64-1     |     |
| Allyl chloride              | ND              | ug/L        | 200                | 50       |           | 12/18/15 16:3  | 2 107-05-1    |     |
| Benzene                     | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  | 2 71-43-2     |     |
| Bromobenzene                | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  | 2 108-86-1    |     |
| Bromochloromethane          | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  | 2 74-97-5     |     |
| Bromodichloromethane        | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  | 2 75-27-4     |     |
| Bromoform                   | ND              | ug/L        | 200                | 50       |           | 12/18/15 16:3  | 2 75-25-2     |     |
| Bromomethane                | ND              | ug/L        | 200                | 50       |           | 12/18/15 16:3  | 2 74-83-9     |     |
| 2-Butanone (MEK)            | ND              | ug/L        | 250                | 50       |           | 12/18/15 16:3  | 2 78-93-3     | L3  |
| n-Butylbenzene              | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  | 2 104-51-8    |     |
| sec-Butylbenzene            | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  | 2 135-98-8    |     |
| tert-Butylbenzene           | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  | 2 98-06-6     |     |
| Carbon tetrachloride        | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  | 2 56-23-5     |     |
| Chlorobenzene               | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  |               |     |
| Chloroethane                | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  |               |     |
| Chloroform                  | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  |               |     |
| Chloromethane               | ND              | ug/L        | 200                | 50       |           | 12/18/15 16:3  |               |     |
| 2-Chlorotoluene             | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  |               |     |
| 4-Chlorotoluene             | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  |               |     |
| 1,2-Dibromo-3-chloropropane | ND              | ug/L        | 200                | 50       |           | 12/18/15 16:3  |               |     |
| Dibromochloromethane        | ND<br>ND        | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  |               |     |
| 1,2-Dibromoethane (EDB)     | ND<br>ND        | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  |               |     |
| Dibromomethane              | ND<br>ND        | ug/L        | 200                | 50       |           | 12/18/15 16:3  |               |     |
| 1,2-Dichlorobenzene         | ND<br>ND        | _           | 50.0               | 50       |           | 12/18/15 16:3  |               |     |
|                             |                 | ug/L        |                    | 50<br>50 |           |                |               |     |
| 1,3-Dichlorobenzene         | ND              | ug/L        | 50.0               |          |           | 12/18/15 16:3  |               |     |
| 1,4-Dichlorobenzene         | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  |               |     |
| Dichlorodifluoromethane     | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  |               |     |
| 1,1-Dichloroethane          | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  |               |     |
| 1,2-Dichloroethane          | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  |               |     |
| 1,1-Dichloroethene          | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  |               |     |
| cis-1,2-Dichloroethene      | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  |               |     |
| trans-1,2-Dichloroethene    | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  |               |     |
| Dichlorofluoromethane       | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  |               |     |
| 1,2-Dichloropropane         | ND              | ug/L        | 200                | 50       |           | 12/18/15 16:3  |               |     |
| 1,3-Dichloropropane         | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  |               |     |
| 2,2-Dichloropropane         | ND              | ug/L        | 200                | 50       |           | 12/18/15 16:3  |               |     |
| 1,1-Dichloropropene         | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  |               |     |
| cis-1,3-Dichloropropene     | ND              | ug/L        | 200                | 50       |           |                | 2 10061-01-5  |     |
| rans-1,3-Dichloropropene    | ND              | ug/L        | 200                | 50       |           |                | 2 10061-02-6  |     |
| Diethyl ether (Ethyl ether) | ND              | ug/L        | 200                | 50       |           | 12/18/15 16:3  |               |     |
| Ethylbenzene                | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  |               |     |
| Hexachloro-1,3-butadiene    | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  | 2 87-68-3     |     |
| sopropylbenzene (Cumene)    | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  | 2 98-82-8     |     |
| p-Isopropyltoluene          | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  | 2 99-87-6     |     |
| Methylene Chloride          | ND              | ug/L        | 200                | 50       |           | 12/18/15 16:3  | 2 75-09-2     |     |
| 4-Methyl-2-pentanone (MIBK) | ND              | ug/L        | 250                | 50       |           | 12/18/15 16:3  | 2 108-10-1    | L3  |
| Methyl-tert-butyl ether     | ND              | ug/L        | 50.0               | 50       |           | 12/18/15 16:3  | 2 1634-04-4   |     |





Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: DPE-2                  | Lab ID: 103     | 33461002    | Collected: 12/14/1 | 5 17:15 | Received: 12 | 2/15/15 16:38 N | Matrix: Water |      |
|--------------------------------|-----------------|-------------|--------------------|---------|--------------|-----------------|---------------|------|
| Parameters                     | Results         | Units       | Report Limit       | DF      | Prepared     | Analyzed        | CAS No.       | Qual |
| 8260B VOC                      | Analytical Meth | nod: EPA 82 | 260B               |         |              |                 |               |      |
| Naphthalene                    | ND              | ug/L        | 200                | 50      |              | 12/18/15 16:32  | 91-20-3       |      |
| n-Propylbenzene                | ND              | ug/L        | 50.0               | 50      |              | 12/18/15 16:32  | 103-65-1      |      |
| Styrene                        | ND              | ug/L        | 50.0               | 50      |              | 12/18/15 16:32  | 100-42-5      |      |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 50.0               | 50      |              | 12/18/15 16:32  | 630-20-6      |      |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 50.0               | 50      |              | 12/18/15 16:32  | 79-34-5       | L3   |
| Tetrachloroethene              | 7680            | ug/L        | 50.0               | 50      |              | 12/18/15 16:32  | 127-18-4      |      |
| Tetrahydrofuran                | ND              | ug/L        | 500                | 50      |              | 12/18/15 16:32  | 109-99-9      |      |
| Toluene                        | ND              | ug/L        | 50.0               | 50      |              | 12/18/15 16:32  | 108-88-3      |      |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 50.0               | 50      |              | 12/18/15 16:32  | 87-61-6       |      |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 50.0               | 50      |              | 12/18/15 16:32  | 120-82-1      |      |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 50.0               | 50      |              | 12/18/15 16:32  | 71-55-6       |      |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 50.0               | 50      |              | 12/18/15 16:32  | 79-00-5       |      |
| Trichloroethene                | ND              | ug/L        | 20.0               | 50      |              | 12/18/15 16:32  | 79-01-6       |      |
| Trichlorofluoromethane         | ND              | ug/L        | 50.0               | 50      |              | 12/18/15 16:32  | 75-69-4       |      |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 200                | 50      |              | 12/18/15 16:32  | 96-18-4       |      |
| 1,1,2-Trichlorotrifluoroethane | 426             | ug/L        | 50.0               | 50      |              | 12/18/15 16:32  | 76-13-1       |      |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 50.0               | 50      |              | 12/18/15 16:32  | 95-63-6       |      |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 50.0               | 50      |              | 12/18/15 16:32  | 108-67-8      |      |
| Vinyl chloride                 | ND              | ug/L        | 20.0               | 50      |              | 12/18/15 16:32  | 75-01-4       |      |
| Xylene (Total)                 | ND              | ug/L        | 150                | 50      |              | 12/18/15 16:32  | 1330-20-7     |      |
| Surrogates                     | 465             | 0.4         | 75                 | 50      |              | 10/10/15 10 00  | 17000 07 0    |      |
| 1,2-Dichloroethane-d4 (S)      | 103             | %.          | 75-125             | 50      |              | 12/18/15 16:32  |               |      |
| Toluene-d8 (S)                 | 98              | %.          | 75-125             | 50      |              | 12/18/15 16:32  |               |      |
| 4-Bromofluorobenzene (S)       | 104             | %.          | 75-125             | 50      |              | 12/18/15 16:32  | 460-00-4      |      |

(612)607-1700



# **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: DPE-3               | Lab ID: 103    | 33461003     | Collected: 12/14/ | 15 09:55 | Received: | 12/15/15 16:38 | Matrix: Water |     |
|-----------------------------|----------------|--------------|-------------------|----------|-----------|----------------|---------------|-----|
| Parameters                  | Results        | Units        | Report Limit      | DF       | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260B VOC                   | Analytical Met | hod: EPA 82  | 260B              |          |           |                |               |     |
| Acetone                     | ND             | ug/L         | 4000              | 200      |           | 12/18/15 16:4  | 7 67-64-1     |     |
| Allyl chloride              | ND             | ug/L         | 800               | 200      |           | 12/18/15 16:4  | 7 107-05-1    |     |
| Benzene                     | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  | 7 71-43-2     |     |
| Bromobenzene                | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  | 7 108-86-1    |     |
| Bromochloromethane          | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  | 7 74-97-5     |     |
| Bromodichloromethane        | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  | 7 75-27-4     |     |
| Bromoform                   | ND             | ug/L         | 800               | 200      |           | 12/18/15 16:4  | 7 75-25-2     |     |
| Bromomethane                | ND             | ug/L         | 800               | 200      |           | 12/18/15 16:4  | 7 74-83-9     |     |
| 2-Butanone (MEK)            | ND             | ug/L         | 1000              | 200      |           | 12/18/15 16:4  | 7 78-93-3     | L3  |
| n-Butylbenzene              | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  | 7 104-51-8    |     |
| sec-Butylbenzene            | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  | 7 135-98-8    |     |
| tert-Butylbenzene           | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  | 7 98-06-6     |     |
| Carbon tetrachloride        | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  | 7 56-23-5     |     |
| Chlorobenzene               | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  | 7 108-90-7    |     |
| Chloroethane                | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  | 7 75-00-3     |     |
| Chloroform                  | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  | 7 67-66-3     |     |
| Chloromethane               | ND             | ug/L         | 800               | 200      |           | 12/18/15 16:4  | 7 74-87-3     |     |
| 2-Chlorotoluene             | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  | 7 95-49-8     |     |
| 4-Chlorotoluene             | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  |               |     |
| 1,2-Dibromo-3-chloropropane | ND             | ug/L         | 800               | 200      |           | 12/18/15 16:4  |               |     |
| Dibromochloromethane        | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  |               |     |
| 1,2-Dibromoethane (EDB)     | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  |               |     |
| Dibromomethane              | ND             | ug/L         | 800               | 200      |           | 12/18/15 16:4  |               |     |
| 1,2-Dichlorobenzene         | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  |               |     |
| 1,3-Dichlorobenzene         | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  |               |     |
| 1,4-Dichlorobenzene         | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  |               |     |
| Dichlorodifluoromethane     | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  |               |     |
| 1,1-Dichloroethane          | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  |               |     |
| 1,2-Dichloroethane          | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  |               |     |
| 1,1-Dichloroethene          | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  |               |     |
| cis-1,2-Dichloroethene      | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  |               |     |
| trans-1,2-Dichloroethene    | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  |               |     |
| Dichlorofluoromethane       | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  |               |     |
| 1,2-Dichloropropane         | ND             | ug/L         | 800               | 200      |           | 12/18/15 16:4  |               |     |
| 1,3-Dichloropropane         | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  |               |     |
| 2,2-Dichloropropane         | ND<br>ND       | ug/L<br>ug/L | 800               | 200      |           | 12/18/15 16:4  |               |     |
| 1,1-Dichloropropene         | ND<br>ND       | ug/L<br>ug/L | 200               | 200      |           | 12/18/15 16:4  |               |     |
| cis-1,3-Dichloropropene     | ND<br>ND       | ug/L<br>ug/L | 800               | 200      |           |                | 7 10061-01-5  |     |
| trans-1,3-Dichloropropene   | ND<br>ND       | ug/L<br>ug/L | 800               | 200      |           |                | 7 10061-01-5  |     |
| ' '                         |                | •            |                   |          |           | 12/18/15 16:4  |               |     |
| Diethyl ether (Ethyl ether) | ND<br>ND       | ug/L         | 800               | 200      |           | 12/18/15 16:4  |               |     |
| Ethylbenzene                | ND<br>ND       | ug/L         | 200               | 200      |           |                |               |     |
| Hexachloro-1,3-butadiene    | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  |               |     |
| sopropylbenzene (Cumene)    | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  |               |     |
| p-Isopropyltoluene          | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  |               |     |
| Methylene Chloride          | ND             | ug/L         | 800               | 200      |           | 12/18/15 16:4  |               |     |
| 4-Methyl-2-pentanone (MIBK) | ND             | ug/L         | 1000              | 200      |           | 12/18/15 16:4  |               | L3  |
| Methyl-tert-butyl ether     | ND             | ug/L         | 200               | 200      |           | 12/18/15 16:4  | 7 1634-04-4   |     |

# **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..





Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: DPE-3                  | Lab ID: 1033    | 33461003   | Collected: 12/14/1 | 15 09:55 | Received: 12 | 2/15/15 16:38  | Matrix: Water |     |
|--------------------------------|-----------------|------------|--------------------|----------|--------------|----------------|---------------|-----|
| Parameters                     | Results         | Units      | Report Limit       | DF       | Prepared     | Analyzed       | CAS No.       | Qua |
| 8260B VOC                      | Analytical Meth | od: EPA 82 | 260B               |          |              |                |               |     |
| Naphthalene                    | ND              | ug/L       | 800                | 200      |              | 12/18/15 16:47 | 7 91-20-3     |     |
| n-Propylbenzene                | ND              | ug/L       | 200                | 200      |              | 12/18/15 16:47 | 7 103-65-1    |     |
| Styrene                        | ND              | ug/L       | 200                | 200      |              | 12/18/15 16:47 | 7 100-42-5    |     |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L       | 200                | 200      |              | 12/18/15 16:47 | 7 630-20-6    |     |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L       | 200                | 200      |              | 12/18/15 16:47 | 7 79-34-5     | L3  |
| Tetrachloroethene              | 37300           | ug/L       | 200                | 200      |              | 12/18/15 16:47 | 7 127-18-4    |     |
| Tetrahydrofuran                | ND              | ug/L       | 2000               | 200      |              | 12/18/15 16:47 | 7 109-99-9    |     |
| Toluene                        | ND              | ug/L       | 200                | 200      |              | 12/18/15 16:47 | 7 108-88-3    |     |
| 1,2,3-Trichlorobenzene         | ND              | ug/L       | 200                | 200      |              | 12/18/15 16:47 | 7 87-61-6     |     |
| 1,2,4-Trichlorobenzene         | ND              | ug/L       | 200                | 200      |              | 12/18/15 16:47 | 7 120-82-1    |     |
| 1,1,1-Trichloroethane          | ND              | ug/L       | 200                | 200      |              | 12/18/15 16:47 | 7 71-55-6     |     |
| 1,1,2-Trichloroethane          | ND              | ug/L       | 200                | 200      |              | 12/18/15 16:47 | 7 79-00-5     |     |
| Trichloroethene                | ND              | ug/L       | 80.0               | 200      |              | 12/18/15 16:47 | 7 79-01-6     |     |
| Trichlorofluoromethane         | ND              | ug/L       | 200                | 200      |              | 12/18/15 16:47 | 7 75-69-4     |     |
| 1,2,3-Trichloropropane         | ND              | ug/L       | 800                | 200      |              | 12/18/15 16:47 | 7 96-18-4     |     |
| 1,1,2-Trichlorotrifluoroethane | 2890            | ug/L       | 200                | 200      |              | 12/18/15 16:47 | 7 76-13-1     |     |
| 1,2,4-Trimethylbenzene         | ND              | ug/L       | 200                | 200      |              | 12/18/15 16:47 | 7 95-63-6     |     |
| 1,3,5-Trimethylbenzene         | ND              | ug/L       | 200                | 200      |              | 12/18/15 16:47 | 7 108-67-8    |     |
| Vinyl chloride                 | ND              | ug/L       | 80.0               | 200      |              | 12/18/15 16:47 | 75-01-4       |     |
| Xylene (Total)                 | ND              | ug/L       | 600                | 200      |              | 12/18/15 16:47 | 7 1330-20-7   |     |
| Surrogates                     |                 | _          |                    |          |              |                |               |     |
| 1,2-Dichloroethane-d4 (S)      | 101             | %.         | 75-125             | 200      |              | 12/18/15 16:47 | 7 17060-07-0  |     |
| Toluene-d8 (S)                 | 97              | %.         | 75-125             | 200      |              | 12/18/15 16:47 | 7 2037-26-5   |     |
| 4-Bromofluorobenzene (S)       | 104             | %.         | 75-125             | 200      |              | 12/18/15 16:47 | 7 460-00-4    |     |

(612)607-1700



# **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: DPE-4               | Lab ID: 103    | 33461004    | Collected: 12/14/1 | 15 17:05   | Received: | 12/15/15 16:38 | Matrix: Water |     |
|-----------------------------|----------------|-------------|--------------------|------------|-----------|----------------|---------------|-----|
| Parameters                  | Results        | Units       | Report Limit       | DF         | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260B VOC                   | Analytical Met | nod: EPA 82 | 260B               |            |           |                |               |     |
| Acetone                     | ND             | ug/L        | 2000               | 100        |           | 12/22/15 14:2  | 2 67-64-1     |     |
| Allyl chloride              | ND             | ug/L        | 400                | 100        |           | 12/22/15 14:2  | 2 107-05-1    |     |
| Benzene                     | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  | 2 71-43-2     |     |
| Bromobenzene                | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  | 2 108-86-1    |     |
| Bromochloromethane          | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  | 2 74-97-5     |     |
| Bromodichloromethane        | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  | 2 75-27-4     |     |
| Bromoform                   | ND             | ug/L        | 400                | 100        |           | 12/22/15 14:2  | 2 75-25-2     |     |
| Bromomethane                | ND             | ug/L        | 400                | 100        |           | 12/22/15 14:2  | 2 74-83-9     | CL  |
| 2-Butanone (MEK)            | ND             | ug/L        | 500                | 100        |           | 12/22/15 14:2  | 2 78-93-3     |     |
| n-Butylbenzene              | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  | 2 104-51-8    |     |
| sec-Butylbenzene            | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  | 2 135-98-8    |     |
| tert-Butylbenzene           | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  | 2 98-06-6     |     |
| Carbon tetrachloride        | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  | 2 56-23-5     |     |
| Chlorobenzene               | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  |               |     |
| Chloroethane                | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  |               |     |
| Chloroform                  | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  |               |     |
| Chloromethane               | ND             | ug/L        | 400                | 100        |           | 12/22/15 14:2  |               |     |
| 2-Chlorotoluene             | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  |               |     |
| 4-Chlorotoluene             | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  |               |     |
| 1,2-Dibromo-3-chloropropane | ND             | ug/L        | 400                | 100        |           | 12/22/15 14:2  |               |     |
| Dibromochloromethane        | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  |               |     |
| 1,2-Dibromoethane (EDB)     | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  |               |     |
| Dibromomethane              | ND             | ug/L        | 400                | 100        |           | 12/22/15 14:2  |               |     |
| 1,2-Dichlorobenzene         | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  |               |     |
| 1,3-Dichlorobenzene         | ND<br>ND       | ug/L        | 100                | 100        |           | 12/22/15 14:2  |               |     |
| 1,4-Dichlorobenzene         | ND<br>ND       | -           | 100                | 100        |           | 12/22/15 14:2  |               |     |
| Dichlorodifluoromethane     | ND<br>ND       | ug/L        | 100                | 100        |           | 12/22/15 14:2  |               |     |
|                             |                | ug/L        |                    |            |           |                |               |     |
| 1,1-Dichloroethane          | ND             | ug/L        | 100                | 100<br>100 |           | 12/22/15 14:2  |               |     |
| 1,2-Dichloroethane          | ND             | ug/L        | 100                |            |           | 12/22/15 14:2  |               |     |
| 1,1-Dichloroethene          | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  |               |     |
| cis-1,2-Dichloroethene      | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  |               |     |
| trans-1,2-Dichloroethene    | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  |               |     |
| Dichlorofluoromethane       | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  |               |     |
| 1,2-Dichloropropane         | ND             | ug/L        | 400                | 100        |           | 12/22/15 14:2  |               |     |
| 1,3-Dichloropropane         | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  |               |     |
| 2,2-Dichloropropane         | ND             | ug/L        | 400                | 100        |           | 12/22/15 14:2  |               |     |
| 1,1-Dichloropropene         | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  |               |     |
| cis-1,3-Dichloropropene     | ND             | ug/L        | 400                | 100        |           |                | 2 10061-01-5  |     |
| rans-1,3-Dichloropropene    | ND             | ug/L        | 400                | 100        |           |                | 2 10061-02-6  |     |
| Diethyl ether (Ethyl ether) | ND             | ug/L        | 400                | 100        |           | 12/22/15 14:2  |               |     |
| Ethylbenzene                | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  |               |     |
| Hexachloro-1,3-butadiene    | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  |               |     |
| sopropylbenzene (Cumene)    | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  |               |     |
| p-Isopropyltoluene          | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  | 2 99-87-6     |     |
| Methylene Chloride          | ND             | ug/L        | 400                | 100        |           | 12/22/15 14:2  | 2 75-09-2     |     |
| 4-Methyl-2-pentanone (MIBK) | ND             | ug/L        | 500                | 100        |           | 12/22/15 14:2  | 2 108-10-1    |     |
| Methyl-tert-butyl ether     | ND             | ug/L        | 100                | 100        |           | 12/22/15 14:2  | 2 1634-04-4   |     |





Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: DPE-4                  | Lab ID: 10333461004 |             | Collected: 12/14/15 17:05 |     | Received: 12 | 2/15/15 16:38 N | Matrix: Water |      |
|--------------------------------|---------------------|-------------|---------------------------|-----|--------------|-----------------|---------------|------|
| Parameters                     | Results             | Units       | Report Limit              | DF  | Prepared     | Analyzed        | CAS No.       | Qual |
| 8260B VOC                      | Analytical Meth     | nod: EPA 82 | 260B                      |     |              |                 |               |      |
| Naphthalene                    | ND                  | ug/L        | 400                       | 100 |              | 12/22/15 14:22  | 91-20-3       |      |
| n-Propylbenzene                | ND                  | ug/L        | 100                       | 100 |              | 12/22/15 14:22  | 103-65-1      |      |
| Styrene                        | ND                  | ug/L        | 100                       | 100 |              | 12/22/15 14:22  | 100-42-5      |      |
| 1,1,1,2-Tetrachloroethane      | ND                  | ug/L        | 100                       | 100 |              | 12/22/15 14:22  | 630-20-6      |      |
| 1,1,2,2-Tetrachloroethane      | ND                  | ug/L        | 100                       | 100 |              | 12/22/15 14:22  | 79-34-5       |      |
| Tetrachloroethene              | 6900                | ug/L        | 100                       | 100 |              | 12/22/15 14:22  | 127-18-4      |      |
| Tetrahydrofuran                | ND                  | ug/L        | 1000                      | 100 |              | 12/22/15 14:22  | 109-99-9      |      |
| Toluene                        | ND                  | ug/L        | 100                       | 100 |              | 12/22/15 14:22  | 108-88-3      |      |
| 1,2,3-Trichlorobenzene         | ND                  | ug/L        | 100                       | 100 |              | 12/22/15 14:22  | 87-61-6       |      |
| 1,2,4-Trichlorobenzene         | ND                  | ug/L        | 100                       | 100 |              | 12/22/15 14:22  | 120-82-1      |      |
| 1,1,1-Trichloroethane          | ND                  | ug/L        | 100                       | 100 |              | 12/22/15 14:22  | 71-55-6       |      |
| 1,1,2-Trichloroethane          | ND                  | ug/L        | 100                       | 100 |              | 12/22/15 14:22  | 79-00-5       |      |
| Trichloroethene                | ND                  | ug/L        | 40.0                      | 100 |              | 12/22/15 14:22  | 79-01-6       |      |
| Trichlorofluoromethane         | ND                  | ug/L        | 100                       | 100 |              | 12/22/15 14:22  | 75-69-4       |      |
| 1,2,3-Trichloropropane         | ND                  | ug/L        | 400                       | 100 |              | 12/22/15 14:22  | 96-18-4       |      |
| 1,1,2-Trichlorotrifluoroethane | 663                 | ug/L        | 100                       | 100 |              | 12/22/15 14:22  | 76-13-1       |      |
| 1,2,4-Trimethylbenzene         | ND                  | ug/L        | 100                       | 100 |              | 12/22/15 14:22  | 95-63-6       |      |
| 1,3,5-Trimethylbenzene         | ND                  | ug/L        | 100                       | 100 |              | 12/22/15 14:22  | 108-67-8      |      |
| Vinyl chloride                 | ND                  | ug/L        | 40.0                      | 100 |              | 12/22/15 14:22  | 75-01-4       |      |
| Xylene (Total)                 | ND                  | ug/L        | 300                       | 100 |              | 12/22/15 14:22  | 1330-20-7     |      |
| Surrogates                     |                     |             |                           |     |              |                 |               |      |
| 1,2-Dichloroethane-d4 (S)      | 95                  | %.          | 75-125                    | 100 |              | 12/22/15 14:22  | 17060-07-0    |      |
| Toluene-d8 (S)                 | 93                  | %.          | 75-125                    | 100 |              | 12/22/15 14:22  | 2037-26-5     |      |
| 4-Bromofluorobenzene (S)       | 102                 | %.          | 75-125                    | 100 |              | 12/22/15 14:22  | 460-00-4      |      |

(612)607-1700



# **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: DPE-5 Parameters    | Lab ID: 10333461005 |             | Collected: 12/14/1 | Collected: 12/14/15 16:25 |          | 12/15/15 16:38 | Matrix: Water |      |
|-----------------------------|---------------------|-------------|--------------------|---------------------------|----------|----------------|---------------|------|
|                             | Results             | Units       | Report Limit       | DF                        | Prepared | Analyzed       | CAS No.       | Qual |
| 8260B VOC                   | Analytical Met      | hod: EPA 82 | 260B               |                           |          |                |               |      |
| Acetone                     | ND                  | ug/L        | 40.0               | 2                         |          | 12/22/15 14:07 | 7 67-64-1     |      |
| Allyl chloride              | ND                  | ug/L        | 8.0                | 2                         |          | 12/22/15 14:07 | 7 107-05-1    |      |
| Benzene                     | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 | 7 71-43-2     |      |
| Bromobenzene                | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 | 7 108-86-1    |      |
| Bromochloromethane          | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 | 7 74-97-5     |      |
| Bromodichloromethane        | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 | 7 75-27-4     |      |
| Bromoform                   | ND                  | ug/L        | 8.0                | 2                         |          | 12/22/15 14:07 | 7 75-25-2     |      |
| Bromomethane                | ND                  | ug/L        | 8.0                | 2                         |          | 12/22/15 14:07 | 7 74-83-9     | CL   |
| 2-Butanone (MEK)            | ND                  | ug/L        | 10.0               | 2                         |          | 12/22/15 14:07 | 7 78-93-3     |      |
| n-Butylbenzene              | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 | 7 104-51-8    |      |
| sec-Butylbenzene            | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 | 7 135-98-8    |      |
| tert-Butylbenzene           | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 | 7 98-06-6     |      |
| Carbon tetrachloride        | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 | 7 56-23-5     |      |
| Chlorobenzene               | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 | 7 108-90-7    |      |
| Chloroethane                | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 | 7 75-00-3     |      |
| Chloroform                  | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 | 7 67-66-3     |      |
| Chloromethane               | ND                  | ug/L        | 8.0                | 2                         |          | 12/22/15 14:07 | 7 74-87-3     |      |
| 2-Chlorotoluene             | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 | 7 95-49-8     |      |
| 4-Chlorotoluene             | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 | 7 106-43-4    |      |
| 1,2-Dibromo-3-chloropropane | ND                  | ug/L        | 8.0                | 2                         |          | 12/22/15 14:07 | 7 96-12-8     |      |
| Dibromochloromethane        | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 | 7 124-48-1    |      |
| 1,2-Dibromoethane (EDB)     | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 | 7 106-93-4    |      |
| Dibromomethane              | ND                  | ug/L        | 8.0                | 2                         |          | 12/22/15 14:07 | 7 74-95-3     |      |
| 1,2-Dichlorobenzene         | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 | 7 95-50-1     |      |
| 1,3-Dichlorobenzene         | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 | 7 541-73-1    |      |
| 1,4-Dichlorobenzene         | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 | 7 106-46-7    |      |
| Dichlorodifluoromethane     | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 |               |      |
| 1,1-Dichloroethane          | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 | 7 75-34-3     |      |
| 1,2-Dichloroethane          | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 | 7 107-06-2    |      |
| 1,1-Dichloroethene          | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 |               |      |
| cis-1,2-Dichloroethene      | 3.1                 | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 |               |      |
| trans-1,2-Dichloroethene    | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 |               |      |
| Dichlorofluoromethane       | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 |               |      |
| 1,2-Dichloropropane         | ND                  | ug/L        | 8.0                | 2                         |          | 12/22/15 14:07 |               |      |
| 1,3-Dichloropropane         | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 |               |      |
| 2,2-Dichloropropane         | ND                  | ug/L        | 8.0                | 2                         |          | 12/22/15 14:07 |               |      |
| 1,1-Dichloropropene         | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 |               |      |
| cis-1,3-Dichloropropene     | ND                  | ug/L        | 8.0                | 2                         |          | 12/22/15 14:07 |               |      |
| trans-1,3-Dichloropropene   | ND                  | ug/L        | 8.0                | 2                         |          | 12/22/15 14:07 |               |      |
| Diethyl ether (Ethyl ether) | ND                  | ug/L        | 8.0                | 2                         |          | 12/22/15 14:07 |               |      |
| Ethylbenzene                | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 |               |      |
| Hexachloro-1,3-butadiene    | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 |               |      |
| Isopropylbenzene (Cumene)   | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 |               |      |
| p-Isopropyltoluene          | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07 |               |      |
| Methylene Chloride          | ND                  | ug/L        | 8.0                | 2                         |          | 12/22/15 14:07 |               |      |
| 4-Methyl-2-pentanone (MIBK) | ND                  | ug/L        | 10.0               | 2                         |          | 12/22/15 14:07 |               |      |
|                             |                     |             |                    |                           |          | 14/44/10 14.0/ | 100-10-1      |      |





Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: DPE-5                           | Lab ID: 10333461005 |             | Collected: 12/14/1 | Collected: 12/14/15 16:25 |          | 2/15/15 16:38 N | Matrix: Water |      |
|-----------------------------------------|---------------------|-------------|--------------------|---------------------------|----------|-----------------|---------------|------|
| Parameters                              | Results             | Units       | Report Limit       | DF                        | Prepared | Analyzed        | CAS No.       | Qual |
| 8260B VOC                               | Analytical Meth     | nod: EPA 82 | 260B               |                           |          |                 |               |      |
| Naphthalene                             | ND                  | ug/L        | 8.0                | 2                         |          | 12/22/15 14:07  | 91-20-3       |      |
| n-Propylbenzene                         | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07  | 103-65-1      |      |
| Styrene                                 | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07  | 100-42-5      |      |
| 1,1,1,2-Tetrachloroethane               | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07  | 630-20-6      |      |
| 1,1,2,2-Tetrachloroethane               | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07  | 79-34-5       |      |
| Tetrachloroethene                       | 263                 | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07  | 127-18-4      |      |
| Tetrahydrofuran                         | ND                  | ug/L        | 20.0               | 2                         |          | 12/22/15 14:07  | 109-99-9      |      |
| Toluene                                 | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07  | 108-88-3      |      |
| 1,2,3-Trichlorobenzene                  | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07  | 87-61-6       |      |
| 1,2,4-Trichlorobenzene                  | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07  | 120-82-1      |      |
| 1,1,1-Trichloroethane                   | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07  | 71-55-6       |      |
| 1,1,2-Trichloroethane                   | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07  | 79-00-5       |      |
| Trichloroethene                         | ND                  | ug/L        | 0.80               | 2                         |          | 12/22/15 14:07  | 79-01-6       |      |
| Trichlorofluoromethane                  | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07  | 75-69-4       |      |
| 1,2,3-Trichloropropane                  | ND                  | ug/L        | 8.0                | 2                         |          | 12/22/15 14:07  | 96-18-4       |      |
| 1,1,2-Trichlorotrifluoroethane          | 63.3                | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07  | 76-13-1       |      |
| 1,2,4-Trimethylbenzene                  | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07  | 95-63-6       |      |
| 1,3,5-Trimethylbenzene                  | ND                  | ug/L        | 2.0                | 2                         |          | 12/22/15 14:07  | 108-67-8      |      |
| Vinyl chloride                          | ND                  | ug/L        | 0.80               | 2                         |          | 12/22/15 14:07  | 75-01-4       |      |
| Xylene (Total)                          | ND                  | ug/L        | 6.0                | 2                         |          | 12/22/15 14:07  | 1330-20-7     |      |
| Surrogates<br>1,2-Dichloroethane-d4 (S) | 99                  | %.          | 75-125             | 2                         |          | 12/22/15 14:07  | 17060-07-0    |      |
| Toluene-d8 (S)                          | 94                  | %.          | 75-125             | 2                         |          | 12/22/15 14:07  | 2037-26-5     |      |
| 4-Bromofluorobenzene (S)                | 103                 | %.          | 75-125             | 2                         |          | 12/22/15 14:07  | 460-00-4      |      |



### **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: DPE-6               | Lab ID: 103    | 33461006    | Collected: 12/14/1 | 15 16:05 | Received: | 12/15/15 16:38 | Matrix: Water |     |
|-----------------------------|----------------|-------------|--------------------|----------|-----------|----------------|---------------|-----|
| Parameters                  | Results        | Units       | Report Limit       | DF       | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260B VOC                   | Analytical Met | nod: EPA 82 | 260B               |          |           |                |               |     |
| Acetone                     | ND             | ug/L        | 20.0               | 1        |           | 12/18/15 12:41 | 67-64-1       | SS  |
| Allyl chloride              | ND             | ug/L        | 4.0                | 1        |           | 12/18/15 12:41 | 107-05-1      |     |
| Benzene                     | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 | 71-43-2       |     |
| Bromobenzene                | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 | 108-86-1      |     |
| Bromochloromethane          | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 | 74-97-5       |     |
| Bromodichloromethane        | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 | 75-27-4       |     |
| Bromoform                   | ND             | ug/L        | 4.0                | 1        |           | 12/18/15 12:41 | 75-25-2       |     |
| Bromomethane                | ND             | ug/L        | 4.0                | 1        |           | 12/18/15 12:41 | 74-83-9       |     |
| 2-Butanone (MEK)            | ND             | ug/L        | 5.0                | 1        |           | 12/18/15 12:41 | 78-93-3       | L3  |
| n-Butylbenzene              | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 | 104-51-8      |     |
| sec-Butylbenzene            | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 | 135-98-8      |     |
| tert-Butylbenzene           | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 | 98-06-6       |     |
| Carbon tetrachloride        | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 | 56-23-5       |     |
| Chlorobenzene               | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 | 108-90-7      |     |
| Chloroethane                | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 | 75-00-3       |     |
| Chloroform                  | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 | 67-66-3       |     |
| Chloromethane               | ND             | ug/L        | 4.0                | 1        |           | 12/18/15 12:41 | 74-87-3       |     |
| 2-Chlorotoluene             | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 | 95-49-8       |     |
| 4-Chlorotoluene             | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 | 106-43-4      |     |
| 1,2-Dibromo-3-chloropropane | ND             | ug/L        | 4.0                | 1        |           | 12/18/15 12:41 | 96-12-8       |     |
| Dibromochloromethane        | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 | 124-48-1      |     |
| 1,2-Dibromoethane (EDB)     | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 | 106-93-4      |     |
| Dibromomethane              | ND             | ug/L        | 4.0                | 1        |           | 12/18/15 12:41 | 74-95-3       |     |
| 1,2-Dichlorobenzene         | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 | 95-50-1       |     |
| 1,3-Dichlorobenzene         | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 | 541-73-1      |     |
| 1,4-Dichlorobenzene         | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 | 106-46-7      |     |
| Dichlorodifluoromethane     | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 | 75-71-8       |     |
| 1,1-Dichloroethane          | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 | 75-34-3       |     |
| 1,2-Dichloroethane          | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 | 107-06-2      |     |
| 1,1-Dichloroethene          | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 |               |     |
| cis-1,2-Dichloroethene      | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 |               |     |
| trans-1,2-Dichloroethene    | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 |               |     |
| Dichlorofluoromethane       | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 |               |     |
| 1,2-Dichloropropane         | ND             | ug/L        | 4.0                | 1        |           | 12/18/15 12:41 |               |     |
| 1,3-Dichloropropane         | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 | 142-28-9      |     |
| 2,2-Dichloropropane         | ND             | ug/L        | 4.0                | 1        |           | 12/18/15 12:41 |               |     |
| 1,1-Dichloropropene         | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 |               |     |
| cis-1,3-Dichloropropene     | ND             | ug/L        | 4.0                | 1        |           | 12/18/15 12:41 |               |     |
| trans-1,3-Dichloropropene   | ND             | ug/L        | 4.0                | 1        |           | 12/18/15 12:41 |               |     |
| Diethyl ether (Ethyl ether) | ND             | ug/L        | 4.0                | 1        |           | 12/18/15 12:41 |               |     |
| Ethylbenzene                | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 |               |     |
| Hexachloro-1,3-butadiene    | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 |               |     |
| Isopropylbenzene (Cumene)   | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 |               |     |
| p-Isopropyltoluene          | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:41 |               |     |
| Methylene Chloride          | ND             | ug/L        | 4.0                | 1        |           | 12/18/15 12:41 |               |     |
| 4-Methyl-2-pentanone (MIBK) | ND             | ug/L        | 5.0                | 1        |           | 12/18/15 12:41 |               | L3  |
|                             |                | uu/L        | 5.0                |          |           | 12/10/10 12.4  | 100 10-1      | LU  |

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..





Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: DPE-6                  | Lab ID: 103    | 33461006    | Collected: 12/14/1 | 15 16:05 | Received: | 12/15/15 16:38 | Matrix: Water |       |
|--------------------------------|----------------|-------------|--------------------|----------|-----------|----------------|---------------|-------|
| Parameters                     | Results        | Units       | Report Limit       | DF       | Prepared  | Analyzed       | CAS No.       | Qual  |
| 8260B VOC                      | Analytical Met | hod: EPA 82 | 260B               |          |           |                |               |       |
| Naphthalene                    | ND             | ug/L        | 4.0                | 1        |           | 12/18/15 12:4  | 1 91-20-3     |       |
| n-Propylbenzene                | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:4° | 1 103-65-1    |       |
| Styrene                        | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:4° | 1 100-42-5    |       |
| 1,1,1,2-Tetrachloroethane      | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:4° | 1 630-20-6    |       |
| 1,1,2,2-Tetrachloroethane      | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:4° | 1 79-34-5     | L3    |
| Tetrachloroethene              | 67.8           | ug/L        | 1.0                | 1        |           | 12/18/15 12:4° | 1 127-18-4    | M1    |
| Tetrahydrofuran                | ND             | ug/L        | 10.0               | 1        |           | 12/18/15 12:4° | 1 109-99-9    | M1,SS |
| Toluene                        | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:4° | 1 108-88-3    |       |
| 1,2,3-Trichlorobenzene         | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:4° | 1 87-61-6     |       |
| 1,2,4-Trichlorobenzene         | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:4° | 1 120-82-1    |       |
| 1,1,1-Trichloroethane          | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:4  | 1 71-55-6     |       |
| 1,1,2-Trichloroethane          | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:4° | 1 79-00-5     |       |
| Trichloroethene                | ND             | ug/L        | 0.40               | 1        |           | 12/18/15 12:4° | 1 79-01-6     |       |
| Trichlorofluoromethane         | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:4  | 1 75-69-4     |       |
| 1,2,3-Trichloropropane         | ND             | ug/L        | 4.0                | 1        |           | 12/18/15 12:4  | 1 96-18-4     |       |
| 1,1,2-Trichlorotrifluoroethane | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:4  | 1 76-13-1     |       |
| 1,2,4-Trimethylbenzene         | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:4° | 1 95-63-6     |       |
| 1,3,5-Trimethylbenzene         | ND             | ug/L        | 1.0                | 1        |           | 12/18/15 12:4  | 1 108-67-8    |       |
| Vinyl chloride                 | ND             | ug/L        | 0.40               | 1        |           | 12/18/15 12:4  | 1 75-01-4     |       |
| Xylene (Total)                 | ND             | ug/L        | 3.0                | 1        |           | 12/18/15 12:4  | 1 1330-20-7   |       |
| Surrogates                     |                | J           |                    |          |           |                |               |       |
| 1,2-Dichloroethane-d4 (S)      | 101            | %.          | 75-125             | 1        |           | 12/18/15 12:4° | 1 17060-07-0  |       |
| Toluene-d8 (S)                 | 97             | %.          | 75-125             | 1        |           | 12/18/15 12:4° | 1 2037-26-5   |       |
| 4-Bromofluorobenzene (S)       | 105            | %.          | 75-125             | 1        |           | 12/18/15 12:4° | 1 460-00-4    |       |



### **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: DPE-7                          | Lab ID: 103    | 33461007    | Collected: 12/14/1 | 15 15:00 | Received: 1 | 12/15/15 16:38 I | Matrix: Water |      |
|----------------------------------------|----------------|-------------|--------------------|----------|-------------|------------------|---------------|------|
| Parameters                             | Results        | Units       | Report Limit       | DF       | Prepared    | Analyzed         | CAS No.       | Qual |
| 8260B VOC                              | Analytical Met | nod: EPA 82 | 260B               |          |             |                  |               |      |
| Acetone                                | ND             | ug/L        | 20.0               | 1        |             | 12/18/15 13:27   | 67-64-1       |      |
| Allyl chloride                         | ND             | ug/L        | 4.0                | 1        |             | 12/18/15 13:27   | 107-05-1      |      |
| Benzene                                | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   | 71-43-2       |      |
| Bromobenzene                           | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   | 108-86-1      |      |
| Bromochloromethane                     | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   | 74-97-5       |      |
| Bromodichloromethane                   | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   | 75-27-4       |      |
| Bromoform                              | ND             | ug/L        | 4.0                | 1        |             | 12/18/15 13:27   | 75-25-2       |      |
| Bromomethane                           | ND             | ug/L        | 4.0                | 1        |             | 12/18/15 13:27   | 74-83-9       |      |
| 2-Butanone (MEK)                       | ND             | ug/L        | 5.0                | 1        |             | 12/18/15 13:27   | 78-93-3       | L3   |
| n-Butylbenzene                         | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   |               |      |
| sec-Butylbenzene                       | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   |               |      |
| tert-Butylbenzene                      | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   |               |      |
| Carbon tetrachloride                   | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   |               |      |
| Chlorobenzene                          | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   |               |      |
| Chloroethane                           | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   |               |      |
| Chloroform                             | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   |               |      |
| Chloromethane                          | ND             | ug/L        | 4.0                | 1        |             | 12/18/15 13:27   |               |      |
| 2-Chlorotoluene                        | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   |               |      |
| 4-Chlorotoluene                        | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   |               |      |
| 1,2-Dibromo-3-chloropropane            | ND<br>ND       | ug/L        | 4.0                | 1        |             | 12/18/15 13:27   |               |      |
| Dibromochloromethane                   | ND<br>ND       | -           | 1.0                | 1        |             | 12/18/15 13:27   |               |      |
|                                        | ND<br>ND       | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   |               |      |
| 1,2-Dibromoethane (EDB) Dibromomethane | ND<br>ND       | ug/L        | 4.0                | 1        |             | 12/18/15 13:27   |               |      |
|                                        |                | ug/L        |                    | 1        |             |                  |               |      |
| 1,2-Dichlorobenzene                    | ND             | ug/L        | 1.0                |          |             | 12/18/15 13:27   |               |      |
| 1,3-Dichlorobenzene                    | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   |               |      |
| 1,4-Dichlorobenzene                    | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   |               |      |
| Dichlorodifluoromethane                | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   |               |      |
| 1,1-Dichloroethane                     | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   |               |      |
| 1,2-Dichloroethane                     | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   |               |      |
| 1,1-Dichloroethene                     | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   |               |      |
| cis-1,2-Dichloroethene                 | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   |               |      |
| trans-1,2-Dichloroethene               | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   |               |      |
| Dichlorofluoromethane                  | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   |               |      |
| 1,2-Dichloropropane                    | ND             | ug/L        | 4.0                | 1        |             | 12/18/15 13:27   |               |      |
| 1,3-Dichloropropane                    | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   |               |      |
| 2,2-Dichloropropane                    | ND             | ug/L        | 4.0                | 1        |             | 12/18/15 13:27   | 594-20-7      |      |
| 1,1-Dichloropropene                    | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   | 563-58-6      |      |
| cis-1,3-Dichloropropene                | ND             | ug/L        | 4.0                | 1        |             | 12/18/15 13:27   | 10061-01-5    |      |
| trans-1,3-Dichloropropene              | ND             | ug/L        | 4.0                | 1        |             | 12/18/15 13:27   | 10061-02-6    |      |
| Diethyl ether (Ethyl ether)            | ND             | ug/L        | 4.0                | 1        |             | 12/18/15 13:27   | 60-29-7       |      |
| Ethylbenzene                           | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   | 100-41-4      |      |
| Hexachloro-1,3-butadiene               | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   | 87-68-3       |      |
| Isopropylbenzene (Cumene)              | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   | 98-82-8       |      |
| p-Isopropyltoluene                     | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   | 99-87-6       |      |
| Methylene Chloride                     | ND             | ug/L        | 4.0                | 1        |             | 12/18/15 13:27   |               |      |
| 4-Methyl-2-pentanone (MIBK)            | ND             | ug/L        | 5.0                | 1        |             | 12/18/15 13:27   |               | L3   |
| Methyl-tert-butyl ether                | ND             | ug/L        | 1.0                | 1        |             | 12/18/15 13:27   |               |      |





Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: DPE-7                  | Lab ID: 103     | 33461007    | Collected: 12/14/1 | 5 15:00 | Received: 1 | 2/15/15 16:38  | Matrix: Water |      |
|--------------------------------|-----------------|-------------|--------------------|---------|-------------|----------------|---------------|------|
| Parameters                     | Results         | Units       | Report Limit       | DF      | Prepared    | Analyzed       | CAS No.       | Qual |
| 8260B VOC                      | Analytical Meth | nod: EPA 82 | 260B               |         |             |                |               |      |
| Naphthalene                    | ND              | ug/L        | 4.0                | 1       |             | 12/18/15 13:27 | 91-20-3       |      |
| n-Propylbenzene                | ND              | ug/L        | 1.0                | 1       |             | 12/18/15 13:27 | 7 103-65-1    |      |
| Styrene                        | ND              | ug/L        | 1.0                | 1       |             | 12/18/15 13:27 | 7 100-42-5    |      |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1       |             | 12/18/15 13:27 | 630-20-6      |      |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1       |             | 12/18/15 13:27 | 79-34-5       | L3   |
| Tetrachloroethene              | 146             | ug/L        | 1.0                | 1       |             | 12/18/15 13:27 | 127-18-4      |      |
| Tetrahydrofuran                | ND              | ug/L        | 10.0               | 1       |             | 12/18/15 13:27 | 109-99-9      |      |
| Toluene                        | ND              | ug/L        | 1.0                | 1       |             | 12/18/15 13:27 | 108-88-3      |      |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1       |             | 12/18/15 13:27 | 87-61-6       |      |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1       |             | 12/18/15 13:27 | 120-82-1      |      |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 1.0                | 1       |             | 12/18/15 13:27 | 71-55-6       |      |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 1.0                | 1       |             | 12/18/15 13:27 | 79-00-5       |      |
| Trichloroethene                | ND              | ug/L        | 0.40               | 1       |             | 12/18/15 13:27 | 79-01-6       |      |
| Trichlorofluoromethane         | ND              | ug/L        | 1.0                | 1       |             | 12/18/15 13:27 | 75-69-4       |      |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 4.0                | 1       |             | 12/18/15 13:27 | 7 96-18-4     |      |
| 1,1,2-Trichlorotrifluoroethane | ND              | ug/L        | 1.0                | 1       |             | 12/18/15 13:27 | 76-13-1       |      |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1       |             | 12/18/15 13:27 | 95-63-6       |      |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1       |             | 12/18/15 13:27 | 108-67-8      |      |
| Vinyl chloride                 | ND              | ug/L        | 0.40               | 1       |             | 12/18/15 13:27 | 75-01-4       |      |
| Xylene (Total)                 | ND              | ug/L        | 3.0                | 1       |             | 12/18/15 13:27 | 1330-20-7     |      |
| Surrogates                     |                 | -           |                    |         |             |                |               |      |
| 1,2-Dichloroethane-d4 (S)      | 102             | %.          | 75-125             | 1       |             | 12/18/15 13:27 | 7 17060-07-0  |      |
| Toluene-d8 (S)                 | 99              | %.          | 75-125             | 1       |             | 12/18/15 13:27 | 2037-26-5     |      |
| 4-Bromofluorobenzene (S)       | 105             | %.          | 75-125             | 1       |             | 12/18/15 13:27 | 460-00-4      |      |





Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: DPE-8               | Lab ID:    | 10333461008    | Collected: 12/14 | /15 16:50 | Received: | 12/15/15 16:38 | Matrix: Water |     |
|-----------------------------|------------|----------------|------------------|-----------|-----------|----------------|---------------|-----|
| Parameters                  | Results    | Units          | Report Limit     | DF        | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260B VOC                   | Analytical | Method: EPA 82 | 260B             |           |           |                |               |     |
| Acetone                     | NE         | O ug/L         | 500              | 25        |           | 12/18/15 15:4  | 6 67-64-1     |     |
| Allyl chloride              | N          | O ug/L         | 100              | 25        |           | 12/18/15 15:4  | 6 107-05-1    |     |
| Benzene                     | NE         | O ug/L         | 25.0             | 25        |           | 12/18/15 15:4  | 6 71-43-2     |     |
| Bromobenzene                | NE         | O ug/L         | 25.0             | 25        |           | 12/18/15 15:4  | 6 108-86-1    |     |
| Bromochloromethane          | NE         | O ug/L         | 25.0             | 25        |           | 12/18/15 15:4  | 6 74-97-5     |     |
| Bromodichloromethane        | NE         | O ug/L         | 25.0             | 25        |           | 12/18/15 15:4  | 6 75-27-4     |     |
| Bromoform                   | NE         | O ug/L         | 100              | 25        |           | 12/18/15 15:4  | 6 75-25-2     |     |
| Bromomethane                | NE         | O ug/L         | 100              | 25        |           | 12/18/15 15:4  | 6 74-83-9     |     |
| 2-Butanone (MEK)            | NE         |                | 125              | 25        |           | 12/18/15 15:4  | 6 78-93-3     | L3  |
| n-Butylbenzene              | NE         | _              | 25.0             | 25        |           | 12/18/15 15:4  | 6 104-51-8    |     |
| sec-Butylbenzene            | NE         | _              | 25.0             | 25        |           | 12/18/15 15:4  | 6 135-98-8    |     |
| tert-Butylbenzene           | NE         | -              | 25.0             | 25        |           | 12/18/15 15:4  | 6 98-06-6     |     |
| Carbon tetrachloride        | NE         | •              | 25.0             | 25        |           | 12/18/15 15:4  | 6 56-23-5     |     |
| Chlorobenzene               | NE         | _              | 25.0             | 25        |           | 12/18/15 15:4  | 6 108-90-7    |     |
| Chloroethane                | NE         | _              | 25.0             | 25        |           | 12/18/15 15:4  |               |     |
| Chloroform                  | NE         | _              | 25.0             |           |           | 12/18/15 15:4  | 6 67-66-3     |     |
| Chloromethane               | N          | U              | 100              |           |           | 12/18/15 15:4  |               |     |
| 2-Chlorotoluene             | NI         | •              | 25.0             |           |           | 12/18/15 15:4  |               |     |
| 4-Chlorotoluene             | NI         |                | 25.0             |           |           | 12/18/15 15:4  |               |     |
| 1,2-Dibromo-3-chloropropane | NI         | _              | 100              |           |           | 12/18/15 15:4  |               |     |
| Dibromochloromethane        | NI         | _              | 25.0             |           |           | 12/18/15 15:4  |               |     |
| 1,2-Dibromoethane (EDB)     | NE         | U              | 25.0             |           |           | 12/18/15 15:4  | -             |     |
| Dibromomethane              | NE         | •              | 100              |           |           | 12/18/15 15:4  |               |     |
| 1,2-Dichlorobenzene         | NE         | _              | 25.0             |           |           | 12/18/15 15:4  |               |     |
| 1,3-Dichlorobenzene         | NE         | _              | 25.0             |           |           | 12/18/15 15:4  |               |     |
| 1,4-Dichlorobenzene         | NE         | _              | 25.0             |           |           | 12/18/15 15:4  |               |     |
| Dichlorodifluoromethane     | NE         | U              | 25.0             |           |           | 12/18/15 15:4  |               |     |
| 1,1-Dichloroethane          | NE         | •              | 25.0             |           |           | 12/18/15 15:4  |               |     |
| 1,2-Dichloroethane          | NE         |                | 25.0             |           |           | 12/18/15 15:4  |               |     |
| 1,1-Dichloroethene          | NE         | _              | 25.0             |           |           | 12/18/15 15:4  |               |     |
| cis-1,2-Dichloroethene      | NE         | _              | 25.0             |           |           | 12/18/15 15:4  |               |     |
| trans-1,2-Dichloroethene    | NE         | U              | 25.0             |           |           | 12/18/15 15:4  |               |     |
| Dichlorofluoromethane       | NE         | •              | 25.0             |           |           | 12/18/15 15:4  |               |     |
| 1,2-Dichloropropane         | NE         | _              | 100              |           |           | 12/18/15 15:4  |               |     |
| 1,3-Dichloropropane         | NE         | _              | 25.0             |           |           | 12/18/15 15:4  |               |     |
| 2,2-Dichloropropane         | NE         |                | 100              |           |           | 12/18/15 15:4  |               |     |
| 1,1-Dichloropropene         | NE<br>NE   | -              | 25.0             |           |           | 12/18/15 15:4  |               |     |
| cis-1,3-Dichloropropene     | NE         | •              | 100              |           |           |                | 6 10061-01-5  |     |
| trans-1,3-Dichloropropene   | NE<br>NE   | •              | 100              |           |           |                | 6 10061-01-5  |     |
| Diethyl ether (Ethyl ether) | NE<br>NE   | •              | 100              |           |           | 12/18/15 15:4  |               |     |
| Ethylbenzene                | NE<br>NE   | J              | 25.0             |           |           | 12/18/15 15:4  |               |     |
| Hexachloro-1,3-butadiene    | NE<br>NE   | -              | 25.0             |           |           | 12/18/15 15:4  |               |     |
| Isopropylbenzene (Cumene)   | NE<br>NE   | •              | 25.0<br>25.0     |           |           | 12/18/15 15:4  |               |     |
|                             |            |                |                  |           |           |                |               |     |
| p-Isopropyltoluene          | NI<br>NI   | •              | 25.0             |           |           | 12/18/15 15:4  |               |     |
| Methylene Chloride          | NE         | •              | 100              |           |           | 12/18/15 15:4  |               | 1.0 |
| 4-Methyl-2-pentanone (MIBK) | NE         | •              | 125              |           |           | 12/18/15 15:4  |               | L3  |
| Methyl-tert-butyl ether     | NI         | O ug/L         | 25.0             | 25        |           | 12/18/15 15:4  | 6 1634-04-4   |     |





Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: DPE-8                  | Lab ID: 103     | 33461008    | Collected: 12/14/1 | 5 16:50 | Received: 12 | 2/15/15 16:38 N | Matrix: Water |      |
|--------------------------------|-----------------|-------------|--------------------|---------|--------------|-----------------|---------------|------|
| Parameters                     | Results         | Units       | Report Limit       | DF      | Prepared     | Analyzed        | CAS No.       | Qual |
| 8260B VOC                      | Analytical Meth | nod: EPA 82 | 260B               |         |              |                 |               |      |
| Naphthalene                    | ND              | ug/L        | 100                | 25      |              | 12/18/15 15:46  | 91-20-3       |      |
| n-Propylbenzene                | ND              | ug/L        | 25.0               | 25      |              | 12/18/15 15:46  | 103-65-1      |      |
| Styrene                        | ND              | ug/L        | 25.0               | 25      |              | 12/18/15 15:46  | 100-42-5      |      |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 25.0               | 25      |              | 12/18/15 15:46  | 630-20-6      |      |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 25.0               | 25      |              | 12/18/15 15:46  | 79-34-5       | L3   |
| Tetrachloroethene              | 2700            | ug/L        | 25.0               | 25      |              | 12/18/15 15:46  | 127-18-4      |      |
| Tetrahydrofuran                | ND              | ug/L        | 250                | 25      |              | 12/18/15 15:46  | 109-99-9      |      |
| Toluene                        | ND              | ug/L        | 25.0               | 25      |              | 12/18/15 15:46  | 108-88-3      |      |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 25.0               | 25      |              | 12/18/15 15:46  | 87-61-6       |      |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 25.0               | 25      |              | 12/18/15 15:46  | 120-82-1      |      |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 25.0               | 25      |              | 12/18/15 15:46  | 71-55-6       |      |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 25.0               | 25      |              | 12/18/15 15:46  | 79-00-5       |      |
| Trichloroethene                | ND              | ug/L        | 10.0               | 25      |              | 12/18/15 15:46  | 79-01-6       |      |
| Trichlorofluoromethane         | ND              | ug/L        | 25.0               | 25      |              | 12/18/15 15:46  | 75-69-4       |      |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 100                | 25      |              | 12/18/15 15:46  | 96-18-4       |      |
| 1,1,2-Trichlorotrifluoroethane | 174             | ug/L        | 25.0               | 25      |              | 12/18/15 15:46  | 76-13-1       |      |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 25.0               | 25      |              | 12/18/15 15:46  | 95-63-6       |      |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 25.0               | 25      |              | 12/18/15 15:46  | 108-67-8      |      |
| Vinyl chloride                 | ND              | ug/L        | 10.0               | 25      |              | 12/18/15 15:46  | 75-01-4       |      |
| Xylene (Total)                 | ND              | ug/L        | 75.0               | 25      |              | 12/18/15 15:46  | 1330-20-7     |      |
| Surrogates                     |                 |             |                    |         |              |                 |               |      |
| 1,2-Dichloroethane-d4 (S)      | 105             | %.          | 75-125             | 25      |              | 12/18/15 15:46  |               |      |
| Toluene-d8 (S)                 | 97              | %.          | 75-125             | 25      |              | 12/18/15 15:46  |               |      |
| 4-Bromofluorobenzene (S)       | 103             | %.          | 75-125             | 25      |              | 12/18/15 15:46  | 460-00-4      |      |



### **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: MW-14               | Lab ID: 103     | 33461009    | Collected: 12/14/1 | 15 15:15 | Received: | 12/15/15 16:38 | Matrix: Water |     |
|-----------------------------|-----------------|-------------|--------------------|----------|-----------|----------------|---------------|-----|
| Parameters                  | Results         | Units       | Report Limit       | DF       | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260B VOC                   | Analytical Metl | nod: EPA 82 | 260B               |          |           |                |               |     |
| Acetone                     | ND              | ug/L        | 20.0               | 1        |           | 12/18/15 13:5  | 8 67-64-1     |     |
| Allyl chloride              | ND              | ug/L        | 4.0                | 1        |           | 12/18/15 13:5  | 8 107-05-1    |     |
| Benzene                     | ND              | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  | 8 71-43-2     |     |
| Bromobenzene                | ND              | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  | 8 108-86-1    |     |
| Bromochloromethane          | ND              | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  | 8 74-97-5     |     |
| Bromodichloromethane        | ND              | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  | 8 75-27-4     |     |
| Bromoform                   | ND              | ug/L        | 4.0                | 1        |           | 12/18/15 13:5  | 8 75-25-2     |     |
| Bromomethane                | ND              | ug/L        | 4.0                | 1        |           | 12/18/15 13:5  | 8 74-83-9     |     |
| 2-Butanone (MEK)            | ND              | ug/L        | 5.0                | 1        |           | 12/18/15 13:5  | 8 78-93-3     | L3  |
| n-Butylbenzene              | ND              | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  | 8 104-51-8    |     |
| sec-Butylbenzene            | ND              | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  | 8 135-98-8    |     |
| tert-Butylbenzene           | ND              | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  | 8 98-06-6     |     |
| Carbon tetrachloride        | ND              | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  | 8 56-23-5     |     |
| Chlorobenzene               | ND              | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  | 8 108-90-7    |     |
| Chloroethane                | ND              | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  |               |     |
| Chloroform                  | 1.8             | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  |               |     |
| Chloromethane               | ND              | ug/L        | 4.0                | 1        |           | 12/18/15 13:5  |               |     |
| 2-Chlorotoluene             | ND              | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  |               |     |
| 4-Chlorotoluene             | ND              | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  |               |     |
| 1,2-Dibromo-3-chloropropane | ND              | ug/L        | 4.0                | 1        |           | 12/18/15 13:5  |               |     |
| Dibromochloromethane        | ND              | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  |               |     |
| 1,2-Dibromoethane (EDB)     | ND              | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  |               |     |
| Dibromomethane              | ND              | ug/L        | 4.0                | 1        |           | 12/18/15 13:5  |               |     |
| 1,2-Dichlorobenzene         | ND              | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  |               |     |
| 1,3-Dichlorobenzene         | ND<br>ND        | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  |               |     |
| 1,4-Dichlorobenzene         | ND<br>ND        | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  |               |     |
| Dichlorodifluoromethane     | ND<br>ND        | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  |               |     |
| 1,1-Dichloroethane          | ND<br>ND        | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  |               |     |
| 1,2-Dichloroethane          | ND<br>ND        | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  |               |     |
| 1,1-Dichloroethane          | ND<br>ND        | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  |               |     |
| cis-1,2-Dichloroethene      | ND<br>ND        |             | 1.0                | 1        |           | 12/18/15 13:5  |               |     |
| trans-1,2-Dichloroethene    | ND<br>ND        | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  |               |     |
| Dichlorofluoromethane       | ND<br>ND        | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  |               |     |
|                             |                 | ug/L        |                    |          |           |                |               |     |
| 1,2-Dichloropropane         | ND              | ug/L        | 4.0                | 1        |           | 12/18/15 13:5  |               |     |
| 1,3-Dichloropropane         | ND              | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  |               |     |
| 2,2-Dichloropropane         | ND              | ug/L        | 4.0                | 1        |           | 12/18/15 13:5  |               |     |
| 1,1-Dichloropropene         | ND              | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  |               |     |
| cis-1,3-Dichloropropene     | ND              | ug/L        | 4.0                | 1        |           |                | 8 10061-01-5  |     |
| trans-1,3-Dichloropropene   | ND              | ug/L        | 4.0                | 1        |           |                | 8 10061-02-6  |     |
| Diethyl ether (Ethyl ether) | ND              | ug/L        | 4.0                | 1        |           | 12/18/15 13:5  |               |     |
| Ethylbenzene                | ND              | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  |               |     |
| Hexachloro-1,3-butadiene    | ND              | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  |               |     |
| sopropylbenzene (Cumene)    | ND              | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  |               |     |
| p-Isopropyltoluene          | ND              | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  |               |     |
| Methylene Chloride          | ND              | ug/L        | 4.0                | 1        |           | 12/18/15 13:5  |               |     |
| 4-Methyl-2-pentanone (MIBK) | ND              | ug/L        | 5.0                | 1        |           | 12/18/15 13:5  |               | L3  |
| Methyl-tert-butyl ether     | ND              | ug/L        | 1.0                | 1        |           | 12/18/15 13:5  | 8 1634-04-4   |     |





Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: MW-14                  | Lab ID: 103     | 33461009    | Collected: 12/14/1 | 15 15:15 | Received: 1 | 2/15/15 16:38 N | /latrix: Water |      |
|--------------------------------|-----------------|-------------|--------------------|----------|-------------|-----------------|----------------|------|
| Parameters                     | Results         | Units       | Report Limit       | DF       | Prepared    | Analyzed        | CAS No.        | Qual |
| 8260B VOC                      | Analytical Meth | nod: EPA 82 | 260B               |          |             |                 |                |      |
| Naphthalene                    | ND              | ug/L        | 4.0                | 1        |             | 12/18/15 13:58  | 91-20-3        |      |
| n-Propylbenzene                | ND              | ug/L        | 1.0                | 1        |             | 12/18/15 13:58  | 103-65-1       |      |
| Styrene                        | ND              | ug/L        | 1.0                | 1        |             | 12/18/15 13:58  | 100-42-5       |      |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1        |             | 12/18/15 13:58  | 630-20-6       |      |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1        |             | 12/18/15 13:58  | 79-34-5        | L3   |
| Tetrachloroethene              | 88.3            | ug/L        | 1.0                | 1        |             | 12/18/15 13:58  | 127-18-4       |      |
| Tetrahydrofuran                | ND              | ug/L        | 10.0               | 1        |             | 12/18/15 13:58  | 109-99-9       |      |
| Toluene                        | ND              | ug/L        | 1.0                | 1        |             | 12/18/15 13:58  | 108-88-3       |      |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1        |             | 12/18/15 13:58  | 87-61-6        |      |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1        |             | 12/18/15 13:58  | 120-82-1       |      |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 1.0                | 1        |             | 12/18/15 13:58  | 71-55-6        |      |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 1.0                | 1        |             | 12/18/15 13:58  | 79-00-5        |      |
| Trichloroethene                | ND              | ug/L        | 0.40               | 1        |             | 12/18/15 13:58  | 79-01-6        |      |
| Trichlorofluoromethane         | ND              | ug/L        | 1.0                | 1        |             | 12/18/15 13:58  | 75-69-4        |      |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 4.0                | 1        |             | 12/18/15 13:58  | 96-18-4        |      |
| 1,1,2-Trichlorotrifluoroethane | ND              | ug/L        | 1.0                | 1        |             | 12/18/15 13:58  | 76-13-1        |      |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1        |             | 12/18/15 13:58  | 95-63-6        |      |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1        |             | 12/18/15 13:58  | 108-67-8       |      |
| Vinyl chloride                 | ND              | ug/L        | 0.40               | 1        |             | 12/18/15 13:58  | 75-01-4        |      |
| Xylene (Total)                 | ND              | ug/L        | 3.0                | 1        |             | 12/18/15 13:58  | 1330-20-7      |      |
| Surrogates                     |                 | -           |                    |          |             |                 |                |      |
| 1,2-Dichloroethane-d4 (S)      | 104             | %.          | 75-125             | 1        |             | 12/18/15 13:58  | 17060-07-0     |      |
| Toluene-d8 (S)                 | 97              | %.          | 75-125             | 1        |             | 12/18/15 13:58  | 2037-26-5      |      |
| 4-Bromofluorobenzene (S)       | 103             | %.          | 75-125             | 1        |             | 12/18/15 13:58  | 460-00-4       |      |





Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: MW-15               | Lab ID: 103    | 33461010     | Collected: 12/14/1 | 5 15:50 | Received: 1 | 12/15/15 16:38 | Matrix: Water |      |
|-----------------------------|----------------|--------------|--------------------|---------|-------------|----------------|---------------|------|
| Parameters                  | Results        | Units        | Report Limit       | DF      | Prepared    | Analyzed       | CAS No.       | Qual |
| 8260B VOC                   | Analytical Met | nod: EPA 82  | 260B               |         |             |                |               |      |
| Acetone                     | ND             | ug/L         | 20.0               | 1       |             | 12/18/15 14:13 | 3 67-64-1     |      |
| Allyl chloride              | ND             | ug/L         | 4.0                | 1       |             | 12/18/15 14:13 | 3 107-05-1    |      |
| Benzene                     | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 | 3 71-43-2     |      |
| Bromobenzene                | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 | 3 108-86-1    |      |
| Bromochloromethane          | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 | 3 74-97-5     |      |
| Bromodichloromethane        | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 | 3 75-27-4     |      |
| Bromoform                   | ND             | ug/L         | 4.0                | 1       |             | 12/18/15 14:13 | 3 75-25-2     |      |
| Bromomethane                | ND             | ug/L         | 4.0                | 1       |             | 12/18/15 14:13 | 3 74-83-9     |      |
| 2-Butanone (MEK)            | ND             | ug/L         | 5.0                | 1       |             | 12/18/15 14:13 | 3 78-93-3     | L3   |
| n-Butylbenzene              | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 | 3 104-51-8    |      |
| sec-Butylbenzene            | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 | 3 135-98-8    |      |
| tert-Butylbenzene           | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 | 3 98-06-6     |      |
| Carbon tetrachloride        | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 | 3 56-23-5     |      |
| Chlorobenzene               | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 | 3 108-90-7    |      |
| Chloroethane                | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 | 3 75-00-3     |      |
| Chloroform                  | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 | 3 67-66-3     |      |
| Chloromethane               | ND             | ug/L         | 4.0                | 1       |             | 12/18/15 14:13 | 3 74-87-3     |      |
| 2-Chlorotoluene             | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 | 3 95-49-8     |      |
| 4-Chlorotoluene             | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 | 3 106-43-4    |      |
| 1,2-Dibromo-3-chloropropane | ND             | ug/L         | 4.0                | 1       |             | 12/18/15 14:13 | 3 96-12-8     |      |
| Dibromochloromethane        | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 |               |      |
| 1,2-Dibromoethane (EDB)     | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 | 3 106-93-4    |      |
| Dibromomethane              | ND             | ug/L         | 4.0                | 1       |             | 12/18/15 14:13 | 3 74-95-3     |      |
| 1,2-Dichlorobenzene         | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 | 3 95-50-1     |      |
| 1,3-Dichlorobenzene         | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 | 3 541-73-1    |      |
| 1,4-Dichlorobenzene         | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 | 3 106-46-7    |      |
| Dichlorodifluoromethane     | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 |               |      |
| 1,1-Dichloroethane          | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 | 3 75-34-3     |      |
| 1,2-Dichloroethane          | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 | 3 107-06-2    |      |
| 1,1-Dichloroethene          | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 |               |      |
| cis-1,2-Dichloroethene      | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 |               |      |
| trans-1,2-Dichloroethene    | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 |               |      |
| Dichlorofluoromethane       | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 |               |      |
| 1,2-Dichloropropane         | ND             | ug/L         | 4.0                | 1       |             | 12/18/15 14:13 |               |      |
| 1,3-Dichloropropane         | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 |               |      |
| 2,2-Dichloropropane         | ND             | ug/L         | 4.0                | 1       |             | 12/18/15 14:13 |               |      |
| 1,1-Dichloropropene         | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 |               |      |
| cis-1,3-Dichloropropene     | ND             | ug/L         | 4.0                | 1       |             | 12/18/15 14:13 |               |      |
| trans-1,3-Dichloropropene   | ND             | ug/L         | 4.0                | 1       |             | 12/18/15 14:13 |               |      |
| Diethyl ether (Ethyl ether) | ND             | ug/L         | 4.0                | 1       |             | 12/18/15 14:13 |               |      |
| Ethylbenzene                | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 |               |      |
| Hexachloro-1,3-butadiene    | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 |               |      |
| Isopropylbenzene (Cumene)   | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 |               |      |
| p-Isopropyltoluene          | ND             | ug/L         | 1.0                | 1       |             | 12/18/15 14:13 |               |      |
| Methylene Chloride          | ND             | ug/L         | 4.0                | 1       |             | 12/18/15 14:13 |               |      |
| 4-Methyl-2-pentanone (MIBK) | ND             | ug/L         | 5.0                | 1       |             | 12/18/15 14:13 |               | L3   |
|                             |                | uu/ <b>∟</b> | 5.0                |         |             | 12/10/10 17.10 | , 100 101     |      |





Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: MW-15                  | Lab ID: 103    | 33461010    | Collected: 12/14/1 | 5 15:50 | Received: 1 | 2/15/15 16:38  | Matrix: Water |     |
|--------------------------------|----------------|-------------|--------------------|---------|-------------|----------------|---------------|-----|
| Parameters                     | Results        | Units       | Report Limit       | DF      | Prepared    | Analyzed       | CAS No.       | Qua |
| 8260B VOC                      | Analytical Met | hod: EPA 82 | 260B               |         |             |                |               |     |
| Naphthalene                    | ND             | ug/L        | 4.0                | 1       |             | 12/18/15 14:1: | 3 91-20-3     |     |
| n-Propylbenzene                | ND             | ug/L        | 1.0                | 1       |             | 12/18/15 14:13 | 3 103-65-1    |     |
| Styrene                        | ND             | ug/L        | 1.0                | 1       |             | 12/18/15 14:13 | 3 100-42-5    |     |
| 1,1,1,2-Tetrachloroethane      | ND             | ug/L        | 1.0                | 1       |             | 12/18/15 14:13 | 3 630-20-6    |     |
| 1,1,2,2-Tetrachloroethane      | ND             | ug/L        | 1.0                | 1       |             | 12/18/15 14:13 | 3 79-34-5     | L3  |
| Tetrachloroethene              | 194            | ug/L        | 1.0                | 1       |             | 12/18/15 14:13 | 3 127-18-4    |     |
| Tetrahydrofuran                | ND             | ug/L        | 10.0               | 1       |             | 12/18/15 14:13 | 3 109-99-9    |     |
| Toluene                        | ND             | ug/L        | 1.0                | 1       |             | 12/18/15 14:13 | 3 108-88-3    |     |
| 1,2,3-Trichlorobenzene         | ND             | ug/L        | 1.0                | 1       |             | 12/18/15 14:13 | 3 87-61-6     |     |
| 1,2,4-Trichlorobenzene         | ND             | ug/L        | 1.0                | 1       |             | 12/18/15 14:13 | 3 120-82-1    |     |
| 1,1,1-Trichloroethane          | ND             | ug/L        | 1.0                | 1       |             | 12/18/15 14:13 | 3 71-55-6     |     |
| 1,1,2-Trichloroethane          | ND             | ug/L        | 1.0                | 1       |             | 12/18/15 14:13 | 3 79-00-5     |     |
| Trichloroethene                | ND             | ug/L        | 0.40               | 1       |             | 12/18/15 14:13 | 3 79-01-6     |     |
| Trichlorofluoromethane         | ND             | ug/L        | 1.0                | 1       |             | 12/18/15 14:13 | 3 75-69-4     |     |
| 1,2,3-Trichloropropane         | ND             | ug/L        | 4.0                | 1       |             | 12/18/15 14:13 | 3 96-18-4     |     |
| 1,1,2-Trichlorotrifluoroethane | ND             | ug/L        | 1.0                | 1       |             | 12/18/15 14:13 | 3 76-13-1     |     |
| 1,2,4-Trimethylbenzene         | ND             | ug/L        | 1.0                | 1       |             | 12/18/15 14:13 | 3 95-63-6     |     |
| 1,3,5-Trimethylbenzene         | ND             | ug/L        | 1.0                | 1       |             | 12/18/15 14:13 | 3 108-67-8    |     |
| Vinyl chloride                 | ND             | ug/L        | 0.40               | 1       |             | 12/18/15 14:13 | 3 75-01-4     |     |
| Xylene (Total)                 | ND             | ug/L        | 3.0                | 1       |             | 12/18/15 14:13 | 3 1330-20-7   |     |
| Surrogates                     |                | ŭ           |                    |         |             |                |               |     |
| 1,2-Dichloroethane-d4 (S)      | 105            | %.          | 75-125             | 1       |             | 12/18/15 14:13 | 3 17060-07-0  |     |
| Toluene-d8 (S)                 | 97             | %.          | 75-125             | 1       |             | 12/18/15 14:13 | 3 2037-26-5   |     |
| 4-Bromofluorobenzene (S)       | 106            | %.          | 75-125             | 1       |             | 12/18/15 14:13 | 3 460-00-4    |     |



### **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample: MW-16               | Lab ID: 103    | 33461011     | Collected: 12/14/1 | 5 16:35  | Received: | 12/15/15 16:38 | Matrix: Water |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|--------------|--------------------|----------|-----------|----------------|---------------|------|
| Acetone ND ug/L 500 25 12/18/15 16:01 67-64-1 Allyl chloride ND ug/L 100 25 12/18/15 16:01 107-05-1 Benzene ND ug/L 25.0 25 12/18/15 16:01 17-05-1 Benzene ND ug/L 25.0 25 12/18/15 16:01 17-05-1 Bermochoromethane ND ug/L 25.0 25 12/18/15 16:01 17-07-15 Bromochoromethane ND ug/L 25.0 25 12/18/15 16:01 7-07-15 Bromochoromethane ND ug/L 25.0 25 12/18/15 16:01 7-27-4 Bromochoromethane ND ug/L 25.0 25 12/18/15 16:01 7-27-4 Bromochoromethane ND ug/L 100 25 12/18/15 16:01 7-27-4 Bromochoromethane ND ug/L 100 25 12/18/15 16:01 7-27-4 Bromomethane ND ug/L 100 25 12/18/15 16:01 7-28-3 L1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Parameters                  | Results        | Units        | Report Limit       | DF       | Prepared  | Analyzed       | CAS No.       | Qual |
| Ally chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8260B VOC                   | Analytical Met | hod: EPA 82  | 260B               |          |           |                |               |      |
| Benzene   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Acetone                     | ND             | ug/L         | 500                | 25       |           | 12/18/15 16:01 | I 67-64-1     |      |
| Bromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Allyl chloride              | ND             | ug/L         | 100                | 25       |           | 12/18/15 16:01 | I 107-05-1    |      |
| Bromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Benzene                     | ND             | ug/L         | 25.0               | 25       |           | 12/18/15 16:01 | 71-43-2       |      |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bromobenzene                | ND             | ug/L         | 25.0               | 25       |           | 12/18/15 16:01 | I 108-86-1    |      |
| Bromomethane ND ug/L 100 25 12/18/15 16:01 75-25-2 Bromomethane ND ug/L 100 25 12/18/15 16:01 75-25-2 Bromomethane ND ug/L 100 25 12/18/15 16:01 74-83-9 L 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bromochloromethane          | ND             | ug/L         | 25.0               | 25       |           | 12/18/15 16:01 | 74-97-5       |      |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bromodichloromethane        | ND             | ug/L         | 25.0               | 25       |           | 12/18/15 16:01 | 75-27-4       |      |
| Bromomethane ND ug/L 125 25 12/18/15 16:01 74-83-9 24-18/15 16:01 82-8 ug/L 125 25 12/18/15 16:01 78-93-3 L1 n-Burybenzene ND ug/L 25.0 25 12/18/15 16:01 104-51-8 sec-Burybenzene ND ug/L 25.0 25 12/18/15 16:01 104-51-8 sec-Burybenzene ND ug/L 25.0 25 12/18/15 16:01 104-51-8 ug/L 25.0 25 12/18/15 16:01 104-51-8 ug/L 25.0 25 12/18/15 16:01 108-90-7 Carbon tetrachloride ND ug/L 25.0 25 12/18/15 16:01 88-02-5 Chlorobenzene ND ug/L 25.0 25 12/18/15 16:01 108-90-7 Chlorobenzene ND ug/L 25.0 25 12/18/15 16:01 108-90-7 Chlorobenzene ND ug/L 25.0 25 12/18/15 16:01 75-00-3 Chloroform ND ug/L 25.0 25 12/18/15 16:01 75-00-3 Chloroform ND ug/L 25.0 25 12/18/15 16:01 75-00-3 Chloroform ND ug/L 25.0 25 12/18/15 16:01 74-87-3 2-Chlorotoluene ND ug/L 25.0 25 12/18/15 16:01 74-87-3 2-Chlorotoluene ND ug/L 25.0 25 12/18/15 16:01 95-49-8 4-Chlorotoluene ND ug/L 25.0 25 12/18/15 16:01 106-43-4 4-Chlorotoluene ND ug/L 25.0 25 12/18/15 16:01 106-45-7 11-Dichlorotehane ND ug/L 25.0 25 12/18/15 16:01 106-65-7 11-Dichlorotehane ND ug/L 25.0 2 | Bromoform                   | ND             | ug/L         | 100                | 25       |           | 12/18/15 16:01 | 75-25-2       |      |
| n-Butylbenzene ND ug/L 25.0 25 12/18/15 16:01 104-51-8 sec-Butylbenzene ND ug/L 25.0 25 12/18/15 16:01 135-98-8 tert-Butylbenzene ND ug/L 25.0 25 12/18/15 16:01 98-06-6 Carbon tetrachloride ND ug/L 25.0 25 12/18/15 16:01 98-06-6 Carbon tetrachloride ND ug/L 25.0 25 12/18/15 16:01 98-06-6 Carbon tetrachloride ND ug/L 25.0 25 12/18/15 16:01 98-06-6 Carbon tetrachloride ND ug/L 25.0 25 12/18/15 16:01 75-00-3 Chlorocethane ND ug/L 25.0 25 12/18/15 16:01 75-00-3 Chlorocethane ND ug/L 25.0 25 12/18/15 16:01 75-00-3 Chlorocethane ND ug/L 25.0 25 12/18/15 16:01 75-60-3 Chlorocethane ND ug/L 25.0 25 12/18/15 16:01 75-60-3 Chlorocethane ND ug/L 25.0 25 12/18/15 16:01 75-60-3 Chlorocethane ND ug/L 25.0 25 12/18/15 16:01 95-49-8 Chlorocotholuene ND ug/L 25.0 25 12/18/15 16:01 95-49-8 Chlorocholuene ND ug/L 25.0 25 12/18/15 16:01 95-49-8 Chlorocholuene ND ug/L 25.0 25 12/18/15 16:01 96-43-4 Chlorocholuene ND ug/L 25.0 25 12/18/15 16:01 96-43-4 Chlorocholuene ND ug/L 25.0 25 12/18/15 16:01 96-43-4 Chlorocholuene (EDB) ND ug/L 25.0 25 12/18/15 16:01 16-43-4 Chlorocholuene (EDB) ND ug/L 25.0 25 12/18/15 16:01 16-43-4 Chlorocholuene (EDB) ND ug/L 25.0 25 12/18/15 16:01 16-43-4 Chlorocholuene (EDB) ND ug/L 25.0 25 12/18/15 16:01 16-43-4 Chlorocholuene ND ug/L 25.0 25 12/18/15 16:01 16-43 | Bromomethane                | ND             |              | 100                | 25       |           | 12/18/15 16:01 | 74-83-9       |      |
| sec-Bulylbenzene ND ug/L 25.0 25 12/18/15 16:01 35-98-8 tetr-Bulylbenzene ND ug/L 25.0 25 12/18/15 16:01 98-06-6 Carbon tetrachloride ND ug/L 25.0 25 12/18/15 16:01 98-06-6 Carbon tetrachloride ND ug/L 25.0 25 12/18/15 16:01 56-23-5 Chlorobenzene ND ug/L 25.0 25 12/18/15 16:01 75-00-3 Chlorothane ND ug/L 25.0 25 12/18/15 16:01 75-00-3 Chlorothane ND ug/L 25.0 25 12/18/15 16:01 75-00-3 Chlorothane ND ug/L 25.0 25 12/18/15 16:01 76-66-3 Chlorothane ND ug/L 25.0 25 12/18/15 16:01 74-87-3 Chlorothuene ND ug/L 25.0 25 12/18/15 16:01 74-87-3 Chlorothuene ND ug/L 25.0 25 12/18/15 16:01 74-87-3 Chlorothuene ND ug/L 25.0 25 12/18/15 16:01 106-43-4 1.2-Dibromo-3-chloropropane ND ug/L 100 25 12/18/15 16:01 106-43-4 1.2-Dibromo-3-chloropropane ND ug/L 25.0 25 12/18/15 16:01 106-43-4 1.2-Dibromo-thane (EDB) ND ug/L 25.0 25 12/18/15 16:01 106-43-4 1.2-Dibromo-thane (EDB) ND ug/L 25.0 25 12/18/15 16:01 106-93-4 Dibromomethane (EDB) ND ug/L 25.0 25 12/18/15 16:01 106-93-4 Dibromomethane (EDB) ND ug/L 25.0 25 12/18/15 16:01 95-50-1 1.3-Dichlorobenzene ND ug/L 25.0 25 12/18/15 16:01 95-50-1 1.3-Dichlorobenzene ND ug/L 25.0 25 12/18/15 16:01 55-50-1 1.3-Dichlorobenzene ND ug/L 25.0 25 12/18/15 16:01 75-34-3 1.3-Dichlorothane ND ug/L 25.0 25 12/18/15 16:01 75-35-4 13-1-Dichlorothane ND ug/L 25.0 25 12/18/15 16:01 78-87-5 13-Dichlorothane ND ug/L 25.0 25 1 | 2-Butanone (MEK)            | 828            | ug/L         | 125                | 25       |           | 12/18/15 16:01 | 78-93-3       | L1   |
| tert-Buylbenzene ND ug/L 25.0 25 12/18/15 16:01 98-06-6 Carbon tetrachloride ND ug/L 25.0 25 12/18/15 16:01 168-90-7 Chlorochane ND ug/L 25.0 25 12/18/15 16:01 108-90-7 Chlorochane ND ug/L 25.0 25 12/18/15 16:01 108-90-7 Chlorochane ND ug/L 25.0 25 12/18/15 16:01 175-00-3 Chlorochane ND ug/L 25.0 25 12/18/15 16:01 75-00-3 Chloromethane ND ug/L 25.0 25 12/18/15 16:01 76-66-3 Chloromethane ND ug/L 25.0 25 12/18/15 16:01 76-66-3 Chloromethane ND ug/L 25.0 25 12/18/15 16:01 76-66-3 Chloromethane ND ug/L 25.0 25 12/18/15 16:01 76-68-3 Chloromethane ND ug/L 25.0 25 12/18/15 16:01 76-49-8 Chlorocholuene ND ug/L 25.0 25 12/18/15 16:01 76-49-8 Chloromethane ND ug/L 25.0 25 12/18/15 16:01 76-49-8 Chloromethane ND ug/L 25.0 25 12/18/15 16:01 76-49-8 Chloromethane (EDB) ND ug/L 25.0 25 12/18/15 16:01 106-93-4 Chloromethane (EDB) ND ug/L 25.0 25 12/18/15 16:01 106-93-4 Chloromethane (EDB) ND ug/L 25.0 25 12/18/15 16:01 106-93-4 Chloromethane ND ug/L 25.0 25 12/18/15 16:01 107-06-2 Chloromethane ND ug/L 25.0 25 12/18/1 | n-Butylbenzene              | ND             | ug/L         | 25.0               | 25       |           | 12/18/15 16:01 | I 104-51-8    |      |
| tert-Buylbenzene ND ug/L 25.0 25 12/18/15 16:01 98-06-6 Carbon tetrachloride ND ug/L 25.0 25 12/18/15 16:01 168-90-7 Chlorochane ND ug/L 25.0 25 12/18/15 16:01 108-90-7 Chlorochane ND ug/L 25.0 25 12/18/15 16:01 108-90-7 Chlorochane ND ug/L 25.0 25 12/18/15 16:01 175-00-3 Chlorochane ND ug/L 25.0 25 12/18/15 16:01 75-00-3 Chloromethane ND ug/L 25.0 25 12/18/15 16:01 76-66-3 Chloromethane ND ug/L 25.0 25 12/18/15 16:01 76-66-3 Chloromethane ND ug/L 25.0 25 12/18/15 16:01 76-66-3 Chloromethane ND ug/L 25.0 25 12/18/15 16:01 76-68-3 Chloromethane ND ug/L 25.0 25 12/18/15 16:01 76-49-8 Chlorocholuene ND ug/L 25.0 25 12/18/15 16:01 76-49-8 Chloromethane ND ug/L 25.0 25 12/18/15 16:01 76-49-8 Chloromethane ND ug/L 25.0 25 12/18/15 16:01 76-49-8 Chloromethane (EDB) ND ug/L 25.0 25 12/18/15 16:01 106-93-4 Chloromethane (EDB) ND ug/L 25.0 25 12/18/15 16:01 106-93-4 Chloromethane (EDB) ND ug/L 25.0 25 12/18/15 16:01 106-93-4 Chloromethane ND ug/L 25.0 25 12/18/15 16:01 107-06-2 Chloromethane ND ug/L 25.0 25 12/18/1 | sec-Butylbenzene            | ND             | ug/L         | 25.0               | 25       |           | 12/18/15 16:01 | I 135-98-8    |      |
| Carbon tetrachloride         ND         ug/L         25.0         25         12/18/15 16:01         56-23-5           Chlorobenzene         ND         ug/L         25.0         25         12/18/15 16:01         108-90-7           Chlorobethane         ND         ug/L         25.0         25         12/18/15 16:01         75-00-3           Chloroform         ND         ug/L         25.0         25         12/18/15 16:01         76-66-3           Chlorofoluene         ND         ug/L         25.0         25         12/18/15 16:01         76-48-8           4-Chlorotoluene         ND         ug/L         25.0         25         12/18/15 16:01         76-48-8           4-Chlorotoluene         ND         ug/L         25.0         25         12/18/15 16:01         76-48-8           4-Chlorotoluene         ND         ug/L         25.0         25         12/18/15 16:01         76-12-8           4-Chlorotoluene         ND         ug/L         25.0         25         12/18/15 16:01         76-12-8           1-2-Dichlorothane         ND         ug/L         25.0         25         12/18/15 16:01         76-12-8           1-2-Dichlorotebrane         ND         ug/L         25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tert-Butylbenzene           | ND             | ug/L         | 25.0               | 25       |           | 12/18/15 16:01 | 98-06-6       |      |
| Chlorotenhane ND ug/L 25.0 25 12/18/15 16:01 75-00-3   Chloroform ND ug/L 25.0 25 12/18/15 16:01 75-00-3   Chloroform ND ug/L 25.0 25 12/18/15 16:01 76-66-3   Chloroformethane ND ug/L 10.0 25 12/18/15 16:01 78-87-3   2-Chlorotoluene ND ug/L 25.0 25 12/18/15 16:01 95-49-8   4-Chlorotoluene ND ug/L 25.0 25 12/18/15 16:01 95-49-8   4-Chlorotoluene ND ug/L 25.0 25 12/18/15 16:01 95-49-8   4-Chlorotoluene ND ug/L 25.0 25 12/18/15 16:01 95-12-8   Dibromochloromethane ND ug/L 25.0 25 12/18/15 16:01 96-12-8   Dibromochloromethane ND ug/L 25.0 25 12/18/15 16:01 106-93-4   Dibromochloromethane ND ug/L 25.0 25 12/18/15 16:01 106-46-7   Dichlorodifluoromethane ND ug/L 25.0 25 12/18/15 16:01 106-46-7   Dichlorodifluoromethane ND ug/L 25.0 25 12/18/15 16:01 107-06-2   Dichlorothene ND ug/L 25.0 25 12/18/15 16:01 107-06-2   Dichlorothene ND ug/L 25.0 25 12/18/15 16:01 107-06-2   Dichlorothene ND ug/L 25.0 25 12/18/15 16:01 107-06-2   Dichlorothorothene ND ug/L 25.0 25 12/18/15 16:01 156-60-5   Dichlorothoropropane ND ug/L 25.0 25 12/18/15 16:01 156-60-5   Dichlorothoropropane ND ug/L 25.0 25 12/18/15 16:01 156-60-5   Dichloropropane ND ug/L 25.0 25 12/18/15 16:01 100-11-5   Dichloropropane  | Carbon tetrachloride        | ND             |              | 25.0               | 25       |           | 12/18/15 16:01 | 56-23-5       |      |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Chlorobenzene               | ND             | ug/L         | 25.0               | 25       |           | 12/18/15 16:01 | 1 108-90-7    |      |
| Chloroform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Chloroethane                | ND             | ug/L         | 25.0               | 25       |           | 12/18/15 16:01 | 75-00-3       |      |
| Chloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Chloroform                  | ND             | ug/L         | 25.0               | 25       |           | 12/18/15 16:01 | l 67-66-3     |      |
| 2-Chlorotoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chloromethane               | ND             |              | 100                | 25       |           | 12/18/15 16:01 | I 74-87-3     |      |
| 4-Chlorotoluene ND ug/L 25.0 25 12/18/15 16:01 106-43-4 1,2-Dibromo-3-chloropropane ND ug/L 25.0 25 12/18/15 16:01 196-12-8 ND ug/L 25.0 25 12/18/15 16:01 196-12-8 ND ug/L 25.0 25 12/18/15 16:01 106-93-4 1,2-Dibromochloromethane (EDB) ND ug/L 25.0 25 12/18/15 16:01 106-93-4 1,2-Dibromochloromethane (EDB) ND ug/L 25.0 25 12/18/15 16:01 106-93-4 1,2-Dibromochlane (EDB) ND ug/L 25.0 25 12/18/15 16:01 74-95-3 1,2-Dibromochlane (EDB) ND ug/L 25.0 25 12/18/15 16:01 95-50-1 1,3-Dichlorobenzene ND ug/L 25.0 25 12/18/15 16:01 95-50-1 1,3-Dichlorobenzene ND ug/L 25.0 25 12/18/15 16:01 106-46-7 1,1-Dichlorothlane ND ug/L 25.0 25 12/18/15 16:01 107-06-2 1,1-Dichlorothlane ND ug/L 25.0 25 12/18/15 16:01 156-69-2 12 12 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-Chlorotoluene             | ND             |              | 25.0               | 25       |           | 12/18/15 16:01 | l 95-49-8     |      |
| 1,2-Dibromo-3-chloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4-Chlorotoluene             | ND             | •            | 25.0               | 25       |           | 12/18/15 16:01 | I 106-43-4    |      |
| Dibromochloromethane   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1,2-Dibromo-3-chloropropane | ND             | •            | 100                |          |           | 12/18/15 16:01 | I 96-12-8     |      |
| 1,2-Dibromoethane (EDB)   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dibromochloromethane        | ND             | •            | 25.0               |          |           | 12/18/15 16:01 | I 124-48-1    |      |
| Dibromomethane   ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,2-Dibromoethane (EDB)     |                | -            | 25.0               | 25       |           | 12/18/15 16:01 | I 106-93-4    |      |
| 1,2-Dichlorobenzene       ND       ug/L       25.0       25       12/18/15 16:01       95-50-1         1,3-Dichlorobenzene       ND       ug/L       25.0       25       12/18/15 16:01       541-73-1         1,4-Dichlorobenzene       ND       ug/L       25.0       25       12/18/15 16:01       106-46-7         Dichlorodifluoromethane       ND       ug/L       25.0       25       12/18/15 16:01       75-71-8         1,1-Dichloroethane       ND       ug/L       25.0       25       12/18/15 16:01       75-34-3         1,2-Dichloroethane       ND       ug/L       25.0       25       12/18/15 16:01       107-06-2         1,1-Dichloroethane       ND       ug/L       25.0       25       12/18/15 16:01       107-06-2         1,1-Dichloroethane       ND       ug/L       25.0       25       12/18/15 16:01       107-06-2         1,1-Dichloroethane       ND       ug/L       25.0       25       12/18/15 16:01       156-59-2         trans-1,2-Dichloroethene       ND       ug/L       25.0       25       12/18/15 16:01       156-69-9         trans-1,2-Dichloroethene       ND       ug/L       25.0       25       12/18/15 16:01       156-60-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . ,                         | ND             |              | 100                | 25       |           | 12/18/15 16:01 | I 74-95-3     |      |
| 1,3-Dichlorobenzene       ND       ug/L       25.0       25       12/18/15 16:01       541-73-1         1,4-Dichlorobenzene       ND       ug/L       25.0       25       12/18/15 16:01       106-46-7         Dichlorodifluoromethane       ND       ug/L       25.0       25       12/18/15 16:01       75-71-8         1,1-Dichloroethane       ND       ug/L       25.0       25       12/18/15 16:01       75-34-3         1,2-Dichloroethane       ND       ug/L       25.0       25       12/18/15 16:01       75-34-3         1,1-Dichloroethene       ND       ug/L       25.0       25       12/18/15 16:01       75-35-4         cis-1,2-Dichloroethene       ND       ug/L       25.0       25       12/18/15 16:01       156-59-2         trans-1,2-Dichloroethene       ND       ug/L       25.0       25       12/18/15 16:01       156-69-5         Dichlorofluoromethane       ND       ug/L       25.0       25       12/18/15 16:01       156-69-5         Dichlorofluoromethane       ND       ug/L       25.0       25       12/18/15 16:01       75-43-4         1,2-Dichloropropane       ND       ug/L       25.0       25       12/18/15 16:01       75-88-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,2-Dichlorobenzene         | ND             | •            | 25.0               | 25       |           | 12/18/15 16:01 | I 95-50-1     |      |
| 1,4-Dichlorobenzene       ND       ug/L       25.0       25       12/18/15 16:01       106-46-7         Dichlorodifluoromethane       ND       ug/L       25.0       25       12/18/15 16:01       75-71-8         1,1-Dichloroethane       ND       ug/L       25.0       25       12/18/15 16:01       75-34-3         1,2-Dichloroethane       ND       ug/L       25.0       25       12/18/15 16:01       107-06-2         1,1-Dichloroethene       ND       ug/L       25.0       25       12/18/15 16:01       107-06-2         1,1-Dichloroethene       ND       ug/L       25.0       25       12/18/15 16:01       156-59-2         trans-1,2-Dichloroethene       ND       ug/L       25.0       25       12/18/15 16:01       156-69-2         trans-1,2-Dichloroptoethane       ND       ug/L       25.0       25       12/18/15 16:01       156-69-2         trans-1,2-Dichloropropane       ND       ug/L       25.0       25       12/18/15 16:01       156-60-5         Dichloropropane       ND       ug/L       25.0       25       12/18/15 16:01       78-87-5         1,3-Dichloropropane       ND       ug/L       25.0       25       12/18/15 16:01       59-2-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                | •            |                    |          |           | 12/18/15 16:01 | I 541-73-1    |      |
| Dichlorodifluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ·                           | ND             | •            | 25.0               |          |           |                |               |      |
| 1,1-Dichloroethane       ND       ug/L       25.0       25       12/18/15 16:01       75-34-3         1,2-Dichloroethane       ND       ug/L       25.0       25       12/18/15 16:01       107-06-2         1,1-Dichloroethene       ND       ug/L       25.0       25       12/18/15 16:01       75-35-4         cis-1,2-Dichloroethene       ND       ug/L       25.0       25       12/18/15 16:01       156-69-2         trans-1,2-Dichloroethene       ND       ug/L       25.0       25       12/18/15 16:01       156-60-5         Dichlorofluoromethane       ND       ug/L       25.0       25       12/18/15 16:01       156-60-5         Dichlorofluoromethane       ND       ug/L       25.0       25       12/18/15 16:01       75-43-4         1,2-Dichloropropane       ND       ug/L       100       25       12/18/15 16:01       75-43-4         1,3-Dichloropropane       ND       ug/L       100       25       12/18/15 16:01       75-43-4         1,1-Dichloropropane       ND       ug/L       25.0       25       12/18/15 16:01       75-43-4         1,1-Dichloropropane       ND       ug/L       25.0       25       12/18/15 16:01       75-43-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                           |                |              |                    |          |           |                |               |      |
| 1,2-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,1-Dichloroethane          | ND             |              | 25.0               | 25       |           | 12/18/15 16:01 | 75-34-3       |      |
| 1,1-Dichloroethene       ND       ug/L       25.0       25       12/18/15 16:01       75-35-4         cis-1,2-Dichloroethene       ND       ug/L       25.0       25       12/18/15 16:01       156-59-2         trans-1,2-Dichloroethene       ND       ug/L       25.0       25       12/18/15 16:01       156-60-5         Dichlorofluoromethane       ND       ug/L       25.0       25       12/18/15 16:01       75-43-4         1,2-Dichloropropane       ND       ug/L       100       25       12/18/15 16:01       78-87-5         1,3-Dichloropropane       ND       ug/L       25.0       25       12/18/15 16:01       142-28-9         2,2-Dichloropropane       ND       ug/L       100       25       12/18/15 16:01       142-28-9         2,2-Dichloropropane       ND       ug/L       100       25       12/18/15 16:01       594-20-7         1,1-Dichloropropene       ND       ug/L       25.0       25       12/18/15 16:01       563-58-6         cis-1,3-Dichloropropene       ND       ug/L       100       25       12/18/15 16:01       10061-01-5         trans-1,3-Dichloropropene       ND       ug/L       100       25       12/18/15 16:01       10061-02-6     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.2-Dichloroethane          |                | •            | 25.0               | 25       |           | 12/18/15 16:01 | 107-06-2      |      |
| cis-1,2-Dichloroethene ND ug/L 25.0 25 12/18/15 16:01 156-59-2 trans-1,2-Dichloroethene ND ug/L 25.0 25 12/18/15 16:01 156-60-5 Dichlorofluoromethane ND ug/L 25.0 25 12/18/15 16:01 75-43-4 1,2-Dichloropropane ND ug/L 25.0 25 12/18/15 16:01 78-87-5 1,3-Dichloropropane ND ug/L 25.0 25 12/18/15 16:01 142-28-9 2,2-Dichloropropane ND ug/L 100 25 12/18/15 16:01 594-20-7 1,1-Dichloropropane ND ug/L 25.0 25 12/18/15 16:01 594-20-7 1,1-Dichloropropene ND ug/L 25.0 25 12/18/15 16:01 563-58-6 cis-1,3-Dichloropropene ND ug/L 100 25 12/18/15 16:01 10061-01-5 trans-1,3-Dichloropropene ND ug/L 100 25 12/18/15 16:01 10061-02-6 Diethyl ether (Ethyl ether) ND ug/L 100 25 12/18/15 16:01 10061-02-6 Diethyl ether (Ethyl ether) ND ug/L 25.0 25 12/18/15 16:01 100-41-4 Hexachloro-1,3-butadiene ND ug/L 25.0 25 12/18/15 16:01 87-68-3 Isopropylbenzene (Cumene) ND ug/L 25.0 25 12/18/15 16:01 98-82-8 p-Isopropyltoluene ND ug/L 25.0 25 12/18/15 16:01 99-87-6 Methyl-2-pentanone (MIBK) ND ug/L 100 25 12/18/15 16:01 108-10-1 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                | •            |                    |          |           |                |               |      |
| trans-1,2-Dichloroethene ND ug/L 25.0 25 12/18/15 16:01 156-60-5 Dichlorofluoromethane ND ug/L 25.0 25 12/18/15 16:01 75-43-4 1,2-Dichloropropane ND ug/L 100 25 12/18/15 16:01 78-87-5 1,3-Dichloropropane ND ug/L 25.0 25 12/18/15 16:01 142-28-9 2,2-Dichloropropane ND ug/L 25.0 25 12/18/15 16:01 594-20-7 1,1-Dichloropropane ND ug/L 25.0 25 12/18/15 16:01 594-20-7 1,1-Dichloropropane ND ug/L 25.0 25 12/18/15 16:01 563-58-6 cis-1,3-Dichloropropene ND ug/L 100 25 12/18/15 16:01 10061-01-5 trans-1,3-Dichloropropene ND ug/L 100 25 12/18/15 16:01 10061-02-6 Diethyl ether (Ethyl ether) ND ug/L 100 25 12/18/15 16:01 10061-02-6 Diethyl ether (Ethyl ether) ND ug/L 25.0 25 12/18/15 16:01 100-41-4 Hexachloro-1,3-butadiene ND ug/L 25.0 25 12/18/15 16:01 87-68-3 Isopropylbenzene (Cumene) ND ug/L 25.0 25 12/18/15 16:01 98-82-8 p-Isopropyltoluene ND ug/L 25.0 25 12/18/15 16:01 99-87-6 Methylene Chloride ND ug/L 100 25 12/18/15 16:01 75-09-2 4-Methyl-2-pentanone (MIBK) ND ug/L 125 25 12/18/15 16:01 108-10-1 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                | •            |                    |          |           |                |               |      |
| Dichlorofluoromethane         ND         ug/L         25.0         25         12/18/15 16:01         75-43-4           1,2-Dichloropropane         ND         ug/L         100         25         12/18/15 16:01         78-87-5           1,3-Dichloropropane         ND         ug/L         25.0         25         12/18/15 16:01         142-28-9           2,2-Dichloropropane         ND         ug/L         100         25         12/18/15 16:01         594-20-7           1,1-Dichloropropene         ND         ug/L         25.0         25         12/18/15 16:01         594-20-7           1,1-Dichloropropene         ND         ug/L         100         25         12/18/15 16:01         594-20-7           1,1-Dichloropropene         ND         ug/L         100         25         12/18/15 16:01         506-58-6           cis-1,3-Dichloropropene         ND         ug/L         100         25         12/18/15 16:01         10061-01-5           trans-1,3-Dichloropropene         ND         ug/L         100         25         12/18/15 16:01         10061-02-6           Diethyl ether (Ethyl ether)         ND         ug/L         25.0         25         12/18/15 16:01         100-41-4           Hexachloro-1,3-butadiene <td>•</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                           |                | -            |                    |          |           |                |               |      |
| 1,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                |              |                    |          |           |                |               |      |
| 1,3-Dichloropropane       ND       ug/L       25.0       25       12/18/15 16:01       142-28-9         2,2-Dichloropropane       ND       ug/L       100       25       12/18/15 16:01       594-20-7         1,1-Dichloropropene       ND       ug/L       25.0       25       12/18/15 16:01       563-58-6         cis-1,3-Dichloropropene       ND       ug/L       100       25       12/18/15 16:01       10061-01-5         trans-1,3-Dichloropropene       ND       ug/L       100       25       12/18/15 16:01       10061-02-6         Diethyl ether (Ethyl ether)       ND       ug/L       100       25       12/18/15 16:01       10061-02-6         Ethylbenzene       ND       ug/L       25.0       25       12/18/15 16:01       100-41-4         Hexachloro-1,3-butadiene       ND       ug/L       25.0       25       12/18/15 16:01       87-68-3         Isopropylbenzene (Cumene)       ND       ug/L       25.0       25       12/18/15 16:01       98-82-8         p-Isopropyltoluene       ND       ug/L       25.0       25       12/18/15 16:01       75-09-2         4-Methyl-2-pentanone (MIBK)       ND       ug/L       125       25       12/18/15 16:01       108-10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             |                | •            |                    |          |           |                |               |      |
| 2,2-Dichloropropane ND ug/L 100 25 12/18/15 16:01 594-20-7 1,1-Dichloropropene ND ug/L 25.0 25 12/18/15 16:01 563-58-6 cis-1,3-Dichloropropene ND ug/L 100 25 12/18/15 16:01 10061-01-5 trans-1,3-Dichloropropene ND ug/L 100 25 12/18/15 16:01 10061-02-6 Diethyl ether (Ethyl ether) ND ug/L 100 25 12/18/15 16:01 10061-02-6 Diethyl ether (Ethyl ether) ND ug/L 25.0 25 12/18/15 16:01 100-41-4 Hexachloro-1,3-butadiene ND ug/L 25.0 25 12/18/15 16:01 87-68-3 Isopropylbenzene (Cumene) ND ug/L 25.0 25 12/18/15 16:01 98-82-8 p-Isopropyltoluene ND ug/L 25.0 25 12/18/15 16:01 99-87-6 Methylene Chloride ND ug/L 100 25 12/18/15 16:01 75-09-2 4-Methyl-2-pentanone (MIBK) ND ug/L 125 25 12/18/15 16:01 108-10-1 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · ·                         |                | •            |                    |          |           |                |               |      |
| 1,1-Dichloropropene       ND       ug/L       25.0       25       12/18/15 16:01       563-58-6         cis-1,3-Dichloropropene       ND       ug/L       100       25       12/18/15 16:01       10061-01-5         trans-1,3-Dichloropropene       ND       ug/L       100       25       12/18/15 16:01       10061-02-6         Diethyl ether (Ethyl ether)       ND       ug/L       100       25       12/18/15 16:01       60-29-7         Ethylbenzene       ND       ug/L       25.0       25       12/18/15 16:01       100-41-4         Hexachloro-1,3-butadiene       ND       ug/L       25.0       25       12/18/15 16:01       87-68-3         Isopropylbenzene (Cumene)       ND       ug/L       25.0       25       12/18/15 16:01       98-82-8         p-Isopropyltoluene       ND       ug/L       25.0       25       12/18/15 16:01       99-87-6         Methylene Chloride       ND       ug/L       100       25       12/18/15 16:01       75-09-2         4-Methyl-2-pentanone (MIBK)       ND       ug/L       125       25       12/18/15 16:01       108-10-1       L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • •                         |                | -            |                    |          |           |                |               |      |
| cis-1,3-Dichloropropene       ND       ug/L       100       25       12/18/15 16:01       10061-01-5         trans-1,3-Dichloropropene       ND       ug/L       100       25       12/18/15 16:01       10061-02-6         Diethyl ether (Ethyl ether)       ND       ug/L       100       25       12/18/15 16:01       60-29-7         Ethylbenzene       ND       ug/L       25.0       25       12/18/15 16:01       100-41-4         Hexachloro-1,3-butadiene       ND       ug/L       25.0       25       12/18/15 16:01       87-68-3         Isopropylbenzene (Cumene)       ND       ug/L       25.0       25       12/18/15 16:01       98-82-8         p-Isopropyltoluene       ND       ug/L       25.0       25       12/18/15 16:01       99-87-6         Methylene Chloride       ND       ug/L       100       25       12/18/15 16:01       75-09-2         4-Methyl-2-pentanone (MIBK)       ND       ug/L       125       25       12/18/15 16:01       108-10-1       L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                |              |                    |          |           |                |               |      |
| trans-1,3-Dichloropropene ND ug/L 100 25 12/18/15 16:01 10061-02-6 Diethyl ether (Ethyl ether) ND ug/L 100 25 12/18/15 16:01 60-29-7 Ethylbenzene ND ug/L 25.0 25 12/18/15 16:01 100-41-4 Hexachloro-1,3-butadiene ND ug/L 25.0 25 12/18/15 16:01 87-68-3 Isopropylbenzene (Cumene) ND ug/L 25.0 25 12/18/15 16:01 98-82-8 p-Isopropyltoluene ND ug/L 25.0 25 12/18/15 16:01 99-87-6 Methylene Chloride ND ug/L 100 25 12/18/15 16:01 75-09-2 4-Methyl-2-pentanone (MIBK) ND ug/L 125 25 12/18/15 16:01 108-10-1 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                | -            |                    |          |           |                |               |      |
| Diethyl ether (Ethyl ether)         ND         ug/L         100         25         12/18/15 16:01         60-29-7           Ethylbenzene         ND         ug/L         25.0         25         12/18/15 16:01         100-41-4           Hexachloro-1,3-butadiene         ND         ug/L         25.0         25         12/18/15 16:01         87-68-3           Isopropylbenzene (Cumene)         ND         ug/L         25.0         25         12/18/15 16:01         98-82-8           p-Isopropyltoluene         ND         ug/L         25.0         25         12/18/15 16:01         99-87-6           Methylene Chloride         ND         ug/L         100         25         12/18/15 16:01         75-09-2           4-Methyl-2-pentanone (MIBK)         ND         ug/L         125         25         12/18/15 16:01         108-10-1         L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                |              |                    |          |           |                |               |      |
| Ethylbenzene         ND         ug/L         25.0         25         12/18/15 16:01         100-41-4           Hexachloro-1,3-butadiene         ND         ug/L         25.0         25         12/18/15 16:01         87-68-3           Isopropylbenzene (Cumene)         ND         ug/L         25.0         25         12/18/15 16:01         98-82-8           p-Isopropyltoluene         ND         ug/L         25.0         25         12/18/15 16:01         99-87-6           Methylene Chloride         ND         ug/L         100         25         12/18/15 16:01         75-09-2           4-Methyl-2-pentanone (MIBK)         ND         ug/L         125         25         12/18/15 16:01         108-10-1         L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                | •            |                    |          |           |                |               |      |
| Hexachloro-1,3-butadiene         ND         ug/L         25.0         25         12/18/15 16:01         87-68-3           Isopropylbenzene (Cumene)         ND         ug/L         25.0         25         12/18/15 16:01         98-82-8           p-Isopropyltoluene         ND         ug/L         25.0         25         12/18/15 16:01         99-87-6           Methylene Chloride         ND         ug/L         100         25         12/18/15 16:01         75-09-2           4-Methyl-2-pentanone (MIBK)         ND         ug/L         125         25         12/18/15 16:01         108-10-1         L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , , ,                       |                | •            |                    |          |           |                |               |      |
| Sopropylbenzene (Cumene)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                           |                | -            |                    |          |           |                |               |      |
| p-Isopropyltoluene ND ug/L 25.0 25 12/18/15 16:01 99-87-6  Methylene Chloride ND ug/L 100 25 12/18/15 16:01 75-09-2  4-Methyl-2-pentanone (MIBK) ND ug/L 125 25 12/18/15 16:01 108-10-1 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                           |                |              |                    |          |           |                |               |      |
| Methylene Chloride         ND         ug/L         100         25         12/18/15 16:01         75-09-2           4-Methyl-2-pentanone (MIBK)         ND         ug/L         125         25         12/18/15 16:01         108-10-1         L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                |              |                    |          |           |                |               |      |
| 4-Methyl-2-pentanone (MIBK) ND ug/L 125 25 12/18/15 16:01 108-10-1 L3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                | •            |                    |          |           |                |               |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                | •            |                    |          |           |                |               | 13   |
| Methyl-tert-butyl ether ND ug/L 25.0 25 12/18/15 16:01 1634-04-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Methyl-tert-butyl ether     | ND<br>ND       | ug/L<br>ug/L | 25.0               | 25<br>25 |           |                |               | LJ   |

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..





Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: MW-16                  | Lab ID: 103     | 33461011    | Collected: 12/14/1 | 15 16:35 | Received: 1 | 2/15/15 16:38 M | /latrix: Water |      |
|--------------------------------|-----------------|-------------|--------------------|----------|-------------|-----------------|----------------|------|
| Parameters                     | Results         | Units       | Report Limit       | DF       | Prepared    | Analyzed        | CAS No.        | Qual |
| 8260B VOC                      | Analytical Meth | nod: EPA 82 | 260B               |          |             |                 |                |      |
| Naphthalene                    | ND              | ug/L        | 100                | 25       |             | 12/18/15 16:01  | 91-20-3        |      |
| n-Propylbenzene                | ND              | ug/L        | 25.0               | 25       |             | 12/18/15 16:01  | 103-65-1       |      |
| Styrene                        | ND              | ug/L        | 25.0               | 25       |             | 12/18/15 16:01  | 100-42-5       |      |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 25.0               | 25       |             | 12/18/15 16:01  | 630-20-6       |      |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 25.0               | 25       |             | 12/18/15 16:01  | 79-34-5        | L3   |
| Tetrachloroethene              | 1490            | ug/L        | 25.0               | 25       |             | 12/18/15 16:01  | 127-18-4       |      |
| Tetrahydrofuran                | ND              | ug/L        | 250                | 25       |             | 12/18/15 16:01  | 109-99-9       |      |
| Toluene                        | ND              | ug/L        | 25.0               | 25       |             | 12/18/15 16:01  | 108-88-3       |      |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 25.0               | 25       |             | 12/18/15 16:01  | 87-61-6        |      |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 25.0               | 25       |             | 12/18/15 16:01  | 120-82-1       |      |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 25.0               | 25       |             | 12/18/15 16:01  | 71-55-6        |      |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 25.0               | 25       |             | 12/18/15 16:01  | 79-00-5        |      |
| Trichloroethene                | ND              | ug/L        | 10.0               | 25       |             | 12/18/15 16:01  | 79-01-6        |      |
| Trichlorofluoromethane         | ND              | ug/L        | 25.0               | 25       |             | 12/18/15 16:01  | 75-69-4        |      |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 100                | 25       |             | 12/18/15 16:01  | 96-18-4        |      |
| 1,1,2-Trichlorotrifluoroethane | 150             | ug/L        | 25.0               | 25       |             | 12/18/15 16:01  | 76-13-1        |      |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 25.0               | 25       |             | 12/18/15 16:01  | 95-63-6        |      |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 25.0               | 25       |             | 12/18/15 16:01  | 108-67-8       |      |
| Vinyl chloride                 | ND              | ug/L        | 10.0               | 25       |             | 12/18/15 16:01  | 75-01-4        |      |
| Xylene (Total)                 | ND              | ug/L        | 75.0               | 25       |             | 12/18/15 16:01  | 1330-20-7      |      |
| Surrogates                     |                 | -           |                    |          |             |                 |                |      |
| 1,2-Dichloroethane-d4 (S)      | 99              | %.          | 75-125             | 25       |             | 12/18/15 16:01  | 17060-07-0     |      |
| Toluene-d8 (S)                 | 97              | %.          | 75-125             | 25       |             | 12/18/15 16:01  | 2037-26-5      |      |
| 4-Bromofluorobenzene (S)       | 101             | %.          | 75-125             | 25       |             | 12/18/15 16:01  | 460-00-4       |      |



### **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: MW-17                                    | Lab ID: 103    | 33461012    | Collected: 12/14/1 | 5 11:30 | Received: | 12/15/15 16:38 | Matrix: Water |      |
|--------------------------------------------------|----------------|-------------|--------------------|---------|-----------|----------------|---------------|------|
| Parameters                                       | Results        | Units       | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qual |
| 8260B VOC                                        | Analytical Met | nod: EPA 82 | 260B               |         |           |                |               |      |
| Acetone                                          | ND             | ug/L        | 100                | 5       |           | 12/18/15 15:15 | 67-64-1       |      |
| Allyl chloride                                   | ND             | ug/L        | 20.0               | 5       |           | 12/18/15 15:15 | 5 107-05-1    |      |
| Benzene                                          | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 | 71-43-2       |      |
| Bromobenzene                                     | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 | 5 108-86-1    |      |
| Bromochloromethane                               | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 | 5 74-97-5     |      |
| Bromodichloromethane                             | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 | 5 75-27-4     |      |
| Bromoform                                        | ND             | ug/L        | 20.0               | 5       |           | 12/18/15 15:15 | 5 75-25-2     |      |
| Bromomethane                                     | ND             | ug/L        | 20.0               | 5       |           | 12/18/15 15:15 | 74-83-9       |      |
| 2-Butanone (MEK)                                 | ND             | ug/L        | 25.0               | 5       |           | 12/18/15 15:15 | 78-93-3       | L3   |
| n-Butylbenzene                                   | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 | 5 104-51-8    |      |
| sec-Butylbenzene                                 | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 |               |      |
| tert-Butylbenzene                                | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 |               |      |
| Carbon tetrachloride                             | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 |               |      |
| Chlorobenzene                                    | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 |               |      |
| Chloroethane                                     | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 |               |      |
| Chloroform                                       | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 |               |      |
| Chloromethane                                    | ND             | ug/L        | 20.0               | 5       |           | 12/18/15 15:15 |               |      |
| 2-Chlorotoluene                                  | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 |               |      |
| 4-Chlorotoluene                                  | ND<br>ND       | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 |               |      |
|                                                  | ND<br>ND       | •           | 20.0               | 5       |           | 12/18/15 15:15 |               |      |
| 1,2-Dibromo-3-chloropropane Dibromochloromethane | ND<br>ND       | ug/L        | 5.0                | 5<br>5  |           | 12/18/15 15:15 |               |      |
|                                                  | ND<br>ND       | ug/L        | 5.0                | 5<br>5  |           | 12/18/15 15:15 | _             |      |
| 1,2-Dibromoethane (EDB) Dibromomethane           | ND<br>ND       | ug/L        | 20.0               | 5<br>5  |           | 12/18/15 15:15 |               |      |
|                                                  |                | ug/L        |                    |         |           |                |               |      |
| 1,2-Dichlorobenzene                              | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 |               |      |
| 1,3-Dichlorobenzene                              | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 |               |      |
| 1,4-Dichlorobenzene                              | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 |               |      |
| Dichlorodifluoromethane                          | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 |               |      |
| 1,1-Dichloroethane                               | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 |               |      |
| 1,2-Dichloroethane                               | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 |               |      |
| 1,1-Dichloroethene                               | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 |               |      |
| cis-1,2-Dichloroethene                           | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 |               |      |
| trans-1,2-Dichloroethene                         | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 |               |      |
| Dichlorofluoromethane                            | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 |               |      |
| 1,2-Dichloropropane                              | ND             | ug/L        | 20.0               | 5       |           | 12/18/15 15:15 |               |      |
| 1,3-Dichloropropane                              | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 |               |      |
| 2,2-Dichloropropane                              | ND             | ug/L        | 20.0               | 5       |           | 12/18/15 15:15 |               |      |
| 1,1-Dichloropropene                              | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 |               |      |
| cis-1,3-Dichloropropene                          | ND             | ug/L        | 20.0               | 5       |           | 12/18/15 15:15 |               |      |
| trans-1,3-Dichloropropene                        | ND             | ug/L        | 20.0               | 5       |           | 12/18/15 15:15 | 5 10061-02-6  |      |
| Diethyl ether (Ethyl ether)                      | ND             | ug/L        | 20.0               | 5       |           | 12/18/15 15:15 | 60-29-7       |      |
| Ethylbenzene                                     | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 | 5 100-41-4    |      |
| Hexachloro-1,3-butadiene                         | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 | 5 87-68-3     |      |
| Isopropylbenzene (Cumene)                        | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 | 5 98-82-8     |      |
| p-Isopropyltoluene                               | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 | 5 99-87-6     |      |
| Methylene Chloride                               | ND             | ug/L        | 20.0               | 5       |           | 12/18/15 15:15 | 5 75-09-2     |      |
| 4-Methyl-2-pentanone (MIBK)                      | ND             | ug/L        | 25.0               | 5       |           | 12/18/15 15:15 | 5 108-10-1    | L3   |
| Methyl-tert-butyl ether                          | ND             | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 |               |      |

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..





Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: MW-17                  | Lab ID: 103     | 33461012    | Collected: 12/14/1 | 5 11:30 | Received: | 12/15/15 16:38 | Matrix: Water |     |
|--------------------------------|-----------------|-------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                     | Results         | Units       | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260B VOC                      | Analytical Meth | nod: EPA 82 | 260B               |         |           |                |               |     |
| Naphthalene                    | ND              | ug/L        | 20.0               | 5       |           | 12/18/15 15:15 | 5 91-20-3     |     |
| n-Propylbenzene                | ND              | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 | 5 103-65-1    |     |
| Styrene                        | ND              | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 | 5 100-42-5    |     |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 | 630-20-6      |     |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 | 79-34-5       | L3  |
| Tetrachloroethene              | 1010            | ug/L        | 10.0               | 10      |           | 12/22/15 13:36 | 5 127-18-4    |     |
| Tetrahydrofuran                | ND              | ug/L        | 50.0               | 5       |           | 12/18/15 15:15 | 5 109-99-9    |     |
| Toluene                        | ND              | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 | 5 108-88-3    |     |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 | 87-61-6       |     |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 | 5 120-82-1    |     |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 | 71-55-6       |     |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 | 5 79-00-5     |     |
| Trichloroethene                | ND              | ug/L        | 2.0                | 5       |           | 12/18/15 15:15 | 79-01-6       |     |
| Trichlorofluoromethane         | ND              | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 | 75-69-4       |     |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 20.0               | 5       |           | 12/18/15 15:15 | 5 96-18-4     |     |
| 1,1,2-Trichlorotrifluoroethane | 37.6            | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 | 5 76-13-1     |     |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 | 5 95-63-6     |     |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 5.0                | 5       |           | 12/18/15 15:15 | 5 108-67-8    |     |
| Vinyl chloride                 | ND              | ug/L        | 2.0                | 5       |           | 12/18/15 15:15 | 5 75-01-4     |     |
| Xylene (Total)                 | ND              | ug/L        | 15.0               | 5       |           | 12/18/15 15:15 | 5 1330-20-7   |     |
| Surrogates                     |                 | -           |                    |         |           |                |               |     |
| 1,2-Dichloroethane-d4 (S)      | 101             | %.          | 75-125             | 5       |           | 12/18/15 15:15 | 17060-07-0    |     |
| Toluene-d8 (S)                 | 97              | %.          | 75-125             | 5       |           | 12/18/15 15:15 | 2037-26-5     |     |
| 4-Bromofluorobenzene (S)       | 103             | %.          | 75-125             | 5       |           | 12/18/15 15:15 | 5 460-00-4    |     |





Project: CrC Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: MW-18                               | Lab ID: 103    | 33461013    | Collected: 12/14/1 | 5 11:45 | Received: | 12/15/15 16:38                 | Matrix: Water |     |
|---------------------------------------------|----------------|-------------|--------------------|---------|-----------|--------------------------------|---------------|-----|
| Parameters                                  | Results        | Units       | Report Limit       | DF      | Prepared  | Analyzed                       | CAS No.       | Qua |
| 8260B VOC                                   | Analytical Met | hod: EPA 82 | 260B               |         |           |                                |               |     |
| Acetone                                     | ND             | ug/L        | 20.0               | 1       |           | 12/18/15 14:2                  | 8 67-64-1     |     |
| Allyl chloride                              | ND             | ug/L        | 4.0                | 1       |           | 12/18/15 14:2                  | 8 107-05-1    |     |
| Benzene                                     | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  | 8 71-43-2     |     |
| Bromobenzene                                | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  | 8 108-86-1    |     |
| Bromochloromethane                          | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  | 8 74-97-5     |     |
| Bromodichloromethane                        | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  | 8 75-27-4     |     |
| Bromoform                                   | ND             | ug/L        | 4.0                | 1       |           | 12/18/15 14:2                  | 8 75-25-2     |     |
| Bromomethane                                | ND             | ug/L        | 4.0                | 1       |           | 12/18/15 14:2                  | 8 74-83-9     |     |
| 2-Butanone (MEK)                            | ND             | ug/L        | 5.0                | 1       |           | 12/18/15 14:2                  | 8 78-93-3     | L3  |
| n-Butylbenzene                              | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  | 8 104-51-8    |     |
| sec-Butylbenzene                            | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  | 8 135-98-8    |     |
| tert-Butylbenzene                           | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  | 8 98-06-6     |     |
| Carbon tetrachloride                        | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  | 8 56-23-5     |     |
| Chlorobenzene                               | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  | 8 108-90-7    |     |
| Chloroethane                                | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  |               |     |
| Chloroform                                  | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  |               |     |
| Chloromethane                               | ND             | ug/L        | 4.0                | 1       |           | 12/18/15 14:2                  |               |     |
| 2-Chlorotoluene                             | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  |               |     |
| 4-Chlorotoluene                             | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  |               |     |
| 1,2-Dibromo-3-chloropropane                 | ND             | ug/L        | 4.0                | 1       |           | 12/18/15 14:2                  |               |     |
| Dibromochloromethane                        | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  |               |     |
| 1,2-Dibromoethane (EDB)                     | ND<br>ND       | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  | -             |     |
| Dibromomethane                              | ND<br>ND       | ug/L        | 4.0                | 1       |           | 12/18/15 14:2                  |               |     |
| 1,2-Dichlorobenzene                         | ND<br>ND       | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  |               |     |
| ·                                           | ND             | -           | 1.0                | 1       |           | 12/18/15 14:2                  |               |     |
| 1,3-Dichlorobenzene                         |                | ug/L        |                    | 1       |           |                                |               |     |
| 1,4-Dichlorobenzene Dichlorodifluoromethane | ND<br>ND       | ug/L        | 1.0<br>1.0         | 1       |           | 12/18/15 14:2<br>12/18/15 14:2 |               |     |
| 1,1-Dichloroethane                          | ND<br>ND       | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  |               |     |
| •                                           |                | ug/L        |                    | 1       |           |                                |               |     |
| 1,2-Dichloroethane                          | ND             | ug/L        | 1.0                |         |           | 12/18/15 14:2                  |               |     |
| 1,1-Dichloroethene                          | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  |               |     |
| cis-1,2-Dichloroethene                      | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  |               |     |
| trans-1,2-Dichloroethene                    | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  |               |     |
| Dichlorofluoromethane                       | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  |               |     |
| 1,2-Dichloropropane                         | ND             | ug/L        | 4.0                | 1       |           | 12/18/15 14:2                  |               |     |
| 1,3-Dichloropropane                         | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  |               |     |
| 2,2-Dichloropropane                         | ND             | ug/L        | 4.0                | 1       |           | 12/18/15 14:2                  |               |     |
| 1,1-Dichloropropene                         | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  |               |     |
| cis-1,3-Dichloropropene                     | ND             | ug/L        | 4.0                | 1       |           |                                | 8 10061-01-5  |     |
| trans-1,3-Dichloropropene                   | ND             | ug/L        | 4.0                | 1       |           |                                | 8 10061-02-6  |     |
| Diethyl ether (Ethyl ether)                 | ND             | ug/L        | 4.0                | 1       |           | 12/18/15 14:2                  |               |     |
| Ethylbenzene                                | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  |               |     |
| Hexachloro-1,3-butadiene                    | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  |               |     |
| Isopropylbenzene (Cumene)                   | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  |               |     |
| p-Isopropyltoluene                          | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  | 8 99-87-6     |     |
| Methylene Chloride                          | ND             | ug/L        | 4.0                | 1       |           | 12/18/15 14:2                  | 8 75-09-2     |     |
| 4-Methyl-2-pentanone (MIBK)                 | ND             | ug/L        | 5.0                | 1       |           | 12/18/15 14:2                  | 8 108-10-1    | L3  |
| Methyl-tert-butyl ether                     | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 14:2                  | 8 1634-04-4   |     |





Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: MW-18                           | Lab ID: 103     | 33461013    | Collected: 12/14/1 | 5 11:45 | Received: 12 | 2/15/15 16:38 N | /latrix: Water |      |
|-----------------------------------------|-----------------|-------------|--------------------|---------|--------------|-----------------|----------------|------|
| Parameters                              | Results         | Units       | Report Limit       | DF      | Prepared     | Analyzed        | CAS No.        | Qual |
| 8260B VOC                               | Analytical Meth | nod: EPA 82 | 260B               |         |              |                 |                |      |
| Naphthalene                             | ND              | ug/L        | 4.0                | 1       |              | 12/18/15 14:28  | 91-20-3        |      |
| n-Propylbenzene                         | ND              | ug/L        | 1.0                | 1       |              | 12/18/15 14:28  | 103-65-1       |      |
| Styrene                                 | ND              | ug/L        | 1.0                | 1       |              | 12/18/15 14:28  | 100-42-5       |      |
| 1,1,1,2-Tetrachloroethane               | ND              | ug/L        | 1.0                | 1       |              | 12/18/15 14:28  | 630-20-6       |      |
| 1,1,2,2-Tetrachloroethane               | ND              | ug/L        | 1.0                | 1       |              | 12/18/15 14:28  | 79-34-5        | L3   |
| Tetrachloroethene                       | 952             | ug/L        | 10.0               | 10      |              | 12/22/15 13:51  | 127-18-4       |      |
| Tetrahydrofuran                         | ND              | ug/L        | 10.0               | 1       |              | 12/18/15 14:28  | 109-99-9       |      |
| Toluene                                 | ND              | ug/L        | 1.0                | 1       |              | 12/18/15 14:28  | 108-88-3       |      |
| 1,2,3-Trichlorobenzene                  | ND              | ug/L        | 1.0                | 1       |              | 12/18/15 14:28  | 87-61-6        |      |
| 1,2,4-Trichlorobenzene                  | ND              | ug/L        | 1.0                | 1       |              | 12/18/15 14:28  | 120-82-1       |      |
| 1,1,1-Trichloroethane                   | ND              | ug/L        | 1.0                | 1       |              | 12/18/15 14:28  | 71-55-6        |      |
| 1,1,2-Trichloroethane                   | ND              | ug/L        | 1.0                | 1       |              | 12/18/15 14:28  | 79-00-5        |      |
| Trichloroethene                         | 1.1             | ug/L        | 0.40               | 1       |              | 12/18/15 14:28  | 79-01-6        |      |
| Trichlorofluoromethane                  | ND              | ug/L        | 1.0                | 1       |              | 12/18/15 14:28  | 75-69-4        |      |
| 1,2,3-Trichloropropane                  | ND              | ug/L        | 4.0                | 1       |              | 12/18/15 14:28  | 96-18-4        |      |
| 1,1,2-Trichlorotrifluoroethane          | 6.3             | ug/L        | 1.0                | 1       |              | 12/18/15 14:28  | 76-13-1        |      |
| 1,2,4-Trimethylbenzene                  | ND              | ug/L        | 1.0                | 1       |              | 12/18/15 14:28  | 95-63-6        |      |
| 1,3,5-Trimethylbenzene                  | ND              | ug/L        | 1.0                | 1       |              | 12/18/15 14:28  | 108-67-8       |      |
| Vinyl chloride                          | ND              | ug/L        | 0.40               | 1       |              | 12/18/15 14:28  | 75-01-4        |      |
| Xylene (Total)                          | ND              | ug/L        | 3.0                | 1       |              | 12/18/15 14:28  | 1330-20-7      |      |
| Surrogates<br>1,2-Dichloroethane-d4 (S) | 105             | %.          | 75-125             | 1       |              | 12/18/15 14:28  | 17060-07-0     |      |
| Toluene-d8 (S)                          | 97              | %.          | 75-125             | 1       |              | 12/18/15 14:28  | 2037-26-5      |      |
| 4-Bromofluorobenzene (S)                | 106             | %.          | 75-125             | 1       |              | 12/18/15 14:28  | 460-00-4       |      |



### **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: MW-19               | Lab ID: 103    | 33461014     | Collected: 12/14/1 | 15 14:45 | Received: | 12/15/15 16:38 N | Matrix: Water |      |
|-----------------------------|----------------|--------------|--------------------|----------|-----------|------------------|---------------|------|
| Parameters                  | Results        | Units        | Report Limit       | DF       | Prepared  | Analyzed         | CAS No.       | Qual |
| 8260B VOC                   | Analytical Met | hod: EPA 82  | 260B               |          |           |                  |               |      |
| Acetone                     | ND             | ug/L         | 20.0               | 1        |           | 12/22/15 12:35   | 67-64-1       |      |
| Allyl chloride              | ND             | ug/L         | 4.0                | 1        |           | 12/22/15 12:35   | 107-05-1      |      |
| Benzene                     | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   | 71-43-2       |      |
| Bromobenzene                | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   | 108-86-1      |      |
| Bromochloromethane          | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   | 74-97-5       |      |
| Bromodichloromethane        | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   | 75-27-4       |      |
| Bromoform                   | ND             | ug/L         | 4.0                | 1        |           | 12/22/15 12:35   | 75-25-2       |      |
| Bromomethane                | ND             | ug/L         | 4.0                | 1        |           | 12/22/15 12:35   | 74-83-9       | CL   |
| 2-Butanone (MEK)            | ND             | ug/L         | 5.0                | 1        |           | 12/22/15 12:35   | 78-93-3       |      |
| n-Butylbenzene              | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   | 104-51-8      |      |
| sec-Butylbenzene            | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   | 135-98-8      |      |
| tert-Butylbenzene           | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   | 98-06-6       |      |
| Carbon tetrachloride        | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   | 56-23-5       |      |
| Chlorobenzene               | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   | 108-90-7      |      |
| Chloroethane                | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   | 75-00-3       |      |
| Chloroform                  | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   | 67-66-3       |      |
| Chloromethane               | ND             | ug/L         | 4.0                | 1        |           | 12/22/15 12:35   | 74-87-3       |      |
| 2-Chlorotoluene             | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   | 95-49-8       |      |
| 4-Chlorotoluene             | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   | 106-43-4      |      |
| 1,2-Dibromo-3-chloropropane | ND             | ug/L         | 4.0                | 1        |           | 12/22/15 12:35   | 96-12-8       |      |
| Dibromochloromethane        | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   |               |      |
| 1,2-Dibromoethane (EDB)     | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   |               |      |
| Dibromomethane              | ND             | ug/L         | 4.0                | 1        |           | 12/22/15 12:35   |               |      |
| 1,2-Dichlorobenzene         | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   |               |      |
| 1,3-Dichlorobenzene         | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   |               |      |
| 1,4-Dichlorobenzene         | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   |               |      |
| Dichlorodifluoromethane     | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   |               |      |
| 1,1-Dichloroethane          | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   |               |      |
| 1,2-Dichloroethane          | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   |               |      |
| 1,1-Dichloroethene          | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   |               |      |
| cis-1,2-Dichloroethene      | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   |               |      |
| trans-1,2-Dichloroethene    | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   |               |      |
| Dichlorofluoromethane       | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   |               |      |
| 1,2-Dichloropropane         | ND             | ug/L         | 4.0                | 1        |           | 12/22/15 12:35   |               |      |
| 1,3-Dichloropropane         | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   |               |      |
| 2,2-Dichloropropane         | ND             | ug/L         | 4.0                | 1        |           | 12/22/15 12:35   |               |      |
| 1,1-Dichloropropene         | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   |               |      |
| cis-1,3-Dichloropropene     | ND             | ug/L         | 4.0                | 1        |           | 12/22/15 12:35   |               |      |
| trans-1,3-Dichloropropene   | ND             | ug/L         | 4.0                | 1        |           | 12/22/15 12:35   |               |      |
| Diethyl ether (Ethyl ether) | ND             | ug/L         | 4.0                | 1        |           | 12/22/15 12:35   |               |      |
| Ethylbenzene                | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   |               |      |
| Hexachloro-1,3-butadiene    | ND<br>ND       | ug/L<br>ug/L | 1.0                | 1        |           | 12/22/15 12:35   |               |      |
| Isopropylbenzene (Cumene)   | ND<br>ND       | ug/L<br>ug/L | 1.0                | 1        |           | 12/22/15 12:35   |               |      |
| p-Isopropyltoluene          | ND<br>ND       | ug/L<br>ug/L | 1.0                | 1        |           | 12/22/15 12:35   |               |      |
|                             | ND<br>ND       | -            | 4.0                | 1        |           | 12/22/15 12:35   |               |      |
| Methylene Chloride          |                | ug/L         |                    |          |           |                  |               |      |
| 4-Methyl-2-pentanone (MIBK) | ND             | ug/L         | 5.0                | 1        |           | 12/22/15 12:35   |               |      |
| Methyl-tert-butyl ether     | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:35   | 1034-04-4     |      |





Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: MW-19                  | Lab ID: 103     | 33461014    | Collected: 12/14/1 | 15 14:45 | Received: 12 | 2/15/15 16:38 N | Matrix: Water |     |
|--------------------------------|-----------------|-------------|--------------------|----------|--------------|-----------------|---------------|-----|
| Parameters                     | Results         | Units       | Report Limit       | DF       | Prepared     | Analyzed        | CAS No.       | Qua |
| 8260B VOC                      | Analytical Meth | nod: EPA 82 | 260B               |          |              |                 |               |     |
| Naphthalene                    | ND              | ug/L        | 4.0                | 1        |              | 12/22/15 12:35  | 91-20-3       |     |
| n-Propylbenzene                | ND              | ug/L        | 1.0                | 1        |              | 12/22/15 12:35  | 103-65-1      |     |
| Styrene                        | ND              | ug/L        | 1.0                | 1        |              | 12/22/15 12:35  | 100-42-5      |     |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1        |              | 12/22/15 12:35  | 630-20-6      |     |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1        |              | 12/22/15 12:35  | 79-34-5       |     |
| Tetrachloroethene              | 139             | ug/L        | 1.0                | 1        |              | 12/22/15 12:35  | 127-18-4      |     |
| Tetrahydrofuran                | ND              | ug/L        | 10.0               | 1        |              | 12/22/15 12:35  | 109-99-9      |     |
| Toluene                        | ND              | ug/L        | 1.0                | 1        |              | 12/22/15 12:35  | 108-88-3      |     |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1        |              | 12/22/15 12:35  | 87-61-6       |     |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1        |              | 12/22/15 12:35  | 120-82-1      |     |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 1.0                | 1        |              | 12/22/15 12:35  | 71-55-6       |     |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 1.0                | 1        |              | 12/22/15 12:35  | 79-00-5       |     |
| Trichloroethene                | ND              | ug/L        | 0.40               | 1        |              | 12/22/15 12:35  | 79-01-6       |     |
| Trichlorofluoromethane         | ND              | ug/L        | 1.0                | 1        |              | 12/22/15 12:35  | 75-69-4       |     |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 4.0                | 1        |              | 12/22/15 12:35  | 96-18-4       |     |
| 1,1,2-Trichlorotrifluoroethane | 5.3             | ug/L        | 1.0                | 1        |              | 12/22/15 12:35  | 76-13-1       |     |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1        |              | 12/22/15 12:35  | 95-63-6       |     |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1        |              | 12/22/15 12:35  | 108-67-8      |     |
| Vinyl chloride                 | ND              | ug/L        | 0.40               | 1        |              | 12/22/15 12:35  | 75-01-4       |     |
| Xylene (Total)                 | ND              | ug/L        | 3.0                | 1        |              | 12/22/15 12:35  | 1330-20-7     |     |
| Surrogates                     |                 |             |                    |          |              |                 |               |     |
| 1,2-Dichloroethane-d4 (S)      | 94              | %.          | 75-125             | 1        |              | 12/22/15 12:35  |               |     |
| Toluene-d8 (S)                 | 94              | %.          | 75-125             | 1        |              | 12/22/15 12:35  |               |     |
| 4-Bromofluorobenzene (S)       | 100             | %.          | 75-125             | 1        |              | 12/22/15 12:35  | 460-00-4      |     |



### **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: MW-20                             | Lab ID: 103    | 33461015     | Collected: 12/14/1 | 15 15:25 | Received: | 12/15/15 16:38 | Matrix: Water |     |
|-------------------------------------------|----------------|--------------|--------------------|----------|-----------|----------------|---------------|-----|
| Parameters                                | Results        | Units        | Report Limit       | DF       | Prepared  | Analyzed       | CAS No.       | Qua |
| 3260B VOC                                 | Analytical Met | hod: EPA 82  | 260B               |          |           |                |               |     |
| Acetone                                   | ND             | ug/L         | 20.0               | 1        |           | 12/22/15 12:50 | 0 67-64-1     |     |
| Allyl chloride                            | ND             | ug/L         | 4.0                | 1        |           | 12/22/15 12:50 | 107-05-1      |     |
| Benzene                                   | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 | 71-43-2       |     |
| Bromobenzene                              | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 | 108-86-1      |     |
| Bromochloromethane                        | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 | 74-97-5       |     |
| Bromodichloromethane                      | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 | 75-27-4       |     |
| Bromoform                                 | ND             | ug/L         | 4.0                | 1        |           | 12/22/15 12:50 | 75-25-2       |     |
| Bromomethane                              | ND             | ug/L         | 4.0                | 1        |           | 12/22/15 12:50 | 74-83-9       | CL  |
| 2-Butanone (MEK)                          | ND             | ug/L         | 5.0                | 1        |           | 12/22/15 12:50 | 78-93-3       |     |
| n-Butylbenzene                            | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 | 104-51-8      |     |
| sec-Butylbenzene                          | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 | 135-98-8      |     |
| tert-Butylbenzene                         | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 |               |     |
| Carbon tetrachloride                      | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 |               |     |
| Chlorobenzene                             | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 |               |     |
| Chloroethane                              | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 |               |     |
| Chloroform                                | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 |               |     |
| Chloromethane                             | ND             | ug/L         | 4.0                | 1        |           | 12/22/15 12:50 |               |     |
| 2-Chlorotoluene                           | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 |               |     |
| 4-Chlorotoluene                           | ND<br>ND       | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 |               |     |
| 1,2-Dibromo-3-chloropropane               | ND<br>ND       | ug/L<br>ug/L | 4.0                | 1        |           | 12/22/15 12:50 |               |     |
| Dibromochloromethane                      | ND<br>ND       | -            |                    | 1        |           | 12/22/15 12:50 |               |     |
|                                           | ND<br>ND       | ug/L         | 1.0<br>1.0         | 1        |           | 12/22/15 12:50 | _             |     |
| 1,2-Dibromoethane (EDB)<br>Dibromomethane | ND<br>ND       | ug/L         | 4.0                | 1        |           | 12/22/15 12:50 |               |     |
|                                           |                | ug/L         |                    | 1        |           |                |               |     |
| 1,2-Dichlorobenzene                       | ND             | ug/L         | 1.0                |          |           | 12/22/15 12:50 |               |     |
| 1,3-Dichlorobenzene                       | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 |               |     |
| 1,4-Dichlorobenzene                       | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 |               |     |
| Dichlorodifluoromethane                   | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 |               |     |
| 1,1-Dichloroethane                        | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 |               |     |
| 1,2-Dichloroethane                        | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 |               |     |
| 1,1-Dichloroethene                        | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 |               |     |
| cis-1,2-Dichloroethene                    | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 |               |     |
| rans-1,2-Dichloroethene                   | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 |               |     |
| Dichlorofluoromethane                     | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 |               |     |
| 1,2-Dichloropropane                       | ND             | ug/L         | 4.0                | 1        |           | 12/22/15 12:50 |               |     |
| 1,3-Dichloropropane                       | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 | ) 142-28-9    |     |
| 2,2-Dichloropropane                       | ND             | ug/L         | 4.0                | 1        |           | 12/22/15 12:50 |               |     |
| 1,1-Dichloropropene                       | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 |               |     |
| cis-1,3-Dichloropropene                   | ND             | ug/L         | 4.0                | 1        |           | 12/22/15 12:50 | 10061-01-5    |     |
| rans-1,3-Dichloropropene                  | ND             | ug/L         | 4.0                | 1        |           | 12/22/15 12:50 | 10061-02-6    |     |
| Diethyl ether (Ethyl ether)               | ND             | ug/L         | 4.0                | 1        |           | 12/22/15 12:50 |               |     |
| Ethylbenzene                              | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 |               |     |
| Hexachloro-1,3-butadiene                  | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 | 87-68-3       |     |
| sopropylbenzene (Cumene)                  | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 | 98-82-8       |     |
| o-Isopropyltoluene                        | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 | 99-87-6       |     |
| Methylene Chloride                        | ND             | ug/L         | 4.0                | 1        |           | 12/22/15 12:50 | 75-09-2       |     |
| 4-Methyl-2-pentanone (MIBK)               | ND             | ug/L         | 5.0                | 1        |           | 12/22/15 12:50 | 108-10-1      |     |
| Methyl-tert-butyl ether                   | ND             | ug/L         | 1.0                | 1        |           | 12/22/15 12:50 | 1634-04-4     |     |

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..





Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: MW-20                  | Lab ID: 103     | 33461015    | Collected: 12/14/1 | 5 15:25 | Received: 1 | 2/15/15 16:38 I | Matrix: Water |     |
|--------------------------------|-----------------|-------------|--------------------|---------|-------------|-----------------|---------------|-----|
| Parameters                     | Results         | Units       | Report Limit       | DF      | Prepared    | Analyzed        | CAS No.       | Qua |
| 8260B VOC                      | Analytical Meth | nod: EPA 82 | 260B               |         |             |                 |               |     |
| Naphthalene                    | ND              | ug/L        | 4.0                | 1       |             | 12/22/15 12:50  | 91-20-3       |     |
| n-Propylbenzene                | ND              | ug/L        | 1.0                | 1       |             | 12/22/15 12:50  | 103-65-1      |     |
| Styrene                        | ND              | ug/L        | 1.0                | 1       |             | 12/22/15 12:50  | 100-42-5      |     |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1       |             | 12/22/15 12:50  | 630-20-6      |     |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1       |             | 12/22/15 12:50  | 79-34-5       |     |
| Tetrachloroethene              | 177             | ug/L        | 1.0                | 1       |             | 12/22/15 12:50  | 127-18-4      |     |
| Tetrahydrofuran                | ND              | ug/L        | 10.0               | 1       |             | 12/22/15 12:50  | 109-99-9      |     |
| Toluene                        | ND              | ug/L        | 1.0                | 1       |             | 12/22/15 12:50  | 108-88-3      |     |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1       |             | 12/22/15 12:50  | 87-61-6       |     |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1       |             | 12/22/15 12:50  | 120-82-1      |     |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 1.0                | 1       |             | 12/22/15 12:50  | 71-55-6       |     |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 1.0                | 1       |             | 12/22/15 12:50  | 79-00-5       |     |
| Trichloroethene                | ND              | ug/L        | 0.40               | 1       |             | 12/22/15 12:50  | 79-01-6       |     |
| Trichlorofluoromethane         | ND              | ug/L        | 1.0                | 1       |             | 12/22/15 12:50  | 75-69-4       |     |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 4.0                | 1       |             | 12/22/15 12:50  | 96-18-4       |     |
| 1,1,2-Trichlorotrifluoroethane | 17.6            | ug/L        | 1.0                | 1       |             | 12/22/15 12:50  | 76-13-1       |     |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1       |             | 12/22/15 12:50  | 95-63-6       |     |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1       |             | 12/22/15 12:50  | 108-67-8      |     |
| Vinyl chloride                 | ND              | ug/L        | 0.40               | 1       |             | 12/22/15 12:50  | 75-01-4       |     |
| Xylene (Total)                 | ND              | ug/L        | 3.0                | 1       |             | 12/22/15 12:50  | 1330-20-7     |     |
| Surrogates                     |                 |             |                    |         |             |                 |               |     |
| 1,2-Dichloroethane-d4 (S)      | 96              | %.          | 75-125             | 1       |             | 12/22/15 12:50  | 17060-07-0    |     |
| Toluene-d8 (S)                 | 92              | %.          | 75-125             | 1       |             | 12/22/15 12:50  | 2037-26-5     |     |
| 4-Bromofluorobenzene (S)       | 102             | %.          | 75-125             | 1       |             | 12/22/15 12:50  | 460-00-4      |     |



### **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: Trip Blank          | Lab ID: 103    | 33461016    | Collected: 12/14/1 | 5 00:00 | Received: | 12/15/15 16:38 | Matrix: Water |     |
|-----------------------------|----------------|-------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                  | Results        | Units       | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260B VOC                   | Analytical Met | nod: EPA 82 | 260B               |         |           |                |               |     |
| Acetone                     | ND             | ug/L        | 20.0               | 1       |           | 12/18/15 11:24 | 67-64-1       |     |
| Allyl chloride              | ND             | ug/L        | 4.0                | 1       |           | 12/18/15 11:24 | 107-05-1      |     |
| Benzene                     | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 71-43-2       |     |
| Bromobenzene                | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 108-86-1      |     |
| Bromochloromethane          | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 74-97-5       |     |
| Bromodichloromethane        | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 75-27-4       |     |
| Bromoform                   | ND             | ug/L        | 4.0                | 1       |           | 12/18/15 11:24 | 75-25-2       |     |
| Bromomethane                | ND             | ug/L        | 4.0                | 1       |           | 12/18/15 11:24 | 74-83-9       |     |
| 2-Butanone (MEK)            | ND             | ug/L        | 5.0                | 1       |           | 12/18/15 11:24 | 78-93-3       | L3  |
| n-Butylbenzene              | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 104-51-8      |     |
| sec-Butylbenzene            | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 |               |     |
| tert-Butylbenzene           | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 |               |     |
| Carbon tetrachloride        | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 |               |     |
| Chlorobenzene               | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 |               |     |
| Chloroethane                | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 |               |     |
| Chloroform                  | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 |               |     |
| Chloromethane               | ND<br>ND       | ug/L        | 4.0                | 1       |           | 12/18/15 11:24 |               |     |
| 2-Chlorotoluene             | ND<br>ND       | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 |               |     |
| 4-Chlorotoluene             | ND<br>ND       | _           | 1.0                | 1       |           | 12/18/15 11:24 |               |     |
|                             |                | ug/L        |                    | 1       |           |                |               |     |
| 1,2-Dibromo-3-chloropropane | ND             | ug/L        | 4.0                |         |           | 12/18/15 11:24 |               |     |
| Dibromochloromethane        | ND             | ug/L        | 1.0                | 1<br>1  |           | 12/18/15 11:24 | _             |     |
| 1,2-Dibromoethane (EDB)     | ND             | ug/L        | 1.0                |         |           | 12/18/15 11:24 |               |     |
| Dibromomethane              | ND             | ug/L        | 4.0                | 1       |           | 12/18/15 11:24 |               |     |
| 1,2-Dichlorobenzene         | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 |               |     |
| 1,3-Dichlorobenzene         | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 |               |     |
| 1,4-Dichlorobenzene         | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 |               |     |
| Dichlorodifluoromethane     | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 |               |     |
| 1,1-Dichloroethane          | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 |               |     |
| 1,2-Dichloroethane          | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 |               |     |
| 1,1-Dichloroethene          | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 |               |     |
| cis-1,2-Dichloroethene      | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 |               |     |
| trans-1,2-Dichloroethene    | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 |               |     |
| Dichlorofluoromethane       | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 75-43-4       |     |
| 1,2-Dichloropropane         | ND             | ug/L        | 4.0                | 1       |           | 12/18/15 11:24 | 78-87-5       |     |
| 1,3-Dichloropropane         | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 |               |     |
| 2,2-Dichloropropane         | ND             | ug/L        | 4.0                | 1       |           | 12/18/15 11:24 | 594-20-7      |     |
| 1,1-Dichloropropene         | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 563-58-6      |     |
| cis-1,3-Dichloropropene     | ND             | ug/L        | 4.0                | 1       |           | 12/18/15 11:24 | 10061-01-5    |     |
| rans-1,3-Dichloropropene    | ND             | ug/L        | 4.0                | 1       |           | 12/18/15 11:24 | 10061-02-6    |     |
| Diethyl ether (Ethyl ether) | ND             | ug/L        | 4.0                | 1       |           | 12/18/15 11:24 | 60-29-7       |     |
| Ethylbenzene                | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 100-41-4      |     |
| Hexachloro-1,3-butadiene    | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 87-68-3       |     |
| Isopropylbenzene (Cumene)   | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 98-82-8       |     |
| p-Isopropyltoluene          | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 |               |     |
| Methylene Chloride          | ND             | ug/L        | 4.0                | 1       |           | 12/18/15 11:24 |               |     |
| 4-Methyl-2-pentanone (MIBK) | ND             | ug/L        | 5.0                | 1       |           | 12/18/15 11:24 |               | L3  |
| Methyl-tert-butyl ether     | ND             | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 |               |     |

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..





Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| Sample: Trip Blank             | Lab ID: 103     | 33461016    | Collected: 12/14/1 | 5 00:00 | Received: | 12/15/15 16:38 | Matrix: Water |      |
|--------------------------------|-----------------|-------------|--------------------|---------|-----------|----------------|---------------|------|
| Parameters                     | Results         | Units       | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qual |
| 8260B VOC                      | Analytical Meth | nod: EPA 82 | 260B               |         |           |                |               |      |
| Naphthalene                    | ND              | ug/L        | 4.0                | 1       |           | 12/18/15 11:24 | 91-20-3       |      |
| n-Propylbenzene                | ND              | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 103-65-1      |      |
| Styrene                        | ND              | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 100-42-5      |      |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 1 630-20-6    |      |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 79-34-5       | L3   |
| Tetrachloroethene              | ND              | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 127-18-4      |      |
| Tetrahydrofuran                | ND              | ug/L        | 10.0               | 1       |           | 12/18/15 11:24 | 109-99-9      |      |
| Toluene                        | ND              | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 108-88-3      |      |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 87-61-6       |      |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 1 120-82-1    |      |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 1 71-55-6     |      |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 79-00-5       |      |
| Trichloroethene                | ND              | ug/L        | 0.40               | 1       |           | 12/18/15 11:24 | 79-01-6       |      |
| Trichlorofluoromethane         | ND              | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 75-69-4       |      |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 4.0                | 1       |           | 12/18/15 11:24 | 96-18-4       |      |
| 1,1,2-Trichlorotrifluoroethane | ND              | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 1 76-13-1     |      |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 95-63-6       |      |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1       |           | 12/18/15 11:24 | 1 108-67-8    |      |
| Vinyl chloride                 | ND              | ug/L        | 0.40               | 1       |           | 12/18/15 11:24 | 75-01-4       |      |
| Xylene (Total)                 | ND              | ug/L        | 3.0                | 1       |           | 12/18/15 11:24 | 1330-20-7     |      |
| Surrogates                     |                 | •           |                    |         |           |                |               |      |
| 1,2-Dichloroethane-d4 (S)      | 105             | %.          | 75-125             | 1       |           | 12/18/15 11:24 | 17060-07-0    |      |
| Toluene-d8 (S)                 | 97              | %.          | 75-125             | 1       |           | 12/18/15 11:24 | 2037-26-5     |      |
| 4-Bromofluorobenzene (S)       | 104             | %.          | 75-125             | 1       |           | 12/18/15 11:24 | 460-00-4      |      |



### **QUALITY CONTROL DATA**

Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

QC Batch: MSV/34137 Analysis Method: EPA 8260B

QC Batch Method: EPA 8260B Analysis Description: 8260B MSV 465 W

Associated Lab Samples: 10333461001, 10333461002, 10333461003, 10333461006, 10333461007, 10333461008, 10333461009,

10333461010, 10333461011, 10333461012, 10333461013, 10333461016

METHOD BLANK: 2160328 Matrix: Water

Associated Lab Samples: 10333461001, 10333461002, 10333461003, 10333461006, 10333461007, 10333461008, 10333461009,

10333461010, 10333461011, 10333461012, 10333461013, 10333461016

| 10000                          | 01010, 10333401011 | Blank  | Reporting | 000101010      |            |
|--------------------------------|--------------------|--------|-----------|----------------|------------|
| Parameter                      | Units              | Result | Limit     | Analyzed       | Qualifiers |
| 1,1,1,2-Tetrachloroethane      | ug/L               | ND -   | 1.0       | 12/18/15 11:08 |            |
| 1,1,1-Trichloroethane          | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| 1,1,2-Trichloroethane          | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| 1,1-Dichloroethane             | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| 1,1-Dichloroethene             | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| 1,1-Dichloropropene            | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| 1,2,3-Trichlorobenzene         | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| 1,2,3-Trichloropropane         | ug/L               | ND     | 4.0       | 12/18/15 11:08 |            |
| 1,2,4-Trichlorobenzene         | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| 1,2,4-Trimethylbenzene         | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| 1,2-Dibromo-3-chloropropane    | ug/L               | ND     | 4.0       | 12/18/15 11:08 |            |
| 1,2-Dibromoethane (EDB)        | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| 1,2-Dichlorobenzene            | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| 1,2-Dichloroethane             | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| 1,2-Dichloropropane            | ug/L               | ND     | 4.0       | 12/18/15 11:08 |            |
| 1,3,5-Trimethylbenzene         | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| 1,3-Dichlorobenzene            | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| 1,3-Dichloropropane            | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| 1,4-Dichlorobenzene            | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| 2,2-Dichloropropane            | ug/L               | ND     | 4.0       | 12/18/15 11:08 |            |
| 2-Butanone (MEK)               | ug/L               | ND     | 5.0       | 12/18/15 11:08 |            |
| 2-Chlorotoluene                | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| 4-Chlorotoluene                | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| 4-Methyl-2-pentanone (MIBK)    | ug/L               | ND     | 5.0       | 12/18/15 11:08 |            |
| Acetone                        | ug/L               | ND     | 20.0      | 12/18/15 11:08 |            |
| Allyl chloride                 | ug/L               | ND     | 4.0       | 12/18/15 11:08 |            |
| Benzene                        | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| Bromobenzene                   | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| Bromochloromethane             | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| Bromodichloromethane           | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| Bromoform                      | ug/L               | ND     | 4.0       | 12/18/15 11:08 |            |
| Bromomethane                   | ug/L               | ND     | 4.0       | 12/18/15 11:08 |            |
| Carbon tetrachloride           | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| Chlorobenzene                  | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| Chloroethane                   | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| Chloroform                     | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |
| Chloromethane                  | ug/L               | ND     | 4.0       | 12/18/15 11:08 |            |
| cis-1,2-Dichloroethene         | ug/L               | ND     | 1.0       | 12/18/15 11:08 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL DATA**

Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

METHOD BLANK: 2160328 Matrix: Water

Associated Lab Samples: 10333461001, 10333461002, 10333461003, 10333461006, 10333461007, 10333461008, 10333461009,

10333461010, 10333461011, 10333461012, 10333461013, 10333461016

|                             |       | Blank  | Reporting |                |            |
|-----------------------------|-------|--------|-----------|----------------|------------|
| Parameter                   | Units | Result | Limit     | Analyzed       | Qualifiers |
| cis-1,3-Dichloropropene     | ug/L  | ND ND  | 4.0       | 12/18/15 11:08 |            |
| Dibromochloromethane        | ug/L  | ND     | 1.0       | 12/18/15 11:08 |            |
| Dibromomethane              | ug/L  | ND     | 4.0       | 12/18/15 11:08 |            |
| Dichlorodifluoromethane     | ug/L  | ND     | 1.0       | 12/18/15 11:08 |            |
| Dichlorofluoromethane       | ug/L  | ND     | 1.0       | 12/18/15 11:08 |            |
| Diethyl ether (Ethyl ether) | ug/L  | ND     | 4.0       | 12/18/15 11:08 |            |
| Ethylbenzene                | ug/L  | ND     | 1.0       | 12/18/15 11:08 |            |
| Hexachloro-1,3-butadiene    | ug/L  | ND     | 1.0       | 12/18/15 11:08 |            |
| Isopropylbenzene (Cumene)   | ug/L  | ND     | 1.0       | 12/18/15 11:08 |            |
| Methyl-tert-butyl ether     | ug/L  | ND     | 1.0       | 12/18/15 11:08 |            |
| Methylene Chloride          | ug/L  | ND     | 4.0       | 12/18/15 11:08 |            |
| n-Butylbenzene              | ug/L  | ND     | 1.0       | 12/18/15 11:08 |            |
| n-Propylbenzene             | ug/L  | ND     | 1.0       | 12/18/15 11:08 |            |
| Naphthalene                 | ug/L  | ND     | 4.0       | 12/18/15 11:08 |            |
| p-Isopropyltoluene          | ug/L  | ND     | 1.0       | 12/18/15 11:08 |            |
| sec-Butylbenzene            | ug/L  | ND     | 1.0       | 12/18/15 11:08 |            |
| Styrene                     | ug/L  | ND     | 1.0       | 12/18/15 11:08 |            |
| tert-Butylbenzene           | ug/L  | ND     | 1.0       | 12/18/15 11:08 |            |
| Tetrachloroethene           | ug/L  | ND     | 1.0       | 12/18/15 11:08 |            |
| Tetrahydrofuran             | ug/L  | ND     | 10.0      | 12/18/15 11:08 |            |
| Toluene                     | ug/L  | ND     | 1.0       | 12/18/15 11:08 |            |
| trans-1,2-Dichloroethene    | ug/L  | ND     | 1.0       | 12/18/15 11:08 |            |
| trans-1,3-Dichloropropene   | ug/L  | ND     | 4.0       | 12/18/15 11:08 |            |
| Trichloroethene             | ug/L  | ND     | 0.40      | 12/18/15 11:08 |            |
| Trichlorofluoromethane      | ug/L  | ND     | 1.0       | 12/18/15 11:08 |            |
| Vinyl chloride              | ug/L  | ND     | 0.40      | 12/18/15 11:08 |            |
| Xylene (Total)              | ug/L  | ND     | 3.0       | 12/18/15 11:08 |            |
| 1,2-Dichloroethane-d4 (S)   | %.    | 100    | 75-125    | 12/18/15 11:08 |            |
| 4-Bromofluorobenzene (S)    | %.    | 104    | 75-125    | 12/18/15 11:08 |            |
| Toluene-d8 (S)              | %.    | 98     | 75-125    | 12/18/15 11:08 |            |

| LABORATORY CONTROL SAMPLE:     | 2160329 |       |        |       |          |            |
|--------------------------------|---------|-------|--------|-------|----------|------------|
|                                |         | Spike | LCS    | LCS   | % Rec    |            |
| Parameter                      | Units   | Conc. | Result | % Rec | Limits   | Qualifiers |
| 1,1,1,2-Tetrachloroethane      | ug/L    | 20    | 20.2   | 101   | 75-125   |            |
| 1,1,1-Trichloroethane          | ug/L    | 20    | 21.2   | 106   | 75-125   |            |
| 1,1,2,2-Tetrachloroethane      | ug/L    | 20    | 26.3   | 131   | 75-125 L | 0          |
| 1,1,2-Trichloroethane          | ug/L    | 20    | 23.7   | 119   | 75-125   |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L    | 20    | 21.3   | 107   | 60-135   |            |
| 1,1-Dichloroethane             | ug/L    | 20    | 24.4   | 122   | 69-125   |            |
| 1,1-Dichloroethene             | ug/L    | 20    | 20.9   | 105   | 68-125   |            |
| 1,1-Dichloropropene            | ug/L    | 20    | 22.0   | 110   | 74-125   |            |
| 1,2,3-Trichlorobenzene         | ug/L    | 20    | 22.0   | 110   | 69-136   |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL DATA**

Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| ABORATORY CONTROL SAMPLE:   | 2160329 |       |        |       |                   |
|-----------------------------|---------|-------|--------|-------|-------------------|
| Davis :                     | 11.5    | Spike | LCS    | LCS   | % Rec             |
| Parameter                   | Units   | Conc  | Result | % Rec | Limits Qualifiers |
| ,2,3-Trichloropropane       | ug/L    | 20    | 24.7   | 124   | 75-125            |
| ,2,4-Trichlorobenzene       | ug/L    | 20    | 22.6   | 113   | 73-127            |
| ,2,4-Trimethylbenzene       | ug/L    | 20    | 20.4   | 102   | 75-125            |
| ,2-Dibromo-3-chloropropane  | ug/L    | 50    | 60.0   | 120   | 65-145            |
| ,2-Dibromoethane (EDB)      | ug/L    | 20    | 24.2   | 121   | 75-125            |
| ,2-Dichlorobenzene          | ug/L    | 20    | 22.7   | 113   | 75-125            |
| ,2-Dichloroethane           | ug/L    | 20    | 21.7   | 108   | 73-125            |
| ,2-Dichloropropane          | ug/L    | 20    | 23.0   | 115   | 75-125            |
| ,3,5-Trimethylbenzene       | ug/L    | 20    | 21.3   | 106   | 75-125            |
| ,3-Dichlorobenzene          | ug/L    | 20    | 20.5   | 102   | 74-125            |
| ,3-Dichloropropane          | ug/L    | 20    | 23.1   | 115   | 75-125            |
| ,4-Dichlorobenzene          | ug/L    | 20    | 20.6   | 103   | 75-125            |
| ,2-Dichloropropane          | ug/L    | 20    | 22.3   | 111   | 59-139            |
| -Butanone (MEK)             | ug/L    | 100   | 152    | 152   | 63-130 L0         |
| -Chlorotoluene              | ug/L    | 20    | 20.6   | 103   | 72-125            |
| -Chlorotoluene              | ug/L    | 20    | 21.6   | 108   | 73-125            |
| -Methyl-2-pentanone (MIBK)  | ug/L    | 100   | 128    | 128   | 71-126 L0         |
| cetone                      | ug/L    | 100   | 95.6   | 96    | 69-131 SS         |
| llyl chloride               | ug/L    | 20    | 24.2   | 121   | 67-125            |
| Benzene                     | ug/L    | 20    | 22.8   | 114   | 71-125            |
| Bromobenzene                | ug/L    | 20    | 21.6   | 108   | 75-125            |
| romochloromethane           | ug/L    | 20    | 22.5   | 112   | 75-125            |
| romodichloromethane         | ug/L    | 20    | 23.2   | 116   | 75-125            |
| Bromoform                   | ug/L    | 20    | 20.2   | 101   | 70-125            |
| Bromomethane                | ug/L    | 20    | 17.0   | 85    | 30-150            |
| Carbon tetrachloride        | ug/L    | 20    | 17.3   | 86    | 75-126            |
| Chlorobenzene               | ug/L    | 20    | 19.7   | 99    | 75-125            |
| Chloroethane                | ug/L    | 20    | 20.8   | 104   | 65-134            |
| Chloroform                  | ug/L    | 20    | 22.6   | 113   | 75-125            |
| Chloromethane               | ug/L    | 20    | 24.6   | 123   | 39-150            |
| is-1,2-Dichloroethene       | ug/L    | 20    | 24.0   | 120   | 72-125            |
| is-1,3-Dichloropropene      | ug/L    | 20    | 21.7   | 109   | 75-125            |
| Dibromochloromethane        | ug/L    | 20    | 19.6   | 98    | 75-125            |
| Dibromomethane              | ug/L    | 20    | 22.2   | 111   | 75-125            |
| Dichlorodifluoromethane     | ug/L    | 20    | 21.1   | 106   | 50-134            |
| Dichlorofluoromethane       | ug/L    | 20    | 21.4   | 107   | 69-125            |
| Diethyl ether (Ethyl ether) | ug/L    | 20    | 22.6   | 113   | 72-125            |
| Ethylbenzene                | ug/L    | 20    | 19.6   | 98    | 75-125            |
| lexachloro-1,3-butadiene    | ug/L    | 20    | 22.0   | 110   | 70-138            |
| sopropylbenzene (Cumene)    | ug/L    | 20    | 17.8   | 89    | 75-125            |
| Methyl-tert-butyl ether     | ug/L    | 20    | 24.1   | 120   | 73-125            |
| lethylene Chloride          | ug/L    | 20    | 20.2   | 101   | 73-125            |
| -Butylbenzene               | ug/L    | 20    | 23.0   | 115   | 72-133            |
| -Propylbenzene              | ug/L    | 20    | 19.5   | 98    | 72-126            |
| laphthalene                 | ug/L    | 20    | 21.6   | 108   | 70-127            |
| -Isopropyltoluene           | ug/L    | 20    | 20.6   | 103   | 72-132            |
| sec-Butylbenzene            | ug/L    | 20    | 18.8   | 94    | 73-132            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL DATA**

Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| BORATORY CONTROL SAMPLE: | 2160329 |       |        |       |        |            |
|--------------------------|---------|-------|--------|-------|--------|------------|
|                          |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| ene                      | ug/L    |       | 20.6   | 103   | 75-125 |            |
| Butylbenzene             | ug/L    | 20    | 19.8   | 99    | 73-128 |            |
| chloroethene             | ug/L    | 20    | 17.5   | 88    | 74-125 |            |
| hydrofuran               | ug/L    | 200   | 185    | 93    | 62-133 | SS         |
| ene                      | ug/L    | 20    | 20.2   | 101   | 74-125 |            |
| 1,2-Dichloroethene       | ug/L    | 20    | 22.4   | 112   | 69-125 |            |
| ,3-Dichloropropene       | ug/L    | 20    | 21.7   | 109   | 75-125 |            |
| roethene                 | ug/L    | 20    | 20.6   | 103   | 75-125 |            |
| rofluoromethane          | ug/L    | 20    | 16.9   | 84    | 74-127 |            |
| hloride                  | ug/L    | 20    | 22.0   | 110   | 66-132 |            |
| e (Total)                | ug/L    | 60    | 56.9   | 95    | 75-125 |            |
| chloroethane-d4 (S)      | %.      |       |        | 110   | 75-125 |            |
| nofluorobenzene (S)      | %.      |       |        | 107   | 75-125 |            |
| ne-d8 (S)                | %.      |       |        | 99    | 75-125 |            |

| MATRIX SPIKE SAMPLE:           | 2162588 |             |       |        |       |        |            |
|--------------------------------|---------|-------------|-------|--------|-------|--------|------------|
|                                |         | 10333461006 | Spike | MS     | MS    | % Rec  |            |
| Parameter                      | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,1,1,2-Tetrachloroethane      | ug/L    | ND          | 20    | 21.7   | 108   | 70-138 |            |
| 1,1,1-Trichloroethane          | ug/L    | ND          | 20    | 22.2   | 111   | 55-150 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L    | ND          | 20    | 24.8   | 124   | 64-140 |            |
| 1,1,2-Trichloroethane          | ug/L    | ND          | 20    | 24.4   | 122   | 67-137 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L    | ND          | 20    | 26.7   | 133   | 51-150 |            |
| 1,1-Dichloroethane             | ug/L    | ND          | 20    | 24.7   | 123   | 49-150 |            |
| 1,1-Dichloroethene             | ug/L    | ND          | 20    | 23.2   | 116   | 40-150 |            |
| 1,1-Dichloropropene            | ug/L    | ND          | 20    | 23.3   | 116   | 50-150 |            |
| 1,2,3-Trichlorobenzene         | ug/L    | ND          | 20    | 22.9   | 114   | 59-148 |            |
| 1,2,3-Trichloropropane         | ug/L    | ND          | 20    | 22.9   | 114   | 65-141 |            |
| 1,2,4-Trichlorobenzene         | ug/L    | ND          | 20    | 23.4   | 117   | 61-140 |            |
| 1,2,4-Trimethylbenzene         | ug/L    | ND          | 20    | 20.8   | 103   | 58-141 |            |
| 1,2-Dibromo-3-chloropropane    | ug/L    | ND          | 50    | 57.9   | 116   | 53-150 |            |
| 1,2-Dibromoethane (EDB)        | ug/L    | ND          | 20    | 24.3   | 122   | 65-137 |            |
| 1,2-Dichlorobenzene            | ug/L    | ND          | 20    | 22.5   | 113   | 66-133 |            |
| 1,2-Dichloroethane             | ug/L    | ND          | 20    | 21.0   | 105   | 54-138 |            |
| 1,2-Dichloropropane            | ug/L    | ND          | 20    | 24.0   | 120   | 62-138 |            |
| 1,3,5-Trimethylbenzene         | ug/L    | ND          | 20    | 21.3   | 107   | 58-140 |            |
| 1,3-Dichlorobenzene            | ug/L    | ND          | 20    | 20.5   | 103   | 66-132 |            |
| 1,3-Dichloropropane            | ug/L    | ND          | 20    | 23.5   | 118   | 66-134 |            |
| 1,4-Dichlorobenzene            | ug/L    | ND          | 20    | 20.3   | 102   | 65-129 |            |
| 2,2-Dichloropropane            | ug/L    | ND          | 20    | 23.4   | 117   | 40-150 |            |
| 2-Butanone (MEK)               | ug/L    | ND          | 100   | 142    | 142   | 51-147 |            |
| 2-Chlorotoluene                | ug/L    | ND          | 20    | 21.3   | 106   | 58-147 |            |
| 4-Chlorotoluene                | ug/L    | ND          | 20    | 21.8   | 109   | 64-138 |            |
| 4-Methyl-2-pentanone (MIBK)    | ug/L    | ND          | 100   | 132    | 132   | 59-143 |            |
| Acetone                        | ug/L    | ND          | 100   | 143    | 143   | 63-147 | SS         |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



### **QUALITY CONTROL DATA**

Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| MATRIX SPIKE SAMPLE:                   | 2162588      |             |          |              |       |                  |       |
|----------------------------------------|--------------|-------------|----------|--------------|-------|------------------|-------|
| _                                      |              | 10333461006 | Spike    | MS           | MS    | % Rec            |       |
| Parameter                              | Units        | Result      | Conc.    | Result       | % Rec | Limits Qualit    | tiers |
| Allyl chloride                         | ug/L         | ND          | 20       | 24.4         | 122   | 45-150           |       |
| Benzene                                | ug/L         | ND          | 20       | 23.0         | 115   | 53-139           |       |
| Bromobenzene                           | ug/L         | ND          | 20       | 21.2         | 106   | 66-136           |       |
| Bromochloromethane                     | ug/L         | ND          | 20       | 21.1         | 105   | 64-136           |       |
| Bromodichloromethane                   | ug/L         | ND          | 20       | 22.2         | 111   | 66-138           |       |
| Bromoform                              | ug/L         | ND          | 20       | 20.1         | 101   | 59-136           |       |
| Bromomethane                           | ug/L         | ND          | 20       | 15.6         | 78    | 30-150           |       |
| Carbon tetrachloride                   | ug/L         | ND          | 20       | 18.7         | 93    | 56-150           |       |
| Chlorobenzene                          | ug/L         | ND          | 20       | 20.5         | 102   | 65-133           |       |
| Chloroethane                           | ug/L         | ND          | 20       | 21.1         | 106   | 48-150           |       |
| Chloroform                             | ug/L         | ND          | 20       | 23.8         | 115   | 57-145           |       |
| Chloromethane                          | ug/L         | ND          | 20       | 25.8         | 129   | 30-150           |       |
| cis-1,2-Dichloroethene                 | ug/L         | ND          | 20       | 23.4         | 117   | 49-150           |       |
| cis-1,3-Dichloropropene                | ug/L         | ND          | 20       | 21.7         | 109   | 64-130           |       |
| Dibromochloromethane                   | ug/L         | ND          | 20       | 20.8         | 104   | 68-138           |       |
| Dibromomethane                         | ug/L         | ND          | 20       | 21.6         | 108   | 67-134           |       |
| Dichlorodifluoromethane                | ug/L         | ND          | 20       | 24.8         | 124   | 45-150           |       |
| Dichlorofluoromethane                  | ug/L         | ND          | 20       | 21.3         | 107   | 54-150           |       |
| Diethyl ether (Ethyl ether)            | ug/L         | ND          | 20       | 22.8         | 114   | 50-145           |       |
| Ethylbenzene                           | ug/L         | ND          | 20       | 20.8         | 104   | 55-139           |       |
| Hexachloro-1,3-butadiene               | ug/L         | ND          | 20       | 21.6         | 108   | 49-150           |       |
| Isopropylbenzene (Cumene)              | ug/L         | ND          | 20       | 19.2         | 96    | 64-142           |       |
| Methyl-tert-butyl ether                | ug/L         | ND          | 20       | 22.5         | 113   | 62-129           |       |
| Methylene Chloride                     | ug/L         | ND          | 20       | 20.2         | 101   | 57-132           |       |
| n-Butylbenzene                         | ug/L         | ND          | 20       | 22.9         | 115   | 55-150           |       |
| n-Propylbenzene                        | ug/L         | ND          | 20       | 19.9         | 99    | 59-142           |       |
| Naphthalene                            | ug/L         | ND          | 20       | 23.2         | 116   | 51-150           |       |
| p-Isopropyltoluene                     | ug/L         | ND          | 20       | 21.8         | 109   | 60-149           |       |
| sec-Butylbenzene                       | ug/L         | ND          | 20       | 19.7         | 99    | 60-150           |       |
| Styrene                                | ug/L         | ND          | 20       | 21.5         | 107   | 68-134           |       |
| tert-Butylbenzene                      | ug/L         | ND          | 20       | 20.6         | 103   | 62-146           |       |
| Tetrachloroethene                      | ug/L         | 67.8        | 20       | 123          | 276   | 50-150 M1        |       |
| Tetrahydrofuran                        | ug/L         | ND          | 200      | 297          | 148   | 59-145 M1,SS     |       |
| Toluene                                | ug/L         | ND          | 200      | 21.2         | 106   | 52-148           |       |
| trans-1,2-Dichloroethene               | ug/L         | ND          | 20       | 24.0         | 120   | 45-150           |       |
| trans-1,3-Dichloropropene              | ug/L         | ND          | 20       | 21.8         | 109   | 68-132           |       |
| Trichloroethene                        | ug/L         | ND          | 20       | 22.0         | 110   | 52-150           |       |
| Trichloroethene Trichlorofluoromethane | ug/L<br>ug/L | ND<br>ND    | 20       | 18.6         | 93    | 52-150<br>55-150 |       |
|                                        | _            | ND<br>ND    | 20<br>20 |              |       |                  |       |
| Vinyl chloride                         | ug/L         | ND<br>ND    | 60       | 22.5<br>60.8 | 112   | 43-150           |       |
| Xylene (Total)                         | ug/L         | ND          | 00       | 8.00         | 101   | 54-144<br>75-125 |       |
| 1,2-Dichloroethane-d4 (S)              | %.           |             |          |              | 107   | 75-125           |       |
| 4-Bromofluorobenzene (S)               | %.           |             |          |              | 103   | 75-125           |       |
| Toluene-d8 (S)                         | %.           |             |          |              | 100   | 75-125           |       |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL DATA**

Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| SAMPLE DUPLICATE: 2162589      |              |                       |               |     |            |            |
|--------------------------------|--------------|-----------------------|---------------|-----|------------|------------|
| Parameter                      | Units        | 10333461007<br>Result | Dup<br>Result | RPD | Max<br>RPD | Qualifiers |
| 1,1,1,2-Tetrachloroethane      | ug/L         |                       | ND            |     | 30         |            |
| 1,1,1-Trichloroethane          | ug/L         | ND                    | ND            |     | 30         |            |
| 1,1,2,2-Tetrachloroethane      | ug/L         | ND                    | ND            |     | 30         |            |
| 1,1,2-Trichloroethane          | ug/L         | ND                    | ND            |     | 30         |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L         | ND                    | ND            |     | 30         |            |
| 1,1-Dichloroethane             | ug/L         | ND                    | ND            |     | 30         |            |
| 1,1-Dichloroethene             | ug/L         | ND                    | ND            |     | 30         |            |
| 1,1-Dichloropropene            | ug/L         | ND                    | ND            |     | 30         |            |
| 1,2,3-Trichlorobenzene         | ug/L         | ND                    | ND            |     | 30         |            |
| 1,2,3-Trichloropropane         | ug/L         | ND                    | ND            |     | 30         |            |
| 1,2,4-Trichlorobenzene         | ug/L         | ND                    | ND            |     | 30         |            |
| 1,2,4-Trimethylbenzene         | ug/L         | ND                    | ND            |     | 30         |            |
| 1,2-Dibromo-3-chloropropane    | ug/L         | ND                    | ND            |     | 30         |            |
| 1,2-Dibromoethane (EDB)        | ug/L         | ND                    | ND            |     | 30         |            |
| 1,2-Dichlorobenzene            | ug/L         | ND                    | ND            |     | 30         |            |
| 1,2-Dichloroethane             | ug/L         | ND                    | ND            |     | 30         |            |
| 1,2-Dichloropropane            | ug/L         | ND                    | ND            |     | 30         |            |
| 1,3,5-Trimethylbenzene         | ug/L         | ND                    | ND            |     | 30         |            |
| 1,3-Dichlorobenzene            | ug/L         | ND                    | ND            |     | 30         |            |
| 1,3-Dichloropropane            | ug/L         | ND                    | ND            |     | 30         |            |
| 1,4-Dichlorobenzene            | ug/L         | ND                    | ND            |     | 30         |            |
| 2,2-Dichloropropane            | ug/L         | ND                    | ND            |     | 30         |            |
| 2-Butanone (MEK)               | _            | ND                    | ND<br>ND      |     | 30         |            |
| 2-Chlorotoluene                | ug/L         | ND                    | ND<br>ND      |     | 30         |            |
| 4-Chlorotoluene                | ug/L<br>ug/L | ND<br>ND              | ND<br>ND      |     | 30         |            |
|                                | _            | ND<br>ND              | ND<br>ND      |     | 30         |            |
| 4-Methyl-2-pentanone (MIBK)    | ug/L         | ND<br>ND              |               |     | 30         |            |
| Acetone                        | ug/L         | ND<br>ND              | ND            |     |            |            |
| Allyl chloride                 | ug/L         | ND<br>ND              | ND            |     | 30         |            |
| Benzene                        | ug/L         | ND<br>ND              | ND            |     | 30         |            |
| Bromobenzene                   | ug/L         | ND<br>ND              | ND            |     | 30         |            |
| Bromochloromethane             | ug/L         |                       | ND            |     | 30         |            |
| Bromodichloromethane           | ug/L         | ND                    | ND            |     | 30         |            |
| Bromoform                      | ug/L         | ND                    | ND            |     | 30         |            |
| Bromomethane                   | ug/L         | ND                    | ND            |     | 30         |            |
| Carbon tetrachloride           | ug/L         | ND                    | ND            |     | 30         |            |
| Chlorobenzene                  | ug/L         | ND                    | ND            |     | 30         |            |
| Chloroethane                   | ug/L         | ND                    | ND            |     | 30         |            |
| Chloroform                     | ug/L         | ND                    | .79J          |     | 30         |            |
| Chloromethane                  | ug/L         | ND                    | ND            |     | 30         |            |
| cis-1,2-Dichloroethene         | ug/L         | ND                    | ND            |     | 30         |            |
| cis-1,3-Dichloropropene        | ug/L         | ND                    | ND            |     | 30         |            |
| Dibromochloromethane           | ug/L         | ND                    | ND            |     | 30         |            |
| Dibromomethane                 | ug/L         | ND                    | ND            |     | 30         |            |
| Dichlorodifluoromethane        | ug/L         | ND                    | ND            |     | 30         |            |
| Dichlorofluoromethane          | ug/L         | ND                    | ND            |     | 30         |            |
| Diethyl ether (Ethyl ether)    | ug/L         | ND                    | ND            |     | 30         |            |
| Ethylbenzene                   | ug/L         | ND                    | ND            |     | 30         |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL DATA**

Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| SAMPLE DUPLICATE: 2162589 |       |             |        |     |     |            |
|---------------------------|-------|-------------|--------|-----|-----|------------|
|                           |       | 10333461007 | Dup    |     | Max |            |
| Parameter                 | Units | Result      | Result | RPD | RPD | Qualifiers |
| Hexachloro-1,3-butadiene  | ug/L  | ND          | ND     |     | 30  |            |
| Isopropylbenzene (Cumene) | ug/L  | ND          | ND     |     | 30  |            |
| Methyl-tert-butyl ether   | ug/L  | ND          | ND     |     | 30  |            |
| Methylene Chloride        | ug/L  | ND          | ND     |     | 30  |            |
| n-Butylbenzene            | ug/L  | ND          | ND     |     | 30  |            |
| n-Propylbenzene           | ug/L  | ND          | ND     |     | 30  |            |
| Naphthalene               | ug/L  | ND          | ND     |     | 30  |            |
| p-Isopropyltoluene        | ug/L  | ND          | ND     |     | 30  |            |
| sec-Butylbenzene          | ug/L  | ND          | ND     |     | 30  |            |
| Styrene                   | ug/L  | ND          | ND     |     | 30  |            |
| tert-Butylbenzene         | ug/L  | ND          | ND     |     | 30  |            |
| Tetrachloroethene         | ug/L  | 146         | 158    | 8   | 30  |            |
| Tetrahydrofuran           | ug/L  | ND          | ND     |     | 30  |            |
| Toluene                   | ug/L  | ND          | ND     |     | 30  |            |
| trans-1,2-Dichloroethene  | ug/L  | ND          | ND     |     | 30  |            |
| trans-1,3-Dichloropropene | ug/L  | ND          | ND     |     | 30  |            |
| Trichloroethene           | ug/L  | ND          | ND     |     | 30  |            |
| Trichlorofluoromethane    | ug/L  | ND          | ND     |     | 30  |            |
| Vinyl chloride            | ug/L  | ND          | ND     |     | 30  |            |
| Xylene (Total)            | ug/L  | ND          | ND     |     | 30  |            |
| 1,2-Dichloroethane-d4 (S) | %.    | 102         | 106    | 4   |     |            |
| 4-Bromofluorobenzene (S)  | %.    | 105         | 102    | 3   |     |            |
| Toluene-d8 (S)            | %.    | 99          | 97     | 2   |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALIFIERS**

Project: CrC
Pace Project No.: 10333461

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### **ANALYTE QUALIFIERS**

SS

Date: 12/23/2015 04:03 PM

| CL | The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.                                                |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L0 | Analyte recovery in the laboratory control sample (LCS) was outside QC limits.                                                                                              |
| L1 | Analyte recovery in the laboratory control sample (LCS) was above QC limits. Results may be biased high.                                                                    |
| L3 | Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias. |
| M1 | Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.                                                                 |

This analyte did not meet the secondary source verification criteria for the initial calibration. The reported result should be considered an estimated value.



### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: CrC
Pace Project No.: 10333461

Date: 12/23/2015 04:03 PM

| ab ID      | Sample ID  | QC Batch Method | QC Batch  | Analytical Method | Analytica<br>Batch |  |  |
|------------|------------|-----------------|-----------|-------------------|--------------------|--|--|
| 0333461001 | DPE-1      | EPA 8260B       | MSV/34137 |                   |                    |  |  |
| 0333461002 | DPE-2      | EPA 8260B       | MSV/34137 |                   |                    |  |  |
| 0333461003 | DPE-3      | EPA 8260B       | MSV/34137 |                   |                    |  |  |
| 0333461004 | DPE-4      | EPA 8260B       | MSV/34182 |                   |                    |  |  |
| 0333461005 | DPE-5      | EPA 8260B       | MSV/34182 |                   |                    |  |  |
| 0333461006 | DPE-6      | EPA 8260B       | MSV/34137 |                   |                    |  |  |
| 0333461007 | DPE-7      | EPA 8260B       | MSV/34137 |                   |                    |  |  |
| 0333461008 | DPE-8      | EPA 8260B       | MSV/34137 |                   |                    |  |  |
| 0333461009 | MW-14      | EPA 8260B       | MSV/34137 |                   |                    |  |  |
| 0333461010 | MW-15      | EPA 8260B       | MSV/34137 |                   |                    |  |  |
| 0333461011 | MW-16      | EPA 8260B       | MSV/34137 |                   |                    |  |  |
| 0333461012 | MW-17      | EPA 8260B       | MSV/34137 |                   |                    |  |  |
| 0333461013 | MW-18      | EPA 8260B       | MSV/34137 |                   |                    |  |  |
| 0333461014 | MW-19      | EPA 8260B       | MSV/34182 |                   |                    |  |  |
| 0333461015 | MW-20      | EPA 8260B       | MSV/34182 |                   |                    |  |  |
| 0333461016 | Trip Blank | EPA 8260B       | MSV/34137 |                   |                    |  |  |

# CHAIN-OF-CUSTODY / Analytical Request Document

Pace Analytical www.pacelabs.com

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately

192550

860 88 3 700 200 ટ્ટ 50 500 Pace Project No./ Lab I.D. (N/Y) DRINKING WATER Samples Intact F-ALL-Q-020rev.07, 15-May-2007 SAMPLE CONDITIONS 7887 OTHER (N/Y) Custody Sealed Cooler ₽ (D) Ice (Y/N) GROUND WATER Received on Residual Chlorine (Y/N) O° ni qmeT Page: REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/N) TIME STATE Site Location NPDES DATE 2 UST N DATE Signed (MM/DD/YY): ACCEPTED BY NAFFILIATION . V 2000/120 teaT sisylanA N/A Other Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days Methanol Preservatives Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> HOBN HCI Invoice Information: Company Name: Pace Quote Reference: Pace Project Manager: Pace Profile #: <sup>†</sup>OS<sup>Z</sup>H Section C Unpreserved Attention: TIME Address: # OF CONTAINERS SAMPLER NAME AND SIGNATURE SIGNATURE of SAMPLER: PRINT Name of SAMPLER: 12115/15 landon Meny Com CODY TO, CONCALL O LANDINGANILL MAN, COM SAMPLE TEMP AT COLLECTION DATE TIME COMPOSITE END/GRAB が最后が DATE COLLECTED RELINQUISHED BY / AFFILIATION R 15:50 16:35 50.9 50.4 all book A CO 16:25 15:15 TIME COMPOSITE Report To: Silvanos Shall DATE Required Project Information: -Purchase Order No.: (G=GRAB C=COMP) SAMPLE TYPE Project Number: (see valid codes to left) MATRIX CODE Project Name: Section B ORIGINAL Matrix Codes
MATRIX / CODE Drinking Water Water mail To: Koramostach / was beaust Censs.co Waste Water Product Soil/Solid Oil Wipe Air Tissue Other nvioninale ADDITIONAL COMMENTS 2 12 5 (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE 00000 00000 3 0 PR - 5 Sand mark DPE-2 S-JAG 7-360 8-300 772 135 SAMPLE ID 1300 Section A Required Olient Information: Required Client Information Requested Due Date/TAT: Section D Sompany: F 12 က 9 00 10 # MaTI N ~ Ø Page 46 of 48

## Pace Analytical www.pacelabs.com

# CHAIN-OF-CUSTODY / Analytical Request Document

A CONTRACTOR OF THE PARTY OF TH

1233461

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

DRINKING WATER 1979942 OTHER ğ NPDES GROUND WATER IT Page: REGULATORY AGENCY RCRA Site Location STATE UST Invoice Information: Company Name: Pace Quote Reference: Pace Project Manager: Pace Profile #: Section C Attention: Address: produce Reservices front front Const. Com Report To: SKinger Stad Q 9 Krall 6 Section B Required Project Information: Purchase Order No.: Project Number: Project Name: Copy To: 🗸 15 Kramstal Olan Jackens. Company Chalman Barom received Section A Required Client Information: Requested Due Date/TAT: Email To: Address: Phone:

Requested Analysis Filtered (Y/N)

|                                       |                                                                   | Pace Project No./ Lab I.D.               | <10° | 230 | -510° |   | Harmania de la Carte de Carte |          |           |       |         | Manage and the second s | THE PROPERTY OF THE PROPERTY O | SAMPLE CONDITIONS             | 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - |     |             | (Y/N) stody d Cooler (Y/N)                  | eol<br>uO<br>else2<br>) |
|---------------------------------------|-------------------------------------------------------------------|------------------------------------------|------|-----|-------|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------|-----|-------------|---------------------------------------------|-------------------------|
|                                       | (N/X) €                                                           | Residual Chlorine                        |      |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | ri<br>S                                 | ,   |             | O° ni qi                                    |                         |
|                                       |                                                                   |                                          |      |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                         |     |             | J, u, u.                                    |                         |
|                                       |                                                                   |                                          |      |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TIME                          | 162                                     |     |             |                                             |                         |
|                                       |                                                                   |                                          | -    |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE                          | 7                                       |     |             |                                             | 2/15                    |
|                                       | **********                                                        |                                          | -    |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           |       | +       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - a                           | 2/2                                     |     |             | •                                           | 2/6                     |
|                                       |                                                                   | ÷                                        |      |     | 2     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 1         |       |         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d<br>ĕ                        |                                         | - 1 |             |                                             | gned<br>YY):            |
|                                       |                                                                   | 570 A                                    |      |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ACCEPTED BY / AFFILIATION     | Leg                                     |     |             |                                             | DATE Signed (MM/DD/YY): |
| N/A                                   | 1                                                                 | Is9T sisylsnA                            |      | >   |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | */                            | 7                                       |     |             | 13                                          |                         |
|                                       |                                                                   | Methanol<br>Other                        | F    |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPTED                         | K                                       |     |             | 13                                          |                         |
| Preservatives                         |                                                                   | NaOH<br>So <sub>s</sub> O <sub>s</sub> o | F    |     | ,     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | -         | -     | 1       | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ] ₩                           | M                                       |     |             | 25                                          |                         |
| esen                                  |                                                                   | HCI<br>HNO <sup>3</sup>                  |      |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           | 1     | 1       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                             |                                         |     | 0.000 miles | 13                                          | 1                       |
| ٩                                     |                                                                   | <sup>♭</sup> OS <sup>z</sup> H           |      |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | $\exists$ | $\pm$ | $\perp$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                             | <b></b>                                 |     |             |                                             | - 3                     |
|                                       | 9                                                                 | # OF CONTAINER                           |      |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\dashv$ | -         | +     | +       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TIME                          |                                         |     |             |                                             |                         |
| Oktoberatatiosal                      |                                                                   | SAMPLE TEMP AT                           | 800  | ~   | 8     |   | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -        |           | +     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 1/2                                     |     | -           | GR:                                         | E:                      |
|                                       |                                                                   | TIME                                     |      |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DATE                          | 2/15/                                   |     |             | AND SIGNATURE THE OF SAMPLER:               | f SAMPL                 |
| TED                                   | COMPOSITE<br>END/GRAB                                             | DATE                                     | ┝    |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | ****                                    |     |             | R NAME AND SIGNATUR! PRINT Name of SAMPLER: | SIGNATURE of SAMPLER:   |
| COLLECTED                             | Щ                                                                 | TIME                                     | LA   | T.  | 5:52  |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RELINQUISHED BY / AFFILIATION |                                         |     |             | SAMPLER NAME A                              | Si                      |
|                                       | COMPOSITE                                                         | DATE                                     | 65   |     | 4     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        |           |       |         | ***************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ED BY / A                     | 1/1                                     |     |             | <i>o</i>                                    |                         |
| (awc                                  | =GRAB C=CC                                                        |                                          | C    |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        |           |       | -       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NQUISH                        |                                         | •   |             |                                             |                         |
| (i)el oi                              | see valid codes                                                   | MATRIX CODE                              | 3    | 3   | 5     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                         |     |             |                                             |                         |
| 흥성                                    | Drinking Water DW Water WT Waste Water WW Product P Soil/Soild SL | Wipe WE Air AR Tissue TS Other OT        | Ş    |     | 20    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S                             |                                         |     |             | ORIGINAL                                    |                         |
| Section D Required Client Information |                                                                   | Sample IDs MUST BE UNIQUE                | 3 2  | 3   | 9     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ADDITIONAL COMMENTS           |                                         |     |             |                                             |                         |
|                                       |                                                                   | ITEM #                                   | -    | 7   | 3     | 4 | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ဖ        | ~         | œ     | 6       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | l                                       |     |             | age 47                                      | of 49                   |

## Pace Analytical\*

## Document Name: Sample Condition Upon Receipt Form

Document No.:

F-MN-L-213-rev.13

Document Revised: 23Feb2015 Page 1 of 1

Issuing Authority: Pace Minnesota Quality Office

| Sample Condition Upon Receipt  Lankman                                                                                                                                      |              |                                         | Project         | #: WO#:10333461                                                                                                                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                             | Ducco        | r.K.                                    |                 | # # # #                                                                                                                                                                              |
| Courier:                                                                                                                                                                    | USPS Other:  |                                         | Client          |                                                                                                                                                                                      |
|                                                                                                                                                                             | Jotner:_     |                                         |                 | 10333461                                                                                                                                                                             |
| Custody Seal on Cooler/Box Present? Yes                                                                                                                                     | 0 9          | Seals Int                               | act?            | Yes No Optional: Proj. Due Date: Proj. Name:                                                                                                                                         |
| Packing Material: Bubble Wrap Bubble Bags                                                                                                                                   | None         | е 🗀                                     | Other:          | Temp Blank? Øves □No                                                                                                                                                                 |
| Thermometer ☐ B88A9130516413 ☐ B88A9121675 Used: ☑ B88A0143310                                                                                                              | 04<br>098    | e of Ice:                               | We              | t Blue None Samples on ice, cooling process has beg                                                                                                                                  |
| Cooler Temp Read (°C): 12 Cooler Temp Coremp should be above freezing to 6°C Correction Fac                                                                                 | rrected (°C) |                                         | <u>S</u><br>Dat | Biological Tissue Frozen? Yes No No                                                                                                                                                  |
| JSDA Regulated Soil ( 🗹 N/A, water sample)                                                                                                                                  |              |                                         |                 | 7-W 1-U                                                                                                                                                                              |
| id samples originate in a quarantine zone within the United<br>IS, NC, NM, NY, OK, OR, SC, TN, TX or WA (check maps)?  If Yes to either question, fill out a Re             | •            |                                         | Yes             | <ul> <li>ID, LA. Did samples originate from a foreign source (internationally, No including Hawaii and Puerto Rico)?</li> <li>Q-338) and include with SCUR/COC paperwork.</li> </ul> |
|                                                                                                                                                                             |              |                                         |                 | COMMENTS:                                                                                                                                                                            |
| Chain of Custody Present?                                                                                                                                                   | [☑Yeş        | □No                                     | □N/A            | 1.                                                                                                                                                                                   |
| Chain of Custody Filled Out?                                                                                                                                                | É Yes        | □No                                     | □n/a            | 2.                                                                                                                                                                                   |
| Chain of Custody Relinquished?                                                                                                                                              | ZY98         | □No                                     | □N/A            | 3.                                                                                                                                                                                   |
| Sampler Name and/or Signature on COC?                                                                                                                                       | Yes          | √□No                                    | □n/A            | 4.                                                                                                                                                                                   |
| Samples Arrived within Hold Time?                                                                                                                                           | []\Yes       | □No                                     | □N/A            | 5.                                                                                                                                                                                   |
| Short Hold Time Analysis (<72 hr)?                                                                                                                                          | Yes          | No                                      | □N/A            | 6.                                                                                                                                                                                   |
| Rush Turn Around Time Requested?                                                                                                                                            | Yes          | No                                      | □n/A            | 7.                                                                                                                                                                                   |
| Sufficient Volume?                                                                                                                                                          | V Yes        | □No                                     | □N/A            | 8.                                                                                                                                                                                   |
| Correct Containers Used?                                                                                                                                                    | Yes          | □No                                     | □N/A            | 9.                                                                                                                                                                                   |
| -Pace Containers Used?                                                                                                                                                      | ✓ Yes        | □No                                     | □n/A            |                                                                                                                                                                                      |
| Containers Intact?                                                                                                                                                          | Yes          | □No                                     | □n/A            | 10.                                                                                                                                                                                  |
| Filtered Volume Received for Dissolved Tests?                                                                                                                               | □Yes         | □No                                     | N/A             | 11. Note if sediment is visible in the dissolved container                                                                                                                           |
| Sample Labels Match COC?                                                                                                                                                    | Yes          | □No                                     | □N/A            | 12.                                                                                                                                                                                  |
| -Includes Date/Time/ID/Analysis Matrix: // All containers needing acid/base preservation have been                                                                          |              | *************************************** |                 |                                                                                                                                                                                      |
| checked?  All containers needing preservation are found to be in                                                                                                            | □Yes         | □No                                     | ⊠N/A            | 13.                                                                                                                                                                                  |
| compliance with EPA recommendation?<br>(HNO3, H <sub>2</sub> SO <sub>3</sub> , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)<br>Exceptions: (XOA, Coliform, TOC, Oil and Grease, | □Yes         | □No                                     | ØN/A            | Initial when Lot # of added                                                                                                                                                          |
| DRO/8015 (water) DOC                                                                                                                                                        | Yes          | □No                                     | □N/A            | completed: preservative:                                                                                                                                                             |
| Headspace in VOA Vials ( >6mm)?                                                                                                                                             | □Yes         | ØΝο.                                    | □n/a            | 14.                                                                                                                                                                                  |
| Trip Blank Present?                                                                                                                                                         | 12 yes       | □No                                     | □N/A            | 15.                                                                                                                                                                                  |
| Trip Blank Custody Seals Present?  Pace Trip Blank Lot # (if purchased): 120815-0                                                                                           | Yes          | □No                                     | □n/a            |                                                                                                                                                                                      |
| CLIENT NOTIFICATION/RESOLUTION                                                                                                                                              |              |                                         |                 | Field Data Required? Yes No                                                                                                                                                          |
| Person Contacted:                                                                                                                                                           |              |                                         |                 | Date/Time:                                                                                                                                                                           |
| Comments/Resolution:                                                                                                                                                        |              |                                         |                 |                                                                                                                                                                                      |
|                                                                                                                                                                             | /)           | 0                                       | b '             | 0 10 - 1                                                                                                                                                                             |
| Project Manager Review:                                                                                                                                                     |              | />                                      | 101             | Date: De C / (0, 20) / S                                                                                                                                                             |





January 14, 2016

Mr. Jason Skramstad Landmark Environmental 2042 W. 98th. St. Minneapolis, MN 55431

RE: Project: City of Rochester

Pace Project No.: 10335669

### Dear Mr. Skramstad:

Enclosed are the analytical results for sample(s) received by the laboratory on January 12, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Oyeyemi Odujole oyeyemi.odujole@pacelabs.com Project Manager

**Enclosures** 





Pace Analytical www.pacelabs.com

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

### **CERTIFICATIONS**

Project: City of Rochester
Pace Project No.: 10335669

**Green Bay Certification IDs** 

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 Virginia VELAP ID: 460263

North Dakota Certification #: R-150 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 US Dept of Agriculture #: S-76505 Virginia VELAP Certification ID: 460263 Virginia VELAP ID: 460263 Wisconsin Certification #: 405132750





### **SAMPLE SUMMARY**

Project: City of Rochester

Pace Project No.: 10335669

| Lab ID      | Sample ID    | Matrix | Date Collected | Date Received  |
|-------------|--------------|--------|----------------|----------------|
| 10335669001 | AS-Inflluent | Water  | 01/11/16 16:00 | 01/12/16 09:45 |
| 10335669002 | AS-Efflluent | Water  | 01/11/16 17:00 | 01/12/16 09:45 |

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700



### **SAMPLE ANALYTE COUNT**

Project: City of Rochester

Pace Project No.: 10335669

| Lab ID      | Sample ID    | Method  | Analysts | Analytes<br>Reported | Laboratory |
|-------------|--------------|---------|----------|----------------------|------------|
| 10335669001 | AS-Infiluent | EPA 624 | LAP      | 70                   | PASI-G     |
| 10335669002 | AS-Efflluent | EPA 624 | LAP      | 70                   | PASI-G     |





Dibromochloromethane

Dichlorodifluoromethane

Diethyl ether (Ethyl ether)

Hexachloro-1,3-butadiene

Date: 01/14/2016 04:23 PM

Isopropylbenzene (Cumene)

Dichlorofluoromethane

Dibromomethane

Ethylbenzene

### **ANALYTICAL RESULTS**

Project: City of Rochester
Pace Project No.: 10335669

Sample: AS-Inflluent Lab ID: 10335669001 Collected: 01/11/16 16:00 Received: 01/12/16 09:45 Matrix: Water **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 624 624 Volatile Organics 1,1,1,2-Tetrachloroethane ND ug/L 1.0 1 01/13/16 18:38 630-20-6 ND 01/13/16 18:38 71-55-6 1,1,1-Trichloroethane ug/L 1.0 1 ND 1.1.2.2-Tetrachloroethane ug/L 1.0 01/13/16 18:38 79-34-5 1 1,1,2-Trichloroethane ND ug/L 01/13/16 18:38 79-00-5 1.0 1 1,1,2-Trichlorotrifluoroethane ND ug/L 5.0 1 01/13/16 18:38 76-13-1 1,1-Dichloroethane ND ug/L 1.0 1 01/13/16 18:38 75-34-3 1,1-Dichloroethene ND ug/L 1.0 1 01/13/16 18:38 75-35-4 1,1-Dichloropropene ND ug/L 1.0 1 01/13/16 18:38 563-58-6 1,2,3-Trichlorobenzene ND ug/L 5.0 1 01/13/16 18:38 87-61-6 1,2,3-Trichloropropane ND ug/L 1.0 1 01/13/16 18:38 96-18-4 1,2,4-Trichlorobenzene ND ug/L 5.0 01/13/16 18:38 120-82-1 1 1,2,4-Trimethylbenzene ND ug/L 1.0 01/13/16 18:38 95-63-6 1 ND 5.0 1,2-Dibromo-3-chloropropane ug/L 1 01/13/16 18:38 96-12-8 01/13/16 18:38 106-93-4 1,2-Dibromoethane (EDB) ND ug/L 1.0 1 ND 01/13/16 18:38 95-50-1 1,2-Dichlorobenzene ug/L 1.0 1 1,2-Dichloroethane ND ug/L 1.0 1 01/13/16 18:38 107-06-2 1,2-Dichloropropane ND ug/L 1.0 1 01/13/16 18:38 78-87-5 1,3,5-Trimethylbenzene ND ug/L 1.0 1 01/13/16 18:38 108-67-8 1,3-Dichlorobenzene ND ug/L 1.0 01/13/16 18:38 541-73-1 1 ND 1,3-Dichloropropane ug/L 1.0 1 01/13/16 18:38 142-28-9 1,4-Dichlorobenzene ND ug/L 1.0 1 01/13/16 18:38 106-46-7 2,2-Dichloropropane ND ug/L 1.0 01/13/16 18:38 594-20-7 1 2-Butanone (MEK) ND ug/L 20.0 01/13/16 18:38 78-93-3 1 2-Chlorotoluene ND 1.0 01/13/16 18:38 95-49-8 ug/L 1 4-Chlorotoluene ND ug/L 1.0 01/13/16 18:38 106-43-4 1 4-Methyl-2-pentanone (MIBK) ND ug/L 20.0 1 01/13/16 18:38 108-10-1 Acetone ND ug/L 20.0 1 01/13/16 18:38 67-64-1 Allyl chloride ND ug/L 5.0 1 01/13/16 18:38 107-05-1 Benzene ND ug/L 1.0 1 01/13/16 18:38 71-43-2 ND ug/L 1.0 01/13/16 18:38 108-86-1 Bromobenzene 1 ND Bromochloromethane ug/L 1.0 1 01/13/16 18:38 74-97-5 ND Bromodichloromethane ug/L 1.0 1 01/13/16 18:38 75-27-4 Bromoform ND ua/L 5.0 1 01/13/16 18:38 75-25-2 **Bromomethane** ND ug/L 5.0 1 01/13/16 18:38 74-83-9 ND Carbon tetrachloride ug/L 1.0 1 01/13/16 18:38 56-23-5 01/13/16 18:38 108-90-7 ND Chlorobenzene ug/L 1.0 1 01/13/16 18:38 75-00-3 ND Chloroethane 1.0 ug/L 1 01/13/16 18:38 67-66-3 ND 5.0 Chloroform ug/L 1 Chloromethane ND ug/L 1.0 1 01/13/16 18:38 74-87-3

### **REPORT OF LABORATORY ANALYSIS**

5.0

1.0

1.0

1.0

5.0

1.0

5.0

1.0

1

1

1

1

1

1

1

1

ND

ND

ND

ND

ND

ND

NΠ

NΠ

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

01/13/16 18:38 124-48-1

01/13/16 18:38 74-95-3

01/13/16 18:38 75-71-8

01/13/16 18:38 75-43-4

01/13/16 18:38 60-29-7

01/13/16 18:38 100-41-4

01/13/16 18:38 87-68-3

01/13/16 18:38 98-82-8



Project: City of Rochester

Pace Project No.: 10335669

Date: 01/14/2016 04:23 PM

| Sample: AS-Inflluent                           | Lab ID: 10335669001 |             | Collected: 01/11/1 | 6 16:00 | Received: 01/12/16 09:45 | Matrix: Water |     |  |
|------------------------------------------------|---------------------|-------------|--------------------|---------|--------------------------|---------------|-----|--|
| Parameters                                     | Results             | Units       | Report Limit       | DF      | Prepared Analyzed        | CAS No.       | Qua |  |
| 624 Volatile Organics                          | Analytical Meth     | nod: EPA 62 | 24                 |         |                          |               |     |  |
| Methyl-tert-butyl ether                        | ND                  | ug/L        | 1.0                | 1       | 01/13/16 18:             | 88 1634-04-4  |     |  |
| Methylene Chloride                             | ND                  | ug/L        | 1.0                | 1       | 01/13/16 18:             | 88 75-09-2    |     |  |
| Naphthalene                                    | ND                  | ug/L        | 5.0                | 1       | 01/13/16 18:             | 88 91-20-3    |     |  |
| Styrene                                        | ND                  | ug/L        | 1.0                | 1       | 01/13/16 18:             | 88 100-42-5   |     |  |
| Tetrachloroethene                              | 21.2                | ug/L        | 1.0                | 1       | 01/13/16 18:             | 88 127-18-4   |     |  |
| Tetrahydrofuran                                | ND                  | ug/L        | 5.0                | 1       | 01/13/16 18:             | 88 109-99-9   |     |  |
| Toluene                                        | ND                  | ug/L        | 1.0                | 1       | 01/13/16 18:             | 88 108-88-3   |     |  |
| Trichloroethene                                | ND                  | ug/L        | 1.0                | 1       | 01/13/16 18:             | 88 79-01-6    |     |  |
| Trichlorofluoromethane                         | ND                  | ug/L        | 1.0                | 1       | 01/13/16 18:             | 88 75-69-4    |     |  |
| Vinyl chloride                                 | ND                  | ug/L        | 1.0                | 1       | 01/13/16 18:             | 88 75-01-4    |     |  |
| Xylene (Total)                                 | ND                  | ug/L        | 3.0                | 1       | 01/13/16 18:             | 88 1330-20-7  |     |  |
| cis-1,2-Dichloroethene                         | ND                  | ug/L        | 1.0                | 1       | 01/13/16 18:             | 88 156-59-2   |     |  |
| cis-1,3-Dichloropropene                        | ND                  | ug/L        | 5.0                | 1       | 01/13/16 18:             | 88 10061-01-5 |     |  |
| n-Butylbenzene                                 | ND                  | ug/L        | 1.0                | 1       | 01/13/16 18:             | 88 104-51-8   |     |  |
| n-Propylbenzene                                | ND                  | ug/L        | 1.0                | 1       | 01/13/16 18:             | 88 103-65-1   |     |  |
| p-Isopropyltoluene                             | ND                  | ug/L        | 1.0                | 1       | 01/13/16 18:             | 88 99-87-6    |     |  |
| sec-Butylbenzene                               | ND                  | ug/L        | 5.0                | 1       | 01/13/16 18:             | 88 135-98-8   |     |  |
| tert-Butylbenzene                              | ND                  | ug/L        | 1.0                | 1       | 01/13/16 18:             | 88 98-06-6    |     |  |
| trans-1,2-Dichloroethene                       | ND                  | ug/L        | 1.0                | 1       | 01/13/16 18:             | 88 156-60-5   |     |  |
| trans-1,3-Dichloropropene<br><b>Surrogates</b> | ND                  | ug/L        | 20.0               | 1       | 01/13/16 18:             | 88 10061-02-6 |     |  |
| Dibromofluoromethane (S)                       | 104                 | %           | 70-130             | 1       | 01/13/16 18:             | 88 1868-53-7  |     |  |
| 4-Bromofluorobenzene (S)                       | 98                  | %           | 70-130             | 1       | 01/13/16 18:             | 88 460-00-4   |     |  |
| Toluene-d8 (S)                                 | 99                  | %           | 70-130             | 1       | 01/13/16 18:3            | 88 2037-26-5  |     |  |





Project: City of Rochester

Pace Project No.: 10335669

Date: 01/14/2016 04:23 PM

| Sample: AS-Efflluent              | Lab ID: 10    | Lab ID: 10335669002 |              | 6 17:00 | Received: | 01/12/16 09:45 | 15 Matrix: Water |     |  |
|-----------------------------------|---------------|---------------------|--------------|---------|-----------|----------------|------------------|-----|--|
| Parameters                        | Results       | Units               | Report Limit | DF      | Prepared  | Analyzed       | CAS No.          | Qua |  |
| S24 Volatile Organics             | Analytical Me | ethod: EPA 62       | 24           |         |           |                |                  |     |  |
| 1,1,1,2-Tetrachloroethane         | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 | 630-20-6         |     |  |
| 1,1,1-Trichloroethane             | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 | 71-55-6          |     |  |
| 1,1,2,2-Tetrachloroethane         | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 | 79-34-5          |     |  |
| 1,1,2-Trichloroethane             | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 | 79-00-5          |     |  |
| 1,1,2-Trichlorotrifluoroethane    | ND            | ug/L                | 5.0          | 1       |           | 01/14/16 13:40 | 76-13-1          |     |  |
| 1,1-Dichloroethane                | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 | 75-34-3          |     |  |
| ,1-Dichloroethene                 | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 | 75-35-4          |     |  |
| 1,1-Dichloropropene               | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 | 563-58-6         |     |  |
| 1,2,3-Trichlorobenzene            | ND            | ug/L                | 5.0          | 1       |           | 01/14/16 13:40 | 87-61-6          |     |  |
| 1,2,3-Trichloropropane            | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 | 96-18-4          |     |  |
| ,2,4-Trichlorobenzene             | ND            | ug/L                | 5.0          | 1       |           | 01/14/16 13:40 | 120-82-1         |     |  |
| ,2,4-Trimethylbenzene             | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 | 95-63-6          |     |  |
| I,2-Dibromo-3-chloropropane       | ND            | ug/L                | 5.0          | 1       |           | 01/14/16 13:40 |                  |     |  |
| ,2-Dibromoethane (EDB)            | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 |                  |     |  |
| ,2-Dichlorobenzene                | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 |                  |     |  |
| ,2-Dichloroethane                 | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 |                  |     |  |
| ,2-Dichloropropane                | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 |                  |     |  |
| ,3,5-Trimethylbenzene             | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 |                  |     |  |
| ,3-Dichlorobenzene                | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 |                  |     |  |
| ,3-Dichloropropane                | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 |                  |     |  |
| ,4-Dichlorobenzene                | ND            | ug/L<br>ug/L        | 1.0          | 1       |           | 01/14/16 13:40 |                  |     |  |
| ,4-Dichloropropane                | ND<br>ND      | •                   | 1.0          | 1       |           | 01/14/16 13:40 |                  |     |  |
| · ·                               | ND<br>ND      | ug/L                | 20.0         | 1       |           | 01/14/16 13:40 |                  |     |  |
| -Butanone (MEK)<br>-Chlorotoluene | ND<br>ND      | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 |                  |     |  |
|                                   |               | ug/L                |              | 1       |           |                |                  |     |  |
| -Chlorotoluene                    | ND            | ug/L                | 1.0          |         |           | 01/14/16 13:40 |                  |     |  |
| I-Methyl-2-pentanone (MIBK)       | ND<br>56.3    | ug/L                | 20.0         | 1<br>1  |           | 01/14/16 13:40 |                  |     |  |
| Acetone                           | 56.3          | ug/L                | 20.0         |         |           | 01/14/16 13:40 |                  |     |  |
| Allyl chloride                    | ND            | ug/L                | 5.0          | 1       |           | 01/14/16 13:40 |                  |     |  |
| Benzene                           | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 |                  |     |  |
| Bromobenzene                      | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 |                  |     |  |
| Bromochloromethane                | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 |                  |     |  |
| Bromodichloromethane              | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 |                  |     |  |
| Bromoform                         | ND            | ug/L                | 5.0          | 1       |           | 01/14/16 13:40 |                  |     |  |
| Bromomethane                      | ND            | ug/L                | 5.0          | 1       |           | 01/14/16 13:40 |                  |     |  |
| Carbon tetrachloride              | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 |                  |     |  |
| Chlorobenzene                     | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 |                  |     |  |
| Chloroethane                      | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 |                  |     |  |
| Chloroform                        | ND            | ug/L                | 5.0          | 1       |           | 01/14/16 13:40 | 67-66-3          |     |  |
| Chloromethane                     | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 | 74-87-3          |     |  |
| Dibromochloromethane              | ND            | ug/L                | 5.0          | 1       |           | 01/14/16 13:40 | 124-48-1         |     |  |
| Dibromomethane                    | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 | 74-95-3          |     |  |
| Dichlorodifluoromethane           | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 | 75-71-8          |     |  |
| Dichlorofluoromethane             | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 | 75-43-4          |     |  |
| Diethyl ether (Ethyl ether)       | ND            | ug/L                | 5.0          | 1       |           | 01/14/16 13:40 | 60-29-7          |     |  |
| thylbenzene                       | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 | 100-41-4         |     |  |
| lexachloro-1,3-butadiene          | ND            | ug/L                | 5.0          | 1       |           | 01/14/16 13:40 | 87-68-3          |     |  |
| sopropylbenzene (Cumene)          | ND            | ug/L                | 1.0          | 1       |           | 01/14/16 13:40 | 98-82-8          |     |  |



Project: City of Rochester

Pace Project No.: 10335669

Date: 01/14/2016 04:23 PM

| Sample: AS-Efflluent                           | Lab ID: 10335669002 |             | Collected: 01/11/1 | 6 17:00 | Received: 01/12/16 09:45 | Matrix: Water |     |  |
|------------------------------------------------|---------------------|-------------|--------------------|---------|--------------------------|---------------|-----|--|
| Parameters                                     | Results             | Units       | Report Limit       | DF      | Prepared Analyzed        | CAS No.       | Qua |  |
| 624 Volatile Organics                          | Analytical Meth     | nod: EPA 62 | 24                 |         |                          |               |     |  |
| Methyl-tert-butyl ether                        | ND                  | ug/L        | 1.0                | 1       | 01/14/16 13:4            | 0 1634-04-4   |     |  |
| Methylene Chloride                             | ND                  | ug/L        | 1.0                | 1       | 01/14/16 13:4            | 0 75-09-2     |     |  |
| Naphthalene                                    | ND                  | ug/L        | 5.0                | 1       | 01/14/16 13:4            | 0 91-20-3     |     |  |
| Styrene                                        | ND                  | ug/L        | 1.0                | 1       | 01/14/16 13:4            | 0 100-42-5    |     |  |
| Tetrachloroethene                              | ND                  | ug/L        | 1.0                | 1       | 01/14/16 13:4            | 0 127-18-4    |     |  |
| Tetrahydrofuran                                | ND                  | ug/L        | 5.0                | 1       | 01/14/16 13:4            | 0 109-99-9    |     |  |
| Toluene                                        | ND                  | ug/L        | 1.0                | 1       | 01/14/16 13:4            | 0 108-88-3    |     |  |
| Trichloroethene                                | ND                  | ug/L        | 1.0                | 1       | 01/14/16 13:4            | 79-01-6       |     |  |
| Trichlorofluoromethane                         | ND                  | ug/L        | 1.0                | 1       | 01/14/16 13:4            | 75-69-4       |     |  |
| Vinyl chloride                                 | ND                  | ug/L        | 1.0                | 1       | 01/14/16 13:4            | 0 75-01-4     |     |  |
| Xylene (Total)                                 | ND                  | ug/L        | 3.0                | 1       | 01/14/16 13:4            | 0 1330-20-7   |     |  |
| cis-1,2-Dichloroethene                         | ND                  | ug/L        | 1.0                | 1       | 01/14/16 13:4            | 0 156-59-2    |     |  |
| cis-1,3-Dichloropropene                        | ND                  | ug/L        | 5.0                | 1       | 01/14/16 13:4            | 0 10061-01-5  |     |  |
| n-Butylbenzene                                 | ND                  | ug/L        | 1.0                | 1       | 01/14/16 13:4            | 0 104-51-8    |     |  |
| n-Propylbenzene                                | ND                  | ug/L        | 1.0                | 1       | 01/14/16 13:4            | 0 103-65-1    |     |  |
| p-Isopropyltoluene                             | ND                  | ug/L        | 1.0                | 1       | 01/14/16 13:4            | 0 99-87-6     |     |  |
| sec-Butylbenzene                               | ND                  | ug/L        | 5.0                | 1       | 01/14/16 13:4            | 0 135-98-8    |     |  |
| tert-Butylbenzene                              | ND                  | ug/L        | 1.0                | 1       | 01/14/16 13:4            | 0 98-06-6     |     |  |
| trans-1,2-Dichloroethene                       | ND                  | ug/L        | 1.0                | 1       | 01/14/16 13:4            | 0 156-60-5    |     |  |
| trans-1,3-Dichloropropene<br><b>Surrogates</b> | ND                  | ug/L        | 20.0               | 1       | 01/14/16 13:4            | 0 10061-02-6  |     |  |
| Dibromofluoromethane (S)                       | 106                 | %           | 70-130             | 1       | 01/14/16 13:4            | 0 1868-53-7   |     |  |
| 4-Bromofluorobenzene (S)                       | 100                 | %           | 70-130             | 1       | 01/14/16 13:4            | 0 460-00-4    |     |  |
| Toluene-d8 (S)                                 | 100                 | %           | 70-130             | 1       | 01/14/16 13:4            | 0 2037-26-5   |     |  |



### **QUALITY CONTROL DATA**

Project: City of Rochester

Pace Project No.: 10335669

QC Batch: MSV/31873 Analysis Method: EPA 624
QC Batch Method: EPA 624 Analysis Description: 624 MSV

Associated Lab Samples: 10335669001, 10335669002

METHOD BLANK: 1283100 Matrix: Water

Associated Lab Samples:

Date: 01/14/2016 04:23 PM

|                                |       | Blank  | Reporting |                |            |
|--------------------------------|-------|--------|-----------|----------------|------------|
| Parameter                      | Units | Result | Limit     | Analyzed       | Qualifiers |
| 1,1,1,2-Tetrachloroethane      | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,1,1-Trichloroethane          | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,1,2-Trichloroethane          | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L  | ND     | 5.0       | 01/13/16 14:54 |            |
| 1,1-Dichloroethane             | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,1-Dichloroethene             | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,1-Dichloropropene            | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,2,3-Trichlorobenzene         | ug/L  | ND     | 5.0       | 01/13/16 14:54 |            |
| 1,2,3-Trichloropropane         | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,2,4-Trichlorobenzene         | ug/L  | ND     | 5.0       | 01/13/16 14:54 |            |
| 1,2,4-Trimethylbenzene         | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,2-Dibromo-3-chloropropane    | ug/L  | ND     | 5.0       | 01/13/16 14:54 |            |
| 1,2-Dibromoethane (EDB)        | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,2-Dichlorobenzene            | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,2-Dichloroethane             | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,2-Dichloropropane            | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,3,5-Trimethylbenzene         | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,3-Dichlorobenzene            | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,3-Dichloropropane            | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,4-Dichlorobenzene            | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| 2,2-Dichloropropane            | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| 2-Butanone (MEK)               | ug/L  | ND     | 20.0      | 01/13/16 14:54 |            |
| 2-Chlorotoluene                | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| 4-Chlorotoluene                | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| 4-Methyl-2-pentanone (MIBK)    | ug/L  | ND     | 5.0       | 01/13/16 14:54 |            |
| Acetone                        | ug/L  | ND     | 20.0      | 01/13/16 14:54 |            |
| Allyl chloride                 | ug/L  | ND     | 5.0       | 01/13/16 14:54 |            |
| Benzene                        | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Bromobenzene                   | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Bromochloromethane             | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Bromodichloromethane           | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Bromoform                      | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Bromomethane                   | ug/L  | ND     | 5.0       | 01/13/16 14:54 |            |
| Carbon tetrachloride           | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Chlorobenzene                  | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Chloroethane                   | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Chloroform                     | ug/L  | ND     | 5.0       | 01/13/16 14:54 |            |
| Chloromethane                  | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| cis-1,2-Dichloroethene         | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| cis-1,3-Dichloropropene        | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL DATA**

Project: City of Rochester

Pace Project No.: 10335669

METHOD BLANK: 1283100 Matrix: Water

Associated Lab Samples:

Date: 01/14/2016 04:23 PM

|                             |       | Blank  | Reporting |                |            |
|-----------------------------|-------|--------|-----------|----------------|------------|
| Parameter                   | Units | Result | Limit     | Analyzed       | Qualifiers |
| Dibromochloromethane        | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Dibromomethane              | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Dichlorodifluoromethane     | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Dichlorofluoromethane       | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Diethyl ether (Ethyl ether) | ug/L  | ND     | 5.0       | 01/13/16 14:54 |            |
| Ethylbenzene                | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Hexachloro-1,3-butadiene    | ug/L  | ND     | 5.0       | 01/13/16 14:54 |            |
| Isopropylbenzene (Cumene)   | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Methyl-tert-butyl ether     | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Methylene Chloride          | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| n-Butylbenzene              | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| n-Propylbenzene             | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Naphthalene                 | ug/L  | ND     | 5.0       | 01/13/16 14:54 |            |
| p-Isopropyltoluene          | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| sec-Butylbenzene            | ug/L  | ND     | 5.0       | 01/13/16 14:54 |            |
| Styrene                     | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| tert-Butylbenzene           | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Tetrachloroethene           | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Tetrahydrofuran             | ug/L  | ND     | 5.0       | 01/13/16 14:54 |            |
| Toluene                     | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| trans-1,2-Dichloroethene    | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| trans-1,3-Dichloropropene   | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Trichloroethene             | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Trichlorofluoromethane      | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Vinyl chloride              | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Xylene (Total)              | ug/L  | ND     | 3.0       | 01/13/16 14:54 |            |
| 4-Bromofluorobenzene (S)    | %     | 99     | 70-130    | 01/13/16 14:54 |            |
| Dibromofluoromethane (S)    | %     | 102    | 70-130    | 01/13/16 14:54 |            |
| Toluene-d8 (S)              | %     | 99     | 70-130    | 01/13/16 14:54 |            |

| LABORATORY CONTROL SAMPLE:     | 1283101 |       |        |       |        |            |
|--------------------------------|---------|-------|--------|-------|--------|------------|
|                                |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                      | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,1,1-Trichloroethane          | ug/L    | 20    | 21.2   | 106   | 70-130 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L    | 20    | 18.4   | 92    | 70-130 |            |
| 1,1,2-Trichloroethane          | ug/L    | 20    | 19.9   | 100   | 70-130 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L    | 20    | 21.7   | 109   | 50-150 |            |
| 1,1-Dichloroethane             | ug/L    | 20    | 19.4   | 97    | 70-130 |            |
| 1,1-Dichloroethene             | ug/L    | 20    | 20.5   | 103   | 70-130 |            |
| 1,2,4-Trichlorobenzene         | ug/L    | 20    | 19.5   | 98    | 70-130 |            |
| 1,2-Dibromo-3-chloropropane    | ug/L    | 20    | 19.7   | 99    | 50-150 |            |
| 1,2-Dibromoethane (EDB)        | ug/L    | 20    | 19.6   | 98    | 70-130 |            |
| 1,2-Dichlorobenzene            | ug/L    | 20    | 21.1   | 105   | 70-130 |            |
| 1,2-Dichloroethane             | ug/L    | 20    | 20.2   | 101   | 70-131 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL DATA**

Project: City of Rochester

Pace Project No.: 10335669

Date: 01/14/2016 04:23 PM

| LABORATORY CONTROL SAMPLE: | 1283101 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| I,2-Dichloropropane        | ug/L    | 20    | 19.7   | 99    | 70-130 |            |
| 1,3-Dichlorobenzene        | ug/L    | 20    | 20.8   | 104   | 70-130 |            |
| 1,4-Dichlorobenzene        | ug/L    | 20    | 21.8   | 109   | 70-130 |            |
| Benzene                    | ug/L    | 20    | 19.4   | 97    | 70-130 |            |
| Bromodichloromethane       | ug/L    | 20    | 20.6   | 103   | 70-130 |            |
| Bromoform                  | ug/L    | 20    | 18.1   | 90    | 68-130 |            |
| Bromomethane               | ug/L    | 20    | 16.4   | 82    | 38-137 |            |
| Carbon tetrachloride       | ug/L    | 20    | 20.9   | 105   | 70-130 |            |
| Chlorobenzene              | ug/L    | 20    | 20.9   | 104   | 70-130 |            |
| Chloroethane               | ug/L    | 20    | 15.4   | 77    | 70-136 |            |
| Chloroform                 | ug/L    | 20    | 21.7   | 108   | 70-130 |            |
| Chloromethane              | ug/L    | 20    | 18.8   | 94    | 48-144 |            |
| is-1,2-Dichloroethene      | ug/L    | 20    | 19.6   | 98    | 70-130 |            |
| is-1,3-Dichloropropene     | ug/L    | 20    | 20.5   | 103   | 70-130 |            |
| Dibromochloromethane       | ug/L    | 20    | 19.4   | 97    | 70-130 |            |
| Pichlorodifluoromethane    | ug/L    | 20    | 19.8   | 99    | 33-157 |            |
| Ethylbenzene               | ug/L    | 20    | 21.1   | 105   | 70-132 |            |
| sopropylbenzene (Cumene)   | ug/L    | 20    | 22.7   | 114   | 70-130 |            |
| Methyl-tert-butyl ether    | ug/L    | 20    | 20.4   | 102   | 48-141 |            |
| Methylene Chloride         | ug/L    | 20    | 18.3   | 92    | 70-130 |            |
| Styrene                    | ug/L    | 20    | 21.4   | 107   | 70-130 |            |
| etrachloroethene           | ug/L    | 20    | 19.7   | 98    | 70-130 |            |
| oluene                     | ug/L    | 20    | 20.0   | 100   | 70-130 |            |
| rans-1,2-Dichloroethene    | ug/L    | 20    | 20.3   | 102   | 70-130 |            |
| rans-1,3-Dichloropropene   | ug/L    | 20    | 20.0   | 100   | 70-130 |            |
| richloroethene             | ug/L    | 20    | 20.6   | 103   | 70-130 |            |
| Trichlorofluoromethane     | ug/L    | 20    | 21.1   | 106   | 50-150 |            |
| 'inyl chloride             | ug/L    | 20    | 19.9   | 100   | 65-142 |            |
| (Ylene (Total)             | ug/L    | 60    | 62.6   | 104   | 70-132 |            |
| 1-Bromofluorobenzene (S)   | %       |       |        | 106   | 70-130 |            |
| Dibromofluoromethane (S)   | %       |       |        | 103   | 70-130 |            |
| Toluene-d8 (S)             | %       |       |        | 97    | 70-130 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALIFIERS**

Project: City of Rochester
Pace Project No.: 10335669

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### **LABORATORIES**

Date: 01/14/2016 04:23 PM

PASI-G Pace Analytical Services - Green Bay





### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: City of Rochester

Pace Project No.: 10335669

Date: 01/14/2016 04:23 PM

| Lab ID      | Sample ID    | QC Batch Method | QC Batch  | Analytical Method | Analytical<br>Batch |
|-------------|--------------|-----------------|-----------|-------------------|---------------------|
| 10335669001 | AS-Inflluent | EPA 624         | MSV/31873 | _                 |                     |
| 10335669002 | AS-Efflluent | EPA 624         | MSV/31873 |                   |                     |

# CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical www.pacelabs.com

Pace Project No./ Lab I.D. (N/X) **DRINKING WATER** F-ALL-Q-020rev.07, 15-May-2007 SAMPLE CONDITIONS 980565 OTHER (N/X) Custody Sealed Cooler L Ice (Y/N) Received on GROUND WATER Residual Chlorine (Y/N) O° ni qmeT REGULATORY AGENCY RCRA 9.45 Requested Analysis Filtered (Y/N) TIME 5 Site Location STATE NPDES DATE UST description of the second Ö DATE Signed (MM/DD/YY): ACCEPTED BY / AFFILIATION 250000 h79 403 J tesT elevisnA J ÎN/ Other SEC Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days. Methanol Preservatives Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> HOBN Attention: She Faren HCI Invoice Information: HNO<sup>3</sup> Company Name: Manager: Pace Profile #: <sup>⊅</sup>OS<sup>Z</sup>H 4.00 6 Pace Quote Reference: Pace Project Section C Unpreserved TIME Address: # OF CONTAINERS SAMPLER NAME AND SIGNATURE SIGNATURE of SAMPLER: PRINT Name of SAMPLER: 9 SAMPLE TEMP AT COLLECTION DATE Parel pacer 18 CALL CON kara Ana ana TIME COMPOSITE END/GRAB 乃っるかか DATE COLLECTED RELINQUISHED BY / AFFILIATION 4:00 2,00 TIME COMPOSITE START ( In 126 Report To, M. Strulo DATE 4 Required Project Information: COPYTO: CUCKO Project Name: Ō D Purchase Order No.: SAMPLE TYPE (G=GRAB C=COMP) Project Number: (see valid codes to left) **AMATRIX CODE** ORIGINAL Š 굑꼭옥譥셨잖다 Matrix Codes Drinking Water Email IO: S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Charles (Common Stad Charles ) S / Common Stad Charles (Common Stad Cha Waste Water Eng. Youngar Product Soil/Solid Oil Wipe Air Tissue Other 202 ADDITIONAL COMMENTS 300 かった へ (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE Requested Due Date/TAT: 🔰 🤵 SAMPLE ID Required Client Information Company Man Man Man Section A Required Client Information: Address: 42 W Blooms 100 Section D 6 9 Ξ 12 # MaTI ო 4 ĸ 9 8 Page 14 of 17



### Document Name:

### Sample Condition Upon Receipt Form

Document No.:

F-MN-L-213-rev.15

Document Revised: 05Jan2016 Page 1 of 1

Issuing Authority: Pace Minnesota Quality Office

Sample Condition

Client Name:

Project #: 10#: 10335669

| I CINCIMATE GVIN                                                                                                      | ronw           | unte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ì l                | MOIL TANDOOQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                       | USPS           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Client             | 100 March 1997   100 Ma |
|                                                                                                                       | Other:         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Tracking Number: 7821 4520 8039                                                                                       | other          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 10335669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                       |                | ~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    | Optional: Proj. Due Date: Proj. Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ustody Seal on Cooler/Box Present? Yes No                                                                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | act?               | ]Yes L_INO L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| acking Material: Bubble Wrap Bubble Bags                                                                              | Non            | е 🔲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Other:             | Temp Blank? Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| hermometer ☐ 151401163 ☐ B88A91216750<br>Used: ☐ 151401164 ☐ B88A01433100                                             |                | e of Ice:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>₽</b> We        | t Blue None Samples on ice, cooling process has beg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ooler Temp Read (°C): 1.2 Cooler Temp Cor                                                                             | rected (°C)    | : 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                  | Biological Tissue Frozen? Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| mp should be above freezing to 6°C Correction Fact                                                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dat                | e and Initials of Person Examining Contents: WIB 1 12/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DA Regulated Soil (N/A, water sample)                                                                                 |                | ND 47 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . 51 64            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| d samples originate in a quarantine zone within the United S<br>5, NC, NM, NY, OK, OR, SC, TN, TX or WA (check maps)? | states: AL, A  | λR, ΑΖ, C <i>i</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A, FL, GA,<br>MYes | ID, LA. Did samples originate from a foreign source (internationally,  \bigcap No including Hawaii and Puerto Rico)? \bigcap Yes \bigcap N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                       | ulated Soil    | Checkli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L                  | Q-338) and include with SCUR/COC paperwork.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| hain of Custody Present?                                                                                              | Yes            | □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | □N/A               | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| hain of Custody Filled Out?                                                                                           | Yes            | □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | □N/A               | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| hain of Custody Relinquished?                                                                                         | Yes            | □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | □N/A               | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ampler Name and/or Signature on COC?                                                                                  | Yes            | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | □N/A               | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| amples Arrived within Hold Time?                                                                                      | ✓ Yes □ vos    | □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | □N/A               | 5.<br>6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| hort Hold Time Analysis (<72 hr)? ush Turn Around Time Requested?                                                     | Yes<br>- ✓ Yes | No<br>□No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N/A<br>N/A         | 7.48 hours                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ush Turn Arouna Time Requested?                                                                                       | Yes            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IN/A<br>□N/A       | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| prrect Containers Used?                                                                                               | Yes            | □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -Pace Containers Used?                                                                                                | Yes            | □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | □N/A               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ontainers Intact?                                                                                                     | Ves            | □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | □N/A               | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| iltered Volume Received for Dissolved Tests?                                                                          | □Yes           | □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DATA               | 11. Note if sediment is visible in the dissolved container                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ample Labels Match COC?                                                                                               | ₽Ves           | □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | □N/A               | 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -Includes Date/Time/ID/Analysis Matrix:                                                                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Il containers needing acid/base preservation have been                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 13. ☐HNO₃ ☐H₂SO₄ ☐NaOH ☐HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| hecked?<br>Il containers needing preservation are found to be in                                                      | Yes            | □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>□</b> N/A       | Sample #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ompliance with EPA recommendation?                                                                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide)                          | ☐Yes           | □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                | Initial whon Lat # afadded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| xceptions VOA Coliform, TOC, Oil and Grease,<br>RO/8015 (water) DOC                                                   | <b>□</b> ¥€s   | □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | □N/A               | Initial when Lot # of added completed: preservative:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| eadspace in VOA Vials ( >6mm)?                                                                                        | □Yes           | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | □N/A               | 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| rip Blank Present?                                                                                                    | Yes            | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | □N/A               | 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| rip Blank Custody Seals Present?                                                                                      | ∐Yes           | □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ₽N/A               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ace Trip Blank Lot # (if purchased):                                                                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CLIENT NOTIFICATION/RESOLUTION                                                                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Field Data Required? Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Person Contacted:                                                                                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Comments/Resolution:                                                                                                  | ·              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                       |                | and the same of th |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                       | / F            | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>- )</del>     | ( ) 2 2 3 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Manager-Review.                                                                                               | /              | $\omega u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - /                | Date: Len 18,0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

Page 15 of 17

## Chain of Custody

SW Kol 27042 17 Pace Analytigal www.pacelab@com

| Cooler Temperature on Receipt   | 3 2                          |                      | Transfers Released By |          | 4 70 | 2 AS-Effluent                       | 1 AS-Influent                           | Item Sample ID                          | Minneapolis, MN 55414<br>Phone (612)607-1700<br>Fax (612)607-6444 | Oyeyemi Odujole Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 | Report To          | Workorder: 10335669               |
|---------------------------------|------------------------------|----------------------|-----------------------|----------|------|-------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------|-----------------------------------|
| n Receipt 1.5_°C   Custody Seal | 1-13-11                      | - Machin Melle istoc | Date/Time Received By |          |      | 1/02 PS 1/11/2016 17:00 10335669002 | 00   PS   1/11/2016 16:00   10335669001 | Sample Collect<br>Type Date/Time Lab ID |                                                                   |                                                                           | Subcontract To     | Workorder Name: City of Rochester |
| Y or Received on Ice Y          | Juhan Janumarane 1-13/100045 |                      | d By Date/Time        |          |      | )2 Water 3                          | )1 Water 3 X                            | Matrix  HCL  VOC 624                    | 4302<br>436<br>Preserved Containers                               | reen Bay<br>eet                                                           |                    | Owner Received Date:              |
| or Samples Intact               |                              |                      |                       | Comments |      |                                     |                                         |                                         |                                                                   |                                                                           | Requested Analysis | 1/12/2016 Results Requested By:   |
| y or                            | 3)                           |                      |                       |          |      |                                     | 2-41/m/5                                | LAB USE ONLY                            |                                                                   |                                                                           |                    | 1/14/2016                         |

<sup>\*\*\*</sup>In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.

### Pace Analytical\*

### Sample Condition Upon Receipt

Pace Analytical Services, Inc. 1241 Bellevue Street, Suite 9 Green Bay, WI 54302

| Client Name: Pace MN                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Proj                   | ect #: WO#                  | : 40127042                       |
|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------|----------------------------------|
| Courier: Fed Ex F UPS F Client F P Tracking #: 9582910                                                             | ace Other: \under                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ho                     | -                           |                                  |
| Custody Seal on Cooler/Box Present: 1 ye                                                                           | c = no Socialista                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>_</u>               |                             | 2                                |
| Custody Seal on Samples Present:  yes                                                                              | 7 no Seals intai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ct: T yes              | no L                        |                                  |
| Packing Material:   Bubble Wrap / Bu                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | one F Other            | r<br>r                      |                                  |
| Thermometer UsedS7-55                                                                                              | Type of Ice: Ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | 7                           |                                  |
| Cooler Temperature Uncorr: 1.5 /Corr:                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | is Frozen: Tyes             | n ice, cooling process has begun |
| Temp Blank Present: 7 yes no                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | □ no                        | Person examining contents:       |
| Temp should be above freezing to 6°C for all sample $\epsilon$ Frozen Biota Samples should be received $\leq$ 0°C. | except Biota.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Comments:              | ,                           | Date: 1-13-16                    |
| Chain of Custody Present:                                                                                          | Yes DNo DN/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                             |                                  |
| Chain of Custody Filled Out:                                                                                       | Yes 🗆 No 🗆 N/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del></del>            |                             |                                  |
| Chain of Custody Relinquished:                                                                                     | ØYes □No □N/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |                             |                                  |
| Sampler Name & Signature on COC:                                                                                   | □Yes □No ☑N//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                             |                                  |
| Samples Arrived within Hold Time:                                                                                  | Yes ONO ON/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        |                             |                                  |
| - VOA Samples frozen upon receipt                                                                                  | □Yes □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |                             |                                  |
| Short Hold Time Analysis (<72hr):                                                                                  | □Yes ZNo □N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date/Time:             |                             |                                  |
| Rush Turn Around Time Requested:                                                                                   | ØYes □No □N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                             |                                  |
| Sufficient Volume:                                                                                                 | Yes No NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |                             |                                  |
| Correct Containers Used:                                                                                           | ØYes □No □N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                             |                                  |
| -Pace Containers Used:                                                                                             | ☐Yes ☐No ZÎN/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |                             |                                  |
| -Pace IR Containers Used:                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                      |                             |                                  |
| Containers Intact:                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                      |                             |                                  |
| Filtered volume received for Dissolved tests                                                                       | ØYes □No □N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                             |                                  |
|                                                                                                                    | Yes No N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        |                             |                                  |
| Sample Labels match COC:                                                                                           | ØYes □No □N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12.                    |                             |                                  |
| -Includes date/time/ID/Analysis Matrix:                                                                            | -M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ļ                      |                             |                                  |
| Non-Compliance noted in 13.)                                                                                       | □Yes □No ØN/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13. TH                 | NO3   H2SO4                 | NaOH   NaOH +ZnAct               |
| Il containers needing preservation are found to be in ompliance with EPA recommendation.                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                      |                             |                                  |
| HNO3, H2904 ≤2; NaOH+ZnAct ≥9, NaOH ≥12)                                                                           | □Yes □No ☑N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                             |                                  |
| xceptions VOA coliform, TOC, TOX, TOH,<br>&G, WIDROW, Phenolics, OTHER:                                            | ZYes □No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Initial when completed | Lab Std #ID of preservative | Date/<br>Time:                   |
| leadspace in VOA Vials ( >6mm):                                                                                    | □Yes ØNo □N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14.                    |                             |                                  |
| rip Blank Present:                                                                                                 | □Yes ZNo □N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <del></del>            |                             |                                  |
| rip Blank Custody Seals Present                                                                                    | □Yes □No ØN/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |                             |                                  |
| ace Trip Blank Lot # (if purchased):                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                             | •                                |
| lient Notification/ Resolution:                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | If checked, see attache     | ed form for additional comments  |
| Person Contacted:Comments/ Resolution:                                                                             | Date/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ſime:                  |                             |                                  |
| Comments/ Nesolution;                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                             |                                  |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                             |                                  |
|                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                             |                                  |
| Decine 4 M                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                             |                                  |
| Project Manager Review:                                                                                            | Management and a second as a s |                        | Date:                       | 1/13//6                          |





January 14, 2016

Mr. Jason Skramstad Landmark Environmental 2042 W. 98th. St. Minneapolis, MN 55431

RE: Project: City of Rochester

Pace Project No.: 10335670

### Dear Mr. Skramstad:

Enclosed are the analytical results for sample(s) received by the laboratory on January 12, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Oyeyemi Odujole oyeyemi.odujole@pacelabs.com Project Manager

**Enclosures** 





Pace Analytical www.pacelabs.com

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

### **CERTIFICATIONS**

Project: City of Rochester Pace Project No.: 10335670

**Green Bay Certification IDs** 

1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 Virginia VELAP ID: 460263

North Dakota Certification #: R-150 South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 US Dept of Agriculture #: S-76505 Virginia VELAP Certification ID: 460263 Virginia VELAP ID: 460263 Wisconsin Certification #: 405132750



### **SAMPLE SUMMARY**

Project: City of Rochester

Pace Project No.: 10335670

| Lab ID      | Sample ID  | Matrix | Date Collected | Date Received  |
|-------------|------------|--------|----------------|----------------|
| 10335670001 | DPE-1      | Water  | 01/11/16 16:15 | 01/12/16 09:45 |
| 10335670002 | DPE-2      | Water  | 01/11/16 15:10 | 01/12/16 09:45 |
| 10335670003 | DPE-3      | Water  | 01/11/16 15:50 | 01/12/16 09:45 |
| 10335670004 | DPE-4      | Water  | 01/11/16 15:25 | 01/12/16 09:45 |
| 10335670005 | DPE-5      | Water  | 01/11/16 14:20 | 01/12/16 09:45 |
| 10335670006 | DPE-6      | Water  | 01/11/16 13:50 | 01/12/16 09:45 |
| 10335670007 | DPE-7      | Water  | 01/11/16 13:05 | 01/12/16 09:45 |
| 10335670008 | DPE-8      | Water  | 01/11/16 15:00 | 01/12/16 09:45 |
| 10335670009 | MW-14      | Water  | 01/11/16 13:25 | 01/12/16 09:45 |
| 10335670010 | MW-15      | Water  | 01/11/16 13:45 | 01/12/16 09:45 |
| 10335670011 | MW-16      | Water  | 01/11/16 14:35 | 01/12/16 09:45 |
| 10335670012 | MW-17      | Water  | 01/11/16 17:45 | 01/12/16 09:45 |
| 10335670013 | MW-18      | Water  | 01/11/16 17:55 | 01/12/16 09:45 |
| 10335670014 | MW-19      | Water  | 01/11/16 12:40 | 01/12/16 09:45 |
| 10335670015 | MW-20      | Water  | 01/11/16 14:15 | 01/12/16 09:45 |
| 10335670016 | TRIP BLANK | Water  | 01/11/16 00:00 | 01/12/16 09:45 |





### **SAMPLE ANALYTE COUNT**

Project: City of Rochester

Pace Project No.: 10335670

| Lab ID      | Sample ID  | Method   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|------------|----------|----------|----------------------|------------|
| 10335670001 | DPE-1      | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10335670002 | DPE-2      | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10335670003 | DPE-3      | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10335670004 | DPE-4      | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10335670005 | DPE-5      | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10335670006 | DPE-6      | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10335670007 | DPE-7      | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10335670008 | DPE-8      | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10335670009 | MW-14      | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10335670010 | MW-15      | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10335670011 | MW-16      | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10335670012 | MW-17      | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10335670013 | MW-18      | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10335670014 | MW-19      | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10335670015 | MW-20      | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10335670016 | TRIP BLANK | EPA 8260 | LAP      | 70                   | PASI-G     |



### **ANALYTICAL RESULTS**

Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: DPE-1                  | Lab ID: 103    | 35670001     | Collected: 01/11/1 | 6 16:15 | Received: | 01/12/16 09:45             | Matrix: Water |     |
|--------------------------------|----------------|--------------|--------------------|---------|-----------|----------------------------|---------------|-----|
| Parameters                     | Results        | Units        | Report Limit       | DF      | Prepared  | Analyzed                   | CAS No.       | Qua |
| 8260 MSV                       | Analytical Met | nod: EPA 82  | 260                |         |           |                            |               |     |
| 1,1,1,2-Tetrachloroethane      | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              | 1 630-20-6    |     |
| 1,1,1-Trichloroethane          | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              | 1 71-55-6     |     |
| 1,1,2,2-Tetrachloroethane      | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              | 1 79-34-5     |     |
| 1,1,2-Trichloroethane          | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              | 1 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane | 71.4           | ug/L         | 50.0               | 10      |           | 01/14/16 11:1              | 1 76-13-1     |     |
| 1,1-Dichloroethane             | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              | 1 75-34-3     |     |
| 1,1-Dichloroethene             | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              | 1 75-35-4     |     |
| 1,1-Dichloropropene            | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              | 1 563-58-6    |     |
| 1,2,3-Trichlorobenzene         | ND             | ug/L         | 50.0               | 10      |           | 01/14/16 11:1              | 1 87-61-6     |     |
| 1,2,3-Trichloropropane         | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              | 1 96-18-4     |     |
| 1,2,4-Trichlorobenzene         | ND             | ug/L         | 50.0               | 10      |           | 01/14/16 11:1              |               |     |
| 1,2,4-Trimethylbenzene         | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              |               |     |
| 1,2-Dibromo-3-chloropropane    | ND             | ug/L         | 50.0               | 10      |           | 01/14/16 11:1              |               |     |
| 1,2-Dibromoethane (EDB)        | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              |               |     |
| 1,2-Dichlorobenzene            | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              |               |     |
| 1,2-Dichloroethane             | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              |               |     |
| 1,2-Dichloropropane            | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              |               |     |
| 1,3,5-Trimethylbenzene         | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              |               |     |
| ,3-Dichlorobenzene             | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              |               |     |
| 1,3-Dichloropropane            | ND             | ug/L<br>ug/L | 10.0               | 10      |           | 01/14/16 11:1              |               |     |
| ,,3-Dichloropropane            | ND             | -            | 10.0               | 10      |           | 01/14/16 11:1              |               |     |
| 2,2-Dichloropropane            | ND<br>ND       | ug/L<br>ug/L | 10.0               | 10      |           | 01/14/16 11:1              |               |     |
| 2-Butanone (MEK)               | ND             | ug/L<br>ug/L | 200                | 10      |           | 01/14/16 11:1              |               |     |
| 2-Chlorotoluene                | ND<br>ND       | _            | 10.0               | 10      |           | 01/14/16 11:1              |               |     |
|                                |                | ug/L         |                    |         |           |                            |               |     |
| 4-Chlorotoluene                | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              |               |     |
| 4-Methyl-2-pentanone (MIBK)    | ND             | ug/L         | 200                | 10      |           | 01/14/16 11:1              |               |     |
| Acetone                        | ND             | ug/L         | 200                | 10      |           | 01/14/16 11:1              |               |     |
| Allyl chloride                 | ND             | ug/L         | 50.0               | 10      |           | 01/14/16 11:1              |               |     |
| Benzene                        | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              |               |     |
| Bromobenzene                   | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              |               |     |
| Bromochloromethane             | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              |               |     |
| Bromodichloromethane           | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              |               |     |
| Bromoform .                    | ND             | ug/L         | 50.0               | 10      |           | 01/14/16 11:1              |               |     |
| Bromomethane                   | ND             | ug/L         | 50.0               | 10      |           | 01/14/16 11:1              |               |     |
| Carbon tetrachloride           | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              | 1 56-23-5     |     |
| Chlorobenzene                  | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              |               |     |
| Chloroethane                   | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              |               |     |
| Chloroform                     | ND             | ug/L         | 50.0               | 10      |           | 01/14/16 11:1              | 1 67-66-3     |     |
| Chloromethane                  | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              | 1 74-87-3     |     |
| Dibromochloromethane           | ND             | ug/L         | 50.0               | 10      |           | 01/14/16 11:1              | 1 124-48-1    |     |
| Dibromomethane                 | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              | 1 74-95-3     |     |
| Dichlorodifluoromethane        | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              | 1 75-71-8     |     |
| Dichlorofluoromethane          | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              |               |     |
| Diethyl ether (Ethyl ether)    | ND             | ug/L         | 50.0               | 10      |           | 01/14/16 11:1 <sup>-</sup> | 1 60-29-7     |     |
| Ethylbenzene                   | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              | 1 100-41-4    |     |
| Hexachloro-1,3-butadiene       | ND             | ug/L         | 50.0               | 10      |           | 01/14/16 11:1              |               |     |
| sopropylbenzene (Cumene)       | ND             | ug/L         | 10.0               | 10      |           | 01/14/16 11:1              | 1 98-82-8     |     |





Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: DPE-1             | Lab ID: 103     | 35670001    | Collected: 01/11/1 | 6 16:15 | Received: 01/12/16 09:45 | Matrix: Water |     |
|---------------------------|-----------------|-------------|--------------------|---------|--------------------------|---------------|-----|
| Parameters                | Results         | Units       | Report Limit       | DF      | Prepared Analyzed        | CAS No.       | Qua |
| 8260 MSV                  | Analytical Meth | nod: EPA 82 | 260                |         |                          |               |     |
| Methyl-tert-butyl ether   | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:11           | 1634-04-4     |     |
| Methylene Chloride        | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:11           | 75-09-2       |     |
| Naphthalene               | ND              | ug/L        | 50.0               | 10      | 01/14/16 11:11           | 91-20-3       |     |
| Styrene                   | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:11           | 100-42-5      |     |
| Tetrachloroethene         | 1270            | ug/L        | 10.0               | 10      | 01/14/16 11:11           | 127-18-4      |     |
| Tetrahydrofuran           | ND              | ug/L        | 50.0               | 10      | 01/14/16 11:11           | 109-99-9      |     |
| Toluene                   | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:11           | 108-88-3      |     |
| Trichloroethene           | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:11           | 79-01-6       |     |
| Trichlorofluoromethane    | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:11           | 75-69-4       |     |
| Vinyl chloride            | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:11           | 75-01-4       |     |
| Xylene (Total)            | ND              | ug/L        | 30.0               | 10      | 01/14/16 11:11           | 1330-20-7     |     |
| cis-1,2-Dichloroethene    | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:11           | 156-59-2      |     |
| cis-1,3-Dichloropropene   | ND              | ug/L        | 50.0               | 10      | 01/14/16 11:11           | 10061-01-5    |     |
| n-Butylbenzene            | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:11           | 104-51-8      |     |
| n-Propylbenzene           | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:11           | 103-65-1      |     |
| p-Isopropyltoluene        | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:11           | 99-87-6       |     |
| sec-Butylbenzene          | ND              | ug/L        | 50.0               | 10      | 01/14/16 11:11           | 135-98-8      |     |
| tert-Butylbenzene         | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:11           | 98-06-6       |     |
| trans-1,2-Dichloroethene  | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:11           | 156-60-5      |     |
| trans-1,3-Dichloropropene | ND              | ug/L        | 200                | 10      | 01/14/16 11:11           | 10061-02-6    |     |
| Surrogates                |                 | -           |                    |         |                          |               |     |
| 4-Bromofluorobenzene (S)  | 98              | %           | 70-130             | 10      | 01/14/16 11:11           | 460-00-4      |     |
| Dibromofluoromethane (S)  | 106             | %           | 70-130             | 10      | 01/14/16 11:11           | 1868-53-7     |     |
| Toluene-d8 (S)            | 97              | %           | 70-130             | 10      | 01/14/16 11:11           | 2037-26-5     |     |





Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: DPE-2                  | Lab ID: 10    | 335670002     | Collected: 01/11/1 | 6 15:10 | Received: | 01/12/16 09:45 | Matrix: Water |     |
|--------------------------------|---------------|---------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                     | Results       | Units         | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 3260 MSV                       | Analytical Me | ethod: EPA 82 | 260                |         |           |                |               |     |
| 1,1,1,2-Tetrachloroethane      | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 | 3 630-20-6    |     |
| 1,1,1-Trichloroethane          | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 | 3 71-55-6     |     |
| 1,1,2,2-Tetrachloroethane      | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 | 3 79-34-5     |     |
| 1,1,2-Trichloroethane          | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 | 3 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane | 72.1          | ug/L          | 50.0               | 10      |           | 01/14/16 10:48 | 3 76-13-1     |     |
| 1,1-Dichloroethane             | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 | 3 75-34-3     |     |
| ,1-Dichloroethene              | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 | 3 75-35-4     |     |
| 1,1-Dichloropropene            | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 | 3 563-58-6    |     |
| 1,2,3-Trichlorobenzene         | ND            | ug/L          | 50.0               | 10      |           | 01/14/16 10:48 | 87-61-6       |     |
| 1,2,3-Trichloropropane         | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 | 3 96-18-4     |     |
| I,2,4-Trichlorobenzene         | ND            | ug/L          | 50.0               | 10      |           | 01/14/16 10:48 | 3 120-82-1    |     |
| ,2,4-Trimethylbenzene          | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 | 3 95-63-6     |     |
| I,2-Dibromo-3-chloropropane    | ND            | ug/L          | 50.0               | 10      |           | 01/14/16 10:48 |               |     |
| ,2-Dibromoethane (EDB)         | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 |               |     |
| ,2-Dichlorobenzene             | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 |               |     |
| .2-Dichloroethane              | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 |               |     |
| ,2-Dichloropropane             | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 |               |     |
| ,3,5-Trimethylbenzene          | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 |               |     |
| ,3-Dichlorobenzene             | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 |               |     |
| ,3-Dichloropropane             | ND<br>ND      | ug/L<br>ug/L  | 10.0               | 10      |           | 01/14/16 10:48 |               |     |
| ,4-Dichlorobenzene             | ND<br>ND      |               | 10.0               | 10      |           | 01/14/16 10:48 |               |     |
|                                | ND<br>ND      | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 |               |     |
| 2,2-Dichloropropane            |               | ug/L          |                    |         |           |                |               |     |
| -Butanone (MEK)                | ND            | ug/L          | 200                | 10      |           | 01/14/16 10:48 |               |     |
| 2-Chlorotoluene                | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 |               |     |
| -Chlorotoluene                 | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 |               |     |
| I-Methyl-2-pentanone (MIBK)    | ND            | ug/L          | 200                | 10      |           | 01/14/16 10:48 |               |     |
| Acetone                        | ND            | ug/L          | 200                | 10      |           | 01/14/16 10:48 |               |     |
| allyl chloride                 | ND            | ug/L          | 50.0               | 10      |           | 01/14/16 10:48 |               |     |
| Benzene                        | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 |               |     |
| Bromobenzene                   | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 |               |     |
| Bromochloromethane             | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 |               |     |
| Bromodichloromethane           | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 |               |     |
| Bromoform                      | ND            | ug/L          | 50.0               | 10      |           | 01/14/16 10:48 |               |     |
| Bromomethane                   | ND            | ug/L          | 50.0               | 10      |           | 01/14/16 10:48 |               |     |
| Carbon tetrachloride           | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 |               |     |
| Chlorobenzene                  | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 | 3 108-90-7    |     |
| Chloroethane                   | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 |               |     |
| Chloroform                     | ND            | ug/L          | 50.0               | 10      |           | 01/14/16 10:48 | 3 67-66-3     |     |
| Chloromethane                  | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 | 3 74-87-3     |     |
| Dibromochloromethane           | ND            | ug/L          | 50.0               | 10      |           | 01/14/16 10:48 | 3 124-48-1    |     |
| Dibromomethane                 | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 | 3 74-95-3     |     |
| Dichlorodifluoromethane        | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 | 3 75-71-8     |     |
| Dichlorofluoromethane          | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 | 3 75-43-4     |     |
| Diethyl ether (Ethyl ether)    | ND            | ug/L          | 50.0               | 10      |           | 01/14/16 10:48 | 3 60-29-7     |     |
| Ethylbenzene                   | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 | 3 100-41-4    |     |
| Hexachloro-1,3-butadiene       | ND            | ug/L          | 50.0               | 10      |           | 01/14/16 10:48 | 87-68-3       |     |
| sopropylbenzene (Cumene)       | ND            | ug/L          | 10.0               | 10      |           | 01/14/16 10:48 |               |     |

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700



### **ANALYTICAL RESULTS**

Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: DPE-2             | Lab ID: 103     | 35670002   | Collected: 01/11/1 | 6 15:10 | Received: 01/12/16 09:45 | Matrix: Water |     |
|---------------------------|-----------------|------------|--------------------|---------|--------------------------|---------------|-----|
| Parameters                | Results         | Units      | Report Limit       | DF      | Prepared Analyzed        | CAS No.       | Qua |
| 8260 MSV                  | Analytical Meth | od: EPA 82 | 260                |         |                          |               |     |
| Methyl-tert-butyl ether   | ND              | ug/L       | 10.0               | 10      | 01/14/16 10:4            | 8 1634-04-4   |     |
| Methylene Chloride        | ND              | ug/L       | 10.0               | 10      | 01/14/16 10:4            | 8 75-09-2     |     |
| Naphthalene               | ND              | ug/L       | 50.0               | 10      | 01/14/16 10:4            | 8 91-20-3     |     |
| Styrene                   | ND              | ug/L       | 10.0               | 10      | 01/14/16 10:4            | 8 100-42-5    |     |
| Tetrachloroethene         | 1280            | ug/L       | 10.0               | 10      | 01/14/16 10:4            | 8 127-18-4    |     |
| Tetrahydrofuran           | ND              | ug/L       | 50.0               | 10      | 01/14/16 10:4            | 8 109-99-9    |     |
| Toluene                   | ND              | ug/L       | 10.0               | 10      | 01/14/16 10:4            | 8 108-88-3    |     |
| Trichloroethene           | ND              | ug/L       | 10.0               | 10      | 01/14/16 10:4            | 8 79-01-6     |     |
| Trichlorofluoromethane    | ND              | ug/L       | 10.0               | 10      | 01/14/16 10:4            | 8 75-69-4     |     |
| Vinyl chloride            | ND              | ug/L       | 10.0               | 10      | 01/14/16 10:4            | 8 75-01-4     |     |
| Xylene (Total)            | ND              | ug/L       | 30.0               | 10      | 01/14/16 10:4            | 8 1330-20-7   |     |
| cis-1,2-Dichloroethene    | ND              | ug/L       | 10.0               | 10      | 01/14/16 10:4            | 8 156-59-2    |     |
| cis-1,3-Dichloropropene   | ND              | ug/L       | 50.0               | 10      | 01/14/16 10:4            | 8 10061-01-5  |     |
| n-Butylbenzene            | ND              | ug/L       | 10.0               | 10      | 01/14/16 10:4            | 8 104-51-8    |     |
| n-Propylbenzene           | ND              | ug/L       | 10.0               | 10      | 01/14/16 10:4            | 8 103-65-1    |     |
| p-Isopropyltoluene        | ND              | ug/L       | 10.0               | 10      | 01/14/16 10:4            | 8 99-87-6     |     |
| sec-Butylbenzene          | ND              | ug/L       | 50.0               | 10      | 01/14/16 10:4            | 8 135-98-8    |     |
| tert-Butylbenzene         | ND              | ug/L       | 10.0               | 10      | 01/14/16 10:4            | 8 98-06-6     |     |
| trans-1,2-Dichloroethene  | ND              | ug/L       | 10.0               | 10      | 01/14/16 10:4            | 8 156-60-5    |     |
| trans-1,3-Dichloropropene | ND              | ug/L       | 200                | 10      | 01/14/16 10:4            | 8 10061-02-6  |     |
| Surrogates                |                 |            |                    |         |                          |               |     |
| 4-Bromofluorobenzene (S)  | 100             | %          | 70-130             | 10      | 01/14/16 10:4            | 8 460-00-4    |     |
| Dibromofluoromethane (S)  | 105             | %          | 70-130             | 10      | 01/14/16 10:4            | 8 1868-53-7   |     |
| Toluene-d8 (S)            | 98              | %          | 70-130             | 10      | 01/14/16 10:4            | 8 2037-26-5   |     |



### **ANALYTICAL RESULTS**

Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: DPE-3                  | Lab ID: 103    | 35670003    | Collected: 01/11/1 | 6 15:50 | Received: | 01/12/16 09:45 | Matrix: Water |     |
|--------------------------------|----------------|-------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                     | Results        | Units       | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260 MSV                       | Analytical Met | hod: EPA 82 | 260                |         |           |                |               |     |
| 1,1,1,2-Tetrachloroethane      | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:3: | 3 630-20-6    |     |
| 1,1,1-Trichloroethane          | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:33 | 3 71-55-6     |     |
| 1,1,2,2-Tetrachloroethane      | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:33 | 3 79-34-5     |     |
| 1,1,2-Trichloroethane          | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:33 | 3 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane | 105            | ug/L        | 50.0               | 10      |           | 01/14/16 11:3  | 3 76-13-1     |     |
| 1,1-Dichloroethane             | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:3  | 3 75-34-3     |     |
| 1,1-Dichloroethene             | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:3  | 3 75-35-4     |     |
| 1,1-Dichloropropene            | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:33 | 3 563-58-6    |     |
| 1,2,3-Trichlorobenzene         | ND             | ug/L        | 50.0               | 10      |           | 01/14/16 11:33 | 3 87-61-6     |     |
| 1,2,3-Trichloropropane         | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:33 |               |     |
| 1,2,4-Trichlorobenzene         | ND             | ug/L        | 50.0               | 10      |           | 01/14/16 11:3  |               |     |
| 1,2,4-Trimethylbenzene         | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:3  |               |     |
| 1,2-Dibromo-3-chloropropane    | ND             | ug/L        | 50.0               | 10      |           | 01/14/16 11:3  |               |     |
| 1,2-Dibromoethane (EDB)        | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:3: |               |     |
| 1,2-Dichlorobenzene            | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:3  |               |     |
| 1,2-Dichloroethane             | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:3  |               |     |
| 1,2-Dichloropropane            | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:3  |               |     |
| 1,3,5-Trimethylbenzene         | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:3: |               |     |
| 1,3-Dichlorobenzene            | ND<br>ND       | ug/L        | 10.0               | 10      |           | 01/14/16 11:3: |               |     |
|                                | ND<br>ND       | -           | 10.0               | 10      |           | 01/14/16 11:3: |               |     |
| 1,3-Dichloropropane            |                | ug/L        |                    |         |           |                |               |     |
| 1,4-Dichlorobenzene            | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:3: |               |     |
| 2,2-Dichloropropane            | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:3: |               |     |
| 2-Butanone (MEK)               | ND             | ug/L        | 200                | 10      |           | 01/14/16 11:3: |               |     |
| 2-Chlorotoluene                | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:3: |               |     |
| 4-Chlorotoluene                | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:33 |               |     |
| 4-Methyl-2-pentanone (MIBK)    | ND             | ug/L        | 200                | 10      |           | 01/14/16 11:3: |               |     |
| Acetone                        | ND             | ug/L        | 200                | 10      |           | 01/14/16 11:3: |               |     |
| Allyl chloride                 | ND             | ug/L        | 50.0               | 10      |           | 01/14/16 11:3: |               |     |
| Benzene                        | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:3  |               |     |
| Bromobenzene                   | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:3  |               |     |
| Bromochloromethane             | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:3  |               |     |
| Bromodichloromethane           | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:3  | 3 75-27-4     |     |
| Bromoform                      | ND             | ug/L        | 50.0               | 10      |           | 01/14/16 11:3  |               |     |
| Bromomethane                   | ND             | ug/L        | 50.0               | 10      |           | 01/14/16 11:3  | 3 74-83-9     |     |
| Carbon tetrachloride           | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:3  | 3 56-23-5     |     |
| Chlorobenzene                  | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:33 | 3 108-90-7    |     |
| Chloroethane                   | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:33 | 3 75-00-3     |     |
| Chloroform                     | ND             | ug/L        | 50.0               | 10      |           | 01/14/16 11:3  | 3 67-66-3     |     |
| Chloromethane                  | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:3  | 3 74-87-3     |     |
| Dibromochloromethane           | ND             | ug/L        | 50.0               | 10      |           | 01/14/16 11:3  | 3 124-48-1    |     |
| Dibromomethane                 | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:33 |               |     |
| Dichlorodifluoromethane        | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:33 |               |     |
| Dichlorofluoromethane          | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:33 |               |     |
| Diethyl ether (Ethyl ether)    | ND             | ug/L        | 50.0               | 10      |           | 01/14/16 11:3  |               |     |
| Ethylbenzene                   | ND             | ug/L        | 10.0               | 10      |           | 01/14/16 11:3  |               |     |
| Hexachloro-1,3-butadiene       | ND             | ug/L        | 50.0               | 10      |           | 01/14/16 11:3  |               |     |
| Isopropylbenzene (Cumene)      | ND<br>ND       | ug/L        | 10.0               | 10      |           | 01/14/16 11:3: |               |     |



Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: DPE-3                               | Lab ID: 103     | 35670003    | Collected: 01/11/1 | 6 15:50 | Received: 01/12/16 09:45 | Matrix: Water |     |
|---------------------------------------------|-----------------|-------------|--------------------|---------|--------------------------|---------------|-----|
| Parameters                                  | Results         | Units       | Report Limit       | DF      | Prepared Analyzed        | CAS No.       | Qua |
| 8260 MSV                                    | Analytical Meth | nod: EPA 82 | 260                |         |                          |               |     |
| Methyl-tert-butyl ether                     | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:3            | 3 1634-04-4   |     |
| Methylene Chloride                          | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:3            | 3 75-09-2     |     |
| Naphthalene                                 | ND              | ug/L        | 50.0               | 10      | 01/14/16 11:3            | 3 91-20-3     |     |
| Styrene                                     | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:3            | 3 100-42-5    |     |
| Tetrachloroethene                           | 2960            | ug/L        | 10.0               | 10      | 01/14/16 11:3            | 3 127-18-4    |     |
| Tetrahydrofuran                             | ND              | ug/L        | 50.0               | 10      | 01/14/16 11:3            | 3 109-99-9    |     |
| Toluene                                     | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:3            | 3 108-88-3    |     |
| Trichloroethene                             | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:3            | 3 79-01-6     |     |
| Trichlorofluoromethane                      | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:3            | 3 75-69-4     |     |
| Vinyl chloride                              | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:3            | 3 75-01-4     |     |
| Xylene (Total)                              | ND              | ug/L        | 30.0               | 10      | 01/14/16 11:3            | 3 1330-20-7   |     |
| cis-1,2-Dichloroethene                      | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:3            | 3 156-59-2    |     |
| cis-1,3-Dichloropropene                     | ND              | ug/L        | 50.0               | 10      | 01/14/16 11:3            | 3 10061-01-5  |     |
| n-Butylbenzene                              | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:3            | 3 104-51-8    |     |
| n-Propylbenzene                             | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:3            | 3 103-65-1    |     |
| p-Isopropyltoluene                          | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:3            | 3 99-87-6     |     |
| sec-Butylbenzene                            | ND              | ug/L        | 50.0               | 10      | 01/14/16 11:3            | 3 135-98-8    |     |
| tert-Butylbenzene                           | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:3            | 3 98-06-6     |     |
| trans-1,2-Dichloroethene                    | ND              | ug/L        | 10.0               | 10      | 01/14/16 11:3            | 3 156-60-5    |     |
| trans-1,3-Dichloropropene <b>Surrogates</b> | ND              | ug/L        | 200                | 10      | 01/14/16 11:3            | 3 10061-02-6  |     |
| 4-Bromofluorobenzene (S)                    | 96              | %           | 70-130             | 10      | 01/14/16 11:3            | 3 460-00-4    |     |
| Dibromofluoromethane (S)                    | 102             | %           | 70-130             | 10      | 01/14/16 11:3            | 3 1868-53-7   |     |
| Toluene-d8 (S)                              | 101             | %           | 70-130             | 10      | 01/14/16 11:3            | 3 2037-26-5   |     |



### **ANALYTICAL RESULTS**

Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: DPE-4                  | Lab ID: 103    | 35670004    | Collected: 01/11/1 | 6 15:25 | Received: ( | 01/12/16 09:45 | Matrix: Water |      |
|--------------------------------|----------------|-------------|--------------------|---------|-------------|----------------|---------------|------|
| Parameters                     | Results        | Units       | Report Limit       | DF      | Prepared    | Analyzed       | CAS No.       | Qual |
| 8260 MSV                       | Analytical Met | hod: EPA 82 | 260                |         |             |                |               |      |
| 1,1,1,2-Tetrachloroethane      | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 | 630-20-6      |      |
| 1,1,1-Trichloroethane          | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 | 71-55-6       |      |
| 1,1,2,2-Tetrachloroethane      | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 | 79-34-5       |      |
| 1,1,2-Trichloroethane          | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 | 79-00-5       |      |
| 1,1,2-Trichlorotrifluoroethane | 47.9           | ug/L        | 25.0               | 5       |             | 01/14/16 11:56 | 6 76-13-1     |      |
| 1,1-Dichloroethane             | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 | 75-34-3       |      |
| 1,1-Dichloroethene             | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 | 75-35-4       |      |
| 1,1-Dichloropropene            | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 | 563-58-6      |      |
| 1,2,3-Trichlorobenzene         | ND             | ug/L        | 25.0               | 5       |             | 01/14/16 11:56 | 87-61-6       |      |
| 1,2,3-Trichloropropane         | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 | 96-18-4       |      |
| 1,2,4-Trichlorobenzene         | ND             | ug/L        | 25.0               | 5       |             | 01/14/16 11:56 |               |      |
| 1,2,4-Trimethylbenzene         | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 |               |      |
| 1,2-Dibromo-3-chloropropane    | ND             | ug/L        | 25.0               | 5       |             | 01/14/16 11:56 |               |      |
| 1,2-Dibromoethane (EDB)        | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 |               |      |
| 1,2-Dichlorobenzene            | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 |               |      |
| 1,2-Dichloroethane             | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 |               |      |
| 1,2-Dichloropropane            | ND<br>ND       | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 |               |      |
| 1,3,5-Trimethylbenzene         | ND<br>ND       | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 |               |      |
| •                              | ND<br>ND       | -           | 5.0                | 5       |             | 01/14/16 11:56 |               |      |
| 1,3-Dichlorobenzene            |                | ug/L        |                    | 5<br>5  |             |                |               |      |
| 1,3-Dichloropropane            | ND             | ug/L        | 5.0                |         |             | 01/14/16 11:56 |               |      |
| 1,4-Dichlorobenzene            | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 |               |      |
| 2,2-Dichloropropane            | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 |               |      |
| 2-Butanone (MEK)               | ND             | ug/L        | 100                | 5       |             | 01/14/16 11:56 |               |      |
| 2-Chlorotoluene                | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 |               |      |
| 4-Chlorotoluene                | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 |               |      |
| 4-Methyl-2-pentanone (MIBK)    | ND             | ug/L        | 100                | 5       |             | 01/14/16 11:56 |               |      |
| Acetone                        | ND             | ug/L        | 100                | 5       |             | 01/14/16 11:56 |               |      |
| Allyl chloride                 | ND             | ug/L        | 25.0               | 5       |             | 01/14/16 11:56 |               |      |
| Benzene                        | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 |               |      |
| Bromobenzene                   | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 | 108-86-1      |      |
| Bromochloromethane             | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 | 3 74-97-5     |      |
| Bromodichloromethane           | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 | 5 75-27-4     |      |
| Bromoform                      | ND             | ug/L        | 25.0               | 5       |             | 01/14/16 11:56 | 75-25-2       |      |
| Bromomethane                   | ND             | ug/L        | 25.0               | 5       |             | 01/14/16 11:56 | 74-83-9       |      |
| Carbon tetrachloride           | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 | 56-23-5       |      |
| Chlorobenzene                  | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 | 108-90-7      |      |
| Chloroethane                   | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 | 75-00-3       |      |
| Chloroform                     | ND             | ug/L        | 25.0               | 5       |             | 01/14/16 11:56 | 67-66-3       |      |
| Chloromethane                  | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 | 74-87-3       |      |
| Dibromochloromethane           | ND             | ug/L        | 25.0               | 5       |             | 01/14/16 11:56 | 3 124-48-1    |      |
| Dibromomethane                 | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 |               |      |
| Dichlorodifluoromethane        | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 | 3 75-71-8     |      |
| Dichlorofluoromethane          | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 |               |      |
| Diethyl ether (Ethyl ether)    | ND             | ug/L        | 25.0               | 5       |             | 01/14/16 11:56 |               |      |
| Ethylbenzene                   | ND             | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 |               |      |
| Hexachloro-1,3-butadiene       | ND             | ug/L        | 25.0               | 5       |             | 01/14/16 11:56 |               |      |
| Isopropylbenzene (Cumene)      | ND<br>ND       | ug/L        | 5.0                | 5       |             | 01/14/16 11:56 |               |      |



Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: DPE-4             | Lab ID: 103     | 35670004    | Collected: 01/11/1 | 6 15:25 | Received: 01/12/16 09:45 | Matrix: Water |     |
|---------------------------|-----------------|-------------|--------------------|---------|--------------------------|---------------|-----|
| Parameters                | Results         | Units       | Report Limit       | DF      | Prepared Analyzed        | CAS No.       | Qua |
| 8260 MSV                  | Analytical Meth | nod: EPA 82 | 260                |         |                          |               |     |
| Methyl-tert-butyl ether   | ND              | ug/L        | 5.0                | 5       | 01/14/16 11:5            | 6 1634-04-4   |     |
| Methylene Chloride        | ND              | ug/L        | 5.0                | 5       | 01/14/16 11:5            | 6 75-09-2     |     |
| Naphthalene               | ND              | ug/L        | 25.0               | 5       | 01/14/16 11:5            | 91-20-3       |     |
| Styrene                   | ND              | ug/L        | 5.0                | 5       | 01/14/16 11:5            | 6 100-42-5    |     |
| Tetrachloroethene         | 1040            | ug/L        | 5.0                | 5       | 01/14/16 11:5            | 6 127-18-4    |     |
| Tetrahydrofuran           | ND              | ug/L        | 25.0               | 5       | 01/14/16 11:5            | 6 109-99-9    |     |
| Toluene                   | ND              | ug/L        | 5.0                | 5       | 01/14/16 11:5            | 6 108-88-3    |     |
| Trichloroethene           | ND              | ug/L        | 5.0                | 5       | 01/14/16 11:5            | 79-01-6       |     |
| Trichlorofluoromethane    | ND              | ug/L        | 5.0                | 5       | 01/14/16 11:5            | 5 75-69-4     |     |
| Vinyl chloride            | ND              | ug/L        | 5.0                | 5       | 01/14/16 11:5            | 6 75-01-4     |     |
| Xylene (Total)            | ND              | ug/L        | 15.0               | 5       | 01/14/16 11:50           | 6 1330-20-7   |     |
| cis-1,2-Dichloroethene    | ND              | ug/L        | 5.0                | 5       | 01/14/16 11:5            | 5 156-59-2    |     |
| cis-1,3-Dichloropropene   | ND              | ug/L        | 25.0               | 5       | 01/14/16 11:5            | 6 10061-01-5  |     |
| n-Butylbenzene            | ND              | ug/L        | 5.0                | 5       | 01/14/16 11:5            | 6 104-51-8    |     |
| n-Propylbenzene           | ND              | ug/L        | 5.0                | 5       | 01/14/16 11:50           | 5 103-65-1    |     |
| p-lsopropyltoluene        | ND              | ug/L        | 5.0                | 5       | 01/14/16 11:50           | 6 99-87-6     |     |
| sec-Butylbenzene          | ND              | ug/L        | 25.0               | 5       | 01/14/16 11:5            | 6 135-98-8    |     |
| tert-Butylbenzene         | ND              | ug/L        | 5.0                | 5       | 01/14/16 11:50           | 6 98-06-6     |     |
| trans-1,2-Dichloroethene  | ND              | ug/L        | 5.0                | 5       | 01/14/16 11:50           | 6 156-60-5    |     |
| trans-1,3-Dichloropropene | ND              | ug/L        | 100                | 5       | 01/14/16 11:50           | 6 10061-02-6  |     |
| Surrogates                |                 | -           |                    |         |                          |               |     |
| 4-Bromofluorobenzene (S)  | 98              | %           | 70-130             | 5       | 01/14/16 11:5            | 6 460-00-4    |     |
| Dibromofluoromethane (S)  | 105             | %           | 70-130             | 5       | 01/14/16 11:5            | 6 1868-53-7   |     |
| Toluene-d8 (S)            | 100             | %           | 70-130             | 5       | 01/14/16 11:5            | 6 2037-26-5   |     |



### **ANALYTICAL RESULTS**

Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: DPE-5                  | Lab ID: 103    | 35670005    | Collected: 01/11/1 | 6 14:20 | Received: ( | 01/12/16 09:45 | Matrix: Water |     |
|--------------------------------|----------------|-------------|--------------------|---------|-------------|----------------|---------------|-----|
| Parameters                     | Results        | Units       | Report Limit       | DF      | Prepared    | Analyzed       | CAS No.       | Qua |
| 8260 MSV                       | Analytical Met | nod: EPA 82 | 260                |         |             |                |               |     |
| 1,1,1,2-Tetrachloroethane      | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  | 1 630-20-6    |     |
| 1,1,1-Trichloroethane          | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  | 1 71-55-6     |     |
| 1,1,2,2-Tetrachloroethane      | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  | 1 79-34-5     |     |
| 1,1,2-Trichloroethane          | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  | 1 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane | 19.7           | ug/L        | 5.0                | 1       |             | 01/14/16 08:1  | 1 76-13-1     |     |
| 1,1-Dichloroethane             | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  | 1 75-34-3     |     |
| 1,1-Dichloroethene             | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  | 1 75-35-4     |     |
| 1,1-Dichloropropene            | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  | 1 563-58-6    |     |
| 1,2,3-Trichlorobenzene         | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 08:1  | 1 87-61-6     |     |
| 1,2,3-Trichloropropane         | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  |               |     |
| 1,2,4-Trichlorobenzene         | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 08:1  |               |     |
| 1,2,4-Trimethylbenzene         | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  |               |     |
| 1,2-Dibromo-3-chloropropane    | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 08:1  |               |     |
| 1,2-Dibromoethane (EDB)        | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  |               |     |
| 1,2-Dichlorobenzene            | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  |               |     |
| 1,2-Dichloroethane             | ND<br>ND       | -           | 1.0                | 1       |             | 01/14/16 08:1  |               |     |
| 1,2-Dichloropropane            | ND<br>ND       | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  |               |     |
|                                | ND<br>ND       | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  |               |     |
| 1,3,5-Trimethylbenzene         |                | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  |               |     |
| 1,3-Dichlorobenzene            | ND             | ug/L        |                    |         |             |                |               |     |
| 1,3-Dichloropropane            | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  |               |     |
| 1,4-Dichlorobenzene            | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  |               |     |
| 2,2-Dichloropropane            | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  |               |     |
| 2-Butanone (MEK)               | ND             | ug/L        | 20.0               | 1       |             | 01/14/16 08:1  |               |     |
| 2-Chlorotoluene                | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  |               |     |
| 4-Chlorotoluene                | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  |               |     |
| 4-Methyl-2-pentanone (MIBK)    | ND             | ug/L        | 20.0               | 1       |             | 01/14/16 08:1  |               |     |
| Acetone                        | ND             | ug/L        | 20.0               | 1       |             | 01/14/16 08:1  |               |     |
| Allyl chloride                 | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 08:1  |               |     |
| Benzene                        | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  |               |     |
| Bromobenzene                   | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  | 1 108-86-1    |     |
| Bromochloromethane             | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  | 1 74-97-5     |     |
| Bromodichloromethane           | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  | 1 75-27-4     |     |
| Bromoform                      | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 08:1  | 1 75-25-2     |     |
| 3romomethane                   | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 08:1  | 1 74-83-9     |     |
| Carbon tetrachloride           | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  | 1 56-23-5     |     |
| Chlorobenzene                  | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  | 1 108-90-7    |     |
| Chloroethane                   | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  | 1 75-00-3     |     |
| Chloroform                     | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 08:1  | 1 67-66-3     |     |
| Chloromethane                  | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  | 1 74-87-3     |     |
| Dibromochloromethane           | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 08:1  |               |     |
| Dibromomethane                 | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  |               |     |
| Dichlorodifluoromethane        | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  |               |     |
| Dichlorofluoromethane          | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  |               |     |
| Diethyl ether (Ethyl ether)    | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 08:1  |               |     |
| Ethylbenzene                   | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 08:1  |               |     |
| Hexachloro-1,3-butadiene       | ND<br>ND       | •           | 5.0                | 1       |             | 01/14/16 08:1  |               |     |
| IEAAUIIUIU-I,J-DUIAUIUIU       | שוו            | ug/L        | 5.0                | 1       |             | 01/14/10 08:1  | 1 01-00-3     |     |



Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: DPE-5                       | Lab ID: 103     | 35670005    | Collected: 01/11/1 | 6 14:20 | Received: 01/1 | 2/16 09:45 I   | Matrix: Water |     |
|-------------------------------------|-----------------|-------------|--------------------|---------|----------------|----------------|---------------|-----|
| Parameters                          | Results         | Units       | Report Limit       | DF      | Prepared       | Analyzed       | CAS No.       | Qua |
| 8260 MSV                            | Analytical Meth | nod: EPA 82 | 60                 |         |                |                |               |     |
| Methyl-tert-butyl ether             | ND              | ug/L        | 1.0                | 1       | C              | 1/14/16 08:11  | 1634-04-4     |     |
| Methylene Chloride                  | ND              | ug/L        | 1.0                | 1       | C              | 1/14/16 08:11  | 75-09-2       |     |
| Naphthalene                         | ND              | ug/L        | 5.0                | 1       | C              | 1/14/16 08:11  | 91-20-3       |     |
| Styrene                             | ND              | ug/L        | 1.0                | 1       | C              | 1/14/16 08:11  | 100-42-5      |     |
| Tetrachloroethene                   | 209             | ug/L        | 1.0                | 1       | C              | 1/14/16 08:11  | 127-18-4      |     |
| Tetrahydrofuran                     | ND              | ug/L        | 5.0                | 1       | C              | 1/14/16 08:11  | 109-99-9      |     |
| Toluene                             | ND              | ug/L        | 1.0                | 1       | C              | 1/14/16 08:11  | 108-88-3      |     |
| Trichloroethene                     | ND              | ug/L        | 1.0                | 1       | C              | 1/14/16 08:11  | 79-01-6       |     |
| Trichlorofluoromethane              | ND              | ug/L        | 1.0                | 1       | C              | 1/14/16 08:11  | 75-69-4       |     |
| Vinyl chloride                      | ND              | ug/L        | 1.0                | 1       | C              | 1/14/16 08:11  | 75-01-4       |     |
| Xylene (Total)                      | ND              | ug/L        | 3.0                | 1       | C              | 1/14/16 08:11  | 1330-20-7     |     |
| cis-1,2-Dichloroethene              | 1.9             | ug/L        | 1.0                | 1       | C              | 1/14/16 08:11  | 156-59-2      |     |
| cis-1,3-Dichloropropene             | ND              | ug/L        | 5.0                | 1       | C              | 1/14/16 08:11  | 10061-01-5    |     |
| n-Butylbenzene                      | ND              | ug/L        | 1.0                | 1       | C              | 1/14/16 08:11  | 104-51-8      |     |
| n-Propylbenzene                     | ND              | ug/L        | 1.0                | 1       | C              | 1/14/16 08:11  | 103-65-1      |     |
| p-Isopropyltoluene                  | ND              | ug/L        | 1.0                | 1       | C              | 1/14/16 08:11  | 99-87-6       |     |
| sec-Butylbenzene                    | ND              | ug/L        | 5.0                | 1       | C              | 1/14/16 08:11  | 135-98-8      |     |
| tert-Butylbenzene                   | ND              | ug/L        | 1.0                | 1       | C              | 1/14/16 08:11  | 98-06-6       |     |
| trans-1,2-Dichloroethene            | ND              | ug/L        | 1.0                | 1       | C              | 1/14/16 08:11  | 156-60-5      |     |
| trans-1,3-Dichloropropene           | ND              | ug/L        | 20.0               | 1       | C              | )1/14/16 08:11 | 10061-02-6    |     |
| Surrogates 4-Bromofluorobenzene (S) | 104             | %           | 70-130             | 1       | C              | )1/14/16 08:11 | 460-00-4      |     |
| Dibromofluoromethane (S)            | 107             | %           | 70-130             | 1       | C              | 1/14/16 08:11  | 1868-53-7     |     |
| Toluene-d8 (S)                      | 96              | %           | 70-130             | 1       | C              | 01/14/16 08:11 | 2037-26-5     |     |



### **ANALYTICAL RESULTS**

Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: DPE-6                  | Lab ID: 10335670006 |              | Collected: 01/11/1 | Collected: 01/11/16 13:50 |          | 01/12/16 09:45 | Matrix: Water |     |
|--------------------------------|---------------------|--------------|--------------------|---------------------------|----------|----------------|---------------|-----|
| Parameters                     | Results             | Units        | Report Limit       | DF                        | Prepared | Analyzed       | CAS No.       | Qua |
| 8260 MSV                       | Analytical Met      | hod: EPA 82  | 260                |                           |          |                |               |     |
| 1,1,1,2-Tetrachloroethane      | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  | 1 630-20-6    |     |
| 1,1,1-Trichloroethane          | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  | 1 71-55-6     |     |
| 1,1,2,2-Tetrachloroethane      | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  | 1 79-34-5     |     |
| 1,1,2-Trichloroethane          | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  | 1 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane | ND                  | ug/L         | 5.0                | 1                         |          | 01/13/16 17:3  | 1 76-13-1     |     |
| 1,1-Dichloroethane             | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  | 1 75-34-3     |     |
| 1,1-Dichloroethene             | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  | 1 75-35-4     |     |
| 1,1-Dichloropropene            | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  | 1 563-58-6    |     |
| 1,2,3-Trichlorobenzene         | ND                  | ug/L         | 5.0                | 1                         |          | 01/13/16 17:3  | 1 87-61-6     |     |
| 1,2,3-Trichloropropane         | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  |               |     |
| 1,2,4-Trichlorobenzene         | ND                  | ug/L         | 5.0                | 1                         |          | 01/13/16 17:3  |               |     |
| 1,2,4-Trimethylbenzene         | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  |               |     |
| 1,2-Dibromo-3-chloropropane    | ND                  | ug/L         | 5.0                | 1                         |          | 01/13/16 17:3  |               |     |
| 1,2-Dibromoethane (EDB)        | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  |               |     |
| 1,2-Dichlorobenzene            | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  |               |     |
| 1,2-Dichloroethane             | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  |               |     |
| 1,2-Dichloropropane            | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  |               |     |
| 1,3,5-Trimethylbenzene         | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  |               |     |
| 1,3-Dichlorobenzene            | ND<br>ND            | ug/L<br>ug/L | 1.0                | 1                         |          | 01/13/16 17:3  |               |     |
|                                | ND<br>ND            | _            | 1.0                | 1                         |          | 01/13/16 17:3  |               |     |
| 1,3-Dichloropropane            |                     | ug/L         |                    | 1                         |          |                |               |     |
| 1,4-Dichlorobenzene            | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  |               |     |
| 2,2-Dichloropropane            | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  |               |     |
| 2-Butanone (MEK)               | ND                  | ug/L         | 20.0               |                           |          | 01/13/16 17:3  |               |     |
| 2-Chlorotoluene                | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  |               |     |
| 4-Chlorotoluene                | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  |               |     |
| 4-Methyl-2-pentanone (MIBK)    | ND                  | ug/L         | 20.0               | 1                         |          | 01/13/16 17:3  |               |     |
| Acetone                        | ND                  | ug/L         | 20.0               | 1                         |          | 01/13/16 17:3  |               |     |
| Allyl chloride                 | ND                  | ug/L         | 5.0                | 1                         |          | 01/13/16 17:3  |               |     |
| Benzene                        | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  |               |     |
| Bromobenzene                   | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  |               |     |
| Bromochloromethane             | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  |               |     |
| Bromodichloromethane           | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  |               |     |
| Bromoform                      | ND                  | ug/L         | 5.0                | 1                         |          | 01/13/16 17:3  |               |     |
| Bromomethane                   | ND                  | ug/L         | 5.0                | 1                         |          | 01/13/16 17:3  | 1 74-83-9     |     |
| Carbon tetrachloride           | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  | 1 56-23-5     |     |
| Chlorobenzene                  | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  | 1 108-90-7    |     |
| Chloroethane                   | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  | 1 75-00-3     |     |
| Chloroform                     | ND                  | ug/L         | 5.0                | 1                         |          | 01/13/16 17:3  | 1 67-66-3     |     |
| Chloromethane                  | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  | 1 74-87-3     |     |
| Dibromochloromethane           | ND                  | ug/L         | 5.0                | 1                         |          | 01/13/16 17:3  | 1 124-48-1    |     |
| Dibromomethane                 | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  | 1 74-95-3     |     |
| Dichlorodifluoromethane        | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  | 1 75-71-8     |     |
| Dichlorofluoromethane          | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  | 1 75-43-4     |     |
| Diethyl ether (Ethyl ether)    | ND                  | ug/L         | 5.0                | 1                         |          | 01/13/16 17:3  | 1 60-29-7     |     |
| Ethylbenzene                   | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  |               |     |
| Hexachloro-1,3-butadiene       | ND                  | ug/L         | 5.0                | 1                         |          | 01/13/16 17:3  |               |     |
| Isopropylbenzene (Cumene)      | ND                  | ug/L         | 1.0                | 1                         |          | 01/13/16 17:3  |               |     |





Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: DPE-6                                  | Lab ID: 10335670006 |             | Collected: 01/11/1 | 6 13:50 | Received: 01/12/16 09:45 | Matrix: Water |     |
|------------------------------------------------|---------------------|-------------|--------------------|---------|--------------------------|---------------|-----|
| Parameters                                     | Results             | Units       | Report Limit       | DF      | Prepared Analyzed        | CAS No.       | Qua |
| 8260 MSV                                       | Analytical Meth     | nod: EPA 82 | 260                |         |                          |               |     |
| Methyl-tert-butyl ether                        | ND                  | ug/L        | 1.0                | 1       | 01/13/16 17:3            | 1 1634-04-4   |     |
| Methylene Chloride                             | ND                  | ug/L        | 1.0                | 1       | 01/13/16 17:3            | 1 75-09-2     |     |
| Naphthalene                                    | ND                  | ug/L        | 5.0                | 1       | 01/13/16 17:3            | 1 91-20-3     |     |
| Styrene                                        | ND                  | ug/L        | 1.0                | 1       | 01/13/16 17:3            | 1 100-42-5    |     |
| Tetrachloroethene                              | 17.0                | ug/L        | 1.0                | 1       | 01/13/16 17:3            | 1 127-18-4    |     |
| Tetrahydrofuran                                | ND                  | ug/L        | 5.0                | 1       | 01/13/16 17:3            | 1 109-99-9    |     |
| Toluene                                        | ND                  | ug/L        | 1.0                | 1       | 01/13/16 17:3            | 1 108-88-3    |     |
| Trichloroethene                                | ND                  | ug/L        | 1.0                | 1       | 01/13/16 17:3            | 1 79-01-6     |     |
| Trichlorofluoromethane                         | ND                  | ug/L        | 1.0                | 1       | 01/13/16 17:3            | 1 75-69-4     |     |
| Vinyl chloride                                 | ND                  | ug/L        | 1.0                | 1       | 01/13/16 17:3            | 1 75-01-4     |     |
| Xylene (Total)                                 | ND                  | ug/L        | 3.0                | 1       | 01/13/16 17:3            | 1 1330-20-7   |     |
| cis-1,2-Dichloroethene                         | ND                  | ug/L        | 1.0                | 1       | 01/13/16 17:3            | 1 156-59-2    |     |
| cis-1,3-Dichloropropene                        | ND                  | ug/L        | 5.0                | 1       | 01/13/16 17:3            | 1 10061-01-5  |     |
| n-Butylbenzene                                 | ND                  | ug/L        | 1.0                | 1       | 01/13/16 17:3            | 1 104-51-8    |     |
| n-Propylbenzene                                | ND                  | ug/L        | 1.0                | 1       | 01/13/16 17:3            | 1 103-65-1    |     |
| p-Isopropyltoluene                             | ND                  | ug/L        | 1.0                | 1       | 01/13/16 17:3            | 1 99-87-6     |     |
| sec-Butylbenzene                               | ND                  | ug/L        | 5.0                | 1       | 01/13/16 17:3            | 1 135-98-8    |     |
| tert-Butylbenzene                              | ND                  | ug/L        | 1.0                | 1       | 01/13/16 17:3            | 1 98-06-6     |     |
| trans-1,2-Dichloroethene                       | ND                  | ug/L        | 1.0                | 1       | 01/13/16 17:3            | 1 156-60-5    |     |
| trans-1,3-Dichloropropene<br><b>Surrogates</b> | ND                  | ug/L        | 20.0               | 1       | 01/13/16 17:3            | 1 10061-02-6  |     |
| 4-Bromofluorobenzene (S)                       | 101                 | %           | 70-130             | 1       | 01/13/16 17:3            | 1 460-00-4    |     |
| Dibromofluoromethane (S)                       | 101                 | %           | 70-130             | 1       | 01/13/16 17:3            | 1 1868-53-7   |     |
| Toluene-d8 (S)                                 | 98                  | %           | 70-130             | 1       | 01/13/16 17:3            | 1 2037-26-5   |     |



### **ANALYTICAL RESULTS**

Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: DPE-7                          | Lab ID: 10335670007 |              | Collected: 01/11/1 | 6 13:05 | Received: 0 | 01/12/16 09:45 | Matrix: Water |      |
|----------------------------------------|---------------------|--------------|--------------------|---------|-------------|----------------|---------------|------|
| Parameters                             | Results             | Units        | Report Limit       | DF      | Prepared    | Analyzed       | CAS No.       | Qual |
| 8260 MSV                               | Analytical Met      | hod: EPA 82  | 260                |         |             |                |               |      |
| 1,1,1,2-Tetrachloroethane              | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 | 630-20-6      |      |
| 1,1,1-Trichloroethane                  | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 | 71-55-6       |      |
| 1,1,2,2-Tetrachloroethane              | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 | 79-34-5       |      |
| 1,1,2-Trichloroethane                  | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 | 79-00-5       |      |
| 1,1,2-Trichlorotrifluoroethane         | ND                  | ug/L         | 5.0                | 1       |             | 01/14/16 08:33 | 76-13-1       |      |
| 1,1-Dichloroethane                     | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 | 75-34-3       |      |
| 1,1-Dichloroethene                     | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 | 75-35-4       |      |
| 1,1-Dichloropropene                    | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 | 563-58-6      |      |
| 1,2,3-Trichlorobenzene                 | ND                  | ug/L         | 5.0                | 1       |             | 01/14/16 08:33 | 87-61-6       |      |
| 1,2,3-Trichloropropane                 | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 | 96-18-4       |      |
| 1,2,4-Trichlorobenzene                 | ND                  | ug/L         | 5.0                | 1       |             | 01/14/16 08:33 |               |      |
| 1,2,4-Trimethylbenzene                 | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 |               |      |
| 1,2-Dibromo-3-chloropropane            | ND                  | ug/L         | 5.0                | 1       |             | 01/14/16 08:33 | 96-12-8       |      |
| 1,2-Dibromoethane (EDB)                | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 | 3 106-93-4    |      |
| 1,2-Dichlorobenzene                    | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 | 95-50-1       |      |
| 1,2-Dichloroethane                     | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 |               |      |
| 1,2-Dichloropropane                    | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 |               |      |
| 1,3,5-Trimethylbenzene                 | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 |               |      |
| 1,3-Dichlorobenzene                    | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 |               |      |
| 1,3-Dichloropropane                    | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 |               |      |
| 1,4-Dichlorobenzene                    | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 |               |      |
| 2,2-Dichloropropane                    | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 |               |      |
| 2-Butanone (MEK)                       | ND                  | ug/L         | 20.0               | 1       |             | 01/14/16 08:33 |               |      |
| 2-Chlorotoluene                        | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 |               |      |
| 4-Chlorotoluene                        | ND<br>ND            | ug/L<br>ug/L | 1.0                | 1       |             | 01/14/16 08:33 |               |      |
|                                        | ND<br>ND            | •            | 20.0               | 1       |             | 01/14/16 08:33 |               |      |
| 4-Methyl-2-pentanone (MIBK)<br>Acetone | ND<br>ND            | ug/L         | 20.0               | 1       |             | 01/14/16 08:33 |               |      |
| Allyl chloride                         | ND<br>ND            | ug/L         | 5.0                | 1       |             | 01/14/16 08:33 |               |      |
| Allyr chlonde<br>Benzene               | ND<br>ND            | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 |               |      |
|                                        |                     | ug/L         |                    | 1       |             |                |               |      |
| Bromobenzene                           | ND                  | ug/L         | 1.0                |         |             | 01/14/16 08:33 |               |      |
| Bromochloromethane                     | ND                  | ug/L         | 1.0                | 1<br>1  |             | 01/14/16 08:33 |               |      |
| Bromodichloromethane                   | ND                  | ug/L         | 1.0                |         |             | 01/14/16 08:33 |               |      |
| Bromoform                              | ND                  | ug/L         | 5.0                | 1       |             | 01/14/16 08:33 |               |      |
| Bromomethane                           | ND                  | ug/L         | 5.0                | 1       |             | 01/14/16 08:33 |               |      |
| Carbon tetrachloride                   | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 |               |      |
| Chlorobenzene                          | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 |               |      |
| Chloroethane                           | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 |               |      |
| Chloroform                             | ND                  | ug/L         | 5.0                | 1       |             | 01/14/16 08:33 |               |      |
| Chloromethane                          | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 |               |      |
| Dibromochloromethane                   | ND                  | ug/L         | 5.0                | 1       |             | 01/14/16 08:33 |               |      |
| Dibromomethane                         | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 |               |      |
| Dichlorodifluoromethane                | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 |               |      |
| Dichlorofluoromethane                  | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 |               |      |
| Diethyl ether (Ethyl ether)            | ND                  | ug/L         | 5.0                | 1       |             | 01/14/16 08:33 |               |      |
| Ethylbenzene                           | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 | 3 100-41-4    |      |
| Hexachloro-1,3-butadiene               | ND                  | ug/L         | 5.0                | 1       |             | 01/14/16 08:33 |               |      |
| Isopropylbenzene (Cumene)              | ND                  | ug/L         | 1.0                | 1       |             | 01/14/16 08:33 | 98-82-8       |      |



Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: DPE-7             | Lab ID: 10335670007 |             | Collected: 01/11/1 | 6 13:05 | Received: 01/12/16 09:45 | Matrix: Water |     |
|---------------------------|---------------------|-------------|--------------------|---------|--------------------------|---------------|-----|
| Parameters                | Results             | Units       | Report Limit       | DF      | Prepared Analyzed        | CAS No.       | Qua |
| 8260 MSV                  | Analytical Meth     | nod: EPA 82 | 260                |         |                          |               |     |
| Methyl-tert-butyl ether   | ND                  | ug/L        | 1.0                | 1       | 01/14/16 08:3            | 3 1634-04-4   |     |
| Methylene Chloride        | ND                  | ug/L        | 1.0                | 1       | 01/14/16 08:3            | 3 75-09-2     |     |
| Naphthalene               | ND                  | ug/L        | 5.0                | 1       | 01/14/16 08:3            | 3 91-20-3     |     |
| Styrene                   | ND                  | ug/L        | 1.0                | 1       | 01/14/16 08:3            | 3 100-42-5    |     |
| Tetrachloroethene         | 29.1                | ug/L        | 1.0                | 1       | 01/14/16 08:3            | 3 127-18-4    |     |
| Tetrahydrofuran           | ND                  | ug/L        | 5.0                | 1       | 01/14/16 08:3            | 3 109-99-9    |     |
| Toluene                   | ND                  | ug/L        | 1.0                | 1       | 01/14/16 08:3            | 3 108-88-3    |     |
| Trichloroethene           | ND                  | ug/L        | 1.0                | 1       | 01/14/16 08:3            | 3 79-01-6     |     |
| Trichlorofluoromethane    | ND                  | ug/L        | 1.0                | 1       | 01/14/16 08:3            | 3 75-69-4     |     |
| Vinyl chloride            | ND                  | ug/L        | 1.0                | 1       | 01/14/16 08:3            | 3 75-01-4     |     |
| Xylene (Total)            | ND                  | ug/L        | 3.0                | 1       | 01/14/16 08:3            | 3 1330-20-7   |     |
| cis-1,2-Dichloroethene    | ND                  | ug/L        | 1.0                | 1       | 01/14/16 08:3            | 3 156-59-2    |     |
| cis-1,3-Dichloropropene   | ND                  | ug/L        | 5.0                | 1       | 01/14/16 08:3            | 3 10061-01-5  |     |
| n-Butylbenzene            | ND                  | ug/L        | 1.0                | 1       | 01/14/16 08:3            | 3 104-51-8    |     |
| n-Propylbenzene           | ND                  | ug/L        | 1.0                | 1       | 01/14/16 08:3            | 3 103-65-1    |     |
| p-Isopropyltoluene        | ND                  | ug/L        | 1.0                | 1       | 01/14/16 08:3            | 3 99-87-6     |     |
| sec-Butylbenzene          | ND                  | ug/L        | 5.0                | 1       | 01/14/16 08:3            | 3 135-98-8    |     |
| tert-Butylbenzene         | ND                  | ug/L        | 1.0                | 1       | 01/14/16 08:3            | 3 98-06-6     |     |
| trans-1,2-Dichloroethene  | ND                  | ug/L        | 1.0                | 1       | 01/14/16 08:3            | 3 156-60-5    |     |
| trans-1,3-Dichloropropene | ND                  | ug/L        | 20.0               | 1       | 01/14/16 08:3            | 3 10061-02-6  |     |
| Surrogates                |                     |             |                    |         |                          |               |     |
| 4-Bromofluorobenzene (S)  | 102                 | %           | 70-130             | 1       | 01/14/16 08:3            |               |     |
| Dibromofluoromethane (S)  | 108                 | %           | 70-130             | 1       | 01/14/16 08:3            | 3 1868-53-7   |     |
| Toluene-d8 (S)            | 95                  | %           | 70-130             | 1       | 01/14/16 08:3            | 3 2037-26-5   |     |



### **ANALYTICAL RESULTS**

Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: DPE-8                  | Lab ID: 103    | 35670008     | Collected: 01/11/1 | 6 15:00 | Received: | 01/12/16 09:45 | Matrix: Water |     |
|--------------------------------|----------------|--------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                     | Results        | Units        | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260 MSV                       | Analytical Met | hod: EPA 82  | 260                |         |           |                |               |     |
| 1,1,1,2-Tetrachloroethane      | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  | 8 630-20-6    |     |
| 1,1,1-Trichloroethane          | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  | 8 71-55-6     |     |
| 1,1,2,2-Tetrachloroethane      | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  | 8 79-34-5     |     |
| 1,1,2-Trichloroethane          | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  | 8 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane | ND             | ug/L         | 20.0               | 4       |           | 01/14/16 12:1  | 8 76-13-1     |     |
| 1,1-Dichloroethane             | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  | 8 75-34-3     |     |
| 1,1-Dichloroethene             | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  | 8 75-35-4     |     |
| 1,1-Dichloropropene            | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  | 8 563-58-6    |     |
| ,2,3-Trichlorobenzene          | ND             | ug/L         | 20.0               | 4       |           | 01/14/16 12:1  | 8 87-61-6     |     |
| ,2,3-Trichloropropane          | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  | 8 96-18-4     |     |
| I,2,4-Trichlorobenzene         | ND             | ug/L         | 20.0               | 4       |           | 01/14/16 12:1  | 8 120-82-1    |     |
| I,2,4-Trimethylbenzene         | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  |               |     |
| ,2-Dibromo-3-chloropropane     | ND             | ug/L         | 20.0               | 4       |           | 01/14/16 12:1  |               |     |
| ,2-Dibromoethane (EDB)         | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  |               |     |
| ,2-Dichlorobenzene             | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  |               |     |
| .2-Dichloroethane              | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  |               |     |
| ,2-Dichloropropane             | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  |               |     |
| ,3,5-Trimethylbenzene          | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  |               |     |
| ,3-Dichlorobenzene             | ND<br>ND       | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  |               |     |
| ,3-Dichloropropane             | ND<br>ND       | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  |               |     |
| ,4-Dichlorobenzene             | ND<br>ND       | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  |               |     |
| 2,2-Dichloropropane            | ND<br>ND       | ug/L<br>ug/L | 4.0                | 4       |           | 01/14/16 12:1  |               |     |
|                                | ND<br>ND       | •            | 80.0               | 4       |           | 01/14/16 12:1  |               |     |
| P-Butanone (MEK)               |                | ug/L         |                    | 4       |           |                |               |     |
| 2-Chlorotoluene                | ND             | ug/L         | 4.0                |         |           | 01/14/16 12:1  |               |     |
| -Chlorotoluene                 | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  |               |     |
| I-Methyl-2-pentanone (MIBK)    | ND             | ug/L         | 80.0               | 4       |           | 01/14/16 12:1  |               |     |
| Acetone                        | ND             | ug/L         | 80.0               | 4       |           | 01/14/16 12:1  |               |     |
| Allyl chloride                 | ND             | ug/L         | 20.0               | 4       |           | 01/14/16 12:1  |               |     |
| Benzene                        | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  |               |     |
| Bromobenzene                   | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  |               |     |
| Bromochloromethane             | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  |               |     |
| Bromodichloromethane           | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  |               |     |
| Bromoform                      | ND             | ug/L         | 20.0               | 4       |           | 01/14/16 12:1  |               |     |
| Bromomethane                   | ND             | ug/L         | 20.0               | 4       |           | 01/14/16 12:1  |               |     |
| Carbon tetrachloride           | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  |               |     |
| Chlorobenzene                  | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  |               |     |
| Chloroethane                   | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  |               |     |
| Chloroform                     | ND             | ug/L         | 20.0               | 4       |           | 01/14/16 12:1  |               |     |
| Chloromethane                  | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  |               |     |
| Dibromochloromethane           | ND             | ug/L         | 20.0               | 4       |           | 01/14/16 12:1  |               |     |
| Dibromomethane                 | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  |               |     |
| Dichlorodifluoromethane        | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  |               |     |
| Dichlorofluoromethane          | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  | 8 75-43-4     |     |
| Diethyl ether (Ethyl ether)    | ND             | ug/L         | 20.0               | 4       |           | 01/14/16 12:1  | 8 60-29-7     |     |
| thylbenzene                    | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  | 8 100-41-4    |     |
| lexachloro-1,3-butadiene       | ND             | ug/L         | 20.0               | 4       |           | 01/14/16 12:1  | 8 87-68-3     |     |
| sopropylbenzene (Cumene)       | ND             | ug/L         | 4.0                | 4       |           | 01/14/16 12:1  | 8 98-82-8     |     |





Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: DPE-8                                 | Lab ID: 10335670008 |            | Collected: 01/11/1 | 6 15:00 | Received: 0' | 1/12/16 09:45 N | Matrix: Water |     |
|-----------------------------------------------|---------------------|------------|--------------------|---------|--------------|-----------------|---------------|-----|
| Parameters                                    | Results             | Units      | Report Limit       | DF      | Prepared     | Analyzed        | CAS No.       | Qua |
| 8260 MSV                                      | Analytical Meth     | od: EPA 82 | 260                |         |              |                 |               |     |
| Methyl-tert-butyl ether                       | ND                  | ug/L       | 4.0                | 4       |              | 01/14/16 12:18  | 1634-04-4     |     |
| Methylene Chloride                            | ND                  | ug/L       | 4.0                | 4       |              | 01/14/16 12:18  | 75-09-2       |     |
| Naphthalene                                   | ND                  | ug/L       | 20.0               | 4       |              | 01/14/16 12:18  | 91-20-3       |     |
| Styrene                                       | ND                  | ug/L       | 4.0                | 4       |              | 01/14/16 12:18  | 100-42-5      |     |
| Tetrachloroethene                             | 288                 | ug/L       | 4.0                | 4       |              | 01/14/16 12:18  | 127-18-4      |     |
| Tetrahydrofuran                               | ND                  | ug/L       | 20.0               | 4       |              | 01/14/16 12:18  | 109-99-9      |     |
| Toluene                                       | ND                  | ug/L       | 4.0                | 4       |              | 01/14/16 12:18  | 108-88-3      |     |
| Trichloroethene                               | ND                  | ug/L       | 4.0                | 4       |              | 01/14/16 12:18  | 79-01-6       |     |
| Trichlorofluoromethane                        | ND                  | ug/L       | 4.0                | 4       |              | 01/14/16 12:18  | 75-69-4       |     |
| Vinyl chloride                                | ND                  | ug/L       | 4.0                | 4       |              | 01/14/16 12:18  | 75-01-4       |     |
| Xylene (Total)                                | ND                  | ug/L       | 12.0               | 4       |              | 01/14/16 12:18  | 1330-20-7     |     |
| cis-1,2-Dichloroethene                        | ND                  | ug/L       | 4.0                | 4       |              | 01/14/16 12:18  | 156-59-2      |     |
| cis-1,3-Dichloropropene                       | ND                  | ug/L       | 20.0               | 4       |              | 01/14/16 12:18  | 10061-01-5    |     |
| n-Butylbenzene                                | ND                  | ug/L       | 4.0                | 4       |              | 01/14/16 12:18  | 104-51-8      |     |
| n-Propylbenzene                               | ND                  | ug/L       | 4.0                | 4       |              | 01/14/16 12:18  | 103-65-1      |     |
| p-Isopropyltoluene                            | ND                  | ug/L       | 4.0                | 4       |              | 01/14/16 12:18  | 99-87-6       |     |
| sec-Butylbenzene                              | ND                  | ug/L       | 20.0               | 4       |              | 01/14/16 12:18  | 135-98-8      |     |
| tert-Butylbenzene                             | ND                  | ug/L       | 4.0                | 4       |              | 01/14/16 12:18  | 98-06-6       |     |
| trans-1,2-Dichloroethene                      | ND                  | ug/L       | 4.0                | 4       |              | 01/14/16 12:18  | 156-60-5      |     |
| trans-1,3-Dichloropropene                     | ND                  | ug/L       | 80.0               | 4       |              | 01/14/16 12:18  | 10061-02-6    |     |
| <b>Surrogates</b><br>4-Bromofluorobenzene (S) | 102                 | %          | 70-130             | 4       |              | 01/14/16 12:18  | 460-00-4      |     |
| Dibromofluoromethane (S)                      | 102                 | %          | 70-130             | 4       |              | 01/14/16 12:18  |               |     |
| Toluene-d8 (S)                                | 98                  | %<br>%     | 70-130             | 4       |              | 01/14/16 12:18  |               |     |





Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: MW-14                  | Lab ID: 10    | 335670009     | Collected: 01/11/1 | 6 13:25 | Received: | 01/12/16 09:45 | Matrix: Water |     |
|--------------------------------|---------------|---------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                     | Results       | Units         | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 3260 MSV                       | Analytical Me | ethod: EPA 82 | 260                |         |           |                |               |     |
| 1,1,1,2-Tetrachloroethane      | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 | 630-20-6      |     |
| 1,1,1-Trichloroethane          | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 | 71-55-6       |     |
| 1,1,2,2-Tetrachloroethane      | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 | 79-34-5       |     |
| 1,1,2-Trichloroethane          | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 | 79-00-5       |     |
| 1,1,2-Trichlorotrifluoroethane | ND            | ug/L          | 5.0                | 1       |           | 01/14/16 08:56 | 6 76-13-1     |     |
| 1,1-Dichloroethane             | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 | 75-34-3       |     |
| 1,1-Dichloroethene             | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 | 75-35-4       |     |
| 1,1-Dichloropropene            | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 | 563-58-6      |     |
| ,2,3-Trichlorobenzene          | ND            | ug/L          | 5.0                | 1       |           | 01/14/16 08:56 | 87-61-6       |     |
| ,2,3-Trichloropropane          | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 | 96-18-4       |     |
| ,2,4-Trichlorobenzene          | ND            | ug/L          | 5.0                | 1       |           | 01/14/16 08:56 | 120-82-1      |     |
| ,2,4-Trimethylbenzene          | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 |               |     |
| ,2-Dibromo-3-chloropropane     | ND            | ug/L          | 5.0                | 1       |           | 01/14/16 08:56 |               |     |
| ,2-Dibromoethane (EDB)         | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 |               |     |
| ,2-Dichlorobenzene             | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 |               |     |
| ,2-Dichloroethane              | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 |               |     |
| ,2-Dichloropropane             | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 |               |     |
| ,3,5-Trimethylbenzene          | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 |               |     |
| ,3-Dichlorobenzene             | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 |               |     |
| ,3-Dichloropropane             | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 |               |     |
| ,4-Dichlorobenzene             | ND<br>ND      |               | 1.0                | 1       |           | 01/14/16 08:56 |               |     |
| -                              | ND<br>ND      | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 |               |     |
| 2,2-Dichloropropane            | ND<br>ND      | ug/L          | 20.0               | 1       |           | 01/14/16 08:56 |               |     |
| -Butanone (MEK)                |               | ug/L          |                    |         |           |                |               |     |
| 2-Chlorotoluene                | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 |               |     |
| -Chlorotoluene                 | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 |               |     |
| I-Methyl-2-pentanone (MIBK)    | ND            | ug/L          | 20.0               | 1       |           | 01/14/16 08:56 |               |     |
| Acetone                        | ND            | ug/L          | 20.0               | 1       |           | 01/14/16 08:56 |               |     |
| Allyl chloride                 | ND            | ug/L          | 5.0                | 1       |           | 01/14/16 08:56 |               |     |
| Benzene                        | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 |               |     |
| Bromobenzene                   | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 |               |     |
| Bromochloromethane             | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 |               |     |
| Bromodichloromethane           | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 |               |     |
| Bromoform                      | ND            | ug/L          | 5.0                | 1       |           | 01/14/16 08:56 |               |     |
| Bromomethane                   | ND            | ug/L          | 5.0                | 1       |           | 01/14/16 08:56 |               |     |
| Carbon tetrachloride           | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 |               |     |
| Chlorobenzene                  | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 |               |     |
| Chloroethane                   | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 |               |     |
| Chloroform                     | ND            | ug/L          | 5.0                | 1       |           | 01/14/16 08:56 | 67-66-3       |     |
| Chloromethane                  | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 | 74-87-3       |     |
| Dibromochloromethane           | ND            | ug/L          | 5.0                | 1       |           | 01/14/16 08:56 | 124-48-1      |     |
| ibromomethane                  | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 | 74-95-3       |     |
| Dichlorodifluoromethane        | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 | 75-71-8       |     |
| ichlorofluoromethane           | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 | 5 75-43-4     |     |
| Diethyl ether (Ethyl ether)    | ND            | ug/L          | 5.0                | 1       |           | 01/14/16 08:56 | 60-29-7       |     |
| Ethylbenzene                   | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 | 3 100-41-4    |     |
| lexachloro-1,3-butadiene       | ND            | ug/L          | 5.0                | 1       |           | 01/14/16 08:56 | 87-68-3       |     |
| sopropylbenzene (Cumene)       | ND            | ug/L          | 1.0                | 1       |           | 01/14/16 08:56 |               |     |



Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: MW-14             | Lab ID: 103     | 35670009    | Collected: 01/11/1 | 6 13:25 | Received: 01/12/16 09:45 | Matrix: Water |     |
|---------------------------|-----------------|-------------|--------------------|---------|--------------------------|---------------|-----|
| Parameters                | Results         | Units       | Report Limit       | DF      | Prepared Analyzed        | CAS No.       | Qua |
| 8260 MSV                  | Analytical Meth | nod: EPA 82 | 260                |         |                          |               |     |
| Methyl-tert-butyl ether   | ND              | ug/L        | 1.0                | 1       | 01/14/16 08:5            | 6 1634-04-4   |     |
| Methylene Chloride        | ND              | ug/L        | 1.0                | 1       | 01/14/16 08:5            | 6 75-09-2     |     |
| Naphthalene               | ND              | ug/L        | 5.0                | 1       | 01/14/16 08:5            | 6 91-20-3     |     |
| Styrene                   | ND              | ug/L        | 1.0                | 1       | 01/14/16 08:5            | 6 100-42-5    |     |
| Tetrachloroethene         | 11.1            | ug/L        | 1.0                | 1       | 01/14/16 08:5            | 6 127-18-4    |     |
| Tetrahydrofuran           | ND              | ug/L        | 5.0                | 1       | 01/14/16 08:5            | 6 109-99-9    |     |
| Toluene                   | ND              | ug/L        | 1.0                | 1       | 01/14/16 08:5            | 6 108-88-3    |     |
| Trichloroethene           | ND              | ug/L        | 1.0                | 1       | 01/14/16 08:5            | 6 79-01-6     |     |
| Trichlorofluoromethane    | ND              | ug/L        | 1.0                | 1       | 01/14/16 08:5            | 6 75-69-4     |     |
| Vinyl chloride            | ND              | ug/L        | 1.0                | 1       | 01/14/16 08:5            | 6 75-01-4     |     |
| Xylene (Total)            | ND              | ug/L        | 3.0                | 1       | 01/14/16 08:5            | 6 1330-20-7   |     |
| cis-1,2-Dichloroethene    | ND              | ug/L        | 1.0                | 1       | 01/14/16 08:5            | 6 156-59-2    |     |
| cis-1,3-Dichloropropene   | ND              | ug/L        | 5.0                | 1       | 01/14/16 08:5            | 6 10061-01-5  |     |
| n-Butylbenzene            | ND              | ug/L        | 1.0                | 1       | 01/14/16 08:5            | 6 104-51-8    |     |
| n-Propylbenzene           | ND              | ug/L        | 1.0                | 1       | 01/14/16 08:5            | 6 103-65-1    |     |
| p-Isopropyltoluene        | ND              | ug/L        | 1.0                | 1       | 01/14/16 08:5            | 6 99-87-6     |     |
| sec-Butylbenzene          | ND              | ug/L        | 5.0                | 1       | 01/14/16 08:5            | 6 135-98-8    |     |
| tert-Butylbenzene         | ND              | ug/L        | 1.0                | 1       | 01/14/16 08:5            | 6 98-06-6     |     |
| trans-1,2-Dichloroethene  | ND              | ug/L        | 1.0                | 1       | 01/14/16 08:5            | 6 156-60-5    |     |
| trans-1,3-Dichloropropene | ND              | ug/L        | 20.0               | 1       | 01/14/16 08:5            | 6 10061-02-6  |     |
| Surrogates                |                 |             |                    |         |                          |               |     |
| 4-Bromofluorobenzene (S)  | 101             | %           | 70-130             | 1       | 01/14/16 08:5            |               |     |
| Dibromofluoromethane (S)  | 107             | %           | 70-130             | 1       | 01/14/16 08:5            |               |     |
| Toluene-d8 (S)            | 96              | %           | 70-130             | 1       | 01/14/16 08:5            | 6 2037-26-5   |     |



### **ANALYTICAL RESULTS**

Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: MW-15                  | Lab ID: 103    | 35670010     | Collected: 01/11/1 | 6 13:45 | Received: ( | 01/12/16 09:45 | Matrix: Water |      |
|--------------------------------|----------------|--------------|--------------------|---------|-------------|----------------|---------------|------|
| Parameters                     | Results        | Units        | Report Limit       | DF      | Prepared    | Analyzed       | CAS No.       | Qual |
| 8260 MSV                       | Analytical Met | hod: EPA 82  | 260                |         |             |                |               |      |
| 1,1,1,2-Tetrachloroethane      | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  | 8 630-20-6    |      |
| 1,1,1-Trichloroethane          | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  | 8 71-55-6     |      |
| 1,1,2,2-Tetrachloroethane      | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  | 8 79-34-5     |      |
| 1,1,2-Trichloroethane          | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  | 8 79-00-5     |      |
| 1,1,2-Trichlorotrifluoroethane | ND             | ug/L         | 5.0                | 1       |             | 01/14/16 09:1  | 8 76-13-1     |      |
| 1,1-Dichloroethane             | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  | 8 75-34-3     |      |
| 1,1-Dichloroethene             | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  | 8 75-35-4     |      |
| 1,1-Dichloropropene            | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  | 8 563-58-6    |      |
| 1,2,3-Trichlorobenzene         | ND             | ug/L         | 5.0                | 1       |             | 01/14/16 09:1  | 8 87-61-6     |      |
| 1,2,3-Trichloropropane         | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  | 8 96-18-4     |      |
| 1,2,4-Trichlorobenzene         | ND             | ug/L         | 5.0                | 1       |             | 01/14/16 09:1  |               |      |
| 1,2,4-Trimethylbenzene         | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| 1,2-Dibromo-3-chloropropane    | ND             | ug/L         | 5.0                | 1       |             | 01/14/16 09:1  |               |      |
| 1,2-Dibromoethane (EDB)        | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| 1,2-Dichlorobenzene            | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| 1,2-Dichloroethane             | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| 1,2-Dichloropropane            | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| 1,3,5-Trimethylbenzene         | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| 1,3-Dichlorobenzene            | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| 1,3-Dichloropropane            | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| 1,4-Dichlorobenzene            | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| 2,2-Dichloropropane            | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| 2-Butanone (MEK)               | ND             | ug/L         | 20.0               | 1       |             | 01/14/16 09:1  |               |      |
| 2-Chlorotoluene                | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| 4-Chlorotoluene                | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| 4-Methyl-2-pentanone (MIBK)    | ND<br>ND       | ug/L<br>ug/L | 20.0               | 1       |             | 01/14/16 09:1  |               |      |
| Acetone                        | ND<br>ND       | ug/L<br>ug/L | 20.0               | 1       |             | 01/14/16 09:1  |               |      |
| Allyl chloride                 | ND<br>ND       | ug/L<br>ug/L | 5.0                | 1       |             | 01/14/16 09:1  |               |      |
| Benzene                        | ND<br>ND       | ug/L<br>ug/L | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| Bromobenzene                   | ND<br>ND       | ug/L<br>ug/L | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| Bromochloromethane             | ND<br>ND       | •            | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| Bromodichloromethane           | ND<br>ND       | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| Bromoform                      | ND             | ug/L<br>ug/L | 5.0                | 1       |             | 01/14/16 09:1  |               |      |
| Bromomethane                   | ND<br>ND       | •            | 5.0                | 1       |             | 01/14/16 09:1  |               |      |
|                                | ND<br>ND       | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| Carbon tetrachloride           |                | ug/L         | 1.0                | 1       |             |                |               |      |
| Chlorobenzene                  | ND             | ug/L         |                    | 1       |             | 01/14/16 09:1  |               |      |
| Chloroethane                   | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| Chloroform                     | ND             | ug/L         | 5.0                | 1       |             | 01/14/16 09:1  |               |      |
| Chloromethane                  | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| Dibromochloromethane           | ND             | ug/L         | 5.0                | 1       |             | 01/14/16 09:1  |               |      |
| Dibromomethane                 | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| Dichlorodifluoromethane        | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| Dichlorofluoromethane          | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| Diethyl ether (Ethyl ether)    | ND             | ug/L         | 5.0                | 1       |             | 01/14/16 09:1  |               |      |
| Ethylbenzene                   | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  |               |      |
| Hexachloro-1,3-butadiene       | ND             | ug/L         | 5.0                | 1       |             | 01/14/16 09:1  |               |      |
| Isopropylbenzene (Cumene)      | ND             | ug/L         | 1.0                | 1       |             | 01/14/16 09:1  | 8 98-82-8     |      |



Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: MW-15                       | Lab ID: 103     | 35670010    | Collected: 01/11/1 | 6 13:45 | Received: 01 | /12/16 09:45 N | Matrix: Water |     |
|-------------------------------------|-----------------|-------------|--------------------|---------|--------------|----------------|---------------|-----|
| Parameters                          | Results         | Units       | Report Limit       | DF      | Prepared     | Analyzed       | CAS No.       | Qua |
| 8260 MSV                            | Analytical Meth | nod: EPA 82 | 260                |         |              |                |               |     |
| Methyl-tert-butyl ether             | ND              | ug/L        | 1.0                | 1       |              | 01/14/16 09:18 | 1634-04-4     |     |
| Methylene Chloride                  | ND              | ug/L        | 1.0                | 1       |              | 01/14/16 09:18 | 75-09-2       |     |
| Naphthalene                         | ND              | ug/L        | 5.0                | 1       |              | 01/14/16 09:18 | 91-20-3       |     |
| Styrene                             | ND              | ug/L        | 1.0                | 1       |              | 01/14/16 09:18 | 100-42-5      |     |
| Tetrachloroethene                   | 11.9            | ug/L        | 1.0                | 1       |              | 01/14/16 09:18 | 127-18-4      |     |
| Tetrahydrofuran                     | ND              | ug/L        | 5.0                | 1       |              | 01/14/16 09:18 | 109-99-9      |     |
| Toluene                             | ND              | ug/L        | 1.0                | 1       |              | 01/14/16 09:18 | 108-88-3      |     |
| Trichloroethene                     | ND              | ug/L        | 1.0                | 1       |              | 01/14/16 09:18 | 79-01-6       |     |
| Trichlorofluoromethane              | ND              | ug/L        | 1.0                | 1       |              | 01/14/16 09:18 | 75-69-4       |     |
| Vinyl chloride                      | ND              | ug/L        | 1.0                | 1       |              | 01/14/16 09:18 | 75-01-4       |     |
| Xylene (Total)                      | ND              | ug/L        | 3.0                | 1       |              | 01/14/16 09:18 | 1330-20-7     |     |
| cis-1,2-Dichloroethene              | ND              | ug/L        | 1.0                | 1       |              | 01/14/16 09:18 | 156-59-2      |     |
| cis-1,3-Dichloropropene             | ND              | ug/L        | 5.0                | 1       |              | 01/14/16 09:18 | 10061-01-5    |     |
| n-Butylbenzene                      | ND              | ug/L        | 1.0                | 1       |              | 01/14/16 09:18 | 104-51-8      |     |
| n-Propylbenzene                     | ND              | ug/L        | 1.0                | 1       |              | 01/14/16 09:18 | 103-65-1      |     |
| p-Isopropyltoluene                  | ND              | ug/L        | 1.0                | 1       |              | 01/14/16 09:18 | 99-87-6       |     |
| sec-Butylbenzene                    | ND              | ug/L        | 5.0                | 1       |              | 01/14/16 09:18 | 135-98-8      |     |
| tert-Butylbenzene                   | ND              | ug/L        | 1.0                | 1       |              | 01/14/16 09:18 | 98-06-6       |     |
| trans-1,2-Dichloroethene            | ND              | ug/L        | 1.0                | 1       |              | 01/14/16 09:18 | 156-60-5      |     |
| trans-1,3-Dichloropropene           | ND              | ug/L        | 20.0               | 1       |              | 01/14/16 09:18 | 10061-02-6    |     |
| Surrogates 4-Bromofluorobenzene (S) | 98              | %           | 70-130             | 1       |              | 01/14/16 09:18 | 460-00-4      |     |
| Dibromofluoromethane (S)            | 103             | %           | 70-130             | 1       |              | 01/14/16 09:18 | 1868-53-7     |     |
| Toluene-d8 (S)                      | 98              | %           | 70-130             | 1       |              | 01/14/16 09:18 |               |     |



### **ANALYTICAL RESULTS**

Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: MW-16                  | Lab ID: 103    | 35670011    | Collected: 01/11/1 | 6 14:35 | Received: | 01/12/16 09:45 | Matrix: Water |     |
|--------------------------------|----------------|-------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                     | Results        | Units       | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260 MSV                       | Analytical Met | hod: EPA 82 | 260                |         |           |                |               |     |
| 1,1,1,2-Tetrachloroethane      | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  | 1 630-20-6    |     |
| 1,1,1-Trichloroethane          | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  | 1 71-55-6     |     |
| 1,1,2,2-Tetrachloroethane      | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  | 1 79-34-5     |     |
| 1,1,2-Trichloroethane          | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  | 1 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane | 21.5           | ug/L        | 10.0               | 2       |           | 01/14/16 12:4  | 1 76-13-1     |     |
| 1,1-Dichloroethane             | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  | 1 75-34-3     |     |
| 1,1-Dichloroethene             | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  | 1 75-35-4     |     |
| 1,1-Dichloropropene            | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  | 1 563-58-6    |     |
| 1,2,3-Trichlorobenzene         | ND             | ug/L        | 10.0               | 2       |           | 01/14/16 12:4  | 1 87-61-6     |     |
| 1,2,3-Trichloropropane         | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  |               |     |
| 1,2,4-Trichlorobenzene         | ND             | ug/L        | 10.0               | 2       |           | 01/14/16 12:4  |               |     |
| 1,2,4-Trimethylbenzene         | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  |               |     |
| 1,2-Dibromo-3-chloropropane    | ND             | ug/L        | 10.0               | 2       |           | 01/14/16 12:4  |               |     |
| 1,2-Dibromoethane (EDB)        | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  |               |     |
| 1.2-Dichlorobenzene            | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  |               |     |
| 1,2-Dichloroethane             | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  |               |     |
| 1,2-Dichloropropane            | ND<br>ND       | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  |               |     |
| 1,3,5-Trimethylbenzene         | ND<br>ND       | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  |               |     |
| 1,3-Dichlorobenzene            | ND<br>ND       |             | 2.0                | 2       |           | 01/14/16 12:4  |               |     |
|                                |                | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  |               |     |
| 1,3-Dichloropropane            | ND             | ug/L        |                    |         |           |                |               |     |
| 1,4-Dichlorobenzene            | ND             | ug/L        | 2.0<br>2.0         | 2<br>2  |           | 01/14/16 12:4  |               |     |
| 2,2-Dichloropropane            | ND             | ug/L        |                    |         |           | 01/14/16 12:4  |               |     |
| 2-Butanone (MEK)               | ND             | ug/L        | 40.0               | 2       |           | 01/14/16 12:4  |               |     |
| 2-Chlorotoluene                | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  |               |     |
| 4-Chlorotoluene                | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  |               |     |
| 4-Methyl-2-pentanone (MIBK)    | ND             | ug/L        | 40.0               | 2       |           | 01/14/16 12:4  |               |     |
| Acetone                        | ND             | ug/L        | 40.0               | 2       |           | 01/14/16 12:4  |               |     |
| Allyl chloride                 | ND             | ug/L        | 10.0               | 2       |           | 01/14/16 12:4  |               |     |
| Benzene                        | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  |               |     |
| Bromobenzene                   | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  |               |     |
| Bromochloromethane             | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  |               |     |
| Bromodichloromethane           | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  | 1 75-27-4     |     |
| Bromoform                      | ND             | ug/L        | 10.0               | 2       |           | 01/14/16 12:4  | 1 75-25-2     |     |
| Bromomethane                   | ND             | ug/L        | 10.0               | 2       |           | 01/14/16 12:4  | 1 74-83-9     |     |
| Carbon tetrachloride           | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  | 1 56-23-5     |     |
| Chlorobenzene                  | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  | 1 108-90-7    |     |
| Chloroethane                   | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  | 1 75-00-3     |     |
| Chloroform                     | ND             | ug/L        | 10.0               | 2       |           | 01/14/16 12:4  | 1 67-66-3     |     |
| Chloromethane                  | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  | 1 74-87-3     |     |
| Dibromochloromethane           | ND             | ug/L        | 10.0               | 2       |           | 01/14/16 12:4  | 1 124-48-1    |     |
| Dibromomethane                 | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  | 1 74-95-3     |     |
| Dichlorodifluoromethane        | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  | 1 75-71-8     |     |
| Dichlorofluoromethane          | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  |               |     |
| Diethyl ether (Ethyl ether)    | ND             | ug/L        | 10.0               | 2       |           | 01/14/16 12:4  |               |     |
| Ethylbenzene                   | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  |               |     |
| Hexachloro-1,3-butadiene       | ND             | ug/L        | 10.0               | 2       |           | 01/14/16 12:4  |               |     |
| sopropylbenzene (Cumene)       | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 12:4  |               |     |



Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: MW-16             | Lab ID: 103     | 35670011    | Collected: 01/11/1 | 6 14:35 | Received: 01/12/16 09:45 | Matrix: Water |     |
|---------------------------|-----------------|-------------|--------------------|---------|--------------------------|---------------|-----|
| Parameters                | Results         | Units       | Report Limit       | DF      | Prepared Analyzed        | CAS No.       | Qua |
| 8260 MSV                  | Analytical Meth | nod: EPA 82 | 260                |         |                          |               |     |
| Methyl-tert-butyl ether   | ND              | ug/L        | 2.0                | 2       | 01/14/16 12:4            | 1 1634-04-4   |     |
| Methylene Chloride        | ND              | ug/L        | 2.0                | 2       | 01/14/16 12:4            | 1 75-09-2     |     |
| Naphthalene               | ND              | ug/L        | 10.0               | 2       | 01/14/16 12:4            | 1 91-20-3     |     |
| Styrene                   | ND              | ug/L        | 2.0                | 2       | 01/14/16 12:4            | 1 100-42-5    |     |
| Tetrachloroethene         | 290             | ug/L        | 2.0                | 2       | 01/14/16 12:4            | 1 127-18-4    |     |
| Tetrahydrofuran           | ND              | ug/L        | 10.0               | 2       | 01/14/16 12:4            | 1 109-99-9    |     |
| Toluene                   | ND              | ug/L        | 2.0                | 2       | 01/14/16 12:4            | 1 108-88-3    |     |
| Trichloroethene           | ND              | ug/L        | 2.0                | 2       | 01/14/16 12:4            | 1 79-01-6     |     |
| Trichlorofluoromethane    | ND              | ug/L        | 2.0                | 2       | 01/14/16 12:4            | 1 75-69-4     |     |
| Vinyl chloride            | ND              | ug/L        | 2.0                | 2       | 01/14/16 12:4            | 1 75-01-4     |     |
| Xylene (Total)            | ND              | ug/L        | 6.0                | 2       | 01/14/16 12:4            | 1 1330-20-7   |     |
| cis-1,2-Dichloroethene    | 2.3             | ug/L        | 2.0                | 2       | 01/14/16 12:4            | 1 156-59-2    |     |
| cis-1,3-Dichloropropene   | ND              | ug/L        | 10.0               | 2       | 01/14/16 12:4            | 1 10061-01-5  |     |
| n-Butylbenzene            | ND              | ug/L        | 2.0                | 2       | 01/14/16 12:4            | 1 104-51-8    |     |
| n-Propylbenzene           | ND              | ug/L        | 2.0                | 2       | 01/14/16 12:4            | 1 103-65-1    |     |
| p-Isopropyltoluene        | ND              | ug/L        | 2.0                | 2       | 01/14/16 12:4            | 1 99-87-6     |     |
| sec-Butylbenzene          | ND              | ug/L        | 10.0               | 2       | 01/14/16 12:4            | 1 135-98-8    |     |
| tert-Butylbenzene         | ND              | ug/L        | 2.0                | 2       | 01/14/16 12:4            | 1 98-06-6     |     |
| trans-1,2-Dichloroethene  | ND              | ug/L        | 2.0                | 2       | 01/14/16 12:4            | 1 156-60-5    |     |
| trans-1,3-Dichloropropene | ND              | ug/L        | 40.0               | 2       | 01/14/16 12:4            | 1 10061-02-6  |     |
| Surrogates                |                 |             |                    |         |                          |               |     |
| 4-Bromofluorobenzene (S)  | 98              | %           | 70-130             | 2       | 01/14/16 12:4            | 1 460-00-4    |     |
| Dibromofluoromethane (S)  | 102             | %           | 70-130             | 2       | 01/14/16 12:4            | 1 1868-53-7   |     |
| Toluene-d8 (S)            | 96              | %           | 70-130             | 2       | 01/14/16 12:4            | 1 2037-26-5   |     |



### **ANALYTICAL RESULTS**

Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: MW-17                  | Lab ID: 103    | 35670012    | Collected: 01/11/1 | 6 17:45 | Received: | 01/12/16 09:45 | Matrix: Water |     |
|--------------------------------|----------------|-------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                     | Results        | Units       | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260 MSV                       | Analytical Met | nod: EPA 82 | 260                |         |           |                |               |     |
| 1,1,1,2-Tetrachloroethane      | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  | 6 630-20-6    |     |
| 1,1,1-Trichloroethane          | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  | 6 71-55-6     |     |
| 1,1,2,2-Tetrachloroethane      | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  | 6 79-34-5     |     |
| 1,1,2-Trichloroethane          | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  | 6 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane | 18.2           | ug/L        | 10.0               | 2       |           | 01/14/16 10:2  | 6 76-13-1     |     |
| 1,1-Dichloroethane             | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  | 6 75-34-3     |     |
| 1,1-Dichloroethene             | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  | 6 75-35-4     |     |
| 1,1-Dichloropropene            | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  | 6 563-58-6    |     |
| 1,2,3-Trichlorobenzene         | ND             | ug/L        | 10.0               | 2       |           | 01/14/16 10:2  | 6 87-61-6     |     |
| 1,2,3-Trichloropropane         | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  | 6 96-18-4     |     |
| 1,2,4-Trichlorobenzene         | ND             | ug/L        | 10.0               | 2       |           | 01/14/16 10:2  |               |     |
| 1,2,4-Trimethylbenzene         | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  |               |     |
| 1,2-Dibromo-3-chloropropane    | ND             | ug/L        | 10.0               | 2       |           | 01/14/16 10:2  |               |     |
| 1,2-Dibromoethane (EDB)        | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  |               |     |
| 1,2-Dichlorobenzene            | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  |               |     |
| 1,2-Dichloroethane             | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  |               |     |
| 1,2-Dichloropropane            | ND<br>ND       | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  |               |     |
| 1,3,5-Trimethylbenzene         | ND<br>ND       | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  |               |     |
| 1,3-Dichlorobenzene            | ND<br>ND       |             | 2.0                | 2       |           | 01/14/16 10:2  |               |     |
|                                |                | ug/L        | 2.0                |         |           | 01/14/16 10:2  |               |     |
| 1,3-Dichloropropane            | ND             | ug/L        |                    | 2       |           |                |               |     |
| 1,4-Dichlorobenzene            | ND             | ug/L        | 2.0<br>2.0         | 2<br>2  |           | 01/14/16 10:2  |               |     |
| 2,2-Dichloropropane            | ND             | ug/L        |                    |         |           | 01/14/16 10:2  |               |     |
| 2-Butanone (MEK)               | ND             | ug/L        | 40.0               | 2       |           | 01/14/16 10:2  |               |     |
| 2-Chlorotoluene                | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  |               |     |
| 4-Chlorotoluene                | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  |               |     |
| 4-Methyl-2-pentanone (MIBK)    | ND             | ug/L        | 40.0               | 2       |           | 01/14/16 10:2  |               |     |
| Acetone                        | ND             | ug/L        | 40.0               | 2       |           | 01/14/16 10:2  |               |     |
| Allyl chloride                 | ND             | ug/L        | 10.0               | 2       |           | 01/14/16 10:2  |               |     |
| Benzene                        | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  |               |     |
| Bromobenzene                   | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  |               |     |
| Bromochloromethane             | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  |               |     |
| Bromodichloromethane           | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  |               |     |
| Bromoform                      | ND             | ug/L        | 10.0               | 2       |           | 01/14/16 10:2  | 6 75-25-2     |     |
| Bromomethane                   | ND             | ug/L        | 10.0               | 2       |           | 01/14/16 10:2  | 6 74-83-9     |     |
| Carbon tetrachloride           | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  | 6 56-23-5     |     |
| Chlorobenzene                  | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  | 6 108-90-7    |     |
| Chloroethane                   | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  | 6 75-00-3     |     |
| Chloroform                     | ND             | ug/L        | 10.0               | 2       |           | 01/14/16 10:2  | 6 67-66-3     |     |
| Chloromethane                  | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  | 6 74-87-3     |     |
| Dibromochloromethane           | ND             | ug/L        | 10.0               | 2       |           | 01/14/16 10:2  | 6 124-48-1    |     |
| Dibromomethane                 | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  | 6 74-95-3     |     |
| Dichlorodifluoromethane        | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  | 6 75-71-8     |     |
| Dichlorofluoromethane          | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  | 6 75-43-4     |     |
| Diethyl ether (Ethyl ether)    | ND             | ug/L        | 10.0               | 2       |           | 01/14/16 10:2  |               |     |
| Ethylbenzene                   | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  |               |     |
| Hexachloro-1,3-butadiene       | ND             | ug/L        | 10.0               | 2       |           | 01/14/16 10:2  |               |     |
| sopropylbenzene (Cumene)       | ND             | ug/L        | 2.0                | 2       |           | 01/14/16 10:2  |               |     |



Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: MW-17             | Lab ID: 103     | 35670012    | Collected: 01/11/1 | 6 17:45 | Received: 01/12/16 09:45 | Matrix: Water |     |
|---------------------------|-----------------|-------------|--------------------|---------|--------------------------|---------------|-----|
| Parameters                | Results         | Units       | Report Limit       | DF      | Prepared Analyzed        | CAS No.       | Qua |
| 8260 MSV                  | Analytical Meth | nod: EPA 82 | 260                |         |                          |               |     |
| Methyl-tert-butyl ether   | ND              | ug/L        | 2.0                | 2       | 01/14/16 10:26           | 6 1634-04-4   |     |
| Methylene Chloride        | ND              | ug/L        | 2.0                | 2       | 01/14/16 10:26           | 5 75-09-2     |     |
| Naphthalene               | ND              | ug/L        | 10.0               | 2       | 01/14/16 10:26           | 91-20-3       |     |
| Styrene                   | ND              | ug/L        | 2.0                | 2       | 01/14/16 10:26           | 6 100-42-5    |     |
| Tetrachloroethene         | 329             | ug/L        | 2.0                | 2       | 01/14/16 10:26           | 6 127-18-4    |     |
| Tetrahydrofuran           | ND              | ug/L        | 10.0               | 2       | 01/14/16 10:26           | 6 109-99-9    |     |
| Toluene                   | ND              | ug/L        | 2.0                | 2       | 01/14/16 10:26           | 6 108-88-3    |     |
| Trichloroethene           | ND              | ug/L        | 2.0                | 2       | 01/14/16 10:26           | 6 79-01-6     |     |
| Trichlorofluoromethane    | ND              | ug/L        | 2.0                | 2       | 01/14/16 10:26           | 5 75-69-4     |     |
| Vinyl chloride            | ND              | ug/L        | 2.0                | 2       | 01/14/16 10:26           | 6 75-01-4     |     |
| Xylene (Total)            | ND              | ug/L        | 6.0                | 2       | 01/14/16 10:26           | 6 1330-20-7   |     |
| cis-1,2-Dichloroethene    | 2.0             | ug/L        | 2.0                | 2       | 01/14/16 10:26           | 5 156-59-2    |     |
| cis-1,3-Dichloropropene   | ND              | ug/L        | 10.0               | 2       | 01/14/16 10:26           | 5 10061-01-5  |     |
| n-Butylbenzene            | ND              | ug/L        | 2.0                | 2       | 01/14/16 10:26           | 6 104-51-8    |     |
| n-Propylbenzene           | ND              | ug/L        | 2.0                | 2       | 01/14/16 10:26           | 6 103-65-1    |     |
| p-Isopropyltoluene        | ND              | ug/L        | 2.0                | 2       | 01/14/16 10:26           | 99-87-6       |     |
| sec-Butylbenzene          | ND              | ug/L        | 10.0               | 2       | 01/14/16 10:26           | 6 135-98-8    |     |
| tert-Butylbenzene         | ND              | ug/L        | 2.0                | 2       | 01/14/16 10:26           | 6 98-06-6     |     |
| trans-1,2-Dichloroethene  | ND              | ug/L        | 2.0                | 2       | 01/14/16 10:26           | 5 156-60-5    |     |
| trans-1,3-Dichloropropene | ND              | ug/L        | 40.0               | 2       | 01/14/16 10:26           | 6 10061-02-6  |     |
| Surrogates                |                 |             |                    |         |                          |               |     |
| 4-Bromofluorobenzene (S)  | 99              | %           | 70-130             | 2       | 01/14/16 10:26           | 6 460-00-4    |     |
| Dibromofluoromethane (S)  | 103             | %           | 70-130             | 2       | 01/14/16 10:26           | 1868-53-7     |     |
| Toluene-d8 (S)            | 92              | %           | 70-130             | 2       | 01/14/16 10:26           | 2037-26-5     |     |



### **ANALYTICAL RESULTS**

Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: MW-18                              | Lab ID: 103    | 35670013    | Collected: 01/11/1 | 6 17:55 | Received: 0 | 01/12/16 09:45 | Matrix: Water |      |
|--------------------------------------------|----------------|-------------|--------------------|---------|-------------|----------------|---------------|------|
| Parameters                                 | Results        | Units       | Report Limit       | DF      | Prepared    | Analyzed       | CAS No.       | Qual |
| 8260 MSV                                   | Analytical Met | hod: EPA 82 | 260                |         |             |                |               |      |
| 1,1,1,2-Tetrachloroethane                  | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:41 | 1 630-20-6    |      |
| 1,1,1-Trichloroethane                      | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:41 | 1 71-55-6     |      |
| 1,1,2,2-Tetrachloroethane                  | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:41 | 1 79-34-5     |      |
| 1,1,2-Trichloroethane                      | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:41 | 1 79-00-5     |      |
| 1,1,2-Trichlorotrifluoroethane             | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 09:4  | 1 76-13-1     |      |
| 1,1-Dichloroethane                         | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:41 | 1 75-34-3     |      |
| 1,1-Dichloroethene                         | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:41 | 1 75-35-4     |      |
| 1,1-Dichloropropene                        | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:41 | 1 563-58-6    |      |
| 1,2,3-Trichlorobenzene                     | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 09:4  | 1 87-61-6     |      |
| 1,2,3-Trichloropropane                     | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:4  | 1 96-18-4     |      |
| 1,2,4-Trichlorobenzene                     | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 09:4  |               |      |
| 1,2,4-Trimethylbenzene                     | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:4  |               |      |
| 1,2-Dibromo-3-chloropropane                | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 09:4  |               |      |
| 1,2-Dibromoethane (EDB)                    | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:4  |               |      |
| 1,2-Dichlorobenzene                        | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:4  |               |      |
| 1,2-Dichloroethane                         | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:4  |               |      |
| 1,2-Dichloropropane                        | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:4  |               |      |
| 1,3,5-Trimethylbenzene                     | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:4  |               |      |
| 1,3-Dichlorobenzene                        | ND<br>ND       | ug/L        | 1.0                | 1       |             | 01/14/16 09:4  |               |      |
| •                                          | ND<br>ND       | -           | 1.0                | 1       |             | 01/14/16 09:4  |               |      |
| 1,3-Dichloropropane<br>1,4-Dichlorobenzene | ND<br>ND       | ug/L        | 1.0                | 1       |             | 01/14/16 09:4  |               |      |
| •                                          | ND<br>ND       | ug/L        | 1.0                | 1       |             | 01/14/16 09:4  |               |      |
| 2,2-Dichloropropane<br>2-Butanone (MEK)    | ND<br>ND       | ug/L        | 20.0               | 1       |             | 01/14/16 09:4  |               |      |
|                                            |                | ug/L        |                    | 1       |             |                |               |      |
| 2-Chlorotoluene                            | ND             | ug/L        | 1.0                |         |             | 01/14/16 09:41 |               |      |
| 4-Chlorotoluene                            | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:41 |               |      |
| 4-Methyl-2-pentanone (MIBK)                | ND             | ug/L        | 20.0               | 1       |             | 01/14/16 09:41 |               |      |
| Acetone                                    | ND             | ug/L        | 20.0               | 1       |             | 01/14/16 09:4  |               |      |
| Allyl chloride                             | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 09:4  |               |      |
| Benzene                                    | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:4  |               |      |
| Bromobenzene                               | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:4  |               |      |
| Bromochloromethane                         | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:4  |               |      |
| Bromodichloromethane                       | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:4  |               |      |
| Bromoform                                  | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 09:4  |               |      |
| Bromomethane                               | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 09:4  |               |      |
| Carbon tetrachloride                       | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:4  |               |      |
| Chlorobenzene                              | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:41 | 1 108-90-7    |      |
| Chloroethane                               | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:4  | 1 75-00-3     |      |
| Chloroform                                 | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 09:41 | 1 67-66-3     |      |
| Chloromethane                              | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:4  | 1 74-87-3     |      |
| Dibromochloromethane                       | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 09:4  | 1 124-48-1    |      |
| Dibromomethane                             | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:4  | 1 74-95-3     |      |
| Dichlorodifluoromethane                    | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:4  | 1 75-71-8     |      |
| Dichlorofluoromethane                      | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:4  | 1 75-43-4     |      |
| Diethyl ether (Ethyl ether)                | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 09:4  | 1 60-29-7     |      |
| Ethylbenzene                               | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:4  |               |      |
| Hexachloro-1,3-butadiene                   | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 09:4  |               |      |
| Isopropylbenzene (Cumene)                  | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 09:4  |               |      |



Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: MW-18                                  | Lab ID: 103     | 35670013    | Collected: 01/11/1 | 6 17:55 | Received: 01/12/16 09:45 | Matrix: Water |      |
|------------------------------------------------|-----------------|-------------|--------------------|---------|--------------------------|---------------|------|
| Parameters                                     | Results         | Units       | Report Limit       | DF      | Prepared Analyzed        | CAS No.       | Qual |
| 8260 MSV                                       | Analytical Meth | nod: EPA 82 | 260                |         |                          |               |      |
| Methyl-tert-butyl ether                        | ND              | ug/L        | 1.0                | 1       | 01/14/16 09:4            | 1 1634-04-4   |      |
| Methylene Chloride                             | ND              | ug/L        | 1.0                | 1       | 01/14/16 09:4            | 1 75-09-2     |      |
| Naphthalene                                    | ND              | ug/L        | 5.0                | 1       | 01/14/16 09:4            | 1 91-20-3     |      |
| Styrene                                        | ND              | ug/L        | 1.0                | 1       | 01/14/16 09:4            | 1 100-42-5    |      |
| Tetrachloroethene                              | 156             | ug/L        | 1.0                | 1       | 01/14/16 09:4            | 1 127-18-4    |      |
| Tetrahydrofuran                                | ND              | ug/L        | 5.0                | 1       | 01/14/16 09:4            | 1 109-99-9    |      |
| Toluene                                        | ND              | ug/L        | 1.0                | 1       | 01/14/16 09:4            | 1 108-88-3    |      |
| Trichloroethene                                | ND              | ug/L        | 1.0                | 1       | 01/14/16 09:4            | 1 79-01-6     |      |
| Trichlorofluoromethane                         | ND              | ug/L        | 1.0                | 1       | 01/14/16 09:4            | 1 75-69-4     |      |
| Vinyl chloride                                 | ND              | ug/L        | 1.0                | 1       | 01/14/16 09:4            | 1 75-01-4     |      |
| Xylene (Total)                                 | ND              | ug/L        | 3.0                | 1       | 01/14/16 09:4            | 1 1330-20-7   |      |
| cis-1,2-Dichloroethene                         | ND              | ug/L        | 1.0                | 1       | 01/14/16 09:4            | 1 156-59-2    |      |
| cis-1,3-Dichloropropene                        | ND              | ug/L        | 5.0                | 1       | 01/14/16 09:4            | 1 10061-01-5  |      |
| n-Butylbenzene                                 | ND              | ug/L        | 1.0                | 1       | 01/14/16 09:4            | 1 104-51-8    |      |
| n-Propylbenzene                                | ND              | ug/L        | 1.0                | 1       | 01/14/16 09:4            | 1 103-65-1    |      |
| p-Isopropyltoluene                             | ND              | ug/L        | 1.0                | 1       | 01/14/16 09:4            | 1 99-87-6     |      |
| sec-Butylbenzene                               | ND              | ug/L        | 5.0                | 1       | 01/14/16 09:4            | 1 135-98-8    |      |
| tert-Butylbenzene                              | ND              | ug/L        | 1.0                | 1       | 01/14/16 09:4            | 1 98-06-6     |      |
| trans-1,2-Dichloroethene                       | ND              | ug/L        | 1.0                | 1       | 01/14/16 09:4            | 1 156-60-5    |      |
| trans-1,3-Dichloropropene<br><b>Surrogates</b> | ND              | ug/L        | 20.0               | 1       | 01/14/16 09:4            | 1 10061-02-6  |      |
| 4-Bromofluorobenzene (S)                       | 99              | %           | 70-130             | 1       | 01/14/16 09:4            | 1 460-00-4    |      |
| Dibromofluoromethane (S)                       | 106             | %           | 70-130             | 1       | 01/14/16 09:4            | 1 1868-53-7   |      |
| Toluene-d8 (S)                                 | 97              | %           | 70-130             | 1       | 01/14/16 09:4            | 1 2037-26-5   |      |



### **ANALYTICAL RESULTS**

Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: MW-19                            | Lab ID: 103    | 35670014     | Collected: 01/11/1 | 6 12:40 | Received: ( | 01/12/16 09:45 | Matrix: Water |     |
|------------------------------------------|----------------|--------------|--------------------|---------|-------------|----------------|---------------|-----|
| Parameters                               | Results        | Units        | Report Limit       | DF      | Prepared    | Analyzed       | CAS No.       | Qua |
| 8260 MSV                                 | Analytical Met | hod: EPA 82  | 260                |         |             |                |               |     |
| 1,1,1,2-Tetrachloroethane                | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  | 4 630-20-6    |     |
| 1,1,1-Trichloroethane                    | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  | 4 71-55-6     |     |
| 1,1,2,2-Tetrachloroethane                | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  | 4 79-34-5     |     |
| 1,1,2-Trichloroethane                    | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  | 4 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane           | ND             | ug/L         | 5.0                | 1       |             | 01/13/16 17:5  | 4 76-13-1     |     |
| 1,1-Dichloroethane                       | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  | 4 75-34-3     |     |
| 1,1-Dichloroethene                       | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  | 4 75-35-4     |     |
| 1,1-Dichloropropene                      | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  | 4 563-58-6    |     |
| 1,2,3-Trichlorobenzene                   | ND             | ug/L         | 5.0                | 1       |             | 01/13/16 17:5  | 4 87-61-6     |     |
| 1,2,3-Trichloropropane                   | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  |               |     |
| 1,2,4-Trichlorobenzene                   | ND             | ug/L         | 5.0                | 1       |             | 01/13/16 17:5  |               |     |
| 1,2,4-Trimethylbenzene                   | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  |               |     |
| 1,2-Dibromo-3-chloropropane              | ND             | ug/L         | 5.0                | 1       |             | 01/13/16 17:5  |               |     |
| 1,2-Dibromoethane (EDB)                  | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  |               |     |
| 1,2-Dichlorobenzene                      | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  |               |     |
| 1,2-Dichloroethane                       | ND<br>ND       | -            | 1.0                | 1       |             | 01/13/16 17:5  |               |     |
| 1,2-Dichloropropane                      | ND<br>ND       | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  |               |     |
| • •                                      |                | ug/L         |                    | 1       |             |                |               |     |
| 1,3,5-Trimethylbenzene                   | ND             | ug/L         | 1.0                |         |             | 01/13/16 17:5  |               |     |
| 1,3-Dichlorobenzene                      | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  |               |     |
| 1,3-Dichloropropane                      | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  |               |     |
| 1,4-Dichlorobenzene                      | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  |               |     |
| 2,2-Dichloropropane                      | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  |               |     |
| 2-Butanone (MEK)                         | ND             | ug/L         | 20.0               | 1       |             | 01/13/16 17:5  |               |     |
| 2-Chlorotoluene                          | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  |               |     |
| 4-Chlorotoluene                          | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  |               |     |
| 4-Methyl-2-pentanone (MIBK)              | ND             | ug/L         | 20.0               | 1       |             | 01/13/16 17:5  |               |     |
| Acetone                                  | ND             | ug/L         | 20.0               | 1       |             | 01/13/16 17:5  | 4 67-64-1     |     |
| Allyl chloride                           | ND             | ug/L         | 5.0                | 1       |             | 01/13/16 17:5  | 4 107-05-1    |     |
| Benzene                                  | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  | 4 71-43-2     |     |
| Bromobenzene                             | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  | 4 108-86-1    |     |
| Bromochloromethane                       | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  | 4 74-97-5     |     |
| Bromodichloromethane                     | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  | 4 75-27-4     |     |
| Bromoform                                | ND             | ug/L         | 5.0                | 1       |             | 01/13/16 17:5  | 4 75-25-2     |     |
| Bromomethane                             | ND             | ug/L         | 5.0                | 1       |             | 01/13/16 17:5  | 4 74-83-9     |     |
| Carbon tetrachloride                     | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  | 4 56-23-5     |     |
| Chlorobenzene                            | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  | 4 108-90-7    |     |
| Chloroethane                             | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  |               |     |
| Chloroform                               | ND             | ug/L         | 5.0                | 1       |             | 01/13/16 17:5  | 4 67-66-3     |     |
| Chloromethane                            | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  |               |     |
| Dibromochloromethane                     | ND             | ug/L         | 5.0                | 1       |             | 01/13/16 17:5  |               |     |
| Dibromomethane                           | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  |               |     |
| Dichlorodifluoromethane                  | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  |               |     |
| Dichlorodination methane                 | ND             | ug/L         | 1.0                | 1       |             | 01/13/16 17:5  |               |     |
| Diethyl ether (Ethyl ether)              | ND<br>ND       | ug/L<br>ug/L | 5.0                | 1       |             | 01/13/16 17:5  |               |     |
| Ethylbenzene                             | ND<br>ND       | -            | 1.0                | 1       |             | 01/13/16 17:5  |               |     |
| trrybbenzene<br>Hexachloro-1,3-butadiene |                | ug/L         |                    |         |             |                |               |     |
| nexachioro- i3-butadiene                 | ND             | ug/L         | 5.0                | 1       |             | 01/13/16 17:5  | 4 0/-00-J     |     |





Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: MW-19                                 | Lab ID: 103     | 35670014    | Collected: 01/11/1 | 6 12:40 | Received: 01 | /12/16 09:45 N | Matrix: Water |     |
|-----------------------------------------------|-----------------|-------------|--------------------|---------|--------------|----------------|---------------|-----|
| Parameters                                    | Results         | Units       | Report Limit       | DF      | Prepared     | Analyzed       | CAS No.       | Qua |
| 8260 MSV                                      | Analytical Meth | nod: EPA 82 | 260                |         |              |                |               |     |
| Methyl-tert-butyl ether                       | ND              | ug/L        | 1.0                | 1       |              | 01/13/16 17:54 | 1634-04-4     |     |
| Methylene Chloride                            | ND              | ug/L        | 1.0                | 1       |              | 01/13/16 17:54 | 75-09-2       |     |
| Naphthalene                                   | ND              | ug/L        | 5.0                | 1       |              | 01/13/16 17:54 | 91-20-3       |     |
| Styrene                                       | ND              | ug/L        | 1.0                | 1       |              | 01/13/16 17:54 | 100-42-5      |     |
| Tetrachloroethene                             | 36.1            | ug/L        | 1.0                | 1       |              | 01/13/16 17:54 | 127-18-4      |     |
| Tetrahydrofuran                               | ND              | ug/L        | 5.0                | 1       |              | 01/13/16 17:54 | 109-99-9      |     |
| Toluene                                       | ND              | ug/L        | 1.0                | 1       |              | 01/13/16 17:54 | 108-88-3      |     |
| Trichloroethene                               | ND              | ug/L        | 1.0                | 1       |              | 01/13/16 17:54 | 79-01-6       |     |
| Trichlorofluoromethane                        | ND              | ug/L        | 1.0                | 1       |              | 01/13/16 17:54 | 75-69-4       |     |
| Vinyl chloride                                | ND              | ug/L        | 1.0                | 1       |              | 01/13/16 17:54 | 75-01-4       |     |
| Xylene (Total)                                | ND              | ug/L        | 3.0                | 1       |              | 01/13/16 17:54 | 1330-20-7     |     |
| cis-1,2-Dichloroethene                        | ND              | ug/L        | 1.0                | 1       |              | 01/13/16 17:54 | 156-59-2      |     |
| cis-1,3-Dichloropropene                       | ND              | ug/L        | 5.0                | 1       |              | 01/13/16 17:54 | 10061-01-5    |     |
| n-Butylbenzene                                | ND              | ug/L        | 1.0                | 1       |              | 01/13/16 17:54 | 104-51-8      |     |
| n-Propylbenzene                               | ND              | ug/L        | 1.0                | 1       |              | 01/13/16 17:54 | 103-65-1      |     |
| p-Isopropyltoluene                            | ND              | ug/L        | 1.0                | 1       |              | 01/13/16 17:54 | 99-87-6       |     |
| sec-Butylbenzene                              | ND              | ug/L        | 5.0                | 1       |              | 01/13/16 17:54 | 135-98-8      |     |
| tert-Butylbenzene                             | ND              | ug/L        | 1.0                | 1       |              | 01/13/16 17:54 | 98-06-6       |     |
| trans-1,2-Dichloroethene                      | ND              | ug/L        | 1.0                | 1       |              | 01/13/16 17:54 | 156-60-5      |     |
| trans-1,3-Dichloropropene                     | ND              | ug/L        | 20.0               | 1       |              | 01/13/16 17:54 | 10061-02-6    |     |
| <b>Surrogates</b><br>4-Bromofluorobenzene (S) | 100             | %           | 70-130             | 1       |              | 01/13/16 17:54 | 460-00-4      |     |
| Dibromofluoromethane (S)                      | 104             | %           | 70-130             | 1       |              | 01/13/16 17:54 | 1868-53-7     |     |
| Toluene-d8 (S)                                | 99              | %           | 70-130             | 1       |              | 01/13/16 17:54 | 2037-26-5     |     |



### **ANALYTICAL RESULTS**

Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: MW-20                  | Lab ID: 103    | 35670015    | Collected: 01/11/1 | 6 14:15 | Received: 0 | 01/12/16 09:45 | Matrix: Water |      |
|--------------------------------|----------------|-------------|--------------------|---------|-------------|----------------|---------------|------|
| Parameters                     | Results        | Units       | Report Limit       | DF      | Prepared    | Analyzed       | CAS No.       | Qual |
| 8260 MSV                       | Analytical Met | hod: EPA 82 | 260                |         |             |                |               |      |
| 1,1,1,2-Tetrachloroethane      | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 | 3 630-20-6    |      |
| 1,1,1-Trichloroethane          | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 | 3 71-55-6     |      |
| 1,1,2,2-Tetrachloroethane      | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 | 3 79-34-5     |      |
| 1,1,2-Trichloroethane          | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 | 3 79-00-5     |      |
| 1,1,2-Trichlorotrifluoroethane | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 10:03 | 3 76-13-1     |      |
| 1,1-Dichloroethane             | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 | 3 75-34-3     |      |
| 1,1-Dichloroethene             | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 | 3 75-35-4     |      |
| 1,1-Dichloropropene            | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 | 3 563-58-6    |      |
| 1,2,3-Trichlorobenzene         | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 10:03 | 87-61-6       |      |
| 1,2,3-Trichloropropane         | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 | 3 96-18-4     |      |
| 1,2,4-Trichlorobenzene         | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 10:03 | 3 120-82-1    |      |
| 1,2,4-Trimethylbenzene         | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 | 3 95-63-6     |      |
| 1,2-Dibromo-3-chloropropane    | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 10:03 |               |      |
| 1,2-Dibromoethane (EDB)        | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 |               |      |
| 1,2-Dichlorobenzene            | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 |               |      |
| 1,2-Dichloroethane             | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 |               |      |
| 1,2-Dichloropropane            | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 |               |      |
| 1,3,5-Trimethylbenzene         | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 |               |      |
| 1,3-Dichlorobenzene            | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 |               |      |
| 1,3-Dichloropropane            | ND<br>ND       | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 |               |      |
| 1,4-Dichlorobenzene            | ND<br>ND       | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 |               |      |
| 2,2-Dichloropropane            | ND<br>ND       | -           | 1.0                | 1       |             | 01/14/16 10:03 |               |      |
|                                | ND             | ug/L        | 20.0               | 1       |             | 01/14/16 10:03 |               |      |
| 2-Butanone (MEK)               |                | ug/L        |                    | 1       |             |                |               |      |
| 2-Chlorotoluene                | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 |               |      |
| 4-Chlorotoluene                | ND             | ug/L        | 1.0                |         |             | 01/14/16 10:03 |               |      |
| 4-Methyl-2-pentanone (MIBK)    | ND             | ug/L        | 20.0               | 1       |             | 01/14/16 10:03 |               |      |
| Acetone                        | ND             | ug/L        | 20.0               | 1       |             | 01/14/16 10:03 |               |      |
| Allyl chloride                 | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 10:03 |               |      |
| Benzene                        | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 |               |      |
| Bromobenzene                   | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 |               |      |
| Bromochloromethane             | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 |               |      |
| Bromodichloromethane           | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 |               |      |
| Bromoform                      | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 10:03 |               |      |
| Bromomethane                   | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 10:03 |               |      |
| Carbon tetrachloride           | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 |               |      |
| Chlorobenzene                  | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 |               |      |
| Chloroethane                   | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 | 3 75-00-3     |      |
| Chloroform                     | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 10:03 | 3 67-66-3     |      |
| Chloromethane                  | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 | 3 74-87-3     |      |
| Dibromochloromethane           | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 10:03 | 3 124-48-1    |      |
| Dibromomethane                 | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 | 3 74-95-3     |      |
| Dichlorodifluoromethane        | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 | 3 75-71-8     |      |
| Dichlorofluoromethane          | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 | 3 75-43-4     |      |
| Diethyl ether (Ethyl ether)    | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 10:03 | 8 60-29-7     |      |
| Ethylbenzene                   | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 | 3 100-41-4    |      |
| Hexachloro-1,3-butadiene       | ND             | ug/L        | 5.0                | 1       |             | 01/14/16 10:03 | 87-68-3       |      |
| Isopropylbenzene (Cumene)      | ND             | ug/L        | 1.0                | 1       |             | 01/14/16 10:03 | 8 98-82-8     |      |



Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: MW-20                                  | Lab ID: 103     | 35670015    | Collected: 01/11/1 | 6 14:15 | Received: 01/12/16 09:45 | Matrix: Water |      |
|------------------------------------------------|-----------------|-------------|--------------------|---------|--------------------------|---------------|------|
| Parameters                                     | Results         | Units       | Report Limit       | DF      | Prepared Analyzed        | CAS No.       | Qual |
| 8260 MSV                                       | Analytical Meth | nod: EPA 82 | 260                |         |                          |               |      |
| Methyl-tert-butyl ether                        | ND              | ug/L        | 1.0                | 1       | 01/14/16 10:0            | 3 1634-04-4   |      |
| Methylene Chloride                             | ND              | ug/L        | 1.0                | 1       | 01/14/16 10:0            | 3 75-09-2     |      |
| Naphthalene                                    | ND              | ug/L        | 5.0                | 1       | 01/14/16 10:0            | 3 91-20-3     |      |
| Styrene                                        | ND              | ug/L        | 1.0                | 1       | 01/14/16 10:0            | 3 100-42-5    |      |
| Tetrachloroethene                              | 27.5            | ug/L        | 1.0                | 1       | 01/14/16 10:0            | 3 127-18-4    |      |
| Tetrahydrofuran                                | ND              | ug/L        | 5.0                | 1       | 01/14/16 10:0            | 3 109-99-9    |      |
| Toluene                                        | ND              | ug/L        | 1.0                | 1       | 01/14/16 10:0            | 3 108-88-3    |      |
| Trichloroethene                                | ND              | ug/L        | 1.0                | 1       | 01/14/16 10:0            | 3 79-01-6     |      |
| Trichlorofluoromethane                         | ND              | ug/L        | 1.0                | 1       | 01/14/16 10:0            | 3 75-69-4     |      |
| Vinyl chloride                                 | ND              | ug/L        | 1.0                | 1       | 01/14/16 10:0            | 3 75-01-4     |      |
| Xylene (Total)                                 | ND              | ug/L        | 3.0                | 1       | 01/14/16 10:0            | 3 1330-20-7   |      |
| cis-1,2-Dichloroethene                         | ND              | ug/L        | 1.0                | 1       | 01/14/16 10:0            | 3 156-59-2    |      |
| cis-1,3-Dichloropropene                        | ND              | ug/L        | 5.0                | 1       | 01/14/16 10:0            | 3 10061-01-5  |      |
| n-Butylbenzene                                 | ND              | ug/L        | 1.0                | 1       | 01/14/16 10:0            | 3 104-51-8    |      |
| n-Propylbenzene                                | ND              | ug/L        | 1.0                | 1       | 01/14/16 10:0            | 3 103-65-1    |      |
| p-Isopropyltoluene                             | ND              | ug/L        | 1.0                | 1       | 01/14/16 10:0            | 3 99-87-6     |      |
| sec-Butylbenzene                               | ND              | ug/L        | 5.0                | 1       | 01/14/16 10:0            | 3 135-98-8    |      |
| tert-Butylbenzene                              | ND              | ug/L        | 1.0                | 1       | 01/14/16 10:0            | 3 98-06-6     |      |
| trans-1,2-Dichloroethene                       | ND              | ug/L        | 1.0                | 1       | 01/14/16 10:0            | 3 156-60-5    |      |
| trans-1,3-Dichloropropene<br><b>Surrogates</b> | ND              | ug/L        | 20.0               | 1       | 01/14/16 10:0            | 3 10061-02-6  |      |
| 4-Bromofluorobenzene (S)                       | 100             | %           | 70-130             | 1       | 01/14/16 10:0            | 3 460-00-4    |      |
| Dibromofluoromethane (S)                       | 106             | %           | 70-130             | 1       | 01/14/16 10:0            | 3 1868-53-7   |      |
| Toluene-d8 (S)                                 | 96              | %           | 70-130             | 1       | 01/14/16 10:0            | 3 2037-26-5   |      |





Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: TRIP BLANK             | Lab ID: 10    | 335670016    | Collected: 01/11/1 | 6 00:00 | Received: ( | 01/12/16 09:45 | Matrix: Water |     |
|--------------------------------|---------------|--------------|--------------------|---------|-------------|----------------|---------------|-----|
| Parameters                     | Results       | Units        | Report Limit       | DF      | Prepared    | Analyzed       | CAS No.       | Qua |
| 3260 MSV                       | Analytical Me | thod: EPA 82 | 260                |         |             |                |               |     |
| 1,1,1,2-Tetrachloroethane      | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  | 6 630-20-6    |     |
| 1,1,1-Trichloroethane          | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  | 6 71-55-6     |     |
| 1,1,2,2-Tetrachloroethane      | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  | 6 79-34-5     |     |
| 1,1,2-Trichloroethane          | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  | 6 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane | ND            | ug/L         | 5.0                | 1       |             | 01/13/16 18:1  | 6 76-13-1     |     |
| 1,1-Dichloroethane             | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  | 6 75-34-3     |     |
| 1,1-Dichloroethene             | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  | 6 75-35-4     |     |
| 1,1-Dichloropropene            | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  | 6 563-58-6    |     |
| I,2,3-Trichlorobenzene         | ND            | ug/L         | 5.0                | 1       |             | 01/13/16 18:1  | 6 87-61-6     |     |
| 1,2,3-Trichloropropane         | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  |               |     |
| 1,2,4-Trichlorobenzene         | ND            | ug/L         | 5.0                | 1       |             | 01/13/16 18:1  |               |     |
| 1,2,4-Trimethylbenzene         | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  |               |     |
| 1,2-Dibromo-3-chloropropane    | ND            | ug/L         | 5.0                | 1       |             | 01/13/16 18:1  |               |     |
| 1,2-Dibromoethane (EDB)        | ND<br>ND      | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  |               |     |
| * * *                          |               | •            |                    | 1       |             |                |               |     |
| 1,2-Dichlorobenzene            | ND            | ug/L         | 1.0                |         |             | 01/13/16 18:1  |               |     |
| I,2-Dichloroethane             | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  |               |     |
| ,2-Dichloropropane             | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  |               |     |
| ,3,5-Trimethylbenzene          | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  |               |     |
| ,3-Dichlorobenzene             | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  |               |     |
| ,3-Dichloropropane             | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  |               |     |
| ,4-Dichlorobenzene             | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  | 6 106-46-7    |     |
| 2,2-Dichloropropane            | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  | 6 594-20-7    |     |
| 2-Butanone (MEK)               | ND            | ug/L         | 20.0               | 1       |             | 01/13/16 18:1  | 6 78-93-3     |     |
| 2-Chlorotoluene                | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  | 6 95-49-8     |     |
| I-Chlorotoluene                | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  | 6 106-43-4    |     |
| I-Methyl-2-pentanone (MIBK)    | ND            | ug/L         | 20.0               | 1       |             | 01/13/16 18:1  | 6 108-10-1    |     |
| Acetone                        | ND            | ug/L         | 20.0               | 1       |             | 01/13/16 18:1  | 6 67-64-1     |     |
| Allyl chloride                 | ND            | ug/L         | 5.0                | 1       |             | 01/13/16 18:1  | 6 107-05-1    |     |
| Benzene                        | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  |               |     |
| Bromobenzene                   | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  |               |     |
| Bromochloromethane             | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  |               |     |
| Bromodichloromethane           | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  |               |     |
| Bromoform                      | ND            | ug/L         | 5.0                | 1       |             | 01/13/16 18:1  | -             |     |
| Bromomethane                   | ND            | ug/L         | 5.0                | 1       |             | 01/13/16 18:1  |               |     |
| Carbon tetrachloride           | ND<br>ND      | •            | 1.0                | 1       |             | 01/13/16 18:1  |               |     |
|                                |               | ug/L         |                    |         |             |                |               |     |
| Chlorobenzene<br>Chloroethane  | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  |               |     |
|                                | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  |               |     |
| Chloroform                     | ND            | ug/L         | 5.0                | 1       |             | 01/13/16 18:1  |               |     |
| Chloromethane                  | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  |               |     |
| Dibromochloromethane           | ND            | ug/L         | 5.0                | 1       |             | 01/13/16 18:1  |               |     |
| Dibromomethane                 | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  |               |     |
| Dichlorodifluoromethane        | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  |               |     |
| Dichlorofluoromethane          | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  | 6 75-43-4     |     |
| Diethyl ether (Ethyl ether)    | ND            | ug/L         | 5.0                | 1       |             | 01/13/16 18:1  | 6 60-29-7     |     |
| thylbenzene                    | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  | 6 100-41-4    |     |
| Hexachloro-1,3-butadiene       | ND            | ug/L         | 5.0                | 1       |             | 01/13/16 18:1  | 6 87-68-3     |     |
| sopropylbenzene (Cumene)       | ND            | ug/L         | 1.0                | 1       |             | 01/13/16 18:1  | 6 98-82-8     |     |





Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Sample: TRIP BLANK                             | Lab ID: 103     | 35670016    | Collected: 01/11/1 | 6 00:00 | Received: 0 | 1/12/16 09:45 N | Matrix: Water |     |
|------------------------------------------------|-----------------|-------------|--------------------|---------|-------------|-----------------|---------------|-----|
| Parameters                                     | Results         | Units       | Report Limit       | DF      | Prepared    | Analyzed        | CAS No.       | Qua |
| 8260 MSV                                       | Analytical Meth | nod: EPA 82 | 260                |         |             |                 |               |     |
| Methyl-tert-butyl ether                        | ND              | ug/L        | 1.0                | 1       |             | 01/13/16 18:16  | 1634-04-4     |     |
| Methylene Chloride                             | ND              | ug/L        | 1.0                | 1       |             | 01/13/16 18:16  | 75-09-2       |     |
| Naphthalene                                    | ND              | ug/L        | 5.0                | 1       |             | 01/13/16 18:16  | 91-20-3       |     |
| Styrene                                        | ND              | ug/L        | 1.0                | 1       |             | 01/13/16 18:16  | 100-42-5      |     |
| Tetrachloroethene                              | ND              | ug/L        | 1.0                | 1       |             | 01/13/16 18:16  | 127-18-4      |     |
| Tetrahydrofuran                                | ND              | ug/L        | 5.0                | 1       |             | 01/13/16 18:16  | 109-99-9      |     |
| Toluene                                        | ND              | ug/L        | 1.0                | 1       |             | 01/13/16 18:16  | 108-88-3      |     |
| Trichloroethene                                | ND              | ug/L        | 1.0                | 1       |             | 01/13/16 18:16  | 79-01-6       |     |
| Trichlorofluoromethane                         | ND              | ug/L        | 1.0                | 1       |             | 01/13/16 18:16  | 75-69-4       |     |
| Vinyl chloride                                 | ND              | ug/L        | 1.0                | 1       |             | 01/13/16 18:16  | 75-01-4       |     |
| Xylene (Total)                                 | ND              | ug/L        | 3.0                | 1       |             | 01/13/16 18:16  | 1330-20-7     |     |
| cis-1,2-Dichloroethene                         | ND              | ug/L        | 1.0                | 1       |             | 01/13/16 18:16  | 156-59-2      |     |
| cis-1,3-Dichloropropene                        | ND              | ug/L        | 5.0                | 1       |             | 01/13/16 18:16  | 10061-01-5    |     |
| n-Butylbenzene                                 | ND              | ug/L        | 1.0                | 1       |             | 01/13/16 18:16  | 104-51-8      |     |
| n-Propylbenzene                                | ND              | ug/L        | 1.0                | 1       |             | 01/13/16 18:16  | 103-65-1      |     |
| p-Isopropyltoluene                             | ND              | ug/L        | 1.0                | 1       |             | 01/13/16 18:16  | 99-87-6       |     |
| sec-Butylbenzene                               | ND              | ug/L        | 5.0                | 1       |             | 01/13/16 18:16  | 135-98-8      |     |
| tert-Butylbenzene                              | ND              | ug/L        | 1.0                | 1       |             | 01/13/16 18:16  | 98-06-6       |     |
| trans-1,2-Dichloroethene                       | ND              | ug/L        | 1.0                | 1       |             | 01/13/16 18:16  | 156-60-5      |     |
| trans-1,3-Dichloropropene<br><b>Surrogates</b> | ND              | ug/L        | 20.0               | 1       |             | 01/13/16 18:16  | 10061-02-6    |     |
| 4-Bromofluorobenzene (S)                       | 101             | %           | 70-130             | 1       |             | 01/13/16 18:16  | 460-00-4      |     |
| Dibromofluoromethane (S)                       | 99              | %           | 70-130             | 1       |             | 01/13/16 18:16  | 1868-53-7     |     |
| Toluene-d8 (S)                                 | 99              | %           | 70-130             | 1       |             | 01/13/16 18:16  | 2037-26-5     |     |



### **QUALITY CONTROL DATA**

Project: City of Rochester

Pace Project No.: 10335670

QC Batch: MSV/31872 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Associated Lab Samples: 10335670001, 10335670002, 10335670003, 10335670004, 10335670005, 10335670006, 10335670007,

10335670008, 10335670009, 10335670010, 10335670011, 10335670012, 10335670013, 10335670014,

10335670015, 10335670016

METHOD BLANK: 1283098 Matrix: Water

Associated Lab Samples:

Date: 01/14/2016 04:23 PM

| Associated Lab Camples.        |          | Blank  | Reporting |                |            |
|--------------------------------|----------|--------|-----------|----------------|------------|
| Parameter                      | Units    | Result | Limit     | Analyzed       | Qualifiers |
|                                | <u> </u> |        |           |                |            |
| 1,1,1,2-Tetrachloroethane      | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,1,1-Trichloroethane          | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,1,2-Trichloroethane          | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L     | ND     | 5.0       |                |            |
| 1,1-Dichloroethane             | ug/L     | ND     | 1.0       |                |            |
| 1,1-Dichloroethene             | ug/L     | ND     | 1.0       |                |            |
| 1,1-Dichloropropene            | ug/L     | ND     | 1.0       |                |            |
| 1,2,3-Trichlorobenzene         | ug/L     | ND     | 5.0       |                |            |
| 1,2,3-Trichloropropane         | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,2,4-Trichlorobenzene         | ug/L     | ND     | 5.0       | 01/13/16 14:54 |            |
| 1,2,4-Trimethylbenzene         | ug/L     | ND     | 1.0       |                |            |
| 1,2-Dibromo-3-chloropropane    | ug/L     | ND     | 5.0       |                |            |
| 1,2-Dibromoethane (EDB)        | ug/L     | ND     | 1.0       |                |            |
| 1,2-Dichlorobenzene            | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,2-Dichloroethane             | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,2-Dichloropropane            | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,3,5-Trimethylbenzene         | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,3-Dichlorobenzene            | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,3-Dichloropropane            | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| 1,4-Dichlorobenzene            | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| 2,2-Dichloropropane            | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| 2-Butanone (MEK)               | ug/L     | ND     | 20.0      | 01/13/16 14:54 |            |
| 2-Chlorotoluene                | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| 4-Chlorotoluene                | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| 4-Methyl-2-pentanone (MIBK)    | ug/L     | ND     | 5.0       | 01/13/16 14:54 |            |
| Acetone                        | ug/L     | ND     | 20.0      | 01/13/16 14:54 |            |
| Allyl chloride                 | ug/L     | ND     | 5.0       | 01/13/16 14:54 |            |
| Benzene                        | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| Bromobenzene                   | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| Bromochloromethane             | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| Bromodichloromethane           | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| Bromoform                      | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| Bromomethane                   | ug/L     | ND     | 5.0       | 01/13/16 14:54 |            |
| Carbon tetrachloride           | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| Chlorobenzene                  | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| Chloroethane                   | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| Chloroform                     | ug/L     | ND     | 5.0       |                |            |
| Chloromethane                  | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| cis-1,2-Dichloroethene         | ug/L     | ND     | 1.0       | 01/13/16 14:54 |            |
| ,                              | 3        | .,_    |           |                |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL DATA**

Project: City of Rochester

Pace Project No.: 10335670

METHOD BLANK: 1283098 Matrix: Water

Associated Lab Samples:

Date: 01/14/2016 04:23 PM

| Danamatan                   |       | Blank  | Reporting |                |            |
|-----------------------------|-------|--------|-----------|----------------|------------|
| Parameter                   | Units | Result | Limit     | Analyzed       | Qualifiers |
| cis-1,3-Dichloropropene     | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Dibromochloromethane        | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Dibromomethane              | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Dichlorodifluoromethane     | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Dichlorofluoromethane       | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Diethyl ether (Ethyl ether) | ug/L  | ND     | 5.0       | 01/13/16 14:54 |            |
| Ethylbenzene                | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Hexachloro-1,3-butadiene    | ug/L  | ND     | 5.0       | 01/13/16 14:54 |            |
| Isopropylbenzene (Cumene)   | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Methyl-tert-butyl ether     | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Methylene Chloride          | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| n-Butylbenzene              | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| n-Propylbenzene             | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Naphthalene                 | ug/L  | ND     | 5.0       | 01/13/16 14:54 |            |
| p-Isopropyltoluene          | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| sec-Butylbenzene            | ug/L  | ND     | 5.0       | 01/13/16 14:54 |            |
| Styrene                     | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| tert-Butylbenzene           | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Tetrachloroethene           | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Tetrahydrofuran             | ug/L  | ND     | 5.0       | 01/13/16 14:54 |            |
| Toluene                     | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| trans-1,2-Dichloroethene    | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| trans-1,3-Dichloropropene   | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Trichloroethene             | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Trichlorofluoromethane      | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Vinyl chloride              | ug/L  | ND     | 1.0       | 01/13/16 14:54 |            |
| Xylene (Total)              | ug/L  | ND     | 3.0       | 01/13/16 14:54 |            |
| 4-Bromofluorobenzene (S)    | %     | 99     | 70-130    | 01/13/16 14:54 |            |
| Dibromofluoromethane (S)    | %     | 102    | 70-130    | 01/13/16 14:54 |            |
| Toluene-d8 (S)              | %     | 99     | 70-130    | 01/13/16 14:54 |            |

| LABORATORY CONTROL SAMPLE:     | 1283099 |       |        |       |        |            |
|--------------------------------|---------|-------|--------|-------|--------|------------|
|                                |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                      | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,1,1-Trichloroethane          | ug/L    | 20    | 21.2   | 106   | 70-130 | _          |
| 1,1,2,2-Tetrachloroethane      | ug/L    | 20    | 18.4   | 92    | 70-130 |            |
| 1,1,2-Trichloroethane          | ug/L    | 20    | 19.9   | 100   | 70-130 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L    | 20    | 21.7   | 109   | 50-150 |            |
| 1,1-Dichloroethane             | ug/L    | 20    | 19.4   | 97    | 70-130 |            |
| 1,1-Dichloroethene             | ug/L    | 20    | 20.5   | 103   | 70-130 |            |
| 1,2,4-Trichlorobenzene         | ug/L    | 20    | 19.5   | 98    | 70-130 |            |
| 1,2-Dibromo-3-chloropropane    | ug/L    | 20    | 19.7   | 99    | 50-150 |            |
| 1,2-Dibromoethane (EDB)        | ug/L    | 20    | 19.6   | 98    | 70-130 |            |
| 1,2-Dichlorobenzene            | ug/L    | 20    | 21.1   | 105   | 70-130 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALITY CONTROL DATA**

Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| ABORATORY CONTROL SAMPLE: | 1283099 |       |        |       |        |            |
|---------------------------|---------|-------|--------|-------|--------|------------|
|                           |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                 | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| 2-Dichloroethane          | ug/L    | 20    | 20.2   | 101   | 70-131 |            |
| 2-Dichloropropane         | ug/L    | 20    | 19.7   | 99    | 70-130 |            |
| 3-Dichlorobenzene         | ug/L    | 20    | 20.8   | 104   | 70-130 |            |
| I-Dichlorobenzene         | ug/L    | 20    | 21.8   | 109   | 70-130 |            |
| enzene                    | ug/L    | 20    | 19.4   | 97    | 70-130 |            |
| omodichloromethane        | ug/L    | 20    | 20.6   | 103   | 70-130 |            |
| omoform                   | ug/L    | 20    | 18.1   | 90    | 68-130 |            |
| omomethane                | ug/L    | 20    | 16.4   | 82    | 38-137 |            |
| rbon tetrachloride        | ug/L    | 20    | 20.9   | 105   | 70-130 |            |
| orobenzene                | ug/L    | 20    | 20.9   | 104   | 70-130 |            |
| lloroethane               | ug/L    | 20    | 15.4   | 77    | 70-136 |            |
| loroform                  | ug/L    | 20    | 21.7   | 108   | 70-130 |            |
| lloromethane              | ug/L    | 20    | 18.8   | 94    | 48-144 |            |
| -1,2-Dichloroethene       | ug/L    | 20    | 19.6   | 98    | 70-130 |            |
| 1,3-Dichloropropene       | ug/L    | 20    | 20.5   | 103   | 70-130 |            |
| promochloromethane        | ug/L    | 20    | 19.4   | 97    | 70-130 |            |
| nlorodifluoromethane      | ug/L    | 20    | 19.8   | 99    | 33-157 |            |
| ylbenzene                 | ug/L    | 20    | 21.1   | 105   | 70-132 |            |
| propylbenzene (Cumene)    | ug/L    | 20    | 22.7   | 114   | 70-130 |            |
| thyl-tert-butyl ether     | ug/L    | 20    | 20.4   | 102   | 48-141 |            |
| thylene Chloride          | ug/L    | 20    | 18.3   | 92    | 70-130 |            |
| rene                      | ug/L    | 20    | 21.4   | 107   | 70-130 |            |
| rachloroethene            | ug/L    | 20    | 19.7   | 98    | 70-130 |            |
| uene                      | ug/L    | 20    | 20.0   | 100   | 70-130 |            |
| ns-1,2-Dichloroethene     | ug/L    | 20    | 20.3   | 102   | 70-130 |            |
| ns-1,3-Dichloropropene    | ug/L    | 20    | 20.0   | 100   | 70-130 |            |
| chloroethene              | ug/L    | 20    | 20.6   | 103   | 70-130 |            |
| chlorofluoromethane       | ug/L    | 20    | 21.1   | 106   | 50-150 |            |
| yl chloride               | ug/L    | 20    | 19.9   | 100   | 65-142 |            |
| ene (Total)               | ug/L    | 60    | 62.6   | 104   | 70-132 |            |
| romofluorobenzene (S)     | %       |       |        | 106   | 70-130 |            |
| romofluoromethane (S)     | %       |       |        | 103   | 70-130 |            |
| uene-d8 (S)               | %       |       |        | 97    | 70-130 |            |

| MATRIX SPIKE & MATRIX SPIR     | (E DUPLIC | CATE: 12835           | 36                   |                       | 1283537      |               |             |              |                 |     |            |      |
|--------------------------------|-----------|-----------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|-----------------|-----|------------|------|
| Parameter                      | Units     | 10335670012<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qual |
| 1,1,1-Trichloroethane          | ug/L      | ND                    | 500                  | 500                   | 525          | 505           | 105         | 101          | 70-130          | 4   | 20         |      |
| 1,1,2,2-Tetrachloroethane      | ug/L      | ND                    | 500                  | 500                   | 437          | 490           | 87          | 98           | 70-130          | 12  | 20         |      |
| 1,1,2-Trichloroethane          | ug/L      | ND                    | 500                  | 500                   | 458          | 477           | 92          | 95           | 70-130          | 4   | 20         |      |
| 1,1,2-Trichlorotrifluoroethane | ug/L      | 18.2                  | 500                  | 500                   | 555          | 542           | 107         | 105          | 50-151          | 3   | 20         |      |
| 1,1-Dichloroethane             | ug/L      | ND                    | 500                  | 500                   | 476          | 462           | 95          | 92           | 70-134          | 3   | 20         |      |
| 1,1-Dichloroethene             | ug/L      | ND                    | 500                  | 500                   | 487          | 472           | 97          | 94           | 70-139          | 3   | 20         |      |
| 1,2,4-Trichlorobenzene         | ug/L      | ND                    | 500                  | 500                   | 461          | 467           | 92          | 93           | 70-130          | 1   | 20         |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



### **QUALITY CONTROL DATA**

Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| MATRIX SPIKE & MATRIX SPIR      | KE DUPLIC    | ATE: 12835  |       |       | 1283537 |        |       |       |        |     |     |    |
|---------------------------------|--------------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|----|
|                                 |              |             | MS    | MSD   |         |        |       |       |        |     |     |    |
|                                 |              | 10335670012 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |    |
| Parameter                       | Units        | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qu |
| 1,2-Dibromo-3-<br>chloropropane | ug/L         | ND          | 500   | 500   | 420     | 440    | 84    | 88    | 50-150 | 5   | 20  |    |
| 1,2-Dibromoethane (EDB)         | ug/L         | ND          | 500   | 500   | 437     | 454    | 87    | 91    | 70-130 | 4   | 20  |    |
| 1,2-Dichlorobenzene             | ug/L         | ND          | 500   | 500   | 478     | 477    | 96    | 95    | 70-130 | 0   | 20  |    |
| 1,2-Dichloroethane              | ug/L         | ND          | 500   | 500   | 458     | 454    | 92    | 91    | 70-132 | 1   | 20  |    |
| 1,2-Dichloropropane             | ug/L         | ND          | 500   | 500   | 457     | 458    | 91    | 92    | 70-130 | 0   | 20  |    |
| 1,3-Dichlorobenzene             | ug/L         | ND          | 500   | 500   | 477     | 479    | 95    | 96    | 70-130 | 0   | 20  |    |
| ,4-Dichlorobenzene              | ug/L         | ND          | 500   | 500   | 476     | 485    | 95    | 97    | 70-130 | 2   | 20  |    |
| Benzene                         | ug/L         | ND          | 500   | 500   | 471     | 461    | 94    | 92    | 70-130 | 2   | 20  |    |
| Bromodichloromethane            | ug/L         | ND          | 500   | 500   | 462     | 457    | 92    | 91    | 70-132 | 1   | 20  |    |
| Bromoform                       | ug/L         | ND          | 500   | 500   | 414     | 383    | 83    | 77    | 68-130 | 8   | 20  |    |
| Bromomethane                    | ug/L         | ND          | 500   | 500   | 448     | 498    | 90    | 100   | 38-141 | 10  | 20  |    |
| Carbon tetrachloride            | ug/L         | ND          | 500   | 500   | 527     | 512    | 105   | 102   | 70-130 | 3   | 20  |    |
| Chlorobenzene                   | ug/L         | ND          | 500   | 500   | 488     | 479    | 98    | 96    | 70-130 | 2   | 20  |    |
| Chloroethane                    | ug/L         | ND          | 500   | 500   | 404     | 380    | 81    | 76    | 66-152 | 6   | 20  |    |
| Chloroform                      | ug/L         | ND          | 500   | 500   | 504     | 492    | 101   | 98    | 70-130 | 2   | 20  |    |
| Chloromethane                   | ug/L         | ND          | 500   | 500   | 459     | 453    | 92    | 91    | 44-151 | 1   | 20  |    |
| is-1,2-Dichloroethene           | ug/L         | 2.0         | 500   | 500   | 440     | 451    | 88    | 90    | 70-130 | 3   | 20  |    |
| is-1,3-Dichloropropene          | ug/L         | ND          | 500   | 500   | 460     | 479    | 92    | 96    | 70-130 | 4   | 20  |    |
| Dibromochloromethane            | ug/L         | ND          | 500   | 500   | 451     | 431    | 90    | 86    | 70-130 | 5   | 20  |    |
| Dichlorodifluoromethane         | ug/L         | ND          | 500   | 500   | 466     | 446    | 93    | 89    | 29-160 | 4   | 20  |    |
| Ethylbenzene                    | ug/L         | ND          | 500   | 500   | 484     | 471    | 97    | 94    | 70-132 | 3   | 20  |    |
| sopropylbenzene (Cumene)        | ug/L         | ND          | 500   | 500   | 518     | 509    | 104   | 102   | 70-130 | 2   | 20  |    |
| Methyl-tert-butyl ether         | ug/L         | ND          | 500   | 500   | 452     | 475    | 90    | 95    | 48-143 | 5   | 20  |    |
| Methylene Chloride              | ug/L         | ND          | 500   | 500   | 468     | 440    | 94    | 88    | 70-130 | 6   | 20  |    |
| Styrene                         | ug/L         | ND          | 500   | 500   | 460     | 432    | 92    | 86    | 70-130 | 6   | 20  |    |
| etrachloroethene                | ug/L         | 329         | 500   | 500   | 804     | 813    | 95    | 97    | 70-130 | 1   | 20  |    |
| oluene                          | ug/L         | ND          | 500   | 500   | 485     | 481    | 97    | 96    | 70-130 | 1   | 20  |    |
| rans-1,2-Dichloroethene         | ug/L         | ND          | 500   | 500   | 492     | 478    | 98    | 96    | 70-130 | 3   | 20  |    |
| rans-1,3-Dichloropropene        | ug/L         | ND<br>ND    | 500   | 500   | 464     | 478    | 93    | 96    | 70-132 | 3   | 20  |    |
| richloroethene                  | ug/L         | ND<br>ND    | 500   | 500   | 489     | 497    | 98    | 99    | 70-130 | 2   | 20  |    |
| richlorofluoromethane           | ug/L<br>ug/L | ND<br>ND    | 500   | 500   | 514     | 513    | 103   | 103   | 50-153 | 0   | 20  |    |
| /inyl chloride                  | ug/L<br>ug/L | ND<br>ND    | 500   | 500   | 485     | 482    | 97    | 96    | 60-155 | 1   | 20  |    |
| (ylene (Total)                  | ug/L<br>ug/L | ND<br>ND    | 1500  | 1500  | 1390    | 1350   | 92    | 90    | 70-132 | 3   | 20  |    |
| -Bromofluorobenzene (S)         | ug/L<br>%    | ND          | 1300  | 1500  | 1390    | 1330   | 98    | 99    | 70-132 | 3   | 20  |    |
|                                 |              |             |       |       |         |        |       |       |        |     |     |    |
| Dibromofluoromethane (S)        | %            |             |       |       |         |        | 100   | 98    | 70-130 |     |     |    |
| Toluene-d8 (S)                  | %            |             |       |       |         |        | 100   | 100   | 70-130 |     |     |    |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALIFIERS**

Project: City of Rochester Pace Project No.: 10335670

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### **LABORATORIES**

Date: 01/14/2016 04:23 PM

PASI-G Pace Analytical Services - Green Bay





### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: City of Rochester

Pace Project No.: 10335670

Date: 01/14/2016 04:23 PM

| Lab ID      | Sample ID  | QC Batch Method | QC Batch  | Analytical Method | Analytical<br>Batch |
|-------------|------------|-----------------|-----------|-------------------|---------------------|
| 10335670001 | DPE-1      | EPA 8260        | MSV/31872 |                   |                     |
| 10335670002 | DPE-2      | EPA 8260        | MSV/31872 |                   |                     |
| 10335670003 | DPE-3      | EPA 8260        | MSV/31872 |                   |                     |
| 10335670004 | DPE-4      | EPA 8260        | MSV/31872 |                   |                     |
| 10335670005 | DPE-5      | EPA 8260        | MSV/31872 |                   |                     |
| 10335670006 | DPE-6      | EPA 8260        | MSV/31872 |                   |                     |
| 10335670007 | DPE-7      | EPA 8260        | MSV/31872 |                   |                     |
| 10335670008 | DPE-8      | EPA 8260        | MSV/31872 |                   |                     |
| 10335670009 | MW-14      | EPA 8260        | MSV/31872 |                   |                     |
| 10335670010 | MW-15      | EPA 8260        | MSV/31872 |                   |                     |
| 10335670011 | MW-16      | EPA 8260        | MSV/31872 |                   |                     |
| 10335670012 | MW-17      | EPA 8260        | MSV/31872 |                   |                     |
| 10335670013 | MW-18      | EPA 8260        | MSV/31872 |                   |                     |
| 10335670014 | MW-19      | EPA 8260        | MSV/31872 |                   |                     |
| 10335670015 | MW-20      | EPA 8260        | MSV/31872 |                   |                     |
| 10335670016 | TRIP BLANK | EPA 8260        | MSV/31872 |                   |                     |

# CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

01955501

Pace Analytical" www.pacelabs.com

3333 Pace Project No./ Lab I.D. (V/V) **DRINKING WATER** Samples Intact F-ALL-Q-020rev.07, 15-May-2007 980563 SAMPLE CONDITIONS OTHER (N/Y) Custody Sealed Cooler Ice (Y/N) Received on GROUND WATER Residual Chlorine (Y/N) <u>"</u> O° ni qmeT Page: REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/N) やが TIME STATE: 5 Site Location NPDES DATE UST L DATE Signed (MM/DD/YY): TOSEPTED BY / AFFILIATION JaaT siaylanA J Les Contracts N/A Other アドク Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days Methanol Preservatives Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> NaOH Target Land HCI HNO Company Name: 7.000 Pace Quote Reference: Pace Project Manager: Pace Profile #: <sup>⁵</sup>OS<sup>₹</sup>H Section C Unpreserved Attention: TIME Address: # OF CONTAINERS M 1 6 SAMPLER NAME AND SIGNATURE 11/6 PRINT Name of SAMPLER: SIGNATURE of SAMPLER: Markens. Com SAMPLE TEMP AT COLLECTION land man Keny Com DATE TIME Koches fer COMPOSITE END/GRAB DATE COLLECTED RELINQUISHED BY / AFFILIATION :. 2. 07:2 1:50 13.5 15. 150 3:2 1305 2:35 800 5,45 3:10 TIME į COMPOSITE Report To: DATE akucha Required Project Information: 100 5 SILTENMENT TAND O SAME POUR CONTINUES PROJECT Name: Project Name: (G=GRAB C=COMP) **SAMPLE TYPE** Project Number: (see valid codes to left) MATRIX CODE Section B ORIGINAL Matrix Codes MATRIX / CODE Drinking Water Water Waste Water Product Soil/Solid Oil Wipe Air Tissue Other Britonnech ADDITIONAL COMMENTS なから (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE DOR - 8 Requested Due Date/TAT: リの SAMPLE ID 1-1-18 PM えいしん 7-3190 132 D-3-0 21-35 DPE-4 DEELS びず用して Required Client Information Section A Required Client Information: Company: | May | Moor | ddress: 20 42 W Too and 00 Section D Email To: hone: 2 9 œ თ 2 Ξ 12 ILEM # ∄age 43 of 48

## CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Face Analytical www.pacelabs.com

| man formation:  Para formation:  1 2 w of 3 to 5 to | Required Project Information:       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
|-----------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| 2 ed of the St. Copy To.                                                          |                                     | Invoice Information: Attention:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
| 2 w 38 th 57                                                                      | Krimer for I and mount to me. O som | 63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | )                                                       |
|                                                                                   | o Kucked landmonthems. Con          | Company Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | REGULATORY AGENCY                                       |
| Server Land D.                                                                    |                                     | Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NPDES   GROUND WATER   DRINKING WATER                   |
| 12/0/2018 (Core) 100                                                              | Order No.:                          | Pace Quote<br>Reference:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ☐ UST ☐ RCRA ☐ OTHER                                    |
| Fax:                                                                              | Project Name: GTV of Rockes for     | Pace Project<br>Manager:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Site Location                                           |
| Requested Due Date/TAT: U g M. TATA Project Number:                               |                                     | Pace Profile #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATE:                                                  |
| 0.37                                                                              |                                     | Requeste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Requested Analysis Filtered (Y/N)                       |
| Section D Matrix Codes Required Client Information MATRIX / CODE                  | <u> </u>                            | <b>z</b> Preservatives ⋉                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                         |
| W W W                                                                             | POSITE                              | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (N/A) :                                                 |
|                                                                                   |                                     | # OF CONTAINER  Inpreserved  Incl  I | Residual Chlorine                                       |
| 10 mm                                                                             | 553 711 11 (2)                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
| 10 - MM                                                                           |                                     | N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                         |
| MW-20                                                                             | 1/1/2                               | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                         |
|                                                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
| 2 0                                                                               |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
| 8                                                                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
| 11                                                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
| 12 ADDITIONAL COMMENTS                                                            | RELINQUISHED BY / AFFILIATION DATE  | TIME ACCEPTED BY / AFFILIATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N DATE TIME SAMPLE CONDITIONS                           |
| 48 hr TAT                                                                         | Jan fle 1/15/16                     | grown asses pace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 2 1 2 4 4 7 5 1 2 1 7 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|                                                                                   |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                         |
| Page                                                                              | SAMPLER NAME AND SIGNATURE          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uo (I                                                   |
|                                                                                   | PRINT Name of SAMPLER:              | Haron Kiell                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ni qm<br>heviə<br>N/Y) ə<br>heviə<br>Co o o bə          |
|                                                                                   | SIGNATURE of SAMPLER:               | S:   DATE Signed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ter<br>Recc<br>Ice                                      |



### Document Name:

### Sample Condition Upon Receipt Form

Document No.:

F-MN-L-213-rev.15

Document Revised: 05Jan2016

Page 1 of 1

Issuing Authority: Pace Minnesota Quality Office

| Sample Condition Upon Receipt  Client Name:  LCMAMOVE E                                                                                                                                                                                         | 7 <i>u\ro</i>            | nnu       | Project<br>Phta    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Courier: Fed Ex UPS  Commercial Pace SpeeDee  Tracking Number: 782 4520 8039                                                                                                                                                                    | USPS Other:              |           | Client             | STATE OF THE PROPERTY OF THE P |
| Custody Seal on Cooler/Box Present?                                                                                                                                                                                                             | )                        | Seals Int | act? "E            | Yes No Optional: Proj. Due Date: Proj. Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Packing Material: Bubble Wrap Bubble Bags                                                                                                                                                                                                       | Non                      | е П       | Other:             | Temp Blank? √Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Thermometer 151401163 1888A91216750 Used: 151401164 1888A01433100                                                                                                                                                                               |                          | e of Ice: | We                 | t Blue None Samples on ice, cooling process has begun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cooler Temp Read (°C):  Temp should be above freezing to 6°C  Correction Fact  USDA Regulated Soil ( M/A, water sample)  Did samples originate in a quarantine zone within the United to MS, NC, NM, NY, OK, OR, SC, TN, TX or WA (check maps)? | rrected (°C)<br>tor: + O | AR, AZ, C | A, FL, GA,<br>∐Yes | Biological Tissue Frozen? Yes No N/A te and Initials of Person Examining Contents: No N/A ID, LA. Did samples originate from a foreign source (internationally, No including Hawaii and Puerto Rico)? Yes No Q-338) and include with SCUR/COC paperwork.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                 |                          |           |                    | COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Chain of Custody Present?                                                                                                                                                                                                                       | Yes                      | □No       | □N/A               | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Chain of Custody Filled Out?                                                                                                                                                                                                                    | Ves                      | □No       | □N/A               | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Chain of Custody Relinquished?                                                                                                                                                                                                                  | Yes                      | □No       | □N/A               | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sampler Name and/or Signature on COC?                                                                                                                                                                                                           | Yes                      | □No       | □N/A               | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Samples Arrived within Hold Time?                                                                                                                                                                                                               | ∠ Yes                    | □No       | □n/A               | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Short Hold Time Analysis (<72 hr)?                                                                                                                                                                                                              | □Yes                     | No        | □N/A               | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Rush Turn Around Time Requested?                                                                                                                                                                                                                | Yes                      | □No       | □N/A               | 748 NOURS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sufficient Volume?                                                                                                                                                                                                                              | Yes                      | □No       | □N/A               | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Correct Containers Used?                                                                                                                                                                                                                        | Yes                      | □No       | □N/A               | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -Pace Containers Used?                                                                                                                                                                                                                          | Yes                      | □No       | □N/A               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Containers Intact?                                                                                                                                                                                                                              | Yes                      | □No       | □N/A               | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Filtered Volume Received for Dissolved Tests?                                                                                                                                                                                                   | Yes                      | □No       | N/A                | 11. Note if sediment is visible in the dissolved container                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample Labels Match COC?  -Includes Date/Time/ID/Analysis Matrix: WALE /                                                                                                                                                                        | Yes                      | □No       | □N/A               | 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| All containers needing acid/base preservation have been checked? All containers needing preservation are found to be in compliance with EPA recommendation?                                                                                     | □Yes                     | □No       | N/A                | 13. □HNO₃ □H₂SO₄ □NaOH □HCI<br>Sample #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (HNO₃, H₂SO₄, H6<2; NaOH >9 Sulfide, NaOH>12 Cyanide) Exceptions VOA Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC                                                                                                                        | □Yes                     | □No       | □N/A               | Initial when Lot # of added completed: preservative:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Headspace in VOA Vials ( >6mm)?                                                                                                                                                                                                                 | ☐Yes                     | No        |                    | 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Trip Blank Present?                                                                                                                                                                                                                             | Yes                      | □No       | □N/A               | 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Trip Blank Custody Seals Present? Pace Trip Blank Lot # (if purchased): \\ \ 230 \ \ 5 - 0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                                                                                                                  | Yes                      | □No       | □n/a               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CLIENT NOTIFICATION/RESOLUTION  Person Contacted:  Comments/Resolution:                                                                                                                                                                         |                          |           |                    | Field Data Required? Yes No Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Project Manager Review:  Note: Whenever there is a discrepancy affecting North Carolina chold, incorrect preservative, out of temp, incorrect containers).                                                                                      | omplance's               | amples, a | Copy of th         | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

### 

6KW

item Phone (612)607-1700 Fax (612)607-6444 Pace Analytical Services, Inc. 1700 Elm Street, Suite 200 Oyeyemi Odujole Report To 3 4 3 12 = 10 Minneapolis, MN 55414 Workorder: 10335670 16 MW-15 DPE-6 Sample ID MW-19 MW-14 DPE-8 DPE-4 DPE-2 MW-18 MW-16 DPE-7 DPE-5 TRIP BLANK MW-20 MW-17 DPE-3 DPE-1 006 500 200 803 000 800 8 001 Workorder Name: City of Rochester PS Type Sd PS Sample Date/Time Collect 1/11/2016 17:45 1/11/2016 13:25 1/11/2016 15:50 1/11/2016 15:10 1/11/2016 16:15 1/11/2016 00:00 1/11/2016 14:15 1/11/2016 12:40 1/11/2016 17:55 1/11/2016 14:35 1/11/2016 13:45 1/11/2016 13:05 1/11/2016 13:50 1/11/2016 14:20 1/11/2016 15:25 1/11/2016 15:00 Subcontract To Phone (920)469-2436 Green Bay, WI 54302 Pace Analytical Green Bay 1241 Bellevue Street 10335670015 10335670014 10335670013 10335670012 10335670011 10335670010 10335670009 10335670008 10335670007 10335670006 10335670005 10335670004 10335670003 10335670002 10335670001 10335670016 Lab ID Water Matrix Water ω ω ω HCL ယ ယ w ယ ယ ယ ယ ယ **Preserved Containers** Owner Received Date: × 8260 VOC 465 LIST ×  $\times$ 1/12/2016 Results Requested By: LAB USE ONLY 2.40 MB 1/14/2016 

\*\*\*In order to maintain client confidentiality, location/name of the sampling site, sampler's name and signature may not be provided on this COC document. This chain of custody is considered complete as is since this information is available in the owner laboratory.

### Sample Condition Upon Receipt

Pace Analytical\*

Pace Analytical Services, Inc. 1241 Bellevue Street, Suite 9 Green Bay, WI 54302

| ,                                                                                                    |                   | Project               | #: WO#:              | 40127043                         |
|------------------------------------------------------------------------------------------------------|-------------------|-----------------------|----------------------|----------------------------------|
| Client Name: Pace MN                                                                                 |                   |                       | 000,                 | 1012/040                         |
| racking #: UPS T Client T Pa                                                                         | ace Other: M      | atto                  | 40127043             |                                  |
| ustody Seal on Cooler/Box Present: 7 yes                                                             | no Seals ir       | tact:                 |                      |                                  |
| ustody Seal on Samples Present: 🖵 yes                                                                | no Seals ir       | tact: Ves no          |                      |                                  |
| acking Material:   Bubble Wrap / Bu                                                                  | ibble Bags        | None Other            |                      |                                  |
| hermometer UsedSZ-S5                                                                                 |                   | Vet Blue Dry None     | Samples or           | n ice, cooling process has begun |
| ooler Temperature Uncorr: 1.5 /Corr:                                                                 | <i>-</i> 1        | iological Tissue is F | • •                  | 31                               |
| emp Blank Present: // yes / no                                                                       |                   |                       | 厂 no                 | Person examining content         |
| emp should be above freezing to 6°C for all sample ∈<br>ozen Biota Samples should be received ≤ 0°C. | except Biota.     | Comments:             |                      | Date: 1-13-10<br>Initials:       |
| hain of Custody Present:                                                                             | ØYes □No □        | ]N/A 1.               |                      |                                  |
| hain of Custody Filled Out:                                                                          | ZYes □No □        | ]N/A 2.               |                      |                                  |
| hain of Custody Relinquished:                                                                        | Z<br>Yes □No □    | ]N/A 3.               |                      |                                  |
| ampler Name & Signature on COC:                                                                      | □Yes □No <b>/</b> | ÎN/A 4.               |                      |                                  |
| amples Arrived within Hold Time:                                                                     |                   | IN/A 5.               |                      |                                  |
| - VOA Samples frozen upon receipt                                                                    | Yes □No           | Date/Time:            |                      |                                  |
| hort Hold Time Analysis (<72hr):                                                                     |                   | IN/A 6.               |                      |                                  |
| ush Turn Around Time Requested:                                                                      | j                 | In/A 7.               |                      |                                  |
| ufficient Volume:                                                                                    | 1                 | IN/A 8.               |                      |                                  |
| prect Containers Used:                                                                               |                   | N/A 9.                |                      |                                  |
| -Pace Containers Used:                                                                               | /                 |                       |                      |                                  |
|                                                                                                      | □Yes □No Z        |                       |                      |                                  |
| -Pace IR Containers Used:                                                                            |                   | N/A                   |                      |                                  |
| ontainers Intact:                                                                                    |                   | N/A 10.               |                      |                                  |
| Itered volume received for Dissolved tests                                                           |                   | N/A 11.               |                      |                                  |
| ample Labels match COC:                                                                              | ØYes □No □        | N/A 12.               |                      |                                  |
| -Includes date/time/ID/Analysis Matrix:                                                              | $\mathcal{M}$     |                       |                      |                                  |
| containers needing preservation have been checked<br>on-Compliance noted in 13.)                     | l.<br>□Yes □No Ø  | N/A 13 F HNC          | 3 F H2SO4 F          | NaOH   NaOH +ZnAc                |
| containers needing preservation are found to be in                                                   |                   |                       |                      |                                  |
| mpliance with EPA recommendation.<br>NO3, H2 <b>SO4</b> ,≤2; NaOH+ZnAct ≥9, NaOH ≥12)                | □Yes □No          | N/A                   |                      |                                  |
| eptions: VOA, coliform, TOC, TOX, TOH,                                                               | <del></del>       | Initial when          | Lab Std #ID of       | Date/                            |
| G, WIDROW, Phenolics, OTHER:                                                                         | Yes No            | completed             | preservative         | Time:                            |
| adspace in VOA Vials ( >6mm):                                                                        |                   | N/A 14.               |                      |                                  |
| p Blank Present:                                                                                     | ØYes □No □        | N/A 15.               |                      |                                  |
| Blank Custody Seals Present                                                                          | ØYes □No □        | N/A                   |                      |                                  |
| ce Trip Blank Lot # (if purchased): 12301                                                            | 5                 |                       |                      |                                  |
| ent Notification/ Resolution: Person Contacted:                                                      | D-                | If<br>te/Time:        | checked, see attache | ed form for additional comments  |
| comments/ Resolution:                                                                                | Ua                | te/ HHe.              |                      |                                  |
|                                                                                                      |                   |                       |                      |                                  |
|                                                                                                      |                   |                       |                      |                                  |
|                                                                                                      |                   |                       |                      |                                  |





March 03, 2016

Mr. Jason Skramstad Landmark Environmental 2042 W. 98th. St. Minneapolis, MN 55431

RE: Project: City of Rochester-CRC

Pace Project No.: 10339705

### Dear Mr. Skramstad:

Enclosed are the analytical results for sample(s) received by the laboratory on February 25, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Oyeyemi Odujole oyeyemi.odujole@pacelabs.com Project Manager

**Enclosures** 





1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700



### **CERTIFICATIONS**

Project: City of Rochester-CRC

Pace Project No.: 10339705

**Minnesota Certification IDs** 

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

525 N 8th Street, Salina, KS 67401 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680

California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256

EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605

Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322

Michigan DEPH Certification #: 9909

North Dakota Certification #: R-150

Minnesota Certification #: 027-053-137

Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN\_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530

North Carolina State Public Health #: 27700

North Dakota Certification #: R-036

Ohio EPA #: 4150 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Virginia/VELAP Certification #: Pace Washington Certification #: C486 West Virginia Certification #: 382 West Virginia DHHR #:9952C Wisconsin Certification #: 999407970

**Green Bay Certification IDs**1241 Bellevue Street, Green Bay, WI 54302 Florida/NELAP Certification #: E87948 Illinois Certification #: 200050 Kentucky Certification #: 82 Louisiana Certification #: 04168 Minnesota Certification #: 055-999-334 Virginia VELAP ID: 460263

South Carolina Certification #: 83006001 Texas Certification #: T104704529-14-1 US Dept of Agriculture #: S-76505 Virginia VELAP ID: 460263
Virginia VELAP Certification ID: 460263 Wisconsin Certification #: 405132750 Wisconsin DATCP Certification #: 105-444





### **SAMPLE SUMMARY**

Project: City of Rochester-CRC

Pace Project No.: 10339705

| Lab ID      | Sample ID   | Matrix | Date Collected | Date Received  |
|-------------|-------------|--------|----------------|----------------|
| 10339705001 | DPE-1       |        | 02/23/16 17:10 | 02/25/16 10:25 |
| 10339705002 | DPE-2       | Water  | 02/23/16 16:40 | 02/25/16 10:25 |
| 10339705003 | DPE-3       | Water  | 02/23/16 16:55 | 02/25/16 10:25 |
| 10339705004 | DPE-4       | Water  | 02/23/16 16:25 | 02/25/16 10:25 |
| 10339705005 | DPE-5       | Water  | 02/23/16 15:35 | 02/25/16 10:25 |
| 10339705006 | DPE-6       | Water  | 02/23/16 15:05 | 02/25/16 10:25 |
| 10339705007 | DPE-7       | Water  | 02/23/16 13:15 | 02/25/16 10:25 |
| 10339705008 | DPE-8       | Water  | 02/23/16 16:00 | 02/25/16 10:25 |
| 10339705009 | MW-14       | Water  | 02/23/16 13:40 | 02/25/16 10:25 |
| 10339705010 | MW-15       | Water  | 02/23/16 13:55 | 02/25/16 10:25 |
| 10339705011 | MW-16       | Water  | 02/23/16 15:45 | 02/25/16 10:25 |
| 10339705012 | MW-17       | Water  | 02/23/16 17:35 | 02/25/16 10:25 |
| 10339705013 | MW-18       | Water  | 02/23/16 18:00 | 02/25/16 10:25 |
| 10339705014 | MW-19       | Water  | 02/23/16 12:50 | 02/25/16 10:25 |
| 10339705015 | MW-20       | Water  | 02/23/16 15:20 | 02/25/16 10:25 |
| 10339705016 | AS-Influent | Water  | 02/24/16 18:05 | 02/25/16 10:25 |
| 10339705017 | AS-Effluent | Water  | 02/24/16 18:15 | 02/25/16 10:25 |
| 10339705018 | TRIP BLANK  | Water  | 02/23/16 00:00 | 02/25/16 10:25 |





### **SAMPLE ANALYTE COUNT**

Project: City of Rochester-CRC

Pace Project No.: 10339705

| Lab ID      | Sample ID   | Method   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-------------|----------|----------|----------------------|------------|
| 10339705001 | DPE-1       | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10339705002 | DPE-2       | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10339705003 | DPE-3       | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10339705004 | DPE-4       | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10339705005 | DPE-5       | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10339705006 | DPE-6       | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10339705007 | DPE-7       | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10339705008 | DPE-8       | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10339705009 | MW-14       | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10339705010 | MW-15       | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10339705011 | MW-16       | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10339705012 | MW-17       | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10339705013 | MW-18       | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10339705014 | MW-19       | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10339705015 | MW-20       | EPA 8260 | LAP      | 70                   | PASI-G     |
| 10339705016 | AS-Influent | EPA 624  | DJB      | 73                   | PASI-M     |
| 10339705017 | AS-Effluent | EPA 624  | DJB      | 73                   | PASI-M     |
| 10339705018 | TRIP BLANK  | EPA 8260 | LAP      | 70                   | PASI-G     |



### **ANALYTICAL RESULTS**

Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: DPE-1                  | Lab ID: 10   | 0339705001    | Collected: 02/23/1 | 6 17:10 | Received: | 02/25/16 10:25 | Matrix: Water |     |
|--------------------------------|--------------|---------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                     | Results      | Units         | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 3260 MSV                       | Analytical M | ethod: EPA 82 | 260                |         |           |                |               |     |
| 1,1,1,2-Tetrachloroethane      | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 | 1 630-20-6    |     |
| 1,1,1-Trichloroethane          | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 | 1 71-55-6     |     |
| 1,1,2,2-Tetrachloroethane      | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 | 1 79-34-5     |     |
| 1,1,2-Trichloroethane          | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 | 1 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane | ND           | ug/L          | 200                | 40      |           | 03/02/16 13:54 | 1 76-13-1     |     |
| 1,1-Dichloroethane             | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 | 1 75-34-3     |     |
| 1,1-Dichloroethene             | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 | 75-35-4       |     |
| 1,1-Dichloropropene            | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 | 1 563-58-6    |     |
| 1,2,3-Trichlorobenzene         | ND           | ug/L          | 200                | 40      |           | 03/02/16 13:54 | 1 87-61-6     |     |
| 1,2,3-Trichloropropane         | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 | 1 96-18-4     |     |
| 1,2,4-Trichlorobenzene         | ND           | ug/L          | 200                | 40      |           | 03/02/16 13:54 | 1 120-82-1    |     |
| 1,2,4-Trimethylbenzene         | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 | 1 95-63-6     |     |
| 1,2-Dibromo-3-chloropropane    | ND           | ug/L          | 200                | 40      |           | 03/02/16 13:54 |               |     |
| 1,2-Dibromoethane (EDB)        | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 |               |     |
| 1,2-Dichlorobenzene            | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 |               |     |
| I.2-Dichloroethane             | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 |               |     |
| I,2-Dichloropropane            | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 |               |     |
| ,3,5-Trimethylbenzene          | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 |               |     |
| ,3-Dichlorobenzene             | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 |               |     |
| ,3-Dichloropropane             | ND<br>ND     | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 |               |     |
| ,4-Dichlorobenzene             | ND<br>ND     |               | 40.0               | 40      |           | 03/02/16 13:54 |               |     |
|                                | ND<br>ND     | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 |               |     |
| 2,2-Dichloropropane            | ND<br>ND     | ug/L          | 800                | 40      |           | 03/02/16 13:54 |               |     |
| 2-Butanone (MEK)               |              | ug/L          |                    | 40      |           |                |               |     |
| 2-Chlorotoluene                | ND           | ug/L          | 40.0               |         |           | 03/02/16 13:54 |               |     |
| I-Chlorotoluene                | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 |               |     |
| I-Methyl-2-pentanone (MIBK)    | ND           | ug/L          | 800                | 40      |           | 03/02/16 13:54 |               |     |
| Acetone                        | ND           | ug/L          | 800                | 40      |           | 03/02/16 13:54 |               |     |
| Allyl chloride                 | ND           | ug/L          | 200                | 40      |           | 03/02/16 13:54 |               |     |
| Benzene                        | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 |               |     |
| Bromobenzene                   | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 |               |     |
| Bromochloromethane             | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 |               |     |
| Bromodichloromethane           | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 |               |     |
| Bromoform                      | ND           | ug/L          | 200                | 40      |           | 03/02/16 13:54 |               |     |
| Bromomethane                   | ND           | ug/L          | 200                | 40      |           | 03/02/16 13:54 |               |     |
| Carbon tetrachloride           | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 |               |     |
| Chlorobenzene                  | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 |               |     |
| Chloroethane                   | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 | 75-00-3       |     |
| Chloroform                     | ND           | ug/L          | 200                | 40      |           | 03/02/16 13:54 | 1 67-66-3     |     |
| Chloromethane                  | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 | 1 74-87-3     |     |
| Dibromochloromethane           | ND           | ug/L          | 200                | 40      |           | 03/02/16 13:54 | 1 124-48-1    |     |
| Dibromomethane                 | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 | 1 74-95-3     |     |
| Dichlorodifluoromethane        | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 | 1 75-71-8     |     |
| Dichlorofluoromethane          | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 | 1 75-43-4     |     |
| Diethyl ether (Ethyl ether)    | ND           | ug/L          | 200                | 40      |           | 03/02/16 13:54 | 1 60-29-7     |     |
| Ethylbenzene                   | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 | 1 100-41-4    |     |
| Hexachloro-1,3-butadiene       | ND           | ug/L          | 200                | 40      |           | 03/02/16 13:54 | 1 87-68-3     |     |
| sopropylbenzene (Cumene)       | ND           | ug/L          | 40.0               | 40      |           | 03/02/16 13:54 |               |     |

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..





Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: DPE-1                                  | Lab ID: 103     | 39705001    | Collected: 02/23/1 | 6 17:10 | Received: 02 | 2/25/16 10:25 N | Matrix: Water |      |
|------------------------------------------------|-----------------|-------------|--------------------|---------|--------------|-----------------|---------------|------|
| Parameters                                     | Results         | Units       | Report Limit       | DF      | Prepared     | Analyzed        | CAS No.       | Qual |
| 8260 MSV                                       | Analytical Meth | nod: EPA 82 | 260                |         |              |                 |               |      |
| Methyl-tert-butyl ether                        | ND              | ug/L        | 40.0               | 40      |              | 03/02/16 13:54  | 1634-04-4     |      |
| Methylene Chloride                             | ND              | ug/L        | 40.0               | 40      |              | 03/02/16 13:54  | 75-09-2       |      |
| Naphthalene                                    | ND              | ug/L        | 200                | 40      |              | 03/02/16 13:54  | 91-20-3       |      |
| Styrene                                        | ND              | ug/L        | 40.0               | 40      |              | 03/02/16 13:54  | 100-42-5      |      |
| Tetrachloroethene                              | 2970            | ug/L        | 40.0               | 40      |              | 03/02/16 13:54  | 127-18-4      |      |
| Tetrahydrofuran                                | ND              | ug/L        | 200                | 40      |              | 03/02/16 13:54  | 109-99-9      |      |
| Toluene                                        | ND              | ug/L        | 40.0               | 40      |              | 03/02/16 13:54  | 108-88-3      |      |
| Trichloroethene                                | ND              | ug/L        | 40.0               | 40      |              | 03/02/16 13:54  | 79-01-6       |      |
| Trichlorofluoromethane                         | ND              | ug/L        | 40.0               | 40      |              | 03/02/16 13:54  | 75-69-4       |      |
| Vinyl chloride                                 | ND              | ug/L        | 40.0               | 40      |              | 03/02/16 13:54  | 75-01-4       |      |
| Xylene (Total)                                 | ND              | ug/L        | 120                | 40      |              | 03/02/16 13:54  | 1330-20-7     |      |
| cis-1,2-Dichloroethene                         | ND              | ug/L        | 40.0               | 40      |              | 03/02/16 13:54  | 156-59-2      |      |
| cis-1,3-Dichloropropene                        | ND              | ug/L        | 200                | 40      |              | 03/02/16 13:54  | 10061-01-5    |      |
| n-Butylbenzene                                 | ND              | ug/L        | 40.0               | 40      |              | 03/02/16 13:54  | 104-51-8      |      |
| n-Propylbenzene                                | ND              | ug/L        | 40.0               | 40      |              | 03/02/16 13:54  | 103-65-1      |      |
| p-Isopropyltoluene                             | ND              | ug/L        | 40.0               | 40      |              | 03/02/16 13:54  | 99-87-6       |      |
| sec-Butylbenzene                               | ND              | ug/L        | 200                | 40      |              | 03/02/16 13:54  | 135-98-8      |      |
| tert-Butylbenzene                              | ND              | ug/L        | 40.0               | 40      |              | 03/02/16 13:54  | 98-06-6       |      |
| trans-1,2-Dichloroethene                       | ND              | ug/L        | 40.0               | 40      |              | 03/02/16 13:54  | 156-60-5      |      |
| trans-1,3-Dichloropropene<br><b>Surrogates</b> | ND              | ug/L        | 800                | 40      |              | 03/02/16 13:54  | 10061-02-6    |      |
| 4-Bromofluorobenzene (S)                       | 95              | %           | 70-130             | 40      |              | 03/02/16 13:54  | 460-00-4      |      |
| Dibromofluoromethane (S)                       | 108             | %           | 70-130             | 40      |              | 03/02/16 13:54  | 1868-53-7     |      |
| Toluene-d8 (S)                                 | 97              | %           | 70-130             | 40      |              | 03/02/16 13:54  | 2037-26-5     |      |



### **ANALYTICAL RESULTS**

Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: DPE-2                           | Lab ID: 103    | 39705002    | Collected: 02/23/1 | 16 16:40 | Received: 02/ | 25/16 10:25    | Matrix: Water |      |
|-----------------------------------------|----------------|-------------|--------------------|----------|---------------|----------------|---------------|------|
| Parameters                              | Results        | Units       | Report Limit       | DF       | Prepared      | Analyzed       | CAS No.       | Qual |
| 8260 MSV                                | Analytical Met | hod: EPA 82 | 260                |          |               |                |               |      |
| 1,1,1,2-Tetrachloroethane               | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  | 630-20-6      |      |
| 1,1,1-Trichloroethane                   | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:41 | l 71-55-6     |      |
| 1,1,2,2-Tetrachloroethane               | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:41 | l 79-34-5     |      |
| 1,1,2-Trichloroethane                   | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:47 | 79-00-5       |      |
| 1,1,2-Trichlorotrifluoroethane          | ND             | ug/L        | 200                | 40       |               | 03/02/16 14:4  | I 76-13-1     |      |
| 1,1-Dichloroethane                      | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:41 | I 75-34-3     |      |
| 1,1-Dichloroethene                      | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:41 | I 75-35-4     |      |
| 1,1-Dichloropropene                     | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:41 | I 563-58-6    |      |
| 1,2,3-Trichlorobenzene                  | ND             | ug/L        | 200                | 40       |               | 03/02/16 14:4  | I 87-61-6     |      |
| 1,2,3-Trichloropropane                  | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  | l 96-18-4     |      |
| 1,2,4-Trichlorobenzene                  | ND             | ug/L        | 200                | 40       |               | 03/02/16 14:4  |               |      |
| 1,2,4-Trimethylbenzene                  | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  |               |      |
| 1,2-Dibromo-3-chloropropane             | ND             | ug/L        | 200                | 40       |               | 03/02/16 14:4  |               |      |
| 1,2-Dibromoethane (EDB)                 | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  |               |      |
| 1,2-Dichlorobenzene                     | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  |               |      |
| 1,2-Dichloroethane                      | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  |               |      |
| 1,2-Dichloropropane                     | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  |               |      |
| 1,3,5-Trimethylbenzene                  | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  |               |      |
| 1,3-Dichlorobenzene                     | ND<br>ND       | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  |               |      |
| 1,3-Dichloropropane                     | ND<br>ND       | -           | 40.0               | 40       |               | 03/02/16 14:4  |               |      |
| 1,4-Dichlorobenzene                     | ND<br>ND       | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  |               |      |
|                                         | ND<br>ND       | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  |               |      |
| 2,2-Dichloropropane<br>2-Butanone (MEK) | ND             | ug/L        | 800                | 40       |               | 03/02/16 14:4  |               |      |
|                                         |                | ug/L        |                    |          |               |                |               |      |
| 2-Chlorotoluene                         | ND             | ug/L        | 40.0               | 40<br>40 |               | 03/02/16 14:4  |               |      |
| 4-Chlorotoluene                         | ND             | ug/L        | 40.0               |          |               | 03/02/16 14:4  |               |      |
| 4-Methyl-2-pentanone (MIBK)             | ND             | ug/L        | 800                | 40       |               | 03/02/16 14:4  |               |      |
| Acetone                                 | ND             | ug/L        | 800                | 40       |               | 03/02/16 14:4  |               |      |
| Allyl chloride                          | ND             | ug/L        | 200                | 40       |               | 03/02/16 14:4  |               |      |
| Benzene                                 | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  |               |      |
| Bromobenzene                            | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  |               |      |
| Bromochloromethane                      | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  |               |      |
| Bromodichloromethane                    | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  |               |      |
| Bromoform                               | ND             | ug/L        | 200                | 40       |               | 03/02/16 14:4  |               |      |
| Bromomethane                            | ND             | ug/L        | 200                | 40       |               | 03/02/16 14:4  |               |      |
| Carbon tetrachloride                    | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  |               |      |
| Chlorobenzene                           | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  |               |      |
| Chloroethane                            | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  |               |      |
| Chloroform                              | ND             | ug/L        | 200                | 40       |               | 03/02/16 14:4  |               |      |
| Chloromethane                           | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  |               |      |
| Dibromochloromethane                    | ND             | ug/L        | 200                | 40       |               | 03/02/16 14:4  |               |      |
| Dibromomethane                          | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  |               |      |
| Dichlorodifluoromethane                 | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  |               |      |
| Dichlorofluoromethane                   | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:41 | T 75-43-4     |      |
| Diethyl ether (Ethyl ether)             | ND             | ug/L        | 200                | 40       |               | 03/02/16 14:41 | l 60-29-7     |      |
| Ethylbenzene                            | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  | I 100-41-4    |      |
| Hexachloro-1,3-butadiene                | ND             | ug/L        | 200                | 40       |               | 03/02/16 14:4  | 87-68-3       |      |
| Isopropylbenzene (Cumene)               | ND             | ug/L        | 40.0               | 40       |               | 03/02/16 14:4  | l 98-82-8     |      |





Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: DPE-2             | Lab ID: 103     | 39705002    | Collected: 02/23/1 | 6 16:40 | Received: 02/25/16 10:: | 25 Matrix: Water |     |
|---------------------------|-----------------|-------------|--------------------|---------|-------------------------|------------------|-----|
| Parameters                | Results         | Units       | Report Limit       | DF      | Prepared Analyz         | zed CAS No.      | Qua |
| 8260 MSV                  | Analytical Meth | nod: EPA 82 | 260                |         |                         |                  |     |
| Methyl-tert-butyl ether   | ND              | ug/L        | 40.0               | 40      | 03/02/16                | 14:41 1634-04-4  |     |
| Methylene Chloride        | ND              | ug/L        | 40.0               | 40      | 03/02/16                | 14:41 75-09-2    |     |
| Naphthalene               | ND              | ug/L        | 200                | 40      | 03/02/16                | 14:41 91-20-3    |     |
| Styrene                   | ND              | ug/L        | 40.0               | 40      | 03/02/16                | 14:41 100-42-5   |     |
| Tetrachloroethene         | 4230            | ug/L        | 40.0               | 40      | 03/02/16                | 14:41 127-18-4   |     |
| Tetrahydrofuran           | ND              | ug/L        | 200                | 40      | 03/02/16                | 14:41 109-99-9   |     |
| Toluene                   | ND              | ug/L        | 40.0               | 40      | 03/02/16                | 14:41 108-88-3   |     |
| Trichloroethene           | ND              | ug/L        | 40.0               | 40      | 03/02/16                | 14:41 79-01-6    |     |
| Trichlorofluoromethane    | ND              | ug/L        | 40.0               | 40      | 03/02/16                | 14:41 75-69-4    |     |
| Vinyl chloride            | ND              | ug/L        | 40.0               | 40      | 03/02/16                | 14:41 75-01-4    |     |
| Xylene (Total)            | ND              | ug/L        | 120                | 40      | 03/02/16                | 14:41 1330-20-7  |     |
| cis-1,2-Dichloroethene    | ND              | ug/L        | 40.0               | 40      | 03/02/16                | 14:41 156-59-2   |     |
| cis-1,3-Dichloropropene   | ND              | ug/L        | 200                | 40      | 03/02/16                | 14:41 10061-01-5 |     |
| n-Butylbenzene            | ND              | ug/L        | 40.0               | 40      | 03/02/16                | 14:41 104-51-8   |     |
| n-Propylbenzene           | ND              | ug/L        | 40.0               | 40      | 03/02/16                | 14:41 103-65-1   |     |
| p-Isopropyltoluene        | ND              | ug/L        | 40.0               | 40      | 03/02/16                | 14:41 99-87-6    |     |
| sec-Butylbenzene          | ND              | ug/L        | 200                | 40      | 03/02/16                | 14:41 135-98-8   |     |
| tert-Butylbenzene         | ND              | ug/L        | 40.0               | 40      | 03/02/16                | 14:41 98-06-6    |     |
| trans-1,2-Dichloroethene  | ND              | ug/L        | 40.0               | 40      | 03/02/16                | 14:41 156-60-5   |     |
| trans-1,3-Dichloropropene | ND              | ug/L        | 800                | 40      | 03/02/16                | 14:41 10061-02-6 |     |
| Surrogates                |                 |             |                    |         |                         |                  |     |
| 4-Bromofluorobenzene (S)  | 96              | %           | 70-130             | 40      | 03/02/16                | 14:41 460-00-4   |     |
| Dibromofluoromethane (S)  | 109             | %           | 70-130             | 40      | 03/02/16                | 14:41 1868-53-7  |     |
| Toluene-d8 (S)            | 96              | %           | 70-130             | 40      | 03/02/16                | 14:41 2037-26-5  |     |



### **ANALYTICAL RESULTS**

Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: DPE-3                  | Lab ID: 103    | 339705003   | Collected: 02/23/1 | 16 16:55 | Received: | 02/25/16 10:25 | Matrix: Water |     |
|--------------------------------|----------------|-------------|--------------------|----------|-----------|----------------|---------------|-----|
| Parameters                     | Results        | Units       | Report Limit       | DF       | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260 MSV                       | Analytical Met | hod: EPA 82 | 260                |          |           |                |               |     |
| 1,1,1,2-Tetrachloroethane      | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  | 3 630-20-6    |     |
| 1,1,1-Trichloroethane          | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  | 3 71-55-6     |     |
| 1,1,2,2-Tetrachloroethane      | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  | 3 79-34-5     |     |
| 1,1,2-Trichloroethane          | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  | 3 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane | ND             | ug/L        | 1000               | 200      |           | 03/02/16 15:0  | 3 76-13-1     |     |
| 1,1-Dichloroethane             | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  | 3 75-34-3     |     |
| 1,1-Dichloroethene             | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  | 3 75-35-4     |     |
| 1,1-Dichloropropene            | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  | 3 563-58-6    |     |
| 1,2,3-Trichlorobenzene         | ND             | ug/L        | 1000               | 200      |           | 03/02/16 15:0  | 3 87-61-6     |     |
| 1,2,3-Trichloropropane         | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  |               |     |
| 1,2,4-Trichlorobenzene         | ND             | ug/L        | 1000               | 200      |           | 03/02/16 15:0  |               |     |
| 1,2,4-Trimethylbenzene         | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  |               |     |
| 1,2-Dibromo-3-chloropropane    | ND             | ug/L        | 1000               | 200      |           | 03/02/16 15:0  |               |     |
| 1,2-Dibromoethane (EDB)        | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  |               |     |
| 1,2-Dichlorobenzene            | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  |               |     |
| 1,2-Dichloroethane             | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  |               |     |
| 1,2-Dichloropropane            | ND<br>ND       | ug/L        | 200                | 200      |           | 03/02/16 15:0  |               |     |
| 1,3,5-Trimethylbenzene         | ND<br>ND       | ug/L        | 200                | 200      |           | 03/02/16 15:0  |               |     |
| 1,3-Dichlorobenzene            | ND<br>ND       |             | 200                | 200      |           | 03/02/16 15:0  |               |     |
|                                |                | ug/L        | 200                | 200      |           |                |               |     |
| 1,3-Dichloropropane            | ND             | ug/L        |                    |          |           | 03/02/16 15:0  |               |     |
| 1,4-Dichlorobenzene            | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  |               |     |
| 2,2-Dichloropropane            | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  |               |     |
| 2-Butanone (MEK)               | ND             | ug/L        | 4000               | 200      |           | 03/02/16 15:0  |               |     |
| 2-Chlorotoluene                | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  |               |     |
| 1-Chlorotoluene                | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  |               |     |
| 4-Methyl-2-pentanone (MIBK)    | ND             | ug/L        | 4000               | 200      |           | 03/02/16 15:0  |               |     |
| Acetone                        | ND             | ug/L        | 4000               | 200      |           | 03/02/16 15:0  |               |     |
| Allyl chloride                 | ND             | ug/L        | 1000               | 200      |           | 03/02/16 15:0  |               |     |
| Benzene                        | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  |               |     |
| Bromobenzene                   | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  |               |     |
| Bromochloromethane             | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  |               |     |
| Bromodichloromethane           | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  |               |     |
| Bromoform                      | ND             | ug/L        | 1000               | 200      |           | 03/02/16 15:0  |               |     |
| Bromomethane                   | ND             | ug/L        | 1000               | 200      |           | 03/02/16 15:0  | 3 74-83-9     |     |
| Carbon tetrachloride           | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  | 3 56-23-5     |     |
| Chlorobenzene                  | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  | 3 108-90-7    |     |
| Chloroethane                   | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  | 3 75-00-3     |     |
| Chloroform                     | ND             | ug/L        | 1000               | 200      |           | 03/02/16 15:0  | 3 67-66-3     |     |
| Chloromethane                  | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  | 3 74-87-3     |     |
| Dibromochloromethane           | ND             | ug/L        | 1000               | 200      |           | 03/02/16 15:0  | 3 124-48-1    |     |
| Dibromomethane                 | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  | 3 74-95-3     |     |
| Dichlorodifluoromethane        | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  | 3 75-71-8     |     |
| Dichlorofluoromethane          | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  | 3 75-43-4     |     |
| Diethyl ether (Ethyl ether)    | ND             | ug/L        | 1000               | 200      |           | 03/02/16 15:0  | 3 60-29-7     |     |
| Ethylbenzene                   | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  |               |     |
| Hexachloro-1,3-butadiene       | ND             | ug/L        | 1000               | 200      |           | 03/02/16 15:0  |               |     |
| sopropylbenzene (Cumene)       | ND             | ug/L        | 200                | 200      |           | 03/02/16 15:0  |               |     |





Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: DPE-3                         | Lab ID: 103     | 39705003    | Collected: 02/23/1 | 16 16:55 | Received: 0 | 2/25/16 10:25 N | latrix: Water |     |
|---------------------------------------|-----------------|-------------|--------------------|----------|-------------|-----------------|---------------|-----|
| Parameters                            | Results         | Units       | Report Limit       | DF       | Prepared    | Analyzed        | CAS No.       | Qua |
| 8260 MSV                              | Analytical Meth | nod: EPA 82 | 60                 |          |             |                 |               |     |
| Methyl-tert-butyl ether               | ND              | ug/L        | 200                | 200      |             | 03/02/16 15:03  | 1634-04-4     |     |
| Methylene Chloride                    | ND              | ug/L        | 200                | 200      |             | 03/02/16 15:03  | 75-09-2       |     |
| Naphthalene                           | ND              | ug/L        | 1000               | 200      |             | 03/02/16 15:03  | 91-20-3       |     |
| Styrene                               | ND              | ug/L        | 200                | 200      |             | 03/02/16 15:03  | 100-42-5      |     |
| Tetrachloroethene                     | 19600           | ug/L        | 200                | 200      |             | 03/02/16 15:03  | 127-18-4      |     |
| Tetrahydrofuran                       | ND              | ug/L        | 1000               | 200      |             | 03/02/16 15:03  | 109-99-9      |     |
| Toluene                               | ND              | ug/L        | 200                | 200      |             | 03/02/16 15:03  | 108-88-3      |     |
| Trichloroethene                       | ND              | ug/L        | 200                | 200      |             | 03/02/16 15:03  | 79-01-6       |     |
| Trichlorofluoromethane                | ND              | ug/L        | 200                | 200      |             | 03/02/16 15:03  | 75-69-4       |     |
| Vinyl chloride                        | ND              | ug/L        | 200                | 200      |             | 03/02/16 15:03  | 75-01-4       |     |
| Xylene (Total)                        | ND              | ug/L        | 600                | 200      |             | 03/02/16 15:03  | 1330-20-7     |     |
| cis-1,2-Dichloroethene                | ND              | ug/L        | 200                | 200      |             | 03/02/16 15:03  | 156-59-2      |     |
| cis-1,3-Dichloropropene               | ND              | ug/L        | 1000               | 200      |             | 03/02/16 15:03  | 10061-01-5    |     |
| n-Butylbenzene                        | ND              | ug/L        | 200                | 200      |             | 03/02/16 15:03  | 104-51-8      |     |
| n-Propylbenzene                       | ND              | ug/L        | 200                | 200      |             | 03/02/16 15:03  | 103-65-1      |     |
| p-Isopropyltoluene                    | ND              | ug/L        | 200                | 200      |             | 03/02/16 15:03  | 99-87-6       |     |
| sec-Butylbenzene                      | ND              | ug/L        | 1000               | 200      |             | 03/02/16 15:03  | 135-98-8      |     |
| tert-Butylbenzene                     | ND              | ug/L        | 200                | 200      |             | 03/02/16 15:03  | 98-06-6       |     |
| trans-1,2-Dichloroethene              | ND              | ug/L        | 200                | 200      |             | 03/02/16 15:03  | 156-60-5      |     |
| trans-1,3-Dichloropropene  Surrogates | ND              | ug/L        | 4000               | 200      |             | 03/02/16 15:03  | 10061-02-6    |     |
| 4-Bromofluorobenzene (S)              | 91              | %           | 70-130             | 200      |             | 03/02/16 15:03  | 460-00-4      |     |
| Dibromofluoromethane (S)              | 108             | %           | 70-130             | 200      |             | 03/02/16 15:03  | 1868-53-7     |     |
| Toluene-d8 (S)                        | 96              | %           | 70-130             | 200      |             | 03/02/16 15:03  | 2037-26-5     |     |



## **ANALYTICAL RESULTS**

Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: DPE-4                  | Lab ID: 103    | 39705004     | Collected: 02/23/1 | 6 16:25  | Received: | 02/25/16 10:25 | Matrix: Water |     |
|--------------------------------|----------------|--------------|--------------------|----------|-----------|----------------|---------------|-----|
| Parameters                     | Results        | Units        | Report Limit       | DF       | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260 MSV                       | Analytical Met | hod: EPA 82  | 260                |          |           |                |               |     |
| 1,1,1,2-Tetrachloroethane      | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  | 9 630-20-6    |     |
| 1,1,1-Trichloroethane          | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  | 9 71-55-6     |     |
| 1,1,2,2-Tetrachloroethane      | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  | 9 79-34-5     |     |
| 1,1,2-Trichloroethane          | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  | 9 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane | 484            | ug/L         | 250                | 50       |           | 03/03/16 08:1  | 9 76-13-1     |     |
| 1,1-Dichloroethane             | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  | 9 75-34-3     |     |
| 1,1-Dichloroethene             | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  | 9 75-35-4     |     |
| 1,1-Dichloropropene            | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  | 9 563-58-6    |     |
| 1,2,3-Trichlorobenzene         | ND             | ug/L         | 250                | 50       |           | 03/03/16 08:1  | 9 87-61-6     |     |
| 1,2,3-Trichloropropane         | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  |               |     |
| 1,2,4-Trichlorobenzene         | ND             | ug/L         | 250                | 50       |           | 03/03/16 08:1  |               |     |
| 1,2,4-Trimethylbenzene         | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  |               |     |
| 1,2-Dibromo-3-chloropropane    | ND             | ug/L         | 250                | 50       |           | 03/03/16 08:1  |               |     |
| 1,2-Dibromoethane (EDB)        | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  |               |     |
| 1,2-Dichlorobenzene            | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  |               |     |
| 1,2-Dichloroethane             | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  |               |     |
| 1,2-Dichloropropane            | ND<br>ND       | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  |               |     |
| 1,3,5-Trimethylbenzene         | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  |               |     |
| ,3-Dichlorobenzene             | ND<br>ND       | ug/L<br>ug/L | 50.0               | 50       |           | 03/03/16 08:1  |               |     |
|                                | ND<br>ND       | _            | 50.0               | 50       |           | 03/03/16 08:1  |               |     |
| 1,3-Dichloropropane            |                | ug/L         |                    |          |           |                |               |     |
| ,4-Dichlorobenzene             | ND             | ug/L         | 50.0               | 50<br>50 |           | 03/03/16 08:1  |               |     |
| 2,2-Dichloropropane            | ND             | ug/L         | 50.0               |          |           | 03/03/16 08:1  |               |     |
| 2-Butanone (MEK)               | ND             | ug/L         | 1000               | 50       |           | 03/03/16 08:1  |               |     |
| 2-Chlorotoluene                | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  |               |     |
| 4-Chlorotoluene                | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  |               |     |
| 4-Methyl-2-pentanone (MIBK)    | ND             | ug/L         | 1000               | 50       |           | 03/03/16 08:1  |               |     |
| Acetone                        | ND             | ug/L         | 1000               | 50       |           | 03/03/16 08:1  |               |     |
| Allyl chloride                 | ND             | ug/L         | 250                | 50       |           | 03/03/16 08:1  |               |     |
| Benzene                        | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  |               |     |
| Bromobenzene                   | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  |               |     |
| Bromochloromethane             | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  |               |     |
| Bromodichloromethane           | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  |               |     |
| Bromoform                      | ND             | ug/L         | 250                | 50       |           | 03/03/16 08:1  |               |     |
| Bromomethane                   | ND             | ug/L         | 250                | 50       |           | 03/03/16 08:1  | 9 74-83-9     |     |
| Carbon tetrachloride           | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  | 9 56-23-5     |     |
| Chlorobenzene                  | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  | 9 108-90-7    |     |
| Chloroethane                   | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  | 9 75-00-3     |     |
| Chloroform                     | ND             | ug/L         | 250                | 50       |           | 03/03/16 08:1  | 9 67-66-3     |     |
| Chloromethane                  | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  | 9 74-87-3     |     |
| Dibromochloromethane           | ND             | ug/L         | 250                | 50       |           | 03/03/16 08:1  | 9 124-48-1    |     |
| Dibromomethane                 | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  | 9 74-95-3     |     |
| Dichlorodifluoromethane        | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  | 9 75-71-8     |     |
| Dichlorofluoromethane          | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  | 9 75-43-4     |     |
| Diethyl ether (Ethyl ether)    | ND             | ug/L         | 250                | 50       |           | 03/03/16 08:1  | 9 60-29-7     |     |
| Ethylbenzene                   | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  |               |     |
| Hexachloro-1,3-butadiene       | ND             | ug/L         | 250                | 50       |           | 03/03/16 08:1  |               |     |
| sopropylbenzene (Cumene)       | ND             | ug/L         | 50.0               | 50       |           | 03/03/16 08:1  |               |     |



Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: DPE-4             | Lab ID: 1033    | 39705004   | Collected: 02/23/1 | 6 16:25 | Received: 0 | 2/25/16 10:25 N | Matrix: Water | ·    |
|---------------------------|-----------------|------------|--------------------|---------|-------------|-----------------|---------------|------|
| Parameters                | Results         | Units      | Report Limit       | DF      | Prepared    | Analyzed        | CAS No.       | Qual |
| 8260 MSV                  | Analytical Meth | od: EPA 82 | 260                |         |             |                 |               |      |
| Methyl-tert-butyl ether   | ND              | ug/L       | 50.0               | 50      |             | 03/03/16 08:19  | 1634-04-4     |      |
| Methylene Chloride        | ND              | ug/L       | 50.0               | 50      |             | 03/03/16 08:19  | 75-09-2       |      |
| Naphthalene               | ND              | ug/L       | 250                | 50      |             | 03/03/16 08:19  | 91-20-3       |      |
| Styrene                   | ND              | ug/L       | 50.0               | 50      |             | 03/03/16 08:19  | 100-42-5      |      |
| Tetrachloroethene         | 6170            | ug/L       | 50.0               | 50      |             | 03/03/16 08:19  | 127-18-4      |      |
| Tetrahydrofuran           | ND              | ug/L       | 250                | 50      |             | 03/03/16 08:19  | 109-99-9      |      |
| Toluene                   | ND              | ug/L       | 50.0               | 50      |             | 03/03/16 08:19  | 108-88-3      |      |
| Trichloroethene           | ND              | ug/L       | 50.0               | 50      |             | 03/03/16 08:19  | 79-01-6       |      |
| Trichlorofluoromethane    | ND              | ug/L       | 50.0               | 50      |             | 03/03/16 08:19  | 75-69-4       |      |
| Vinyl chloride            | ND              | ug/L       | 50.0               | 50      |             | 03/03/16 08:19  | 75-01-4       |      |
| Xylene (Total)            | ND              | ug/L       | 150                | 50      |             | 03/03/16 08:19  | 1330-20-7     |      |
| cis-1,2-Dichloroethene    | ND              | ug/L       | 50.0               | 50      |             | 03/03/16 08:19  | 156-59-2      |      |
| cis-1,3-Dichloropropene   | ND              | ug/L       | 250                | 50      |             | 03/03/16 08:19  | 10061-01-5    |      |
| n-Butylbenzene            | ND              | ug/L       | 50.0               | 50      |             | 03/03/16 08:19  | 104-51-8      |      |
| n-Propylbenzene           | ND              | ug/L       | 50.0               | 50      |             | 03/03/16 08:19  | 103-65-1      |      |
| p-Isopropyltoluene        | ND              | ug/L       | 50.0               | 50      |             | 03/03/16 08:19  | 99-87-6       |      |
| sec-Butylbenzene          | ND              | ug/L       | 250                | 50      |             | 03/03/16 08:19  | 135-98-8      |      |
| tert-Butylbenzene         | ND              | ug/L       | 50.0               | 50      |             | 03/03/16 08:19  | 98-06-6       |      |
| trans-1,2-Dichloroethene  | ND              | ug/L       | 50.0               | 50      |             | 03/03/16 08:19  | 156-60-5      |      |
| trans-1,3-Dichloropropene | ND              | ug/L       | 1000               | 50      |             | 03/03/16 08:19  | 10061-02-6    |      |
| Surrogates                |                 |            |                    |         |             |                 |               |      |
| 4-Bromofluorobenzene (S)  | 89              | %          | 70-130             | 50      |             | 03/03/16 08:19  | 460-00-4      |      |
| Dibromofluoromethane (S)  | 105             | %          | 70-130             | 50      |             | 03/03/16 08:19  | 1868-53-7     |      |
| Toluene-d8 (S)            | 98              | %          | 70-130             | 50      |             | 03/03/16 08:19  | 2037-26-5     |      |



## **ANALYTICAL RESULTS**

Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: DPE-5                  | Lab ID: 103    | 39705005     | Collected: 02/23/1 | 16 15:35 | Received: | 02/25/16 10:25 | Matrix: Water |     |
|--------------------------------|----------------|--------------|--------------------|----------|-----------|----------------|---------------|-----|
| Parameters                     | Results        | Units        | Report Limit       | DF       | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260 MSV                       | Analytical Met | hod: EPA 82  | 260                |          |           |                |               |     |
| 1,1,1,2-Tetrachloroethane      | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  | 1 630-20-6    |     |
| 1,1,1-Trichloroethane          | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  | 1 71-55-6     |     |
| 1,1,2,2-Tetrachloroethane      | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  | 1 79-34-5     |     |
| 1,1,2-Trichloroethane          | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  | 1 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane | ND             | ug/L         | 10.0               | 2        |           | 03/02/16 17:4  | 1 76-13-1     |     |
| 1,1-Dichloroethane             | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  | 1 75-34-3     |     |
| 1,1-Dichloroethene             | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  | 1 75-35-4     |     |
| 1,1-Dichloropropene            | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  | 1 563-58-6    |     |
| 1,2,3-Trichlorobenzene         | ND             | ug/L         | 10.0               | 2        |           | 03/02/16 17:4  | 1 87-61-6     |     |
| 1,2,3-Trichloropropane         | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  |               |     |
| 1,2,4-Trichlorobenzene         | ND             | ug/L         | 10.0               | 2        |           | 03/02/16 17:4  |               |     |
| 1,2,4-Trimethylbenzene         | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  |               |     |
| 1,2-Dibromo-3-chloropropane    | ND             | ug/L         | 10.0               | 2        |           | 03/02/16 17:4  |               |     |
| 1,2-Dibromoethane (EDB)        | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  |               |     |
| 1,2-Dichlorobenzene            | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  |               |     |
| 1,2-Dichloroethane             | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  |               |     |
| 1,2-Dichloropropane            | ND<br>ND       | ug/L<br>ug/L | 2.0                | 2        |           | 03/02/16 17:4  |               |     |
| 1,3,5-Trimethylbenzene         | ND<br>ND       | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  |               |     |
| 1,3-Dichlorobenzene            | ND<br>ND       |              | 2.0                | 2        |           | 03/02/16 17:4  |               |     |
|                                |                | ug/L         | 2.0                |          |           |                |               |     |
| 1,3-Dichloropropane            | ND             | ug/L         |                    | 2        |           | 03/02/16 17:4  |               |     |
| 1,4-Dichlorobenzene            | ND             | ug/L         | 2.0<br>2.0         | 2<br>2   |           | 03/02/16 17:4  |               |     |
| 2,2-Dichloropropane            | ND             | ug/L         |                    |          |           | 03/02/16 17:4  |               |     |
| 2-Butanone (MEK)               | ND             | ug/L         | 40.0               | 2        |           | 03/02/16 17:4  |               |     |
| 2-Chlorotoluene                | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  |               |     |
| 4-Chlorotoluene                | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  |               |     |
| 4-Methyl-2-pentanone (MIBK)    | ND             | ug/L         | 40.0               | 2        |           | 03/02/16 17:4  |               |     |
| Acetone                        | ND             | ug/L         | 40.0               | 2        |           | 03/02/16 17:4  |               |     |
| Allyl chloride                 | ND             | ug/L         | 10.0               | 2        |           | 03/02/16 17:4  |               |     |
| Benzene                        | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  |               |     |
| Bromobenzene                   | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  |               |     |
| Bromochloromethane             | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  |               |     |
| Bromodichloromethane           | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  |               |     |
| Bromoform                      | ND             | ug/L         | 10.0               | 2        |           | 03/02/16 17:4  |               |     |
| Bromomethane                   | ND             | ug/L         | 10.0               | 2        |           | 03/02/16 17:4  | 1 74-83-9     |     |
| Carbon tetrachloride           | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  | 1 56-23-5     |     |
| Chlorobenzene                  | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  | 1 108-90-7    |     |
| Chloroethane                   | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  | 1 75-00-3     |     |
| Chloroform                     | ND             | ug/L         | 10.0               | 2        |           | 03/02/16 17:4  | 1 67-66-3     |     |
| Chloromethane                  | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  | 1 74-87-3     |     |
| Dibromochloromethane           | ND             | ug/L         | 10.0               | 2        |           | 03/02/16 17:4  | 1 124-48-1    |     |
| Dibromomethane                 | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  | 1 74-95-3     |     |
| Dichlorodifluoromethane        | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  | 1 75-71-8     |     |
| Dichlorofluoromethane          | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  | 1 75-43-4     |     |
| Diethyl ether (Ethyl ether)    | ND             | ug/L         | 10.0               | 2        |           | 03/02/16 17:4  | 1 60-29-7     |     |
| Ethylbenzene                   | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  | 1 100-41-4    |     |
| Hexachloro-1,3-butadiene       | ND             | ug/L         | 10.0               | 2        |           | 03/02/16 17:4  |               |     |
| Isopropylbenzene (Cumene)      | ND             | ug/L         | 2.0                | 2        |           | 03/02/16 17:4  |               |     |





Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: DPE-5             | Lab ID: 103     | 39705005   | Collected: 02/23/1 | 16 15:35 | Received: 02/25/16 10:25 | Matrix: Water  |     |
|---------------------------|-----------------|------------|--------------------|----------|--------------------------|----------------|-----|
| Parameters                | Results         | Units      | Report Limit       | DF       | Prepared Analyzed        | CAS No.        | Qua |
| 8260 MSV                  | Analytical Meth | od: EPA 82 | 260                |          |                          |                |     |
| Methyl-tert-butyl ether   | ND              | ug/L       | 2.0                | 2        | 03/02/16 17              | :41 1634-04-4  |     |
| Methylene Chloride        | ND              | ug/L       | 2.0                | 2        | 03/02/16 17              | :41 75-09-2    |     |
| Naphthalene               | ND              | ug/L       | 10.0               | 2        | 03/02/16 17              | :41 91-20-3    |     |
| Styrene                   | ND              | ug/L       | 2.0                | 2        | 03/02/16 17              | :41 100-42-5   |     |
| Tetrachloroethene         | 148             | ug/L       | 2.0                | 2        | 03/02/16 17              | :41 127-18-4   |     |
| Tetrahydrofuran           | ND              | ug/L       | 10.0               | 2        | 03/02/16 17              | :41 109-99-9   |     |
| Toluene                   | ND              | ug/L       | 2.0                | 2        | 03/02/16 17              | :41 108-88-3   |     |
| Trichloroethene           | ND              | ug/L       | 2.0                | 2        | 03/02/16 17              | :41 79-01-6    |     |
| Trichlorofluoromethane    | ND              | ug/L       | 2.0                | 2        | 03/02/16 17              | :41 75-69-4    |     |
| Vinyl chloride            | ND              | ug/L       | 2.0                | 2        | 03/02/16 17              | :41 75-01-4    |     |
| Xylene (Total)            | ND              | ug/L       | 6.0                | 2        | 03/02/16 17              | :41 1330-20-7  |     |
| cis-1,2-Dichloroethene    | ND              | ug/L       | 2.0                | 2        | 03/02/16 17              | :41 156-59-2   |     |
| cis-1,3-Dichloropropene   | ND              | ug/L       | 10.0               | 2        | 03/02/16 17              | :41 10061-01-5 |     |
| n-Butylbenzene            | ND              | ug/L       | 2.0                | 2        | 03/02/16 17              | :41 104-51-8   |     |
| n-Propylbenzene           | ND              | ug/L       | 2.0                | 2        | 03/02/16 17              | :41 103-65-1   |     |
| p-Isopropyltoluene        | ND              | ug/L       | 2.0                | 2        | 03/02/16 17              | :41 99-87-6    |     |
| sec-Butylbenzene          | ND              | ug/L       | 10.0               | 2        | 03/02/16 17              | :41 135-98-8   |     |
| tert-Butylbenzene         | ND              | ug/L       | 2.0                | 2        | 03/02/16 17              | :41 98-06-6    |     |
| trans-1,2-Dichloroethene  | ND              | ug/L       | 2.0                | 2        | 03/02/16 17              | :41 156-60-5   |     |
| trans-1,3-Dichloropropene | ND              | ug/L       | 40.0               | 2        | 03/02/16 17              | :41 10061-02-6 |     |
| Surrogates                |                 |            |                    |          |                          |                |     |
| 4-Bromofluorobenzene (S)  | 93              | %          | 70-130             | 2        | 03/02/16 17              | :41 460-00-4   |     |
| Dibromofluoromethane (S)  | 109             | %          | 70-130             | 2        | 03/02/16 17              | :41 1868-53-7  |     |
| Toluene-d8 (S)            | 97              | %          | 70-130             | 2        | 03/02/16 17              | :41 2037-26-5  |     |



## **ANALYTICAL RESULTS**

Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: DPE-6                            | Lab ID:      | 10339705006    | Collected: 02/23/1 | 16 15:05 | Received: | 02/25/16 10:25 | Matrix: Water |     |
|------------------------------------------|--------------|----------------|--------------------|----------|-----------|----------------|---------------|-----|
| Parameters                               | Results      | Units          | Report Limit       | DF       | Prepared  | Analyzed       | CAS No.       | Qua |
| 3260 MSV                                 | Analytical N | Method: EPA 82 | 260                |          |           |                |               |     |
| 1,1,1,2-Tetrachloroethane                | ND           | ug/L           | 1.0                | 1        |           | 03/03/16 07:56 | 6 630-20-6    |     |
| 1,1,1-Trichloroethane                    | ND           | ug/L           | 1.0                | 1        |           | 03/03/16 07:56 | 71-55-6       |     |
| 1,1,2,2-Tetrachloroethane                | ND           | ug/L           | 1.0                | 1        |           | 03/03/16 07:56 | 79-34-5       |     |
| 1,1,2-Trichloroethane                    | ND           | ug/L           | 1.0                | 1        |           | 03/03/16 07:56 | 6 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane           | ND           | ug/L           | 5.0                | 1        |           | 03/03/16 07:56 | 6 76-13-1     |     |
| 1,1-Dichloroethane                       | ND           |                | 1.0                | 1        |           | 03/03/16 07:56 | 5 75-34-3     |     |
| 1,1-Dichloroethene                       | ND           | ug/L           | 1.0                | 1        |           | 03/03/16 07:56 | 6 75-35-4     |     |
| 1,1-Dichloropropene                      | ND           |                | 1.0                | 1        |           | 03/03/16 07:56 | 5 563-58-6    |     |
| I,2,3-Trichlorobenzene                   | ND           | •              | 5.0                | 1        |           | 03/03/16 07:56 |               |     |
| 1,2,3-Trichloropropane                   | ND           | •              | 1.0                | 1        |           | 03/03/16 07:56 |               |     |
| 1,2,4-Trichlorobenzene                   | ND           |                | 5.0                | 1        |           | 03/03/16 07:56 |               |     |
| I,2,4-Trimethylbenzene                   | ND           | 9              | 1.0                | 1        |           | 03/03/16 07:56 |               |     |
| I,2-Dibromo-3-chloropropane              | ND           | ū              | 5.0                | 1        |           | 03/03/16 07:56 |               |     |
| I,2-Dibromoethane (EDB)                  | ND           | ū              | 1.0                | 1        |           | 03/03/16 07:56 |               |     |
| ,2-Dichlorobenzene                       | ND           | J              | 1.0                | 1        |           | 03/03/16 07:56 |               |     |
| ,,2-Dichlorobenzene                      | ND           | 0              | 1.0                | 1        |           | 03/03/16 07:56 |               |     |
| •                                        | ND<br>ND     | J              | 1.0                | 1        |           | 03/03/16 07:56 |               |     |
| ,2-Dichloropropane                       |              | J              |                    | 1        |           |                |               |     |
| ,3,5-Trimethylbenzene                    | ND           | •              | 1.0                |          |           | 03/03/16 07:56 |               |     |
| ,3-Dichlorobenzene                       | ND           |                | 1.0                | 1        |           | 03/03/16 07:56 |               |     |
| ,3-Dichloropropane                       | ND           | 0              | 1.0                | 1        |           | 03/03/16 07:56 |               |     |
| ,4-Dichlorobenzene                       | ND           | J              | 1.0                | 1        |           | 03/03/16 07:56 |               |     |
| 2,2-Dichloropropane                      | ND           | J              | 1.0                | 1        |           | 03/03/16 07:56 |               |     |
| 2-Butanone (MEK)                         | ND           | •              | 20.0               | 1        |           | 03/03/16 07:56 |               |     |
| 2-Chlorotoluene                          | ND           | •              | 1.0                | 1        |           | 03/03/16 07:56 |               |     |
| I-Chlorotoluene                          | ND           | 0              | 1.0                | 1        |           | 03/03/16 07:56 |               |     |
| I-Methyl-2-pentanone (MIBK)              | ND           | ū              | 20.0               | 1        |           | 03/03/16 07:56 |               |     |
| Acetone                                  | ND           | 0              | 20.0               | 1        |           | 03/03/16 07:56 |               |     |
| Allyl chloride                           | ND           | •              | 5.0                | 1        |           | 03/03/16 07:56 |               |     |
| Benzene                                  | ND           | ug/L           | 1.0                | 1        |           | 03/03/16 07:56 | 5 71-43-2     |     |
| Bromobenzene                             | ND           | ug/L           | 1.0                | 1        |           | 03/03/16 07:56 | 6 108-86-1    |     |
| Bromochloromethane                       | ND           | ug/L           | 1.0                | 1        |           | 03/03/16 07:56 | 6 74-97-5     |     |
| Bromodichloromethane                     | ND           | ug/L           | 1.0                | 1        |           | 03/03/16 07:56 | 5 75-27-4     |     |
| Bromoform                                | ND           | ug/L           | 5.0                | 1        |           | 03/03/16 07:56 | 6 75-25-2     |     |
| Bromomethane                             | ND           | ug/L           | 5.0                | 1        |           | 03/03/16 07:56 | 6 74-83-9     |     |
| Carbon tetrachloride                     | ND           | ug/L           | 1.0                | 1        |           | 03/03/16 07:56 | 5 56-23-5     |     |
| Chlorobenzene                            | ND           |                | 1.0                | 1        |           | 03/03/16 07:56 | 6 108-90-7    |     |
| Chloroethane                             | ND           | •              | 1.0                | 1        |           | 03/03/16 07:56 | 6 75-00-3     |     |
| Chloroform                               | ND           |                | 5.0                | 1        |           | 03/03/16 07:56 | 6 67-66-3     |     |
| Chloromethane                            | ND           | ū              | 1.0                | 1        |           | 03/03/16 07:56 | 6 74-87-3     |     |
| Dibromochloromethane                     | ND           | J              | 5.0                | 1        |           | 03/03/16 07:56 |               |     |
| Dibromomethane                           | ND           | 0              | 1.0                | 1        |           | 03/03/16 07:56 | -             |     |
| Dichlorodifluoromethane                  | ND           | 9              | 1.0                | 1        |           | 03/03/16 07:56 |               |     |
| Dichlorofluoromethane                    | ND           | ū              | 1.0                | 1        |           | 03/03/16 07:56 |               |     |
| Diethyl ether (Ethyl ether)              | ND           | ū              | 5.0                | 1        |           | 03/03/16 07:56 |               |     |
|                                          | ND<br>ND     | •              | 1.0                | 1        |           | 03/03/16 07:56 |               |     |
| Ethylbenzene<br>Hexachloro-1,3-butadiene |              | J              |                    |          |           |                |               |     |
| nexachioro- i.3-dutadiene                | ND           | ug/L           | 5.0                | 1        |           | 03/03/16 07:56 | o/-08-3       |     |

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: DPE-6             | Lab ID: 103     | 39705006   | Collected: 02/23/1 | 16 15:05 | Received: 02 | /25/16 10:25 N | Natrix: Water |     |
|---------------------------|-----------------|------------|--------------------|----------|--------------|----------------|---------------|-----|
| Parameters                | Results         | Units      | Report Limit       | DF       | Prepared     | Analyzed       | CAS No.       | Qua |
| 8260 MSV                  | Analytical Meth | od: EPA 82 | 260                |          |              |                |               |     |
| Methyl-tert-butyl ether   | ND              | ug/L       | 1.0                | 1        |              | 03/03/16 07:56 | 1634-04-4     |     |
| Methylene Chloride        | ND              | ug/L       | 1.0                | 1        |              | 03/03/16 07:56 | 75-09-2       |     |
| Naphthalene               | ND              | ug/L       | 5.0                | 1        |              | 03/03/16 07:56 | 91-20-3       |     |
| Styrene                   | ND              | ug/L       | 1.0                | 1        |              | 03/03/16 07:56 | 100-42-5      |     |
| Tetrachloroethene         | 5.8             | ug/L       | 1.0                | 1        |              | 03/03/16 07:56 | 127-18-4      |     |
| Tetrahydrofuran           | ND              | ug/L       | 5.0                | 1        |              | 03/03/16 07:56 | 109-99-9      |     |
| Toluene                   | ND              | ug/L       | 1.0                | 1        |              | 03/03/16 07:56 | 108-88-3      |     |
| Trichloroethene           | ND              | ug/L       | 1.0                | 1        |              | 03/03/16 07:56 | 79-01-6       |     |
| Trichlorofluoromethane    | ND              | ug/L       | 1.0                | 1        |              | 03/03/16 07:56 | 75-69-4       |     |
| Vinyl chloride            | ND              | ug/L       | 1.0                | 1        |              | 03/03/16 07:56 | 75-01-4       |     |
| Xylene (Total)            | ND              | ug/L       | 3.0                | 1        |              | 03/03/16 07:56 | 1330-20-7     |     |
| cis-1,2-Dichloroethene    | ND              | ug/L       | 1.0                | 1        |              | 03/03/16 07:56 | 156-59-2      |     |
| cis-1,3-Dichloropropene   | ND              | ug/L       | 5.0                | 1        |              | 03/03/16 07:56 | 10061-01-5    |     |
| n-Butylbenzene            | ND              | ug/L       | 1.0                | 1        |              | 03/03/16 07:56 | 104-51-8      |     |
| n-Propylbenzene           | ND              | ug/L       | 1.0                | 1        |              | 03/03/16 07:56 | 103-65-1      |     |
| p-Isopropyltoluene        | ND              | ug/L       | 1.0                | 1        |              | 03/03/16 07:56 | 99-87-6       |     |
| sec-Butylbenzene          | ND              | ug/L       | 5.0                | 1        |              | 03/03/16 07:56 | 135-98-8      |     |
| tert-Butylbenzene         | ND              | ug/L       | 1.0                | 1        |              | 03/03/16 07:56 | 98-06-6       |     |
| trans-1,2-Dichloroethene  | ND              | ug/L       | 1.0                | 1        |              | 03/03/16 07:56 | 156-60-5      |     |
| trans-1,3-Dichloropropene | ND              | ug/L       | 20.0               | 1        |              | 03/03/16 07:56 | 10061-02-6    |     |
| Surrogates                |                 |            |                    |          |              |                |               |     |
| 4-Bromofluorobenzene (S)  | 88              | %          | 70-130             | 1        |              | 03/03/16 07:56 | 460-00-4      |     |
| Dibromofluoromethane (S)  | 100             | %          | 70-130             | 1        |              | 03/03/16 07:56 | 1868-53-7     |     |
| Toluene-d8 (S)            | 93              | %          | 70-130             | 1        |              | 03/03/16 07:56 | 2037-26-5     |     |



## **ANALYTICAL RESULTS**

Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: DPE-7                  | Lab ID: 103    | 39705007     | Collected: 02/23/1 | 6 13:15 | Received: | 02/25/16 10:25 | Matrix: Water |     |
|--------------------------------|----------------|--------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                     | Results        | Units        | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260 MSV                       | Analytical Met | hod: EPA 82  | 260                |         |           |                |               |     |
| 1,1,1,2-Tetrachloroethane      | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  | 5 630-20-6    |     |
| 1,1,1-Trichloroethane          | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  | 5 71-55-6     |     |
| 1,1,2,2-Tetrachloroethane      | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  | 5 79-34-5     |     |
| 1,1,2-Trichloroethane          | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  | 5 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 19:5  | 5 76-13-1     |     |
| 1,1-Dichloroethane             | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  | 5 75-34-3     |     |
| 1,1-Dichloroethene             | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  | 5 75-35-4     |     |
| 1,1-Dichloropropene            | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  | 5 563-58-6    |     |
| 1,2,3-Trichlorobenzene         | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 19:5  | 5 87-61-6     |     |
| 1,2,3-Trichloropropane         | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  | 5 96-18-4     |     |
| 1,2,4-Trichlorobenzene         | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 19:5  |               |     |
| 1,2,4-Trimethylbenzene         | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  |               |     |
| 1,2-Dibromo-3-chloropropane    | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 19:5  |               |     |
| 1,2-Dibromoethane (EDB)        | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  |               |     |
| 1,2-Dichlorobenzene            | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  |               |     |
| 1,2-Dichlorogenzene            | ND<br>ND       | _            | 1.0                | 1       |           | 03/02/16 19:5  |               |     |
| 1,2-Dichloropropane            | ND<br>ND       | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  |               |     |
|                                | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  |               |     |
| I,3,5-Trimethylbenzene         |                | ug/L         |                    | 1       |           |                |               |     |
| ,3-Dichlorobenzene             | ND             | ug/L         | 1.0                |         |           | 03/02/16 19:5  |               |     |
| 1,3-Dichloropropane            | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  |               |     |
| 1,4-Dichlorobenzene            | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  |               |     |
| 2,2-Dichloropropane            | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  |               |     |
| 2-Butanone (MEK)               | ND             | ug/L         | 20.0               | 1       |           | 03/02/16 19:5  |               |     |
| 2-Chlorotoluene                | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  |               |     |
| 1-Chlorotoluene                | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  |               |     |
| 4-Methyl-2-pentanone (MIBK)    | ND             | ug/L         | 20.0               | 1       |           | 03/02/16 19:5  |               |     |
| Acetone                        | ND             | ug/L         | 20.0               | 1       |           | 03/02/16 19:5  |               |     |
| Allyl chloride                 | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 19:5  |               |     |
| Benzene                        | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  |               |     |
| Bromobenzene                   | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  |               |     |
| Bromochloromethane             | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  | 5 74-97-5     |     |
| Bromodichloromethane           | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  | 5 75-27-4     |     |
| Bromoform                      | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 19:5  | 5 75-25-2     |     |
| Bromomethane                   | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 19:5  | 5 74-83-9     |     |
| Carbon tetrachloride           | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  | 5 56-23-5     |     |
| Chlorobenzene                  | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  | 5 108-90-7    |     |
| Chloroethane                   | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  | 5 75-00-3     |     |
| Chloroform                     | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 19:5  | 5 67-66-3     |     |
| Chloromethane                  | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  | 5 74-87-3     |     |
| Dibromochloromethane           | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 19:5  |               |     |
| Dibromomethane                 | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  |               |     |
| Dichlorodifluoromethane        | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  |               |     |
| Dichlorofluoromethane          | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  |               |     |
| Diethyl ether (Ethyl ether)    | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 19:5  |               |     |
| Ethylbenzene                   | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:5  |               |     |
| Hexachloro-1,3-butadiene       | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 19:5  |               |     |
| sopropylbenzene (Cumene)       | ND<br>ND       | ug/L<br>ug/L | 1.0                | 1       |           | 03/02/16 19:5  |               |     |



Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: DPE-7                                  | Lab ID: 1033    | 39705007    | Collected: 02/23/1 | 6 13:15 | Received: 02 | 2/25/16 10:25 N | latrix: Water |     |
|------------------------------------------------|-----------------|-------------|--------------------|---------|--------------|-----------------|---------------|-----|
| Parameters                                     | Results         | Units       | Report Limit       | DF      | Prepared     | Analyzed        | CAS No.       | Qua |
| 8260 MSV                                       | Analytical Meth | nod: EPA 82 | 60                 |         |              |                 |               |     |
| Methyl-tert-butyl ether                        | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:55  | 1634-04-4     |     |
| Methylene Chloride                             | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:55  | 75-09-2       |     |
| Naphthalene                                    | ND              | ug/L        | 5.0                | 1       |              | 03/02/16 19:55  | 91-20-3       |     |
| Styrene                                        | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:55  | 100-42-5      |     |
| Tetrachloroethene                              | 3.4             | ug/L        | 1.0                | 1       |              | 03/02/16 19:55  | 127-18-4      |     |
| Tetrahydrofuran                                | ND              | ug/L        | 5.0                | 1       |              | 03/02/16 19:55  | 109-99-9      |     |
| Toluene                                        | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:55  | 108-88-3      |     |
| Trichloroethene                                | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:55  | 79-01-6       |     |
| Trichlorofluoromethane                         | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:55  | 75-69-4       |     |
| Vinyl chloride                                 | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:55  | 75-01-4       |     |
| Xylene (Total)                                 | ND              | ug/L        | 3.0                | 1       |              | 03/02/16 19:55  | 1330-20-7     |     |
| cis-1,2-Dichloroethene                         | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:55  | 156-59-2      |     |
| cis-1,3-Dichloropropene                        | ND              | ug/L        | 5.0                | 1       |              | 03/02/16 19:55  | 10061-01-5    |     |
| n-Butylbenzene                                 | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:55  | 104-51-8      |     |
| n-Propylbenzene                                | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:55  | 103-65-1      |     |
| p-Isopropyltoluene                             | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:55  | 99-87-6       |     |
| sec-Butylbenzene                               | ND              | ug/L        | 5.0                | 1       |              | 03/02/16 19:55  | 135-98-8      |     |
| tert-Butylbenzene                              | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:55  | 98-06-6       |     |
| trans-1,2-Dichloroethene                       | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:55  | 156-60-5      |     |
| trans-1,3-Dichloropropene<br><b>Surrogates</b> | ND              | ug/L        | 20.0               | 1       |              | 03/02/16 19:55  | 10061-02-6    |     |
| 4-Bromofluorobenzene (S)                       | 92              | %           | 70-130             | 1       |              | 03/02/16 19:55  | 460-00-4      |     |
| Dibromofluoromethane (S)                       | 109             | %           | 70-130             | 1       |              | 03/02/16 19:55  |               |     |
| Toluene-d8 (S)                                 | 95              | %           | 70-130             | 1       |              | 03/02/16 19:55  |               |     |



## **ANALYTICAL RESULTS**

Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: DPE-8                  | Lab ID: 103    | 39705008     | Collected: 02/23/1 | 16 16:00 | Received: | 02/25/16 10:25 | Matrix: Water |     |
|--------------------------------|----------------|--------------|--------------------|----------|-----------|----------------|---------------|-----|
| Parameters                     | Results        | Units        | Report Limit       | DF       | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260 MSV                       | Analytical Met | hod: EPA 82  | 260                |          |           |                |               |     |
| 1,1,1,2-Tetrachloroethane      | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  | 1 630-20-6    |     |
| 1,1,1-Trichloroethane          | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  | 1 71-55-6     |     |
| 1,1,2,2-Tetrachloroethane      | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  | 1 79-34-5     |     |
| 1,1,2-Trichloroethane          | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  | 1 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane | 39.6           | ug/L         | 25.0               | 5        |           | 03/02/16 16:1  | 1 76-13-1     |     |
| 1,1-Dichloroethane             | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  | 1 75-34-3     |     |
| 1,1-Dichloroethene             | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  | 1 75-35-4     |     |
| 1,1-Dichloropropene            | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  | 1 563-58-6    |     |
| 1,2,3-Trichlorobenzene         | ND             | ug/L         | 25.0               | 5        |           | 03/02/16 16:1  | 1 87-61-6     |     |
| 1,2,3-Trichloropropane         | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  |               |     |
| 1,2,4-Trichlorobenzene         | ND             | ug/L         | 25.0               | 5        |           | 03/02/16 16:1  |               |     |
| 1,2,4-Trimethylbenzene         | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  |               |     |
| 1,2-Dibromo-3-chloropropane    | ND             | ug/L         | 25.0               | 5        |           | 03/02/16 16:1  |               |     |
| 1,2-Dibromoethane (EDB)        | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  |               |     |
| 1,2-Dichlorobenzene            | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  |               |     |
| 1,2-Dichloroethane             | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  |               |     |
| 1,2-Dichloropropane            | ND<br>ND       | ug/L<br>ug/L | 5.0                | 5        |           | 03/02/16 16:1  |               |     |
| 1,3,5-Trimethylbenzene         | ND<br>ND       | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  |               |     |
| 1,3-Dichlorobenzene            | ND<br>ND       |              | 5.0                | 5        |           | 03/02/16 16:1  |               |     |
|                                |                | ug/L         |                    |          |           | 03/02/16 16:1  |               |     |
| 1,3-Dichloropropane            | ND             | ug/L         | 5.0                | 5        |           |                |               |     |
| 1,4-Dichlorobenzene            | ND             | ug/L         | 5.0                | 5<br>5   |           | 03/02/16 16:1  |               |     |
| 2,2-Dichloropropane            | ND             | ug/L         | 5.0                |          |           | 03/02/16 16:1  |               |     |
| 2-Butanone (MEK)               | ND             | ug/L         | 100                | 5        |           | 03/02/16 16:1  |               |     |
| 2-Chlorotoluene                | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  |               |     |
| 4-Chlorotoluene                | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  |               |     |
| 4-Methyl-2-pentanone (MIBK)    | ND             | ug/L         | 100                | 5        |           | 03/02/16 16:1  |               |     |
| Acetone                        | ND             | ug/L         | 100                | 5        |           | 03/02/16 16:1  |               |     |
| Allyl chloride                 | ND             | ug/L         | 25.0               | 5        |           | 03/02/16 16:1  |               |     |
| Benzene                        | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  |               |     |
| Bromobenzene                   | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  |               |     |
| Bromochloromethane             | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  |               |     |
| Bromodichloromethane           | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  | 1 75-27-4     |     |
| Bromoform                      | ND             | ug/L         | 25.0               | 5        |           | 03/02/16 16:1  |               |     |
| Bromomethane                   | ND             | ug/L         | 25.0               | 5        |           | 03/02/16 16:1  | 1 74-83-9     |     |
| Carbon tetrachloride           | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  | 1 56-23-5     |     |
| Chlorobenzene                  | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  | 1 108-90-7    |     |
| Chloroethane                   | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  | 1 75-00-3     |     |
| Chloroform                     | ND             | ug/L         | 25.0               | 5        |           | 03/02/16 16:1  | 1 67-66-3     |     |
| Chloromethane                  | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  | 1 74-87-3     |     |
| Dibromochloromethane           | ND             | ug/L         | 25.0               | 5        |           | 03/02/16 16:1  | 1 124-48-1    |     |
| Dibromomethane                 | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  | 1 74-95-3     |     |
| Dichlorodifluoromethane        | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  |               |     |
| Dichlorofluoromethane          | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  |               |     |
| Diethyl ether (Ethyl ether)    | ND             | ug/L         | 25.0               | 5        |           | 03/02/16 16:1  |               |     |
| Ethylbenzene                   | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  |               |     |
| Hexachloro-1,3-butadiene       | ND             | ug/L         | 25.0               | 5        |           | 03/02/16 16:1  |               |     |
| Isopropylbenzene (Cumene)      | ND             | ug/L         | 5.0                | 5        |           | 03/02/16 16:1  |               |     |





Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: DPE-8                                  | Lab ID: 103     | 39705008    | Collected: 02/23/1 | 16:00 | Received: 02/25/16 10:25 | Matrix: Water |     |
|------------------------------------------------|-----------------|-------------|--------------------|-------|--------------------------|---------------|-----|
| Parameters                                     | Results         | Units       | Report Limit       | DF    | Prepared Analyzed        | CAS No.       | Qua |
| 8260 MSV                                       | Analytical Meth | nod: EPA 82 | 260                |       |                          |               |     |
| Methyl-tert-butyl ether                        | ND              | ug/L        | 5.0                | 5     | 03/02/16 16              | 11 1634-04-4  |     |
| Methylene Chloride                             | ND              | ug/L        | 5.0                | 5     | 03/02/16 16              | 11 75-09-2    |     |
| Naphthalene                                    | ND              | ug/L        | 25.0               | 5     | 03/02/16 16              | 11 91-20-3    |     |
| Styrene                                        | ND              | ug/L        | 5.0                | 5     | 03/02/16 16              | 11 100-42-5   |     |
| Tetrachloroethene                              | 503             | ug/L        | 5.0                | 5     | 03/02/16 16              | 11 127-18-4   |     |
| Tetrahydrofuran                                | ND              | ug/L        | 25.0               | 5     | 03/02/16 16              | 11 109-99-9   |     |
| Toluene                                        | ND              | ug/L        | 5.0                | 5     | 03/02/16 16              | 11 108-88-3   |     |
| Trichloroethene                                | ND              | ug/L        | 5.0                | 5     | 03/02/16 16              | 11 79-01-6    |     |
| Trichlorofluoromethane                         | ND              | ug/L        | 5.0                | 5     | 03/02/16 16              | 11 75-69-4    |     |
| Vinyl chloride                                 | ND              | ug/L        | 5.0                | 5     | 03/02/16 16              | 11 75-01-4    |     |
| Xylene (Total)                                 | ND              | ug/L        | 15.0               | 5     | 03/02/16 16              | 11 1330-20-7  |     |
| cis-1,2-Dichloroethene                         | ND              | ug/L        | 5.0                | 5     | 03/02/16 16              | 11 156-59-2   |     |
| cis-1,3-Dichloropropene                        | ND              | ug/L        | 25.0               | 5     | 03/02/16 16              | 11 10061-01-5 |     |
| n-Butylbenzene                                 | ND              | ug/L        | 5.0                | 5     | 03/02/16 16              | 11 104-51-8   |     |
| n-Propylbenzene                                | ND              | ug/L        | 5.0                | 5     | 03/02/16 16              | 11 103-65-1   |     |
| p-Isopropyltoluene                             | ND              | ug/L        | 5.0                | 5     | 03/02/16 16              | 11 99-87-6    |     |
| sec-Butylbenzene                               | ND              | ug/L        | 25.0               | 5     | 03/02/16 16              | 11 135-98-8   |     |
| tert-Butylbenzene                              | ND              | ug/L        | 5.0                | 5     | 03/02/16 16              | 11 98-06-6    |     |
| trans-1,2-Dichloroethene                       | ND              | ug/L        | 5.0                | 5     | 03/02/16 16              | 11 156-60-5   |     |
| trans-1,3-Dichloropropene<br><b>Surrogates</b> | ND              | ug/L        | 100                | 5     | 03/02/16 16              | 11 10061-02-6 |     |
| 4-Bromofluorobenzene (S)                       | 92              | %           | 70-130             | 5     | 03/02/16 16              | 11 460-00-4   |     |
| Dibromofluoromethane (S)                       | 105             | %           | 70-130             | 5     | 03/02/16 16              | 11 1868-53-7  |     |
| Toluene-d8 (S)                                 | 96              | %           | 70-130             | 5     | 03/02/16 16              | 11 2037-26-5  |     |



## **ANALYTICAL RESULTS**

Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: MW-14                  | Lab ID: 103    | 39705009    | Collected: 02/23/1 | 6 13:40 | Received: | 02/25/16 10:25 | Matrix: Water |     |
|--------------------------------|----------------|-------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                     | Results        | Units       | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260 MSV                       | Analytical Met | hod: EPA 82 | 260                |         |           |                |               |     |
| 1,1,1,2-Tetrachloroethane      | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  | 8 630-20-6    |     |
| 1,1,1-Trichloroethane          | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  | 8 71-55-6     |     |
| 1,1,2,2-Tetrachloroethane      | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  | 8 79-34-5     |     |
| 1,1,2-Trichloroethane          | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  | 8 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane | ND             | ug/L        | 5.0                | 1       |           | 03/02/16 18:4  | 8 76-13-1     |     |
| 1,1-Dichloroethane             | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  | 8 75-34-3     |     |
| 1,1-Dichloroethene             | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  | 8 75-35-4     |     |
| 1,1-Dichloropropene            | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  | 8 563-58-6    |     |
| 1,2,3-Trichlorobenzene         | ND             | ug/L        | 5.0                | 1       |           | 03/02/16 18:4  | 8 87-61-6     |     |
| 1,2,3-Trichloropropane         | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  | 8 96-18-4     |     |
| 1,2,4-Trichlorobenzene         | ND             | ug/L        | 5.0                | 1       |           | 03/02/16 18:4  |               |     |
| 1,2,4-Trimethylbenzene         | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  |               |     |
| 1,2-Dibromo-3-chloropropane    | ND             | ug/L        | 5.0                | 1       |           | 03/02/16 18:4  |               |     |
| 1,2-Dibromoethane (EDB)        | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  |               |     |
| 1,2-Dichlorobenzene            | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  |               |     |
| 1,2-Dichloroethane             | ND<br>ND       | -           | 1.0                | 1       |           | 03/02/16 18:4  |               |     |
| 1,2-Dichloropropane            | ND<br>ND       | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  |               |     |
|                                | ND<br>ND       | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  |               |     |
| 1,3,5-Trimethylbenzene         |                | ug/L        | 1.0                | 1       |           |                |               |     |
| ,3-Dichlorobenzene             | ND             | ug/L        |                    |         |           | 03/02/16 18:4  |               |     |
| ,3-Dichloropropane             | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  |               |     |
| ,4-Dichlorobenzene             | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  |               |     |
| 2,2-Dichloropropane            | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  |               |     |
| 2-Butanone (MEK)               | ND             | ug/L        | 20.0               | 1       |           | 03/02/16 18:4  |               |     |
| 2-Chlorotoluene                | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  |               |     |
| 4-Chlorotoluene                | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  |               |     |
| 4-Methyl-2-pentanone (MIBK)    | ND             | ug/L        | 20.0               | 1       |           | 03/02/16 18:4  |               |     |
| Acetone                        | ND             | ug/L        | 20.0               | 1       |           | 03/02/16 18:4  |               |     |
| Allyl chloride                 | ND             | ug/L        | 5.0                | 1       |           | 03/02/16 18:4  |               |     |
| Benzene                        | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  |               |     |
| Bromobenzene                   | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  | 8 108-86-1    |     |
| Bromochloromethane             | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  |               |     |
| Bromodichloromethane           | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  |               |     |
| Bromoform                      | ND             | ug/L        | 5.0                | 1       |           | 03/02/16 18:4  | 8 75-25-2     |     |
| Bromomethane                   | ND             | ug/L        | 5.0                | 1       |           | 03/02/16 18:4  | 8 74-83-9     |     |
| Carbon tetrachloride           | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  | 8 56-23-5     |     |
| Chlorobenzene                  | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  | 8 108-90-7    |     |
| Chloroethane                   | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  | 8 75-00-3     |     |
| Chloroform                     | ND             | ug/L        | 5.0                | 1       |           | 03/02/16 18:4  | 8 67-66-3     |     |
| Chloromethane                  | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  | 8 74-87-3     |     |
| Dibromochloromethane           | ND             | ug/L        | 5.0                | 1       |           | 03/02/16 18:4  | 8 124-48-1    |     |
| Dibromomethane                 | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  | 8 74-95-3     |     |
| Dichlorodifluoromethane        | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  | 8 75-71-8     |     |
| Dichlorofluoromethane          | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  |               |     |
| Diethyl ether (Ethyl ether)    | ND             | ug/L        | 5.0                | 1       |           | 03/02/16 18:4  |               |     |
| Ethylbenzene                   | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  |               |     |
| Hexachloro-1,3-butadiene       | ND             | ug/L        | 5.0                | 1       |           | 03/02/16 18:4  |               |     |
| sopropylbenzene (Cumene)       | ND             | ug/L        | 1.0                | 1       |           | 03/02/16 18:4  |               |     |





Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: MW-14             | Lab ID: 103     | 39705009    | Collected: 02/23/1 | 6 13:40 | Received: 02/25/16 10:25 | Matrix: Water |     |
|---------------------------|-----------------|-------------|--------------------|---------|--------------------------|---------------|-----|
| Parameters                | Results         | Units       | Report Limit       | DF      | Prepared Analyzed        | CAS No.       | Qua |
| 8260 MSV                  | Analytical Meth | nod: EPA 82 | 260                |         |                          |               |     |
| Methyl-tert-butyl ether   | ND              | ug/L        | 1.0                | 1       | 03/02/16 18:             | 48 1634-04-4  |     |
| Methylene Chloride        | ND              | ug/L        | 1.0                | 1       | 03/02/16 18:             | 48 75-09-2    |     |
| Naphthalene               | ND              | ug/L        | 5.0                | 1       | 03/02/16 18:             | 48 91-20-3    |     |
| Styrene                   | ND              | ug/L        | 1.0                | 1       | 03/02/16 18:             | 48 100-42-5   |     |
| Tetrachloroethene         | 2.8             | ug/L        | 1.0                | 1       | 03/02/16 18:             | 48 127-18-4   |     |
| Tetrahydrofuran           | ND              | ug/L        | 5.0                | 1       | 03/02/16 18:             | 48 109-99-9   |     |
| Toluene                   | ND              | ug/L        | 1.0                | 1       | 03/02/16 18:             | 48 108-88-3   |     |
| Trichloroethene           | ND              | ug/L        | 1.0                | 1       | 03/02/16 18:             | 48 79-01-6    |     |
| Trichlorofluoromethane    | ND              | ug/L        | 1.0                | 1       | 03/02/16 18:             | 48 75-69-4    |     |
| Vinyl chloride            | ND              | ug/L        | 1.0                | 1       | 03/02/16 18:             | 48 75-01-4    |     |
| Xylene (Total)            | ND              | ug/L        | 3.0                | 1       | 03/02/16 18:             | 48 1330-20-7  |     |
| cis-1,2-Dichloroethene    | ND              | ug/L        | 1.0                | 1       | 03/02/16 18:             | 48 156-59-2   |     |
| cis-1,3-Dichloropropene   | ND              | ug/L        | 5.0                | 1       | 03/02/16 18:             | 48 10061-01-5 |     |
| n-Butylbenzene            | ND              | ug/L        | 1.0                | 1       | 03/02/16 18:             | 48 104-51-8   |     |
| n-Propylbenzene           | ND              | ug/L        | 1.0                | 1       | 03/02/16 18:             | 48 103-65-1   |     |
| p-Isopropyltoluene        | ND              | ug/L        | 1.0                | 1       | 03/02/16 18:             | 48 99-87-6    |     |
| sec-Butylbenzene          | ND              | ug/L        | 5.0                | 1       | 03/02/16 18:             | 48 135-98-8   |     |
| tert-Butylbenzene         | ND              | ug/L        | 1.0                | 1       | 03/02/16 18:             | 48 98-06-6    |     |
| trans-1,2-Dichloroethene  | ND              | ug/L        | 1.0                | 1       | 03/02/16 18:             | 48 156-60-5   |     |
| trans-1,3-Dichloropropene | ND              | ug/L        | 20.0               | 1       | 03/02/16 18:             | 48 10061-02-6 |     |
| Surrogates                |                 |             |                    |         |                          |               |     |
| 4-Bromofluorobenzene (S)  | 89              | %           | 70-130             | 1       | 03/02/16 18:             |               |     |
| Dibromofluoromethane (S)  | 106             | %           | 70-130             | 1       |                          | 48 1868-53-7  |     |
| Toluene-d8 (S)            | 87              | %           | 70-130             | 1       | 03/02/16 18:             | 48 2037-26-5  |     |



## **ANALYTICAL RESULTS**

Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: MW-15                  | Lab ID: 103    | 39705010     | Collected: 02/23/1 | 6 13:55 | Received: | 02/25/16 10:25 | Matrix: Water |     |
|--------------------------------|----------------|--------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                     | Results        | Units        | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260 MSV                       | Analytical Met | hod: EPA 82  | 260                |         |           |                |               |     |
| 1,1,1,2-Tetrachloroethane      | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  | 1 630-20-6    |     |
| 1,1,1-Trichloroethane          | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  | 1 71-55-6     |     |
| 1,1,2,2-Tetrachloroethane      | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  | 1 79-34-5     |     |
| 1,1,2-Trichloroethane          | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  | 1 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 19:1  | 1 76-13-1     |     |
| 1,1-Dichloroethane             | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  | 1 75-34-3     |     |
| 1,1-Dichloroethene             | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  | 1 75-35-4     |     |
| 1,1-Dichloropropene            | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  | 1 563-58-6    |     |
| 1,2,3-Trichlorobenzene         | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 19:1  | 1 87-61-6     |     |
| 1,2,3-Trichloropropane         | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  |               |     |
| 1,2,4-Trichlorobenzene         | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 19:1  |               |     |
| 1,2,4-Trimethylbenzene         | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  |               |     |
| 1,2-Dibromo-3-chloropropane    | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 19:1  |               |     |
| 1,2-Dibromoethane (EDB)        | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  |               |     |
| 1,2-Dichlorobenzene            | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  |               |     |
| 1,2-Dichloroethane             | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  |               |     |
| 1,2-Dichloropropane            | ND<br>ND       | ug/L<br>ug/L | 1.0                | 1       |           | 03/02/16 19:1  |               |     |
| 1,3,5-Trimethylbenzene         | ND<br>ND       | ug/L<br>ug/L | 1.0                | 1       |           | 03/02/16 19:1  |               |     |
| •                              | ND<br>ND       |              | 1.0                | 1       |           | 03/02/16 19:1  |               |     |
| 1,3-Dichlorobenzene            |                | ug/L         |                    | 1       |           | 03/02/16 19:1  |               |     |
| 1,3-Dichloropropane            | ND             | ug/L         | 1.0                |         |           |                |               |     |
| 1,4-Dichlorobenzene            | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  |               |     |
| 2,2-Dichloropropane            | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  |               |     |
| 2-Butanone (MEK)               | ND             | ug/L         | 20.0               | 1       |           | 03/02/16 19:1  |               |     |
| 2-Chlorotoluene                | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  |               |     |
| 4-Chlorotoluene                | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  |               |     |
| 4-Methyl-2-pentanone (MIBK)    | ND             | ug/L         | 20.0               | 1       |           | 03/02/16 19:1  |               |     |
| Acetone                        | ND             | ug/L         | 20.0               | 1       |           | 03/02/16 19:1  |               |     |
| Allyl chloride                 | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 19:1  |               |     |
| Benzene                        | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  |               |     |
| Bromobenzene                   | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  |               |     |
| Bromochloromethane             | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  |               |     |
| Bromodichloromethane           | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  | 1 75-27-4     |     |
| Bromoform                      | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 19:1  |               |     |
| Bromomethane                   | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 19:1  | 1 74-83-9     |     |
| Carbon tetrachloride           | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  | 1 56-23-5     |     |
| Chlorobenzene                  | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  | 1 108-90-7    |     |
| Chloroethane                   | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  | 1 75-00-3     |     |
| Chloroform                     | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 19:1  | 1 67-66-3     |     |
| Chloromethane                  | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  | 1 74-87-3     |     |
| Dibromochloromethane           | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 19:1  | 1 124-48-1    |     |
| Dibromomethane                 | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  | 1 74-95-3     |     |
| Dichlorodifluoromethane        | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  |               |     |
| Dichlorofluoromethane          | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  |               |     |
| Diethyl ether (Ethyl ether)    | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 19:1  |               |     |
| Ethylbenzene                   | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  |               |     |
| Hexachloro-1,3-butadiene       | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 19:1  |               |     |
| Isopropylbenzene (Cumene)      | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 19:1  |               |     |



Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: MW-15                         | Lab ID: 103     | 39705010    | Collected: 02/23/1 | 6 13:55 | Received: 02 | 2/25/16 10:25 N | Matrix: Water |     |
|---------------------------------------|-----------------|-------------|--------------------|---------|--------------|-----------------|---------------|-----|
| Parameters                            | Results         | Units       | Report Limit       | DF      | Prepared     | Analyzed        | CAS No.       | Qua |
| 8260 MSV                              | Analytical Meth | nod: EPA 82 | 60                 |         |              |                 |               |     |
| Methyl-tert-butyl ether               | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:11  | 1634-04-4     |     |
| Methylene Chloride                    | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:11  | 75-09-2       |     |
| Naphthalene                           | ND              | ug/L        | 5.0                | 1       |              | 03/02/16 19:11  | 91-20-3       |     |
| Styrene                               | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:11  | 100-42-5      |     |
| Tetrachloroethene                     | 1.1             | ug/L        | 1.0                | 1       |              | 03/02/16 19:11  | 127-18-4      |     |
| Tetrahydrofuran                       | ND              | ug/L        | 5.0                | 1       |              | 03/02/16 19:11  | 109-99-9      |     |
| Toluene                               | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:11  | 108-88-3      |     |
| Trichloroethene                       | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:11  | 79-01-6       |     |
| Trichlorofluoromethane                | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:11  | 75-69-4       |     |
| Vinyl chloride                        | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:11  | 75-01-4       |     |
| Xylene (Total)                        | ND              | ug/L        | 3.0                | 1       |              | 03/02/16 19:11  | 1330-20-7     |     |
| cis-1,2-Dichloroethene                | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:11  | 156-59-2      |     |
| cis-1,3-Dichloropropene               | ND              | ug/L        | 5.0                | 1       |              | 03/02/16 19:11  | 10061-01-5    |     |
| n-Butylbenzene                        | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:11  | 104-51-8      |     |
| n-Propylbenzene                       | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:11  | 103-65-1      |     |
| p-Isopropyltoluene                    | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:11  | 99-87-6       |     |
| sec-Butylbenzene                      | ND              | ug/L        | 5.0                | 1       |              | 03/02/16 19:11  | 135-98-8      |     |
| tert-Butylbenzene                     | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:11  | 98-06-6       |     |
| trans-1,2-Dichloroethene              | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 19:11  | 156-60-5      |     |
| trans-1,3-Dichloropropene  Surrogates | ND              | ug/L        | 20.0               | 1       |              | 03/02/16 19:11  | 10061-02-6    |     |
| 4-Bromofluorobenzene (S)              | 94              | %           | 70-130             | 1       |              | 03/02/16 19:11  | 460-00-4      |     |
| Dibromofluoromethane (S)              | 111             | %           | 70-130             | 1       |              | 03/02/16 19:11  |               |     |
| Toluene-d8 (S)                        | 91              | %           | 70-130             | 1       |              | 03/02/16 19:11  |               |     |





Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: MW-16                     | Lab ID: 10    | 339705011    | Collected: 02/23/1 | 16 15:45 | Received: | 02/25/16 10:25 | Matrix: Water |     |
|-----------------------------------|---------------|--------------|--------------------|----------|-----------|----------------|---------------|-----|
| Parameters                        | Results       | Units        | Report Limit       | DF       | Prepared  | Analyzed       | CAS No.       | Qua |
| 3260 MSV                          | Analytical Me | thod: EPA 82 | 260                |          |           |                |               |     |
| 1,1,1,2-Tetrachloroethane         | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3  | 3 630-20-6    |     |
| 1,1,1-Trichloroethane             | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3  | 3 71-55-6     |     |
| 1,1,2,2-Tetrachloroethane         | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:33 | 3 79-34-5     |     |
| 1,1,2-Trichloroethane             | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:33 | 3 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane    | 38.9          | ug/L         | 25.0               | 5        |           | 03/02/16 16:3  | 3 76-13-1     |     |
| 1,1-Dichloroethane                | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3  | 3 75-34-3     |     |
| 1,1-Dichloroethene                | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3  | 3 75-35-4     |     |
| 1,1-Dichloropropene               | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3  | 3 563-58-6    |     |
| ,2,3-Trichlorobenzene             | ND            | ug/L         | 25.0               | 5        |           | 03/02/16 16:3  | 3 87-61-6     |     |
| 1,2,3-Trichloropropane            | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3  | 3 96-18-4     |     |
| I,2,4-Trichlorobenzene            | ND            | ug/L         | 25.0               | 5        |           | 03/02/16 16:3  | 3 120-82-1    |     |
| ,2,4-Trimethylbenzene             | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3  |               |     |
| I,2-Dibromo-3-chloropropane       | ND            | ug/L         | 25.0               | 5        |           | 03/02/16 16:3  |               |     |
| I,2-Dibromoethane (EDB)           | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3  |               |     |
| ,2-Dichlorobenzene                | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3: |               |     |
| .2-Dichloroethane                 | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3  |               |     |
| ,2-Dichloropropane                | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3  |               |     |
| ,3,5-Trimethylbenzene             | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3  |               |     |
| ,3-Dichlorobenzene                | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3  |               |     |
| ,3-Dichloropropane                | ND<br>ND      | ug/L         | 5.0                | 5        |           | 03/02/16 16:3  |               |     |
| ,4-Dichlorobenzene                | ND<br>ND      | ug/L<br>ug/L | 5.0                | 5        |           | 03/02/16 16:3: |               |     |
| 2,2-Dichloropropane               | ND<br>ND      | -            | 5.0                | 5        |           | 03/02/16 16:3: |               |     |
|                                   | ND<br>ND      | ug/L         | 100                | 5        |           | 03/02/16 16:3  |               |     |
| -Butanone (MEK)<br>-Chlorotoluene | ND<br>ND      | ug/L         | 5.0                | 5<br>5   |           | 03/02/16 16:3  |               |     |
|                                   |               | ug/L         |                    | 5<br>5   |           |                |               |     |
| I-Chlorotoluene                   | ND            | ug/L         | 5.0                | 5<br>5   |           | 03/02/16 16:3  |               |     |
| I-Methyl-2-pentanone (MIBK)       | ND            | ug/L         | 100                | 5<br>5   |           | 03/02/16 16:3  |               |     |
| Acetone                           | ND            | ug/L         | 100                |          |           | 03/02/16 16:3  |               |     |
| Allyl chloride                    | ND            | ug/L         | 25.0               | 5        |           | 03/02/16 16:3: |               |     |
| Benzene                           | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3: |               |     |
| Bromobenzene                      | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3: |               |     |
| Bromochloromethane                | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3: |               |     |
| Bromodichloromethane              | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3: |               |     |
| Bromoform                         | ND            | ug/L         | 25.0               | 5        |           | 03/02/16 16:3: |               |     |
| Bromomethane                      | ND            | ug/L         | 25.0               | 5        |           | 03/02/16 16:3: |               |     |
| Carbon tetrachloride              | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3: |               |     |
| Chlorobenzene                     | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3  |               |     |
| Chloroethane                      | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3  |               |     |
| Chloroform                        | ND            | ug/L         | 25.0               | 5        |           | 03/02/16 16:3  |               |     |
| Chloromethane                     | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3  | 3 74-87-3     |     |
| Dibromochloromethane              | ND            | ug/L         | 25.0               | 5        |           | 03/02/16 16:3  |               |     |
| Dibromomethane                    | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3  |               |     |
| Dichlorodifluoromethane           | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3  |               |     |
| Dichlorofluoromethane             | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3  | 3 75-43-4     |     |
| Diethyl ether (Ethyl ether)       | ND            | ug/L         | 25.0               | 5        |           | 03/02/16 16:3  | 3 60-29-7     |     |
| thylbenzene                       | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3  | 3 100-41-4    |     |
| dexachloro-1,3-butadiene          | ND            | ug/L         | 25.0               | 5        |           | 03/02/16 16:3  | 3 87-68-3     |     |
| sopropylbenzene (Cumene)          | ND            | ug/L         | 5.0                | 5        |           | 03/02/16 16:3  | 3 98-82-8     |     |





Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: MW-16             | Lab ID: 103     | 39705011    | Collected: 02/23/1 | 6 15:45 | Received: 02/25/16 10:25 | Matrix: Water  |     |
|---------------------------|-----------------|-------------|--------------------|---------|--------------------------|----------------|-----|
| Parameters                | Results         | Units       | Report Limit       | DF      | Prepared Analyze         | CAS No.        | Qua |
| 8260 MSV                  | Analytical Meth | nod: EPA 82 | 260                |         |                          |                |     |
| Methyl-tert-butyl ether   | ND              | ug/L        | 5.0                | 5       | 03/02/16 16              | :33 1634-04-4  |     |
| Methylene Chloride        | ND              | ug/L        | 5.0                | 5       | 03/02/16 16              | :33 75-09-2    |     |
| Naphthalene               | ND              | ug/L        | 25.0               | 5       | 03/02/16 16              | :33 91-20-3    |     |
| Styrene                   | ND              | ug/L        | 5.0                | 5       | 03/02/16 16              | :33 100-42-5   |     |
| Tetrachloroethene         | 461             | ug/L        | 5.0                | 5       | 03/02/16 16              | :33 127-18-4   |     |
| Tetrahydrofuran           | ND              | ug/L        | 25.0               | 5       | 03/02/16 16              | :33 109-99-9   |     |
| Toluene                   | ND              | ug/L        | 5.0                | 5       | 03/02/16 16              | :33 108-88-3   |     |
| Trichloroethene           | ND              | ug/L        | 5.0                | 5       | 03/02/16 16              | :33 79-01-6    |     |
| Trichlorofluoromethane    | ND              | ug/L        | 5.0                | 5       | 03/02/16 16              | :33 75-69-4    |     |
| Vinyl chloride            | ND              | ug/L        | 5.0                | 5       | 03/02/16 16              | :33 75-01-4    |     |
| Xylene (Total)            | ND              | ug/L        | 15.0               | 5       | 03/02/16 16              | :33 1330-20-7  |     |
| cis-1,2-Dichloroethene    | ND              | ug/L        | 5.0                | 5       | 03/02/16 16              | :33 156-59-2   |     |
| cis-1,3-Dichloropropene   | ND              | ug/L        | 25.0               | 5       | 03/02/16 16              | :33 10061-01-5 |     |
| n-Butylbenzene            | ND              | ug/L        | 5.0                | 5       | 03/02/16 16              | :33 104-51-8   |     |
| n-Propylbenzene           | ND              | ug/L        | 5.0                | 5       | 03/02/16 16              | :33 103-65-1   |     |
| p-Isopropyltoluene        | ND              | ug/L        | 5.0                | 5       | 03/02/16 16              | :33 99-87-6    |     |
| sec-Butylbenzene          | ND              | ug/L        | 25.0               | 5       | 03/02/16 16              | :33 135-98-8   |     |
| tert-Butylbenzene         | ND              | ug/L        | 5.0                | 5       | 03/02/16 16              | :33 98-06-6    |     |
| trans-1,2-Dichloroethene  | ND              | ug/L        | 5.0                | 5       | 03/02/16 16              | :33 156-60-5   |     |
| trans-1,3-Dichloropropene | ND              | ug/L        | 100                | 5       | 03/02/16 16              | :33 10061-02-6 |     |
| Surrogates                |                 |             |                    |         |                          |                |     |
| 4-Bromofluorobenzene (S)  | 93              | %           | 70-130             | 5       |                          | :33 460-00-4   |     |
| Dibromofluoromethane (S)  | 107             | %           | 70-130             | 5       | 03/02/16 16              |                |     |
| Toluene-d8 (S)            | 91              | %           | 70-130             | 5       | 03/02/16 16              | :33 2037-26-5  |     |





Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: MW-17                  | Lab ID: 1    | 0339705012    | Collected: 02/23/1 | 16 17:35 | Received: | 02/25/16 10:25 | Matrix: Water |     |
|--------------------------------|--------------|---------------|--------------------|----------|-----------|----------------|---------------|-----|
| Parameters                     | Results      | Units         | Report Limit       | DF       | Prepared  | Analyzed       | CAS No.       | Qua |
| 3260 MSV                       | Analytical M | ethod: EPA 82 | 260                |          |           |                |               |     |
| 1,1,1,2-Tetrachloroethane      | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 | 630-20-6      |     |
| 1,1,1-Trichloroethane          | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 | 71-55-6       |     |
| 1,1,2,2-Tetrachloroethane      | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 | 79-34-5       |     |
| 1,1,2-Trichloroethane          | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 | 79-00-5       |     |
| 1,1,2-Trichlorotrifluoroethane | ND           | ug/L          | 50.0               | 10       |           | 03/02/16 16:56 | 6 76-13-1     |     |
| 1,1-Dichloroethane             | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 | 5 75-34-3     |     |
| ,1-Dichloroethene              | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 | 5 75-35-4     |     |
| 1,1-Dichloropropene            | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 | 563-58-6      |     |
| ,2,3-Trichlorobenzene          | ND           | ug/L          | 50.0               | 10       |           | 03/02/16 16:56 |               |     |
| ,2,3-Trichloropropane          | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 |               |     |
| ,2,4-Trichlorobenzene          | ND           | ug/L          | 50.0               | 10       |           | 03/02/16 16:56 |               |     |
| I,2,4-Trimethylbenzene         | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 |               |     |
| ,2-Dibromo-3-chloropropane     | ND           | ug/L          | 50.0               | 10       |           | 03/02/16 16:56 |               |     |
| ,2-Dibromoethane (EDB)         | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 |               |     |
| ,2-Dichlorobenzene             | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 |               |     |
| .2-Dichloroethane              | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 |               |     |
| ,2-Dichloropropane             | ND<br>ND     | -             | 10.0               | 10       |           | 03/02/16 16:56 |               |     |
| • •                            | ND<br>ND     | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 |               |     |
| ,3,5-Trimethylbenzene          |              | ug/L          |                    | 10       |           | 03/02/16 16:56 |               |     |
| ,3-Dichlorobenzene             | ND           | ug/L          | 10.0               |          |           |                |               |     |
| ,3-Dichloropropane             | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 |               |     |
| ,4-Dichlorobenzene             | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 |               |     |
| ,2-Dichloropropane             | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 |               |     |
| -Butanone (MEK)                | ND           | ug/L          | 200                | 10       |           | 03/02/16 16:56 |               |     |
| 2-Chlorotoluene                | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 |               |     |
| -Chlorotoluene                 | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 |               |     |
| -Methyl-2-pentanone (MIBK)     | ND           | ug/L          | 200                | 10       |           | 03/02/16 16:56 |               |     |
| acetone                        | ND           | ug/L          | 200                | 10       |           | 03/02/16 16:56 |               |     |
| allyl chloride                 | ND           | ug/L          | 50.0               | 10       |           | 03/02/16 16:56 |               |     |
| Benzene                        | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 |               |     |
| Bromobenzene                   | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 |               |     |
| Bromochloromethane             | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 | 6 74-97-5     |     |
| Bromodichloromethane           | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 | 6 75-27-4     |     |
| Bromoform                      | ND           | ug/L          | 50.0               | 10       |           | 03/02/16 16:56 | 5 75-25-2     |     |
| Bromomethane                   | ND           | ug/L          | 50.0               | 10       |           | 03/02/16 16:56 | 6 74-83-9     |     |
| Carbon tetrachloride           | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 | 56-23-5       |     |
| Chlorobenzene                  | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 | 108-90-7      |     |
| Chloroethane                   | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 | 75-00-3       |     |
| Chloroform                     | ND           | ug/L          | 50.0               | 10       |           | 03/02/16 16:56 | 67-66-3       |     |
| hloromethane                   | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 | 6 74-87-3     |     |
| ibromochloromethane            | ND           | ug/L          | 50.0               | 10       |           | 03/02/16 16:56 | 6 124-48-1    |     |
| Dibromomethane                 | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 | 74-95-3       |     |
| Dichlorodifluoromethane        | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 |               |     |
| ichlorofluoromethane           | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 |               |     |
| Diethyl ether (Ethyl ether)    | ND           | ug/L          | 50.0               | 10       |           | 03/02/16 16:56 |               |     |
| ithylbenzene                   | ND           | ug/L          | 10.0               | 10       |           | 03/02/16 16:56 |               |     |
| lexachloro-1,3-butadiene       | ND           | ug/L          | 50.0               | 10       |           | 03/02/16 16:56 |               |     |
| sopropylbenzene (Cumene)       | ND<br>ND     | ug/L<br>ug/L  | 10.0               | 10       |           | 03/02/16 16:56 |               |     |



Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: MW-17             | Lab ID: 103     | 39705012    | Collected: 02/23/1 | 6 17:35 | Received: 02/2 | 5/16 10:25 N  | Matrix: Water |     |
|---------------------------|-----------------|-------------|--------------------|---------|----------------|---------------|---------------|-----|
| Parameters                | Results         | Units       | Report Limit       | DF      | Prepared       | Analyzed      | CAS No.       | Qua |
| 8260 MSV                  | Analytical Meth | nod: EPA 82 | 260                |         |                |               |               |     |
| Methyl-tert-butyl ether   | ND              | ug/L        | 10.0               | 10      | 0              | 3/02/16 16:56 | 1634-04-4     |     |
| Methylene Chloride        | ND              | ug/L        | 10.0               | 10      | 0              | 3/02/16 16:56 | 75-09-2       |     |
| Naphthalene               | ND              | ug/L        | 50.0               | 10      | 0              | 3/02/16 16:56 | 91-20-3       |     |
| Styrene                   | ND              | ug/L        | 10.0               | 10      | 0              | 3/02/16 16:56 | 100-42-5      |     |
| Tetrachloroethene         | 877             | ug/L        | 10.0               | 10      | 0              | 3/02/16 16:56 | 127-18-4      |     |
| Tetrahydrofuran           | ND              | ug/L        | 50.0               | 10      | 0              | 3/02/16 16:56 | 109-99-9      |     |
| Toluene                   | ND              | ug/L        | 10.0               | 10      | 0              | 3/02/16 16:56 | 108-88-3      |     |
| Trichloroethene           | ND              | ug/L        | 10.0               | 10      | 0              | 3/02/16 16:56 | 79-01-6       |     |
| Trichlorofluoromethane    | ND              | ug/L        | 10.0               | 10      | 0              | 3/02/16 16:56 | 75-69-4       |     |
| Vinyl chloride            | ND              | ug/L        | 10.0               | 10      | 0              | 3/02/16 16:56 | 75-01-4       |     |
| Xylene (Total)            | ND              | ug/L        | 30.0               | 10      | 0              | 3/02/16 16:56 | 1330-20-7     |     |
| cis-1,2-Dichloroethene    | ND              | ug/L        | 10.0               | 10      | 0              | 3/02/16 16:56 | 156-59-2      |     |
| cis-1,3-Dichloropropene   | ND              | ug/L        | 50.0               | 10      | 0              | 3/02/16 16:56 | 10061-01-5    |     |
| n-Butylbenzene            | ND              | ug/L        | 10.0               | 10      | 0              | 3/02/16 16:56 | 104-51-8      |     |
| n-Propylbenzene           | ND              | ug/L        | 10.0               | 10      | 0              | 3/02/16 16:56 | 103-65-1      |     |
| p-Isopropyltoluene        | ND              | ug/L        | 10.0               | 10      | 0              | 3/02/16 16:56 | 99-87-6       |     |
| sec-Butylbenzene          | ND              | ug/L        | 50.0               | 10      | 0              | 3/02/16 16:56 | 135-98-8      |     |
| tert-Butylbenzene         | ND              | ug/L        | 10.0               | 10      | 0              | 3/02/16 16:56 | 98-06-6       |     |
| trans-1,2-Dichloroethene  | ND              | ug/L        | 10.0               | 10      | 0              | 3/02/16 16:56 | 156-60-5      |     |
| trans-1,3-Dichloropropene | ND              | ug/L        | 200                | 10      | 0              | 3/02/16 16:56 | 10061-02-6    |     |
| Surrogates                |                 | _           |                    |         |                |               |               |     |
| 4-Bromofluorobenzene (S)  | 93              | %           | 70-130             | 10      | 0              | 3/02/16 16:56 | 460-00-4      |     |
| Dibromofluoromethane (S)  | 105             | %           | 70-130             | 10      | 0              | 3/02/16 16:56 | 1868-53-7     |     |
| Toluene-d8 (S)            | 97              | %           | 70-130             | 10      | 0              | 3/02/16 16:56 | 2037-26-5     |     |



## **ANALYTICAL RESULTS**

Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: MW-18                     | Lab ID: 1    | 0339705013     | Collected: 02/23/1 | 16 18:00 | Received: | 02/25/16 10:25 | Matrix: Water |     |
|-----------------------------------|--------------|----------------|--------------------|----------|-----------|----------------|---------------|-----|
| Parameters                        | Results      | Units          | Report Limit       | DF       | Prepared  | Analyzed       | CAS No.       | Qua |
| 3260 MSV                          | Analytical M | lethod: EPA 82 | 260                |          |           |                |               |     |
| 1,1,1,2-Tetrachloroethane         | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  | 8 630-20-6    |     |
| 1,1,1-Trichloroethane             | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  | 8 71-55-6     |     |
| 1,1,2,2-Tetrachloroethane         | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  | 8 79-34-5     |     |
| 1,1,2-Trichloroethane             | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  | 8 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane    | ND           | ug/L           | 25.0               | 5        |           | 03/02/16 17:1  | 8 76-13-1     |     |
| 1,1-Dichloroethane                | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  | 8 75-34-3     |     |
| ,1-Dichloroethene                 | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  | 8 75-35-4     |     |
| 1,1-Dichloropropene               | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  | 8 563-58-6    |     |
| 1,2,3-Trichlorobenzene            | ND           | ug/L           | 25.0               | 5        |           | 03/02/16 17:1  | 8 87-61-6     |     |
| 1,2,3-Trichloropropane            | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  | 8 96-18-4     |     |
| ,2,4-Trichlorobenzene             | ND           | ug/L           | 25.0               | 5        |           | 03/02/16 17:1  | 8 120-82-1    |     |
| ,2,4-Trimethylbenzene             | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  |               |     |
| I,2-Dibromo-3-chloropropane       | ND           | ug/L           | 25.0               | 5        |           | 03/02/16 17:1  |               |     |
| I,2-Dibromoethane (EDB)           | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  |               |     |
| ,2-Dichlorobenzene                | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  |               |     |
| .2-Dichloroethane                 | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  |               |     |
| ,2-Dichloropropane                | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  |               |     |
| ,3,5-Trimethylbenzene             | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  |               |     |
| ,3-Dichlorobenzene                | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  |               |     |
| ,3-Dichloropropane                | ND<br>ND     | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  |               |     |
| ,4-Dichlorobenzene                | ND<br>ND     | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  |               |     |
| 2,2-Dichloropropane               | ND<br>ND     | -              | 5.0                | 5        |           | 03/02/16 17:1  |               |     |
|                                   | ND<br>ND     | ug/L           | 100                | 5        |           | 03/02/16 17:1  |               |     |
| -Butanone (MEK)<br>-Chlorotoluene | ND<br>ND     | ug/L           | 5.0                | 5<br>5   |           | 03/02/16 17:1  |               |     |
|                                   |              | ug/L           |                    | 5        |           |                |               |     |
| I-Chlorotoluene                   | ND           | ug/L           | 5.0                | 5<br>5   |           | 03/02/16 17:1  |               |     |
| I-Methyl-2-pentanone (MIBK)       | ND           | ug/L           | 100                | 5<br>5   |           | 03/02/16 17:1  |               |     |
| Acetone                           | ND           | ug/L           | 100                |          |           | 03/02/16 17:1  |               |     |
| Allyl chloride                    | ND           | ug/L           | 25.0               | 5        |           | 03/02/16 17:1  |               |     |
| Benzene                           | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  |               |     |
| Bromobenzene                      | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  |               |     |
| Bromochloromethane                | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  |               |     |
| Bromodichloromethane              | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  |               |     |
| Bromoform                         | ND           | ug/L           | 25.0               | 5        |           | 03/02/16 17:1  |               |     |
| Bromomethane                      | ND           | ug/L           | 25.0               | 5        |           | 03/02/16 17:1  |               |     |
| Carbon tetrachloride              | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  |               |     |
| Chlorobenzene                     | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  |               |     |
| Chloroethane                      | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  |               |     |
| Chloroform                        | ND           | ug/L           | 25.0               | 5        |           | 03/02/16 17:1  | 8 67-66-3     |     |
| Chloromethane                     | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  | 8 74-87-3     |     |
| Dibromochloromethane              | ND           | ug/L           | 25.0               | 5        |           | 03/02/16 17:1  | 8 124-48-1    |     |
| Dibromomethane                    | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  | 8 74-95-3     |     |
| Dichlorodifluoromethane           | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  | 8 75-71-8     |     |
| Dichlorofluoromethane             | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  | 8 75-43-4     |     |
| Diethyl ether (Ethyl ether)       | ND           | ug/L           | 25.0               | 5        |           | 03/02/16 17:1  | 8 60-29-7     |     |
| Ethylbenzene                      | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  | 8 100-41-4    |     |
| Hexachloro-1,3-butadiene          | ND           | ug/L           | 25.0               | 5        |           | 03/02/16 17:1  | 8 87-68-3     |     |
| sopropylbenzene (Cumene)          | ND           | ug/L           | 5.0                | 5        |           | 03/02/16 17:1  |               |     |





Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: MW-18             | Lab ID: 103     | 39705013    | Collected: 02/23/1 | 6 18:00 | Received: 02 | /25/16 10:25 N | Matrix: Water |     |
|---------------------------|-----------------|-------------|--------------------|---------|--------------|----------------|---------------|-----|
| Parameters                | Results         | Units       | Report Limit       | DF      | Prepared     | Analyzed       | CAS No.       | Qua |
| 8260 MSV                  | Analytical Meth | nod: EPA 82 | 260                |         |              |                |               |     |
| Methyl-tert-butyl ether   | ND              | ug/L        | 5.0                | 5       |              | 03/02/16 17:18 | 1634-04-4     |     |
| Methylene Chloride        | ND              | ug/L        | 5.0                | 5       |              | 03/02/16 17:18 | 75-09-2       |     |
| Naphthalene               | ND              | ug/L        | 25.0               | 5       |              | 03/02/16 17:18 | 91-20-3       |     |
| Styrene                   | ND              | ug/L        | 5.0                | 5       |              | 03/02/16 17:18 | 100-42-5      |     |
| Tetrachloroethene         | 522             | ug/L        | 5.0                | 5       |              | 03/02/16 17:18 | 127-18-4      |     |
| Tetrahydrofuran           | ND              | ug/L        | 25.0               | 5       |              | 03/02/16 17:18 | 109-99-9      |     |
| Toluene                   | ND              | ug/L        | 5.0                | 5       |              | 03/02/16 17:18 | 108-88-3      |     |
| Trichloroethene           | ND              | ug/L        | 5.0                | 5       |              | 03/02/16 17:18 | 79-01-6       |     |
| Trichlorofluoromethane    | ND              | ug/L        | 5.0                | 5       |              | 03/02/16 17:18 | 75-69-4       |     |
| Vinyl chloride            | ND              | ug/L        | 5.0                | 5       |              | 03/02/16 17:18 | 75-01-4       |     |
| Xylene (Total)            | ND              | ug/L        | 15.0               | 5       |              | 03/02/16 17:18 | 1330-20-7     |     |
| cis-1,2-Dichloroethene    | ND              | ug/L        | 5.0                | 5       |              | 03/02/16 17:18 | 156-59-2      |     |
| cis-1,3-Dichloropropene   | ND              | ug/L        | 25.0               | 5       |              | 03/02/16 17:18 | 10061-01-5    |     |
| n-Butylbenzene            | ND              | ug/L        | 5.0                | 5       |              | 03/02/16 17:18 | 104-51-8      |     |
| n-Propylbenzene           | ND              | ug/L        | 5.0                | 5       |              | 03/02/16 17:18 | 103-65-1      |     |
| p-Isopropyltoluene        | ND              | ug/L        | 5.0                | 5       |              | 03/02/16 17:18 | 99-87-6       |     |
| sec-Butylbenzene          | ND              | ug/L        | 25.0               | 5       |              | 03/02/16 17:18 | 135-98-8      |     |
| tert-Butylbenzene         | ND              | ug/L        | 5.0                | 5       |              | 03/02/16 17:18 | 98-06-6       |     |
| trans-1,2-Dichloroethene  | ND              | ug/L        | 5.0                | 5       |              | 03/02/16 17:18 | 156-60-5      |     |
| trans-1,3-Dichloropropene | ND              | ug/L        | 100                | 5       |              | 03/02/16 17:18 | 10061-02-6    |     |
| Surrogates                |                 |             |                    |         |              |                |               |     |
| 4-Bromofluorobenzene (S)  | 92              | %           | 70-130             | 5       |              | 03/02/16 17:18 | 460-00-4      |     |
| Dibromofluoromethane (S)  | 109             | %           | 70-130             | 5       |              | 03/02/16 17:18 | 1868-53-7     |     |
| Toluene-d8 (S)            | 80              | %           | 70-130             | 5       |              | 03/02/16 17:18 | 2037-26-5     |     |





Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: MW-19                  | Lab ID: 1    | 0339705014     | Collected: 02/23/1 | 16 12:50 | Received: | 02/25/16 10:25 | Matrix: Water |     |
|--------------------------------|--------------|----------------|--------------------|----------|-----------|----------------|---------------|-----|
| Parameters                     | Results      | Units          | Report Limit       | DF       | Prepared  | Analyzed       | CAS No.       | Qua |
| 3260 MSV                       | Analytical M | lethod: EPA 82 | 260                |          |           |                |               |     |
| 1,1,1,2-Tetrachloroethane      | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  | 3 630-20-6    |     |
| 1,1,1-Trichloroethane          | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  | 3 71-55-6     |     |
| 1,1,2,2-Tetrachloroethane      | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  | 3 79-34-5     |     |
| 1,1,2-Trichloroethane          | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  | 3 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane | 5.4          | ug/L           | 5.0                | 1        |           | 03/02/16 19:3  | 3 76-13-1     |     |
| I,1-Dichloroethane             | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  | 3 75-34-3     |     |
| ,1-Dichloroethene              | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  | 3 75-35-4     |     |
| 1,1-Dichloropropene            | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  | 3 563-58-6    |     |
| ,2,3-Trichlorobenzene          | ND           | ug/L           | 5.0                | 1        |           | 03/02/16 19:3  | 3 87-61-6     |     |
| ,2,3-Trichloropropane          | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  | 3 96-18-4     |     |
| ,2,4-Trichlorobenzene          | ND           | ug/L           | 5.0                | 1        |           | 03/02/16 19:3  | 3 120-82-1    |     |
| ,2,4-Trimethylbenzene          | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  |               |     |
| ,2-Dibromo-3-chloropropane     | ND           | ug/L           | 5.0                | 1        |           | 03/02/16 19:3  |               |     |
| ,2-Dibromoethane (EDB)         | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  |               |     |
| ,2-Dichlorobenzene             | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  |               |     |
| ,2-Dichloroethane              | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  |               |     |
| ,2-Dichloropropane             | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  |               |     |
| ,3,5-Trimethylbenzene          | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  |               |     |
| ,3-Dichlorobenzene             | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  |               |     |
| ,3-Dichloropropane             | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  |               |     |
| ,4-Dichlorobenzene             | ND<br>ND     |                | 1.0                | 1        |           | 03/02/16 19:3  |               |     |
| -                              | ND<br>ND     | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  |               |     |
| 2,2-Dichloropropane            | ND<br>ND     | ug/L           | 20.0               | 1        |           | 03/02/16 19:3  |               |     |
| -Butanone (MEK)                |              | ug/L           |                    |          |           |                |               |     |
| -Chlorotoluene                 | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3: |               |     |
| -Chlorotoluene                 | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  |               |     |
| I-Methyl-2-pentanone (MIBK)    | ND           | ug/L           | 20.0               | 1        |           | 03/02/16 19:3  |               |     |
| Acetone                        | ND           | ug/L           | 20.0               | 1        |           | 03/02/16 19:3  |               |     |
| allyl chloride                 | ND           | ug/L           | 5.0                | 1        |           | 03/02/16 19:3: |               |     |
| Benzene                        | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  |               |     |
| romobenzene                    | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  |               |     |
| Bromochloromethane             | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  |               |     |
| Bromodichloromethane           | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  |               |     |
| romoform                       | ND           | ug/L           | 5.0                | 1        |           | 03/02/16 19:3  |               |     |
| romomethane                    | ND           | ug/L           | 5.0                | 1        |           | 03/02/16 19:3  |               |     |
| Carbon tetrachloride           | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  |               |     |
| Chlorobenzene                  | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  |               |     |
| Chloroethane                   | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  |               |     |
| Chloroform                     | ND           | ug/L           | 5.0                | 1        |           | 03/02/16 19:3  | 3 67-66-3     |     |
| Chloromethane                  | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  | 3 74-87-3     |     |
| Dibromochloromethane           | ND           | ug/L           | 5.0                | 1        |           | 03/02/16 19:3  | 3 124-48-1    |     |
| Dibromomethane                 | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  | 3 74-95-3     |     |
| Dichlorodifluoromethane        | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  | 3 75-71-8     |     |
| ichlorofluoromethane           | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  | 3 75-43-4     |     |
| Diethyl ether (Ethyl ether)    | ND           | ug/L           | 5.0                | 1        |           | 03/02/16 19:3  | 3 60-29-7     |     |
| thylbenzene                    | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  |               |     |
| lexachloro-1,3-butadiene       | ND           | ug/L           | 5.0                | 1        |           | 03/02/16 19:3  | 3 87-68-3     |     |
| sopropylbenzene (Cumene)       | ND           | ug/L           | 1.0                | 1        |           | 03/02/16 19:3  |               |     |





Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: MW-19                                 | Lab ID: 103     | 39705014   | Collected: 02/23/1 | 6 12:50 | Received: 02 | 2/25/16 10:25 N | Matrix: Water |     |
|-----------------------------------------------|-----------------|------------|--------------------|---------|--------------|-----------------|---------------|-----|
| Parameters                                    | Results         | Units      | Report Limit       | DF      | Prepared     | Analyzed        | CAS No.       | Qua |
| 8260 MSV                                      | Analytical Meth | od: EPA 82 | 260                |         |              |                 |               |     |
| Methyl-tert-butyl ether                       | ND              | ug/L       | 1.0                | 1       |              | 03/02/16 19:33  | 1634-04-4     |     |
| Methylene Chloride                            | ND              | ug/L       | 1.0                | 1       |              | 03/02/16 19:33  | 75-09-2       |     |
| Naphthalene                                   | ND              | ug/L       | 5.0                | 1       |              | 03/02/16 19:33  | 91-20-3       |     |
| Styrene                                       | ND              | ug/L       | 1.0                | 1       |              | 03/02/16 19:33  | 100-42-5      |     |
| Tetrachloroethene                             | 35.4            | ug/L       | 1.0                | 1       |              | 03/02/16 19:33  | 127-18-4      |     |
| Tetrahydrofuran                               | ND              | ug/L       | 5.0                | 1       |              | 03/02/16 19:33  | 109-99-9      |     |
| Toluene                                       | ND              | ug/L       | 1.0                | 1       |              | 03/02/16 19:33  | 108-88-3      |     |
| Trichloroethene                               | ND              | ug/L       | 1.0                | 1       |              | 03/02/16 19:33  | 79-01-6       |     |
| Trichlorofluoromethane                        | ND              | ug/L       | 1.0                | 1       |              | 03/02/16 19:33  | 75-69-4       |     |
| Vinyl chloride                                | ND              | ug/L       | 1.0                | 1       |              | 03/02/16 19:33  | 75-01-4       |     |
| Xylene (Total)                                | ND              | ug/L       | 3.0                | 1       |              | 03/02/16 19:33  | 1330-20-7     |     |
| cis-1,2-Dichloroethene                        | ND              | ug/L       | 1.0                | 1       |              | 03/02/16 19:33  | 156-59-2      |     |
| cis-1,3-Dichloropropene                       | ND              | ug/L       | 5.0                | 1       |              | 03/02/16 19:33  | 10061-01-5    |     |
| n-Butylbenzene                                | ND              | ug/L       | 1.0                | 1       |              | 03/02/16 19:33  | 104-51-8      |     |
| n-Propylbenzene                               | ND              | ug/L       | 1.0                | 1       |              | 03/02/16 19:33  | 103-65-1      |     |
| p-Isopropyltoluene                            | ND              | ug/L       | 1.0                | 1       |              | 03/02/16 19:33  | 99-87-6       |     |
| sec-Butylbenzene                              | ND              | ug/L       | 5.0                | 1       |              | 03/02/16 19:33  | 135-98-8      |     |
| tert-Butylbenzene                             | ND              | ug/L       | 1.0                | 1       |              | 03/02/16 19:33  | 98-06-6       |     |
| trans-1,2-Dichloroethene                      | ND              | ug/L       | 1.0                | 1       |              | 03/02/16 19:33  | 156-60-5      |     |
| trans-1,3-Dichloropropene                     | ND              | ug/L       | 20.0               | 1       |              | 03/02/16 19:33  | 10061-02-6    |     |
| <b>Surrogates</b><br>4-Bromofluorobenzene (S) | 89              | %          | 70-130             | 1       |              | 03/02/16 19:33  | 460-00-4      |     |
| Dibromofluoromethane (S)                      | 105             | %          | 70-130             | 1       |              | 03/02/16 19:33  |               |     |
| Toluene-d8 (S)                                | 97              | %          | 70-130             | 1       |              | 03/02/16 19:33  |               |     |



## **ANALYTICAL RESULTS**

Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: MW-20                         | Lab ID: 103    | 39705015     | Collected: 02/23/1 | 6 15:20 | Received: | 02/25/16 10:25 | Matrix: Water |     |
|---------------------------------------|----------------|--------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                            | Results        | Units        | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260 MSV                              | Analytical Met | hod: EPA 82  | 260                |         |           |                |               |     |
| 1,1,1,2-Tetrachloroethane             | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  | 8 630-20-6    |     |
| 1,1,1-Trichloroethane                 | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  | 8 71-55-6     |     |
| 1,1,2,2-Tetrachloroethane             | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  | 8 79-34-5     |     |
| 1,1,2-Trichloroethane                 | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  | 8 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane        | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 20:1  | 8 76-13-1     |     |
| 1,1-Dichloroethane                    | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  | 8 75-34-3     |     |
| 1,1-Dichloroethene                    | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  | 8 75-35-4     |     |
| 1,1-Dichloropropene                   | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  | 8 563-58-6    |     |
| 1,2,3-Trichlorobenzene                | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 20:1  | 8 87-61-6     |     |
| 1,2,3-Trichloropropane                | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  | 8 96-18-4     |     |
| 1,2,4-Trichlorobenzene                | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 20:1  |               |     |
| 1,2,4-Trimethylbenzene                | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  |               |     |
| I,2-Dibromo-3-chloropropane           | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 20:1  |               |     |
| 1,2-Dibromoethane (EDB)               | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  |               |     |
| 1,2-Dichlorobenzene                   | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  |               |     |
| I.2-Dichloroethane                    | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  |               |     |
| ,2-Dichloropropane                    | ND<br>ND       | ug/L<br>ug/L | 1.0                | 1       |           | 03/02/16 20:1  |               |     |
| ,3,5-Trimethylbenzene                 | ND<br>ND       | ug/L<br>ug/L | 1.0                | 1       |           | 03/02/16 20:1  |               |     |
| · · · · · · · · · · · · · · · · · · · | ND<br>ND       |              | 1.0                | 1       |           | 03/02/16 20:1  |               |     |
| ,3-Dichlorobenzene                    |                | ug/L         |                    | 1       |           |                |               |     |
| ,3-Dichloropropane                    | ND             | ug/L         | 1.0                |         |           | 03/02/16 20:1  |               |     |
| ,4-Dichlorobenzene                    | ND             | ug/L         | 1.0                | 1<br>1  |           | 03/02/16 20:1  |               |     |
| 2,2-Dichloropropane                   | ND             | ug/L         | 1.0                |         |           | 03/02/16 20:1  |               |     |
| 2-Butanone (MEK)                      | ND             | ug/L         | 20.0               | 1       |           | 03/02/16 20:1  |               |     |
| 2-Chlorotoluene                       | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  |               |     |
| 1-Chlorotoluene                       | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  |               |     |
| 4-Methyl-2-pentanone (MIBK)           | ND             | ug/L         | 20.0               | 1       |           | 03/02/16 20:1  |               |     |
| Acetone                               | ND             | ug/L         | 20.0               | 1       |           | 03/02/16 20:1  |               |     |
| Allyl chloride                        | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 20:1  |               |     |
| Benzene                               | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  |               |     |
| Bromobenzene                          | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  |               |     |
| Bromochloromethane                    | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  |               |     |
| Bromodichloromethane                  | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  | 8 75-27-4     |     |
| Bromoform                             | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 20:1  | 8 75-25-2     |     |
| Bromomethane                          | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 20:1  | 8 74-83-9     |     |
| Carbon tetrachloride                  | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  | 8 56-23-5     |     |
| Chlorobenzene                         | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  | 8 108-90-7    |     |
| Chloroethane                          | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  | 8 75-00-3     |     |
| Chloroform                            | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 20:1  | 8 67-66-3     |     |
| Chloromethane                         | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  | 8 74-87-3     |     |
| Dibromochloromethane                  | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 20:1  | 8 124-48-1    |     |
| Dibromomethane                        | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  | 8 74-95-3     |     |
| Dichlorodifluoromethane               | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  | 8 75-71-8     |     |
| Dichlorofluoromethane                 | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  |               |     |
| Diethyl ether (Ethyl ether)           | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 20:1  |               |     |
| Ethylbenzene                          | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  |               |     |
| Hexachloro-1,3-butadiene              | ND             | ug/L         | 5.0                | 1       |           | 03/02/16 20:1  |               |     |
| sopropylbenzene (Cumene)              | ND             | ug/L         | 1.0                | 1       |           | 03/02/16 20:1  |               |     |



Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: MW-20             | Lab ID: 103     | 39705015    | Collected: 02/23/1 | 6 15:20 | Received: 02 | 2/25/16 10:25 N | Matrix: Water |     |
|---------------------------|-----------------|-------------|--------------------|---------|--------------|-----------------|---------------|-----|
| Parameters                | Results         | Units       | Report Limit       | DF      | Prepared     | Analyzed        | CAS No.       | Qua |
| 8260 MSV                  | Analytical Meth | nod: EPA 82 | 260                |         |              |                 |               |     |
| Methyl-tert-butyl ether   | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 20:18  | 1634-04-4     |     |
| Methylene Chloride        | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 20:18  | 75-09-2       |     |
| Naphthalene               | ND              | ug/L        | 5.0                | 1       |              | 03/02/16 20:18  | 91-20-3       |     |
| Styrene                   | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 20:18  | 100-42-5      |     |
| Tetrachloroethene         | 62.0            | ug/L        | 1.0                | 1       |              | 03/02/16 20:18  | 127-18-4      |     |
| Tetrahydrofuran           | ND              | ug/L        | 5.0                | 1       |              | 03/02/16 20:18  | 109-99-9      |     |
| Toluene                   | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 20:18  | 108-88-3      |     |
| Trichloroethene           | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 20:18  | 79-01-6       |     |
| Trichlorofluoromethane    | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 20:18  | 75-69-4       |     |
| Vinyl chloride            | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 20:18  | 75-01-4       |     |
| Xylene (Total)            | ND              | ug/L        | 3.0                | 1       |              | 03/02/16 20:18  | 1330-20-7     |     |
| cis-1,2-Dichloroethene    | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 20:18  | 156-59-2      |     |
| cis-1,3-Dichloropropene   | ND              | ug/L        | 5.0                | 1       |              | 03/02/16 20:18  | 10061-01-5    |     |
| n-Butylbenzene            | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 20:18  | 104-51-8      |     |
| n-Propylbenzene           | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 20:18  | 103-65-1      |     |
| p-Isopropyltoluene        | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 20:18  | 99-87-6       |     |
| sec-Butylbenzene          | ND              | ug/L        | 5.0                | 1       |              | 03/02/16 20:18  | 135-98-8      |     |
| tert-Butylbenzene         | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 20:18  | 98-06-6       |     |
| trans-1,2-Dichloroethene  | ND              | ug/L        | 1.0                | 1       |              | 03/02/16 20:18  | 156-60-5      |     |
| trans-1,3-Dichloropropene | ND              | ug/L        | 20.0               | 1       |              | 03/02/16 20:18  | 10061-02-6    |     |
| Surrogates                | 00              | 0/          | 70.400             | 4       |              | 00/00/40 00 40  | 400 00 4      |     |
| 4-Bromofluorobenzene (S)  | 92              | %           | 70-130             | 1       |              | 03/02/16 20:18  |               |     |
| Dibromofluoromethane (S)  | 113             | %           | 70-130             | 1       |              | 03/02/16 20:18  |               |     |
| Toluene-d8 (S)            | 92              | %           | 70-130             | 1       |              | 03/02/16 20:18  | 2037-26-5     |     |





Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: AS-Influent         | Lab ID: 10    | 339705016    | Collected: 02/24/1 | 16 18:05 | Received: | 02/25/16 10:25                   | Matrix: Water |       |
|-----------------------------|---------------|--------------|--------------------|----------|-----------|----------------------------------|---------------|-------|
| Parameters                  | Results       | Units        | Report Limit       | DF       | Prepared  | Analyzed                         | CAS No.       | Qua   |
| 624 MSV                     | Analytical Me | thod: EPA 62 | 24                 |          |           |                                  |               |       |
| Acetone                     | 112           | ug/L         | 20.0               | 1        |           | 03/01/16 05:38                   | 3 67-64-1     |       |
| Allyl chloride              | ND            | ug/L         | 4.0                | 1        |           | 03/01/16 05:38                   | 3 107-05-1    |       |
| Benzene                     | ND            | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   | 3 71-43-2     |       |
| Bromobenzene                | ND            | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   | 3 108-86-1    |       |
| Bromochloromethane          | ND            | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   | 3 74-97-5     |       |
| Bromodichloromethane        | ND            | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   | 3 75-27-4     |       |
| Bromoform                   | ND            | ug/L         | 4.0                | 1        |           | 03/01/16 05:38                   | 3 75-25-2     |       |
| Bromomethane                | ND            | ug/L         | 4.0                | 1        |           | 03/01/16 05:38                   | 3 74-83-9     |       |
| 2-Butanone (MEK)            | ND            | ug/L         | 5.0                | 1        |           | 03/01/16 05:38                   | 3 78-93-3     |       |
| n-Butylbenzene              | ND            | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   | 3 104-51-8    |       |
| sec-Butylbenzene            | ND            | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   | 3 135-98-8    |       |
| ert-Butylbenzene            | ND            | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   | 3 98-06-6     |       |
| Carbon tetrachloride        | ND            | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   | 3 56-23-5     |       |
| Chlorobenzene               | ND            | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   |               |       |
| Chloroethane                | ND            | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   |               |       |
| 2-Chloroethylvinyl ether    | ND            | ug/L         | 10.0               | 1        |           | 03/01/16 05:38                   |               | L3,c2 |
| Chloroform                  | ND            | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   |               | 20,02 |
| Chloromethane               | ND            | ug/L         | 4.0                | 1        |           | 03/01/16 05:38                   |               |       |
| 2-Chlorotoluene             | ND            | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   |               |       |
| 4-Chlorotoluene             | ND            | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   |               |       |
| 1,2-Dibromo-3-chloropropane | ND            | ug/L         | 4.0                | 1        |           | 03/01/16 05:38                   |               |       |
| Dibromochloromethane        | ND<br>ND      | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   |               |       |
| 1,2-Dibromoethane (EDB)     | ND            | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   |               |       |
| Dibromomethane              | ND            | ug/L         | 4.0                | 1        |           | 03/01/16 05:38                   |               |       |
| 1,2-Dichlorobenzene         | ND<br>ND      | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   |               |       |
| 1,3-Dichlorobenzene         | ND<br>ND      | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   |               |       |
| 1,4-Dichlorobenzene         | ND<br>ND      | -            | 1.0                | 1        |           | 03/01/16 05:38                   |               |       |
| Dichlorodifluoromethane     | ND<br>ND      | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   |               |       |
| 1,1-Dichloroethane          | ND<br>ND      | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   |               |       |
| 1,1-Dichloroethane          |               | ug/L         |                    | 1        |           |                                  |               |       |
| ,                           | ND            | ug/L         | 1.0                |          |           | 03/01/16 05:38<br>03/01/16 05:38 |               |       |
| 1,1-Dichloroethene          | ND            | ug/L         | 1.0                | 1<br>1   |           | 03/01/16 05:38                   |               |       |
| cis-1,2-Dichloroethene      | ND            | ug/L         | 1.0                | 1        |           |                                  |               |       |
| rans-1,2-Dichloroethene     | ND            | ug/L         | 1.0                |          |           | 03/01/16 05:38                   |               |       |
| Dichlorofluoromethane       | ND            | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   |               |       |
| 1,2-Dichloropropane         | ND            | ug/L         | 4.0                | 1        |           | 03/01/16 05:38                   |               |       |
| 1,3-Dichloropropane         | ND            | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   |               |       |
| 2,2-Dichloropropane         | ND            | ug/L         | 4.0                | 1        |           | 03/01/16 05:38                   |               |       |
| 1,1-Dichloropropene         | ND            | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   |               |       |
| cis-1,3-Dichloropropene     | ND            | ug/L         | 4.0                | 1        |           | 03/01/16 05:38                   |               |       |
| rans-1,3-Dichloropropene    | ND            | ug/L         | 4.0                | 1        |           | 03/01/16 05:38                   |               |       |
| Diethyl ether (Ethyl ether) | ND            | ug/L         | 4.0                | 1        |           | 03/01/16 05:38                   |               |       |
| Ethylbenzene                | ND            | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   |               |       |
| Hexachloro-1,3-butadiene    | ND            | ug/L         | 2.0                | 1        |           | 03/01/16 05:38                   |               |       |
| sopropylbenzene (Cumene)    | ND            | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   |               |       |
| o-Isopropyltoluene          | ND            | ug/L         | 1.0                | 1        |           | 03/01/16 05:38                   | 3 99-87-6     |       |
| Methylene Chloride          | ND            | ug/L         | 4.0                | 1        |           | 03/01/16 05:38                   | 3 75-09-2     |       |
| 4-Methyl-2-pentanone (MIBK) | ND            | ug/L         | 5.0                | 1        |           | 03/01/16 05:38                   | 3 108-10-1    |       |



Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: AS-Influent            | Lab ID: 103     | 39705016    | Collected: 02/24/1 | 16 18:05 | Received: 02/2 | 25/16 10:25 N  | Matrix: Water |     |
|--------------------------------|-----------------|-------------|--------------------|----------|----------------|----------------|---------------|-----|
| Parameters                     | Results         | Units       | Report Limit       | DF       | Prepared       | Analyzed       | CAS No.       | Qua |
| 624 MSV                        | Analytical Meth | nod: EPA 62 | 24                 |          |                |                |               |     |
| Methyl-tert-butyl ether        | ND              | ug/L        | 1.0                | 1        | (              | 03/01/16 05:38 | 1634-04-4     |     |
| Naphthalene                    | ND              | ug/L        | 4.0                | 1        | (              | 03/01/16 05:38 | 91-20-3       |     |
| n-Propylbenzene                | ND              | ug/L        | 1.0                | 1        | (              | 03/01/16 05:38 | 103-65-1      |     |
| Styrene                        | ND              | ug/L        | 1.0                | 1        | (              | 03/01/16 05:38 | 100-42-5      |     |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1        | (              | 03/01/16 05:38 | 630-20-6      |     |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1        | (              | 03/01/16 05:38 | 79-34-5       |     |
| Tetrachloroethene              | 31.5            | ug/L        | 1.0                | 1        | (              | 03/01/16 05:38 | 127-18-4      |     |
| Tetrahydrofuran                | ND              | ug/L        | 10.0               | 1        | (              | 03/01/16 05:38 | 109-99-9      |     |
| Toluene                        | ND              | ug/L        | 1.0                | 1        | (              | 03/01/16 05:38 | 108-88-3      |     |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1        | (              | 03/01/16 05:38 | 87-61-6       |     |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1        | (              | 03/01/16 05:38 | 120-82-1      |     |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 1.0                | 1        | (              | 03/01/16 05:38 | 71-55-6       |     |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 1.0                | 1        | (              | 03/01/16 05:38 | 79-00-5       |     |
| Trichloroethene                | ND              | ug/L        | 0.40               | 1        | (              | 03/01/16 05:38 | 79-01-6       |     |
| Trichlorofluoromethane         | ND              | ug/L        | 1.0                | 1        | (              | 03/01/16 05:38 | 75-69-4       |     |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 4.0                | 1        | (              | 03/01/16 05:38 | 96-18-4       |     |
| 1,1,2-Trichlorotrifluoroethane | ND              | ug/L        | 1.0                | 1        | (              | 03/01/16 05:38 | 76-13-1       |     |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1        | (              | 03/01/16 05:38 | 95-63-6       |     |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1        | (              | 03/01/16 05:38 | 108-67-8      |     |
| Vinyl chloride                 | ND              | ug/L        | 0.40               | 1        | (              | 03/01/16 05:38 | 75-01-4       |     |
| Xylene (Total)                 | ND              | ug/L        | 3.0                | 1        | (              | 03/01/16 05:38 | 1330-20-7     |     |
| m&p-Xylene                     | ND              | ug/L        | 2.0                | 1        | (              | 03/01/16 05:38 | 179601-23-1   |     |
| o-Xylene                       | ND              | ug/L        | 1.0                | 1        | (              | 03/01/16 05:38 | 95-47-6       |     |
| Surrogates                     |                 |             |                    |          |                |                |               |     |
| 1,2-Dichloroethane-d4 (S)      | 105             | %.          | 75-125             | 1        |                | 03/01/16 05:38 |               |     |
| Toluene-d8 (S)                 | 91              | %.          | 75-125             | 1        |                | 03/01/16 05:38 |               |     |
| 4-Bromofluorobenzene (S)       | 97              | %.          | 75-125             | 1        | (              | 03/01/16 05:38 | 460-00-4      |     |



## **ANALYTICAL RESULTS**

Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: AS-Effluent         | Lab ID: 103    | 39705017     | Collected: 02/24/1 | 6 18:15 | Received: | 02/25/16 10:25 | Matrix: Water |       |
|-----------------------------|----------------|--------------|--------------------|---------|-----------|----------------|---------------|-------|
| Parameters                  | Results        | Units        | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua   |
| 624 MSV                     | Analytical Met | hod: EPA 62  | 24                 |         |           |                |               |       |
| Acetone                     | 342            | ug/L         | 20.0               | 1       |           | 03/01/16 06:0  | 1 67-64-1     |       |
| Allyl chloride              | ND             | ug/L         | 4.0                | 1       |           | 03/01/16 06:0  | 1 107-05-1    |       |
| Benzene                     | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  | 1 71-43-2     |       |
| Bromobenzene                | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  | 1 108-86-1    |       |
| Bromochloromethane          | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  | 1 74-97-5     |       |
| Bromodichloromethane        | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  | 1 75-27-4     |       |
| Bromoform                   | ND             | ug/L         | 4.0                | 1       |           | 03/01/16 06:0  | 1 75-25-2     |       |
| Bromomethane                | ND             | ug/L         | 4.0                | 1       |           | 03/01/16 06:0  | 1 74-83-9     |       |
| 2-Butanone (MEK)            | ND             | ug/L         | 5.0                | 1       |           | 03/01/16 06:0  | 1 78-93-3     |       |
| n-Butylbenzene              | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  |               |       |
| sec-Butylbenzene            | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  | 1 135-98-8    |       |
| tert-Butylbenzene           | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  |               |       |
| Carbon tetrachloride        | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  |               |       |
| Chlorobenzene               | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  |               |       |
| Chloroethane                | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  |               |       |
| 2-Chloroethylvinyl ether    | ND             | ug/L         | 10.0               | 1       |           | 03/01/16 06:0  |               | L3,c2 |
| Chloroform                  | ND<br>ND       | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  |               | LO,02 |
| Chloromethane               | ND             | ug/L         | 4.0                | 1       |           | 03/01/16 06:0  |               |       |
| 2-Chlorotoluene             | ND<br>ND       |              | 1.0                | 1       |           | 03/01/16 06:0  |               |       |
|                             |                | ug/L         |                    | 1       |           |                |               |       |
| 1-Chlorotoluene             | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  |               |       |
| 1,2-Dibromo-3-chloropropane | ND             | ug/L         | 4.0                |         |           | 03/01/16 06:0  |               |       |
| Dibromochloromethane        | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  |               |       |
| 1,2-Dibromoethane (EDB)     | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  |               |       |
| Dibromomethane              | ND             | ug/L         | 4.0                | 1       |           | 03/01/16 06:0  |               |       |
| 1,2-Dichlorobenzene         | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  |               |       |
| 1,3-Dichlorobenzene         | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  |               |       |
| 1,4-Dichlorobenzene         | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  |               |       |
| Dichlorodifluoromethane     | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  |               |       |
| 1,1-Dichloroethane          | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  |               |       |
| 1,2-Dichloroethane          | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  |               |       |
| 1,1-Dichloroethene          | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  |               |       |
| cis-1,2-Dichloroethene      | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  |               |       |
| rans-1,2-Dichloroethene     | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  | 1 156-60-5    |       |
| Dichlorofluoromethane       | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  | 1 75-43-4     |       |
| 1,2-Dichloropropane         | ND             | ug/L         | 4.0                | 1       |           | 03/01/16 06:0  | 1 78-87-5     |       |
| 1,3-Dichloropropane         | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  | 1 142-28-9    |       |
| 2,2-Dichloropropane         | ND             | ug/L         | 4.0                | 1       |           | 03/01/16 06:0  | 1 594-20-7    |       |
| 1,1-Dichloropropene         | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  | 1 563-58-6    |       |
| cis-1,3-Dichloropropene     | ND             | ug/L         | 4.0                | 1       |           | 03/01/16 06:0  | 1 10061-01-5  |       |
| rans-1,3-Dichloropropene    | ND             | ug/L         | 4.0                | 1       |           | 03/01/16 06:0  | 1 10061-02-6  |       |
| Diethyl ether (Ethyl ether) | ND             | ug/L         | 4.0                | 1       |           | 03/01/16 06:0  | 1 60-29-7     |       |
| Ethylbenzene                | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  | 1 100-41-4    |       |
| Hexachloro-1,3-butadiene    | ND             | ug/L         | 2.0                | 1       |           | 03/01/16 06:0  |               |       |
| sopropylbenzene (Cumene)    | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  |               |       |
| o-Isopropyltoluene          | ND             | ug/L         | 1.0                | 1       |           | 03/01/16 06:0  |               |       |
| Methylene Chloride          | ND             | ug/L         | 4.0                | 1       |           | 03/01/16 06:0  |               |       |
| 4-Methyl-2-pentanone (MIBK) | ND<br>ND       | ug/L<br>ug/L | 5.0                | 1       |           | 03/01/16 06:0  |               |       |



Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: AS-Effluent            | Lab ID: 103     | 39705017    | Collected: 02/24/1 | 16 18:15 | Received: 02/25/16 10:25 | Matrix: Water  |
|--------------------------------|-----------------|-------------|--------------------|----------|--------------------------|----------------|
| Parameters                     | Results         | Units       | Report Limit       | DF       | Prepared Analyzed        | CAS No. Qu     |
| 624 MSV                        | Analytical Meth | nod: EPA 62 | 24                 |          |                          |                |
| Methyl-tert-butyl ether        | ND              | ug/L        | 1.0                | 1        | 03/01/16 06:0            | )1 1634-04-4   |
| Naphthalene                    | ND              | ug/L        | 4.0                | 1        | 03/01/16 06:0            | 01 91-20-3     |
| n-Propylbenzene                | ND              | ug/L        | 1.0                | 1        | 03/01/16 06:0            | )1 103-65-1    |
| Styrene                        | ND              | ug/L        | 1.0                | 1        | 03/01/16 06:0            | 01 100-42-5    |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1        | 03/01/16 06:0            | 01 630-20-6    |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1        | 03/01/16 06:0            | )1 79-34-5     |
| Tetrachloroethene              | 1.8             | ug/L        | 1.0                | 1        | 03/01/16 06:0            | )1 127-18-4    |
| Tetrahydrofuran                | ND              | ug/L        | 10.0               | 1        | 03/01/16 06:0            | )1 109-99-9    |
| Toluene                        | ND              | ug/L        | 1.0                | 1        | 03/01/16 06:0            | 01 108-88-3    |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1        | 03/01/16 06:0            | 01 87-61-6     |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1        | 03/01/16 06:0            | )1 120-82-1    |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 1.0                | 1        | 03/01/16 06:0            | )1 71-55-6     |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 1.0                | 1        | 03/01/16 06:0            | )1 79-00-5     |
| Trichloroethene                | ND              | ug/L        | 0.40               | 1        | 03/01/16 06:0            | 01 79-01-6     |
| Trichlorofluoromethane         | ND              | ug/L        | 1.0                | 1        | 03/01/16 06:0            | 01 75-69-4     |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 4.0                | 1        | 03/01/16 06:0            | 01 96-18-4     |
| 1,1,2-Trichlorotrifluoroethane | ND              | ug/L        | 1.0                | 1        | 03/01/16 06:0            | )1 76-13-1     |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1        | 03/01/16 06:0            | 01 95-63-6     |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1        | 03/01/16 06:0            | 01 108-67-8    |
| Vinyl chloride                 | ND              | ug/L        | 0.40               | 1        | 03/01/16 06:0            | 01 75-01-4     |
| Xylene (Total)                 | ND              | ug/L        | 3.0                | 1        | 03/01/16 06:0            | 01 1330-20-7   |
| m&p-Xylene                     | ND              | ug/L        | 2.0                | 1        | 03/01/16 06:0            | 01 179601-23-1 |
| o-Xylene                       | ND              | ug/L        | 1.0                | 1        | 03/01/16 06:0            | 01 95-47-6     |
| Surrogates                     |                 | -           |                    |          |                          |                |
| 1,2-Dichloroethane-d4 (S)      | 104             | %.          | 75-125             | 1        | 03/01/16 06:0            | 01 17060-07-0  |
| Toluene-d8 (S)                 | 91              | %.          | 75-125             | 1        | 03/01/16 06:0            | 01 2037-26-5   |
| 4-Bromofluorobenzene (S)       | 100             | %.          | 75-125             | 1        | 03/01/16 06:0            | 01 460-00-4    |





Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: TRIP BLANK                     | Lab ID: 1    | 10339705018     | Collected: 02/23/1 | 16 00:00 | Received: | 02/25/16 10:25 | Matrix: Water |     |
|----------------------------------------|--------------|-----------------|--------------------|----------|-----------|----------------|---------------|-----|
| Parameters                             | Results      | Units           | Report Limit       | DF       | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260 MSV                               | Analytical N | /lethod: EPA 82 | 260                |          |           |                |               |     |
| 1,1,1,2-Tetrachloroethane              | ND           | ug/L            | 1.0                | 1        |           | 03/02/16 13:09 | 9 630-20-6    |     |
| 1,1,1-Trichloroethane                  | ND           | ug/L            | 1.0                | 1        |           | 03/02/16 13:09 | 71-55-6       |     |
| 1,1,2,2-Tetrachloroethane              | ND           | ug/L            | 1.0                | 1        |           | 03/02/16 13:09 | 9 79-34-5     |     |
| 1,1,2-Trichloroethane                  | ND           | ug/L            | 1.0                | 1        |           | 03/02/16 13:09 | 9 79-00-5     |     |
| 1,1,2-Trichlorotrifluoroethane         | ND           | ug/L            | 5.0                | 1        |           | 03/02/16 13:09 | 76-13-1       |     |
| 1,1-Dichloroethane                     | ND           | ug/L            | 1.0                | 1        |           | 03/02/16 13:09 | 75-34-3       |     |
| 1,1-Dichloroethene                     | ND           | ug/L            | 1.0                | 1        |           | 03/02/16 13:09 | 75-35-4       |     |
| 1,1-Dichloropropene                    | ND           | ug/L            | 1.0                | 1        |           | 03/02/16 13:09 | 9 563-58-6    |     |
| 1,2,3-Trichlorobenzene                 | ND           | ug/L            | 5.0                | 1        |           | 03/02/16 13:09 | 9 87-61-6     |     |
| 1,2,3-Trichloropropane                 | ND           | ug/L            | 1.0                | 1        |           | 03/02/16 13:09 | 96-18-4       |     |
| 1,2,4-Trichlorobenzene                 | ND           |                 | 5.0                | 1        |           | 03/02/16 13:09 | 9 120-82-1    |     |
| I,2,4-Trimethylbenzene                 | ND           | •               | 1.0                | 1        |           | 03/02/16 13:09 | 9 95-63-6     |     |
| 1,2-Dibromo-3-chloropropane            | ND           | •               | 5.0                | 1        |           | 03/02/16 13:09 | 96-12-8       |     |
| ,2-Dibromoethane (EDB)                 | ND           | Ū               | 1.0                | 1        |           | 03/02/16 13:09 |               |     |
| ,2-Dichlorobenzene                     | ND           | J               | 1.0                | 1        |           | 03/02/16 13:09 |               |     |
| ,2-Dichloroethane                      | ND           | 0               | 1.0                | 1        |           | 03/02/16 13:09 |               |     |
| ,2-Dichloropropane                     | ND           | J               | 1.0                | 1        |           | 03/02/16 13:09 |               |     |
| ,3,5-Trimethylbenzene                  | ND           | Ū               | 1.0                | 1        |           | 03/02/16 13:09 |               |     |
| ,3-Dichlorobenzene                     | ND           | Ū               | 1.0                | 1        |           | 03/02/16 13:09 |               |     |
| ,3-Dichloropropane                     | ND           | J               | 1.0                | 1        |           | 03/02/16 13:09 |               |     |
| ,4-Dichlorobenzene                     | ND           | 0               | 1.0                | 1        |           | 03/02/16 13:09 |               |     |
| ,4-Dichloropropane                     | ND<br>ND     | J               | 1.0                | 1        |           | 03/02/16 13:09 |               |     |
| P-Butanone (MEK)                       | ND<br>ND     | Ū               | 20.0               | 1        |           | 03/02/16 13:09 |               |     |
| 2-Chlorotoluene                        | ND<br>ND     | Ū               | 1.0                | 1        |           | 03/02/16 13:09 |               |     |
| -Chlorotoluene                         | ND<br>ND     | J               | 1.0                | 1        |           | 03/02/16 13:09 |               |     |
|                                        | ND<br>ND     | 0               | 20.0               | 1        |           | 03/02/16 13:09 |               |     |
| I-Methyl-2-pentanone (MIBK)<br>Acetone | ND<br>ND     | 0               | 20.0               | 1        |           | 03/02/16 13:09 |               |     |
|                                        | ND<br>ND     | 0               | 5.0                | 1        |           | 03/02/16 13:09 |               |     |
| Allyl chloride                         |              | J               |                    | 1        |           |                |               |     |
| Benzene                                | ND           | J               | 1.0                |          |           | 03/02/16 13:09 |               |     |
| Bromobenzene                           | ND           | 0               | 1.0                | 1        |           | 03/02/16 13:09 |               |     |
| Bromochloromethane                     | ND           | 0               | 1.0                | 1        |           | 03/02/16 13:09 |               |     |
| Bromodichloromethane                   | ND           | J               | 1.0                | 1        |           | 03/02/16 13:09 |               |     |
| Bromoform                              | ND           | J               | 5.0                | 1        |           | 03/02/16 13:09 |               |     |
| Bromomethane                           | ND           | J               | 5.0                | 1        |           | 03/02/16 13:09 |               |     |
| Carbon tetrachloride                   | ND           | 0               | 1.0                | 1        |           | 03/02/16 13:09 |               |     |
| Chlorobenzene                          | ND           | Ū               | 1.0                | 1        |           | 03/02/16 13:09 |               |     |
| Chloroethane                           | ND           | J               | 1.0                | 1        |           | 03/02/16 13:09 |               |     |
| Chloroform                             | ND           | J               | 5.0                | 1        |           | 03/02/16 13:09 |               |     |
| Chloromethane                          | ND           | J               | 1.0                | 1        |           | 03/02/16 13:09 |               |     |
| Dibromochloromethane                   | ND           | 0               | 5.0                | 1        |           | 03/02/16 13:09 |               |     |
| Dibromomethane                         | ND           | 0               | 1.0                | 1        |           | 03/02/16 13:09 |               |     |
| Dichlorodifluoromethane                | ND           | 0               | 1.0                | 1        |           | 03/02/16 13:09 |               |     |
| Dichlorofluoromethane                  | ND           | J               | 1.0                | 1        |           | 03/02/16 13:09 |               |     |
| Diethyl ether (Ethyl ether)            | ND           | ug/L            | 5.0                | 1        |           | 03/02/16 13:09 | 9 60-29-7     |     |
| Ethylbenzene                           | ND           | ug/L            | 1.0                | 1        |           | 03/02/16 13:09 | 9 100-41-4    |     |
| Hexachloro-1,3-butadiene               | ND           | ug/L            | 5.0                | 1        |           | 03/02/16 13:09 | 9 87-68-3     |     |
| sopropylbenzene (Cumene)               | ND           | ug/L            | 1.0                | 1        |           | 03/02/16 13:09 | 9 98-82-8     |     |



Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Sample: TRIP BLANK                            | Lab ID: 103     | 39705018   | Collected: 02/23/1 | 16 00:00 | Received: 02 | 2/25/16 10:25 N | Matrix: Water |     |
|-----------------------------------------------|-----------------|------------|--------------------|----------|--------------|-----------------|---------------|-----|
| Parameters                                    | Results         | Units      | Report Limit       | DF       | Prepared     | Analyzed        | CAS No.       | Qua |
| 8260 MSV                                      | Analytical Meth | od: EPA 82 | 60                 |          |              |                 |               |     |
| Methyl-tert-butyl ether                       | ND              | ug/L       | 1.0                | 1        |              | 03/02/16 13:09  | 1634-04-4     |     |
| Methylene Chloride                            | ND              | ug/L       | 1.0                | 1        |              | 03/02/16 13:09  | 75-09-2       |     |
| Naphthalene                                   | ND              | ug/L       | 5.0                | 1        |              | 03/02/16 13:09  | 91-20-3       |     |
| Styrene                                       | ND              | ug/L       | 1.0                | 1        |              | 03/02/16 13:09  | 100-42-5      |     |
| Tetrachloroethene                             | ND              | ug/L       | 1.0                | 1        |              | 03/02/16 13:09  | 127-18-4      |     |
| Tetrahydrofuran                               | ND              | ug/L       | 5.0                | 1        |              | 03/02/16 13:09  | 109-99-9      |     |
| Toluene                                       | ND              | ug/L       | 1.0                | 1        |              | 03/02/16 13:09  | 108-88-3      |     |
| Trichloroethene                               | ND              | ug/L       | 1.0                | 1        |              | 03/02/16 13:09  | 79-01-6       |     |
| Trichlorofluoromethane                        | ND              | ug/L       | 1.0                | 1        |              | 03/02/16 13:09  | 75-69-4       |     |
| Vinyl chloride                                | ND              | ug/L       | 1.0                | 1        |              | 03/02/16 13:09  | 75-01-4       |     |
| Xylene (Total)                                | ND              | ug/L       | 3.0                | 1        |              | 03/02/16 13:09  | 1330-20-7     |     |
| cis-1,2-Dichloroethene                        | ND              | ug/L       | 1.0                | 1        |              | 03/02/16 13:09  | 156-59-2      |     |
| cis-1,3-Dichloropropene                       | ND              | ug/L       | 5.0                | 1        |              | 03/02/16 13:09  | 10061-01-5    |     |
| n-Butylbenzene                                | ND              | ug/L       | 1.0                | 1        |              | 03/02/16 13:09  | 104-51-8      |     |
| n-Propylbenzene                               | ND              | ug/L       | 1.0                | 1        |              | 03/02/16 13:09  | 103-65-1      |     |
| p-Isopropyltoluene                            | ND              | ug/L       | 1.0                | 1        |              | 03/02/16 13:09  | 99-87-6       |     |
| sec-Butylbenzene                              | ND              | ug/L       | 5.0                | 1        |              | 03/02/16 13:09  | 135-98-8      |     |
| tert-Butylbenzene                             | ND              | ug/L       | 1.0                | 1        |              | 03/02/16 13:09  | 98-06-6       |     |
| trans-1,2-Dichloroethene                      | ND              | ug/L       | 1.0                | 1        |              | 03/02/16 13:09  | 156-60-5      |     |
| trans-1,3-Dichloropropene                     | ND              | ug/L       | 20.0               | 1        |              | 03/02/16 13:09  | 10061-02-6    |     |
| <b>Surrogates</b><br>4-Bromofluorobenzene (S) | 90              | %          | 70-130             | 1        |              | 03/02/16 13:09  | 460-00-4      |     |
| Dibromofluoromethane (S)                      | 106             | %          | 70-130             | 1        |              | 03/02/16 13:09  |               |     |
| Toluene-d8 (S)                                | 97              | %          | 70-130             | 1        |              | 03/02/16 13:09  |               |     |



#### **QUALITY CONTROL DATA**

Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

QC Batch: MSV/34759 Analysis Method: EPA 624
QC Batch Method: EPA 624 Analysis Description: 624 MSV

Associated Lab Samples: 10339705016, 10339705017

METHOD BLANK: 2200826 Matrix: Water

Associated Lab Samples: 10339705016, 10339705017

| Parameter                      | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|--------------------------------|-------|-----------------|--------------------|----------------|------------|
| 1,1,1,2-Tetrachloroethane      | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| 1,1,1-Trichloroethane          | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| 1,1,2-Trichloroethane          | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| 1,1-Dichloroethane             | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| 1,1-Dichloroethene             | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| 1,1-Dichloropropene            | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| 1,2,3-Trichlorobenzene         | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| 1,2,3-Trichloropropane         | ug/L  | ND              | 4.0                | 02/29/16 23:20 |            |
| 1,2,4-Trichlorobenzene         | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| 1,2,4-Trimethylbenzene         | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| 1,2-Dibromo-3-chloropropane    | ug/L  | ND              | 4.0                | 02/29/16 23:20 |            |
| 1,2-Dibromoethane (EDB)        | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| 1,2-Dichlorobenzene            | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| 1,2-Dichloroethane             | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| 1,2-Dichloropropane            | ug/L  | ND              | 4.0                | 02/29/16 23:20 |            |
| 1,3,5-Trimethylbenzene         | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| 1,3-Dichlorobenzene            | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| 1,3-Dichloropropane            | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| 1,4-Dichlorobenzene            | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| 2,2-Dichloropropane            | ug/L  | ND              | 4.0                | 02/29/16 23:20 |            |
| 2-Butanone (MEK)               | ug/L  | ND              | 5.0                | 02/29/16 23:20 |            |
| 2-Chloroethylvinyl ether       | ug/L  | ND              | 10.0               | 02/29/16 23:20 |            |
| 2-Chlorotoluene                | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| 4-Chlorotoluene                | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| 4-Methyl-2-pentanone (MIBK)    | ug/L  | ND              | 5.0                | 02/29/16 23:20 |            |
| Acetone                        | ug/L  | ND              | 20.0               | 02/29/16 23:20 |            |
| Allyl chloride                 | ug/L  | ND              | 4.0                | 02/29/16 23:20 |            |
| Benzene                        | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| Bromobenzene                   | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| Bromochloromethane             | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| Bromodichloromethane           | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| Bromoform                      | ug/L  | ND              | 4.0                | 02/29/16 23:20 |            |
| Bromomethane                   | ug/L  | ND              | 4.0                | 02/29/16 23:20 |            |
| Carbon tetrachloride           | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| Chlorobenzene                  | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| Chloroethane                   | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| Chloroform                     | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |
| Chloromethane                  | ug/L  | ND              | 4.0                | 02/29/16 23:20 |            |
| cis-1,2-Dichloroethene         | ug/L  | ND              | 1.0                | 02/29/16 23:20 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



## **QUALITY CONTROL DATA**

Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

METHOD BLANK: 2200826 Matrix: Water

Associated Lab Samples: 10339705016, 10339705017

| Doromotor                   | Units   | Blank<br>Result | Reporting<br>Limit | Anglygod       | Qualifiers |
|-----------------------------|---------|-----------------|--------------------|----------------|------------|
| Parameter                   | - Units |                 |                    | Analyzed       | Qualifiers |
| cis-1,3-Dichloropropene     | ug/L    | ND              | 4.0                | 02/29/16 23:20 |            |
| Dibromochloromethane        | ug/L    | ND              | 1.0                | 02/29/16 23:20 |            |
| Dibromomethane              | ug/L    | ND              | 4.0                | 02/29/16 23:20 |            |
| Dichlorodifluoromethane     | ug/L    | ND              | 1.0                | 02/29/16 23:20 |            |
| Dichlorofluoromethane       | ug/L    | ND              | 1.0                | 02/29/16 23:20 |            |
| Diethyl ether (Ethyl ether) | ug/L    | ND              | 4.0                | 02/29/16 23:20 |            |
| Ethylbenzene                | ug/L    | ND              | 1.0                | 02/29/16 23:20 |            |
| Hexachloro-1,3-butadiene    | ug/L    | ND              | 2.0                | 02/29/16 23:20 |            |
| sopropylbenzene (Cumene)    | ug/L    | ND              | 1.0                | 02/29/16 23:20 |            |
| n&p-Xylene                  | ug/L    | ND              | 2.0                | 02/29/16 23:20 |            |
| Methyl-tert-butyl ether     | ug/L    | ND              | 1.0                | 02/29/16 23:20 |            |
| Nethylene Chloride          | ug/L    | ND              | 4.0                | 02/29/16 23:20 |            |
| -Butylbenzene               | ug/L    | ND              | 1.0                | 02/29/16 23:20 |            |
| -Propylbenzene              | ug/L    | ND              | 1.0                | 02/29/16 23:20 |            |
| aphthalene                  | ug/L    | ND              | 4.0                | 02/29/16 23:20 |            |
| -Xylene                     | ug/L    | ND              | 1.0                | 02/29/16 23:20 |            |
| -Isopropyltoluene           | ug/L    | ND              | 1.0                | 02/29/16 23:20 |            |
| ec-Butylbenzene             | ug/L    | ND              | 1.0                | 02/29/16 23:20 |            |
| tyrene                      | ug/L    | ND              | 1.0                | 02/29/16 23:20 |            |
| ert-Butylbenzene            | ug/L    | ND              | 1.0                | 02/29/16 23:20 |            |
| etrachloroethene            | ug/L    | ND              | 1.0                | 02/29/16 23:20 |            |
| etrahydrofuran              | ug/L    | ND              | 10.0               | 02/29/16 23:20 |            |
| oluene                      | ug/L    | ND              | 1.0                | 02/29/16 23:20 |            |
| ans-1,2-Dichloroethene      | ug/L    | ND              | 1.0                | 02/29/16 23:20 |            |
| ans-1,3-Dichloropropene     | ug/L    | ND              | 4.0                | 02/29/16 23:20 |            |
| richloroethene              | ug/L    | ND              | 0.40               | 02/29/16 23:20 |            |
| richlorofluoromethane       | ug/L    | ND              | 1.0                | 02/29/16 23:20 |            |
| inyl chloride               | ug/L    | ND              | 0.40               | 02/29/16 23:20 |            |
| ylene (Total)               | ug/L    | ND              | 3.0                | 02/29/16 23:20 |            |
| ,2-Dichloroethane-d4 (S)    | %.      | 109             | 75-125             | 02/29/16 23:20 |            |
| -Bromofluorobenzene (S)     | %.      | 96              | 75-125             | 02/29/16 23:20 |            |
| oluene-d8 (S)               | %.      | 92              | 75-125             | 02/29/16 23:20 |            |

| LABORATORY CONTROL SAMPLE:     | 2200827 |       |        |       |        |            |
|--------------------------------|---------|-------|--------|-------|--------|------------|
|                                |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                      | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,1,1,2-Tetrachloroethane      | ug/L    | 50    | 46.5   | 93    | 75-126 |            |
| 1,1,1-Trichloroethane          | ug/L    | 50    | 50.8   | 102   | 72-125 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L    | 50    | 50.5   | 101   | 68-125 |            |
| 1,1,2-Trichloroethane          | ug/L    | 50    | 52.2   | 104   | 75-125 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L    | 50    | 57.7   | 115   | 66-132 |            |
| 1,1-Dichloroethane             | ug/L    | 50    | 48.1   | 96    | 68-126 |            |
| 1,1-Dichloroethene             | ug/L    | 50    | 55.9   | 112   | 67-127 |            |
| 1,1-Dichloropropene            | ug/L    | 50    | 51.0   | 102   | 71-126 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## **QUALITY CONTROL DATA**

Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| LABORATORY CONTROL SAMPLE:             | 2200827      | Spike    | LCS    | LCS   | % Rec           |
|----------------------------------------|--------------|----------|--------|-------|-----------------|
| Parameter                              | Units        | Conc.    | Result | % Rec | Limits Qualifie |
| 1,2,3-Trichlorobenzene                 | ug/L         |          | 46.8   | 94    | 63-132          |
| 1,2,3-Trichloropropane                 | ug/L         | 50       | 48.3   | 97    | 72-125          |
| 1,2,4-Trichlorobenzene                 | ug/L         | 50       | 47.2   | 94    | 59-135          |
| 1,2,4-Trimethylbenzene                 | ug/L         | 50       | 51.2   | 102   | 70-132          |
| 1,2-Dibromo-3-chloropropane            | ug/L         | 125      | 120    | 96    | 58-130          |
| 1,2-Dibromoethane (EDB)                | ug/L         | 50       | 48.3   | 97    | 75-125          |
| 1,2-Dichlorobenzene                    | ug/L         | 50       | 49.8   | 100   | 74-125          |
| 1,2-Dichloroethane                     | ug/L         | 50       | 53.2   | 106   | 71-125          |
| I,2-Dichloropropane                    | ug/L         | 50       | 49.3   | 99    | 72-125          |
| 1,3,5-Trimethylbenzene                 | ug/L         | 50       | 52.2   | 104   | 73-125          |
| I,3-Dichlorobenzene                    | ug/L         | 50       | 49.4   | 99    | 74-125          |
| I,3-Dichloropropane                    | ug/L         | 50       | 48.3   | 97    | 75-125          |
| 1,4-Dichlorobenzene                    | ug/L         | 50       | 50.6   | 101   | 74-125          |
| 2,2-Dichloropropane                    | ug/L         | 50       | 46.8   | 94    | 64-138          |
| 2-Butanone (MEK)                       | ug/L         | 250      | 267    | 107   | 61-129          |
| 2-Chloroethylvinyl ether               | ug/L         | 125      | 278    | 222   | 30-150 L0       |
| 2-Chlorotoluene                        | ug/L         | 50       | 51.7   | 103   | 70-126          |
| 4-Chlorotoluene                        | ug/L         | 50       | 52.3   | 105   | 73-125          |
|                                        | ug/L         | 250      | 269    | 103   | 63-135          |
| 4-Methyl-2-pentanone (MIBK)<br>Acetone | ug/∟<br>ug/L | 250      | 264    | 107   | 66-150          |
|                                        | -            | 50       | 53.0   | 106   | 62-139          |
| Allyl chloride                         | ug/L         |          |        |       | 67-126          |
| Benzene<br>Bramahanzana                | ug/L         | 50<br>50 | 53.3   | 107   |                 |
| Bromobenzene                           | ug/L         | 50       | 53.2   | 106   | 72-125          |
| Bromochloromethane                     | ug/L         | 50       | 52.8   | 106   | 73-125          |
| Bromodichloromethane                   | ug/L         | 50       | 50.7   | 101   | 71-126          |
| Bromoform                              | ug/L         | 50       | 45.6   | 91    | 64-130          |
| 3romomethane                           | ug/L         | 50       | 34.7   | 69    | 30-150          |
| Carbon tetrachloride                   | ug/L         | 50       | 51.4   | 103   | 71-128          |
| Chlorobenzene                          | ug/L         | 50       | 51.0   | 102   | 75-125          |
| Chloroethane                           | ug/L         | 50       | 46.6   | 93    | 60-130          |
| Chloroform                             | ug/L         | 50       | 49.9   | 100   | 73-125          |
| Chloromethane                          | ug/L         | 50       | 47.8   | 96    | 49-146          |
| cis-1,2-Dichloroethene                 | ug/L         | 50       | 54.1   | 108   | 68-131          |
| cis-1,3-Dichloropropene                | ug/L         | 50       | 50.4   | 101   | 73-125          |
| Dibromochloromethane                   | ug/L         | 50       | 48.1   | 96    | 71-125          |
| Dibromomethane                         | ug/L         | 50       | 46.0   | 92    | 71-131          |
| Dichlorodifluoromethane                | ug/L         | 50       | 51.6   | 103   | 56-145          |
| Dichlorofluoromethane                  | ug/L         | 50       | 54.9   | 110   | 69-128          |
| Diethyl ether (Ethyl ether)            | ug/L         | 50       | 52.7   | 105   | 65-127          |
| Ethylbenzene                           | ug/L         | 50       | 50.5   | 101   | 75-125          |
| Hexachloro-1,3-butadiene               | ug/L         | 50       | 40.5   | 81    | 62-145          |
| sopropylbenzene (Cumene)               | ug/L         | 50       | 52.8   | 106   | 75-133          |
| m&p-Xylene                             | ug/L         | 100      | 96.4   | 96    | 75-126          |
| Methyl-tert-butyl ether                | ug/L         | 50       | 50.9   | 102   | 73-125          |
| Methylene Chloride                     | ug/L         | 50       | 56.8   | 114   | 72-128          |
| n-Butylbenzene                         | ug/L         | 50       | 51.5   | 103   | 67-131          |
| n-Propylbenzene                        | ug/L         | 50       | 49.5   | 99    | 70-128          |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.





## **QUALITY CONTROL DATA**

Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| LABORATORY CONTROL SAMPLE: | 2200827 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Naphthalene                | ug/L    |       | 48.4   | 97    | 54-139 |            |
| o-Xylene                   | ug/L    | 50    | 49.5   | 99    | 75-125 |            |
| p-Isopropyltoluene         | ug/L    | 50    | 51.5   | 103   | 71-128 |            |
| sec-Butylbenzene           | ug/L    | 50    | 51.4   | 103   | 73-132 |            |
| Styrene                    | ug/L    | 50    | 54.8   | 110   | 75-128 |            |
| tert-Butylbenzene          | ug/L    | 50    | 48.9   | 98    | 75-130 |            |
| Tetrachloroethene          | ug/L    | 50    | 48.9   | 98    | 67-129 |            |
| Tetrahydrofuran            | ug/L    | 500   | 514    | 103   | 73-137 |            |
| Toluene                    | ug/L    | 50    | 49.9   | 100   | 74-125 |            |
| trans-1,2-Dichloroethene   | ug/L    | 50    | 58.7   | 117   | 65-128 |            |
| trans-1,3-Dichloropropene  | ug/L    | 50    | 49.5   | 99    | 75-125 |            |
| Trichloroethene            | ug/L    | 50    | 49.5   | 99    | 72-125 |            |
| Trichlorofluoromethane     | ug/L    | 50    | 56.3   | 113   | 70-132 |            |
| Vinyl chloride             | ug/L    | 50    | 52.4   | 105   | 69-130 |            |
| Xylene (Total)             | ug/L    | 150   | 146    | 97    | 75-125 |            |
| 1,2-Dichloroethane-d4 (S)  | %.      |       |        | 105   | 75-125 |            |
| 4-Bromofluorobenzene (S)   | %.      |       |        | 97    | 75-125 |            |
| Toluene-d8 (S)             | %.      |       |        | 93    | 75-125 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Matrix: Water

Project: City of Rochester-CRC

Pace Project No.: 10339705

QC Batch: MSV/32393 Analysis Method: EPA 8260
QC Batch Method: EPA 8260 Analysis Description: 8260 MSV

Associated Lab Samples: 10339705001, 10339705002, 10339705003, 10339705004, 10339705005, 10339705006, 10339705007,

10339705008, 10339705009, 10339705010, 10339705011, 10339705012, 10339705013, 10339705014,

10339705015, 10339705018

METHOD BLANK: 1301156

Associated Lab Samples:

Date: 03/03/2016 10:19 AM

|                                |       | Blank  | Reporting |                |            |
|--------------------------------|-------|--------|-----------|----------------|------------|
| Parameter                      | Units | Result | Limit     | Analyzed       | Qualifiers |
| 1,1,1,2-Tetrachloroethane      | ug/L  | ND ND  | 1.0       | 03/02/16 10:54 |            |
| 1,1,1-Trichloroethane          | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| 1,1,2-Trichloroethane          | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L  | ND     | 5.0       | 03/02/16 10:54 |            |
| 1,1-Dichloroethane             | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| 1,1-Dichloroethene             | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| 1,1-Dichloropropene            | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| 1,2,3-Trichlorobenzene         | ug/L  | ND     | 5.0       | 03/02/16 10:54 |            |
| 1,2,3-Trichloropropane         | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| 1,2,4-Trichlorobenzene         | ug/L  | ND     | 5.0       | 03/02/16 10:54 |            |
| 1,2,4-Trimethylbenzene         | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| 1,2-Dibromo-3-chloropropane    | ug/L  | ND     | 5.0       | 03/02/16 10:54 |            |
| 1,2-Dibromoethane (EDB)        | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| 1,2-Dichlorobenzene            | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| 1,2-Dichloroethane             | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| 1,2-Dichloropropane            | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| 1,3,5-Trimethylbenzene         | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| 1,3-Dichlorobenzene            | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| 1,3-Dichloropropane            | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| 1,4-Dichlorobenzene            | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| 2,2-Dichloropropane            | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| 2-Butanone (MEK)               | ug/L  | ND     | 20.0      | 03/02/16 10:54 |            |
| 2-Chlorotoluene                | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| 4-Chlorotoluene                | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| 4-Methyl-2-pentanone (MIBK)    | ug/L  | ND     | 5.0       | 03/02/16 10:54 |            |
| Acetone                        | ug/L  | ND     | 20.0      | 03/02/16 10:54 |            |
| Allyl chloride                 | ug/L  | ND     | 5.0       | 03/02/16 10:54 |            |
| Benzene                        | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| Bromobenzene                   | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| Bromochloromethane             | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| Bromodichloromethane           | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| Bromoform                      | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| Bromomethane                   | ug/L  | ND     | 5.0       | 03/02/16 10:54 |            |
| Carbon tetrachloride           | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| Chlorobenzene                  | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| Chloroethane                   | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| Chloroform                     | ug/L  | ND     | 5.0       | 03/02/16 10:54 |            |
| Chloromethane                  | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| cis-1,2-Dichloroethene         | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700



### **QUALITY CONTROL DATA**

Project: City of Rochester-CRC

LABORATORY CONTROL SAMPLE: 1301157

1,2-Dibromo-3-chloropropane

1,2-Dibromoethane (EDB)

Date: 03/03/2016 10:19 AM

1,2-Dichlorobenzene

Pace Project No.: 10339705

METHOD BLANK: 1301156 Matrix: Water

Associated Lab Samples:

|                             |       | Blank  | Reporting |                |            |
|-----------------------------|-------|--------|-----------|----------------|------------|
| Parameter                   | Units | Result | Limit     | Analyzed       | Qualifiers |
| cis-1,3-Dichloropropene     | ug/L  | ND ND  | 1.0       | 03/02/16 10:54 |            |
| Dibromochloromethane        | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| Dibromomethane              | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| Dichlorodifluoromethane     | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| Dichlorofluoromethane       | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| Diethyl ether (Ethyl ether) | ug/L  | ND     | 5.0       | 03/02/16 10:54 |            |
| Ethylbenzene                | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| Hexachloro-1,3-butadiene    | ug/L  | ND     | 5.0       | 03/02/16 10:54 |            |
| Isopropylbenzene (Cumene)   | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| Methyl-tert-butyl ether     | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| Methylene Chloride          | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| n-Butylbenzene              | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| n-Propylbenzene             | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| Naphthalene                 | ug/L  | ND     | 5.0       | 03/02/16 10:54 |            |
| p-Isopropyltoluene          | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| sec-Butylbenzene            | ug/L  | ND     | 5.0       | 03/02/16 10:54 |            |
| Styrene                     | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| tert-Butylbenzene           | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| Tetrachloroethene           | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| Tetrahydrofuran             | ug/L  | ND     | 5.0       | 03/02/16 10:54 |            |
| Toluene                     | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| trans-1,2-Dichloroethene    | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| trans-1,3-Dichloropropene   | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| Trichloroethene             | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| Trichlorofluoromethane      | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| Vinyl chloride              | ug/L  | ND     | 1.0       | 03/02/16 10:54 |            |
| Xylene (Total)              | ug/L  | ND     | 3.0       | 03/02/16 10:54 |            |
| 4-Bromofluorobenzene (S)    | %     | 92     | 70-130    | 03/02/16 10:54 |            |
| Dibromofluoromethane (S)    | %     | 106    | 70-130    | 03/02/16 10:54 |            |
| Toluene-d8 (S)              | %     | 98     | 70-130    | 03/02/16 10:54 |            |

| Parameter                      | Units | Spike<br>Conc. | LCS<br>Result | LCS<br>% Rec | % Rec<br>Limits | Qualifiers |
|--------------------------------|-------|----------------|---------------|--------------|-----------------|------------|
| 1,1,1-Trichloroethane          | ug/L  |                | 50.3          | 101          | 70-130          |            |
| 1,1,2,2-Tetrachloroethane      | ug/L  | 50             | 43.1          | 86           | 70-130          |            |
| 1,1,2-Trichloroethane          | ug/L  | 50             | 46.0          | 92           | 70-130          |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L  | 50             | 52.5          | 105          | 50-150          |            |
| 1,1-Dichloroethane             | ug/L  | 50             | 44.9          | 90           | 70-130          |            |
| 1,1-Dichloroethene             | ug/L  | 50             | 41.8          | 84           | 70-130          |            |
| 1,2,4-Trichlorobenzene         | ug/L  | 50             | 44.0          | 88           | 70-130          |            |

50

50

50

ug/L

ug/L

ug/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

41.7

44.0

48.9

83

88

98

50-150

70-130

70-130

(612)607-1700



### **QUALITY CONTROL DATA**

Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| ABORATORY CONTROL SAMPLE: | 1301157 |       |        |       |        |            |
|---------------------------|---------|-------|--------|-------|--------|------------|
|                           |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                 | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| 2-Dichloroethane          | ug/L    | 50    | 53.1   | 106   | 70-131 |            |
| 2-Dichloropropane         | ug/L    | 50    | 48.8   | 98    | 70-130 |            |
| 3-Dichlorobenzene         | ug/L    | 50    | 47.1   | 94    | 70-130 |            |
| -Dichlorobenzene          | ug/L    | 50    | 48.9   | 98    | 70-130 |            |
| nzene                     | ug/L    | 50    | 41.3   | 83    | 70-130 |            |
| omodichloromethane        | ug/L    | 50    | 51.4   | 103   | 70-130 |            |
| omoform                   | ug/L    | 50    | 48.0   | 96    | 68-130 |            |
| omomethane                | ug/L    | 50    | 36.2   | 72    | 38-137 |            |
| rbon tetrachloride        | ug/L    | 50    | 52.8   | 106   | 70-130 |            |
| orobenzene                | ug/L    | 50    | 49.9   | 100   | 70-130 |            |
| loroethane                | ug/L    | 50    | 35.2   | 70    | 70-136 |            |
| loroform                  | ug/L    | 50    | 48.7   | 97    | 70-130 |            |
| loromethane               | ug/L    | 50    | 37.7   | 75    | 48-144 |            |
| 1,2-Dichloroethene        | ug/L    | 50    | 40.9   | 82    | 70-130 |            |
| 1,3-Dichloropropene       | ug/L    | 50    | 45.1   | 90    | 70-130 |            |
| romochloromethane         | ug/L    | 50    | 48.0   | 96    | 70-130 |            |
| nlorodifluoromethane      | ug/L    | 50    | 23.0   | 46    | 33-157 |            |
| /lbenzene                 | ug/L    | 50    | 47.2   | 94    | 70-132 |            |
| ropylbenzene (Cumene)     | ug/L    | 50    | 52.8   | 106   | 70-130 |            |
| hyl-tert-butyl ether      | ug/L    | 50    | 39.3   | 79    | 48-141 |            |
| hylene Chloride           | ug/L    | 50    | 44.0   | 88    | 70-130 |            |
| ene                       | ug/L    | 50    | 46.6   | 93    | 70-130 |            |
| achloroethene             | ug/L    | 50    | 53.6   | 107   | 70-130 |            |
| ene                       | ug/L    | 50    | 46.8   | 94    | 70-130 |            |
| s-1,2-Dichloroethene      | ug/L    | 50    | 43.3   | 87    | 70-130 |            |
| s-1,3-Dichloropropene     | ug/L    | 50    | 45.0   | 90    | 70-130 |            |
| hloroethene               | ug/L    | 50    | 51.1   | 102   | 70-130 |            |
| hlorofluoromethane        | ug/L    | 50    | 46.8   | 94    | 50-150 |            |
| d chloride                | ug/L    | 50    | 36.1   | 72    | 65-142 |            |
| ene (Total)               | ug/L    | 150   | 136    | 91    | 70-132 |            |
| omofluorobenzene (S)      | %       |       |        | 98    | 70-130 |            |
| romofluoromethane (S)     | %       |       |        | 100   | 70-130 |            |
| uene-d8 (S)               | %       |       |        | 98    | 70-130 |            |

| MATRIX SPIKE & MATRIX SPIR     | KE DUPLIC | ATE: 13015            | 51                   |                       | 1301552      |               |             |              |                 |     |            |      |
|--------------------------------|-----------|-----------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|-----------------|-----|------------|------|
| Parameter                      | Units     | 40128753016<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qual |
| 1,1,1-Trichloroethane          | ug/L      | <0.50                 | 50                   | 50                    | 51.0         | 53.9          | 102         | 108          | 70-130          | 5   | 20         |      |
| 1,1,2,2-Tetrachloroethane      | ug/L      | < 0.25                | 50                   | 50                    | 44.8         | 40.9          | 90          | 82           | 70-130          | 9   | 20         |      |
| 1,1,2-Trichloroethane          | ug/L      | < 0.20                | 50                   | 50                    | 46.7         | 46.0          | 93          | 92           | 70-130          | 1   | 20         |      |
| 1,1,2-Trichlorotrifluoroethane | ug/L      | <0.81                 | 50                   | 50                    | 51.0         | 52.1          | 102         | 104          | 50-151          | 2   | 20         |      |
| 1,1-Dichloroethane             | ug/L      | < 0.24                | 50                   | 50                    | 48.0         | 51.1          | 96          | 102          | 70-134          | 6   | 20         |      |
| 1,1-Dichloroethene             | ug/L      | < 0.41                | 50                   | 50                    | 41.9         | 43.0          | 84          | 86           | 70-139          | 3   | 20         |      |
| 1,2,4-Trichlorobenzene         | ug/L      | <2.2                  | 50                   | 50                    | 46.5         | 42.8          | 93          | 86           | 70-130          | 8   | 20         |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| MATRIX SPIKE & MATRIX SPI       | KE DUPLICA | TE: 13015            |                |                | 1301552      |               |             |              |                 |     |     |    |
|---------------------------------|------------|----------------------|----------------|----------------|--------------|---------------|-------------|--------------|-----------------|-----|-----|----|
|                                 |            |                      | MS             | MSD            |              |               |             |              | a. <b>5</b>     |     |     |    |
| Parameter                       | 4<br>Units | 0128753016<br>Result | Spike<br>Conc. | Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD | Max | Qu |
|                                 |            |                      |                |                |              |               |             |              |                 |     |     |    |
| I,2-Dibromo-3-<br>chloropropane | ug/L       | <2.2                 | 50             | 50             | 41.3         | 43.7          | 83          | 87           | 50-150          | 6   | 20  |    |
| 1,2-Dibromoethane (EDB)         | ug/L       | <0.18                | 50             | 50             | 43.3         | 44.9          | 87          | 90           | 70-130          | 4   | 20  |    |
| ,2-Dichlorobenzene              | ug/L       | < 0.50               | 50             | 50             | 50.5         | 48.6          | 101         | 97           | 70-130          | 4   | 20  |    |
| ,2-Dichloroethane               | ug/L       | <0.17                | 50             | 50             | 54.6         | 56.5          | 109         | 113          | 70-132          | 3   | 20  |    |
| ,2-Dichloropropane              | ug/L       | < 0.23               | 50             | 50             | 50.0         | 50.8          | 100         | 102          | 70-130          | 2   | 20  |    |
| ,3-Dichlorobenzene              | ug/L       | < 0.50               | 50             | 50             | 50.1         | 47.7          | 100         | 95           | 70-130          | 5   | 20  |    |
| ,4-Dichlorobenzene              | ug/L       | < 0.50               | 50             | 50             | 51.4         | 49.3          | 103         | 99           | 70-130          | 4   | 20  |    |
| Benzene                         | ug/L       | < 0.50               | 50             | 50             | 42.9         | 44.2          | 85          | 88           | 70-130          | 3   | 20  |    |
| Bromodichloromethane            | ug/L       | <0.50                | 50             | 50             | 52.1         | 53.5          | 104         | 107          | 70-132          | 3   | 20  |    |
| Bromoform                       | ug/L       | < 0.50               | 50             | 50             | 46.8         | 44.9          | 94          | 90           | 68-130          | 4   | 20  |    |
| Bromomethane                    | ug/L       | <2.4                 | 50             | 50             | 38.8         | 42.1          | 78          | 84           | 38-141          | 8   | 20  |    |
| Carbon tetrachloride            | ug/L       | < 0.50               | 50             | 50             | 52.9         | 54.9          | 106         | 110          | 70-130          | 4   | 20  |    |
| Chlorobenzene                   | ug/L       | < 0.50               | 50             | 50             | 49.8         | 51.0          | 100         | 102          | 70-130          | 2   | 20  |    |
| Chloroethane                    | ug/L       | < 0.37               | 50             | 50             | 38.1         | 36.3          | 76          | 73           | 66-152          | 5   | 20  |    |
| Chloroform                      | ug/L       | <2.5                 | 50             | 50             | 50.4         | 52.9          | 101         | 106          | 70-130          | 5   | 20  |    |
| Chloromethane                   | ug/L       | < 0.50               | 50             | 50             | 38.4         | 43.5          | 77          | 87           | 44-151          | 12  | 20  |    |
| is-1,2-Dichloroethene           | ug/L       | 45.5                 | 50             | 50             | 86.6         | 89.8          | 82          | 89           | 70-130          | 4   | 20  |    |
| is-1,3-Dichloropropene          | ug/L       | < 0.50               | 50             | 50             | 46.8         | 46.2          | 94          | 92           | 70-130          | 1   | 20  |    |
| Dibromochloromethane            | ug/L       | < 0.50               | 50             | 50             | 47.1         | 46.9          | 94          | 94           | 70-130          | 0   | 20  |    |
| Dichlorodifluoromethane         | ug/L       | <0.22                | 50             | 50             | 22.5         | 22.1          | 45          | 44           | 29-160          | 1   | 20  |    |
| Ethylbenzene                    | ug/L       | < 0.50               | 50             | 50             | 46.1         | 49.6          | 92          | 99           | 70-132          | 7   | 20  |    |
| sopropylbenzene (Cumene)        | ug/L       | < 0.14               | 50             | 50             | 51.6         | 57.9          | 103         | 116          | 70-130          | 12  | 20  |    |
| Methyl-tert-butyl ether         | ug/L       | <0.17                | 50             | 50             | 40.6         | 43.9          | 81          | 88           | 48-143          | 8   | 20  |    |
| Methylene Chloride              | ug/L       | < 0.23               | 50             | 50             | 44.1         | 46.0          | 88          | 92           | 70-130          | 4   | 20  |    |
| Styrene                         | ug/L       | < 0.50               | 50             | 50             | 33.2         | 29.8          | 66          | 60           | 70-130          | 11  | 20  | M1 |
| etrachloroethene                | ug/L       | < 0.50               | 50             | 50             | 54.1         | 48.4          | 108         | 97           | 70-130          | 11  | 20  |    |
| oluene                          | ug/L       | < 0.50               | 50             | 50             | 46.2         | 43.7          | 92          | 87           | 70-130          | 6   | 20  |    |
| rans-1,2-Dichloroethene         | ug/L       | 10.1                 | 50             | 50             | 53.6         | 55.0          | 87          | 90           | 70-132          | 3   | 20  |    |
| rans-1,3-Dichloropropene        | ug/L       | <0.23                | 50             | 50             | 44.2         | 44.8          | 88          | 90           | 70-130          | 1   | 20  |    |
| richloroethene                  | ug/L       | 33.5                 | 50             | 50             | 87.0         | 88.6          | 107         | 110          | 70-130          | 2   | 20  |    |
| richlorofluoromethane           | ug/L       | <0.18                | 50             | 50             | 46.3         | 49.9          | 93          | 100          | 50-153          | 7   |     |    |
| /inyl chloride                  | ug/L       | 2.7                  | 50             | 50             | 39.8         | 39.1          | 74          | 73           | 60-155          | 2   | 20  |    |
| (ylene (Total)                  | ug/L       | <1.5                 | 150            | 150            | 131          | 138           | 88          | 92           | 70-132          | 5   | 20  |    |
| -Bromofluorobenzene (S)         | %          |                      | 3.0            | -              | -            |               | 96          | 108          | 70-130          | _   | -   |    |
| Dibromofluoromethane (S)        | %          |                      |                |                |              |               | 101         | 107          | 70-130          |     |     |    |
| oluene-d8 (S)                   | %          |                      |                |                |              |               | 98          | 94           | 70-130          |     |     |    |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALIFIERS**

Project: City of Rochester-CRC

Pace Project No.: 10339705

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### **LABORATORIES**

PASI-G Pace Analytical Services - Green Bay
PASI-M Pace Analytical Services - Minneapolis

### **ANALYTE QUALIFIERS**

Date: 03/03/2016 10:19 AM

- LO Analyte recovery in the laboratory control sample (LCS) was outside QC limits.
- L3 Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- c2 Acid preservation may not be appropriate for the analysis of 2-Chloroethylvinyl ether.



### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: City of Rochester-CRC

Pace Project No.: 10339705

Date: 03/03/2016 10:19 AM

| Lab ID      | Sample ID   | QC Batch Method | QC Batch  | Analytical Method | Analytica<br>Batch |
|-------------|-------------|-----------------|-----------|-------------------|--------------------|
| 10339705016 | AS-Influent | EPA 624         | MSV/34759 |                   |                    |
| 10339705017 | AS-Effluent | EPA 624         | MSV/34759 |                   |                    |
| 10339705001 | DPE-1       | EPA 8260        | MSV/32393 |                   |                    |
| 10339705002 | DPE-2       | EPA 8260        | MSV/32393 |                   |                    |
| 10339705003 | DPE-3       | EPA 8260        | MSV/32393 |                   |                    |
| 10339705004 | DPE-4       | EPA 8260        | MSV/32393 |                   |                    |
| 10339705005 | DPE-5       | EPA 8260        | MSV/32393 |                   |                    |
| 10339705006 | DPE-6       | EPA 8260        | MSV/32393 |                   |                    |
| 10339705007 | DPE-7       | EPA 8260        | MSV/32393 |                   |                    |
| 10339705008 | DPE-8       | EPA 8260        | MSV/32393 |                   |                    |
| 10339705009 | MW-14       | EPA 8260        | MSV/32393 |                   |                    |
| 10339705010 | MW-15       | EPA 8260        | MSV/32393 |                   |                    |
| 10339705011 | MW-16       | EPA 8260        | MSV/32393 |                   |                    |
| 10339705012 | MW-17       | EPA 8260        | MSV/32393 |                   |                    |
| 10339705013 | MW-18       | EPA 8260        | MSV/32393 |                   |                    |
| 10339705014 | MW-19       | EPA 8260        | MSV/32393 |                   |                    |
| 10339705015 | MW-20       | EPA 8260        | MSV/32393 |                   |                    |
| 10339705018 | TRIP BLANK  | EPA 8260        | MSV/32393 |                   |                    |

# CHAIN-OF-CU

CHAIN-OF-CUSTODY / Analytical Request Document
The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

10339705

Face Analytical www.pacelats.com

| Section A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Section B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Section C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Page: 1 of 2                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Company A NOMARK ENVIEDN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Report Fram Stad Stone namarken Lorn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Attention CHAPON PACADISE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1081800                                      |
| Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | andmarkenv.com                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sa<br>Sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | REGULATORY AGENCY                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NPDES   GROUND WATER   DRINKING WATER        |
| Rramstad@L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Pace Quote<br>Reference:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L UST   RCRA   OTHER                         |
| Phone: Fax:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rochester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pace Project yeyem! odwiole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Site Location                                |
| Requested Due Date/TAT: Norm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STATE:                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Requeste                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Requested Analysis Filtered (Y/N)            |
| Section D Required Client Information MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>T</b> Preservatives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                              |
| Drinking w<br>Water<br>Waste Waste W | Drinking Water         DW Water         COMPOSITE         COMPOSITE |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (V/Y) <del>0</del>                           |
| Samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | CODE<br>CODE<br>CY¥∯                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e(<br>lo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | al Chlorin                                   |
| # WƏLI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SAMPLE SAMPLE TIME DATE TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Other Dayly Character Char | Residua Residua Pace Project No./ Lab I.D.   |
| 1 DPE-/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WT 6 2/23/16 57/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <i>₽</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3                                            |
| 2 OPE-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , establish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7,00                                         |
| -<br>山<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 753:77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | \frac{1}{2}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 823                                          |
| 4 DE-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Se:th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 900                                          |
| s Ope-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 335                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                            |
| 6 DPE-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3:05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 200                                          |
| 1 OPE-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60                                           |
| 8 DPT-J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 09:1-7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>&gt;</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90                                           |
| 0.F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| ADDITIONAL COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RELINQUISHED BY / AFFILIATION DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TIME ACCEPTED BY / AFFILIATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DATE TIME SAMPLE CONDITIONS                  |
| CONTRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | James Johnson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1957 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2 2374 105 21.4 Y N Y                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              |
| Pag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SAMPLER NAME AND SIGNATURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on<br>)                                      |
| e 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PRINT Name of SAMPLER: SHAVNON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RUSSELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ni qr<br>eived 3 (Y/N)<br>3 (Y/N)<br>3 (Y/N) |
| of 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SIGNATURE of SAMPLER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DATE Signed (MM/DD/77):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 23 20/6 Feed 100 Samp                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | "Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1,5% per month for any invoices not paid within 30 days.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F-ALL-Q-020rev.07, 15-May-2007               |

Face Analytical www.pacelabs.com

# CHAIN-OF-CUSTODY / Analytical Request Document

3079705

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

DRINKING WATER 1981894 OTHER GROUND WATER 1 Page: REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/N) NPDES Site Location STATE: TSU T Pace Quote
Reference:
Manager: Oversemi Odujoleee
Pace Profile #: Company Name: Ann Braem Attention: Sharon Paradise Invoice Information: Section C Address: Section B
Required Project Information:
Report To: J S Kramstad @ landmarkenv.com CODY TO: SPLESSELLE JONAPHANTENV, COM Email To: SKKam Stad bridmar Kelly com Project Name: City of Rochester 2 Project Number: Environ mental Requested Due Date/TAT: Normの Company: Land Mark Section A
Required Client Information: Address:

| SAMPLE ID CONSEGUE WITH WE CONTRICT THE CONT |          | Section D Matri<br>Required Client Information MATRI) | Matrix Codes<br>MATRIX / CODE |             | (AMC           |         | COLLECTED    | стер               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | P                 | eserv | Preservatives                                 |    | Î N/A |                  | 1.0  |          |                                                |             |        |                                             |                    |              |    |                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------|-------------------------------|-------------|----------------|---------|--------------|--------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------------|-------|-----------------------------------------------|----|-------|------------------|------|----------|------------------------------------------------|-------------|--------|---------------------------------------------|--------------------|--------------|----|--------------------------------------------------------------------------------------|
| SAMPLE   10   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | ١                                                     |                               |             | -GRAB C=CC     | COMP    | OSITE        | COMPOSI<br>END/GRA |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>    |                   |       |                                               |    |       | AQC2             |      |          |                                                | *********** |        | (N/A) €                                     |                    |              |    | Tankini (Markani)                                                                    |
| 1   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ITEM #   | Sample IDs MUST BE UNIQUE                             | W W P                         |             | SAMPLE TYPE (G | DATE    | III<br>III   | DATE               |           | nonestation armonic programme and substitute and su | <del></del> | <sup>⁵</sup> OS²H | HCI   | <sub>E</sub> O <sub>S</sub> S <sub>S</sub> bN |    |       | <b>67.8 87.5</b> |      |          |                                                |             |        |                                             | ace Proje          | )<br>(0<br>Z |    | anne Parametra e de la company en transmission de la cidade a considera e la company |
| 155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u> | JAW.                                                  |                               | 15          | (6)            | 23.65   | -            |                    |           | 141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +           |                   | ×     |                                               | ╁  |       | /<br> <br>  ×    | F    | -        | ŀ                                              |             |        | _                                           | 8                  |              |    | T                                                                                    |
| MN - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _~       | AW-                                                   |                               | -           |                |         | 1.55         |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                   | ×     |                                               |    |       | 14               |      | <u> </u> |                                                |             |        |                                             | olo                |              |    |                                                                                      |
| MW - 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>~</u> | - ZZ                                                  |                               |             |                |         | 3545         |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                   | ×     |                                               |    |       | ×                |      |          |                                                |             |        |                                             | 170                |              |    | T                                                                                    |
| AMW-19  AWW-19   4        | NE                                                    |                               |             |                | -       | 5:35         |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                   | ×     |                                               |    |       | ×                |      |          | 1                                              |             |        | **************************************      | 210                |              |    | ACCOMMON                                                                             |
| AMM-199  AMM-20  AMM-2 | 2        | - MW                                                  |                               |             |                |         | 00;          |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                   | ×     |                                               |    |       | ×                |      |          |                                                |             |        |                                             | 03                 |              |    |                                                                                      |
| MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ဖ        | -MW                                                   | <del></del>                   |             | -              |         | 12:50        |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                   | ×     |                                               |    |       | ×                |      |          |                                                |             |        |                                             | 914                | 'n           |    |                                                                                      |
| ADDITIONAL COMMENTS  RELINGUISHED BY AFFILIATION  DATE TIME  ADDITIONAL COMMENTS  RELINGUISHED BY AFFILIATION  DATE TIME  ACCEPTED BY AFFILIATION  DATE TIME  ACCEPTED BY AFFILIATION  DATE TIME  ACCEPTED BY AFFILIATION  DATE TIME  SAMPLER NAME AND SIGNATURE  SIGNATURE OF SAMPLER: STANDER BY AFFILIATION  DATE SIGNATURE  SIGNATURE OF SAMPLER: STANDER: STANDERY: STAND | 7        | MW                                                    |                               |             |                | →.      | 2;20         |                    |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                   | X     |                                               |    |       |                  |      |          |                                                |             |        | No. post post post post post post post post | 510                | •            |    | ***************************************                                              |
| ADDITIONAL COMMENTS  RELINAVISHED BY AFFILLATION  ADDITIONAL COMMENTS  RELINAVISHED BY AFFILLATION  DATE  TIME  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  DATE  TIME  ACCEPTED BY AFFILLATION  DATE  TIME  ACCEPTED BY AFFILLATION  DATE  TIME  ACCEPTED BY AFFILLATION  ACCEPTED BY AFFILLATION  DATE  TIME  ACCEPTED BY AFFILLATION  ACCE | 8        | 1 4S- Infle                                           |                               | Z           | -              |         |              |                    |           | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                   | ×     |                                               |    |       | ×                |      |          |                                                |             |        | -                                           | 3)C                | 2            |    |                                                                                      |
| ADDITIONAL COMMENTS RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLER NAME AND SIGNATURE  ORIGINAL  SAMPLER NAME AND SIGNATURE  SIGNATURE OF SAMPLER: Shan non Date Signed  Shan non Date Shan non Dat | 6        | 一个下午                                                  | ,                             |             | >              | -)      | 1:0          |                    |           | (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - 0         |                   | X     |                                               |    |       | ×                |      |          |                                                |             |        |                                             | <u>o</u>           |              |    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                              |
| ADDITIONAL COMMENTS RELINQUISHED BY AFFILIATION DATE TIME ACCEPTED BY AFFILIATION DATE TIME SAMPLE CONDITIONS SAMPLER NAME AND SIGNATURE  ORIGINAL SAMPLER NAME AND SIGNATURE SIGNATURE SIGNATURE OFFICE TIME SAMPLER NAME AND SIGNATURE SAMPLER NAME AND SIGNATURE (MANDOTY): COUNTY OFFICE STAND SIGNATURE (MANDOTY): COUNTY OFFIC | 위        |                                                       |                               | +           | $\top$         |         |              |                    |           | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                   |       |                                               | -  |       |                  | +    |          | _                                              |             |        |                                             |                    |              |    | П                                                                                    |
| ADDITIONAL COMMENTS  RELINQUISHED BY / AFFILIATION  DATE  TIME  ACCEPTED BY / AFFILIATION  DATE  TIME  SAMPLE CONDITIONS  SAMPLER NAME AND SIGNATURE  SIGNATURE of SAMPLER:  SAMPLER NAME of SAMPLE | <u> </u> |                                                       |                               | +           | +              |         |              |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                   |       |                                               |    |       |                  |      |          |                                                |             |        |                                             |                    |              |    |                                                                                      |
| ORIGINAL SAMPLER NAME AND SIGNATURE  ORIGINAL SAMPLER: SMANNER: SMANNER: SMANNDRY: ON STESIGNED SIGNATURE SIGNATURE SIGNATURE (MMNDDAY): ON STESIGNED SIGNATURE SIGNATURE SIGNATURE SIGNATURE of SAMPLER: SMANNDRY: ON STESIGNED SIGNATURE OF SAMPLER: SMANDRY: ON STESIGNED SIGNATURE OF SAMPLER: SMANDRY: ON STESIGNED SIGNATURE OF SAMPLER: SMANDRY: S | 1        |                                                       | -                             | RELIN       | (aus           | знер ву | / AFFILIATIO | Z                  | DATE      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TIME        | +                 | 1     | ] & '                                         |    | [m    | AFFILIA          | NOL. | -<br>    | ATE                                            | TIME        |        | /s                                          | AMPLE CON          | DITIONS      |    | Ī                                                                                    |
| SAMPLER NAME AND SIGNATURE  ORIGINAL PRINT Name of SAMPLER: SMANNON Cooler (YX) Sealed Co |          |                                                       |                               | $ \langle $ |                |         | 3            | )                  | Mrolz     | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27          |                   |       | 100                                           |    | 2     |                  | R    | 2        | 22.4                                           | 2           | 7      | 7 7                                         | 1                  |              |    |                                                                                      |
| SAMPLER NAME AND SIGNATURE  ORIGINAL  PRINT Name of SAMPLER: SMAN now Question of Samples Intact  SIGNATURE of SAMPLER: MANIDD/YY): 0128   10   10   10   10   10   10   10   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                       |                               |             |                |         |              |                    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                   |       |                                               |    |       |                  |      |          |                                                |             |        |                                             |                    |              |    |                                                                                      |
| PRINT Name of SAMPLER: SMAN No. 1 Classical Control Control Classical Control Contro | Þag      |                                                       | IN IN CHAIR                   |             |                |         | SAMPLEF      | NAMEAN             | D SIGNATU | RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                   |       |                                               |    |       |                  |      |          |                                                |             | ၁.     | uo                                          | y<br>oler          |              |    |                                                                                      |
| SIGNATURE of SAMPLER: (MM/DD/YY): 0473 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e 52 c   | )                                                     |                               |             |                |         |              | PRINT Name         | of SAMPLE | انخا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3           | दु                | 194   | 0                                             | \$ | 3     | DATES            | 1 1  | 7        | 1.1                                            |             | ni qmə | eceived                                     | botsuO<br>DO belea | (N/A)        |    |                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of 5     |                                                       |                               |             |                |         |              | SIGNATURE          | of SAMPLE | π.<br><b>(</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Z           | K                 |       |                                               | 1  |       | (MM/DI           |      | 010      | \ <u>\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \</u> | 9           | L      |                                             | 98                 |              | s2 |                                                                                      |

## Pace Analytical

### Document Name:

### Sample Condition Upon Receipt Form

Document No.:

Document Revised: 05Jan2016

Page 1 of 1 Issuing Authority:

F-MN-L-213-rev.15 Pace Minnesota Quality Office Sample Condition Client Name: Project #: WO#: 10339705 Upon Receipt andrew En Courier: Fed Ex **TUPS** Commercial Pace SpeeDee Other: Tracking Number: Optional: Proj. Due Date: Proj. Name: No Custody Seal on Cooler/Box Present? Yes Tho Seals Intact? Yes Bubble Bags None Other:\_ Temp Blank? Yes No Packing Material: Bubble Wrap Thermometer 151401163 151401164 B88A912167504 Type of Ice: □Wet Blue None Samples on ice, cooling process has begun Used: ☐B88A0143310098 Cooler Temp Read (°C): 4. Cooler Temp Corrected (°C): 4. Biological Tissue Frozen? Yes No A/A Correction Factor: Date and Initials of Person Examining Contents: 2516) Temp should be above freezing to 6°C USDA Regulated Soil ( N/A, water sample) Did samples originate in a quarantine zone within the United States: AL, AR, AZ, CA, FL, GA, ID, LA. Did samples originate from a foreign source (internationally, Yes No including Hawaii and Puerto Rico)? MS, NC, NM, NY, OK, OR, SC, TN, TX or WA (check maps)? Yes If Yes to either question, fill out a Regulated Soil Checklist (F-MN-Q-338) and include with SCUR/COC paperwork. COMMENTS: Chain of Custody Present? Yes □No □N/A Chain of Custody Filled Out? Yes □No □N/A 2. Chain of Custody Relinquished? Yes □No □N/A Sampler Name and/or Signature on COC? Yes □No □N/A Samples Arrived within Hold Time? Yes □No □N/A Short Hold Time Analysis (<72 hr)? Yes DNO □N/A Rush Turn Around Time Requested? Yes No □N/A □No Sufficient Volume? □N/A Yes Correct Containers Used? 9. Yes □No □N/A -Pace Containers Used? Yes □No □N/A Containers Intact? Yes No □N/A 10. Filtered Volume Received for Dissolved Tests? Yes □No -UN/A 11. Note if sediment is visible in the dissolved container Sample Labels Match COC? Yes □No □N/A 12. -Includes Date/Time/ID/Analysis Matrix:\_\_ All containers needing acid/base preservation have been 13. □HNO₃ ☐H<sub>2</sub>SO<sub>4</sub> ■NaOH HCI checked? □No □N/A Yes All containers needing preservation are found to be in Sample # compliance with EPA recommendation? (HNO<sub>3</sub>, H<sub>2</sub>SO<sub>4</sub>, HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide) Yes □No N/A Exceptions, VOA, Coliform, TOC, Oil and Grease, Initial when Lot # of added DRO/8015 (water) DOC □No □N/A completed: preservative: Headspace in VOA Vials (>6mm)? Yes - No □N/A 14. Trip Blank Present? Yes No □N/A 15. Trip Blank Custody Seals Present? √∐Yes □No □N/A 021216-01 Pace Trip Blank Lot # (if purchased):

**CLIENT NOTIFICATION/RESOLUTION** Field Data Required? Yes No Person Contacted: Date/Time: Comments/Resolution:

Project Wanager Review:

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).

Workorder: 10339705 Workorder Name: City of Rochester-CRC Owner Received Date: 2/25/2016 Results Requested By: 3/3/2016 Face Analytical sage \$4 of

| Comparison   Com   | 16              | 15              | 14              | 13              | 12              | <u>-1</u>       | ō               | ပ               | 8               | 7               | 6                                       | 5               | 4               | 3               | 2               | -1              |                      | <b>4</b> ,                                           | Fax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | P ≤                                    | 170                                    | Oye<br>Pac                                  | Rep       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------|---------------------------------------------|-----------|
| Subcontract to   Requested Analysis   Pada Pady (Collect   Suite 9   Green Bay, WI 54302   Phone (920)/459-2436   Final Pada Pady (WI 54302   Phone (920)/459-2436   Final Pady (WI 54302   Final Pady (WI 5   | TRIP BLANK      | MW-20           | MW-19           | MW-18           | MW-17           | MW-16           | MW-15           | WV-14           | DPE-8           | DPE-7           | DPE-6                                   | DPE-5           | DPE-4           | DPE-3           | DPE-2           | DPE-1           | Sample ID            |                                                      | (612)607-6444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | neapolis, MN 55414<br>ne (612)607-1700 | 0 Elm Street, Suite 200                | yemi Odujole<br>e Analytical Services, Inc. | Report To |
| Procedurate to   Procedurate   Processor Analytical Green Bay   1241 Bellevue Street   Suite 9   | PS              | Sd              | PS              | PS                                      | Sd              | PS              | Sd              | PS              | PS              | Sample<br>Type       | -                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                             | В         |
| Vical Green Bay vue Street  Preserved Containers  Preserved Containers  I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2/23/2016 00:00 | 2/23/2016 15:20 | 2/23/2016 12:50 | 2/23/2016 18:00 | 2/23/2016 17:35 | 2/23/2016 15:45 | 2/23/2016 13:55 | 2/23/2016 13:40 | 2/23/2016 16:00 | 2/23/2016 13:15 | 2/23/2016 15:05                         | 2/23/2016 15:35 | 2/23/2016 16:25 | 2/23/2016 16:55 | 2/23/2016 16:40 | 2/23/2016 17:10 | Collect<br>Date/Time |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Green<br>Phone                         | Suite                                  | Pace .<br>1241 I                            | Subcontra |
| Bay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10339705018     | 10339705015     | 10339705014     | 10339705013     | 10339705012     | 10339705011     | 10339705010     | 10339705009     | 10339705008     | 10339705007     | 10339705006                             | 10339705005     | 10339705004     | 10339705003     | 10339705002     | 10339705001     | Lab ID               |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ı Bay, WI 5430<br>e (920)469-2436      | 9                                      | Analytical Greer<br>Bellevue Street         | ct To     |
| Note that the state of the stat | Water                                   | Water           | Water           | Water           | Water           | Water           | Matrix               |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ö.                                     | •                                      | า Bay                                       |           |
| X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2               | ω               | ပ               | ω               | ω               | ω               | ω               | 3               | ယ               | 3               | ω                                       | ω               | ω               | ပ               | з               | ω               | HCL                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                             |           |
| X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                 |                 | _               |                 |                 |                 |                 |                 |                 |                                         | -               |                 |                 |                 |                 |                      | resen                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                             |           |
| X X X X X X X X X X X X X X X X X X X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 | -               |                 |                 | ļ               |                 |                 |                 |                 |                 |                                         |                 |                 |                 |                 |                 |                      | _led C                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                             |           |
| Requested Analysis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |                 |                 |                 |                 |                 | 012444          |                 |                 |                 |                                         |                 |                 |                 |                 |                 |                      | ontainers                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×               | ×               | ×               | ×               | ×               | ×               | ×               | ×               | ×               | ×               | ×                                       | ×               | ×               | ×               | ×               | ×               | 8260                 | VOC 465                                              | LIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | *****                                  |                                             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | <u> </u>        | L               |                 |                 | _               | -               |                 |                 |                 |                                         |                 |                 | _               | _               |                 |                      | ······································               | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | <del>este de la</del> ci               | WHATE STREET                                | -         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | -               |                 | -               | -               | <u> </u>        | -               | -               |                 | _               |                                         | <u> </u>        |                 |                 | _               |                 |                      | addition of the second second second second          | THE COMMISSION AND ADDRESS OF THE CO |                                        | -                                      | <del>distance de mo</del>                   |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | <u> </u>        |                 |                 |                 |                 |                 |                 |                 |                 | *************************************** |                 |                 |                 |                 |                 |                      | ***                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        | and with the same                           | Requ      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                                         |                 |                 |                 |                 |                 |                      |                                                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        | -                                      |                                             | ested     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                 | _               | -               | -               |                 | _               |                 |                 | AND THE RESERVE |                                         | _               | <u> </u>        | -               |                 | -               |                      | ***************************************              | · Mescaphonomy III.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | encjokskytentersk                      | *****************                      | MARININ MARIA                               | Analy     |
| LAB USE ONLY 3-40mly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _               | _               | <u> </u>        |                 | <u> </u>        | <b> -</b> -     | _               |                 |                 | _               |                                         |                 | _               | _               | _               | _               |                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>Manuscana</del> n                 | <b></b>                                | ***************************************     | sis       |
| LAB USE ONLY  3-40mly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                 | <u> </u>        | <u> </u>        | <del> </del>    | <u> </u>        | <u> </u>        | <u> </u>        |                 |                 | _                                       |                 | _               |                 | _               | <u> </u>        |                      | <del>on and and and and and and and and and an</del> | SS TENNEN PROPERTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        | ************************************** |                                             |           |
| LAB USE ONLY  3-40mly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |                                         |                 |                 |                 |                 |                 |                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        | an in December                         |                                             |           |
| LAB USE ONLY  3-40mly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.              | <u> </u>        | <u> </u>        |                 |                 | <u></u>         | <b>L</b>        | _               | _               | -               |                                         | _               | _               | _               | <u> </u>        | _               |                      |                                                      | ro wy asternia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        | ************                           |                                             |           |
| DILY BONLY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H/4             |                 |                 |                 | L               |                 | _               | _               |                 | _               | <b>-</b>                                | $\vdash$        | $\vdash$        | -               | <b>-</b>        | パイン             | LAB                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3               |                 |                 |                 |                 |                 |                 |                 |                 |                 |                                         |                 |                 |                 |                 | PA<br>PA        | USE O                |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                             |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0               |                 |                 |                 |                 |                 |                 |                 |                 |                 |                                         |                 |                 |                 |                 | Ę               | Į Ž                  |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                        |                                             |           |

| 7 |
|---|
| ≤ |
| 7 |
| ŕ |
| ŗ |
| Ç |
| ۶ |
| 7 |
| 2 |
| ġ |
|   |
| 1 |
| 2 |
| ξ |
| ī |
| ۶ |
| ŭ |
|   |

Cooler Temperature on Receipt Transfers Released By ကိ Date/Time Custody Seal Received By Received on Ice Date/Time or Samples Intact Comments

# Pace Analytical\*

### Sample Condition Upon Receipt

Pace Analytical Services, Inc. 1241 Bellevue Street, Suite 9 Green Bay, WI 54302

| Client Name: Pall MA                                                                                      | J           |             |              | Project #:           | WO#                 | :40128825                           |
|-----------------------------------------------------------------------------------------------------------|-------------|-------------|--------------|----------------------|---------------------|-------------------------------------|
| Courier: Fed Ex F UPS F Client F Pac                                                                      | v Other     | ١٨          | IAH          | (0                   | <b>ii 1 i</b> ii ii |                                     |
| Tracking #: 995032 -                                                                                      |             | V\          | 11461        | <u> </u>             | 401399              |                                     |
| Custody Seal on Cooler/Box Present: 17 yes                                                                | no :        | Seals       | intact:      | yes no               |                     | 5                                   |
| Custody Seal on Samples Present: Tyes                                                                     |             | Seals       | intact       | ∶ h yes no           |                     |                                     |
| Packing Material:   Bubble Wrap   Bubl                                                                    | ble Bags    |             | Non          | e Cother             |                     |                                     |
| Thermometer Used SRID4                                                                                    | Type of     | fice:(      | Wet          | Blue Dry None        | Samples on          | ice, cooling process has begun      |
| Cooler Temperature Uncorr: / /Corr:                                                                       |             |             | Biolo        | gical Tissue is Froz | zen: Fyes           |                                     |
| Temp Blank Present: Ves I no                                                                              |             |             |              |                      | r no ∣              | Person examining contents:          |
| Temp should be above freezing to 6°C for all sample exc<br>Frozen Biota Samples should be received ≤ 0°C. | cept Biota. |             |              | Comments:            |                     | Initials:                           |
| Chain of Custody Present:                                                                                 | Lyes [      | □No         | □n/a         | 1.                   |                     |                                     |
| Chain of Custody Filled Out:                                                                              | Dives [     | JNo         | □n/a         | 2.                   |                     |                                     |
| Chain of Custody Relinquished:                                                                            | Dayes [     | JNo         | □n/a         | 3.                   |                     |                                     |
| Sampler Name & Signature on COC:                                                                          | □Yes [      | □No         | (XIVA        | 4. IRINO             |                     | 3/2/16 74                           |
| Samples Arrived within Hold Time:                                                                         | Yes [       | □No         | □n/a         | 5.                   |                     |                                     |
| - VOA Samples frozen upon receipt                                                                         | □Yes □      | □No         |              | Date/Time:           |                     |                                     |
| Short Hold Time Analysis (<72hr):                                                                         | □Yes Ì      | AND         | □n/a         | 6.                   |                     |                                     |
| Rush Turn Around Time Requested:                                                                          | Wyes [      | □No         | □n/a         | 7.33110              |                     | 3/2/110 13                          |
| Sufficient Volume:                                                                                        | DXxes [     | □No         | □n/a         | 8.                   |                     | / '                                 |
| Correct Containers Used:                                                                                  | XXes C      | □No         | □n/a         | 9.                   |                     |                                     |
| -Pace Containers Used:                                                                                    | Ùyes ₺      | JAN .       | □n/a         |                      |                     |                                     |
| -Pace IR Containers Used:                                                                                 | Down [      | ]No         | □n/a         |                      |                     |                                     |
| Containers Intact:                                                                                        | Vyes [      | □No         | □n/a         | 10.                  |                     |                                     |
| Filtered volume received for Dissolved tests                                                              | □Yes □      | ∃No         | AWZ          | 11.                  |                     |                                     |
| Sample Labels match COC:                                                                                  | DXV es [    | JNo ∕       | □n/a         | 12.                  |                     |                                     |
| -Includes date/time/ID/Analysis Matrix:                                                                   | <u> </u>    | <u>/</u>    | <del>-</del> |                      |                     |                                     |
| All containers needing preservation have been checked. (Non-Compliance noted in 13.)                      | □Yes □      | □No         | AMA          | T HNO3               | F H2SO4 F           | NaOH   NaOH +ZnAct                  |
| All containers needing preservation are found to be in                                                    |             |             | - 74-        | 10.                  |                     |                                     |
| compliance with EPA recommendation.<br>(HNO3, H2SO4 ≤2; NaOH+ZnAct ≥9, NaOH ≥12)                          | □Yes □      | ∃No         | DAVA         |                      |                     |                                     |
| exceptions: YOA, coliform, TOC, TOX, TOH,                                                                 |             |             | -'           | Initial when L       | ab Std #ID of       | Date/                               |
| O&G, WIDROW, Phenolics, OTHER:                                                                            | Tyres [     | ]No         |              | completed p          | reservative         | Time:                               |
| Headspace in VOA Vials ( >6mm):                                                                           | Yes 【       | _6M <u></u> | □n/a         | 14.                  |                     |                                     |
| Trip Blank Present:                                                                                       | 540g [      | □No         | □n/a         | 15.                  |                     |                                     |
| Trip Blank Custody Seals Present                                                                          | Dysos [     | ]No         | □n/a         |                      |                     |                                     |
| Pace Trip Blank Lot # (if purchased):                                                                     | `           |             |              |                      |                     | No as for a delition of a second of |
| Client Notification/ Resolution: Person Contacted:                                                        |             |             | Date/⊺       |                      | ecked, see attache  | d form for additional comments      |
| Person Contacted: Comments/ Resolution:                                                                   |             | ······· '   | Ja16/ 1      | HIIG.                |                     |                                     |
|                                                                                                           |             |             |              |                      |                     |                                     |
|                                                                                                           |             |             |              |                      |                     |                                     |
|                                                                                                           |             |             |              |                      |                     |                                     |
| Project Manager Review:                                                                                   |             |             |              |                      | Date:               | 3/2/16                              |





April 06, 2016

Aaron Kuck Landmark Environmenatl 2042 W 98th St. Bloomingotn, MN 55431

RE: Project: CRC- City of Rochester

Pace Project No.: 10343231

### Dear Aaron Kuck:

Enclosed are the analytical results for sample(s) received by the laboratory on March 31, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Oyeyemi Odujole oyeyemi.odujole@pacelabs.com Project Manager

**Enclosures** 







### **CERTIFICATIONS**

Project: CRC- City of Rochester

Pace Project No.: 10343231

**Minnesota Certification IDs** 

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

525 N 8th Street, Salina, KS 67401 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace

Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605

Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Kentucky Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909

Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN\_00064

Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530

North Carolina State Public Health #: 27700

North Dakota Certification #: R-036

Ohio EPA #: 4150 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563

Puerto Rico Certification Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Virginia/VELAP Certification #: Pace Washington Certification #: C486 West Virginia Certification #: 382 West Virginia DHHR #:9952C

Wisconsin Certification #: 999407970



### **SAMPLE SUMMARY**

Project: CRC- City of Rochester

Pace Project No.: 10343231

| Lab ID      | Sample ID   | Matrix | Date Collected | Date Received  |
|-------------|-------------|--------|----------------|----------------|
| 10343231001 | AS-Influent | Water  | 03/30/16 15:30 | 03/31/16 12:15 |
| 10343231002 | AS-Effluent | Water  | 03/30/16 16:00 | 03/31/16 12:15 |





### **SAMPLE ANALYTE COUNT**

Project: CRC- City of Rochester

Pace Project No.: 10343231

| Lab ID      | Sample ID   | Method  | Analysts | Analytes<br>Reported |
|-------------|-------------|---------|----------|----------------------|
| 10343231001 | AS-Influent | EPA 624 | DJB      | 73                   |
| 10343231002 | AS-Effluent | EPA 624 | DJB      | 73                   |

(612)607-1700



### **ANALYTICAL RESULTS**

Project: CRC- City of Rochester

Pace Project No.: 10343231

Date: 04/06/2016 03:44 PM

| Parameters                                        | Results         |              |              |    |          |                |            |       |
|---------------------------------------------------|-----------------|--------------|--------------|----|----------|----------------|------------|-------|
|                                                   |                 | Units        | Report Limit | DF | Prepared | Analyzed       | CAS No.    | Qua   |
| 624 MSV                                           | Analytical Meth | nod: EPA 62  | 24           |    |          |                |            |       |
| Acetone                                           | 38.9            | ug/L         | 20.0         | 1  |          | 04/05/16 13:17 | 7 67-64-1  |       |
| Allyl chloride                                    | ND              | ug/L         | 4.0          | 1  |          | 04/05/16 13:17 | 7 107-05-1 |       |
| Benzene                                           | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 | 7 71-43-2  |       |
| Bromobenzene                                      | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 | 7 108-86-1 |       |
| Bromochloromethane                                | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 | 7 74-97-5  |       |
| Bromodichloromethane                              | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 | 7 75-27-4  |       |
| Bromoform                                         | ND              | ug/L         | 4.0          | 1  |          | 04/05/16 13:17 | 7 75-25-2  |       |
| Bromomethane                                      | ND              | ug/L         | 4.0          | 1  |          | 04/05/16 13:17 | 7 74-83-9  |       |
| 2-Butanone (MEK)                                  | ND              | ug/L         | 5.0          | 1  |          | 04/05/16 13:17 | 7 78-93-3  |       |
| n-Butylbenzene                                    | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 | 7 104-51-8 |       |
| sec-Butylbenzene                                  | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 |            |       |
| ert-Butylbenzene                                  | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 | 7 98-06-6  |       |
| Carbon tetrachloride                              | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 | 7 56-23-5  |       |
| Chlorobenzene                                     | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 | 7 108-90-7 |       |
| Chloroethane                                      | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 | 7 75-00-3  |       |
| 2-Chloroethylvinyl ether                          | ND              | ug/L         | 10.0         | 1  |          | 04/05/16 13:17 |            | P5,c2 |
| Chloroform                                        | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 |            | ,     |
| Chloromethane                                     | ND              | ug/L         | 4.0          | 1  |          | 04/05/16 13:17 |            |       |
| 2-Chlorotoluene                                   | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 |            |       |
| 4-Chlorotoluene                                   | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 |            |       |
| 1,2-Dibromo-3-chloropropane                       | ND              | ug/L         | 4.0          | 1  |          | 04/05/16 13:17 |            |       |
| Dibromochloromethane                              | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 |            |       |
| 1,2-Dibromoethane (EDB)                           | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 |            |       |
| Dibromomethane                                    | ND              | ug/L         | 4.0          | 1  |          | 04/05/16 13:17 |            |       |
| 1,2-Dichlorobenzene                               | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 |            |       |
| 1,3-Dichlorobenzene                               | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 |            |       |
| 1,4-Dichlorobenzene                               | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 |            |       |
| Dichlorodifluoromethane                           | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 |            |       |
| 1,1-Dichloroethane                                | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 |            |       |
| 1,2-Dichloroethane                                | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 |            |       |
| 1,1-Dichloroethene                                | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 |            |       |
| cis-1,2-Dichloroethene                            | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 |            |       |
| trans-1,2-Dichloroethene                          | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 |            |       |
| Dichlorofluoromethane                             | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 |            |       |
| 1,2-Dichloropropane                               | ND              | ug/L         | 4.0          | 1  |          | 04/05/16 13:17 |            |       |
| 1,3-Dichloropropane                               | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 |            |       |
| 2,2-Dichloropropane                               | ND              | ug/L         | 4.0          | 1  |          | 04/05/16 13:17 |            |       |
| 1,1-Dichloropropene                               | ND              | ug/L         | 1.0          | 1  |          | 04/05/16 13:17 |            |       |
| cis-1,3-Dichloropropene                           | ND              | ug/L         | 4.0          | 1  |          | 04/05/16 13:17 |            |       |
| trans-1,3-Dichloropropene                         | ND<br>ND        | ug/L         | 4.0          | 1  |          | 04/05/16 13:17 |            |       |
| Diethyl ether (Ethyl ether)                       | ND<br>ND        | ug/L         | 4.0          | 1  |          | 04/05/16 13:17 |            |       |
| Ethylbenzene                                      | ND<br>ND        | ug/L<br>ug/L | 1.0          | 1  |          | 04/05/16 13:17 |            |       |
| Hexachloro-1,3-butadiene                          | ND<br>ND        | ug/L<br>ug/L | 1.0          | 1  |          | 04/05/16 13:17 |            |       |
| sopropylbenzene (Cumene)                          | ND<br>ND        | ug/L<br>ug/L | 1.0          | 1  |          | 04/05/16 13:17 |            |       |
| o-Isopropyltoluene                                | ND<br>ND        | ug/L<br>ug/L | 1.0          | 1  |          | 04/05/16 13:17 |            |       |
| Methylene Chloride                                | ND<br>ND        | _            |              | 1  |          | 04/05/16 13:17 |            | L2    |
| Methylene Chloride<br>4-Methyl-2-pentanone (MIBK) | ND<br>ND        | ug/L<br>ug/L | 4.0<br>5.0   | 1  |          | 04/05/16 13:17 |            | L2    |

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..





Project: CRC- City of Rochester

Pace Project No.: 10343231

Date: 04/06/2016 03:44 PM

| Sample: AS-Influent            | Lab ID: 103     | 43231001    | Collected: 03/30/1 | 6 15:30 | Received: 03/ | 31/16 12:15 N  | Matrix: Water |     |
|--------------------------------|-----------------|-------------|--------------------|---------|---------------|----------------|---------------|-----|
| Parameters                     | Results         | Units       | Report Limit       | DF      | Prepared      | Analyzed       | CAS No.       | Qua |
| 624 MSV                        | Analytical Meth | nod: EPA 62 | 24                 |         |               |                |               |     |
| Methyl-tert-butyl ether        | ND              | ug/L        | 1.0                | 1       |               | 04/05/16 13:17 | 1634-04-4     |     |
| Naphthalene                    | ND              | ug/L        | 4.0                | 1       |               | 04/05/16 13:17 | 91-20-3       |     |
| n-Propylbenzene                | ND              | ug/L        | 1.0                | 1       |               | 04/05/16 13:17 | 103-65-1      |     |
| Styrene                        | ND              | ug/L        | 1.0                | 1       |               | 04/05/16 13:17 | 100-42-5      |     |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1       |               | 04/05/16 13:17 | 630-20-6      |     |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1       |               | 04/05/16 13:17 | 79-34-5       |     |
| Tetrachloroethene              | 59.5            | ug/L        | 1.0                | 1       |               | 04/05/16 13:17 | 127-18-4      |     |
| Tetrahydrofuran                | ND              | ug/L        | 10.0               | 1       |               | 04/05/16 13:17 | 109-99-9      |     |
| Toluene                        | ND              | ug/L        | 1.0                | 1       |               | 04/05/16 13:17 | 108-88-3      |     |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1       |               | 04/05/16 13:17 | 87-61-6       |     |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1       |               | 04/05/16 13:17 | 120-82-1      |     |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 1.0                | 1       |               | 04/05/16 13:17 | 71-55-6       |     |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 1.0                | 1       |               | 04/05/16 13:17 | 79-00-5       |     |
| Trichloroethene                | ND              | ug/L        | 0.40               | 1       |               | 04/05/16 13:17 | 79-01-6       |     |
| Trichlorofluoromethane         | ND              | ug/L        | 1.0                | 1       |               | 04/05/16 13:17 | 75-69-4       |     |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 4.0                | 1       |               | 04/05/16 13:17 | 96-18-4       |     |
| 1,1,2-Trichlorotrifluoroethane | ND              | ug/L        | 1.0                | 1       |               | 04/05/16 13:17 | 76-13-1       |     |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1       |               | 04/05/16 13:17 | 95-63-6       |     |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1       |               | 04/05/16 13:17 | 108-67-8      |     |
| Vinyl chloride                 | ND              | ug/L        | 0.40               | 1       |               | 04/05/16 13:17 | 75-01-4       |     |
| Xylene (Total)                 | ND              | ug/L        | 3.0                | 1       |               | 04/05/16 13:17 | 1330-20-7     |     |
| m&p-Xylene                     | ND              | ug/L        | 2.0                | 1       |               | 04/05/16 13:17 | 179601-23-1   |     |
| o-Xylene                       | ND              | ug/L        | 1.0                | 1       |               | 04/05/16 13:17 | 95-47-6       |     |
| Surrogates                     |                 | -           |                    |         |               |                |               |     |
| 1,2-Dichloroethane-d4 (S)      | 104             | %.          | 75-125             | 1       |               | 04/05/16 13:17 | 17060-07-0    |     |
| Toluene-d8 (S)                 | 95              | %.          | 75-125             | 1       |               | 04/05/16 13:17 | 2037-26-5     |     |
| 4-Bromofluorobenzene (S)       | 111             | %.          | 75-125             | 1       |               | 04/05/16 13:17 | 460-00-4      |     |





Project: CRC- City of Rochester

Date: 04/06/2016 03:44 PM

| Sample: AS-Effluent         | Lab ID: 103    | 43231002    | Collected: 03/30/1 | 16 16:00 | Received: | 03/31/16 12:15 | Matrix: Water |     |
|-----------------------------|----------------|-------------|--------------------|----------|-----------|----------------|---------------|-----|
| Parameters                  | Results        | Units       | Report Limit       | DF       | Prepared  | Analyzed       | CAS No.       | Qua |
| 624 MSV                     | Analytical Met | hod: EPA 62 | 24                 |          |           |                |               |     |
| Acetone                     | 71.2           | ug/L        | 20.0               | 1        |           | 04/05/16 14:4  | 6 67-64-1     |     |
| Allyl chloride              | ND             | ug/L        | 4.0                | 1        |           | 04/05/16 14:4  | 6 107-05-1    |     |
| Benzene                     | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  | 6 71-43-2     |     |
| Bromobenzene                | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  | 6 108-86-1    |     |
| Bromochloromethane          | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  | 6 74-97-5     |     |
| Bromodichloromethane        | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  | 6 75-27-4     |     |
| Bromoform                   | ND             | ug/L        | 4.0                | 1        |           | 04/05/16 14:4  | 6 75-25-2     |     |
| Bromomethane                | ND             | ug/L        | 4.0                | 1        |           | 04/05/16 14:4  | 6 74-83-9     |     |
| 2-Butanone (MEK)            | ND             | ug/L        | 5.0                | 1        |           | 04/05/16 14:4  | 6 78-93-3     |     |
| n-Butylbenzene              | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  |               |     |
| sec-Butylbenzene            | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  |               |     |
| ert-Butylbenzene            | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  |               |     |
| Carbon tetrachloride        | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  |               |     |
| Chlorobenzene               | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  |               |     |
| Chloroethane                | ND             | •           | 1.0                | 1        |           | 04/05/16 14:4  |               |     |
| 2-Chloroethylvinyl ether    | ND<br>ND       | ug/L        | 10.0               | 1        |           | 04/05/16 14:4  |               | c2  |
| Chloroform                  | ND<br>ND       | ug/L        | 1.0                | 1        |           |                |               | 02  |
|                             |                | ug/L        |                    |          |           | 04/05/16 14:4  |               |     |
| Chloromethane               | ND             | ug/L        | 4.0                | 1        |           | 04/05/16 14:4  |               |     |
| 2-Chlorotoluene             | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  |               |     |
| -Chlorotoluene              | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  |               |     |
| ,2-Dibromo-3-chloropropane  | ND             | ug/L        | 4.0                | 1        |           | 04/05/16 14:4  |               |     |
| Dibromochloromethane        | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  |               |     |
| ,2-Dibromoethane (EDB)      | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  |               |     |
| Dibromomethane              | ND             | ug/L        | 4.0                | 1        |           | 04/05/16 14:4  | 6 74-95-3     |     |
| ,2-Dichlorobenzene          | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  | 6 95-50-1     |     |
| 1,3-Dichlorobenzene         | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  | 6 541-73-1    |     |
| 1,4-Dichlorobenzene         | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  | 6 106-46-7    |     |
| Dichlorodifluoromethane     | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  | 6 75-71-8     |     |
| ,1-Dichloroethane           | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  | 6 75-34-3     |     |
| ,2-Dichloroethane           | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  | 6 107-06-2    |     |
| ,1-Dichloroethene           | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  | 6 75-35-4     |     |
| cis-1,2-Dichloroethene      | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  | 6 156-59-2    |     |
| rans-1,2-Dichloroethene     | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  | 6 156-60-5    |     |
| Dichlorofluoromethane       | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  |               |     |
| .2-Dichloropropane          | ND             | ug/L        | 4.0                | 1        |           | 04/05/16 14:4  |               |     |
| ,3-Dichloropropane          | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  |               |     |
| 2,2-Dichloropropane         | ND             | ug/L        | 4.0                | 1        |           | 04/05/16 14:4  |               |     |
| ,1-Dichloropropene          | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  |               |     |
| is-1,3-Dichloropropene      | ND             | ug/L        | 4.0                | 1        |           | 04/05/16 14:4  |               |     |
| rans-1,3-Dichloropropene    | ND             | •           |                    | 1        |           | 04/05/16 14:4  |               |     |
| Diethyl ether (Ethyl ether) | ND<br>ND       | ug/L        | 4.0<br>4.0         | 1        |           | 04/05/16 14:4  |               |     |
| , , ,                       |                | ug/L        |                    | 1        |           |                |               |     |
| Ethylbenzene                | ND             | ug/L        | 1.0                |          |           | 04/05/16 14:4  |               |     |
| lexachloro-1,3-butadiene    | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  |               |     |
| sopropylbenzene (Cumene)    | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  |               |     |
| o-Isopropyltoluene          | ND             | ug/L        | 1.0                | 1        |           | 04/05/16 14:4  |               |     |
| Methylene Chloride          | ND             | ug/L        | 4.0                | 1        |           | 04/05/16 14:4  |               | L2  |
| I-Methyl-2-pentanone (MIBK) | ND             | ug/L        | 5.0                | 1        |           | 04/05/16 14:4  | 6 108-10-1    |     |

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..





Project: CRC- City of Rochester

Pace Project No.: 10343231

Date: 04/06/2016 03:44 PM

| Sample: AS-Effluent            | Lab ID: 103    | 43231002    | Collected: 03/30/1 | 6 16:00 | Received: 03/31/16 12:15 | Matrix: Water |     |
|--------------------------------|----------------|-------------|--------------------|---------|--------------------------|---------------|-----|
| Parameters                     | Results        | Units       | Report Limit       | DF      | Prepared Analyzed        | CAS No. Q     | )ua |
| 624 MSV                        | Analytical Met | nod: EPA 62 | 24                 |         |                          |               |     |
| Methyl-tert-butyl ether        | ND             | ug/L        | 1.0                | 1       | 04/05/16 14:4            | 6 1634-04-4   |     |
| Naphthalene                    | ND             | ug/L        | 4.0                | 1       | 04/05/16 14:4            | 6 91-20-3     |     |
| n-Propylbenzene                | ND             | ug/L        | 1.0                | 1       | 04/05/16 14:4            | 6 103-65-1    |     |
| Styrene                        | ND             | ug/L        | 1.0                | 1       | 04/05/16 14:4            | 6 100-42-5    |     |
| 1,1,1,2-Tetrachloroethane      | ND             | ug/L        | 1.0                | 1       | 04/05/16 14:4            | 6 630-20-6    |     |
| 1,1,2,2-Tetrachloroethane      | ND             | ug/L        | 1.0                | 1       | 04/05/16 14:4            | 6 79-34-5     |     |
| Tetrachloroethene              | ND             | ug/L        | 1.0                | 1       | 04/05/16 14:4            | 6 127-18-4    |     |
| Tetrahydrofuran                | ND             | ug/L        | 10.0               | 1       | 04/05/16 14:4            | 6 109-99-9    |     |
| Toluene                        | ND             | ug/L        | 1.0                | 1       | 04/05/16 14:4            | 6 108-88-3    |     |
| 1,2,3-Trichlorobenzene         | ND             | ug/L        | 1.0                | 1       | 04/05/16 14:4            | 6 87-61-6     |     |
| 1,2,4-Trichlorobenzene         | ND             | ug/L        | 1.0                | 1       | 04/05/16 14:4            | 6 120-82-1    |     |
| 1,1,1-Trichloroethane          | ND             | ug/L        | 1.0                | 1       | 04/05/16 14:4            | 6 71-55-6     |     |
| 1,1,2-Trichloroethane          | ND             | ug/L        | 1.0                | 1       | 04/05/16 14:4            | 6 79-00-5     |     |
| Trichloroethene                | ND             | ug/L        | 0.40               | 1       | 04/05/16 14:4            | 6 79-01-6     |     |
| Trichlorofluoromethane         | ND             | ug/L        | 1.0                | 1       | 04/05/16 14:4            | 6 75-69-4     |     |
| 1,2,3-Trichloropropane         | ND             | ug/L        | 4.0                | 1       | 04/05/16 14:4            | 6 96-18-4     |     |
| 1,1,2-Trichlorotrifluoroethane | ND             | ug/L        | 1.0                | 1       | 04/05/16 14:4            | 6 76-13-1     |     |
| 1,2,4-Trimethylbenzene         | ND             | ug/L        | 1.0                | 1       | 04/05/16 14:4            | 6 95-63-6     |     |
| 1,3,5-Trimethylbenzene         | ND             | ug/L        | 1.0                | 1       | 04/05/16 14:4            | 6 108-67-8    |     |
| Vinyl chloride                 | ND             | ug/L        | 0.40               | 1       | 04/05/16 14:4            | 6 75-01-4     |     |
| Xylene (Total)                 | ND             | ug/L        | 3.0                | 1       | 04/05/16 14:4            | 6 1330-20-7   |     |
| m&p-Xylene                     | ND             | ug/L        | 2.0                | 1       | 04/05/16 14:4            | 6 179601-23-1 |     |
| o-Xylene                       | ND             | ug/L        | 1.0                | 1       | 04/05/16 14:4            | 6 95-47-6     |     |
| Surrogates                     |                |             |                    |         |                          |               |     |
| 1,2-Dichloroethane-d4 (S)      | 103            | %.          | 75-125             | 1       | 04/05/16 14:4            | 6 17060-07-0  |     |
| Toluene-d8 (S)                 | 96             | %.          | 75-125             | 1       | 04/05/16 14:4            | 6 2037-26-5   |     |
| 4-Bromofluorobenzene (S)       | 105            | %.          | 75-125             | 1       | 04/05/16 14:4            | 6 460-00-4    |     |

(612)607-1700



### **QUALITY CONTROL DATA**

Project: CRC- City of Rochester

Pace Project No.: 10343231

Date: 04/06/2016 03:44 PM

QC Batch: MSV/35094 Analysis Method: EPA 624
QC Batch Method: EPA 624 Analysis Description: 624 MSV

Associated Lab Samples: 10343231001, 10343231002

METHOD BLANK: 2223939 Matrix: Water

Associated Lab Samples: 10343231001, 10343231002

| Parameter                      | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|--------------------------------|-------|-----------------|--------------------|----------------|------------|
| 1,1,1,2-Tetrachloroethane      | ug/L  | ND -            | 1.0                | 04/05/16 10:41 |            |
| 1,1,1-Trichloroethane          | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| 1,1,2-Trichloroethane          | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| I,1-Dichloroethane             | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| I,1-Dichloroethene             | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| ,1-Dichloropropene             | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| ,2,3-Trichlorobenzene          | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| ,2,3-Trichloropropane          | ug/L  | ND              | 4.0                | 04/05/16 10:41 |            |
| 1,2,4-Trichlorobenzene         | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| ,2,4-Trimethylbenzene          | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| ,2-Dibromo-3-chloropropane     | ug/L  | ND              | 4.0                | 04/05/16 10:41 |            |
| ,2-Dibromoethane (EDB)         | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| 1,2-Dichlorobenzene            | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| ,2-Dichloroethane              | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| ,2-Dichloropropane             | ug/L  | ND              | 4.0                | 04/05/16 10:41 |            |
| ,3,5-Trimethylbenzene          | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| ,3-Dichlorobenzene             | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| ,3-Dichloropropane             | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| ,4-Dichlorobenzene             | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| 2,2-Dichloropropane            | ug/L  | ND              | 4.0                | 04/05/16 10:41 |            |
| 2-Butanone (MEK)               | ug/L  | ND              | 5.0                | 04/05/16 10:41 |            |
| 2-Chloroethylvinyl ether       | ug/L  | ND              | 10.0               | 04/05/16 10:41 |            |
| 2-Chlorotoluene                | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| I-Chlorotoluene                | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| I-Methyl-2-pentanone (MIBK)    | ug/L  | ND              | 5.0                | 04/05/16 10:41 |            |
| Acetone                        | ug/L  | ND              | 20.0               | 04/05/16 10:41 |            |
| Allyl chloride                 | ug/L  | ND              | 4.0                | 04/05/16 10:41 |            |
| Benzene                        | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| Bromobenzene                   | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| Bromochloromethane             | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| Bromodichloromethane           | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| Bromoform                      | ug/L  | ND              | 4.0                | 04/05/16 10:41 |            |
| Bromomethane                   | ug/L  | ND              | 4.0                | 04/05/16 10:41 |            |
| Carbon tetrachloride           | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| Chlorobenzene                  | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| Chloroethane                   | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| Chloroform                     | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| Chloromethane                  | ug/L  | ND              | 4.0                | 04/05/16 10:41 |            |
| sis-1,2-Dichloroethene         | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700



### **QUALITY CONTROL DATA**

Project: CRC- City of Rochester

Pace Project No.: 10343231

Date: 04/06/2016 03:44 PM

METHOD BLANK: 2223939 Matrix: Water

Associated Lab Samples: 10343231001, 10343231002

| Parameter                   | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|-----------------------------|-------|-----------------|--------------------|----------------|------------|
| cis-1,3-Dichloropropene     | ug/L  | ND              | 4.0                | 04/05/16 10:41 |            |
| Dibromochloromethane        | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| Dibromomethane              | ug/L  | ND              | 4.0                | 04/05/16 10:41 |            |
| Dichlorodifluoromethane     | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| Dichlorofluoromethane       | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| Diethyl ether (Ethyl ether) | ug/L  | ND              | 4.0                | 04/05/16 10:41 |            |
| Ethylbenzene                | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| Hexachloro-1,3-butadiene    | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| sopropylbenzene (Cumene)    | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| m&p-Xylene                  | ug/L  | ND              | 2.0                | 04/05/16 10:41 |            |
| Methyl-tert-butyl ether     | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| Methylene Chloride          | ug/L  | ND              | 4.0                | 04/05/16 10:41 |            |
| n-Butylbenzene              | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| n-Propylbenzene             | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| Naphthalene                 | ug/L  | ND              | 4.0                | 04/05/16 10:41 |            |
| o-Xylene                    | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| o-Isopropyltoluene          | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| sec-Butylbenzene            | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| Styrene                     | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| tert-Butylbenzene           | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| Tetrachloroethene           | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| Tetrahydrofuran             | ug/L  | ND              | 10.0               | 04/05/16 10:41 |            |
| Toluene                     | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| rans-1,2-Dichloroethene     | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| trans-1,3-Dichloropropene   | ug/L  | ND              | 4.0                | 04/05/16 10:41 |            |
| Trichloroethene             | ug/L  | ND              | 0.40               | 04/05/16 10:41 |            |
| Trichlorofluoromethane      | ug/L  | ND              | 1.0                | 04/05/16 10:41 |            |
| Vinyl chloride              | ug/L  | ND              | 0.40               | 04/05/16 10:41 |            |
| Xylene (Total)              | ug/L  | ND              | 3.0                | 04/05/16 10:41 |            |
| 1,2-Dichloroethane-d4 (S)   | %.    | 105             | 75-125             | 04/05/16 10:41 |            |
| 4-Bromofluorobenzene (S)    | %.    | 106             | 75-125             | 04/05/16 10:41 |            |
| Toluene-d8 (S)              | %.    | 91              | 75-125             | 04/05/16 10:41 |            |

| LABORATORY CONTROL SAMPLE      | & LCSD: 2223940 |       | 22     | 224569 |       |       |        |     |     |            |
|--------------------------------|-----------------|-------|--------|--------|-------|-------|--------|-----|-----|------------|
|                                |                 | Spike | LCS    | LCSD   | LCS   | LCSD  | % Rec  |     | Max |            |
| Parameter                      | Units           | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qualifiers |
| 1,1,1,2-Tetrachloroethane      | ug/L            | 20    | 19.9   | 18.2   | 100   | 91    | 75-126 | 9   | 20  |            |
| 1,1,1-Trichloroethane          | ug/L            | 20    | 21.0   | 17.4   | 105   | 87    | 72-125 | 19  | 20  |            |
| 1,1,2,2-Tetrachloroethane      | ug/L            | 20    | 21.9   | 20.6   | 110   | 103   | 68-125 | 6   | 20  |            |
| 1,1,2-Trichloroethane          | ug/L            | 20    | 20.0   | 19.4   | 100   | 97    | 75-125 | 3   | 20  |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L            | 20    | 18.4   | 14.4   | 92    | 72    | 66-132 | 24  | 20  | R1         |
| 1,1-Dichloroethane             | ug/L            | 20    | 18.2   | 15.7   | 91    | 78    | 68-126 | 15  | 20  |            |
| 1,1-Dichloroethene             | ug/L            | 20    | 16.3   | 13.9   | 81    | 69    | 67-127 | 16  | 20  |            |
| 1,1-Dichloropropene            | ug/L            | 20    | 19.9   | 16.7   | 100   | 84    | 71-126 | 18  | 20  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: CRC- City of Rochester

Pace Project No.: 10343231

Date: 04/06/2016 03:44 PM

| ABORATORY CONTROL SAMPLE ( | & LCSD: 22239 | -     |        | 24569  |       |       |        |       |       |           |
|----------------------------|---------------|-------|--------|--------|-------|-------|--------|-------|-------|-----------|
| _                          |               | Spike | LCS    | LCSD   | LCS   | LCSD  | % Rec  |       | Max   |           |
| Parameter                  | Units         | Conc. | Result | Result | % Rec | % Rec | Limits | RPD . | RPD . | Qualifier |
| ,2,3-Trichlorobenzene      | ug/L          | 20    | 18.9   | 17.8   | 95    | 89    | 63-132 | 6     | 20    |           |
| ,2,3-Trichloropropane      | ug/L          | 20    | 21.5   | 20.6   | 108   | 103   | 72-125 | 5     | 20    |           |
| ,2,4-Trichlorobenzene      | ug/L          | 20    | 18.3   | 16.0   | 92    | 80    | 59-135 | 14    | 20    |           |
| ,2,4-Trimethylbenzene      | ug/L          | 20    | 21.4   | 19.0   | 107   | 95    | 70-132 | 12    | 20    |           |
| ,2-Dibromo-3-chloropropane | ug/L          | 50    | 44.7   | 42.7   | 89    | 85    | 58-130 | 4     | 20    |           |
| ,2-Dibromoethane (EDB)     | ug/L          | 20    | 19.7   | 18.7   | 98    | 94    | 75-125 | 5     | 20    |           |
| ,2-Dichlorobenzene         | ug/L          | 20    | 19.7   | 17.7   | 98    | 88    | 74-125 | 11    | 20    |           |
| ,2-Dichloroethane          | ug/L          | 20    | 21.5   | 19.3   | 107   | 97    | 71-125 | 11    | 20    |           |
| ,2-Dichloropropane         | ug/L          | 20    | 20.3   | 20.4   | 102   | 102   | 72-125 | 0     | 20    |           |
| ,3,5-Trimethylbenzene      | ug/L          | 20    | 21.4   | 18.9   | 107   | 94    | 73-125 | 13    | 20    |           |
| ,3-Dichlorobenzene         | ug/L          | 20    | 19.4   | 17.8   | 97    | 89    | 74-125 | 9     | 20    |           |
| ,3-Dichloropropane         | ug/L          | 20    | 20.2   | 18.8   | 101   | 94    | 75-125 | 7     | 20    |           |
| ,4-Dichlorobenzene         | ug/L          | 20    | 19.6   | 18.2   | 98    | 91    | 74-125 | 7     | 20    |           |
| ,2-Dichloropropane         | ug/L          | 20    | 23.4   | 17.9   | 117   | 89    | 64-138 | 27    | 20    | R1        |
| -Butanone (MEK)            | ug/L          | 100   | 111    | 100    | 111   | 100   | 61-129 | 10    | 20    |           |
| -Chloroethylvinyl ether    | ug/L          | 50    | 40.1   | 49.6   | 80    | 99    | 30-150 | 21    | 20    | R1        |
| -Chlorotoluene             | ug/L          | 20    | 21.1   | 19.0   | 106   | 95    | 70-126 | 11    | 20    |           |
| -Chlorotoluene             | ug/L          | 20    | 22.4   | 19.9   | 112   | 99    | 73-125 | 12    | 20    |           |
| -Methyl-2-pentanone (MIBK) | ug/L          | 100   | 124    | 121    | 124   | 121   | 63-135 | 3     | 20    |           |
| cetone                     | ug/L          | 100   | 99.3   | 99.6   | 99    | 100   | 66-150 | 0     | 20    |           |
| llyl chloride              | ug/L          | 20    | 19.6   | 14.2   | 98    | 71    | 62-139 | 32    | 20    | R1        |
| enzene                     | ug/L          | 20    | 21.7   | 18.0   | 109   | 90    | 67-126 | 19    | 20    |           |
| romobenzene                | ug/L          | 20    | 19.4   | 18.3   | 97    | 92    | 72-125 | 6     | 20    |           |
| romochloromethane          | ug/L          | 20    | 21.0   | 17.5   | 105   | 87    | 73-125 | 18    | 20    |           |
| romodichloromethane        | ug/L          | 20    | 21.5   | 21.8   | 108   | 109   | 71-126 | 1     | 20    |           |
| romoform                   | ug/L          | 20    | 19.3   | 18.8   | 96    | 94    | 64-130 | 2     | 20    |           |
| romomethane                | ug/L          | 20    | 13.5   | 13.2   | 68    | 66    | 30-150 | 3     | 20    |           |
| arbon tetrachloride        | ug/L          | 20    | 21.0   | 17.4   | 105   | 87    | 71-128 | 19    | 20    |           |
| hlorobenzene               | ug/L          | 20    | 21.3   | 19.1   | 106   | 95    | 75-125 | 11    | 20    |           |
| hloroethane                | ug/L          | 20    | 19.2   | 16.2   | 96    | 81    | 60-130 | 17    | 20    |           |
| hloroform                  | ug/L          | 20    | 20.3   | 17.1   | 102   | 85    | 73-125 | 17    | 20    |           |
| hloromethane               | ug/L          | 20    | 20.0   | 18.3   | 100   | 91    | 49-146 | 9     | 20    |           |
| s-1,2-Dichloroethene       | ug/L          | 20    | 19.7   | 15.8   | 99    | 79    | 68-131 | 22    | 20    | R1        |
| s-1,3-Dichloropropene      | ug/L          | 20    | 18.8   | 22.5   | 94    | 113   | 73-125 | 18    | 20    |           |
| ibromochloromethane        | ug/L          | 20    | 19.7   | 18.2   | 98    | 91    | 71-125 | 8     | 20    |           |
| ibromomethane              | ug/L          | 20    | 20.0   | 21.6   | 100   | 108   | 71-131 | 8     | 20    |           |
| ichlorodifluoromethane     | ug/L          | 20    | 20.0   | 17.4   | 100   | 87    | 56-145 | 14    | 20    |           |
| ichlorofluoromethane       | ug/L          | 20    | 18.1   | 14.9   | 90    | 75    | 69-128 | 19    | 20    |           |
| iethyl ether (Ethyl ether) | ug/L          | 20    | 17.3   | 16.1   | 86    | 80    | 65-127 | 7     | 20    |           |
| thylbenzene                | ug/L          | 20    | 21.9   | 19.9   | 109   | 99    | 75-125 | 10    | 20    |           |
| exachloro-1,3-butadiene    | ug/L          | 20    | 18.5   | 15.7   | 93    | 79    | 62-145 | 17    | 20    |           |
| opropylbenzene (Cumene)    | ug/L          | 20    | 20.6   | 18.6   | 103   | 93    | 75-133 | 11    | 20    |           |
| Ap-Xylene                  | ug/L          | 40    | 43.4   | 38.4   | 108   | 96    | 75-126 | 12    | 20    |           |
| lethyl-tert-butyl ether    | ug/L          | 20    | 17.7   | 15.4   | 88    | 77    | 73-125 | 14    | 20    |           |
| lethylene Chloride         | ug/L          | 20    | 17.5   | 12.5   | 87    | 63    | 72-128 | 33    |       | L0,R1     |
| -Butylbenzene              | ug/L          | 20    | 21.7   | 18.4   | 109   | 92    | 67-131 | 17    | 20    | •         |
| -Propylbenzene             | ug/L          | 20    | 23.1   | 20.0   | 115   | 100   | 70-128 | 14    | 20    |           |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: CRC- City of Rochester

Pace Project No.: 10343231

Date: 04/06/2016 03:44 PM

| LABORATORY CONTROL SAMPLE | E & LCSD: 2223940 |       | 22     | 24569  |       |       |        |     |      |            |
|---------------------------|-------------------|-------|--------|--------|-------|-------|--------|-----|------|------------|
|                           |                   | Spike | LCS    | LCSD   | LCS   | LCSD  | % Rec  |     | Max  |            |
| Parameter                 | Units             | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD  | Qualifiers |
| Naphthalene               | ug/L              | 20    | 15.8   | 15.1   | 79    | 75    | 54-139 | 5   | 20   |            |
| o-Xylene                  | ug/L              | 20    | 18.0   | 16.0   | 90    | 80    | 75-125 | 11  | 20   |            |
| p-Isopropyltoluene        | ug/L              | 20    | 20.4   | 17.1   | 102   | 85    | 71-128 | 18  | 20   |            |
| sec-Butylbenzene          | ug/L              | 20    | 21.7   | 18.1   | 109   | 91    | 73-132 | 18  | 20   |            |
| Styrene                   | ug/L              | 20    | 22.5   | 20.4   | 113   | 102   | 75-128 | 10  | 20   |            |
| tert-Butylbenzene         | ug/L              | 20    | 20.2   | 17.2   | 101   | 86    | 75-130 | 16  | 20   |            |
| Tetrachloroethene         | ug/L              | 20    | 18.1   | 16.1   | 90    | 80    | 67-129 | 12  | 20   |            |
| Tetrahydrofuran           | ug/L              | 200   | 230    | 249    | 115   | 124   | 73-137 | 8   | 20   |            |
| Toluene                   | ug/L              | 20    | 16.1   | 16.0   | 80    | 80    | 74-125 | 0   | 20   |            |
| trans-1,2-Dichloroethene  | ug/L              | 20    | 18.0   | 13.4   | 90    | 67    | 65-128 | 29  | 20 R | 21         |
| trans-1,3-Dichloropropene | ug/L              | 20    | 21.9   | 20.3   | 109   | 101   | 75-125 | 7   | 20   |            |
| Trichloroethene           | ug/L              | 20    | 19.7   | 18.3   | 98    | 92    | 72-125 | 7   | 20   |            |
| Trichlorofluoromethane    | ug/L              | 20    | 19.7   | 16.2   | 98    | 81    | 70-132 | 19  | 20   |            |
| Vinyl chloride            | ug/L              | 20    | 18.8   | 16.6   | 94    | 83    | 69-130 | 12  | 20   |            |
| Xylene (Total)            | ug/L              | 60    | 61.4   | 54.4   | 102   | 91    | 75-125 | 12  | 20   |            |
| 1,2-Dichloroethane-d4 (S) | %.                |       |        |        | 103   | 98    | 75-125 |     |      |            |
| 4-Bromofluorobenzene (S)  | %.                |       |        |        | 102   | 99    | 75-125 |     |      |            |
| Toluene-d8 (S)            | %.                |       |        |        | 81    | 92    | 75-125 |     |      |            |

| MATRIX SPIKE SAMPLE:           | 2223957 |             |       |        |       |        |            |
|--------------------------------|---------|-------------|-------|--------|-------|--------|------------|
|                                |         | 10343231001 | Spike | MS     | MS    | % Rec  |            |
| Parameter                      | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,1,1,2-Tetrachloroethane      | ug/L    | ND          | 20    | 20.4   | 102   | 55-147 |            |
| 1,1,1-Trichloroethane          | ug/L    | ND          | 20    | 22.5   | 113   | 45-150 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L    | ND          | 20    | 21.7   | 108   | 52-143 |            |
| 1,1,2-Trichloroethane          | ug/L    | ND          | 20    | 19.7   | 99    | 57-139 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L    | ND          | 20    | 23.8   | 119   | 40-150 |            |
| 1,1-Dichloroethane             | ug/L    | ND          | 20    | 20.6   | 103   | 46-150 |            |
| 1,1-Dichloroethene             | ug/L    | ND          | 20    | 19.9   | 99    | 42-150 |            |
| 1,1-Dichloropropene            | ug/L    | ND          | 20    | 21.2   | 106   | 45-150 |            |
| 1,2,3-Trichlorobenzene         | ug/L    | ND          | 20    | 17.8   | 89    | 51-142 |            |
| 1,2,3-Trichloropropane         | ug/L    | ND          | 20    | 21.1   | 105   | 55-142 |            |
| 1,2,4-Trichlorobenzene         | ug/L    | ND          | 20    | 16.7   | 83    | 50-143 |            |
| 1,2,4-Trimethylbenzene         | ug/L    | ND          | 20    | 20.8   | 104   | 51-147 |            |
| 1,2-Dibromo-3-chloropropane    | ug/L    | ND          | 50    | 43.8   | 88    | 44-149 |            |
| 1,2-Dibromoethane (EDB)        | ug/L    | ND          | 20    | 19.9   | 99    | 60-138 |            |
| 1,2-Dichlorobenzene            | ug/L    | ND          | 20    | 19.1   | 96    | 55-137 |            |
| 1,2-Dichloroethane             | ug/L    | ND          | 20    | 20.2   | 101   | 50-139 |            |
| 1,2-Dichloropropane            | ug/L    | ND          | 20    | 18.1   | 90    | 61-145 |            |
| 1,3,5-Trimethylbenzene         | ug/L    | ND          | 20    | 20.9   | 104   | 34-150 |            |
| 1,3-Dichlorobenzene            | ug/L    | ND          | 20    | 19.0   | 95    | 53-138 |            |
| 1,3-Dichloropropane            | ug/L    | ND          | 20    | 19.4   | 97    | 58-139 |            |
| 1,4-Dichlorobenzene            | ug/L    | ND          | 20    | 19.4   | 97    | 52-135 |            |
| 2,2-Dichloropropane            | ug/L    | ND          | 20    | 23.1   | 115   | 30-150 |            |
| 2-Butanone (MEK)               | ug/L    | ND          | 100   | 107    | 107   | 30-150 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: CRC- City of Rochester

Pace Project No.: 10343231

Date: 04/06/2016 03:44 PM

| MATRIX SPIKE SAMPLE:        | 2223957 |             |       |        |       |        |           |
|-----------------------------|---------|-------------|-------|--------|-------|--------|-----------|
|                             |         | 10343231001 | Spike | MS     | MS    | % Rec  |           |
| Parameter                   | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifier |
| -Chloroethylvinyl ether     | ug/L    | ND          | 50    | ND     | 2     | 30-125 | P5        |
| 2-Chlorotoluene             | ug/L    | ND          | 20    | 21.3   | 106   | 52-146 |           |
| -Chlorotoluene              | ug/L    | ND          | 20    | 21.8   | 109   | 43-142 |           |
| -Methyl-2-pentanone (MIBK)  | ug/L    | ND          | 100   | 125    | 125   | 46-148 |           |
| Acetone                     | ug/L    | 38.9        | 100   | 137    | 98    | 44-150 |           |
| Allyl chloride              | ug/L    | ND          | 20    | 21.5   | 108   | 40-150 |           |
| Benzene                     | ug/L    | ND          | 20    | 21.8   | 109   | 49-143 |           |
| Bromobenzene                | ug/L    | ND          | 20    | 19.4   | 97    | 58-139 |           |
| Bromochloromethane          | ug/L    | ND          | 20    | 19.6   | 98    | 53-144 |           |
| Bromodichloromethane        | ug/L    | ND          | 20    | 19.8   | 99    | 49-145 |           |
| Bromoform                   | ug/L    | ND          | 20    | 18.9   | 94    | 42-142 |           |
| Bromomethane                | ug/L    | ND          | 20    | 14.9   | 75    | 30-150 |           |
| Carbon tetrachloride        | ug/L    | ND          | 20    | 23.2   | 116   | 30-150 |           |
| Chlorobenzene               | ug/L    | ND          | 20    | 21.2   | 106   | 57-137 |           |
| Chloroethane                | ug/L    | ND          | 20    | 21.2   | 106   | 39-150 |           |
| Chloroform                  | ug/L    | ND          | 20    | 19.2   | 96    | 52-147 |           |
| Chloromethane               | ug/L    | ND          | 20    | 20.5   | 103   | 45-150 |           |
| is-1,2-Dichloroethene       | ug/L    | ND          | 20    | 19.1   | 96    | 44-149 |           |
| is-1,3-Dichloropropene      | ug/L    | ND          | 20    | 20.7   | 104   | 45-140 |           |
| Dibromochloromethane        | ug/L    | ND          | 20    | 19.9   | 100   | 49-144 |           |
| Dibromomethane              | ug/L    | ND          | 20    | 20.1   | 100   | 59-142 |           |
| Dichlorodifluoromethane     | ug/L    | ND          | 20    | 24.7   | 123   | 46-150 |           |
| Dichlorofluoromethane       | ug/L    | ND          | 20    | 20.1   | 100   | 53-150 |           |
| Diethyl ether (Ethyl ether) | ug/L    | ND          | 20    | 18.5   | 93    | 45-146 |           |
| Ethylbenzene                | ug/L    | ND          | 20    | 21.6   | 108   | 49-141 |           |
| lexachloro-1,3-butadiene    | ug/L    | ND          | 20    | 18.9   | 95    | 33-150 |           |
| sopropylbenzene (Cumene)    | ug/L    | ND          | 20    | 21.2   | 106   | 50-150 |           |
| n&p-Xylene                  | ug/L    | ND          | 40    | 43.3   | 108   | 44-150 |           |
| Methyl-tert-butyl ether     | ug/L    | ND          | 20    | 19.1   | 95    | 52-138 |           |
| Methylene Chloride          | ug/L    | ND          | 20    | 19.4   | 97    | 43-149 |           |
| i-Butylbenzene              | ug/L    | ND          | 20    | 21.5   | 107   | 46-150 |           |
| i-Propylbenzene             | ug/L    | ND          | 20    | 23.0   | 115   | 44-150 |           |
| Naphthalene                 | ug/L    | ND          | 20    | 14.8   | 74    | 45-149 |           |
| -Xylene                     | ug/L    | ND          | 20    | 18.0   | 90    | 48-146 |           |
| -Isopropyltoluene           | ug/L    | ND          | 20    | 20.0   | 100   | 54-147 |           |
| ec-Butylbenzene             | ug/L    | ND          | 20    | 21.4   | 107   | 51-150 |           |
| Styrene                     | ug/L    | ND          | 20    | 22.1   | 110   | 47-149 |           |
| ert-Butylbenzene            | ug/L    | ND          | 20    | 19.8   | 99    | 49-149 |           |
| etrachloroethene            | ug/L    | 59.5        | 20    | 77.5   | 90    | 30-150 |           |
| etrahydrofuran              | ug/L    | ND          | 200   | 207    | 104   | 52-150 |           |
| oluene                      | ug/L    | ND          | 20    | 17.3   | 87    | 48-141 |           |
| ans-1,2-Dichloroethene      | ug/L    | ND          | 20    | 19.1   | 96    | 42-150 |           |
| ans-1,3-Dichloropropene     | ug/L    | ND          | 20    | 21.5   | 107   | 45-143 |           |
| richloroethene              | ug/L    | ND          | 20    | 20.9   | 104   | 38-150 |           |
| richlorofluoromethane       | ug/L    | ND          | 20    | 24.0   | 120   | 57-150 |           |
| /inyl chloride              | ug/L    | ND          | 20    | 19.8   | 99    | 43-150 |           |
| (ylene (Total)              | ug/L    | ND          | 60    | 61.3   | 102   | 45-149 |           |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: CRC- City of Rochester

Pace Project No.: 10343231

Date: 04/06/2016 03:44 PM

| MATRIX SPIKE SAMPLE:      | 2223957    |             |       |        |       |        |            |
|---------------------------|------------|-------------|-------|--------|-------|--------|------------|
|                           |            | 10343231001 | Spike | MS     | MS    | % Rec  |            |
| Parameter                 | Units      | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,2-Dichloroethane-d4 (S) | <u></u> %. |             |       |        | 101   | 75-125 |            |
| 4-Bromofluorobenzene (S)  | %.         |             |       |        | 100   | 75-125 |            |
| Toluene-d8 (S)            | %.         |             |       |        | 91    | 75-125 |            |

|                                |       | 10343231002 | Dup    |     | Max |            |
|--------------------------------|-------|-------------|--------|-----|-----|------------|
| Parameter                      | Units | Result      | Result | RPD | RPD | Qualifiers |
| 1,1,1,2-Tetrachloroethane      | ug/L  | ND ND       | ND     |     | 30  |            |
| I,1,1-Trichloroethane          | ug/L  | ND          | ND     |     | 30  |            |
| I,1,2,2-Tetrachloroethane      | ug/L  | ND          | ND     |     | 30  |            |
| 1,1,2-Trichloroethane          | ug/L  | ND          | ND     |     | 30  |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L  | ND          | ND     |     | 30  |            |
| I,1-Dichloroethane             | ug/L  | ND          | ND     |     | 30  |            |
| I,1-Dichloroethene             | ug/L  | ND          | ND     |     | 30  |            |
| I,1-Dichloropropene            | ug/L  | ND          | ND     |     | 30  |            |
| ,2,3-Trichlorobenzene          | ug/L  | ND          | ND     |     | 30  |            |
| ,2,3-Trichloropropane          | ug/L  | ND          | ND     |     | 30  |            |
| ,2,4-Trichlorobenzene          | ug/L  | ND          | ND     |     | 30  |            |
| ,2,4-Trimethylbenzene          | ug/L  | ND          | ND     |     | 30  |            |
| ,2-Dibromo-3-chloropropane     | ug/L  | ND          | ND     |     | 30  |            |
| ,2-Dibromoethane (EDB)         | ug/L  | ND          | ND     |     | 30  |            |
| ,2-Dichlorobenzene             | ug/L  | ND          | ND     |     | 30  |            |
| ,2-Dichloroethane              | ug/L  | ND          | ND     |     | 30  |            |
| ,2-Dichloropropane             | ug/L  | ND          | ND     |     | 30  |            |
| ,3,5-Trimethylbenzene          | ug/L  | ND          | ND     |     | 30  |            |
| ,3-Dichlorobenzene             | ug/L  | ND          | ND     |     | 30  |            |
| ,3-Dichloropropane             | ug/L  | ND          | ND     |     | 30  |            |
| ,4-Dichlorobenzene             | ug/L  | ND          | ND     |     | 30  |            |
| 2,2-Dichloropropane            | ug/L  | ND          | ND     |     | 30  |            |
| P-Butanone (MEK)               | ug/L  | ND          | ND     |     | 30  |            |
| 2-Chloroethylvinyl ether       | ug/L  | ND          | ND     |     | 30  |            |
| 2-Chlorotoluene                | ug/L  | ND          | ND     |     | 30  |            |
| l-Chlorotoluene                | ug/L  | ND          | ND     |     | 30  |            |
| I-Methyl-2-pentanone (MIBK)    | ug/L  | ND          | ND     |     | 30  |            |
| Acetone                        | ug/L  | 71.2        | 69.6   | 2   | 30  |            |
| Allyl chloride                 | ug/L  | ND          | ND     |     | 30  |            |
| Benzene                        | ug/L  | ND          | ND     |     | 30  |            |
| Bromobenzene                   | ug/L  | ND          | ND     |     | 30  |            |
| Bromochloromethane             | ug/L  | ND          | ND     |     | 30  |            |
| Bromodichloromethane           | ug/L  | ND          | ND     |     | 30  |            |
| Bromoform                      | ug/L  | ND          | ND     |     | 30  |            |
| Bromomethane                   | ug/L  | ND          | ND     |     | 30  |            |
| Carbon tetrachloride           | ug/L  | ND          | ND     |     | 30  |            |
| Chlorobenzene                  | ug/L  | ND          | ND     |     | 30  |            |
| Chloroethane                   | ug/L  | ND          | ND     |     | 30  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

(612)607-1700



### **QUALITY CONTROL DATA**

Project: CRC- City of Rochester

Pace Project No.: 10343231

Date: 04/06/2016 03:44 PM

| SAMPLE DUPLICATE: 2223958   |       |             |        |     |     |            |
|-----------------------------|-------|-------------|--------|-----|-----|------------|
|                             |       | 10343231002 | Dup    |     | Max |            |
| Parameter                   | Units | Result      | Result | RPD | RPD | Qualifiers |
| Chloroform                  | ug/L  |             | ND     |     | 30  |            |
| Chloromethane               | ug/L  | ND          | .74J   |     | 30  |            |
| cis-1,2-Dichloroethene      | ug/L  | ND          | ND     |     | 30  |            |
| cis-1,3-Dichloropropene     | ug/L  | ND          | ND     |     | 30  |            |
| Dibromochloromethane        | ug/L  | ND          | ND     |     | 30  |            |
| Dibromomethane              | ug/L  | ND          | ND     |     | 30  |            |
| Dichlorodifluoromethane     | ug/L  | ND          | ND     |     | 30  |            |
| Dichlorofluoromethane       | ug/L  | ND          | ND     |     | 30  |            |
| Diethyl ether (Ethyl ether) | ug/L  | ND          | ND     |     | 30  |            |
| Ethylbenzene                | ug/L  | ND          | ND     |     | 30  |            |
| Hexachloro-1,3-butadiene    | ug/L  | ND          | ND     |     | 30  |            |
| Isopropylbenzene (Cumene)   | ug/L  | ND          | ND     |     | 30  |            |
| m&p-Xylene                  | ug/L  | ND          | ND     |     | 30  |            |
| Methyl-tert-butyl ether     | ug/L  | ND          | ND     |     | 30  |            |
| Methylene Chloride          | ug/L  | ND          | ND     |     | 30  |            |
| n-Butylbenzene              | ug/L  | ND          | ND     |     | 30  |            |
| n-Propylbenzene             | ug/L  | ND          | ND     |     | 30  |            |
| Naphthalene                 | ug/L  | ND          | ND     |     | 30  |            |
| o-Xylene                    | ug/L  | ND          | ND     |     | 30  |            |
| p-Isopropyltoluene          | ug/L  | ND          | ND     |     | 30  |            |
| sec-Butylbenzene            | ug/L  | ND          | ND     |     | 30  |            |
| Styrene                     | ug/L  | ND          | ND     |     | 30  |            |
| tert-Butylbenzene           | ug/L  | ND          | ND     |     | 30  |            |
| Tetrachloroethene           | ug/L  | ND          | ND     |     | 30  |            |
| Tetrahydrofuran             | ug/L  | ND          | ND     |     | 30  |            |
| Toluene                     | ug/L  | ND          | .39J   |     | 30  |            |
| trans-1,2-Dichloroethene    | ug/L  | ND          | ND     |     | 30  |            |
| trans-1,3-Dichloropropene   | ug/L  | ND          | ND     |     | 30  |            |
| Trichloroethene             | ug/L  | ND          | ND     |     | 30  |            |
| Trichlorofluoromethane      | ug/L  | ND          | ND     |     | 30  |            |
| Vinyl chloride              | ug/L  | ND          | ND     |     | 30  |            |
| Xylene (Total)              | ug/L  | ND          | ND     |     | 30  |            |
| 1,2-Dichloroethane-d4 (S)   | %.    | 103         | 103    | 0   |     |            |
| 4-Bromofluorobenzene (S)    | %.    | 105         | 104    | 1   |     |            |
| Toluene-d8 (S)              | %.    | 96          | 92     | 3   |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALIFIERS**

Project: CRC- City of Rochester

Pace Project No.: 10343231

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### **BATCH QUALIFIERS**

Batch: MSV/35094

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

### **ANALYTE QUALIFIERS**

Date: 04/06/2016 03:44 PM

- LO Analyte recovery in the laboratory control sample (LCS) was outside QC limits.
- L2 Analyte recovery in the laboratory control sample (LCS) was below QC limits. Results may be biased low.
- P5 The EPA or method required sample preservation degrades this compound, therefore acceptable recoveries may not be achieved in sample matrix spikes.
- R1 RPD value was outside control limits.
- c2 Acid preservation may not be appropriate for the analysis of 2-Chloroethylvinyl ether.





### **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: CRC- City of Rochester

Pace Project No.: 10343231

Date: 04/06/2016 03:44 PM

| Lab ID      | Sample ID   | QC Batch Method | QC Batch  | Analytical Method | Analytical<br>Batch |
|-------------|-------------|-----------------|-----------|-------------------|---------------------|
| 10343231001 | AS-Influent | EPA 624         | MSV/35094 |                   |                     |
| 10343231002 | AS-Effluent | EPA 624         | MSV/35094 |                   |                     |

# CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Pace Analytical www.pacelabs.com

Pace Project No./ Lab I.D. DRINKING WATER (N/X) F-ALL-Q-020rev.07, 15-May-2007 SAMPLE CONDITIONS 2022848 634323 OTHER 3 S 20  $(N/\lambda)$ Sealed Cooler Custody Received on Ice (Y/N) GROUND WATER Residual Chlorine (Y/N) % 7 O° ni qmaT Page: REGULATORY AGENCY RCRA 3.8-412:15 Requested Analysis Filtered (Y/N) STATE Site Location NPDES 2]]sr[[2 DATE UST DATE Signed (MM/DD/YY): ACCEPTED BY / AFFILIATION tru Braen Attention Sharan Paradise **↓ tesT sisylsnA** 1 N /A Dwssell Other Methanol Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days Preservatives Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> Reference:
Pace Profile #: 3 Z. ИаОН Shortage HCI Invoice Information; <sup>E</sup>ONH Company Name: <sup>‡</sup>OS<sup>₹</sup>H Section C Unpreserved Address: Pace Quote TIME # OF CONTAINERS 5 60 SAMPLER NAME AND SIGNATURE PRINT Name of SAMPLER: SAMPLE TEMP AT COLLECTION SIGNATURE of SAMPLER: Report To a Kuck @landmarkenv.com DATE inject Name: CYC - City of Rocheste 7111 TIME COMPOSITE END/GRAB DATE COLLECTED RELINQUISHED BY / AFFILIATION 6 330 W 15:30 6 3/30/16/16/06 TIME COMPOSITE DATE Section B Required Project Information: Email To: 9 Kuck@ Landmakehvica coder No. (G=GRAB C=COMP) **34YT 3J9MAS** 5 ¥ (see valid codes to left) MATRIX CODE Project Number ORIGINAL Copy To: Matrix Codes MATRIX / CODE Drinking Water Water Waste Waste Waste Worduct Soli/Solid Oil Whipe Air Air Tissue Other Gritannenta Numor ADDITIONAL COMMENTS ナ 5 5 flast (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE ころめ andmark SAMPLE ID Requested Due Date/TAT: Required Client Information Section A Required Client Information: Section D company: Page 18 of 19 # MƏLI 11 C) ဖ œ 6

## Pace Analytical\*

### Document Name:

### Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.15

Document Revised: 05Jan2016 Page 1 of 1

Issuing Authority: Pace Minnesota Quality Office

| Sample Condition<br>Upon Receipt                                                     | Client Name:                          |                                  |              |                    | Project     | #: \[ \UO# : 10343231 \]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------------------------------------------------|---------------------------------------|----------------------------------|--------------|--------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •                                                                                    | La                                    | ndening                          |              | •                  |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Courier:                                                                             | Fed Ex                                | UPS [                            | USPS         |                    | Client      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Commercial                                                                           | Pace                                  | ☐SpeeDee [                       | Other:_      |                    | <u> </u>    | 10343231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Tracking Number:                                                                     |                                       |                                  |              | <del></del>        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Custody Seal on Cod                                                                  | oler/Box Present?                     | Yes No                           |              | Seals Int          | tact?       | Yes Optional: Proj. Due Date: Proj. Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Packing Material:                                                                    | Bubble Wrap                           | Bubble Bags                      | □Non         | е 🔲                | Other:      | Temp Blank? Tes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Thermometer Used:                                                                    | 151401163<br>151401164                | ☐B88A912167504<br>☐B88A014331009 | Тур          | e of Ice:          | We          | t Blue None Samples on ice, cooling process has begun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cooler Temp Read (                                                                   | rc): 4.8                              | Cooler Temp Corre                | ected (°C)   | · 4.               | ප           | Biological Tissue Frozen? Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Temp should be above                                                                 |                                       | Correction Facto                 |              |                    |             | e and Initials of Person Examining Contents: 3-31-16/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| USDA Regulated Soil                                                                  |                                       |                                  |              | .D. 47. C          | A 51 CA     | ID IA Did consolve estate As Francis Francis and Assessment States |
| Did samples originate i                                                              |                                       |                                  | ates: AL, A  | λ <b>Κ, Α</b> Ζ, C | A, FL, GA,  | ID, LA. Did samples originate from a foreign source (internationally, INo including Hawaii and Puerto Rico)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                      |                                       |                                  | lated Soil   | Checkli            | st (F-MN-   | Q-338) and include with SCUR/COC paperwork.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                      |                                       |                                  |              |                    |             | COMMENTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Chain of Custody Pre                                                                 | sent?                                 |                                  | Yes          | □No                | □n/a        | 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Chain of Custody Fille                                                               | ed Out?                               |                                  | Yes          | ∏No                | □n/a        | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Chain of Custody Reli                                                                | inquished?                            |                                  | Yes          | ∐No                | □N/A        | 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sampler Name and/o                                                                   | or Signature on COC?                  |                                  | Yes          | □No                | □N/A        | 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Samples Arrived with                                                                 | in Hold Time?                         |                                  | Yes          | □No                | □N/A        | 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Short Hold Time Ana                                                                  | lysis (<72 hr)?                       | 3316167                          | Yes          |                    | □N/A        | 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Rush Turn Around Ti                                                                  | me Requested?                         |                                  | Yes          | MO                 | _ □N/A      | 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sufficient Volume?                                                                   |                                       |                                  | Ves          | □No                | □N/A        | 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Correct Containers U                                                                 | sed?                                  |                                  | Yes          | □No                | □N/A        | 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -Pace Containers l                                                                   | Jsed?                                 |                                  | Yes          | ∏No                | □N/A        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Containers Intact?                                                                   | · · · · · · · · · · · · · · · · · · · |                                  | Yes          | □No                | □N/A        | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Filtered Volume Rece                                                                 | eived for Dissolved Te                | sts?                             | □Yes         | □No                | □ZN/A       | 11. Note if sediment is visible in the dissolved container                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sample Labels Match                                                                  | COC?                                  |                                  | Yes          | □No                | □N/A        | 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -Includes Date/Tin                                                                   | ne/ID/Analysis Mat                    | rix: UT                          |              |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| All containers needin                                                                | g acid/base preserva                  | tion have been                   |              | <u> </u>           | ——·         | 13. ☐HNO₃ ☐H₂SO₄ ☐NaOH ☐HCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| checked? All containers needin                                                       | g preservation are fo                 | und to be in                     | ∐Yes         | ∐No                | <u>M</u> 7A | Sample #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| compliance with EPA                                                                  | recommendation?                       |                                  | _            | _                  | /           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , HCl<2;<br>Exceptions: (OA), Col |                                       |                                  | Yes          | □No                | N/A         | Initial when Lot # of added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DRO/8015 (water) De                                                                  |                                       |                                  | <b>□</b> Yes | □No                | □N/A        | completed: preservative:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Headspace in VOA Vi                                                                  | als ( >6mm)?                          |                                  | □Yes         | No                 | □N/A        | 14.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Trip Blank Present?                                                                  | •                                     |                                  | ∐Yes         | No                 | □n/a        | 15.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Trip Blank Custody Se                                                                | eals Present?                         |                                  | ∐Yes         | □No                | ,⊠N/A       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Pace Trip Blank Lot #                                                                | (if purchased):                       |                                  |              |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| CLIENT N                                                                             | IOTIFICATION/RESC                     | LUTION                           |              |                    |             | Field Data Required? Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Person Contacted:                                                                    |                                       |                                  |              |                    |             | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Comments/Resoluti                                                                    | on:                                   |                                  |              |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                      |                                       |                                  |              |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                      |                                       |                                  |              |                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Ma                                                                           | anager Review:                        | ***                              | 1            |                    |             | <b>Date:</b> 3/31/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Project Manager Review: Date: 3/31/16

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).





April 25, 2016

Aaron Kuck Landmark Environmenatl 2042 W 98th St. Bloomingotn, MN 55431

RE: Project: CrC

Pace Project No.: 10345507

### Dear Aaron Kuck:

Enclosed are the analytical results for sample(s) received by the laboratory on April 21, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Oyeyemi Odujole oyeyemi.odujole@pacelabs.com Project Manager

**Enclosures** 







### **CERTIFICATIONS**

Project: CrC Pace Project No.: 10345507

### **Minnesota Certification IDs**

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

525 N 8th Street, Salina, KS 67401 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L

Florida/NELAP Certification #: E87605 Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Kentucký Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN\_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530 North Carolina State Public Health #: 27700

North Dakota Certification #: R-036

Ohio EPA #: 4150 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification

Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Virginia/VELAP Certification #: Pace Washington Certification #: C486 West Virginia Certification #: 382 West Virginia DHHR #:9952C Wisconsin Certification #: 999407970





### **SAMPLE SUMMARY**

Project: CrC
Pace Project No.: 10345507

| Lab ID      | Sample ID   | Matrix | Date Collected | Date Received  |
|-------------|-------------|--------|----------------|----------------|
| 10345507001 | AS-Influent | Water  | 04/20/16 02:15 | 04/21/16 09:35 |
| 10345507002 | AS-Effluent | Water  | 04/20/16 02:30 | 04/21/16 09:35 |

1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700



### **SAMPLE ANALYTE COUNT**

Project: CrC
Pace Project No.: 10345507

| Lab ID      | Sample ID   | Method  | Analysts | Analytes<br>Reported |
|-------------|-------------|---------|----------|----------------------|
| 10345507001 | AS-Influent | EPA 624 | DJB      | 73                   |
| 10345507002 | AS-Effluent | EPA 624 | DJB      | 73                   |

(612)607-1700



### **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10345507

Date: 04/25/2016 04:19 PM

| Sample: AS-Influent         | Lab ID: 103     | 45507001    | Collected: 04/20/1 | 6 02:15 | Received: | 04/21/16 09:35 | Matrix: Water |             |
|-----------------------------|-----------------|-------------|--------------------|---------|-----------|----------------|---------------|-------------|
| Parameters                  | Results         | Units       | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua         |
| 624 MSV                     | Analytical Meth | nod: EPA 62 | 24                 |         |           |                |               |             |
| Acetone                     | 53.9            | ug/L        | 20.0               | 1       |           | 04/22/16 17:5  | 9 67-64-1     |             |
| Allyl chloride              | ND              | ug/L        | 4.0                | 1       |           | 04/22/16 17:5  | 9 107-05-1    |             |
| Benzene                     | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  | 9 71-43-2     |             |
| Bromobenzene                | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  | 9 108-86-1    |             |
| Bromochloromethane          | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  | 9 74-97-5     |             |
| Bromodichloromethane        | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  | 9 75-27-4     |             |
| Bromoform                   | ND              | ug/L        | 4.0                | 1       |           | 04/22/16 17:5  | 9 75-25-2     |             |
| Bromomethane                | ND              | ug/L        | 4.0                | 1       |           | 04/22/16 17:5  | 9 74-83-9     |             |
| 2-Butanone (MEK)            | ND              | ug/L        | 5.0                | 1       |           | 04/22/16 17:5  | 9 78-93-3     |             |
| n-Butylbenzene              | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  | 9 104-51-8    |             |
| sec-Butylbenzene            | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  |               |             |
| tert-Butylbenzene           | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  |               |             |
| Carbon tetrachloride        | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  |               |             |
| Chlorobenzene               | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  | 9 108-90-7    |             |
| Chloroethane                | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  |               |             |
| 2-Chloroethylvinyl ether    | ND              | ug/L        | 10.0               | 1       |           | 04/22/16 17:5  |               | P5,c2       |
| Chloroform                  | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  |               | 1 0,02      |
| Chloromethane               | ND              | ug/L        | 4.0                | 1       |           | 04/22/16 17:5  |               | CH,L3<br>M0 |
| 2-Chlorotoluene             | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  | 9 95-49-8     | 1110        |
| 4-Chlorotoluene             | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  |               |             |
| 1,2-Dibromo-3-chloropropane | ND              | ug/L        | 4.0                | 1       |           | 04/22/16 17:5  |               |             |
| Dibromochloromethane        | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  |               |             |
| 1,2-Dibromoethane (EDB)     | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  |               |             |
| Dibromomethane              | ND              | ug/L        | 4.0                | 1       |           | 04/22/16 17:5  |               |             |
| 1,2-Dichlorobenzene         | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  |               |             |
| 1,3-Dichlorobenzene         | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  |               |             |
| 1,4-Dichlorobenzene         | ND<br>ND        | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  |               |             |
| Dichlorodifluoromethane     | ND<br>ND        | •           | 1.0                | 1       |           | 04/22/16 17:5  |               |             |
|                             |                 | ug/L        |                    |         |           |                |               |             |
| 1,1-Dichloroethane          | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  |               |             |
| 1,2-Dichloroethane          | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  |               |             |
| 1,1-Dichloroethene          | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  |               |             |
| cis-1,2-Dichloroethene      | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  |               |             |
| rans-1,2-Dichloroethene     | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  |               |             |
| Dichlorofluoromethane       | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  |               |             |
| 1,2-Dichloropropane         | ND              | ug/L        | 4.0                | 1       |           | 04/22/16 17:5  |               |             |
| 1,3-Dichloropropane         | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  |               |             |
| 2,2-Dichloropropane         | ND              | ug/L        | 4.0                | 1       |           | 04/22/16 17:5  |               |             |
| 1,1-Dichloropropene         | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  |               |             |
| cis-1,3-Dichloropropene     | ND              | ug/L        | 4.0                | 1       |           |                | 9 10061-01-5  |             |
| rans-1,3-Dichloropropene    | ND              | ug/L        | 4.0                | 1       |           |                | 9 10061-02-6  |             |
| Diethyl ether (Ethyl ether) | ND              | ug/L        | 4.0                | 1       |           | 04/22/16 17:5  | 9 60-29-7     |             |
| Ethylbenzene                | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  | 9 100-41-4    |             |
| Hexachloro-1,3-butadiene    | ND              | ug/L        | 2.0                | 1       |           | 04/22/16 17:5  | 9 87-68-3     |             |
| sopropylbenzene (Cumene)    | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  | 9 98-82-8     |             |
| p-Isopropyltoluene          | ND              | ug/L        | 1.0                | 1       |           | 04/22/16 17:5  |               |             |
| Methylene Chloride          | ND              | ug/L        | 4.0                | 1       |           | 04/22/16 17:5  |               |             |





Project: CrC
Pace Project No.: 10345507

Date: 04/25/2016 04:19 PM

| Sample: AS-Influent            | Lab ID: 103     | 45507001    | Collected: 04/20/1 | 16 02:15 | Received: 04/21/16 09:35 | Matrix: Water   |
|--------------------------------|-----------------|-------------|--------------------|----------|--------------------------|-----------------|
| Parameters                     | Results         | Units       | Report Limit       | DF       | Prepared Analyzed        | CAS No. Qu      |
| 624 MSV                        | Analytical Meth | nod: EPA 62 | 24                 |          |                          |                 |
| 4-Methyl-2-pentanone (MIBK)    | ND              | ug/L        | 5.0                | 1        | 04/22/16 17              | :59 108-10-1    |
| Methyl-tert-butyl ether        | ND              | ug/L        | 1.0                | 1        | 04/22/16 17              | :59 1634-04-4   |
| Naphthalene                    | ND              | ug/L        | 4.0                | 1        | 04/22/16 17              | :59 91-20-3     |
| n-Propylbenzene                | ND              | ug/L        | 1.0                | 1        | 04/22/16 17              | :59 103-65-1    |
| Styrene                        | ND              | ug/L        | 1.0                | 1        | 04/22/16 17              | :59 100-42-5    |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1        | 04/22/16 17              | :59 630-20-6    |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1        | 04/22/16 17              | :59 79-34-5     |
| Tetrachloroethene              | 106             | ug/L        | 1.0                | 1        | 04/22/16 17              | :59 127-18-4    |
| Tetrahydrofuran                | ND              | ug/L        | 40.0               | 1        | 04/22/16 17              | :59 109-99-9    |
| Toluene                        | ND              | ug/L        | 1.0                | 1        | 04/22/16 17              | :59 108-88-3    |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1        | 04/22/16 17              | :59 87-61-6     |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1        | 04/22/16 17              | :59 120-82-1    |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 1.0                | 1        | 04/22/16 17              | :59 71-55-6     |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 1.0                | 1        | 04/22/16 17              | :59 79-00-5     |
| Trichloroethene                | ND              | ug/L        | 0.40               | 1        | 04/22/16 17              | :59 79-01-6     |
| Trichlorofluoromethane         | ND              | ug/L        | 1.0                | 1        | 04/22/16 17              | :59 75-69-4     |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 4.0                | 1        | 04/22/16 17              | :59 96-18-4     |
| 1,1,2-Trichlorotrifluoroethane | ND              | ug/L        | 1.0                | 1        | 04/22/16 17              | :59 76-13-1     |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1        | 04/22/16 17              | :59 95-63-6     |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1        | 04/22/16 17              | :59 108-67-8    |
| Vinyl chloride                 | ND              | ug/L        | 0.40               | 1        | 04/22/16 17              | :59 75-01-4     |
| Xylene (Total)                 | ND              | ug/L        | 3.0                | 1        |                          | :59 1330-20-7   |
| m&p-Xylene                     | ND              | ug/L        | 2.0                | 1        |                          | :59 179601-23-1 |
| o-Xylene                       | ND              | ug/L        | 1.0                | 1        |                          | :59 95-47-6     |
| Surrogates                     | _               | - 3         |                    |          |                          |                 |
| 1,2-Dichloroethane-d4 (S)      | 112             | %.          | 75-125             | 1        | 04/22/16 17              | :59 17060-07-0  |
| Toluene-d8 (S)                 | 93              | %.          | 75-125             | 1        | 04/22/16 17              | :59 2037-26-5   |
| 4-Bromofluorobenzene (S)       | 100             | %.          | 75-125             | 1        | 04/22/16 17              | :59 460-00-4    |



# **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10345507

Date: 04/25/2016 04:19 PM

| Sample: AS-Effluent                       | Lab ID: 103    | 45507002     | Collected: 04/20/1 | 16 02:30 | Received: ( | 04/21/16 09:35                   | Matrix: Water |      |
|-------------------------------------------|----------------|--------------|--------------------|----------|-------------|----------------------------------|---------------|------|
| Parameters                                | Results        | Units        | Report Limit       | DF       | Prepared    | Analyzed                         | CAS No.       | Qual |
| 624 MSV                                   | Analytical Met | nod: EPA 62  | 24                 |          |             |                                  |               |      |
| Acetone                                   | 121            | ug/L         | 20.0               | 1        |             | 04/22/16 19:33                   | 8 67-64-1     |      |
| Allyl chloride                            | ND             | ug/L         | 4.0                | 1        |             | 04/22/16 19:33                   | 107-05-1      |      |
| Benzene                                   | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   | 71-43-2       |      |
| Bromobenzene                              | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   | 108-86-1      |      |
| Bromochloromethane                        | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   | 3 74-97-5     |      |
| Bromodichloromethane                      | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   | 3 75-27-4     |      |
| Bromoform                                 | ND             | ug/L         | 4.0                | 1        |             | 04/22/16 19:33                   | 75-25-2       |      |
| Bromomethane                              | ND             | ug/L         | 4.0                | 1        |             | 04/22/16 19:33                   | 74-83-9       |      |
| 2-Butanone (MEK)                          | ND             | ug/L         | 5.0                | 1        |             | 04/22/16 19:33                   | 78-93-3       |      |
| n-Butylbenzene                            | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   | 3 104-51-8    |      |
| sec-Butylbenzene                          | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   | 3 135-98-8    |      |
| tert-Butylbenzene                         | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   | 98-06-6       |      |
| Carbon tetrachloride                      | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   | 56-23-5       |      |
| Chlorobenzene                             | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   | 108-90-7      |      |
| Chloroethane                              | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   | 3 75-00-3     |      |
| 2-Chloroethylvinyl ether                  | ND             | ug/L         | 10.0               | 1        |             | 04/22/16 19:33                   |               | c2   |
| Chloroform                                | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   |               |      |
| Chloromethane                             | ND             | ug/L         | 4.0                | 1        |             | 04/22/16 19:33                   |               | L3   |
| 2-Chlorotoluene                           | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   |               |      |
| 4-Chlorotoluene                           | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   |               |      |
| 1,2-Dibromo-3-chloropropane               | ND             | ug/L         | 4.0                | 1        |             | 04/22/16 19:33                   |               |      |
| Dibromochloromethane                      | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   |               |      |
| 1,2-Dibromoethane (EDB)                   | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   |               |      |
| Dibromomethane                            | ND             | ug/L         | 4.0                | 1        |             | 04/22/16 19:33                   |               |      |
| 1,2-Dichlorobenzene                       | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   |               |      |
| 1,3-Dichlorobenzene                       | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   |               |      |
| 1,4-Dichlorobenzene                       | ND<br>ND       | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   |               |      |
| Dichlorodifluoromethane                   | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   |               |      |
| 1,1-Dichloroethane                        | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   |               |      |
| 1,2-Dichloroethane                        | ND<br>ND       | ug/L<br>ug/L | 1.0                | 1        |             | 04/22/16 19:33                   |               |      |
|                                           |                | •            |                    |          |             |                                  |               |      |
| 1,1-Dichloroethene cis-1,2-Dichloroethene | ND<br>ND       | ug/L         | 1.0<br>1.0         | 1<br>1   |             | 04/22/16 19:33                   |               |      |
| •                                         |                | ug/L         |                    | 1        |             | 04/22/16 19:33<br>04/22/16 19:33 |               |      |
| trans-1,2-Dichloroethene                  | ND             | ug/L         | 1.0                |          |             |                                  |               |      |
| Dichlorofluoromethane                     | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   |               |      |
| 1,2-Dichloropropane                       | ND             | ug/L         | 4.0                | 1        |             | 04/22/16 19:33                   |               |      |
| 1,3-Dichloropropane                       | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   |               |      |
| 2,2-Dichloropropane                       | ND             | ug/L         | 4.0                | 1        |             | 04/22/16 19:33                   |               |      |
| 1,1-Dichloropropene                       | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   |               |      |
| cis-1,3-Dichloropropene                   | ND             | ug/L         | 4.0                | 1        |             | 04/22/16 19:33                   |               |      |
| trans-1,3-Dichloropropene                 | ND             | ug/L         | 4.0                | 1        |             | 04/22/16 19:33                   |               |      |
| Diethyl ether (Ethyl ether)               | ND             | ug/L         | 4.0                | 1        |             | 04/22/16 19:33                   |               |      |
| Ethylbenzene                              | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   |               |      |
| Hexachloro-1,3-butadiene                  | ND             | ug/L         | 2.0                | 1        |             | 04/22/16 19:33                   | 8 87-68-3     |      |
| Isopropylbenzene (Cumene)                 | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   | 98-82-8       |      |
| p-Isopropyltoluene                        | ND             | ug/L         | 1.0                | 1        |             | 04/22/16 19:33                   | 99-87-6       |      |
| Methylene Chloride                        | ND             | ug/L         | 4.0                | 1        |             | 04/22/16 19:33                   | 75-09-2       |      |
| 4-Methyl-2-pentanone (MIBK)               | ND             | ug/L         | 5.0                | 1        |             | 04/22/16 19:33                   | 3 108-10-1    |      |

# **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..





Project: CrC
Pace Project No.: 10345507

Date: 04/25/2016 04:19 PM

| Sample: AS-Effluent            | Lab ID: 103     | 45507002    | Collected: 04/20/1 | 16 02:30 | Received: 04/21/16 09:35 | Matrix: Water  |
|--------------------------------|-----------------|-------------|--------------------|----------|--------------------------|----------------|
| Parameters                     | Results         | Units       | Report Limit       | DF       | Prepared Analyzed        | CAS No. Qu     |
| 624 MSV                        | Analytical Meth | nod: EPA 62 | 24                 |          |                          |                |
| Methyl-tert-butyl ether        | ND              | ug/L        | 1.0                | 1        | 04/22/16 19:             | 33 1634-04-4   |
| Naphthalene                    | ND              | ug/L        | 4.0                | 1        | 04/22/16 19:             | 33 91-20-3     |
| n-Propylbenzene                | ND              | ug/L        | 1.0                | 1        | 04/22/16 19:             | 33 103-65-1    |
| Styrene                        | ND              | ug/L        | 1.0                | 1        | 04/22/16 19:             | 33 100-42-5    |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1        | 04/22/16 19:             | 33 630-20-6    |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1        | 04/22/16 19:             | 33 79-34-5     |
| Tetrachloroethene              | ND              | ug/L        | 1.0                | 1        | 04/22/16 19:             | 33 127-18-4    |
| Tetrahydrofuran                | ND              | ug/L        | 40.0               | 1        | 04/22/16 19:             | 33 109-99-9    |
| Toluene                        | ND              | ug/L        | 1.0                | 1        | 04/22/16 19:             | 33 108-88-3    |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1        | 04/22/16 19:             | 33 87-61-6     |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1        | 04/22/16 19:             | 33 120-82-1    |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 1.0                | 1        | 04/22/16 19:             | 33 71-55-6     |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 1.0                | 1        | 04/22/16 19:             | 33 79-00-5     |
| Trichloroethene                | ND              | ug/L        | 0.40               | 1        | 04/22/16 19:             | 33 79-01-6     |
| Trichlorofluoromethane         | ND              | ug/L        | 1.0                | 1        | 04/22/16 19:             | 33 75-69-4     |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 4.0                | 1        | 04/22/16 19:             | 33 96-18-4     |
| 1,1,2-Trichlorotrifluoroethane | ND              | ug/L        | 1.0                | 1        | 04/22/16 19:             | 33 76-13-1     |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1        | 04/22/16 19:             | 33 95-63-6     |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1        | 04/22/16 19:             | 33 108-67-8    |
| Vinyl chloride                 | ND              | ug/L        | 0.40               | 1        | 04/22/16 19:             | 33 75-01-4     |
| Xylene (Total)                 | ND              | ug/L        | 3.0                | 1        | 04/22/16 19:             | 33 1330-20-7   |
| m&p-Xylene                     | ND              | ug/L        | 2.0                | 1        | 04/22/16 19:             | 33 179601-23-1 |
| o-Xylene                       | ND              | ug/L        | 1.0                | 1        | 04/22/16 19:             | 33 95-47-6     |
| Surrogates                     |                 |             |                    |          |                          |                |
| 1,2-Dichloroethane-d4 (S)      | 110             | %.          | 75-125             | 1        |                          | 33 17060-07-0  |
| Toluene-d8 (S)                 | 94              | %.          | 75-125             | 1        |                          | 33 2037-26-5   |
| 4-Bromofluorobenzene (S)       | 105             | %.          | 75-125             | 1        | 04/22/16 19:             | 33 460-00-4    |



# **QUALITY CONTROL DATA**

Project: CrC
Pace Project No.: 10345507

Date: 04/25/2016 04:19 PM

QC Batch: MSV/35304 Analysis Method: EPA 624
QC Batch Method: EPA 624 Analysis Description: 624 MSV

Associated Lab Samples: 10345507001, 10345507002

METHOD BLANK: 2238590 Matrix: Water

Associated Lab Samples: 10345507001, 10345507002

| Parameter                      | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|--------------------------------|-------|-----------------|--------------------|----------------|------------|
| 1,1,1,2-Tetrachloroethane      | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| 1,1,1-Trichloroethane          | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| 1,1,2-Trichloroethane          | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| 1,1-Dichloroethane             | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| 1,1-Dichloroethene             | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| 1,1-Dichloropropene            | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| 1,2,3-Trichlorobenzene         | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| 1,2,3-Trichloropropane         | ug/L  | ND              | 4.0                | 04/22/16 13:15 |            |
| 1,2,4-Trichlorobenzene         | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| 1,2,4-Trimethylbenzene         | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| 1,2-Dibromo-3-chloropropane    | ug/L  | ND              | 4.0                | 04/22/16 13:15 |            |
| 1,2-Dibromoethane (EDB)        | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| 1,2-Dichlorobenzene            | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| 1,2-Dichloroethane             | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| 1,2-Dichloropropane            | ug/L  | ND              | 4.0                | 04/22/16 13:15 |            |
| 1,3,5-Trimethylbenzene         | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| 1,3-Dichlorobenzene            | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| 1,3-Dichloropropane            | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| 1,4-Dichlorobenzene            | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| 2,2-Dichloropropane            | ug/L  | ND              | 4.0                | 04/22/16 13:15 |            |
| 2-Butanone (MEK)               | ug/L  | ND              | 5.0                | 04/22/16 13:15 |            |
| 2-Chloroethylvinyl ether       | ug/L  | ND              | 10.0               | 04/22/16 13:15 |            |
| 2-Chlorotoluene                | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| 4-Chlorotoluene                | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| 4-Methyl-2-pentanone (MIBK)    | ug/L  | ND              | 5.0                | 04/22/16 13:15 |            |
| Acetone                        | ug/L  | ND              | 20.0               | 04/22/16 13:15 |            |
| Allyl chloride                 | ug/L  | ND              | 4.0                | 04/22/16 13:15 |            |
| Benzene                        | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| Bromobenzene                   | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| Bromochloromethane             | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| Bromodichloromethane           | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| Bromoform                      | ug/L  | ND              | 4.0                | 04/22/16 13:15 |            |
| Bromomethane                   | ug/L  | ND              | 4.0                | 04/22/16 13:15 |            |
| Carbon tetrachloride           | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| Chlorobenzene                  | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| Chloroethane                   | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| Chloroform                     | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| Chloromethane                  | ug/L  | ND              | 4.0                | 04/22/16 13:15 |            |
| cis-1,2-Dichloroethene         | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



# **QUALITY CONTROL DATA**

Project: CrC
Pace Project No.: 10345507

Date: 04/25/2016 04:19 PM

METHOD BLANK: 2238590 Matrix: Water

Associated Lab Samples: 10345507001, 10345507002

| Parameter                   | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|-----------------------------|-------|-----------------|--------------------|----------------|------------|
| cis-1,3-Dichloropropene     | ug/L  | ND              | 4.0                | 04/22/16 13:15 |            |
| Dibromochloromethane        | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| Dibromomethane              | ug/L  | ND              | 4.0                | 04/22/16 13:15 |            |
| Dichlorodifluoromethane     | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| Dichlorofluoromethane       | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| Diethyl ether (Ethyl ether) | ug/L  | ND              | 4.0                | 04/22/16 13:15 |            |
| Ethylbenzene                | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| Hexachloro-1,3-butadiene    | ug/L  | ND              | 2.0                | 04/22/16 13:15 |            |
| Isopropylbenzene (Cumene)   | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| m&p-Xylene                  | ug/L  | ND              | 2.0                | 04/22/16 13:15 |            |
| Methyl-tert-butyl ether     | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| Methylene Chloride          | ug/L  | ND              | 4.0                | 04/22/16 13:15 |            |
| n-Butylbenzene              | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| n-Propylbenzene             | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| Naphthalene                 | ug/L  | ND              | 4.0                | 04/22/16 13:15 |            |
| o-Xylene                    | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| p-Isopropyltoluene          | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| sec-Butylbenzene            | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| Styrene                     | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| tert-Butylbenzene           | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| Tetrachloroethene           | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| Tetrahydrofuran             | ug/L  | ND              | 40.0               | 04/22/16 13:15 |            |
| Toluene                     | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| trans-1,2-Dichloroethene    | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| trans-1,3-Dichloropropene   | ug/L  | ND              | 4.0                | 04/22/16 13:15 |            |
| Trichloroethene             | ug/L  | ND              | 0.40               | 04/22/16 13:15 |            |
| Trichlorofluoromethane      | ug/L  | ND              | 1.0                | 04/22/16 13:15 |            |
| Vinyl chloride              | ug/L  | ND              | 0.40               | 04/22/16 13:15 |            |
| Xylene (Total)              | ug/L  | ND              | 3.0                | 04/22/16 13:15 |            |
| 1,2-Dichloroethane-d4 (S)   | %.    | 108             | 75-125             | 04/22/16 13:15 |            |
| 4-Bromofluorobenzene (S)    | %.    | 97              | 75-125             | 04/22/16 13:15 |            |
| Toluene-d8 (S)              | %.    | 96              | 75-125             | 04/22/16 13:15 |            |

| LABORATORY CONTROL SAMPLE      | & LCSD: 2238591 |       | 22     | 239747 |       |       |        |     |     |            |
|--------------------------------|-----------------|-------|--------|--------|-------|-------|--------|-----|-----|------------|
|                                |                 | Spike | LCS    | LCSD   | LCS   | LCSD  | % Rec  |     | Max |            |
| Parameter                      | Units           | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qualifiers |
| 1,1,1,2-Tetrachloroethane      | ug/L            | 20    | 19.2   | 18.3   | 96    | 92    | 75-126 | 4   | 20  |            |
| 1,1,1-Trichloroethane          | ug/L            | 20    | 21.4   | 20.6   | 107   | 103   | 72-125 | 4   | 20  |            |
| 1,1,2,2-Tetrachloroethane      | ug/L            | 20    | 20.4   | 20.1   | 102   | 101   | 68-125 | 1   | 20  |            |
| 1,1,2-Trichloroethane          | ug/L            | 20    | 20.1   | 20.6   | 100   | 103   | 75-125 | 3   | 20  |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L            | 20    | 21.7   | 20.5   | 109   | 103   | 66-132 | 6   | 20  |            |
| 1,1-Dichloroethane             | ug/L            | 20    | 23.6   | 22.8   | 118   | 114   | 68-126 | 3   | 20  |            |
| 1,1-Dichloroethene             | ug/L            | 20    | 22.0   | 21.7   | 110   | 109   | 67-127 | 1   | 20  |            |
| 1,1-Dichloropropene            | ug/L            | 20    | 21.1   | 20.4   | 106   | 102   | 71-126 | 4   | 20  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: CrC
Pace Project No.: 10345507

Date: 04/25/2016 04:19 PM

| ABORATORY CONTROL SAMPLE &      | LCSD: 223859 |          |              | 239747       |       |          |                  |         |          |           |
|---------------------------------|--------------|----------|--------------|--------------|-------|----------|------------------|---------|----------|-----------|
|                                 |              | Spike    | LCS          | LCSD         | LCS   | LCSD     | % Rec            |         | Max      |           |
| Parameter                       | Units        | Conc.    | Result       | Result       | % Rec | % Rec    | Limits           | RPD     | RPD      | Qualifier |
| ,2,3-Trichlorobenzene           | ug/L         | 20       | 17.8         | 16.4         | 89    | 82       | 63-132           | 8       | 20       |           |
| ,2,3-Trichloropropane           | ug/L         | 20       | 20.0         | 19.9         | 100   | 100      | 72-125           | 0       | 20       |           |
| ,2,4-Trichlorobenzene           | ug/L         | 20       | 17.2         | 15.9         | 86    | 80       | 59-135           | 8       | 20       |           |
| ,2,4-Trimethylbenzene           | ug/L         | 20       | 20.9         | 19.3         | 104   | 96       | 70-132           | 8       | 20       |           |
| ,2-Dibromo-3-chloropropane      | ug/L         | 50       | 41.9         | 40.5         | 84    | 81       | 58-130           | 3       | 20       |           |
| ,2-Dibromoethane (EDB)          | ug/L         | 20       | 19.8         | 20.0         | 99    | 100      | 75-125           | 1       | 20       |           |
| ,2-Dichlorobenzene              | ug/L         | 20       | 20.1         | 19.4         | 101   | 97       | 74-125           | 3       | 20       |           |
| ,2-Dichloroethane               | ug/L         | 20       | 21.8         | 22.3         | 109   | 111      | 71-125           | 2       | 20       |           |
| ,2-Dichloropropane              | ug/L         | 20       | 21.3         | 21.2         | 107   | 106      | 72-125           | 0       | 20       |           |
| ,3,5-Trimethylbenzene           | ug/L         | 20       | 21.7         | 20.0         | 108   | 100      | 73-125           | 8       | 20       |           |
| ,3-Dichlorobenzene              | ug/L         | 20       | 20.6         | 19.1         | 103   | 96       | 74-125           | 8       | 20       |           |
| ,3-Dichloropropane              | ug/L         | 20       | 19.4         | 19.8         | 97    | 99       | 75-125           | 2       | 20       |           |
| ,4-Dichlorobenzene              | ug/L         | 20       | 20.7         | 19.5         | 103   | 98       | 74-125           | 6       | 20       |           |
| ,2-Dichloropropane              | ug/L         | 20       | 21.9         | 18.5         | 109   | 93       | 64-138           | 17      | 20       |           |
| -Butanone (MEK)                 | ug/L         | 100      | 125          | 125          | 125   | 125      | 61-129           | 0       | 20       |           |
| -Chloroethylvinyl ether         | ug/L         | 50       | 52.4         | 52.0         | 105   | 104      | 30-150           | 1       | 20       |           |
| -Chlorotoluene                  | ug/L         | 20       | 21.0         | 19.9         | 105   | 100      | 70-126           | 5       | 20       |           |
| -Chlorotoluene                  | ug/L         | 20       | 20.2         | 19.2         | 101   | 96       | 73-125           | 6       | 20       |           |
| -Methyl-2-pentanone (MIBK)      | ug/L         | 100      | 117          | 114          | 117   | 114      | 63-135           | 3       | 20       |           |
| cetone                          | ug/L         | 100      | 105          | 117          | 105   | 117      | 66-150           | 11      | 20       |           |
| Illyl chloride                  | ug/L         | 20       | 25.6         | 25.2         | 128   | 126      | 62-139           | 1       | 20       |           |
| Benzene                         | ug/L         | 20       | 20.6         | 20.3         | 103   | 101      | 67-126           | 2       | 20       |           |
| Bromobenzene                    | ug/L         | 20       | 20.5         | 20.2         | 103   | 101      | 72-125           | 1       | 20       |           |
| Bromochloromethane              | ug/L         | 20       | 21.2         | 21.6         | 106   | 108      | 73-125           | 2       | 20       |           |
| Bromodichloromethane            | ug/L         | 20       | 19.4         | 19.0         | 97    | 95       | 71-126           | 2       | 20       |           |
| Bromoform                       | ug/L         | 20       | 15.9         | 14.8         | 80    | 74       | 64-130           | 7       | 20       |           |
| Gromomethane                    | ug/L         | 20       | 21.7         | 21.1         | 108   | 106      | 30-150           | 3       | 20       |           |
| Carbon tetrachloride            | ug/L         | 20       | 20.1         | 19.1         | 101   | 95       | 71-128           | 5       | 20       |           |
| Chlorobenzene                   | ug/L         | 20       | 21.0         | 19.1         | 105   | 100      | 75-125           | 5       | 20       |           |
| Chloroethane                    | ug/L         | 20       | 23.5         | 22.6         | 117   | 113      | 60-130           | 4       | 20       |           |
| Chloroform                      | ug/L         | 20       | 20.4         | 20.4         | 102   | 102      | 73-125           | 0       | 20       |           |
| Chloromethane                   | ug/L<br>ug/L | 20       | 29.4         | 29.0         | 147   | 145      | 49-146           | 1       |          | CH,L0     |
| is-1,2-Dichloroethene           | ug/L         | 20       | 21.3         | 20.3         | 106   | 102      | 68-131           | 5       | 20       |           |
| is-1,2-Dichloropropene          | ug/L<br>ug/L | 20       | 20.8         | 20.3         | 104   | 102      | 73-125           | 2       | 20       |           |
| Dibromochloromethane            | ug/L         | 20       | 16.3         | 16.0         | 81    | 80       | 71-125           | 2       | 20       |           |
| Dibromomethane                  | -            | 20       | 20.6         | 20.8         | 103   | 104      | 71-123           | 1       | 20       |           |
| Dichlorodifluoromethane         | ug/L         | 20       |              | 20.6         |       | 104      | 56-145           | 3       | 20       |           |
|                                 | ug/L         | _        | 22.0         |              | 110   |          |                  | _       |          |           |
| Dichlorofluoromethane           | ug/L         | 20       | 22.8         | 22.2         | 114   | 111      | 69-128           | 3       | 20       |           |
| hiethyl ether (Ethyl ether)     | ug/L         | 20       | 22.6         | 23.1         | 113   | 116      | 65-127           | 2       | 20       |           |
| thylbenzene                     | ug/L         | 20       | 20.6         | 19.2         |       | 96       | 75-125           | 7       | 20       |           |
| lexachloro-1,3-butadiene        | ug/L         | 20       | 15.1         | 12.4         | 75    | 62       | 62-145           | 20      | 20       |           |
| sopropylbenzene (Cumene)        | ug/L         | 20       | 20.2         | 18.5         | 101   | 92       | 75-133           | 9       | 20       |           |
| n&p-Xylene                      | ug/L         | 40       | 43.4         | 40.3         | 108   | 101      | 75-126           | 7       | 20       |           |
| Methyl-tert-butyl ether         | ug/L         | 20       | 20.7         | 21.4         | 104   | 107      | 73-125           | 3       | 20       |           |
| Methylene Chloride              | ug/L         | 20       | 20.6         | 20.3         |       | 102      | 72-128           | 2       | 20       |           |
| -Butylbenzene<br>-Propylbenzene | ug/L<br>ug/L | 20<br>20 | 18.9<br>21.0 | 16.3<br>19.3 |       | 81<br>96 | 67-131<br>70-128 | 15<br>9 | 20<br>20 |           |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: CrC
Pace Project No.: 10345507

Date: 04/25/2016 04:19 PM

| LABORATORY CONTROL SAMPLI | E & LCSD: 2238591 |       | 22     | 39747  |       |       |        |     |     |            |
|---------------------------|-------------------|-------|--------|--------|-------|-------|--------|-----|-----|------------|
|                           |                   | Spike | LCS    | LCSD   | LCS   | LCSD  | % Rec  |     | Max |            |
| Parameter                 | Units             | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qualifiers |
| Naphthalene               | ug/L              | 20    | 18.8   | 18.2   | 94    | 91    | 54-139 | 3   | 20  |            |
| o-Xylene                  | ug/L              | 20    | 20.0   | 18.5   | 100   | 93    | 75-125 | 8   | 20  |            |
| p-Isopropyltoluene        | ug/L              | 20    | 19.7   | 17.6   | 98    | 88    | 71-128 | 11  | 20  |            |
| sec-Butylbenzene          | ug/L              | 20    | 19.2   | 17.5   | 96    | 88    | 73-132 | 9   | 20  |            |
| Styrene                   | ug/L              | 20    | 21.2   | 20.2   | 106   | 101   | 75-128 | 5   | 20  |            |
| tert-Butylbenzene         | ug/L              | 20    | 19.4   | 17.7   | 97    | 88    | 75-130 | 9   | 20  |            |
| Tetrachloroethene         | ug/L              | 20    | 19.7   | 18.1   | 99    | 91    | 67-129 | 8   | 20  |            |
| Tetrahydrofuran           | ug/L              | 200   | 192    | 211    | 96    | 106   | 73-137 | 10  | 20  |            |
| Toluene                   | ug/L              | 20    | 19.4   | 18.3   | 97    | 91    | 74-125 | 6   | 20  |            |
| trans-1,2-Dichloroethene  | ug/L              | 20    | 22.4   | 21.4   | 112   | 107   | 65-128 | 4   | 20  |            |
| trans-1,3-Dichloropropene | ug/L              | 20    | 19.5   | 18.7   | 98    | 93    | 75-125 | 4   | 20  |            |
| Trichloroethene           | ug/L              | 20    | 21.0   | 20.0   | 105   | 100   | 72-125 | 5   | 20  |            |
| Trichlorofluoromethane    | ug/L              | 20    | 21.7   | 19.8   | 109   | 99    | 70-132 | 9   | 20  |            |
| Vinyl chloride            | ug/L              | 20    | 23.2   | 22.2   | 116   | 111   | 69-130 | 4   | 20  |            |
| Xylene (Total)            | ug/L              | 60    | 63.4   | 58.8   | 106   | 98    | 75-125 | 8   | 20  |            |
| 1,2-Dichloroethane-d4 (S) | %.                |       |        |        | 104   | 109   | 75-125 |     |     |            |
| 4-Bromofluorobenzene (S)  | %.                |       |        |        | 95    | 96    | 75-125 |     |     |            |
| Toluene-d8 (S)            | %.                |       |        |        | 92    | 92    | 75-125 |     |     |            |

| MATRIX SPIKE SAMPLE:           | 2238681 |             |       |        |       |        |            |
|--------------------------------|---------|-------------|-------|--------|-------|--------|------------|
|                                |         | 10345507001 | Spike | MS     | MS    | % Rec  |            |
| Parameter                      | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,1,1,2-Tetrachloroethane      | ug/L    | ND          | 20    | 20.0   | 100   | 55-147 |            |
| 1,1,1-Trichloroethane          | ug/L    | ND          | 20    | 24.2   | 121   | 45-150 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L    | ND          | 20    | 20.3   | 101   | 52-143 |            |
| 1,1,2-Trichloroethane          | ug/L    | ND          | 20    | 20.2   | 101   | 57-139 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L    | ND          | 20    | 27.3   | 132   | 40-150 |            |
| 1,1-Dichloroethane             | ug/L    | ND          | 20    | 25.0   | 125   | 46-150 |            |
| 1,1-Dichloroethene             | ug/L    | ND          | 20    | 26.3   | 131   | 42-150 |            |
| 1,1-Dichloropropene            | ug/L    | ND          | 20    | 24.1   | 121   | 45-150 |            |
| 1,2,3-Trichlorobenzene         | ug/L    | ND          | 20    | 16.4   | 82    | 51-142 |            |
| 1,2,3-Trichloropropane         | ug/L    | ND          | 20    | 19.4   | 97    | 55-142 |            |
| 1,2,4-Trichlorobenzene         | ug/L    | ND          | 20    | 15.9   | 79    | 50-143 |            |
| 1,2,4-Trimethylbenzene         | ug/L    | ND          | 20    | 20.6   | 103   | 51-147 |            |
| 1,2-Dibromo-3-chloropropane    | ug/L    | ND          | 50    | 38.2   | 76    | 44-149 |            |
| 1,2-Dibromoethane (EDB)        | ug/L    | ND          | 20    | 20.0   | 100   | 60-138 |            |
| 1,2-Dichlorobenzene            | ug/L    | ND          | 20    | 19.9   | 100   | 55-137 |            |
| 1,2-Dichloroethane             | ug/L    | ND          | 20    | 22.9   | 114   | 50-139 |            |
| 1,2-Dichloropropane            | ug/L    | ND          | 20    | 22.5   | 112   | 61-145 |            |
| 1,3,5-Trimethylbenzene         | ug/L    | ND          | 20    | 21.4   | 107   | 34-150 |            |
| 1,3-Dichlorobenzene            | ug/L    | ND          | 20    | 20.3   | 101   | 53-138 |            |
| 1,3-Dichloropropane            | ug/L    | ND          | 20    | 20.0   | 100   | 58-139 |            |
| 1,4-Dichlorobenzene            | ug/L    | ND          | 20    | 20.4   | 102   | 52-135 |            |
| 2,2-Dichloropropane            | ug/L    | ND          | 20    | 21.6   | 108   | 30-150 |            |
| 2-Butanone (MEK)               | ug/L    | ND          | 100   | 118    | 117   | 30-150 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: CrC
Pace Project No.: 10345507

Date: 04/25/2016 04:19 PM

| MATRIX SPIKE SAMPLE:                          | 2238681      | 10345507001 | Spike | MS           | MS         | % Rec            |            |
|-----------------------------------------------|--------------|-------------|-------|--------------|------------|------------------|------------|
| Parameter                                     | Units        | Result      | Conc. | Result       | % Rec      | Limits           | Qualifiers |
| 2-Chloroethylvinyl ether                      | ug/L         | ND          | 50    | ND           | 1          | 30-125           | P5         |
| 2-Chlorotoluene                               | ug/L         | ND          | 20    | 21.4         | 107        | 52-146           |            |
| 4-Chlorotoluene                               | ug/L         | ND          | 20    | 20.6         | 103        | 43-142           |            |
| 4-Methyl-2-pentanone (MIBK)                   | ug/L         | ND          | 100   | 110          | 110        | 46-148           |            |
| Acetone                                       | ug/L         | 53.9        | 100   | 175          | 121        | 44-150           |            |
| Allyl chloride                                | ug/L         | ND          | 20    | 28.3         | 141        | 40-150           |            |
| Benzene                                       | ug/L         | ND          | 20    | 22.2         | 111        | 49-143           |            |
| Bromobenzene                                  | ug/L         | ND          | 20    | 20.7         | 104        | 58-139           |            |
| Bromochloromethane                            | ug/L         | ND          | 20    | 22.5         | 112        | 53-144           |            |
| Bromodichloromethane                          | ug/L         | ND          | 20    | 19.8         | 99         | 49-145           |            |
| Bromoform                                     | ug/L         | ND          | 20    | 15.0         | 75         | 42-142           |            |
| Bromomethane                                  | ug/L         | ND          | 20    | 21.4         | 107        | 30-150           |            |
| Carbon tetrachloride                          | ug/L         | ND          | 20    | 22.9         | 114        | 30-150           |            |
| Chlorobenzene                                 | ug/L         | ND          | 20    | 21.4         | 107        | 57-137           |            |
| Chloroethane                                  | ug/L         | ND          | 20    | 23.6         | 118        | 39-150           |            |
| Chloroform                                    | ug/L         | ND          | 20    | 21.5         | 107        | 52-147           |            |
| Chloromethane                                 | ug/L         | ND          | 20    | 30.8         | 154        |                  | CH,M0      |
| cis-1,2-Dichloroethene                        | ug/L         | ND          | 20    | 23.0         | 112        | 44-149           |            |
| cis-1,3-Dichloropropene                       | ug/L         | ND          | 20    | 20.8         | 104        | 45-140           |            |
| Dibromochloromethane                          | ug/L         | ND          | 20    | 16.1         | 81         | 49-144           |            |
| Dibromomethane                                | ug/L         | ND          | 20    | 21.0         | 105        | 59-142           |            |
| Dichlorodifluoromethane                       | ug/L         | ND          | 20    | 25.0         | 125        | 46-150           |            |
| Dichlorofluoromethane                         | ug/L         | ND          | 20    | 23.2         | 116        | 53-150           |            |
| Diethyl ether (Ethyl ether)                   | ug/L         | ND          | 20    | 23.0         | 115        | 45-146           |            |
| Ethylbenzene                                  | ug/L         | ND          | 20    | 20.9         | 104        | 49-141           |            |
| Hexachloro-1,3-butadiene                      | ug/L         | ND          | 20    | 14.6         | 73         | 33-150           |            |
| Isopropylbenzene (Cumene)                     | ug/L         | ND          | 20    | 20.1         | 101        | 50-150           |            |
|                                               | _            | ND          | 40    | 43.8         | 110        | 44-150           |            |
| m&p-Xylene                                    | ug/L         | ND<br>ND    | 20    | 43.6<br>21.2 | 106        | 52-138           |            |
| Methyl-tert-butyl ether<br>Methylene Chloride | ug/L<br>ug/L | ND<br>ND    | 20    | 21.2         | 109        | 43-149           |            |
| -                                             |              | ND          | 20    | 18.4         | 92         | 46-150           |            |
| n-Butylbenzene                                | ug/L         | ND          | 20    | 21.1         | 106        | 44-150           |            |
| n-Propylbenzene<br>Naphthalene                | ug/L         | ND          | 20    | 17.3         | 87         | 45-149           |            |
| •                                             | ug/L         | ND<br>ND    | 20    | 17.3         | 98         | 48-149           |            |
| o-Xylene<br>p-Isopropyltoluene                | ug/L<br>ug/L | ND<br>ND    | 20    | 19.5         | 96<br>95   | 54-147           |            |
|                                               |              | ND          | 20    | 19.0         | 93<br>97   | 51-150           |            |
| sec-Butylbenzene                              | ug/L         | ND<br>ND    | 20    | 20.9         | 104        | 47-149           |            |
| Styrene                                       | ug/L         | ND          |       |              |            |                  |            |
| tert-Butylbenzene                             | ug/L         | 106         | 20    | 19.6         | 98<br>116  | 49-149<br>30-150 |            |
| Tetrachloroethene Tetrachudrofuran            | ug/L         | ND          | 20    | 129          | 116<br>115 |                  |            |
| Tetrahydrofuran                               | ug/L         | ND<br>ND    | 200   | 231          | 115        | 52-150           |            |
| Toluene                                       | ug/L         |             | 20    | 20.4         | 102        | 48-141           |            |
| trans-1,2-Dichloroethene                      | ug/L         | ND<br>ND    | 20    | 23.7         | 118        | 42-150           |            |
| trans-1,3-Dichloropropene                     | ug/L         | ND          | 20    | 19.2         | 96         | 45-143           |            |
| Trichloroethene                               | ug/L         | ND          | 20    | 22.6         | 112        | 38-150           |            |
| Trichlorofluoromethane                        | ug/L         | ND          | 20    | 24.6         | 123        | 57-150           |            |
| Vinyl chloride                                | ug/L         | ND          | 20    | 24.3         | 122        | 43-150           |            |
| Xylene (Total)                                | ug/L         | ND          | 60    | 63.4         | 106        | 45-149           |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: CrC
Pace Project No.: 10345507

Date: 04/25/2016 04:19 PM

| MATRIX SPIKE SAMPLE:      | 2238681 |             |       |        |       |        |            |
|---------------------------|---------|-------------|-------|--------|-------|--------|------------|
|                           |         | 10345507001 | Spike | MS     | MS    | % Rec  |            |
| Parameter                 | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,2-Dichloroethane-d4 (S) | %.      |             |       |        | 108   | 75-125 |            |
| 4-Bromofluorobenzene (S)  | %.      |             |       |        | 98    | 75-125 |            |
| Toluene-d8 (S)            | %.      |             |       |        | 93    | 75-125 |            |

| SAMPLE DUPLICATE: 2238682      |       |             |        |     |     |            |
|--------------------------------|-------|-------------|--------|-----|-----|------------|
|                                |       | 10345507002 | Dup    |     | Max |            |
| Parameter                      | Units | Result      | Result | RPD | RPD | Qualifiers |
| 1,1,1,2-Tetrachloroethane      | ug/L  | ND          | ND     |     | 30  |            |
| 1,1,1-Trichloroethane          | ug/L  | ND          | ND     |     | 30  |            |
| 1,1,2,2-Tetrachloroethane      | ug/L  | ND          | ND     |     | 30  |            |
| 1,1,2-Trichloroethane          | ug/L  | ND          | ND     |     | 30  |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L  | ND          | ND     |     | 30  |            |
| 1,1-Dichloroethane             | ug/L  | ND          | ND     |     | 30  |            |
| 1,1-Dichloroethene             | ug/L  | ND          | ND     |     | 30  |            |
| 1,1-Dichloropropene            | ug/L  | ND          | ND     |     | 30  |            |
| 1,2,3-Trichlorobenzene         | ug/L  | ND          | ND     |     | 30  |            |
| 1,2,3-Trichloropropane         | ug/L  | ND          | ND     |     | 30  |            |
| 1,2,4-Trichlorobenzene         | ug/L  | ND          | ND     |     | 30  |            |
| 1,2,4-Trimethylbenzene         | ug/L  | ND          | ND     |     | 30  |            |
| 1,2-Dibromo-3-chloropropane    | ug/L  | ND          | ND     |     | 30  |            |
| 1,2-Dibromoethane (EDB)        | ug/L  | ND          | ND     |     | 30  |            |
| 1,2-Dichlorobenzene            | ug/L  | ND          | ND     |     | 30  |            |
| 1,2-Dichloroethane             | ug/L  | ND          | ND     |     | 30  |            |
| 1,2-Dichloropropane            | ug/L  | ND          | ND     |     | 30  |            |
| 1,3,5-Trimethylbenzene         | ug/L  | ND          | ND     |     | 30  |            |
| 1,3-Dichlorobenzene            | ug/L  | ND          | ND     |     | 30  |            |
| 1,3-Dichloropropane            | ug/L  | ND          | ND     |     | 30  |            |
| 1,4-Dichlorobenzene            | ug/L  | ND          | ND     |     | 30  |            |
| 2,2-Dichloropropane            | ug/L  | ND          | ND     |     | 30  |            |
| 2-Butanone (MEK)               | ug/L  | ND          | ND     |     | 30  |            |
| 2-Chloroethylvinyl ether       | ug/L  | ND          | ND     |     | 30  |            |
| 2-Chlorotoluene                | ug/L  | ND          | ND     |     | 30  |            |
| 4-Chlorotoluene                | ug/L  | ND          | ND     |     | 30  |            |
| 4-Methyl-2-pentanone (MIBK)    | ug/L  | ND          | ND     |     | 30  |            |
| Acetone                        | ug/L  | 121         | 119    | 2   | 30  |            |
| Allyl chloride                 | ug/L  | ND          | ND     |     | 30  |            |
| Benzene                        | ug/L  | ND          | ND     |     | 30  |            |
| Bromobenzene                   | ug/L  | ND          | ND     |     | 30  |            |
| Bromochloromethane             | ug/L  | ND          | ND     |     | 30  |            |
| Bromodichloromethane           | ug/L  | ND          | ND     |     | 30  |            |
| Bromoform                      | ug/L  | ND          | ND     |     | 30  |            |
| Bromomethane                   | ug/L  | ND          | ND     |     | 30  |            |
| Carbon tetrachloride           | ug/L  | ND          | ND     |     | 30  |            |
| Chlorobenzene                  | ug/L  | ND          | ND     |     | 30  |            |
| Chloroethane                   | ug/L  | ND          | ND     |     | 30  |            |
|                                |       |             |        |     |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



# **QUALITY CONTROL DATA**

Project: CrC
Pace Project No.: 10345507

Date: 04/25/2016 04:19 PM

|                             |       | 10345507002 | Dup    |     | Max |            |
|-----------------------------|-------|-------------|--------|-----|-----|------------|
| Parameter                   | Units | Result      | Result | RPD | RPD | Qualifiers |
| Chloroform                  | ug/L  |             | ND     |     | 30  |            |
| Chloromethane               | ug/L  | ND          | ND     |     | 30  |            |
| cis-1,2-Dichloroethene      | ug/L  | ND          | ND     |     | 30  |            |
| cis-1,3-Dichloropropene     | ug/L  | ND          | ND     |     | 30  |            |
| Dibromochloromethane        | ug/L  | ND          | ND     |     | 30  |            |
| Dibromomethane              | ug/L  | ND          | ND     |     | 30  |            |
| Dichlorodifluoromethane     | ug/L  | ND          | ND     |     | 30  |            |
| Dichlorofluoromethane       | ug/L  | ND          | ND     |     | 30  |            |
| Diethyl ether (Ethyl ether) | ug/L  | ND          | ND     |     | 30  |            |
| Ethylbenzene                | ug/L  | ND          | ND     |     | 30  |            |
| Hexachloro-1,3-butadiene    | ug/L  | ND          | ND     |     | 30  |            |
| Isopropylbenzene (Cumene)   | ug/L  | ND          | ND     |     | 30  |            |
| m&p-Xylene                  | ug/L  | ND          | ND     |     | 30  |            |
| Methyl-tert-butyl ether     | ug/L  | ND          | ND     |     | 30  |            |
| Methylene Chloride          | ug/L  | ND          | ND     |     | 30  |            |
| n-Butylbenzene              | ug/L  | ND          | ND     |     | 30  |            |
| n-Propylbenzene             | ug/L  | ND          | ND     |     | 30  |            |
| Naphthalene                 | ug/L  | ND          | ND     |     | 30  |            |
| o-Xylene                    | ug/L  | ND          | ND     |     | 30  |            |
| p-Isopropyltoluene          | ug/L  | ND          | ND     |     | 30  |            |
| sec-Butylbenzene            | ug/L  | ND          | ND     |     | 30  |            |
| Styrene                     | ug/L  | ND          | ND     |     | 30  |            |
| tert-Butylbenzene           | ug/L  | ND          | ND     |     | 30  |            |
| Tetrachloroethene           | ug/L  | ND          | ND     |     | 30  |            |
| Tetrahydrofuran             | ug/L  | ND          | ND     |     | 30  |            |
| Toluene                     | ug/L  | ND          | ND     |     | 30  |            |
| trans-1,2-Dichloroethene    | ug/L  | ND          | ND     |     | 30  |            |
| trans-1,3-Dichloropropene   | ug/L  | ND          | ND     |     | 30  |            |
| Trichloroethene             | ug/L  | ND          | ND     |     | 30  |            |
| Trichlorofluoromethane      | ug/L  | ND          | ND     |     | 30  |            |
| Vinyl chloride              | ug/L  | ND          | ND     |     | 30  |            |
| Xylene (Total)              | ug/L  | ND          | ND     |     | 30  |            |
| 1,2-Dichloroethane-d4 (S)   | %.    | 110         | 108    | 2   |     |            |
| . ,                         |       | 405         |        | _   |     |            |
| 4-Bromofluorobenzene (S)    | %.    | 105         | 106    | 1   |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### **QUALIFIERS**

Project: CrC
Pace Project No.: 10345507

### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### **BATCH QUALIFIERS**

Batch: MSV/35304

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

### **ANALYTE QUALIFIERS**

Date: 04/25/2016 04:19 PM

| CH | The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased |
|----|-------------------------------------------------------------------------------------------------------------------------|
|    | high.                                                                                                                   |

- LO Analyte recovery in the laboratory control sample (LCS) was outside QC limits.
- L3 Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.
- M0 Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.
- P5 The EPA or method required sample preservation degrades this compound, therefore acceptable recoveries may not be achieved in sample matrix spikes.
- c2 Acid preservation may not be appropriate for the analysis of 2-Chloroethylvinyl ether.





# **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: CrC
Pace Project No.: 10345507

Date: 04/25/2016 04:19 PM

| Lab ID                     | Sample ID                  | QC Batch Method    | QC Batch               | Analytical Method | Analytical<br>Batch |
|----------------------------|----------------------------|--------------------|------------------------|-------------------|---------------------|
| 10345507001<br>10345507002 | AS-Influent<br>AS-Effluent | EPA 624<br>EPA 624 | MSV/35304<br>MSV/35304 |                   |                     |

# CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Face Analytical www.nacelals.com

Pace Project No./ Lab I.D. 200 (N/A) DRINKING WATER 00 Samples Intact SAMPLE CONDITIONS S 202595 OTHER (N/A) sied Cooler Custody Received on Ice (Y/N) GROUND WATER Residual Chlorine (Y/N) O° ni qmaT Page: REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/N) TIME STATE Site Location NPDES DATE 7 UST 54 10345507 DATE Signed ACCEPTED BY / AFFILIATION Paradise ↓ tesT sisylsnA↓ **†** N 7A スなのん Methanol Other Preservatives <sub>E</sub>O<sub>S</sub>S<sub>S</sub>BN Attention: Sharva HOBN HCI くらん Invoice Information: <sup>E</sup>ONH Company Name: <sup>⁵</sup>OS<sup>2</sup>H 432 Section C Pace Quote
Reference:
Pace Project
Manager:
Pace Profile # TIME Unpreserved Address: # OF CONTAINERS ķ SAMPLER NAME AND SIGNATURE 4/21/6 SIGNATURE of SAMPLER: PRINT Name of SAMPLER: SAMPLE TEMP AT COLLECTION copylisteranstad @ landmankenvicom Report To, Kuck & (andmarkens, Corn DATE TIME COMPOSITE END/GRAB DATE COLLECTED RELINQUISHED BY / AFFILIATION 子を食 たぶ 20/16 1:30 TIME COMPOSITE START DATE Section B Required Project Information: どん (G=GRAB C=COMP) **39YT AJ9MA8** Purchase Order No. Project Number: (see valid codes to left) Ļ MATRIX CODE Project Name: ORIGINAL <sup>교</sup> 임임삼성도요 Matrix Codes MATRIX / CODE Drinking Water Water Waste Water Product Soil/Soid Oil Wipe Air. Email To: Kucke landmantenu.co Company, and mort Environment 9,8th S Ž Requested Due Date/TAT: NO'r ma ADDITIONAL COMMENTS (A-Z, 0-9 / ,-) Sample IDs MUST BE UNIQUE SAMPLE ID Blooming ton Required Client Information Section A Required Client Information: Address: 2042 Section D Page 18 of 19 ıo 9 6 9 7 # M3TI ~ 7 œ

Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any involces not paid within 30 days.

F-ALL-Q-020rev.07, 15-May-2007

(MM/DD/YY):



# Document Name:

# Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.15

Document Revised: 05Jan2016

Page 1 of 1

Issuing Authority: Pace Minnesota Quality Office

| Sample Condition Client Name:                                                                                                    |              |              | Project           | #: WO#:10345507                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|-------------------|-------------------------------------------------------------------------------------------------------------|
| Upon Receipt Land mark                                                                                                           |              |              |                   | MOH · INDIPOS                                                                                               |
| Courier: Fed Ex UPS                                                                                                              | USPS         |              | lient             |                                                                                                             |
| Commercial Pace SpeeDee                                                                                                          | Other:_      |              |                   |                                                                                                             |
| Tracking Number:                                                                                                                 |              |              |                   | <u> </u>                                                                                                    |
| Custody Seal on Cooler/Box Present? Yes                                                                                          | ;            | Seals Int    | act?              | Yes Proj. Due Date: Proj. Name:                                                                             |
| Packing Material: Bubble Wrap Bubble Bags                                                                                        | □Non         | e 🔲          | Other:            | Temp Blank? Yes You                                                                                         |
| Thermometer 151401163                                                                                                            | Тур          | e of Ice:    | <b>∑</b> We       | t Blue None Samples on ice, cooling process has begun                                                       |
| Used: 151401164                                                                                                                  |              | . Ч.         | .5                | Biological Tissue Frozen? Yes No No                                                                         |
| Temp should be above freezing to 6°C Correction Factor                                                                           |              | +00          | Dat               | e and Initials of Person Examining Contents: RM 4/21/14                                                     |
| USDA Regulated Soil ( N/A, water sample)                                                                                         |              |              |                   |                                                                                                             |
| Did samples originate in a quarantine zone within the United St. MS, NC, NM, NY, OK, OR, SC, TN, TX or WA (check maps)?          | ates: AL, A  | AR, AZ, CA   | A, FL, GA,<br>Yes | ID, LA. Did samples originate from a foreign source (internationally, No including Hawaii and Puerto Rico)? |
|                                                                                                                                  | lated Soil   | Checklis     |                   | Q-338) and include with SCUR/COC paperwork.                                                                 |
|                                                                                                                                  |              |              |                   | COMMENTS:                                                                                                   |
| Chain of Custody Present?                                                                                                        | Yes          | □No          | □n/a              | 1.                                                                                                          |
| Chain of Custody Filled Out?                                                                                                     | Yes          | □No          | □n/A              | 2.                                                                                                          |
| Chain of Custody Relinquished?                                                                                                   | Yes          | □No          | □N/A              | 3.                                                                                                          |
| Sampler Name and/or Signature on COC?                                                                                            | Yes          | □No          | □n/a              | 4.                                                                                                          |
| Samples Arrived within Hold Time?                                                                                                | Yes          | □No          | □N/A              | 5.                                                                                                          |
| Short Hold Time Analysis (<72 hr)?                                                                                               | Yes          | MΩ           | □N/A              | 6.                                                                                                          |
| Rush Turn Around Time Requested?                                                                                                 | Yes          | Mo           | □n/a              | 7.                                                                                                          |
| Sufficient Volume?                                                                                                               | Yes          | □No          | N/A               | 8.                                                                                                          |
| Correct Containers Used?                                                                                                         | Yes          | ∭No          | ∐n/a              | 9.                                                                                                          |
| -Pace Containers Used?                                                                                                           | ¥Yes         | □No          | □N/A              |                                                                                                             |
| Containers Intact?                                                                                                               | Yes          | ∐No          | □N/A              | 10.                                                                                                         |
| Filtered Volume Received for Dissolved Tests?                                                                                    | Yes          | ∏No          | <b>X</b> N/A      | 11. Note if sediment is visible in the dissolved container                                                  |
| Sample Labels Match COC?                                                                                                         | Yes          | ∏No          | □N/A              | 12.                                                                                                         |
| -Includes Date/Time/ID/Analysis Matrix:                                                                                          |              |              |                   |                                                                                                             |
| All containers needing acid/base preservation have been checked?                                                                 | ∐Ye₅         | □No          | <b>⊠</b> n/à      | 13. ☐HNO₃ ☐H₂SO₄ ☐NaOH ☐HCI                                                                                 |
| All containers needing preservation are found to be in                                                                           | _            |              | 7- '              | Sample #                                                                                                    |
| compliance with EPA recommendation? (HNO <sub>3</sub> , H <sub>2</sub> SQ <sub>4</sub> ,HCl<2; NaOH >9 Sulfide, NaOH>12 Cyanide) | ∐Yes         | ∏No          | <b>⊠</b> N/A      |                                                                                                             |
| Exceptions (VOA, Coliform, TOC, Oil and Grease,                                                                                  |              |              | _                 | Initial when Lot # of added                                                                                 |
| DRO/8015 (water) DOC                                                                                                             | Yes          | □No          | □N/A              | completed: preservative:                                                                                    |
| Headspace in VOA Vials ( >6mm)?  Trip Blank Present?                                                                             | Yes          | 1XINo<br>□No | □N/A              | 14.<br>15.                                                                                                  |
| Trip Blank Present?                                                                                                              | ☐Yes<br>☐Yes | □No          | ĎØN/A<br>Ď₽N/A    |                                                                                                             |
| Pace Trip Blank Lot # (if purchased):                                                                                            | _,⇔          |              | Hα.v.α            |                                                                                                             |
| CLIENT NOTIFICATION/RESOLUTION                                                                                                   | <del></del>  |              |                   | Field Data Required? Yes No                                                                                 |
| Person Contacted:                                                                                                                |              |              |                   | Date/Time:                                                                                                  |
| Comments/Resolution:                                                                                                             |              |              |                   |                                                                                                             |
|                                                                                                                                  |              |              |                   |                                                                                                             |
| · .                                                                                                                              |              |              |                   |                                                                                                             |

Project Manager Review: Date: 4/21/16

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers).





June 02, 2016

Aaron Kuck Landmark Environmenatl 2042 W 98th St. Bloomingotn, MN 55431

RE: Project: CrC

Pace Project No.: 10348956

### Dear Aaron Kuck:

Enclosed are the analytical results for sample(s) received by the laboratory on May 18, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Oyeyemi Odujole oyeyemi.odujole@pacelabs.com Project Manager

**Enclosures** 





1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700



### **CERTIFICATIONS**

Project: CrC

Pace Project No.: 10348956

### **Minnesota Certification IDs**

1700 Elm Street SE Suite 200, Minneapolis, MN 55414

525 N 8th Street, Salina, KS 67401 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Alabama Certification #40770 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace

Connecticut Certification #: PH-0256 EPA Region 8 Certification #: 8TMS-L Florida/NELAP Certification #: E87605

Guam Certification #:14-008r Georgia Certification #: 959 Georgia EPD #: Pace

Idaho Certification #: MN00064 Hawaii Certification #MN00064 Illinois Certification #: 200011 Indiana Certification#C-MN-01 Iowa Certification #: 368 Kansas Certification #: E-10167

Kentucky Dept of Envi. Protection - DW #90062 Kentucký Dept of Envi. Protection - WW #:90062

Louisiana DEQ Certification #: 3086 Louisiana DHH #: LA140001 Maine Certification #: 2013011 Maryland Certification #: 322 Michigan DEPH Certification #: 9909 Minnesota Certification #: 027-053-137 Mississippi Certification #: Pace Montana Certification #: MT0092 Nevada Certification #: MN\_00064 Nebraska Certification #: Pace New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530 North Carolina State Public Health #: 27700

North Dakota Certification #: R-036

Ohio EPA #: 4150 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification

Saipan (CNMI) #:MP0003 South Carolina #:74003001 Texas Certification #: T104704192 Tennessee Certification #: 02818 Utah Certification #: MN000642013-4 Virginia DGS Certification #: 251 Virginia/VELAP Certification #: Pace Washington Certification #: C486 West Virginia Certification #: 382 West Virginia DHHR #:9952C Wisconsin Certification #: 999407970





# **SAMPLE SUMMARY**

Project: CrC
Pace Project No.: 10348956

| Lab ID      | Sample ID | Matrix | Date Collected | Date Received  |
|-------------|-----------|--------|----------------|----------------|
| 10348956001 | MW-14     | Water  | 05/17/16 15:30 | 05/18/16 16:43 |
| 10348956002 | MW-15     | Water  | 05/17/16 15:45 | 05/18/16 16:43 |
| 10348956003 | MW-16     | Water  | 05/17/16 16:50 | 05/18/16 16:43 |
| 10348956004 | MW-17     | Water  | 05/18/16 11:05 | 05/18/16 16:43 |
| 10348956005 | MW-18     | Water  | 05/18/16 11:30 | 05/18/16 16:43 |
| 10348956006 | MW-19     | Water  | 05/17/16 13:45 | 05/18/16 16:43 |
| 10348956007 | MW-20     | Water  | 05/17/16 16:05 | 05/18/16 16:43 |
| 10348956008 | DPE-1     | Water  | 05/18/16 10:40 | 05/18/16 16:43 |
| 10348956009 | DPE-2     | Water  | 05/18/16 10:15 | 05/18/16 16:43 |
| 10348956010 | DPE-3     | Water  | 05/18/16 10:30 | 05/18/16 16:43 |
| 10348956011 | DPE-4     | Water  | 05/18/16 10:00 | 05/18/16 16:43 |
| 10348956012 | DPE-5     | Water  | 05/17/16 16:20 | 05/18/16 16:43 |
| 10348956013 | DPE-6     | Water  | 05/17/16 16:35 | 05/18/16 16:43 |
| 10348956014 | DPE-7     | Water  | 05/17/16 15:15 | 05/18/16 16:43 |
| 10348956015 | DPE-8     | Water  | 05/18/16 09:40 | 05/18/16 16:43 |
| 10348956016 | Influent  | Water  | 05/18/16 11:10 | 05/18/16 16:43 |
| 10348956017 | Effluent  | Water  | 05/18/16 11:15 | 05/18/16 16:43 |





# **SAMPLE ANALYTE COUNT**

Project: CrC
Pace Project No.: 10348956

| Lab ID      | Sample ID | Method    | Analysts | Analytes<br>Reported |
|-------------|-----------|-----------|----------|----------------------|
| 10348956001 | MW-14     | EPA 8260B | PRD      | 70                   |
| 10348956002 | MW-15     | EPA 8260B | PRD      | 70                   |
| 10348956003 | MW-16     | EPA 8260B | PRD      | 70                   |
| 10348956004 | MW-17     | EPA 8260B | PRD      | 70                   |
| 10348956005 | MW-18     | EPA 8260B | PRD      | 70                   |
| 10348956006 | MW-19     | EPA 8260B | PRD      | 70                   |
| 10348956007 | MW-20     | EPA 8260B | PRD      | 70                   |
| 10348956008 | DPE-1     | EPA 8260B | PRD      | 70                   |
| 10348956009 | DPE-2     | EPA 8260B | PRD      | 70                   |
| 10348956010 | DPE-3     | EPA 8260B | PRD      | 70                   |
| 10348956011 | DPE-4     | EPA 8260B | PRD      | 70                   |
| 10348956012 | DPE-5     | EPA 8260B | PRD      | 70                   |
| 10348956013 | DPE-6     | EPA 8260B | PRD      | 70                   |
| 10348956014 | DPE-7     | EPA 8260B | PRD      | 70                   |
| 10348956015 | DPE-8     | EPA 8260B | PRD      | 70                   |
| 10348956016 | Influent  | EPA 624   | DJB      | 73                   |
| 10348956017 | Effluent  | EPA 624   | DJB      | 73                   |



# **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: MW-14               | Lab ID: 103    | 48956001     | Collected: 05/17/1 | 6 15:30 | Received: | 05/18/16 16:43 | Matrix: Water |      |
|-----------------------------|----------------|--------------|--------------------|---------|-----------|----------------|---------------|------|
| Parameters                  | Results        | Units        | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qual |
| 8260B VOC                   | Analytical Met | nod: EPA 82  | 260B               |         |           |                |               |      |
| Acetone                     | ND             | ug/L         | 20.0               | 1       |           | 05/21/16 01:4  | 1 67-64-1     |      |
| Allyl chloride              | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 01:4  | 1 107-05-1    |      |
| Benzene                     | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  | 1 71-43-2     |      |
| Bromobenzene                | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  | 1 108-86-1    |      |
| Bromochloromethane          | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  | 1 74-97-5     |      |
| Bromodichloromethane        | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  | 1 75-27-4     |      |
| Bromoform                   | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 01:4  | 1 75-25-2     |      |
| Bromomethane                | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 01:4  | 1 74-83-9     |      |
| 2-Butanone (MEK)            | ND             | ug/L         | 5.0                | 1       |           | 05/21/16 01:4  | 1 78-93-3     |      |
| n-Butylbenzene              | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  | 1 104-51-8    |      |
| sec-Butylbenzene            | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  | 1 135-98-8    |      |
| tert-Butylbenzene           | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  | 1 98-06-6     |      |
| Carbon tetrachloride        | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  | 1 56-23-5     |      |
| Chlorobenzene               | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  | 1 108-90-7    |      |
| Chloroethane                | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  | 1 75-00-3     |      |
| Chloroform                  | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 01:4  |               |      |
| Chloromethane               | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 01:4  |               |      |
| 2-Chlorotoluene             | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  |               |      |
| 4-Chlorotoluene             | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  |               |      |
| 1,2-Dibromo-3-chloropropane | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 01:4  |               |      |
| Dibromochloromethane        | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  |               |      |
| 1,2-Dibromoethane (EDB)     | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  |               |      |
| Dibromomethane              | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 01:4  |               |      |
| 1,2-Dichlorobenzene         | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  |               |      |
| 1,3-Dichlorobenzene         | ND             | ug/L<br>ug/L | 1.0                | 1       |           | 05/21/16 01:4  |               |      |
| 1,4-Dichlorobenzene         | ND             | ug/L<br>ug/L | 1.0                | 1       |           | 05/21/16 01:4  |               |      |
| Dichlorodifluoromethane     | ND<br>ND       | ug/L<br>ug/L | 1.0                | 1       |           | 05/21/16 01:4  |               |      |
| 1,1-Dichloroethane          | ND             | ug/L<br>ug/L | 1.0                | 1       |           | 05/21/16 01:4  |               |      |
| 1,2-Dichloroethane          | ND             |              | 1.0                | 1       |           | 05/21/16 01:4  |               |      |
| •                           |                | ug/L         |                    |         |           | 05/21/16 01:4  |               |      |
| 1,1-Dichloroethene          | ND             | ug/L         | 1.0                | 1       |           |                |               |      |
| cis-1,2-Dichloroethene      | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  |               |      |
| trans-1,2-Dichloroethene    | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  |               |      |
| Dichlorofluoromethane       | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  |               |      |
| 1,2-Dichloropropane         | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 01:4  |               |      |
| 1,3-Dichloropropane         | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  |               |      |
| 2,2-Dichloropropane         | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 01:4  |               |      |
| 1,1-Dichloropropene         | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  |               |      |
| cis-1,3-Dichloropropene     | ND             | ug/L         | 4.0                | 1       |           |                | 1 10061-01-5  |      |
| trans-1,3-Dichloropropene   | ND             | ug/L         | 4.0                | 1       |           |                | 1 10061-02-6  |      |
| Diethyl ether (Ethyl ether) | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 01:4  |               |      |
| Ethylbenzene                | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  |               |      |
| Hexachloro-1,3-butadiene    | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  |               |      |
| Isopropylbenzene (Cumene)   | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  |               |      |
| p-Isopropyltoluene          | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  |               |      |
| Methylene Chloride          | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 01:4  | 1 75-09-2     |      |
| 4-Methyl-2-pentanone (MIBK) | ND             | ug/L         | 5.0                | 1       |           | 05/21/16 01:4  | 1 108-10-1    |      |
| Methyl-tert-butyl ether     | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 01:4  | 1 1634-04-4   |      |





Project: CrC
Pace Project No.: 10348956

| Sample: MW-14                  | Lab ID: 103     | 48956001    | Collected: 05/17/1 | 6 15:30 | Received: 05 | 5/18/16 16:43 N | Matrix: Water |      |
|--------------------------------|-----------------|-------------|--------------------|---------|--------------|-----------------|---------------|------|
| Parameters                     | Results         | Units       | Report Limit       | DF      | Prepared     | Analyzed        | CAS No.       | Qual |
| 8260B VOC                      | Analytical Meth | nod: EPA 82 | 260B               |         |              |                 |               |      |
| Naphthalene                    | ND              | ug/L        | 4.0                | 1       |              | 05/21/16 01:41  | 91-20-3       |      |
| n-Propylbenzene                | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 01:41  | 103-65-1      |      |
| Styrene                        | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 01:41  | 100-42-5      |      |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 01:41  | 630-20-6      |      |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 01:41  | 79-34-5       |      |
| Tetrachloroethene              | 35.7            | ug/L        | 1.0                | 1       |              | 05/21/16 01:41  | 127-18-4      |      |
| Tetrahydrofuran                | ND              | ug/L        | 10.0               | 1       |              | 05/21/16 01:41  | 109-99-9      |      |
| Toluene                        | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 01:41  | 108-88-3      |      |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 01:41  | 87-61-6       |      |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 01:41  | 120-82-1      |      |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 01:41  | 71-55-6       |      |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 01:41  | 79-00-5       |      |
| Trichloroethene                | ND              | ug/L        | 0.40               | 1       |              | 05/21/16 01:41  | 79-01-6       |      |
| Trichlorofluoromethane         | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 01:41  | 75-69-4       |      |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 4.0                | 1       |              | 05/21/16 01:41  | 96-18-4       |      |
| 1,1,2-Trichlorotrifluoroethane | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 01:41  | 76-13-1       |      |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 01:41  | 95-63-6       |      |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 01:41  | 108-67-8      |      |
| Vinyl chloride                 | ND              | ug/L        | 0.40               | 1       |              | 05/21/16 01:41  | 75-01-4       |      |
| Xylene (Total)                 | ND              | ug/L        | 3.0                | 1       |              | 05/21/16 01:41  | 1330-20-7     |      |
| Surrogates                     |                 | -           |                    |         |              |                 |               |      |
| 1,2-Dichloroethane-d4 (S)      | 98              | %.          | 75-125             | 1       |              | 05/21/16 01:41  | 17060-07-0    |      |
| Toluene-d8 (S)                 | 104             | %.          | 75-125             | 1       |              | 05/21/16 01:41  | 2037-26-5     |      |
| 4-Bromofluorobenzene (S)       | 101             | %.          | 75-125             | 1       |              | 05/21/16 01:41  | 460-00-4      |      |



# **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: MW-15               | Lab ID: 103    | 48956002     | Collected: 05/17/1 | 6 15:45 | Received: 0 | 05/18/16 16:43 | Matrix: Water |     |
|-----------------------------|----------------|--------------|--------------------|---------|-------------|----------------|---------------|-----|
| Parameters                  | Results        | Units        | Report Limit       | DF      | Prepared    | Analyzed       | CAS No.       | Qua |
| 8260B VOC                   | Analytical Met | nod: EPA 82  | 260B               |         |             |                |               |     |
| Acetone                     | ND             | ug/L         | 20.0               | 1       |             | 05/20/16 04:40 | 67-64-1       |     |
| Allyl chloride              | ND             | ug/L         | 4.0                | 1       |             | 05/20/16 04:40 | 107-05-1      |     |
| Benzene                     | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 | 71-43-2       |     |
| Bromobenzene                | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 | 108-86-1      |     |
| Bromochloromethane          | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 | 74-97-5       |     |
| Bromodichloromethane        | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 | 75-27-4       |     |
| Bromoform                   | ND             | ug/L         | 4.0                | 1       |             | 05/20/16 04:40 | 75-25-2       |     |
| Bromomethane                | ND             | ug/L         | 4.0                | 1       |             | 05/20/16 04:40 | 74-83-9       | CL  |
| 2-Butanone (MEK)            | ND             | ug/L         | 5.0                | 1       |             | 05/20/16 04:40 | 78-93-3       |     |
| n-Butylbenzene              | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 | 104-51-8      |     |
| sec-Butylbenzene            | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 | 135-98-8      |     |
| tert-Butylbenzene           | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 | 98-06-6       |     |
| Carbon tetrachloride        | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 | 56-23-5       |     |
| Chlorobenzene               | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 | 108-90-7      |     |
| Chloroethane                | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 | 75-00-3       |     |
| Chloroform                  | ND             | ug/L         | 4.0                | 1       |             | 05/20/16 04:40 | 67-66-3       |     |
| Chloromethane               | ND             | ug/L         | 4.0                | 1       |             | 05/20/16 04:40 | 74-87-3       |     |
| 2-Chlorotoluene             | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 | 95-49-8       |     |
| 4-Chlorotoluene             | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 | 106-43-4      |     |
| 1,2-Dibromo-3-chloropropane | ND             | ug/L         | 4.0                | 1       |             | 05/20/16 04:40 | 96-12-8       |     |
| Dibromochloromethane        | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 | 124-48-1      |     |
| 1,2-Dibromoethane (EDB)     | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 | 106-93-4      |     |
| Dibromomethane              | ND             | ug/L         | 4.0                | 1       |             | 05/20/16 04:40 | 74-95-3       |     |
| 1,2-Dichlorobenzene         | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 | 95-50-1       |     |
| 1,3-Dichlorobenzene         | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 | 541-73-1      |     |
| 1,4-Dichlorobenzene         | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 |               |     |
| Dichlorodifluoromethane     | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 |               |     |
| 1,1-Dichloroethane          | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 | 75-34-3       |     |
| 1,2-Dichloroethane          | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 | 107-06-2      |     |
| 1,1-Dichloroethene          | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 |               |     |
| cis-1,2-Dichloroethene      | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 |               |     |
| trans-1,2-Dichloroethene    | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 |               |     |
| Dichlorofluoromethane       | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 |               |     |
| 1,2-Dichloropropane         | ND             | ug/L         | 4.0                | 1       |             | 05/20/16 04:40 |               |     |
| 1,3-Dichloropropane         | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 |               |     |
| 2,2-Dichloropropane         | ND             | ug/L         | 4.0                | 1       |             | 05/20/16 04:40 |               |     |
| 1,1-Dichloropropene         | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 |               |     |
| cis-1,3-Dichloropropene     | ND             | ug/L         | 4.0                | 1       |             | 05/20/16 04:40 |               |     |
| trans-1,3-Dichloropropene   | ND             | ug/L         | 4.0                | 1       |             | 05/20/16 04:40 |               |     |
| Diethyl ether (Ethyl ether) | ND             | ug/L         | 4.0                | 1       |             | 05/20/16 04:40 |               |     |
| Ethylbenzene                | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 |               |     |
| Hexachloro-1,3-butadiene    | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 |               |     |
| Isopropylbenzene (Cumene)   | ND             | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 |               |     |
| p-Isopropyltoluene          | ND<br>ND       | ug/L         | 1.0                | 1       |             | 05/20/16 04:40 |               |     |
| Methylene Chloride          | ND<br>ND       | ug/L<br>ug/L | 4.0                | 1       |             | 05/20/16 04:40 |               |     |
|                             |                | •            |                    |         |             |                |               |     |
| 4-Methyl-2-pentanone (MIBK) | ND             | ug/L         | 5.0                | 1       |             | 05/20/16 04:40 | 1 108_10 1    |     |





Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: MW-15                  | Lab ID: 1034    | 48956002    | Collected: 05/17/1 | 16 15:45 | Received: 05/18/16 16:43 | Matrix: Water |     |
|--------------------------------|-----------------|-------------|--------------------|----------|--------------------------|---------------|-----|
| Parameters                     | Results         | Units       | Report Limit       | DF       | Prepared Analyzed        | CAS No.       | Qua |
| 8260B VOC                      | Analytical Meth | nod: EPA 82 | 260B               |          |                          |               |     |
| Naphthalene                    | ND              | ug/L        | 4.0                | 1        | 05/20/16 04:             | 40 91-20-3    |     |
| n-Propylbenzene                | ND              | ug/L        | 1.0                | 1        | 05/20/16 04:             | 40 103-65-1   |     |
| Styrene                        | ND              | ug/L        | 1.0                | 1        | 05/20/16 04:             | 40 100-42-5   |     |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1        | 05/20/16 04:             | 40 630-20-6   |     |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1        | 05/20/16 04:             | 40 79-34-5    |     |
| Tetrachloroethene              | 26.4            | ug/L        | 1.0                | 1        | 05/20/16 04:             | 40 127-18-4   |     |
| Tetrahydrofuran                | ND              | ug/L        | 10.0               | 1        | 05/20/16 04:             | 40 109-99-9   |     |
| Toluene                        | ND              | ug/L        | 1.0                | 1        | 05/20/16 04:             | 40 108-88-3   |     |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1        | 05/20/16 04:             | 40 87-61-6    |     |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1        | 05/20/16 04:             | 40 120-82-1   |     |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 1.0                | 1        | 05/20/16 04:             | 40 71-55-6    |     |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 1.0                | 1        | 05/20/16 04:             | 40 79-00-5    |     |
| Trichloroethene                | ND              | ug/L        | 0.40               | 1        | 05/20/16 04:             | 40 79-01-6    |     |
| Trichlorofluoromethane         | ND              | ug/L        | 1.0                | 1        | 05/20/16 04:             | 40 75-69-4    |     |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 4.0                | 1        | 05/20/16 04:             | 40 96-18-4    |     |
| 1,1,2-Trichlorotrifluoroethane | ND              | ug/L        | 1.0                | 1        | 05/20/16 04:             | 40 76-13-1    |     |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1        | 05/20/16 04:             | 40 95-63-6    |     |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1        | 05/20/16 04:             | 40 108-67-8   |     |
| Vinyl chloride                 | ND              | ug/L        | 0.40               | 1        | 05/20/16 04:             | 40 75-01-4    |     |
| Xylene (Total)                 | ND              | ug/L        | 3.0                | 1        | 05/20/16 04:             | 40 1330-20-7  |     |
| Surrogates                     |                 | •           |                    |          |                          |               |     |
| 1,2-Dichloroethane-d4 (S)      | 101             | %.          | 75-125             | 1        | 05/20/16 04:             | 40 17060-07-0 |     |
| Toluene-d8 (S)                 | 104             | %.          | 75-125             | 1        | 05/20/16 04:             | 40 2037-26-5  |     |
| 4-Bromofluorobenzene (S)       | 99              | %.          | 75-125             | 1        | 05/20/16 04:             | 40 460-00-4   |     |





Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: MW-16               | Lab ID: 103     | 48956003    | Collected: 05/17/1 | 6 16:50 | Received: | 05/18/16 16:43 | Matrix: Water |     |
|-----------------------------|-----------------|-------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                  | Results         | Units       | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260B VOC                   | Analytical Meth | nod: EPA 82 | 260B               |         |           |                |               |     |
| Acetone                     | ND              | ug/L        | 200                | 10      |           | 05/21/16 05:0  | 06 67-64-1    |     |
| Allyl chloride              | ND              | ug/L        | 40.0               | 10      |           | 05/21/16 05:0  | 6 107-05-1    |     |
| Benzene                     | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 71-43-2     |     |
| Bromobenzene                | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 108-86-1    |     |
| Bromochloromethane          | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 74-97-5     |     |
| Bromodichloromethane        | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 75-27-4     |     |
| Bromoform                   | ND              | ug/L        | 40.0               | 10      |           | 05/21/16 05:0  | 6 75-25-2     |     |
| Bromomethane                | ND              | ug/L        | 40.0               | 10      |           | 05/21/16 05:0  | 6 74-83-9     |     |
| 2-Butanone (MEK)            | ND              | ug/L        | 50.0               | 10      |           | 05/21/16 05:0  | 6 78-93-3     |     |
| n-Butylbenzene              | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 104-51-8    |     |
| sec-Butylbenzene            | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 135-98-8    |     |
| tert-Butylbenzene           | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 98-06-6     |     |
| Carbon tetrachloride        | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 56-23-5     |     |
| Chlorobenzene               | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 108-90-7    |     |
| Chloroethane                | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 75-00-3     |     |
| Chloroform                  | ND              | ug/L        | 40.0               | 10      |           | 05/21/16 05:0  | 6 67-66-3     |     |
| Chloromethane               | ND              | ug/L        | 40.0               | 10      |           | 05/21/16 05:0  | 6 74-87-3     |     |
| 2-Chlorotoluene             | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 95-49-8     |     |
| 4-Chlorotoluene             | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 106-43-4    |     |
| 1,2-Dibromo-3-chloropropane | ND              | ug/L        | 40.0               | 10      |           | 05/21/16 05:0  | 6 96-12-8     |     |
| Dibromochloromethane        | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 124-48-1    |     |
| 1,2-Dibromoethane (EDB)     | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 106-93-4    |     |
| Dibromomethane              | ND              | ug/L        | 40.0               | 10      |           | 05/21/16 05:0  | 6 74-95-3     |     |
| 1,2-Dichlorobenzene         | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 95-50-1     |     |
| 1,3-Dichlorobenzene         | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 541-73-1    |     |
| 1,4-Dichlorobenzene         | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 106-46-7    |     |
| Dichlorodifluoromethane     | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 75-71-8     |     |
| 1,1-Dichloroethane          | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 75-34-3     |     |
| 1,2-Dichloroethane          | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 107-06-2    |     |
| 1,1-Dichloroethene          | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 75-35-4     |     |
| cis-1,2-Dichloroethene      | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 156-59-2    |     |
| trans-1,2-Dichloroethene    | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  |               |     |
| Dichlorofluoromethane       | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 75-43-4     |     |
| 1,2-Dichloropropane         | ND              | ug/L        | 40.0               | 10      |           | 05/21/16 05:0  | 6 78-87-5     |     |
| 1,3-Dichloropropane         | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 142-28-9    |     |
| 2,2-Dichloropropane         | ND              | ug/L        | 40.0               | 10      |           | 05/21/16 05:0  | 6 594-20-7    |     |
| 1,1-Dichloropropene         | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 563-58-6    |     |
| cis-1,3-Dichloropropene     | ND              | ug/L        | 40.0               | 10      |           | 05/21/16 05:0  | 6 10061-01-5  |     |
| trans-1,3-Dichloropropene   | ND              | ug/L        | 40.0               | 10      |           | 05/21/16 05:0  | 6 10061-02-6  |     |
| Diethyl ether (Ethyl ether) | ND              | ug/L        | 40.0               | 10      |           | 05/21/16 05:0  | 6 60-29-7     |     |
| Ethylbenzene                | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  |               |     |
| Hexachloro-1,3-butadiene    | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 6 87-68-3     |     |
| Isopropylbenzene (Cumene)   | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  | 06 98-82-8    |     |
| p-Isopropyltoluene ,        | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  |               |     |
| Methylene Chloride          | ND              | ug/L        | 40.0               | 10      |           | 05/21/16 05:0  |               |     |
| 4-Methyl-2-pentanone (MIBK) | ND              | ug/L        | 50.0               | 10      |           | 05/21/16 05:0  |               |     |
| Methyl-tert-butyl ether     | ND              | ug/L        | 10.0               | 10      |           | 05/21/16 05:0  |               |     |





Project: CrC
Pace Project No.: 10348956

| Sample: MW-16                  | Lab ID: 103     | 48956003   | Collected: 05/17/1 | 16 16:50 | Received: 0 | 5/18/16 16:43 N | Matrix: Water |      |
|--------------------------------|-----------------|------------|--------------------|----------|-------------|-----------------|---------------|------|
| Parameters                     | Results         | Units      | Report Limit       | DF       | Prepared    | Analyzed        | CAS No.       | Qual |
| 8260B VOC                      | Analytical Meth | od: EPA 82 | 260B               |          |             |                 |               |      |
| Naphthalene                    | ND              | ug/L       | 40.0               | 10       |             | 05/21/16 05:06  | 91-20-3       |      |
| n-Propylbenzene                | ND              | ug/L       | 10.0               | 10       |             | 05/21/16 05:06  | 103-65-1      |      |
| Styrene                        | ND              | ug/L       | 10.0               | 10       |             | 05/21/16 05:06  | 100-42-5      |      |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L       | 10.0               | 10       |             | 05/21/16 05:06  | 630-20-6      |      |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L       | 10.0               | 10       |             | 05/21/16 05:06  | 79-34-5       |      |
| Tetrachloroethene              | 452             | ug/L       | 10.0               | 10       |             | 05/21/16 05:06  | 127-18-4      |      |
| Tetrahydrofuran                | ND              | ug/L       | 100                | 10       |             | 05/21/16 05:06  | 109-99-9      |      |
| Toluene                        | ND              | ug/L       | 10.0               | 10       |             | 05/21/16 05:06  | 108-88-3      |      |
| 1,2,3-Trichlorobenzene         | ND              | ug/L       | 10.0               | 10       |             | 05/21/16 05:06  | 87-61-6       |      |
| 1,2,4-Trichlorobenzene         | ND              | ug/L       | 10.0               | 10       |             | 05/21/16 05:06  | 120-82-1      |      |
| 1,1,1-Trichloroethane          | ND              | ug/L       | 10.0               | 10       |             | 05/21/16 05:06  | 71-55-6       |      |
| 1,1,2-Trichloroethane          | ND              | ug/L       | 10.0               | 10       |             | 05/21/16 05:06  | 79-00-5       |      |
| Trichloroethene                | ND              | ug/L       | 4.0                | 10       |             | 05/21/16 05:06  | 79-01-6       |      |
| Trichlorofluoromethane         | ND              | ug/L       | 10.0               | 10       |             | 05/21/16 05:06  | 75-69-4       |      |
| 1,2,3-Trichloropropane         | ND              | ug/L       | 40.0               | 10       |             | 05/21/16 05:06  | 96-18-4       |      |
| 1,1,2-Trichlorotrifluoroethane | 32.5            | ug/L       | 10.0               | 10       |             | 05/21/16 05:06  | 76-13-1       |      |
| 1,2,4-Trimethylbenzene         | ND              | ug/L       | 10.0               | 10       |             | 05/21/16 05:06  | 95-63-6       |      |
| 1,3,5-Trimethylbenzene         | ND              | ug/L       | 10.0               | 10       |             | 05/21/16 05:06  | 108-67-8      |      |
| Vinyl chloride                 | ND              | ug/L       | 4.0                | 10       |             | 05/21/16 05:06  | 75-01-4       |      |
| Xylene (Total)                 | ND              | ug/L       | 30.0               | 10       |             | 05/21/16 05:06  | 1330-20-7     |      |
| Surrogates                     |                 | •          |                    |          |             |                 |               |      |
| 1,2-Dichloroethane-d4 (S)      | 98              | %.         | 75-125             | 10       |             | 05/21/16 05:06  | 17060-07-0    |      |
| Toluene-d8 (S)                 | 102             | %.         | 75-125             | 10       |             | 05/21/16 05:06  | 2037-26-5     |      |
| 4-Bromofluorobenzene (S)       | 97              | %.         | 75-125             | 10       |             | 05/21/16 05:06  | 460-00-4      |      |



# **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: MW-17               | Lab ID: 103    | 48956004    | Collected: 05/18/1 | 6 11:05 | Received: | 05/18/16 16:43 | Matrix: Water |     |
|-----------------------------|----------------|-------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                  | Results        | Units       | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260B VOC                   | Analytical Met | nod: EPA 82 | 260B               |         |           |                |               |     |
| Acetone                     | ND             | ug/L        | 20.0               | 1       |           | 05/21/16 01:5  | 7 67-64-1     |     |
| Allyl chloride              | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 01:5  | 7 107-05-1    |     |
| Benzene                     | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  | 7 71-43-2     |     |
| Bromobenzene                | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  | 7 108-86-1    |     |
| Bromochloromethane          | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  | 7 74-97-5     |     |
| Bromodichloromethane        | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  | 7 75-27-4     |     |
| Bromoform                   | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 01:5  | 7 75-25-2     |     |
| Bromomethane                | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 01:5  | 7 74-83-9     |     |
| 2-Butanone (MEK)            | ND             | ug/L        | 5.0                | 1       |           | 05/21/16 01:5  | 7 78-93-3     |     |
| n-Butylbenzene              | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  | 7 104-51-8    |     |
| sec-Butylbenzene            | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  | 7 135-98-8    |     |
| tert-Butylbenzene           | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  | 7 98-06-6     |     |
| Carbon tetrachloride        | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  | 7 56-23-5     |     |
| Chlorobenzene               | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  | 7 108-90-7    |     |
| Chloroethane                | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  | 7 75-00-3     |     |
| Chloroform                  | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 01:5  |               |     |
| Chloromethane               | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 01:5  |               |     |
| 2-Chlorotoluene             | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  |               |     |
| 4-Chlorotoluene             | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  |               |     |
| 1,2-Dibromo-3-chloropropane | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 01:5  |               |     |
| Dibromochloromethane        | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  |               |     |
| 1,2-Dibromoethane (EDB)     | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  | _             |     |
| Dibromomethane              | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 01:5  |               |     |
| 1,2-Dichlorobenzene         | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  |               |     |
| 1,3-Dichlorobenzene         | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  |               |     |
| 1,4-Dichlorobenzene         | ND             | -           | 1.0                | 1       |           | 05/21/16 01:5  |               |     |
| Dichlorodifluoromethane     | ND<br>ND       | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  |               |     |
| 1,1-Dichloroethane          | ND<br>ND       | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  |               |     |
| •                           |                | ug/L        |                    | 1       |           |                |               |     |
| 1,2-Dichloroethane          | ND             | ug/L        | 1.0                |         |           | 05/21/16 01:5  |               |     |
| 1,1-Dichloroethene          | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  |               |     |
| cis-1,2-Dichloroethene      | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  |               |     |
| trans-1,2-Dichloroethene    | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  |               |     |
| Dichlorofluoromethane       | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  |               |     |
| 1,2-Dichloropropane         | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 01:5  |               |     |
| 1,3-Dichloropropane         | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  |               |     |
| 2,2-Dichloropropane         | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 01:5  |               |     |
| 1,1-Dichloropropene         | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  |               |     |
| cis-1,3-Dichloropropene     | ND             | ug/L        | 4.0                | 1       |           |                | 7 10061-01-5  |     |
| trans-1,3-Dichloropropene   | ND             | ug/L        | 4.0                | 1       |           |                | 7 10061-02-6  |     |
| Diethyl ether (Ethyl ether) | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 01:5  |               |     |
| Ethylbenzene                | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  |               |     |
| Hexachloro-1,3-butadiene    | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  |               |     |
| Isopropylbenzene (Cumene)   | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  |               |     |
| p-Isopropyltoluene          | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  | 7 99-87-6     |     |
| Methylene Chloride          | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 01:5  | 75-09-2       |     |
| 4-Methyl-2-pentanone (MIBK) | ND             | ug/L        | 5.0                | 1       |           | 05/21/16 01:5  | 7 108-10-1    |     |
| Methyl-tert-butyl ether     | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 01:5  | 7 1634-04-4   |     |





Project: CrC
Pace Project No.: 10348956

| Sample: MW-17                  | Lab ID: 1034    | 48956004    | Collected: 05/18/1 | 16 11:05 | Received: 05/18/16 16:43 | Matrix: Water |     |
|--------------------------------|-----------------|-------------|--------------------|----------|--------------------------|---------------|-----|
| Parameters                     | Results         | Units       | Report Limit       | DF       | Prepared Analyzed        | CAS No.       | Qua |
| 8260B VOC                      | Analytical Meth | nod: EPA 82 | 260B               |          |                          |               |     |
| Naphthalene                    | ND              | ug/L        | 4.0                | 1        | 05/21/16 01:5            | 7 91-20-3     |     |
| n-Propylbenzene                | ND              | ug/L        | 1.0                | 1        | 05/21/16 01:5            | 7 103-65-1    |     |
| Styrene                        | ND              | ug/L        | 1.0                | 1        | 05/21/16 01:5            | 7 100-42-5    |     |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1        | 05/21/16 01:5            | 7 630-20-6    |     |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1        | 05/21/16 01:5            | 7 79-34-5     |     |
| Tetrachloroethene              | 227             | ug/L        | 1.0                | 1        | 05/21/16 01:5            | 7 127-18-4    |     |
| Tetrahydrofuran                | ND              | ug/L        | 10.0               | 1        | 05/21/16 01:5            | 7 109-99-9    |     |
| Toluene                        | ND              | ug/L        | 1.0                | 1        | 05/21/16 01:5            | 7 108-88-3    |     |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1        | 05/21/16 01:5            | 7 87-61-6     |     |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1        | 05/21/16 01:5            | 7 120-82-1    |     |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 1.0                | 1        | 05/21/16 01:5            | 7 71-55-6     |     |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 1.0                | 1        | 05/21/16 01:5            | 7 79-00-5     |     |
| Trichloroethene                | ND              | ug/L        | 0.40               | 1        | 05/21/16 01:5            | 7 79-01-6     |     |
| Trichlorofluoromethane         | ND              | ug/L        | 1.0                | 1        | 05/21/16 01:5            | 7 75-69-4     |     |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 4.0                | 1        | 05/21/16 01:5            | 7 96-18-4     |     |
| 1,1,2-Trichlorotrifluoroethane | ND              | ug/L        | 1.0                | 1        | 05/21/16 01:5            | 7 76-13-1     |     |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1        | 05/21/16 01:5            | 7 95-63-6     |     |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1        | 05/21/16 01:5            | 7 108-67-8    |     |
| Vinyl chloride                 | ND              | ug/L        | 0.40               | 1        | 05/21/16 01:5            | 7 75-01-4     |     |
| Xylene (Total)                 | ND              | ug/L        | 3.0                | 1        | 05/21/16 01:5            | 7 1330-20-7   |     |
| Surrogates                     |                 |             |                    |          |                          |               |     |
| 1,2-Dichloroethane-d4 (S)      | 98              | %.          | 75-125             | 1        | 05/21/16 01:5            | 7 17060-07-0  |     |
| Toluene-d8 (S)                 | 103             | %.          | 75-125             | 1        | 05/21/16 01:5            | 7 2037-26-5   |     |
| 4-Bromofluorobenzene (S)       | 97              | %.          | 75-125             | 1        | 05/21/16 01:5            | 7 460-00-4    |     |



# **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: MW-18               | Lab ID: 103    | 48956005    | Collected: 05/18/1 | 6 11:30 | Received: | 05/18/16 16:43 | Matrix: Water |     |
|-----------------------------|----------------|-------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                  | Results        | Units       | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 3260B VOC                   | Analytical Met | hod: EPA 82 | 260B               |         |           |                |               |     |
| Acetone                     | ND             | ug/L        | 20.0               | 1       |           | 05/21/16 02:1  | 3 67-64-1     |     |
| Allyl chloride              | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 02:1  | 3 107-05-1    |     |
| Benzene                     | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  | 3 71-43-2     |     |
| Bromobenzene                | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  | 3 108-86-1    |     |
| Bromochloromethane          | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  | 3 74-97-5     |     |
| Bromodichloromethane        | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  | 3 75-27-4     |     |
| Bromoform                   | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 02:1  | 3 75-25-2     |     |
| Bromomethane                | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 02:1  | 3 74-83-9     |     |
| 2-Butanone (MEK)            | ND             | ug/L        | 5.0                | 1       |           | 05/21/16 02:1  |               |     |
| n-Butylbenzene              | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  |               |     |
| sec-Butylbenzene            | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  |               |     |
| ert-Butylbenzene            | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  |               |     |
| Carbon tetrachloride        | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  |               |     |
| Chlorobenzene               | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  |               |     |
| Chloroethane                | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  |               |     |
| Chloroform                  | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 02:1  |               |     |
| Chloromethane               | ND<br>ND       |             | 4.0                | 1       |           | 05/21/16 02:1  |               |     |
| 2-Chlorotoluene             | ND<br>ND       | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  |               |     |
| -Chlorotoluene              | ND<br>ND       | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  |               |     |
|                             |                | ug/L        |                    |         |           |                |               |     |
| I,2-Dibromo-3-chloropropane | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 02:1  |               |     |
| Dibromochloromethane        | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  |               |     |
| I,2-Dibromoethane (EDB)     | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  |               |     |
| Dibromomethane              | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 02:1  |               |     |
| 1,2-Dichlorobenzene         | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  |               |     |
| 1,3-Dichlorobenzene         | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  |               |     |
| 1,4-Dichlorobenzene         | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  |               |     |
| Dichlorodifluoromethane     | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  |               |     |
| 1,1-Dichloroethane          | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  |               |     |
| 1,2-Dichloroethane          | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  |               |     |
| ,1-Dichloroethene           | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  |               |     |
| cis-1,2-Dichloroethene      | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  |               |     |
| rans-1,2-Dichloroethene     | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  | 3 156-60-5    |     |
| Dichlorofluoromethane       | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  | 3 75-43-4     |     |
| 1,2-Dichloropropane         | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 02:1  | 3 78-87-5     |     |
| 1,3-Dichloropropane         | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  | 3 142-28-9    |     |
| 2,2-Dichloropropane         | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 02:1  | 3 594-20-7    |     |
| ,1-Dichloropropene          | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  | 3 563-58-6    |     |
| cis-1,3-Dichloropropene     | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 02:1  | 3 10061-01-5  |     |
| rans-1,3-Dichloropropene    | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 02:1  | 3 10061-02-6  |     |
| Diethyl ether (Ethyl ether) | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 02:1  | 3 60-29-7     |     |
| Ethylbenzene                | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  | 3 100-41-4    |     |
| Hexachloro-1,3-butadiene    | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  |               |     |
| sopropylbenzene (Cumene)    | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  |               |     |
| o-Isopropyltoluene          | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  |               |     |
| Methylene Chloride          | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 02:1  |               |     |
| 4-Methyl-2-pentanone (MIBK) | ND             | ug/L        | 5.0                | 1       |           | 05/21/16 02:1  |               |     |
| Methyl-tert-butyl ether     | ND<br>ND       | ug/L        | 1.0                | 1       |           | 05/21/16 02:1  |               |     |





Project: CrC
Pace Project No.: 10348956

| Sample: MW-18                  | Lab ID: 103     | 48956005    | Collected: 05/18/1 | 6 11:30 | Received: 05 | 5/18/16 16:43 N | /latrix: Water |     |
|--------------------------------|-----------------|-------------|--------------------|---------|--------------|-----------------|----------------|-----|
| Parameters                     | Results         | Units       | Report Limit       | DF      | Prepared     | Analyzed        | CAS No.        | Qua |
| 8260B VOC                      | Analytical Meth | nod: EPA 82 | 260B               |         |              |                 |                |     |
| Naphthalene                    | ND              | ug/L        | 4.0                | 1       |              | 05/21/16 02:13  | 91-20-3        |     |
| n-Propylbenzene                | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 02:13  | 103-65-1       |     |
| Styrene                        | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 02:13  | 100-42-5       |     |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 02:13  | 630-20-6       |     |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 02:13  | 79-34-5        |     |
| Tetrachloroethene              | 121             | ug/L        | 1.0                | 1       |              | 05/21/16 02:13  | 127-18-4       |     |
| Tetrahydrofuran                | ND              | ug/L        | 10.0               | 1       |              | 05/21/16 02:13  | 109-99-9       |     |
| Toluene                        | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 02:13  | 108-88-3       |     |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 02:13  | 87-61-6        |     |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 02:13  | 120-82-1       |     |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 02:13  | 71-55-6        |     |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 02:13  | 79-00-5        |     |
| Trichloroethene                | ND              | ug/L        | 0.40               | 1       |              | 05/21/16 02:13  | 79-01-6        |     |
| Trichlorofluoromethane         | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 02:13  | 75-69-4        |     |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 4.0                | 1       |              | 05/21/16 02:13  | 96-18-4        |     |
| 1,1,2-Trichlorotrifluoroethane | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 02:13  | 76-13-1        |     |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 02:13  | 95-63-6        |     |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1       |              | 05/21/16 02:13  | 108-67-8       |     |
| Vinyl chloride                 | ND              | ug/L        | 0.40               | 1       |              | 05/21/16 02:13  | 75-01-4        |     |
| Xylene (Total)                 | ND              | ug/L        | 3.0                | 1       |              | 05/21/16 02:13  | 1330-20-7      |     |
| Surrogates                     |                 |             |                    |         |              |                 |                |     |
| 1,2-Dichloroethane-d4 (S)      | 98              | %.          | 75-125             | 1       |              | 05/21/16 02:13  |                |     |
| Toluene-d8 (S)                 | 103             | %.          | 75-125             | 1       |              | 05/21/16 02:13  |                |     |
| 4-Bromofluorobenzene (S)       | 99              | %.          | 75-125             | 1       |              | 05/21/16 02:13  | 460-00-4       |     |





Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: MW-19               | Lab ID: 103    | 48956006     | Collected: 05/17/1 | 6 13:45 | Received: | 05/18/16 16:43 | Matrix: Water |      |
|-----------------------------|----------------|--------------|--------------------|---------|-----------|----------------|---------------|------|
| Parameters                  | Results        | Units        | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qual |
| 8260B VOC                   | Analytical Met | nod: EPA 82  | 260B               |         |           |                |               |      |
| Acetone                     | ND             | ug/L         | 20.0               | 1       |           | 05/21/16 02:2  | 8 67-64-1     |      |
| Allyl chloride              | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 02:2  | 8 107-05-1    |      |
| Benzene                     | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  | 8 71-43-2     |      |
| Bromobenzene                | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  | 8 108-86-1    |      |
| Bromochloromethane          | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  | 8 74-97-5     |      |
| Bromodichloromethane        | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  | 8 75-27-4     |      |
| Bromoform                   | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 02:2  | 8 75-25-2     |      |
| Bromomethane                | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 02:2  | 8 74-83-9     |      |
| 2-Butanone (MEK)            | ND             | ug/L         | 5.0                | 1       |           | 05/21/16 02:2  | 8 78-93-3     |      |
| n-Butylbenzene              | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  | 8 104-51-8    |      |
| sec-Butylbenzene            | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  | 8 135-98-8    |      |
| tert-Butylbenzene           | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  | 8 98-06-6     |      |
| Carbon tetrachloride        | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  | 8 56-23-5     |      |
| Chlorobenzene               | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  | 8 108-90-7    |      |
| Chloroethane                | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  | 8 75-00-3     |      |
| Chloroform                  | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 02:2  |               |      |
| Chloromethane               | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 02:2  |               |      |
| 2-Chlorotoluene             | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  |               |      |
| 4-Chlorotoluene             | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  |               |      |
| 1,2-Dibromo-3-chloropropane | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 02:2  |               |      |
| Dibromochloromethane        | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  |               |      |
| 1,2-Dibromoethane (EDB)     | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  |               |      |
| Dibromomethane              | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 02:2  |               |      |
| 1,2-Dichlorobenzene         | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  |               |      |
| 1,3-Dichlorobenzene         | ND             | ug/L<br>ug/L | 1.0                | 1       |           | 05/21/16 02:2  |               |      |
| 1,4-Dichlorobenzene         | ND             | -            | 1.0                | 1       |           | 05/21/16 02:2  |               |      |
| Dichlorodifluoromethane     | ND<br>ND       | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  |               |      |
| 1,1-Dichloroethane          | ND<br>ND       | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  |               |      |
| •                           |                | ug/L         |                    | 1       |           |                |               |      |
| 1,2-Dichloroethane          | ND             | ug/L         | 1.0                |         |           | 05/21/16 02:2  |               |      |
| 1,1-Dichloroethene          | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  |               |      |
| cis-1,2-Dichloroethene      | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  |               |      |
| trans-1,2-Dichloroethene    | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  |               |      |
| Dichlorofluoromethane       | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  |               |      |
| 1,2-Dichloropropane         | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 02:2  |               |      |
| 1,3-Dichloropropane         | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  |               |      |
| 2,2-Dichloropropane         | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 02:2  |               |      |
| 1,1-Dichloropropene         | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  |               |      |
| cis-1,3-Dichloropropene     | ND             | ug/L         | 4.0                | 1       |           |                | 8 10061-01-5  |      |
| trans-1,3-Dichloropropene   | ND             | ug/L         | 4.0                | 1       |           |                | 8 10061-02-6  |      |
| Diethyl ether (Ethyl ether) | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 02:2  |               |      |
| Ethylbenzene                | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  |               |      |
| Hexachloro-1,3-butadiene    | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  |               |      |
| Isopropylbenzene (Cumene)   | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  |               |      |
| p-Isopropyltoluene          | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  | 8 99-87-6     |      |
| Methylene Chloride          | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 02:2  | 8 75-09-2     |      |
| 4-Methyl-2-pentanone (MIBK) | ND             | ug/L         | 5.0                | 1       |           | 05/21/16 02:2  | 8 108-10-1    |      |
| Methyl-tert-butyl ether     | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:2  | 8 1634-04-4   |      |





Project: CrC
Pace Project No.: 10348956

| Sample: MW-19                           | Lab ID: 103     | 48956006    | Collected: 05/17/1 | 16 13:45 | Received: 05 | 5/18/ <del>16 16:43</del> N | Natrix: Water |     |
|-----------------------------------------|-----------------|-------------|--------------------|----------|--------------|-----------------------------|---------------|-----|
| Parameters                              | Results         | Units       | Report Limit       | DF       | Prepared     | Analyzed                    | CAS No.       | Qua |
| 8260B VOC                               | Analytical Meth | nod: EPA 82 | 260B               |          |              |                             |               |     |
| Naphthalene                             | ND              | ug/L        | 4.0                | 1        |              | 05/21/16 02:28              | 91-20-3       |     |
| n-Propylbenzene                         | ND              | ug/L        | 1.0                | 1        |              | 05/21/16 02:28              | 103-65-1      |     |
| Styrene                                 | ND              | ug/L        | 1.0                | 1        |              | 05/21/16 02:28              | 100-42-5      |     |
| 1,1,1,2-Tetrachloroethane               | ND              | ug/L        | 1.0                | 1        |              | 05/21/16 02:28              | 630-20-6      |     |
| 1,1,2,2-Tetrachloroethane               | ND              | ug/L        | 1.0                | 1        |              | 05/21/16 02:28              | 79-34-5       |     |
| Tetrachloroethene                       | 54.2            | ug/L        | 1.0                | 1        |              | 05/21/16 02:28              | 127-18-4      |     |
| Tetrahydrofuran                         | ND              | ug/L        | 10.0               | 1        |              | 05/21/16 02:28              | 109-99-9      |     |
| Toluene                                 | ND              | ug/L        | 1.0                | 1        |              | 05/21/16 02:28              | 108-88-3      |     |
| 1,2,3-Trichlorobenzene                  | ND              | ug/L        | 1.0                | 1        |              | 05/21/16 02:28              | 87-61-6       |     |
| 1,2,4-Trichlorobenzene                  | ND              | ug/L        | 1.0                | 1        |              | 05/21/16 02:28              | 120-82-1      |     |
| 1,1,1-Trichloroethane                   | ND              | ug/L        | 1.0                | 1        |              | 05/21/16 02:28              | 71-55-6       |     |
| 1,1,2-Trichloroethane                   | ND              | ug/L        | 1.0                | 1        |              | 05/21/16 02:28              | 79-00-5       |     |
| Trichloroethene                         | ND              | ug/L        | 0.40               | 1        |              | 05/21/16 02:28              | 79-01-6       |     |
| Trichlorofluoromethane                  | ND              | ug/L        | 1.0                | 1        |              | 05/21/16 02:28              | 75-69-4       |     |
| 1,2,3-Trichloropropane                  | ND              | ug/L        | 4.0                | 1        |              | 05/21/16 02:28              | 96-18-4       |     |
| 1,1,2-Trichlorotrifluoroethane          | 1.1             | ug/L        | 1.0                | 1        |              | 05/21/16 02:28              | 76-13-1       |     |
| 1,2,4-Trimethylbenzene                  | ND              | ug/L        | 1.0                | 1        |              | 05/21/16 02:28              | 95-63-6       |     |
| 1,3,5-Trimethylbenzene                  | ND              | ug/L        | 1.0                | 1        |              | 05/21/16 02:28              | 108-67-8      |     |
| Vinyl chloride                          | ND              | ug/L        | 0.40               | 1        |              | 05/21/16 02:28              | 75-01-4       |     |
| Xylene (Total)                          | ND              | ug/L        | 3.0                | 1        |              | 05/21/16 02:28              | 1330-20-7     |     |
| Surrogates<br>1,2-Dichloroethane-d4 (S) | 99              | %.          | 75-125             | 1        |              | 05/21/16 02:28              | 17060-07-0    |     |
| Toluene-d8 (S)                          | 103             | %.          | 75-125             | 1        |              | 05/21/16 02:28              | 2037-26-5     |     |
| 4-Bromofluorobenzene (S)                | 99              | %.          | 75-125             | 1        |              | 05/21/16 02:28              | 460-00-4      |     |



# **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: MW-20               | Lab ID: 103    | 48956007     | Collected: 05/17/1 | 6 16:05 | Received: | 05/18/16 16:43 | Matrix: Water |     |
|-----------------------------|----------------|--------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                  | Results        | Units        | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260B VOC                   | Analytical Met | nod: EPA 82  | 260B               |         |           |                |               |     |
| Acetone                     | ND             | ug/L         | 20.0               | 1       |           | 05/21/16 02:4  | 4 67-64-1     |     |
| Allyl chloride              | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 02:4  | 4 107-05-1    |     |
| Benzene                     | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  | 4 71-43-2     |     |
| Bromobenzene                | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  | 4 108-86-1    |     |
| Bromochloromethane          | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  | 4 74-97-5     |     |
| Bromodichloromethane        | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  | 4 75-27-4     |     |
| Bromoform                   | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 02:4  | 4 75-25-2     |     |
| Bromomethane                | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 02:4  | 4 74-83-9     |     |
| 2-Butanone (MEK)            | ND             | ug/L         | 5.0                | 1       |           | 05/21/16 02:4  | 4 78-93-3     |     |
| n-Butylbenzene              | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  | 4 104-51-8    |     |
| sec-Butylbenzene            | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  | 4 135-98-8    |     |
| tert-Butylbenzene           | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  | 4 98-06-6     |     |
| Carbon tetrachloride        | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  | 4 56-23-5     |     |
| Chlorobenzene               | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  | 4 108-90-7    |     |
| Chloroethane                | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  | 4 75-00-3     |     |
| Chloroform                  | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 02:4  | 4 67-66-3     |     |
| Chloromethane               | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 02:4  | 4 74-87-3     |     |
| 2-Chlorotoluene             | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  | 4 95-49-8     |     |
| 4-Chlorotoluene             | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  | 4 106-43-4    |     |
| 1,2-Dibromo-3-chloropropane | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 02:4  |               |     |
| Dibromochloromethane        | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  | 4 124-48-1    |     |
| 1,2-Dibromoethane (EDB)     | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  |               |     |
| Dibromomethane              | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 02:4  | 4 74-95-3     |     |
| 1,2-Dichlorobenzene         | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  | 4 95-50-1     |     |
| 1,3-Dichlorobenzene         | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  |               |     |
| 1,4-Dichlorobenzene         | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  |               |     |
| Dichlorodifluoromethane     | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  |               |     |
| 1,1-Dichloroethane          | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  |               |     |
| 1,2-Dichloroethane          | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  |               |     |
| 1,1-Dichloroethene          | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  |               |     |
| cis-1,2-Dichloroethene      | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  |               |     |
| trans-1,2-Dichloroethene    | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  |               |     |
| Dichlorofluoromethane       | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  |               |     |
| 1,2-Dichloropropane         | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 02:4  |               |     |
| 1,3-Dichloropropane         | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  |               |     |
| 2,2-Dichloropropane         | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 02:4  |               |     |
| 1,1-Dichloropropene         | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  |               |     |
| cis-1,3-Dichloropropene     | ND             | ug/L         | 4.0                | 1       |           |                | 4 10061-01-5  |     |
| trans-1,3-Dichloropropene   | ND             | ug/L         | 4.0                | 1       |           |                | 4 10061-02-6  |     |
| Diethyl ether (Ethyl ether) | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 02:4  |               |     |
| Ethylbenzene                | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  |               |     |
| Hexachloro-1,3-butadiene    | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  |               |     |
| Isopropylbenzene (Cumene)   | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  |               |     |
| p-Isopropyltoluene          | ND             | ug/L         | 1.0                | 1       |           | 05/21/16 02:4  |               |     |
| Methylene Chloride          | ND             | ug/L         | 4.0                | 1       |           | 05/21/16 02:4  |               |     |
| 4-Methyl-2-pentanone (MIBK) | ND<br>ND       | ug/L<br>ug/L | 5.0                | 1       |           | 05/21/16 02:4  |               |     |
|                             |                |              |                    |         |           |                |               |     |





Project: CrC
Pace Project No.: 10348956

| Sample: MW-20                  | Lab ID: 1034    | 48956007    | Collected: 05/17/1 | 16 16:05 | Received: 05/18/16 1 | 6:43 Matrix: Wa  | ter     |
|--------------------------------|-----------------|-------------|--------------------|----------|----------------------|------------------|---------|
| Parameters                     | Results         | Units       | Report Limit       | DF       | Prepared Ana         | lyzed CAS N      | No. Qua |
| 8260B VOC                      | Analytical Meth | nod: EPA 82 | 260B               |          |                      |                  |         |
| Naphthalene                    | ND              | ug/L        | 4.0                | 1        | 05/21/1              | 6 02:44 91-20-3  |         |
| n-Propylbenzene                | ND              | ug/L        | 1.0                | 1        | 05/21/1              | 6 02:44 103-65-  | 1       |
| Styrene                        | ND              | ug/L        | 1.0                | 1        | 05/21/1              | 6 02:44 100-42-  | 5       |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1        | 05/21/1              | 6 02:44 630-20-6 | 6       |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1        | 05/21/1              | 6 02:44 79-34-5  |         |
| Tetrachloroethene              | 23.2            | ug/L        | 1.0                | 1        | 05/21/1              | 6 02:44 127-18-4 | 4       |
| Tetrahydrofuran                | ND              | ug/L        | 10.0               | 1        | 05/21/1              | 6 02:44 109-99-9 | 9       |
| Toluene                        | ND              | ug/L        | 1.0                | 1        | 05/21/1              | 6 02:44 108-88-3 | 3       |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1        | 05/21/1              | 6 02:44 87-61-6  |         |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1        | 05/21/1              | 6 02:44 120-82-  | 1       |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 1.0                | 1        | 05/21/1              | 6 02:44 71-55-6  |         |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 1.0                | 1        | 05/21/1              | 6 02:44 79-00-5  |         |
| Trichloroethene                | ND              | ug/L        | 0.40               | 1        | 05/21/1              | 6 02:44 79-01-6  |         |
| Trichlorofluoromethane         | ND              | ug/L        | 1.0                | 1        | 05/21/1              | 6 02:44 75-69-4  |         |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 4.0                | 1        | 05/21/1              | 6 02:44 96-18-4  |         |
| 1,1,2-Trichlorotrifluoroethane | ND              | ug/L        | 1.0                | 1        | 05/21/1              | 6 02:44 76-13-1  |         |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1        | 05/21/1              | 6 02:44 95-63-6  |         |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1        | 05/21/1              | 6 02:44 108-67-8 | 3       |
| Vinyl chloride                 | ND              | ug/L        | 0.40               | 1        | 05/21/1              | 6 02:44 75-01-4  |         |
| Xylene (Total)                 | ND              | ug/L        | 3.0                | 1        | 05/21/1              | 6 02:44 1330-20  | -7      |
| Surrogates                     |                 | •           |                    |          |                      |                  |         |
| 1,2-Dichloroethane-d4 (S)      | 100             | %.          | 75-125             | 1        | 05/21/1              | 6 02:44 17060-0  | 7-0     |
| Toluene-d8 (S)                 | 104             | %.          | 75-125             | 1        | 05/21/1              | 6 02:44 2037-26  | -5      |
| 4-Bromofluorobenzene (S)       | 97              | %.          | 75-125             | 1        | 05/21/1              | 6 02:44 460-00-4 | 4       |



# **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: DPE-1               | Lab ID: 103    | 348956008    | Collected: 05/18/1 | 6 10:40 | Received: | 05/18/16 16:43 | Matrix: Water |     |
|-----------------------------|----------------|--------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                  | Results        | Units        | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 3260B VOC                   | Analytical Met | hod: EPA 82  | 260B               |         |           |                |               |     |
| Acetone                     | ND             | ug/L         | 200                | 10      |           | 05/25/16 08:2  | 4 67-64-1     |     |
| Allyl chloride              | ND             | ug/L         | 40.0               | 10      |           | 05/25/16 08:2  | 4 107-05-1    |     |
| Benzene                     | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  | 4 71-43-2     |     |
| Bromobenzene                | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  | 4 108-86-1    |     |
| Bromochloromethane          | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  | 4 74-97-5     |     |
| Bromodichloromethane        | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  | 4 75-27-4     |     |
| Bromoform                   | ND             | ug/L         | 40.0               | 10      |           | 05/25/16 08:2  | 4 75-25-2     |     |
| Bromomethane                | ND             | ug/L         | 40.0               | 10      |           | 05/25/16 08:2  | 4 74-83-9     |     |
| 2-Butanone (MEK)            | ND             | ug/L         | 50.0               | 10      |           | 05/25/16 08:2  | 4 78-93-3     |     |
| n-Butylbenzene              | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  | 4 104-51-8    |     |
| sec-Butylbenzene            | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  | 4 135-98-8    |     |
| ert-Butylbenzene            | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  | 4 98-06-6     |     |
| Carbon tetrachloride        | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  | 4 56-23-5     |     |
| Chlorobenzene               | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  | 4 108-90-7    |     |
| Chloroethane                | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  | 4 75-00-3     |     |
| Chloroform                  | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  | 4 67-66-3     |     |
| Chloromethane               | ND             | ug/L         | 40.0               | 10      |           | 05/25/16 08:2  |               |     |
| 2-Chlorotoluene             | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  | 4 95-49-8     |     |
| l-Chlorotoluene             | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  |               |     |
| ,2-Dibromo-3-chloropropane  | ND             | ug/L         | 100                | 10      |           | 05/25/16 08:2  |               |     |
| Dibromochloromethane        | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  |               |     |
| 1,2-Dibromoethane (EDB)     | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  | _             |     |
| Dibromomethane              | ND             | ug/L         | 40.0               | 10      |           | 05/25/16 08:2  |               |     |
| 1,2-Dichlorobenzene         | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  |               |     |
| 1,3-Dichlorobenzene         | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  |               |     |
| 1,4-Dichlorobenzene         | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  |               |     |
| Dichlorodifluoromethane     | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  |               |     |
| 1,1-Dichloroethane          | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  |               |     |
| 1,2-Dichloroethane          | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  |               |     |
| 1,1-Dichloroethene          | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  |               |     |
| cis-1,2-Dichloroethene      | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  |               |     |
| rans-1,2-Dichloroethene     | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  |               |     |
| Dichlorofluoromethane       | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  |               |     |
| 1,2-Dichloropropane         | ND             | ug/L         | 40.0               | 10      |           | 05/25/16 08:2  |               |     |
| 1,3-Dichloropropane         | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  |               |     |
| 2,2-Dichloropropane         | ND             | ug/L         | 40.0               | 10      |           | 05/25/16 08:2  |               |     |
| 1,1-Dichloropropene         | ND<br>ND       | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  |               |     |
| cis-1,3-Dichloropropene     | ND             | ug/L         | 40.0               | 10      |           |                | 4 10061-01-5  |     |
| rans-1,3-Dichloropropene    | ND             | ug/L         | 40.0               | 10      |           |                | 4 10061-02-6  |     |
| Diethyl ether (Ethyl ether) | ND<br>ND       | ug/L         | 40.0               | 10      |           | 05/25/16 08:2  |               |     |
| Ethylbenzene                | ND<br>ND       | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  |               |     |
| Hexachloro-1,3-butadiene    | ND<br>ND       | ug/L         | 40.0               | 10      |           | 05/25/16 08:2  |               |     |
| sopropylbenzene (Cumene)    | ND<br>ND       | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  |               |     |
| p-Isopropyltoluene          | ND<br>ND       | ug/L         | 10.0               | 10      |           | 05/25/16 08:2  |               |     |
| Methylene Chloride          | ND<br>ND       | ug/L         | 40.0               | 10      |           | 05/25/16 08:2  |               |     |
| 1-Methyl-2-pentanone (MIBK) | ND<br>ND       | ug/L<br>ug/L | 50.0               | 10      |           | 05/25/16 08:2  |               |     |
|                             |                |              |                    |         |           |                |               |     |





Project: CrC
Pace Project No.: 10348956

| Sample: DPE-1                  | Lab ID: 1034    | 48956008   | Collected: 05/18/1 | 6 10:40 | Received: 05/18/16 16:43 | Matrix: Water |     |
|--------------------------------|-----------------|------------|--------------------|---------|--------------------------|---------------|-----|
| Parameters                     | Results         | Units      | Report Limit       | DF      | Prepared Analyzed        | CAS No.       | Qua |
| 8260B VOC                      | Analytical Meth | od: EPA 82 | 260B               |         |                          |               |     |
| Naphthalene                    | ND              | ug/L       | 40.0               | 10      | 05/25/16 08:2            | 4 91-20-3     |     |
| n-Propylbenzene                | ND              | ug/L       | 10.0               | 10      | 05/25/16 08:2            | 4 103-65-1    |     |
| Styrene                        | ND              | ug/L       | 10.0               | 10      | 05/25/16 08:2            | 4 100-42-5    |     |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L       | 40.0               | 10      | 05/25/16 08:2            | 4 630-20-6    |     |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L       | 10.0               | 10      | 05/25/16 08:2            | 4 79-34-5     |     |
| Tetrachloroethene              | 889             | ug/L       | 10.0               | 10      | 05/25/16 08:2            | 4 127-18-4    |     |
| Tetrahydrofuran                | ND              | ug/L       | 100                | 10      | 05/25/16 08:2            | 4 109-99-9    |     |
| Toluene                        | ND              | ug/L       | 10.0               | 10      | 05/25/16 08:2            | 4 108-88-3    |     |
| 1,2,3-Trichlorobenzene         | ND              | ug/L       | 10.0               | 10      | 05/25/16 08:2            | 4 87-61-6     |     |
| 1,2,4-Trichlorobenzene         | ND              | ug/L       | 10.0               | 10      | 05/25/16 08:2            | 4 120-82-1    |     |
| 1,1,1-Trichloroethane          | ND              | ug/L       | 10.0               | 10      | 05/25/16 08:2            | 4 71-55-6     |     |
| 1,1,2-Trichloroethane          | ND              | ug/L       | 10.0               | 10      | 05/25/16 08:2            | 4 79-00-5     |     |
| Trichloroethene                | ND              | ug/L       | 4.0                | 10      | 05/25/16 08:2            | 4 79-01-6     |     |
| Trichlorofluoromethane         | ND              | ug/L       | 10.0               | 10      | 05/25/16 08:2            | 4 75-69-4     |     |
| 1,2,3-Trichloropropane         | ND              | ug/L       | 40.0               | 10      | 05/25/16 08:2            | 4 96-18-4     |     |
| 1,1,2-Trichlorotrifluoroethane | 58.9            | ug/L       | 10.0               | 10      | 05/25/16 08:2            | 4 76-13-1     |     |
| 1,2,4-Trimethylbenzene         | ND              | ug/L       | 10.0               | 10      | 05/25/16 08:2            | 4 95-63-6     |     |
| 1,3,5-Trimethylbenzene         | ND              | ug/L       | 10.0               | 10      | 05/25/16 08:2            | 4 108-67-8    |     |
| Vinyl chloride                 | ND              | ug/L       | 4.0                | 10      | 05/25/16 08:2            | 4 75-01-4     |     |
| Xylene (Total)                 | ND              | ug/L       | 30.0               | 10      | 05/25/16 08:2            | 4 1330-20-7   |     |
| Surrogates                     |                 |            |                    |         |                          |               |     |
| 1,2-Dichloroethane-d4 (S)      | 100             | %.         | 75-125             | 10      | 05/25/16 08:2            | 4 17060-07-0  |     |
| Toluene-d8 (S)                 | 99              | %.         | 75-125             | 10      | 05/25/16 08:2            | 4 2037-26-5   |     |
| 4-Bromofluorobenzene (S)       | 101             | %.         | 75-125             | 10      | 05/25/16 08:2            | 4 460-00-4    |     |



# **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: DPE-2               | Lab ID: 103    | 48956009     | Collected: 05/18/1 | 6 10:15 | Received: ( | 05/18/16 16:43 | Matrix: Water |      |
|-----------------------------|----------------|--------------|--------------------|---------|-------------|----------------|---------------|------|
| Parameters                  | Results        | Units        | Report Limit       | DF      | Prepared    | Analyzed       | CAS No.       | Qual |
| 8260B VOC                   | Analytical Met | hod: EPA 82  | 260B               |         |             |                |               |      |
| Acetone                     | ND             | ug/L         | 200                | 10      |             | 05/25/16 16:10 | 0 67-64-1     |      |
| Allyl chloride              | ND             | ug/L         | 40.0               | 10      |             | 05/25/16 16:10 | 0 107-05-1    |      |
| Benzene                     | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 | 71-43-2       |      |
| Bromobenzene                | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 | 0 108-86-1    |      |
| Bromochloromethane          | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 | 74-97-5       |      |
| Bromodichloromethane        | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 | 75-27-4       |      |
| Bromoform                   | ND             | ug/L         | 40.0               | 10      |             | 05/25/16 16:10 | 75-25-2       |      |
| Bromomethane                | ND             | ug/L         | 40.0               | 10      |             | 05/25/16 16:10 | 74-83-9       |      |
| 2-Butanone (MEK)            | ND             | ug/L         | 50.0               | 10      |             | 05/25/16 16:10 | 78-93-3       |      |
| n-Butylbenzene              | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 | 0 104-51-8    |      |
| sec-Butylbenzene            | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 |               |      |
| tert-Butylbenzene           | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 |               |      |
| Carbon tetrachloride        | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 | 56-23-5       |      |
| Chlorobenzene               | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 | 0 108-90-7    |      |
| Chloroethane                | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 | 75-00-3       |      |
| Chloroform                  | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 |               |      |
| Chloromethane               | ND             | ug/L         | 40.0               | 10      |             | 05/25/16 16:10 |               |      |
| 2-Chlorotoluene             | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 |               |      |
| 4-Chlorotoluene             | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 |               |      |
| 1,2-Dibromo-3-chloropropane | ND             | ug/L         | 100                | 10      |             | 05/25/16 16:10 |               |      |
| Dibromochloromethane        | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 |               |      |
| 1,2-Dibromoethane (EDB)     | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 | _             |      |
| Dibromomethane              | ND             | ug/L         | 40.0               | 10      |             | 05/25/16 16:10 |               |      |
| 1,2-Dichlorobenzene         | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 |               |      |
| 1,3-Dichlorobenzene         | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 |               |      |
| 1,4-Dichlorobenzene         | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 |               |      |
| Dichlorodifluoromethane     | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 |               | L3   |
| 1,1-Dichloroethane          | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 |               |      |
| 1,2-Dichloroethane          | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 |               |      |
| 1,1-Dichloroethene          | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 |               |      |
| cis-1,2-Dichloroethene      | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 |               |      |
| trans-1,2-Dichloroethene    | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 |               |      |
| Dichlorofluoromethane       | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 |               |      |
| 1,2-Dichloropropane         | ND             | ug/L         | 40.0               | 10      |             | 05/25/16 16:10 |               |      |
| 1,3-Dichloropropane         | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 |               |      |
| 2,2-Dichloropropane         | ND             | ug/L         | 40.0               | 10      |             | 05/25/16 16:10 |               |      |
| 1,1-Dichloropropene         | ND<br>ND       | ug/L<br>ug/L | 10.0               | 10      |             | 05/25/16 16:10 |               |      |
| cis-1,3-Dichloropropene     | ND             | ug/L         | 40.0               | 10      |             | 05/25/16 16:10 |               |      |
| trans-1,3-Dichloropropene   | ND             | ug/L         | 40.0               | 10      |             | 05/25/16 16:10 |               |      |
| Diethyl ether (Ethyl ether) | ND<br>ND       | ug/L<br>ug/L | 40.0               | 10      |             | 05/25/16 16:10 |               |      |
| Ethylbenzene                | ND<br>ND       | ug/L<br>ug/L | 10.0               | 10      |             | 05/25/16 16:10 |               |      |
| Hexachloro-1,3-butadiene    | ND<br>ND       | -            | 40.0               | 10      |             | 05/25/16 16:10 |               |      |
| Isopropylbenzene (Cumene)   | ND<br>ND       | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 |               |      |
|                             | ND<br>ND       | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 |               |      |
| p-Isopropyltoluene          |                | ug/L         |                    |         |             |                |               |      |
| Methylene Chloride          | ND             | ug/L         | 40.0               | 10      |             | 05/25/16 16:10 |               |      |
| 4-Methyl-2-pentanone (MIBK) | ND             | ug/L         | 50.0               | 10      |             | 05/25/16 16:10 |               |      |
| Methyl-tert-butyl ether     | ND             | ug/L         | 10.0               | 10      |             | 05/25/16 16:10 | J 1634-04-4   |      |

# **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..





Project: CrC
Pace Project No.: 10348956

| Sample: DPE-2                        | Lab ID: 103     | 48956009    | Collected: 05/18/1 | 6 10:15 | Received: 05 | 5/18/16 16:43 N | Matrix: Water |      |
|--------------------------------------|-----------------|-------------|--------------------|---------|--------------|-----------------|---------------|------|
| Parameters                           | Results         | Units       | Report Limit       | DF      | Prepared     | Analyzed        | CAS No.       | Qual |
| 8260B VOC                            | Analytical Meth | nod: EPA 82 | 260B               |         |              |                 |               |      |
| Naphthalene                          | ND              | ug/L        | 40.0               | 10      |              | 05/25/16 16:10  | 91-20-3       |      |
| n-Propylbenzene                      | ND              | ug/L        | 10.0               | 10      |              | 05/25/16 16:10  | 103-65-1      |      |
| Styrene                              | ND              | ug/L        | 10.0               | 10      |              | 05/25/16 16:10  | 100-42-5      |      |
| 1,1,1,2-Tetrachloroethane            | ND              | ug/L        | 40.0               | 10      |              | 05/25/16 16:10  | 630-20-6      |      |
| 1,1,2,2-Tetrachloroethane            | ND              | ug/L        | 10.0               | 10      |              | 05/25/16 16:10  | 79-34-5       |      |
| Tetrachloroethene                    | 1260            | ug/L        | 10.0               | 10      |              | 05/25/16 16:10  | 127-18-4      |      |
| Tetrahydrofuran                      | ND              | ug/L        | 100                | 10      |              | 05/25/16 16:10  | 109-99-9      |      |
| Toluene                              | ND              | ug/L        | 10.0               | 10      |              | 05/25/16 16:10  | 108-88-3      |      |
| 1,2,3-Trichlorobenzene               | ND              | ug/L        | 10.0               | 10      |              | 05/25/16 16:10  | 87-61-6       |      |
| 1,2,4-Trichlorobenzene               | ND              | ug/L        | 10.0               | 10      |              | 05/25/16 16:10  | 120-82-1      |      |
| 1,1,1-Trichloroethane                | ND              | ug/L        | 10.0               | 10      |              | 05/25/16 16:10  | 71-55-6       |      |
| 1,1,2-Trichloroethane                | ND              | ug/L        | 10.0               | 10      |              | 05/25/16 16:10  | 79-00-5       |      |
| Trichloroethene                      | ND              | ug/L        | 4.0                | 10      |              | 05/25/16 16:10  | 79-01-6       |      |
| Trichlorofluoromethane               | ND              | ug/L        | 10.0               | 10      |              | 05/25/16 16:10  | 75-69-4       |      |
| 1,2,3-Trichloropropane               | ND              | ug/L        | 40.0               | 10      |              | 05/25/16 16:10  | 96-18-4       |      |
| 1,1,2-Trichlorotrifluoroethane       | 104             | ug/L        | 10.0               | 10      |              | 05/25/16 16:10  | 76-13-1       |      |
| 1,2,4-Trimethylbenzene               | 16.0            | ug/L        | 10.0               | 10      |              | 05/25/16 16:10  | 95-63-6       |      |
| 1,3,5-Trimethylbenzene               | 11.2            | ug/L        | 10.0               | 10      |              | 05/25/16 16:10  | 108-67-8      |      |
| Vinyl chloride                       | ND              | ug/L        | 4.0                | 10      |              | 05/25/16 16:10  | 75-01-4       |      |
| Xylene (Total)                       | ND              | ug/L        | 30.0               | 10      |              | 05/25/16 16:10  | 1330-20-7     |      |
| Surrogates 1,2-Dichloroethane-d4 (S) | 97              | %.          | 75-125             | 10      |              | 05/25/16 16:10  | 17060-07-0    |      |
| Toluene-d8 (S)                       | 101             | %.          | 75-125             | 10      |              | 05/25/16 16:10  |               |      |
| 4-Bromofluorobenzene (S)             | 99              | %.          | 75-125             | 10      |              | 05/25/16 16:10  |               |      |



# **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: DPE-3               | Lab ID: 103    | 48956010     | Collected: 05/18/1 | 6 10:30 | Received: | 05/18/16 16:43 | Matrix: Water |     |
|-----------------------------|----------------|--------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                  | Results        | Units        | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260B VOC                   | Analytical Met | hod: EPA 82  | 260B               |         |           |                |               |     |
| Acetone                     | ND             | ug/L         | 400                | 20      |           | 05/25/16 09:2  | 8 67-64-1     |     |
| Allyl chloride              | ND             | ug/L         | 80.0               | 20      |           | 05/25/16 09:2  | 8 107-05-1    |     |
| Benzene                     | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  | 8 71-43-2     |     |
| Bromobenzene                | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  | 8 108-86-1    |     |
| Bromochloromethane          | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  | 8 74-97-5     |     |
| Bromodichloromethane        | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  | 8 75-27-4     |     |
| Bromoform                   | ND             | ug/L         | 80.0               | 20      |           | 05/25/16 09:2  | 8 75-25-2     |     |
| Bromomethane                | ND             | ug/L         | 80.0               | 20      |           | 05/25/16 09:2  | 8 74-83-9     |     |
| 2-Butanone (MEK)            | ND             | ug/L         | 100                | 20      |           | 05/25/16 09:2  | 8 78-93-3     |     |
| n-Butylbenzene              | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  | 8 104-51-8    |     |
| sec-Butylbenzene            | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  | 8 135-98-8    |     |
| tert-Butylbenzene           | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  | 8 98-06-6     |     |
| Carbon tetrachloride        | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  | 8 56-23-5     |     |
| Chlorobenzene               | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  | 8 108-90-7    |     |
| Chloroethane                | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  | 8 75-00-3     |     |
| Chloroform                  | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  | 8 67-66-3     |     |
| Chloromethane               | ND             | ug/L         | 80.0               | 20      |           | 05/25/16 09:2  | 8 74-87-3     |     |
| 2-Chlorotoluene             | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  | 8 95-49-8     |     |
| 4-Chlorotoluene             | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  |               |     |
| 1,2-Dibromo-3-chloropropane | ND             | ug/L         | 200                | 20      |           | 05/25/16 09:2  |               |     |
| Dibromochloromethane        | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  |               |     |
| 1,2-Dibromoethane (EDB)     | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  |               |     |
| Dibromomethane              | ND             | ug/L         | 80.0               | 20      |           | 05/25/16 09:2  |               |     |
| 1,2-Dichlorobenzene         | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  |               |     |
| 1,3-Dichlorobenzene         | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  |               |     |
| 1,4-Dichlorobenzene         | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  |               |     |
| Dichlorodifluoromethane     | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  |               |     |
| 1,1-Dichloroethane          | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  |               |     |
| 1,2-Dichloroethane          | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  |               |     |
| 1,1-Dichloroethene          | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  |               |     |
| cis-1,2-Dichloroethene      | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  |               |     |
| trans-1,2-Dichloroethene    | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  |               |     |
| Dichlorofluoromethane       | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  |               |     |
| 1,2-Dichloropropane         | ND             | ug/L         | 80.0               | 20      |           | 05/25/16 09:2  |               |     |
| 1,3-Dichloropropane         | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  |               |     |
| 2,2-Dichloropropane         | ND             | ug/L         | 80.0               | 20      |           | 05/25/16 09:2  |               |     |
| 1,1-Dichloropropene         | ND             | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  |               |     |
| cis-1,3-Dichloropropene     | ND             | ug/L         | 80.0               | 20      |           |                | 8 10061-01-5  |     |
| trans-1,3-Dichloropropene   | ND             | ug/L         | 80.0               | 20      |           |                | 8 10061-02-6  |     |
| Diethyl ether (Ethyl ether) | ND<br>ND       | ug/L         | 80.0               | 20      |           | 05/25/16 09:2  |               |     |
| Ethylbenzene                | ND<br>ND       | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  |               |     |
| Hexachloro-1,3-butadiene    | ND<br>ND       | ug/L<br>ug/L | 80.0               | 20      |           | 05/25/16 09:2  |               |     |
| Isopropylbenzene (Cumene)   | ND<br>ND       | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  |               |     |
| p-Isopropyltoluene          | ND<br>ND       | ug/L         | 20.0               | 20      |           | 05/25/16 09:2  |               |     |
| Methylene Chloride          | ND<br>ND       | ug/L         | 80.0               | 20      |           | 05/25/16 09:2  |               |     |
| 4-Methyl-2-pentanone (MIBK) | ND<br>ND       | ug/L<br>ug/L | 100                | 20      |           | 05/25/16 09:2  |               |     |
|                             |                |              |                    |         |           |                |               |     |





Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: DPE-3                  | Lab ID: 103     | 48956010    | Collected: 05/18/1 | 6 10:30 | Received: 05/ | 18/16 16:43 N  | Matrix: Water |      |
|--------------------------------|-----------------|-------------|--------------------|---------|---------------|----------------|---------------|------|
| Parameters                     | Results         | Units       | Report Limit       | DF      | Prepared      | Analyzed       | CAS No.       | Qual |
| 8260B VOC                      | Analytical Meth | nod: EPA 82 | 260B               |         |               |                |               |      |
| Naphthalene                    | ND              | ug/L        | 80.0               | 20      |               | 05/25/16 09:28 | 91-20-3       |      |
| n-Propylbenzene                | ND              | ug/L        | 20.0               | 20      |               | 05/25/16 09:28 | 103-65-1      |      |
| Styrene                        | ND              | ug/L        | 20.0               | 20      |               | 05/25/16 09:28 | 100-42-5      |      |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 80.0               | 20      |               | 05/25/16 09:28 | 630-20-6      |      |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 20.0               | 20      |               | 05/25/16 09:28 | 79-34-5       |      |
| Tetrachloroethene              | 2510            | ug/L        | 20.0               | 20      |               | 05/25/16 09:28 | 127-18-4      |      |
| Tetrahydrofuran                | ND              | ug/L        | 200                | 20      |               | 05/25/16 09:28 | 109-99-9      |      |
| Toluene                        | ND              | ug/L        | 20.0               | 20      |               | 05/25/16 09:28 | 108-88-3      |      |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 20.0               | 20      |               | 05/25/16 09:28 | 87-61-6       |      |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 20.0               | 20      |               | 05/25/16 09:28 | 120-82-1      |      |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 20.0               | 20      |               | 05/25/16 09:28 | 71-55-6       |      |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 20.0               | 20      |               | 05/25/16 09:28 | 79-00-5       |      |
| Trichloroethene                | ND              | ug/L        | 8.0                | 20      |               | 05/25/16 09:28 | 79-01-6       |      |
| Trichlorofluoromethane         | ND              | ug/L        | 20.0               | 20      |               | 05/25/16 09:28 | 75-69-4       |      |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 80.0               | 20      |               | 05/25/16 09:28 | 96-18-4       |      |
| 1,1,2-Trichlorotrifluoroethane | 64.9            | ug/L        | 20.0               | 20      |               | 05/25/16 09:28 | 76-13-1       |      |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 20.0               | 20      |               | 05/25/16 09:28 | 95-63-6       |      |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 20.0               | 20      |               | 05/25/16 09:28 | 108-67-8      |      |
| Vinyl chloride                 | ND              | ug/L        | 8.0                | 20      |               | 05/25/16 09:28 | 75-01-4       |      |
| Xylene (Total)                 | ND              | ug/L        | 60.0               | 20      |               | 05/25/16 09:28 | 1330-20-7     |      |
| Surrogates                     |                 | -           |                    |         |               |                |               |      |
| 1,2-Dichloroethane-d4 (S)      | 100             | %.          | 75-125             | 20      |               | 05/25/16 09:28 | 17060-07-0    |      |
| Toluene-d8 (S)                 | 99              | %.          | 75-125             | 20      |               | 05/25/16 09:28 | 2037-26-5     |      |
| 4-Bromofluorobenzene (S)       | 101             | %.          | 75-125             | 20      |               | 05/25/16 09:28 | 460-00-4      |      |





Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: DPE-4               | Lab ID: 103    | 48956011     | Collected: 05/18/1 | 6 10:00 | Received: | 05/18/16 16:43 | Matrix: Water |     |
|-----------------------------|----------------|--------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                  | Results        | Units        | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 8260B VOC                   | Analytical Met | hod: EPA 82  | 260B               |         |           |                |               |     |
| Acetone                     | ND             | ug/L         | 100                | 5       |           | 05/25/16 15:2  | 2 67-64-1     |     |
| Allyl chloride              | ND             | ug/L         | 20.0               | 5       |           | 05/25/16 15:2  | 2 107-05-1    |     |
| Benzene                     | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  | 2 71-43-2     |     |
| Bromobenzene                | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  | 2 108-86-1    |     |
| Bromochloromethane          | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  | 2 74-97-5     |     |
| Bromodichloromethane        | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  | 2 75-27-4     |     |
| Bromoform                   | ND             | ug/L         | 20.0               | 5       |           | 05/25/16 15:2  | 2 75-25-2     |     |
| Bromomethane                | ND             | ug/L         | 20.0               | 5       |           | 05/25/16 15:2  | 2 74-83-9     |     |
| 2-Butanone (MEK)            | ND             | ug/L         | 25.0               | 5       |           | 05/25/16 15:2  | 2 78-93-3     |     |
| n-Butylbenzene              | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  | 2 104-51-8    |     |
| sec-Butylbenzene            | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  | 2 135-98-8    |     |
| tert-Butylbenzene           | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  | 2 98-06-6     |     |
| Carbon tetrachloride        | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  | 2 56-23-5     |     |
| Chlorobenzene               | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  | 2 108-90-7    |     |
| Chloroethane                | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  |               |     |
| Chloroform                  | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  |               |     |
| Chloromethane               | ND             | ug/L         | 20.0               | 5       |           | 05/25/16 15:2  |               |     |
| 2-Chlorotoluene             | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  |               |     |
| 4-Chlorotoluene             | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  |               |     |
| 1,2-Dibromo-3-chloropropane | ND             | ug/L         | 50.0               | 5       |           | 05/25/16 15:2  |               |     |
| Dibromochloromethane        | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  |               |     |
| 1,2-Dibromoethane (EDB)     | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  | _             |     |
| Dibromomethane              | ND             | ug/L         | 20.0               | 5       |           | 05/25/16 15:2  |               |     |
| 1,2-Dichlorobenzene         | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  |               |     |
| 1,3-Dichlorobenzene         | ND<br>ND       | ug/L<br>ug/L | 5.0                | 5       |           | 05/25/16 15:2  |               |     |
| 1,4-Dichlorobenzene         | ND<br>ND       | ug/L<br>ug/L | 5.0                | 5       |           | 05/25/16 15:2  |               |     |
| Dichlorodifluoromethane     | ND<br>ND       | ug/L<br>ug/L | 5.0                | 5       |           | 05/25/16 15:2  |               | L3  |
| 1,1-Dichloroethane          | ND<br>ND       | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  |               | LJ  |
| 1,2-Dichloroethane          | ND             | ug/L<br>ug/L | 5.0                | 5       |           | 05/25/16 15:2  |               |     |
| 1,1-Dichloroethene          | ND             | _            | 5.0                | 5       |           | 05/25/16 15:2  |               |     |
| cis-1,2-Dichloroethene      | ND<br>ND       | ug/L         |                    | 5<br>5  |           | 05/25/16 15:2  |               |     |
| trans-1,2-Dichloroethene    | ND<br>ND       | ug/L         | 5.0<br>5.0         | 5<br>5  |           | 05/25/16 15:2  |               |     |
| Dichlorofluoromethane       | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  |               |     |
|                             |                | ug/L         |                    | 5<br>5  |           | 05/25/16 15:2  |               |     |
| 1,2-Dichloropropane         | ND             | ug/L         | 20.0               |         |           |                |               |     |
| 1,3-Dichloropropane         | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  |               |     |
| 2,2-Dichloropropane         | ND             | ug/L         | 20.0               | 5       |           | 05/25/16 15:2  |               |     |
| 1,1-Dichloropropene         | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  |               |     |
| cis-1,3-Dichloropropene     | ND             | ug/L         | 20.0               | 5       |           |                | 2 10061-01-5  |     |
| trans-1,3-Dichloropropene   | ND             | ug/L         | 20.0               | 5       |           |                | 2 10061-02-6  |     |
| Diethyl ether (Ethyl ether) | ND             | ug/L         | 20.0               | 5       |           | 05/25/16 15:2  |               |     |
| Ethylbenzene                | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  |               |     |
| Hexachloro-1,3-butadiene    | ND             | ug/L         | 20.0               | 5       |           | 05/25/16 15:2  |               |     |
| sopropylbenzene (Cumene)    | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  |               |     |
| o-Isopropyltoluene          | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  |               |     |
| Methylene Chloride          | ND             | ug/L         | 20.0               | 5       |           | 05/25/16 15:2  |               |     |
| 4-Methyl-2-pentanone (MIBK) | ND             | ug/L         | 25.0               | 5       |           | 05/25/16 15:2  |               |     |
| Methyl-tert-butyl ether     | ND             | ug/L         | 5.0                | 5       |           | 05/25/16 15:2  | 2 1634-04-4   |     |





Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: DPE-4                  | Lab ID: 1034    | 48956011    | Collected: 05/18/1 | 6 10:00 | Received: 05/18/16 16:43 | Matrix: Water  |     |
|--------------------------------|-----------------|-------------|--------------------|---------|--------------------------|----------------|-----|
| Parameters                     | Results         | Units       | Report Limit       | DF      | Prepared Analyze         | d CAS No.      | Qua |
| 8260B VOC                      | Analytical Meth | nod: EPA 82 | 260B               |         |                          |                |     |
| Naphthalene                    | ND              | ug/L        | 20.0               | 5       | 05/25/16 15              | :22 91-20-3    |     |
| n-Propylbenzene                | ND              | ug/L        | 5.0                | 5       | 05/25/16 15              | :22 103-65-1   |     |
| Styrene                        | ND              | ug/L        | 5.0                | 5       | 05/25/16 15              | :22 100-42-5   |     |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 20.0               | 5       | 05/25/16 15              | :22 630-20-6   |     |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 5.0                | 5       | 05/25/16 15              | :22 79-34-5    |     |
| Tetrachloroethene              | 724             | ug/L        | 5.0                | 5       | 05/25/16 15              | :22 127-18-4   |     |
| Tetrahydrofuran                | ND              | ug/L        | 50.0               | 5       | 05/25/16 15              | :22 109-99-9   |     |
| Toluene                        | ND              | ug/L        | 5.0                | 5       | 05/25/16 15              | :22 108-88-3   |     |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 5.0                | 5       | 05/25/16 15              | :22 87-61-6    |     |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 5.0                | 5       | 05/25/16 15              | :22 120-82-1   |     |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 5.0                | 5       | 05/25/16 15              | :22 71-55-6    |     |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 5.0                | 5       | 05/25/16 15              | :22 79-00-5    |     |
| Trichloroethene                | ND              | ug/L        | 2.0                | 5       | 05/25/16 15              | :22 79-01-6    |     |
| Trichlorofluoromethane         | ND              | ug/L        | 5.0                | 5       | 05/25/16 15              | :22 75-69-4    |     |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 20.0               | 5       | 05/25/16 15              | :22 96-18-4    |     |
| 1,1,2-Trichlorotrifluoroethane | 29.1            | ug/L        | 5.0                | 5       | 05/25/16 15              | :22 76-13-1    |     |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 5.0                | 5       | 05/25/16 15              | :22 95-63-6    |     |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 5.0                | 5       | 05/25/16 15              | :22 108-67-8   |     |
| Vinyl chloride                 | ND              | ug/L        | 2.0                | 5       | 05/25/16 15              | :22 75-01-4    |     |
| Xylene (Total)                 | ND              | ug/L        | 15.0               | 5       | 05/25/16 15              | :22 1330-20-7  |     |
| Surrogates                     |                 | -           |                    |         |                          |                |     |
| 1,2-Dichloroethane-d4 (S)      | 97              | %.          | 75-125             | 5       | 05/25/16 15              | :22 17060-07-0 |     |
| Toluene-d8 (S)                 | 99              | %.          | 75-125             | 5       | 05/25/16 15              | :22 2037-26-5  |     |
| 4-Bromofluorobenzene (S)       | 98              | %.          | 75-125             | 5       | 05/25/16 15              | :22 460-00-4   |     |



## **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: DPE-5               | Lab ID: 103     | 48956012    | Collected: 05/17/1 | 6 16:20 | Received: | 05/18/16 16:43 | Matrix: Water |     |
|-----------------------------|-----------------|-------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                  | Results         | Units       | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 3260B VOC                   | Analytical Meth | nod: EPA 82 | 260B               |         |           |                |               |     |
| Acetone                     | 111             | ug/L        | 40.0               | 2       |           | 05/21/16 04:50 | 67-64-1       |     |
| Allyl chloride              | ND              | ug/L        | 8.0                | 2       |           | 05/21/16 04:50 | 107-05-1      |     |
| Benzene                     | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 | 71-43-2       |     |
| Bromobenzene                | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 | 108-86-1      |     |
| Bromochloromethane          | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 | 74-97-5       |     |
| Bromodichloromethane        | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 | 75-27-4       |     |
| Bromoform                   | ND              | ug/L        | 8.0                | 2       |           | 05/21/16 04:50 | 75-25-2       |     |
| Bromomethane                | ND              | ug/L        | 8.0                | 2       |           | 05/21/16 04:50 | 74-83-9       |     |
| 2-Butanone (MEK)            | ND              | ug/L        | 10.0               | 2       |           | 05/21/16 04:50 | 78-93-3       |     |
| n-Butylbenzene              | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 |               |     |
| sec-Butylbenzene            | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 |               |     |
| ert-Butylbenzene            | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 |               |     |
| Carbon tetrachloride        | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 |               |     |
| Chlorobenzene               | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 |               |     |
| Chloroethane                | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 |               |     |
| Chloroform                  | ND              | ug/L        | 8.0                | 2       |           | 05/21/16 04:50 |               |     |
| Chloromethane               | ND<br>ND        | ug/L        | 8.0                | 2       |           | 05/21/16 04:50 |               |     |
| -Chlorotoluene              | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 |               |     |
| -Chlorotoluene              | ND<br>ND        |             | 2.0                | 2       |           | 05/21/16 04:50 |               |     |
|                             | ND<br>ND        | ug/L        | 8.0                | 2       |           | 05/21/16 04:50 |               |     |
| ,2-Dibromo-3-chloropropane  |                 | ug/L        |                    | 2       |           |                |               |     |
| Dibromochloromethane        | ND              | ug/L        | 2.0                |         |           | 05/21/16 04:50 |               |     |
| I,2-Dibromoethane (EDB)     | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 |               |     |
| Dibromomethane              | ND              | ug/L        | 8.0                | 2       |           | 05/21/16 04:50 |               |     |
| ,2-Dichlorobenzene          | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 |               |     |
| ,3-Dichlorobenzene          | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 |               |     |
| ,4-Dichlorobenzene          | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 |               |     |
| Dichlorodifluoromethane     | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 |               |     |
| 1,1-Dichloroethane          | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 |               |     |
| ,2-Dichloroethane           | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 |               |     |
| 1,1-Dichloroethene          | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 |               |     |
| cis-1,2-Dichloroethene      | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 |               |     |
| rans-1,2-Dichloroethene     | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 |               |     |
| Dichlorofluoromethane       | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 | 75-43-4       |     |
| ,2-Dichloropropane          | ND              | ug/L        | 8.0                | 2       |           | 05/21/16 04:50 | 78-87-5       |     |
| ,3-Dichloropropane          | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 | 142-28-9      |     |
| 2,2-Dichloropropane         | ND              | ug/L        | 8.0                | 2       |           | 05/21/16 04:50 | 594-20-7      |     |
| ,1-Dichloropropene          | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 | 563-58-6      |     |
| is-1,3-Dichloropropene      | ND              | ug/L        | 8.0                | 2       |           | 05/21/16 04:50 | 10061-01-5    |     |
| rans-1,3-Dichloropropene    | ND              | ug/L        | 8.0                | 2       |           | 05/21/16 04:50 | 10061-02-6    |     |
| Diethyl ether (Ethyl ether) | ND              | ug/L        | 8.0                | 2       |           | 05/21/16 04:50 | 0 60-29-7     |     |
| Ethylbenzene                | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 | 100-41-4      |     |
| lexachloro-1,3-butadiene    | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 | 87-68-3       |     |
| sopropylbenzene (Cumene)    | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 | 98-82-8       |     |
| o-Isopropyltoluene          | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 |               |     |
| Methylene Chloride          | ND              | ug/L        | 8.0                | 2       |           | 05/21/16 04:50 |               |     |
| I-Methyl-2-pentanone (MIBK) | ND              | ug/L        | 10.0               | 2       |           | 05/21/16 04:50 |               |     |
| Methyl-tert-butyl ether     | ND              | ug/L        | 2.0                | 2       |           | 05/21/16 04:50 |               |     |





Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: DPE-5                  | Lab ID: 1034    | 48956012    | Collected: 05/17/1 | 16 16:20 | Received: 05/18/16 16:43 | Matrix: Water |     |
|--------------------------------|-----------------|-------------|--------------------|----------|--------------------------|---------------|-----|
| Parameters                     | Results         | Units       | Report Limit       | DF       | Prepared Analyzed        | CAS No.       | Qua |
| 8260B VOC                      | Analytical Meth | nod: EPA 82 | 260B               |          |                          |               |     |
| Naphthalene                    | ND              | ug/L        | 8.0                | 2        | 05/21/16 04:50           | 91-20-3       |     |
| n-Propylbenzene                | ND              | ug/L        | 2.0                | 2        | 05/21/16 04:50           | 103-65-1      |     |
| Styrene                        | ND              | ug/L        | 2.0                | 2        | 05/21/16 04:50           | 100-42-5      |     |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 2.0                | 2        | 05/21/16 04:50           | 0 630-20-6    |     |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 2.0                | 2        | 05/21/16 04:50           | 79-34-5       |     |
| Tetrachloroethene              | 152             | ug/L        | 2.0                | 2        | 05/21/16 04:50           | ) 127-18-4    |     |
| Tetrahydrofuran                | ND              | ug/L        | 20.0               | 2        | 05/21/16 04:50           | 109-99-9      |     |
| Toluene                        | ND              | ug/L        | 2.0                | 2        | 05/21/16 04:50           | 108-88-3      |     |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 2.0                | 2        | 05/21/16 04:50           | 87-61-6       |     |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 2.0                | 2        | 05/21/16 04:50           | 120-82-1      |     |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 2.0                | 2        | 05/21/16 04:50           | 71-55-6       |     |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 2.0                | 2        | 05/21/16 04:50           | 79-00-5       |     |
| Trichloroethene                | ND              | ug/L        | 0.80               | 2        | 05/21/16 04:50           | 79-01-6       |     |
| Trichlorofluoromethane         | ND              | ug/L        | 2.0                | 2        | 05/21/16 04:50           | 75-69-4       |     |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 8.0                | 2        | 05/21/16 04:50           | 96-18-4       |     |
| 1,1,2-Trichlorotrifluoroethane | 13.2            | ug/L        | 2.0                | 2        | 05/21/16 04:50           | 76-13-1       |     |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 2.0                | 2        | 05/21/16 04:50           | 95-63-6       |     |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 2.0                | 2        | 05/21/16 04:50           | 108-67-8      |     |
| Vinyl chloride                 | ND              | ug/L        | 0.80               | 2        | 05/21/16 04:50           | 75-01-4       |     |
| Xylene (Total)                 | ND              | ug/L        | 6.0                | 2        | 05/21/16 04:50           | 1330-20-7     |     |
| Surrogates                     |                 | •           |                    |          |                          |               |     |
| 1,2-Dichloroethane-d4 (S)      | 97              | %.          | 75-125             | 2        | 05/21/16 04:50           | 17060-07-0    |     |
| Toluene-d8 (S)                 | 104             | %.          | 75-125             | 2        | 05/21/16 04:50           | 2037-26-5     |     |
| 4-Bromofluorobenzene (S)       | 95              | %.          | 75-125             | 2        | 05/21/16 04:50           | 460-00-4      |     |



## **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: DPE-6                               | Lab ID: 103    | 48956013    | Collected: 05/17/1 | 6 16:35 | Received: | 05/18/16 16:43                 | Matrix: Water |      |
|---------------------------------------------|----------------|-------------|--------------------|---------|-----------|--------------------------------|---------------|------|
| Parameters                                  | Results        | Units       | Report Limit       | DF      | Prepared  | Analyzed                       | CAS No.       | Qual |
| 8260B VOC                                   | Analytical Met | nod: EPA 82 | 260B               |         |           |                                |               |      |
| Acetone                                     | ND             | ug/L        | 20.0               | 1       |           | 05/21/16 04:1                  | 8 67-64-1     |      |
| Allyl chloride                              | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 04:1                  | 8 107-05-1    |      |
| Benzene                                     | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  | 8 71-43-2     |      |
| Bromobenzene                                | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  | 8 108-86-1    |      |
| Bromochloromethane                          | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  | 8 74-97-5     |      |
| Bromodichloromethane                        | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  | 8 75-27-4     |      |
| Bromoform                                   | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 04:1                  | 8 75-25-2     |      |
| Bromomethane                                | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 04:1                  | 8 74-83-9     |      |
| 2-Butanone (MEK)                            | ND             | ug/L        | 5.0                | 1       |           | 05/21/16 04:1                  | 8 78-93-3     |      |
| n-Butylbenzene                              | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  | 8 104-51-8    |      |
| sec-Butylbenzene                            | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  | 8 135-98-8    |      |
| tert-Butylbenzene                           | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  | 8 98-06-6     |      |
| Carbon tetrachloride                        | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  | 8 56-23-5     |      |
| Chlorobenzene                               | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  | 8 108-90-7    |      |
| Chloroethane                                | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  |               |      |
| Chloroform                                  | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 04:1                  |               |      |
| Chloromethane                               | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 04:1                  |               |      |
| 2-Chlorotoluene                             | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  |               |      |
| 4-Chlorotoluene                             | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  |               |      |
| 1,2-Dibromo-3-chloropropane                 | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 04:1                  |               |      |
| Dibromochloromethane                        | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  |               |      |
| 1,2-Dibromoethane (EDB)                     | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  |               |      |
| Dibromomethane                              | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 04:1                  |               |      |
| 1,2-Dichlorobenzene                         | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  |               |      |
|                                             | ND             | -           | 1.0                | 1       |           | 05/21/16 04:1                  |               |      |
| 1,3-Dichlorobenzene                         |                | ug/L        |                    | 1       |           |                                |               |      |
| 1,4-Dichlorobenzene Dichlorodifluoromethane | ND<br>ND       | ug/L        | 1.0<br>1.0         | 1       |           | 05/21/16 04:1<br>05/21/16 04:1 |               |      |
| 1,1-Dichloroethane                          | ND<br>ND       | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  |               |      |
| •                                           |                | ug/L        |                    | 1       |           |                                |               |      |
| 1,2-Dichloroethane                          | ND             | ug/L        | 1.0                |         |           | 05/21/16 04:1                  |               |      |
| 1,1-Dichloroethene                          | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  |               |      |
| cis-1,2-Dichloroethene                      | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  |               |      |
| trans-1,2-Dichloroethene                    | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  |               |      |
| Dichlorofluoromethane                       | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  |               |      |
| 1,2-Dichloropropane                         | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 04:1                  |               |      |
| 1,3-Dichloropropane                         | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  |               |      |
| 2,2-Dichloropropane                         | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 04:1                  |               |      |
| 1,1-Dichloropropene                         | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  |               |      |
| cis-1,3-Dichloropropene                     | ND             | ug/L        | 4.0                | 1       |           |                                | 8 10061-01-5  |      |
| trans-1,3-Dichloropropene                   | ND             | ug/L        | 4.0                | 1       |           |                                | 8 10061-02-6  |      |
| Diethyl ether (Ethyl ether)                 | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 04:1                  |               |      |
| Ethylbenzene                                | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  |               |      |
| Hexachloro-1,3-butadiene                    | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  |               |      |
| Isopropylbenzene (Cumene)                   | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  |               |      |
| p-Isopropyltoluene                          | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  |               |      |
| Methylene Chloride                          | ND             | ug/L        | 4.0                | 1       |           | 05/21/16 04:1                  | 8 75-09-2     |      |
| 4-Methyl-2-pentanone (MIBK)                 | ND             | ug/L        | 5.0                | 1       |           | 05/21/16 04:1                  | 8 108-10-1    |      |
| Methyl-tert-butyl ether                     | ND             | ug/L        | 1.0                | 1       |           | 05/21/16 04:1                  | 8 1634-04-4   |      |





Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: DPE-6                  | Lab ID: 1034    | 48956013    | Collected: 05/17/1 | 6 16:35 | Received: 05/18/16 16:43 | Matrix: Water   |     |
|--------------------------------|-----------------|-------------|--------------------|---------|--------------------------|-----------------|-----|
| Parameters                     | Results         | Units       | Report Limit       | DF      | Prepared Analyze         | d CAS No.       | Qua |
| 8260B VOC                      | Analytical Meth | nod: EPA 82 | 260B               |         |                          |                 |     |
| Naphthalene                    | ND              | ug/L        | 4.0                | 1       | 05/21/16 0               | 1:18 91-20-3    |     |
| n-Propylbenzene                | ND              | ug/L        | 1.0                | 1       | 05/21/16 0               | 1:18 103-65-1   |     |
| Styrene                        | ND              | ug/L        | 1.0                | 1       | 05/21/16 0               | 1:18 100-42-5   |     |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1       | 05/21/16 0               | 1:18 630-20-6   |     |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1       | 05/21/16 0               | 1:18 79-34-5    |     |
| Tetrachloroethene              | 51.2            | ug/L        | 1.0                | 1       | 05/21/16 0               | 1:18 127-18-4   |     |
| Tetrahydrofuran                | ND              | ug/L        | 10.0               | 1       | 05/21/16 0               | 1:18 109-99-9   |     |
| Toluene                        | ND              | ug/L        | 1.0                | 1       | 05/21/16 0               | 1:18 108-88-3   |     |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1       | 05/21/16 0               | 1:18 87-61-6    |     |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1       | 05/21/16 0               | 1:18 120-82-1   |     |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 1.0                | 1       | 05/21/16 0               | 1:18 71-55-6    |     |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 1.0                | 1       | 05/21/16 0               | 1:18 79-00-5    |     |
| Trichloroethene                | ND              | ug/L        | 0.40               | 1       | 05/21/16 0               | 1:18 79-01-6    |     |
| Trichlorofluoromethane         | ND              | ug/L        | 1.0                | 1       | 05/21/16 0               | 1:18 75-69-4    |     |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 4.0                | 1       | 05/21/16 0               | 1:18 96-18-4    |     |
| 1,1,2-Trichlorotrifluoroethane | ND              | ug/L        | 1.0                | 1       | 05/21/16 0               | 1:18 76-13-1    |     |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1       | 05/21/16 0               | 1:18 95-63-6    |     |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1       | 05/21/16 0               | 1:18 108-67-8   |     |
| Vinyl chloride                 | ND              | ug/L        | 0.40               | 1       | 05/21/16 0               | 1:18 75-01-4    |     |
| Xylene (Total)                 | ND              | ug/L        | 3.0                | 1       | 05/21/16 0               | 1:18 1330-20-7  |     |
| Surrogates                     |                 |             |                    |         |                          |                 |     |
| 1,2-Dichloroethane-d4 (S)      | 99              | %.          | 75-125             | 1       | 05/21/16 0               | 1:18 17060-07-0 |     |
| Toluene-d8 (S)                 | 101             | %.          | 75-125             | 1       | 05/21/16 0               | 1:18 2037-26-5  |     |
| 4-Bromofluorobenzene (S)       | 98              | %.          | 75-125             | 1       | 05/21/16 0               | 1:18 460-00-4   |     |



## **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: DPE-7               | Lab ID: 103    | 48956014    | Collected: 05/17/1 | 16 15:15 | Received: 0 | 05/18/16 16:43 N | Matrix: Water |      |
|-----------------------------|----------------|-------------|--------------------|----------|-------------|------------------|---------------|------|
| Parameters                  | Results        | Units       | Report Limit       | DF       | Prepared    | Analyzed         | CAS No.       | Qual |
| 8260B VOC                   | Analytical Met | nod: EPA 82 | 260B               |          |             |                  |               |      |
| Acetone                     | ND             | ug/L        | 20.0               | 1        |             | 05/21/16 04:34   | 67-64-1       |      |
| Allyl chloride              | ND             | ug/L        | 4.0                | 1        |             | 05/21/16 04:34   | 107-05-1      |      |
| Benzene                     | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   | 71-43-2       |      |
| Bromobenzene                | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   | 108-86-1      |      |
| Bromochloromethane          | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   | 74-97-5       |      |
| Bromodichloromethane        | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   | 75-27-4       |      |
| Bromoform                   | ND             | ug/L        | 4.0                | 1        |             | 05/21/16 04:34   | 75-25-2       |      |
| Bromomethane                | ND             | ug/L        | 4.0                | 1        |             | 05/21/16 04:34   | 74-83-9       |      |
| 2-Butanone (MEK)            | ND             | ug/L        | 5.0                | 1        |             | 05/21/16 04:34   | 78-93-3       |      |
| n-Butylbenzene              | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   | 104-51-8      |      |
| sec-Butylbenzene            | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   |               |      |
| tert-Butylbenzene           | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   |               |      |
| Carbon tetrachloride        | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   |               |      |
| Chlorobenzene               | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   |               |      |
| Chloroethane                | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   |               |      |
| Chloroform                  | ND             | ug/L        | 4.0                | 1        |             | 05/21/16 04:34   |               |      |
| Chloromethane               | ND<br>ND       | ug/L        | 4.0                | 1        |             | 05/21/16 04:34   |               |      |
| 2-Chlorotoluene             | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   |               |      |
| 4-Chlorotoluene             | ND<br>ND       | •           | 1.0                | 1        |             | 05/21/16 04:34   |               |      |
|                             |                | ug/L        |                    | 1        |             |                  |               |      |
| 1,2-Dibromo-3-chloropropane | ND             | ug/L        | 4.0                |          |             | 05/21/16 04:34   |               |      |
| Dibromochloromethane        | ND             | ug/L        | 1.0                | 1<br>1   |             | 05/21/16 04:34   | -             |      |
| 1,2-Dibromoethane (EDB)     | ND             | ug/L        | 1.0                |          |             | 05/21/16 04:34   |               |      |
| Dibromomethane              | ND             | ug/L        | 4.0                | 1        |             | 05/21/16 04:34   |               |      |
| 1,2-Dichlorobenzene         | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   |               |      |
| 1,3-Dichlorobenzene         | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   |               |      |
| 1,4-Dichlorobenzene         | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   |               |      |
| Dichlorodifluoromethane     | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   |               |      |
| 1,1-Dichloroethane          | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   |               |      |
| 1,2-Dichloroethane          | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   |               |      |
| 1,1-Dichloroethene          | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   |               |      |
| cis-1,2-Dichloroethene      | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   |               |      |
| rans-1,2-Dichloroethene     | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   |               |      |
| Dichlorofluoromethane       | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   | 75-43-4       |      |
| 1,2-Dichloropropane         | ND             | ug/L        | 4.0                | 1        |             | 05/21/16 04:34   | 78-87-5       |      |
| 1,3-Dichloropropane         | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   |               |      |
| 2,2-Dichloropropane         | ND             | ug/L        | 4.0                | 1        |             | 05/21/16 04:34   | 594-20-7      |      |
| 1,1-Dichloropropene         | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   | 563-58-6      |      |
| cis-1,3-Dichloropropene     | ND             | ug/L        | 4.0                | 1        |             | 05/21/16 04:34   | 10061-01-5    |      |
| rans-1,3-Dichloropropene    | ND             | ug/L        | 4.0                | 1        |             | 05/21/16 04:34   | 10061-02-6    |      |
| Diethyl ether (Ethyl ether) | ND             | ug/L        | 4.0                | 1        |             | 05/21/16 04:34   | 60-29-7       |      |
| Ethylbenzene                | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   | 100-41-4      |      |
| Hexachloro-1,3-butadiene    | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   | 87-68-3       |      |
| sopropylbenzene (Cumene)    | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   | 98-82-8       |      |
| p-Isopropyltoluene          | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   |               |      |
| Methylene Chloride          | ND             | ug/L        | 4.0                | 1        |             | 05/21/16 04:34   |               |      |
| 4-Methyl-2-pentanone (MIBK) | ND             | ug/L        | 5.0                | 1        |             | 05/21/16 04:34   |               |      |
| Methyl-tert-butyl ether     | ND             | ug/L        | 1.0                | 1        |             | 05/21/16 04:34   |               |      |





Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: DPE-7                  | Lab ID: 103     | 48956014    | Collected: 05/17/1 | 16 15:15 | Received: 05/18/16 16:43 | Matrix: Water |     |
|--------------------------------|-----------------|-------------|--------------------|----------|--------------------------|---------------|-----|
| Parameters                     | Results         | Units       | Report Limit       | DF       | Prepared Analyzed        | CAS No.       | Qua |
| 8260B VOC                      | Analytical Meth | nod: EPA 82 | 260B               |          |                          |               |     |
| Naphthalene                    | ND              | ug/L        | 4.0                | 1        | 05/21/16 04:             | 34 91-20-3    |     |
| n-Propylbenzene                | ND              | ug/L        | 1.0                | 1        | 05/21/16 04:             | 34 103-65-1   |     |
| Styrene                        | ND              | ug/L        | 1.0                | 1        | 05/21/16 04:             | 34 100-42-5   |     |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1        | 05/21/16 04:             | 34 630-20-6   |     |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1        | 05/21/16 04:             | 34 79-34-5    |     |
| Tetrachloroethene              | 37.0            | ug/L        | 1.0                | 1        | 05/21/16 04:             | 34 127-18-4   |     |
| Tetrahydrofuran                | ND              | ug/L        | 10.0               | 1        | 05/21/16 04:             | 34 109-99-9   |     |
| Toluene                        | ND              | ug/L        | 1.0                | 1        | 05/21/16 04:             | 34 108-88-3   |     |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1        | 05/21/16 04:             | 34 87-61-6    |     |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1        | 05/21/16 04:             | 34 120-82-1   |     |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 1.0                | 1        | 05/21/16 04:             | 34 71-55-6    |     |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 1.0                | 1        | 05/21/16 04:             | 34 79-00-5    |     |
| Trichloroethene                | ND              | ug/L        | 0.40               | 1        | 05/21/16 04:             | 34 79-01-6    |     |
| Trichlorofluoromethane         | ND              | ug/L        | 1.0                | 1        | 05/21/16 04:             | 34 75-69-4    |     |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 4.0                | 1        | 05/21/16 04:             | 34 96-18-4    |     |
| 1,1,2-Trichlorotrifluoroethane | ND              | ug/L        | 1.0                | 1        | 05/21/16 04:             | 34 76-13-1    |     |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1        | 05/21/16 04:             | 34 95-63-6    |     |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1        | 05/21/16 04:             | 34 108-67-8   |     |
| Vinyl chloride                 | ND              | ug/L        | 0.40               | 1        | 05/21/16 04:             | 34 75-01-4    |     |
| Xylene (Total)                 | ND              | ug/L        | 3.0                | 1        | 05/21/16 04:             | 34 1330-20-7  |     |
| Surrogates                     |                 |             |                    |          |                          |               |     |
| 1,2-Dichloroethane-d4 (S)      | 99              | %.          | 75-125             | 1        |                          | 34 17060-07-0 |     |
| Toluene-d8 (S)                 | 102             | %.          | 75-125             | 1        |                          | 34 2037-26-5  |     |
| 4-Bromofluorobenzene (S)       | 98              | %.          | 75-125             | 1        | 05/21/16 04:             | 34 460-00-4   |     |





Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: DPE-8               | Lab ID: 103    | 48956015     | Collected: 05/18/1 | 6 09:40 | Received: | 05/18/16 16:43 | Matrix: Water |     |
|-----------------------------|----------------|--------------|--------------------|---------|-----------|----------------|---------------|-----|
| Parameters                  | Results        | Units        | Report Limit       | DF      | Prepared  | Analyzed       | CAS No.       | Qua |
| 3260B VOC                   | Analytical Met | hod: EPA 82  | 260B               |         |           |                |               |     |
| Acetone                     | ND             | ug/L         | 200                | 10      |           | 05/25/16 08:5  | 6 67-64-1     |     |
| Allyl chloride              | ND             | ug/L         | 40.0               | 10      |           | 05/25/16 08:5  | 6 107-05-1    |     |
| Benzene                     | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  | 6 71-43-2     |     |
| Bromobenzene                | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  | 6 108-86-1    |     |
| Bromochloromethane          | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  | 6 74-97-5     |     |
| Bromodichloromethane        | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  | 6 75-27-4     |     |
| Bromoform                   | ND             | ug/L         | 40.0               | 10      |           | 05/25/16 08:5  | 6 75-25-2     |     |
| Bromomethane                | ND             | ug/L         | 40.0               | 10      |           | 05/25/16 08:5  | 6 74-83-9     |     |
| 2-Butanone (MEK)            | ND             | ug/L         | 50.0               | 10      |           | 05/25/16 08:5  | 6 78-93-3     |     |
| n-Butylbenzene              | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  | 6 104-51-8    |     |
| sec-Butylbenzene            | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  | 6 135-98-8    |     |
| ert-Butylbenzene            | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  | 6 98-06-6     |     |
| Carbon tetrachloride        | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  | 6 56-23-5     |     |
| Chlorobenzene               | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  | 6 108-90-7    |     |
| Chloroethane                | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  | 6 75-00-3     |     |
| Chloroform                  | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  | 6 67-66-3     |     |
| Chloromethane               | ND             | ug/L         | 40.0               | 10      |           | 05/25/16 08:5  | 6 74-87-3     |     |
| 2-Chlorotoluene             | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  |               |     |
| I-Chlorotoluene             | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  |               |     |
| 1,2-Dibromo-3-chloropropane | ND             | ug/L         | 100                | 10      |           | 05/25/16 08:5  |               |     |
| Dibromochloromethane        | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  |               |     |
| I,2-Dibromoethane (EDB)     | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  |               |     |
| Dibromomethane              | ND             | ug/L         | 40.0               | 10      |           | 05/25/16 08:5  |               |     |
| I,2-Dichlorobenzene         | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  |               |     |
| I,3-Dichlorobenzene         | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  |               |     |
| ,4-Dichlorobenzene          | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  |               |     |
| Dichlorodifluoromethane     | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  |               |     |
| I,1-Dichloroethane          | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  |               |     |
| I,2-Dichloroethane          | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  |               |     |
| 1,1-Dichloroethene          | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  |               |     |
| cis-1,2-Dichloroethene      | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  |               |     |
| rans-1,2-Dichloroethene     | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  |               |     |
| Dichlorofluoromethane       | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  |               |     |
| I,2-Dichloropropane         | ND             | ug/L         | 40.0               | 10      |           | 05/25/16 08:5  |               |     |
| 1,3-Dichloropropane         | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  |               |     |
| 2,2-Dichloropropane         | ND             | ug/L         | 40.0               | 10      |           | 05/25/16 08:5  |               |     |
| I,1-Dichloropropene         | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  |               |     |
| cis-1,3-Dichloropropene     | ND             | ug/L         | 40.0               | 10      |           | 05/25/16 08:5  |               |     |
| rans-1,3-Dichloropropene    | ND             | ug/L         | 40.0               | 10      |           |                | 6 10061-02-6  |     |
| Diethyl ether (Ethyl ether) | ND             | ug/L         | 40.0               | 10      |           | 05/25/16 08:5  |               |     |
| Ethylbenzene                | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  |               |     |
| Hexachloro-1,3-butadiene    | ND<br>ND       | ug/L<br>ug/L | 40.0               | 10      |           | 05/25/16 08:5  |               |     |
| sopropylbenzene (Cumene)    | ND             | ug/L         | 10.0               | 10      |           | 05/25/16 08:5  |               |     |
| p-Isopropyltoluene          | ND             | ug/L<br>ug/L | 10.0               | 10      |           | 05/25/16 08:5  |               |     |
| Methylene Chloride          | ND             | ug/L         | 40.0               | 10      |           | 05/25/16 08:5  |               |     |
| I-Methyl-2-pentanone (MIBK) | ND<br>ND       | ug/L<br>ug/L | 50.0               | 10      |           | 05/25/16 08:5  |               |     |
|                             |                |              |                    |         |           |                |               |     |





Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: DPE-8                  | Lab ID: 1034    | 48956015    | Collected: 05/18/1 | 6 09:40 | Received: 05/18/16 16:43 | Matrix: Water |     |
|--------------------------------|-----------------|-------------|--------------------|---------|--------------------------|---------------|-----|
| Parameters                     | Results         | Units       | Report Limit       | DF      | Prepared Analyzed        | CAS No.       | Qua |
| 8260B VOC                      | Analytical Meth | nod: EPA 82 | 260B               |         |                          |               |     |
| Naphthalene                    | ND              | ug/L        | 40.0               | 10      | 05/25/16 08:50           | 6 91-20-3     |     |
| n-Propylbenzene                | ND              | ug/L        | 10.0               | 10      | 05/25/16 08:50           | 6 103-65-1    |     |
| Styrene                        | ND              | ug/L        | 10.0               | 10      | 05/25/16 08:50           | 6 100-42-5    |     |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 40.0               | 10      | 05/25/16 08:50           | 6 630-20-6    |     |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 10.0               | 10      | 05/25/16 08:50           | 6 79-34-5     |     |
| Tetrachloroethene              | 808             | ug/L        | 10.0               | 10      | 05/25/16 08:50           | 6 127-18-4    |     |
| Tetrahydrofuran                | ND              | ug/L        | 100                | 10      | 05/25/16 08:50           | 6 109-99-9    |     |
| Toluene                        | ND              | ug/L        | 10.0               | 10      | 05/25/16 08:50           | 6 108-88-3    |     |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 10.0               | 10      | 05/25/16 08:50           | 87-61-6       |     |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 10.0               | 10      | 05/25/16 08:50           | 6 120-82-1    |     |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 10.0               | 10      | 05/25/16 08:50           | 6 71-55-6     |     |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 10.0               | 10      | 05/25/16 08:50           | 6 79-00-5     |     |
| Trichloroethene                | ND              | ug/L        | 4.0                | 10      | 05/25/16 08:50           | 6 79-01-6     |     |
| Trichlorofluoromethane         | ND              | ug/L        | 10.0               | 10      | 05/25/16 08:50           | 5 75-69-4     |     |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 40.0               | 10      | 05/25/16 08:50           | 6 96-18-4     |     |
| 1,1,2-Trichlorotrifluoroethane | 87.9            | ug/L        | 10.0               | 10      | 05/25/16 08:50           | 6 76-13-1     |     |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 10.0               | 10      | 05/25/16 08:50           | 95-63-6       |     |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 10.0               | 10      | 05/25/16 08:50           | 6 108-67-8    |     |
| Vinyl chloride                 | ND              | ug/L        | 4.0                | 10      | 05/25/16 08:50           | 6 75-01-4     |     |
| Xylene (Total)                 | ND              | ug/L        | 30.0               | 10      | 05/25/16 08:50           | 6 1330-20-7   |     |
| Surrogates                     |                 | -           |                    |         |                          |               |     |
| 1,2-Dichloroethane-d4 (S)      | 100             | %.          | 75-125             | 10      | 05/25/16 08:50           | 6 17060-07-0  |     |
| Toluene-d8 (S)                 | 100             | %.          | 75-125             | 10      | 05/25/16 08:50           | 6 2037-26-5   |     |
| 4-Bromofluorobenzene (S)       | 99              | %.          | 75-125             | 10      | 05/25/16 08:50           | 6 460-00-4    |     |





Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: Influent            | Lab ID: 10    | 0348956016    | Collected: 05/18/1 | 6 11:10 | Received: 0 | 5/18/16 16:43 M               | fatrix: Water |       |
|-----------------------------|---------------|---------------|--------------------|---------|-------------|-------------------------------|---------------|-------|
| Parameters                  | Results       | Units         | Report Limit       | DF      | Prepared    | Analyzed                      | CAS No.       | Qual  |
| 624 MSV                     | Analytical Mo | ethod: EPA 62 | 24                 |         |             |                               |               |       |
| Acetone                     | 25.2          | ug/L          | 20.0               | 1       |             | 05/31/16 10:52                | 67-64-1       | N2    |
| Allyl chloride              | ND            | ug/L          | 4.0                | 1       |             | 05/31/16 10:52                | 107-05-1      | N2    |
| Benzene                     | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                | 71-43-2       |       |
| Bromobenzene                | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                | 108-86-1      | N2    |
| Bromochloromethane          | ND            | ug/L          | 4.0                | 1       |             | 05/31/16 10:52                | 74-97-5       | N2    |
| Bromodichloromethane        | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                | 75-27-4       |       |
| Bromoform                   | ND            | ug/L          | 4.0                | 1       |             | 05/31/16 10:52                | 75-25-2       |       |
| Bromomethane                | ND            | ug/L          | 4.0                | 1       |             | 05/31/16 10:52                | 74-83-9       |       |
| 2-Butanone (MEK)            | ND            | ug/L          | 5.0                | 1       |             | 05/31/16 10:52                | 78-93-3       | N2    |
| n-Butylbenzene              | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                | 104-51-8      | N2    |
| sec-Butylbenzene            | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                | 135-98-8      | N2    |
| tert-Butylbenzene           | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                | 98-06-6       |       |
| Carbon tetrachloride        | ND            | ug/L          | 4.0                | 1       |             | 05/31/16 10:52                | 56-23-5       |       |
| Chlorobenzene               | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                | 108-90-7      |       |
| Chloroethane                | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                | 75-00-3       |       |
| 2-Chloroethylvinyl ether    | ND            | ug/L          | 10.0               | 1       |             | 05/31/16 10:52                |               | P5,c2 |
| Chloroform                  | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                | 67-66-3       | •     |
| Chloromethane               | ND            | ug/L          | 4.0                | 1       |             | 05/31/16 10:52                | 74-87-3       |       |
| 2-Chlorotoluene             | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                | 95-49-8       | N2    |
| 4-Chlorotoluene             | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                |               | N2    |
| 1,2-Dibromo-3-chloropropane | ND            | ug/L          | 4.0                | 1       |             | 05/31/16 10:52                |               | N2    |
| Dibromochloromethane        | ND            | ug/L          | 4.0                | 1       |             | 05/31/16 10:52                |               | N2    |
| 1,2-Dibromoethane (EDB)     | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                |               | N2    |
| Dibromomethane              | ND            | ug/L          | 4.0                | 1       |             | 05/31/16 10:52                |               |       |
| 1,2-Dichlorobenzene         | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                |               |       |
| 1,3-Dichlorobenzene         | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                |               |       |
| 1,4-Dichlorobenzene         | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                |               |       |
| Dichlorodifluoromethane     | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                |               | N2    |
| 1,1-Dichloroethane          | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                |               |       |
| 1,2-Dichloroethane          | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                |               |       |
| 1,1-Dichloroethene          | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                |               |       |
| cis-1,2-Dichloroethene      | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                |               | N2    |
| trans-1,2-Dichloroethene    | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                |               |       |
| Dichlorofluoromethane       | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                |               | N2    |
| 1,2-Dichloropropane         | ND            | ug/L          | 4.0                | 1       |             | 05/31/16 10:52                |               |       |
| 1,3-Dichloropropane         | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                |               |       |
| 2,2-Dichloropropane         | ND            | ug/L          | 4.0                | 1       |             | 05/31/16 10:52                |               | N2    |
| 1,1-Dichloropropene         | ND            | ug/L          | 1.0                | 1       |             | 05/31/16 10:52                |               | N2    |
| cis-1,3-Dichloropropene     | ND            | ug/L          | 4.0                | 1       |             | 05/31/16 10:52                |               | 142   |
| trans-1,3-Dichloropropene   | ND            | ug/L          | 4.0                | 1       |             | 05/31/16 10:52                |               | N2    |
| Diethyl ether (Ethyl ether) | ND<br>ND      | ug/L          | 4.0                | 1       |             | 05/31/16 10:52                |               | N2    |
| Ethylbenzene                | ND<br>ND      | ug/L<br>ug/L  | 1.0                | 1       |             | 05/31/16 10:52                |               | 1 1/2 |
| Hexachloro-1,3-butadiene    | ND<br>ND      | ug/L<br>ug/L  | 1.0                | 1       |             | 05/31/16 10:52                |               | N2    |
| Isopropylbenzene (Cumene)   | ND<br>ND      | ug/L<br>ug/L  | 1.0                | 1       |             | 05/31/16 10:52                |               | 114   |
| p-Isopropyltoluene          | ND<br>ND      | ug/L<br>ug/L  | 1.0                | 1       |             | 05/31/16 10:52 05/31/16 10:52 |               | N2    |
| Methylene Chloride          | ND<br>ND      | •             |                    | 1       |             | 05/31/16 10:52 05/31/16 10:52 |               | INZ   |
|                             |               | ug/L          | 4.0                |         |             |                               |               | NO    |
| 4-Methyl-2-pentanone (MIBK) | ND            | ug/L          | 5.0                | 1       |             | 05/31/16 10:52                | 108-10-1      | N2    |



Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: Influent               | Lab ID: 103     | 48956016    | Collected: 05/18/1 | 6 11:10 | Received: 0 | 5/18/16 16:43 N | Matrix: Water |     |
|--------------------------------|-----------------|-------------|--------------------|---------|-------------|-----------------|---------------|-----|
| Parameters                     | Results         | Units       | Report Limit       | DF      | Prepared    | Analyzed        | CAS No.       | Qua |
| 624 MSV                        | Analytical Meth | nod: EPA 62 | 24                 |         |             |                 |               |     |
| Methyl-tert-butyl ether        | ND              | ug/L        | 1.0                | 1       |             | 05/31/16 10:52  | 1634-04-4     | N2  |
| Naphthalene                    | ND              | ug/L        | 4.0                | 1       |             | 05/31/16 10:52  | 91-20-3       | N2  |
| n-Propylbenzene                | ND              | ug/L        | 1.0                | 1       |             | 05/31/16 10:52  | 103-65-1      | N2  |
| Styrene                        | ND              | ug/L        | 1.0                | 1       |             | 05/31/16 10:52  | 100-42-5      | N2  |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 4.0                | 1       |             | 05/31/16 10:52  | 630-20-6      | N2  |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1       |             | 05/31/16 10:52  | 79-34-5       |     |
| Tetrachloroethene              | 3.1             | ug/L        | 1.0                | 1       |             | 05/31/16 10:52  | 127-18-4      |     |
| Tetrahydrofuran                | ND              | ug/L        | 10.0               | 1       |             | 05/31/16 10:52  | 109-99-9      | N2  |
| Toluene                        | ND              | ug/L        | 1.0                | 1       |             | 05/31/16 10:52  | 108-88-3      |     |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1       |             | 05/31/16 10:52  | 87-61-6       | N2  |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1       |             | 05/31/16 10:52  | 120-82-1      |     |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 1.0                | 1       |             | 05/31/16 10:52  | 71-55-6       |     |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 1.0                | 1       |             | 05/31/16 10:52  | 79-00-5       |     |
| Trichloroethene                | ND              | ug/L        | 0.40               | 1       |             | 05/31/16 10:52  | 79-01-6       |     |
| Trichlorofluoromethane         | ND              | ug/L        | 1.0                | 1       |             | 05/31/16 10:52  | 75-69-4       |     |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 4.0                | 1       |             | 05/31/16 10:52  | 96-18-4       | N2  |
| 1,1,2-Trichlorotrifluoroethane | ND              | ug/L        | 1.0                | 1       |             | 05/31/16 10:52  | 76-13-1       | N2  |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1       |             | 05/31/16 10:52  | 95-63-6       | N2  |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1       |             | 05/31/16 10:52  | 108-67-8      | N2  |
| Vinyl chloride                 | ND              | ug/L        | 1.0                | 1       |             | 05/31/16 10:52  | 75-01-4       |     |
| Xylene (Total)                 | ND              | ug/L        | 3.0                | 1       |             | 05/31/16 10:52  | 1330-20-7     | N2  |
| m&p-Xylene                     | ND              | ug/L        | 2.0                | 1       |             | 05/31/16 10:52  | 179601-23-1   | N2  |
| o-Xylene                       | ND              | ug/L        | 1.0                | 1       |             | 05/31/16 10:52  | 95-47-6       | N2  |
| Surrogates                     |                 | -           |                    |         |             |                 |               |     |
| 1,2-Dichloroethane-d4 (S)      | 102             | %.          | 75-125             | 1       |             | 05/31/16 10:52  | 17060-07-0    |     |
| Toluene-d8 (S)                 | 97              | %.          | 75-125             | 1       |             | 05/31/16 10:52  | 2037-26-5     |     |
| 4-Bromofluorobenzene (S)       | 100             | %.          | 75-125             | 1       |             | 05/31/16 10:52  | 460-00-4      |     |



## **ANALYTICAL RESULTS**

Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: Effluent            | Lab ID: 1    | 0348956017     | Collected: 05/18/ | 16 11:15 | Received: | 05/18/16 16:43                   | Matrix: Water |     |
|-----------------------------|--------------|----------------|-------------------|----------|-----------|----------------------------------|---------------|-----|
| Parameters                  | Results      | Units          | Report Limit      | DF       | Prepared  | Analyzed                         | CAS No.       | Qua |
| 624 MSV                     | Analytical M | lethod: EPA 62 | 24                |          |           |                                  |               |     |
| Acetone                     | 44.5         | ug/L           | 20.0              | 1        |           | 05/31/16 11:15                   | 67-64-1       | N2  |
| Allyl chloride              | ND           | ug/L           | 4.0               | 1        |           | 05/31/16 11:15                   | 107-05-1      | N2  |
| Benzene                     | ND           | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   | 71-43-2       |     |
| Bromobenzene                | ND           | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   | 108-86-1      | N2  |
| Bromochloromethane          | ND           | ug/L           | 4.0               | 1        |           | 05/31/16 11:15                   | 74-97-5       | N2  |
| Bromodichloromethane        | ND           | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   | 75-27-4       |     |
| Bromoform                   | ND           | ug/L           | 4.0               | 1        |           | 05/31/16 11:15                   | 75-25-2       |     |
| Bromomethane                | ND           | ug/L           | 4.0               | 1        |           | 05/31/16 11:15                   | 74-83-9       |     |
| 2-Butanone (MEK)            | ND           | ug/L           | 5.0               | 1        |           | 05/31/16 11:15                   | 78-93-3       | N2  |
| n-Butylbenzene              | ND           | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   | 104-51-8      | N2  |
| sec-Butylbenzene            | ND           | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   | 135-98-8      | N2  |
| tert-Butylbenzene           | ND           | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   | 98-06-6       |     |
| Carbon tetrachloride        | ND           | ug/L           | 4.0               | 1        |           | 05/31/16 11:15                   | 56-23-5       |     |
| Chlorobenzene               | ND           | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   | 108-90-7      |     |
| Chloroethane                | ND           | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   | 75-00-3       |     |
| 2-Chloroethylvinyl ether    | ND           | ug/L           | 10.0              | 1        |           | 05/31/16 11:15                   | 110-75-8      | c2  |
| Chloroform                  | ND           | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   | 67-66-3       |     |
| Chloromethane               | ND           | ug/L           | 4.0               | 1        |           | 05/31/16 11:15                   | 74-87-3       |     |
| 2-Chlorotoluene             | ND           | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   |               | N2  |
| 4-Chlorotoluene             | ND           | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   |               | N2  |
| 1,2-Dibromo-3-chloropropane | ND           | ug/L           | 4.0               | 1        |           | 05/31/16 11:15                   |               | N2  |
| Dibromochloromethane        | ND           | ug/L           | 4.0               | 1        |           | 05/31/16 11:15                   |               | N2  |
| 1,2-Dibromoethane (EDB)     | ND           | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   |               | N2  |
| Dibromomethane              | ND           | ug/L           | 4.0               | 1        |           | 05/31/16 11:15                   |               |     |
| 1,2-Dichlorobenzene         | ND           | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   |               |     |
| 1,3-Dichlorobenzene         | ND           | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   |               |     |
| 1,4-Dichlorobenzene         | ND<br>ND     | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   |               |     |
| Dichlorodifluoromethane     | ND           | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   |               | N2  |
| 1,1-Dichloroethane          | ND<br>ND     | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   |               | 112 |
| 1,2-Dichloroethane          | ND<br>ND     | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   |               |     |
| 1,1-Dichloroethene          | ND<br>ND     | ug/L<br>ug/L   | 1.0               | 1        |           | 05/31/16 11:15                   |               |     |
| cis-1,2-Dichloroethene      | ND<br>ND     | ug/L<br>ug/L   | 1.0               | 1        |           | 05/31/16 11:15                   |               | N2  |
| rans-1,2-Dichloroethene     | ND<br>ND     | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   |               | INZ |
| Dichlorofluoromethane       | ND<br>ND     | -              | 1.0               | 1        |           | 05/31/16 11:15                   |               | N2  |
| 1,2-Dichloropropane         | ND<br>ND     | ug/L           | 4.0               | 1        |           | 05/31/16 11:15                   |               | IN∠ |
| • •                         |              | ug/L           |                   |          |           |                                  |               |     |
| 1,3-Dichloropropane         | ND           | ug/L           | 1.0               | 1        |           | 05/31/16 11:15<br>05/31/16 11:15 |               | NO  |
| 2,2-Dichloropropane         | ND           | ug/L           | 4.0               | 1        |           |                                  |               | N2  |
| I,1-Dichloropropene         | ND           | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   |               | N2  |
| cis-1,3-Dichloropropene     | ND           | ug/L           | 4.0               | 1        |           | 05/31/16 11:15                   |               | NO  |
| rans-1,3-Dichloropropene    | ND           | ug/L           | 4.0               | 1        |           | 05/31/16 11:15                   |               | N2  |
| Diethyl ether (Ethyl ether) | ND           | ug/L           | 4.0               | 1        |           | 05/31/16 11:15                   |               | N2  |
| Ethylbenzene                | ND           | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   |               |     |
| Hexachloro-1,3-butadiene    | ND           | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   |               | N2  |
| sopropylbenzene (Cumene)    | ND           | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   |               |     |
| o-Isopropyltoluene          | ND           | ug/L           | 1.0               | 1        |           | 05/31/16 11:15                   |               | N2  |
| Methylene Chloride          | ND           | ug/L           | 4.0               | 1        |           | 05/31/16 11:15                   |               |     |
| 4-Methyl-2-pentanone (MIBK) | ND           | ug/L           | 5.0               | 1        |           | 05/31/16 11:15                   | 108-10-1      | N2  |





Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| Sample: Effluent               | Lab ID: 103     | 48956017    | Collected: 05/18/1 | 6 11:15 | Received: 05/18/16 16: | 43 Matrix: Water |       |
|--------------------------------|-----------------|-------------|--------------------|---------|------------------------|------------------|-------|
| Parameters                     | Results         | Units       | Report Limit       | DF      | Prepared Analy         | zed CAS No.      | Qua   |
| 624 MSV                        | Analytical Meth | nod: EPA 62 | 24                 |         |                        |                  |       |
| Methyl-tert-butyl ether        | ND              | ug/L        | 1.0                | 1       | 05/31/16               | 11:15 1634-04-4  | N2    |
| Naphthalene                    | ND              | ug/L        | 4.0                | 1       | 05/31/16               | 11:15 91-20-3    | N2    |
| n-Propylbenzene                | ND              | ug/L        | 1.0                | 1       | 05/31/16               | 11:15 103-65-1   | N2    |
| Styrene                        | ND              | ug/L        | 1.0                | 1       | 05/31/16               | 11:15 100-42-5   | N2    |
| 1,1,1,2-Tetrachloroethane      | ND              | ug/L        | 4.0                | 1       | 05/31/16               | 11:15 630-20-6   | N2    |
| 1,1,2,2-Tetrachloroethane      | ND              | ug/L        | 1.0                | 1       | 05/31/16               | 11:15 79-34-5    |       |
| Tetrachloroethene              | ND              | ug/L        | 1.0                | 1       | 05/31/16               | 11:15 127-18-4   |       |
| Tetrahydrofuran                | ND              | ug/L        | 10.0               | 1       | 05/31/16               | 11:15 109-99-9   | N2    |
| Toluene                        | ND              | ug/L        | 1.0                | 1       | 05/31/16               | 11:15 108-88-3   |       |
| 1,2,3-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1       | 05/31/16               | 11:15 87-61-6    | N2    |
| 1,2,4-Trichlorobenzene         | ND              | ug/L        | 1.0                | 1       | 05/31/16               | 11:15 120-82-1   |       |
| 1,1,1-Trichloroethane          | ND              | ug/L        | 1.0                | 1       | 05/31/16               | 11:15 71-55-6    |       |
| 1,1,2-Trichloroethane          | ND              | ug/L        | 1.0                | 1       | 05/31/16               | 11:15 79-00-5    |       |
| Trichloroethene                | ND              | ug/L        | 0.40               | 1       | 05/31/16               | 11:15 79-01-6    |       |
| Trichlorofluoromethane         | ND              | ug/L        | 1.0                | 1       | 05/31/16               | 11:15 75-69-4    |       |
| 1,2,3-Trichloropropane         | ND              | ug/L        | 4.0                | 1       | 05/31/16               | 11:15 96-18-4    | N2    |
| 1,1,2-Trichlorotrifluoroethane | ND              | ug/L        | 1.0                | 1       | 05/31/16               | 11:15 76-13-1    | N2    |
| 1,2,4-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1       | 05/31/16               | 11:15 95-63-6    | N2    |
| 1,3,5-Trimethylbenzene         | ND              | ug/L        | 1.0                | 1       | 05/31/16               | 11:15 108-67-8   | N2    |
| Vinyl chloride                 | ND              | ug/L        | 1.0                | 1       | 05/31/16               | 11:15 75-01-4    |       |
| Xylene (Total)                 | ND              | ug/L        | 3.0                | 1       | 05/31/16               | 11:15 1330-20-7  | N2    |
| m&p-Xylene                     | ND              | ug/L        | 2.0                | 1       | 05/31/16               | 11:15 179601-23  | -1 N2 |
| o-Xylene                       | ND              | ug/L        | 1.0                | 1       | 05/31/16               | 11:15 95-47-6    | N2    |
| Surrogates                     |                 | Ü           |                    |         |                        |                  |       |
| 1,2-Dichloroethane-d4 (S)      | 103             | %.          | 75-125             | 1       | 05/31/16               | 11:15 17060-07-0 | )     |
| Toluene-d8 (S)                 | 97              | %.          | 75-125             | 1       | 05/31/16               | 11:15 2037-26-5  |       |
| 4-Bromofluorobenzene (S)       | 99              | %.          | 75-125             | 1       | 05/31/16               | 11:15 460-00-4   |       |



#### **QUALITY CONTROL DATA**

Project: CrC

Date: 06/02/2016 07:27 AM

Pace Project No.: 10348956

QC Batch: MSV/35762 Analysis Method: EPA 624
QC Batch Method: EPA 624 Analysis Description: 624 MSV

Associated Lab Samples: 10348956016, 10348956017

METHOD BLANK: 2272549 Matrix: Water

Associated Lab Samples: 10348956016, 10348956017

| 1,1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Parameter                      | Units    | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------|-----------------|--------------------|----------------|------------|
| 1,1,1-Trichloroethane         ug/L         ND         1.0         05/31/16 10:29           1,1,2-Trichloroethane         ug/L         ND         1.0         05/31/16 10:29           1,1,2-Trichloroethane         ug/L         ND         1.0         05/31/16 10:29           1,1-Dichloroethane         ug/L         ND         1.0         05/31/16 10:29         NZ           1,2,3-Trichlorobenzene         ug/L         ND         1.0         05/31/16 10:29         NZ           1,2,4-Trimethylbenzene         ug/L         ND         1.0         05/31/16 10:29         NZ           1,2-Dichorobenzene         ug/L         ND         1.0         05/31/16 10:29         NZ           1,2-Dichlorobenzene         ug/L         ND         1.0         05/31/16 10:29         NZ           1,2-Dichlorobenzene                                                                                                                                                                                 | 1,1,1,2-Tetrachloroethane      |          | ND              | 4.0                | 05/31/16 10:29 | N2         |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,1,1-Trichloroethane          |          | ND              | 1.0                | 05/31/16 10:29 |            |
| 1,1,2-Trichlorotrifluoroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,1,2,2-Tetrachloroethane      | ug/L     | ND              | 1.0                | 05/31/16 10:29 |            |
| 1,1-Dichloroethane         ug/L         ND         1.0         05/31/16 10:29         NZ         ND         1.0         05/31/16 10:29         NZ <td< td=""><td>1,1,2-Trichloroethane</td><td>ug/L</td><td>ND</td><td>1.0</td><td>05/31/16 10:29</td><td></td></td<>            | 1,1,2-Trichloroethane          | ug/L     | ND              | 1.0                | 05/31/16 10:29 |            |
| 1,1-Dichloroethane         ug/L         ND         1.0         05/31/16 10:29         NZ         ND         1.0         05/31/16 10:29         NZ <td< td=""><td>1,1,2-Trichlorotrifluoroethane</td><td>ug/L</td><td>ND</td><td>1.0</td><td>05/31/16 10:29</td><td>N2</td></td<> | 1,1,2-Trichlorotrifluoroethane | ug/L     | ND              | 1.0                | 05/31/16 10:29 | N2         |
| 1,1-Dichloropropene         ug/L         ND         1.0         05/31/16 10:29         N2           1,2,3-Trichlorobenzene         ug/L         ND         4.0         05/31/16 10:29         N2           1,2,3-Trichloropropane         ug/L         ND         4.0         05/31/16 10:29         N2           1,2,4-Trichlorobenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,2,4-Trichlorobenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dibromo-3-chloropropane         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dibromo-dthane (EDB)         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dichlorobenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dichloroptropane         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dichloroptopane         ug/L         ND         1.0         05/31/16 10:29         N2           1,3-Dichloroptopane         ug/L         ND         1.0         05/31/16 10:29         N2           1,3-Dichloroptopane         ug/L         ND         1.0         05/31/16 10:29 </td <td>1,1-Dichloroethane</td> <td>-</td> <td>ND</td> <td>1.0</td> <td>05/31/16 10:29</td> <td></td>                                                              | 1,1-Dichloroethane             | -        | ND              | 1.0                | 05/31/16 10:29 |            |
| 1,2,3-Trichlorobenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,2,3-Trichloropropane         ug/L         ND         4.0         05/31/16 10:29         N2           1,2,4-Trichlorobenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,2,4-Trimethylbenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dibloromo-3-chloropropane         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dibloromethane (EDB)         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dichlorobenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dichloroptopane         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dichloroptopane         ug/L         ND         1.0         05/31/16 10:29         N2           1,3-Dichloroptopane         ug/L         ND         1.0         05/31/16 10:29         N2           1,3-Dichloroptopane         ug/L         ND         1.0         05/31/16 10:29         N2           2,2-Dichloroptopane         ug/L         ND         4.0         05/31/16 10:29<                                                                                                                                                                   | 1,1-Dichloroethene             | ug/L     | ND              | 1.0                | 05/31/16 10:29 |            |
| 1,2,3-Trichlorobenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,2,3-Trichloropropane         ug/L         ND         4.0         05/31/16 10:29         N2           1,2,4-Trichlorobenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,2,4-Trimethylbenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dibloromo-3-chloropropane         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dibloromethane (EDB)         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dichlorobenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dichloroptopane         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dichloroptopane         ug/L         ND         1.0         05/31/16 10:29         N2           1,3-Dichloroptopane         ug/L         ND         1.0         05/31/16 10:29         N2           1,3-Dichloroptopane         ug/L         ND         1.0         05/31/16 10:29         N2           2,2-Dichloroptopane         ug/L         ND         4.0         05/31/16 10:29<                                                                                                                                                                   | 1,1-Dichloropropene            | ug/L     | ND              | 1.0                | 05/31/16 10:29 | N2         |
| 1,2,4-Trichlorobenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,2,4-Trimethylbenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dibromo-3-chloropropane         ug/L         ND         4.0         05/31/16 10:29         N2           1,2-Dichlorobenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dichlorobenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dichloropropane         ug/L         ND         1.0         05/31/16 10:29         N2           1,3-5-Trimethylbenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,3-Dichloropropane         ug/L         ND         1.0         05/31/16 10:29         N2           1,3-Dichloroppropane         ug/L         ND         1.0         05/31/16 10:29         N2           1,3-Dichloroppropane         ug/L         ND         1.0         05/31/16 10:29         N2           2,2-Dichloropropane         ug/L         ND         4.0         05/31/16 10:29         N2           2,-Dichloropropane         ug/L         ND         4.0         05/31/16 10:29                                                                                                                                                                             | 1,2,3-Trichlorobenzene         | -        | ND              | 1.0                | 05/31/16 10:29 | N2         |
| 1,2,4-Trimethylbenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dibromo-3-chloropropane         ug/L         ND         4.0         05/31/16 10:29         N2           1,2-Dibromoethane (EDB)         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dichlorobenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dichloropropane         ug/L         ND         1.0         05/31/16 10:29         N2           1,3-5-Trimethylbenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,3-Dichloropenzene         ug/L         ND         1.0         05/31/16 10:29         N2           2,2-Dichloropropane         ug/L         ND         4.0         05/31/16 10:29         N2           2,2-Dichloropropane         ug/L         ND         4.0         05/31/16 10:29                                                                                                                                                                             | 1,2,3-Trichloropropane         | ug/L     | ND              | 4.0                | 05/31/16 10:29 | N2         |
| 1,2,4-Trimethylbenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dibromo-3-chloropropane         ug/L         ND         4.0         05/31/16 10:29         N2           1,2-Dibromoethane (EDB)         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dichlorobenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dichloropropane         ug/L         ND         1.0         05/31/16 10:29         N2           1,3-5-Trimethylbenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,3-Dichloropenzene         ug/L         ND         1.0         05/31/16 10:29         N2           2,2-Dichloropropane         ug/L         ND         4.0         05/31/16 10:29         N2           2,2-Dichloropropane         ug/L         ND         4.0         05/31/16 10:29                                                                                                                                                                             | 1,2,4-Trichlorobenzene         | ug/L     | ND              | 1.0                | 05/31/16 10:29 |            |
| 1,2-Dibromoethane (EDB)         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dichlorobenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dichloroethane         ug/L         ND         1.0         05/31/16 10:29         N2           1,2-Dichloropropane         ug/L         ND         1.0         05/31/16 10:29         N2           1,3-Dichlorobenzene         ug/L         ND         1.0         05/31/16 10:29         N2           1,3-Dichloropropane         ug/L         ND         1.0         05/31/16 10:29         N2           1,3-Dichloropropane         ug/L         ND         1.0         05/31/16 10:29         N2           1,3-Dichloropropane         ug/L         ND         1.0         05/31/16 10:29         N2           2,2-Dichloropropane         ug/L         ND         1.0         05/31/16 10:29         N2           2,-Butanone (MEK)         ug/L         ND         1.0         05/31/16 10:29         N2           2-Chlorotoluene         ug/L         ND         1.0         05/31/16 10:29         N2           4-Chlorotoluene         ug/L         ND         1.0         05/31/16 10:29         N2                                                                                                                                                                                           | 1,2,4-Trimethylbenzene         |          |                 | 1.0                | 05/31/16 10:29 | N2         |
| 1,2-Dichlorobenzene       ug/L       ND       1.0       05/31/16 10:29         1,2-Dichloroethane       ug/L       ND       1.0       05/31/16 10:29         1,2-Dichloropropane       ug/L       ND       4.0       05/31/16 10:29         1,3,5-Trimethylbenzene       ug/L       ND       1.0       05/31/16 10:29         1,3-Dichlorobenzene       ug/L       ND       1.0       05/31/16 10:29         1,3-Dichloropropane       ug/L       ND       1.0       05/31/16 10:29         1,4-Dichlorobenzene       ug/L       ND       1.0       05/31/16 10:29         1,4-Dichloropropane       ug/L       ND       4.0       05/31/16 10:29       N2         2,2-Dichloropropane       ug/L       ND       4.0       05/31/16 10:29       N2         2,-Chlorotoluene       ug/L       ND       1.                                                                                                                                                                                                                                                 | 1,2-Dibromo-3-chloropropane    | ug/L     | ND              | 4.0                | 05/31/16 10:29 | N2         |
| 1,2-Dichlorobenzene       ug/L       ND       1.0       05/31/16 10:29         1,2-Dichloroptopane       ug/L       ND       1.0       05/31/16 10:29         1,2-Dichloropropane       ug/L       ND       4.0       05/31/16 10:29         1,3-5-Trimethylbenzene       ug/L       ND       1.0       05/31/16 10:29         1,3-Dichlorobenzene       ug/L       ND       1.0       05/31/16 10:29         1,3-Dichloropropane       ug/L       ND       1.0       05/31/16 10:29         1,4-Dichlorobenzene       ug/L       ND       1.0       05/31/16 10:29         2,2-Dichloropopane       ug/L       ND       4.0       05/31/16 10:29       N2         2,2-Dichloropopane       ug/L       ND       1.0 </td <td>1,2-Dibromoethane (EDB)</td> <td>ug/L</td> <td>ND</td> <td>1.0</td> <td>05/31/16 10:29</td> <td>N2</td>                                                                                                                                  | 1,2-Dibromoethane (EDB)        | ug/L     | ND              | 1.0                | 05/31/16 10:29 | N2         |
| 1,2-Dichloroethane       ug/L       ND       1.0       05/31/16 10:29         1,2-Dichloropropane       ug/L       ND       4.0       05/31/16 10:29         1,3-5-Trimethylbenzene       ug/L       ND       1.0       05/31/16 10:29         1,3-Dichlorobenzene       ug/L       ND       1.0       05/31/16 10:29         1,3-Dichloropropane       ug/L       ND       1.0       05/31/16 10:29         1,4-Dichlorobenzene       ug/L       ND       1.0       05/31/16 10:29         2,2-Dichloropropane       ug/L       ND       4.0       05/31/16 10:29         2,2-Dichloropropane       ug/L       ND       4.0       05/31/16 10:29       N2         2-Butanone (MEK)       ug/L       ND       5.0       05/31/16 10:29       N2         2-Chlorothylvinyl ether       ug/L       ND       10.0       05/31/16 10:29       N2         2-Chlorotoluene       ug/L       ND       1.0       05/31/16 10:29       N2         4-Chlorotoluene       ug/L       ND       1.0       05/31/16 10:29       N2         4-Chlorotoluene       ug/L       ND       5.0       05/31/16 10:29       N2         Acetone       ug/L       ND       5.0       05                                                                                                                                                                                                                                                          | 1,2-Dichlorobenzene            |          | ND              | 1.0                | 05/31/16 10:29 |            |
| 1,2-Dichloropropane       ug/L       ND       4.0       05/31/16 10:29       N2         1,3,5-Trimethylbenzene       ug/L       ND       1.0       05/31/16 10:29       N2         1,3-Dichlorobenzene       ug/L       ND       1.0       05/31/16 10:29       ND         1,3-Dichloropropane       ug/L       ND       1.0       05/31/16 10:29       ND         1,4-Dichlorobenzene       ug/L       ND       1.0       05/31/16 10:29       N2         2,2-Dichloropropane       ug/L       ND       4.0       05/31/16 10:29       N2         2,-Butanone (MEK)       ug/L       ND       5.0       05/31/16 10:29       N2         2-Chloroteluene (MEK)       ug/L       ND       1.0       05/31/16 10:29       N2         2-Chlorotoluene       ug/L       ND       1.0       05/31/16 10:29       N2         4-Chlorotoluene       ug/L       ND       1.0       05/31/16 10:29       N2         4-Chlorotoluene       ug/L       ND       1.0       05/31/16 10:29       N2         4-Chlorotoluene       ug/L       ND       5.0       05/31/16 10:29       N2         Acetone       ug/L       ND       5.0       05/31/16 10:29       N2                                                                                                                                                                                                                                                                   | 1,2-Dichloroethane             |          | ND              | 1.0                | 05/31/16 10:29 |            |
| 1,3-Dichlorobenzene         ug/L         ND         1.0         05/31/16 10:29           1,3-Dichloropropane         ug/L         ND         1.0         05/31/16 10:29           1,4-Dichlorobenzene         ug/L         ND         1.0         05/31/16 10:29           2,2-Dichloropropane         ug/L         ND         4.0         05/31/16 10:29         N2           2-Butanone (MEK)         ug/L         ND         5.0         05/31/16 10:29         N2           2-Chlorothylvinyl ether         ug/L         ND         10.0         05/31/16 10:29         N2           2-Chlorotoluene         ug/L         ND         1.0         05/31/16 10:29         N2           4-Chlorotoluene         ug/L <t< td=""><td>1,2-Dichloropropane</td><td></td><td>ND</td><td>4.0</td><td>05/31/16 10:29</td><td></td></t<>                                                                                        | 1,2-Dichloropropane            |          | ND              | 4.0                | 05/31/16 10:29 |            |
| 1,3-Dichlorobenzene         ug/L         ND         1.0         05/31/16 10:29           1,3-Dichloropropane         ug/L         ND         1.0         05/31/16 10:29           1,4-Dichlorobenzene         ug/L         ND         1.0         05/31/16 10:29           2,2-Dichloropropane         ug/L         ND         4.0         05/31/16 10:29         N2           2-Butanone (MEK)         ug/L         ND         5.0         05/31/16 10:29         N2           2-Chlorothylvinyl ether         ug/L         ND         10.0         05/31/16 10:29         N2           2-Chlorotoluene         ug/L         ND         1.0         05/31/16 10:29         N2           4-Chlorotoluene         ug/L <t< td=""><td>1,3,5-Trimethylbenzene</td><td>_</td><td>ND</td><td>1.0</td><td>05/31/16 10:29</td><td>N2</td></t<>                                                                                  | 1,3,5-Trimethylbenzene         | _        | ND              | 1.0                | 05/31/16 10:29 | N2         |
| 1,4-Dichlorobenzene       ug/L       ND       1.0       05/31/16 10:29       N2         2,2-Dichloropropane       ug/L       ND       4.0       05/31/16 10:29       N2         2-Butanone (MEK)       ug/L       ND       5.0       05/31/16 10:29       N2         2-Chlorototlyvinyl ether       ug/L       ND       10.0       05/31/16 10:29       N2         2-Chlorototluene       ug/L       ND       1.0       05/31/16 10:29       N2         4-Chlorotoluene       ug/L       ND       1.0       05/31/16 10:29       N2         4-Methyl-2-pentanone (MIBK)       ug/L       ND       5.0       05/31/16 10:29       N2         4-Methyl-2-pentanone (MIBK)       ug/L       ND       5.0       05/31/16 10:29       N2         4-Methyl-2-pentanone (MIBK)       ug/L       ND       5.0       05/31/16 10:29       N2         4-Methyl-2-pentanone (MIBK)       ug/L       ND       4.0       05/31/16 10:29       N2         Allyl chloride       ug/L       ND       4.0       05/31/16 10:29       N2         Allyl chloride       ug/L       ND       4.0       05/31/16 10:29       N2         Bromobenzene       ug/L       ND       1.0       05/3                                                                                                                                                                                                                                                  | 1,3-Dichlorobenzene            | -        | ND              | 1.0                | 05/31/16 10:29 |            |
| 1,4-Dichlorobenzene       ug/L       ND       1.0       05/31/16 10:29       N2         2,2-Dichloropropane       ug/L       ND       4.0       05/31/16 10:29       N2         2-Butanone (MEK)       ug/L       ND       5.0       05/31/16 10:29       N2         2-Chlorotethylvinyl ether       ug/L       ND       10.0       05/31/16 10:29       N2         2-Chlorotoluene       ug/L       ND       1.0       05/31/16 10:29       N2         4-Chlorotoluene       ug/L       ND       1.0       05/31/16 10:29       N2         4-Methyl-2-pentanone (MIBK)       ug/L       ND       5.0       05/31/16 10:29       N2         4-Methyl-2-pentanone (MIBK)       ug/L       ND       5.0       05/31/16 10:29       N2         4-Methyl-2-pentanone (MIBK)       ug/L       ND       20.0       05/31/16 10:29       N2         Acetone       ug/L       ND       20.0       05/31/16 10:29       N2         Allyl chloride       ug/L       ND       4.0       05/31/16 10:29       N2         Benzene       ug/L       ND       1.0       05/31/16 10:29       N2         Bromochloromethane       ug/L       ND       4.0       05/31/16 10:29                                                                                                                                                                                                                                                           | 1,3-Dichloropropane            | ug/L     | ND              | 1.0                | 05/31/16 10:29 |            |
| 2,2-Dichloropropane       ug/L       ND       4.0       05/31/16 10:29       N2         2-Butanone (MEK)       ug/L       ND       5.0       05/31/16 10:29       N2         2-Chloroethylvinyl ether       ug/L       ND       10.0       05/31/16 10:29       N2         2-Chlorotoluene       ug/L       ND       1.0       05/31/16 10:29       N2         4-Chlorotoluene       ug/L       ND       1.0       05/31/16 10:29       N2         4-Methyl-2-pentanone (MIBK)       ug/L       ND       5.0       05/31/16 10:29       N2         Acetone       ug/L       ND       20.0       05/31/16 10:29       N2         Ally chloride       ug/L       ND       4.0       05/31/16 10:29       N2         Benzene       ug/L       ND       1.0       05/31/16 10:29       N2         Bromobenzene       ug/L       ND       1.0       05/31/16 10:29       N2         Bromochloromethane       ug/L       ND       1.0       05/31/16 10:29       N2         Bromoform       ug/L       ND       4.0       05/31/16 10:29       N2         Bromoform       ug/L       ND       4.0       05/31/16 10:29       N2         Br                                                                                                                                                                                                                                                                                     | 1,4-Dichlorobenzene            |          | ND              | 1.0                | 05/31/16 10:29 |            |
| 2-Butanone (MEK)       ug/L       ND       5.0       05/31/16 10:29       N2         2-Chloroethylvinyl ether       ug/L       ND       10.0       05/31/16 10:29       N2         2-Chlorotoluene       ug/L       ND       1.0       05/31/16 10:29       N2         4-Chlorotoluene       ug/L       ND       1.0       05/31/16 10:29       N2         4-Methyl-2-pentanone (MIBK)       ug/L       ND       5.0       05/31/16 10:29       N2         Acetone       ug/L       ND       20.0       05/31/16 10:29       N2         Allyl chloride       ug/L       ND       4.0       05/31/16 10:29       N2         Benzene       ug/L       ND       1.0       05/31/16 10:29       N2         Bromobenzene       ug/L       ND       1.0       05/31/16 10:29       N2         Bromochloromethane       ug/L       ND       1.0       05/31/16 10:29       N2         Bromoform       ug/L       ND       4.0       05/31/16 10:29       N2         Bromomethane       ug/L       ND       4.0       05/31/16 10:29       N2         Carbon tetrachloride       ug/L       ND       4.0       05/31/16 10:29       ND         <                                                                                                                                                                                                                                                                                 | 2,2-Dichloropropane            |          | ND              | 4.0                | 05/31/16 10:29 | N2         |
| 2-Chloroethylvinyl ether       ug/L       ND       10.0       05/31/16 10:29       N2         2-Chlorotoluene       ug/L       ND       1.0       05/31/16 10:29       N2         4-Chlorotoluene       ug/L       ND       1.0       05/31/16 10:29       N2         4-Methyl-2-pentanone (MIBK)       ug/L       ND       5.0       05/31/16 10:29       N2         Acetone       ug/L       ND       20.0       05/31/16 10:29       N2         Allyl chloride       ug/L       ND       4.0       05/31/16 10:29       N2         Benzene       ug/L       ND       1.0       05/31/16 10:29       N2         Bromobenzene       ug/L       ND       1.0       05/31/16 10:29       N2         Bromochloromethane       ug/L       ND       1.0       05/31/16 10:29       N2         Bromoform       ug/L       ND       1.0       05/31/16 10:29       N2         Bromomethane       ug/L       ND       4.0       05/31/16 10:29       N2         Carbon tetrachloride       ug/L       ND       4.0       05/31/16 10:29       N2         Chlorobenzene       ug/L       ND       1.0       05/31/16 10:29       N2                                                                                                                                                                                                                                                                                              | 2-Butanone (MEK)               | -        | ND              | 5.0                | 05/31/16 10:29 | N2         |
| 2-Chlorotoluene       ug/L       ND       1.0       05/31/16 10:29       N2         4-Chlorotoluene       ug/L       ND       1.0       05/31/16 10:29       N2         4-Methyl-2-pentanone (MIBK)       ug/L       ND       5.0       05/31/16 10:29       N2         Acetone       ug/L       ND       20.0       05/31/16 10:29       N2         Allyl chloride       ug/L       ND       4.0       05/31/16 10:29       N2         Benzene       ug/L       ND       1.0       05/31/16 10:29       N2         Bromobenzene       ug/L       ND       1.0       05/31/16 10:29       N2         Bromochloromethane       ug/L       ND       1.0       05/31/16 10:29       N2         Bromoform       ug/L       ND       1.0       05/31/16 10:29       N2         Bromomethane       ug/L       ND       4.0       05/31/16 10:29       N2         Bromomethane       ug/L       ND       4.0       05/31/16 10:29       N2         Chlorobenzene       ug/L       ND       1.0       05/31/16 10:29       N2         Chloroform       ug/L       ND       1.0       05/31/16 10:29       N2         Chloromethane                                                                                                                                                                                                                                                                                               | 2-Chloroethylvinyl ether       | _        | ND              | 10.0               | 05/31/16 10:29 |            |
| 4-Methyl-2-pentanone (MIBK)       ug/L       ND       5.0       05/31/16 10:29       N2         Acetone       ug/L       ND       20.0       05/31/16 10:29       N2         Allyl chloride       ug/L       ND       4.0       05/31/16 10:29       N2         Benzene       ug/L       ND       1.0       05/31/16 10:29       N2         Bromobenzene       ug/L       ND       1.0       05/31/16 10:29       N2         Bromochloromethane       ug/L       ND       1.0       05/31/16 10:29       N2         Bromoform       ug/L       ND       1.0       05/31/16 10:29       N2         Bromomethane       ug/L       ND       4.0       05/31/16 10:29       N2         Carbon tetrachloride       ug/L       ND       4.0       05/31/16 10:29       N2         Chlorobenzene       ug/L       ND       1.0       05/31/16 10:29       N2         Chloroform       ug/L       ND       1.0       05/31/16 10:29       N2         Chloromethane       ug/L       ND       1.0       05/31/16 10:29       N2         Chloromethane       ug/L       ND       1.0       05/31/16 10:29       N2                                                                                                                                                                                                                                                                                                                 | 2-Chlorotoluene                | -        | ND              | 1.0                | 05/31/16 10:29 | N2         |
| 4-Methyl-2-pentanone (MIBK)       ug/L       ND       5.0       05/31/16 10:29       N2         Acetone       ug/L       ND       20.0       05/31/16 10:29       N2         Allyl chloride       ug/L       ND       4.0       05/31/16 10:29       N2         Benzene       ug/L       ND       1.0       05/31/16 10:29       N2         Bromobenzene       ug/L       ND       1.0       05/31/16 10:29       N2         Bromochloromethane       ug/L       ND       1.0       05/31/16 10:29       N2         Bromoform       ug/L       ND       1.0       05/31/16 10:29       N2         Bromomethane       ug/L       ND       4.0       05/31/16 10:29       N2         Carbon tetrachloride       ug/L       ND       4.0       05/31/16 10:29       N2         Chlorobenzene       ug/L       ND       1.0       05/31/16 10:29       N2         Chloroform       ug/L       ND       1.0       05/31/16 10:29       N2         Chloromethane       ug/L       ND       1.0       05/31/16 10:29       N2         Chloromethane       ug/L       ND       1.0       05/31/16 10:29       N2                                                                                                                                                                                                                                                                                                                 | 4-Chlorotoluene                | ug/L     | ND              | 1.0                | 05/31/16 10:29 | N2         |
| Acetone       ug/L       ND       20.0       05/31/16 10:29       N2         Allyl chloride       ug/L       ND       4.0       05/31/16 10:29       N2         Benzene       ug/L       ND       1.0       05/31/16 10:29       N2         Bromobenzene       ug/L       ND       1.0       05/31/16 10:29       N2         Bromochloromethane       ug/L       ND       1.0       05/31/16 10:29       N2         Bromoform       ug/L       ND       4.0       05/31/16 10:29       N2         Bromomethane       ug/L       ND       4.0       05/31/16 10:29       N2         Carbon tetrachloride       ug/L       ND       4.0       05/31/16 10:29       N2         Chlorobenzene       ug/L       ND       1.0       05/31/16 10:29       N2         Chloroform       ug/L       ND       1.0       05/31/16 10:29       N2         Chloromethane       ug/L       ND       1.0       05/31/16 10:29       N2         Chloromethane       ug/L       ND       1.0       05/31/16 10:29       N2         Chloromethane       ug/L       ND       1.0       05/31/16 10:29       N2                                                                                                                                                                                                                                                                                                                               | 4-Methyl-2-pentanone (MIBK)    |          | ND              | 5.0                |                | N2         |
| Benzene         ug/L         ND         1.0         05/31/16 10:29         N2           Bromobenzene         ug/L         ND         1.0         05/31/16 10:29         N2           Bromochloromethane         ug/L         ND         4.0         05/31/16 10:29         N2           Bromodichloromethane         ug/L         ND         1.0         05/31/16 10:29         N2           Bromoform         ug/L         ND         4.0         05/31/16 10:29         N2           Bromomethane         ug/L         ND         4.0         05/31/16 10:29         N2           Carbon tetrachloride         ug/L         ND         4.0         05/31/16 10:29         N2           Chlorobenzene         ug/L         ND         1.0         05/31/16 10:29         N2           Chloroform         ug/L         ND         1.0         05/31/16 10:29         N2           Chloromethane         ug/L         ND         1.0         05/31/16 10:29         N2           Chloromethane         ug/L         ND         1.0         05/31/16 10:29         N2                                                                                                                                                                                                                                                                                                                                                      | Acetone                        |          | ND              |                    | 05/31/16 10:29 | N2         |
| Bromobenzene         ug/L         ND         1.0         05/31/16 10:29         N2           Bromochloromethane         ug/L         ND         4.0         05/31/16 10:29         N2           Bromodichloromethane         ug/L         ND         1.0         05/31/16 10:29         V2           Bromoform         ug/L         ND         4.0         05/31/16 10:29         V2           Bromomethane         ug/L         ND         4.0         05/31/16 10:29         V2           Carbon tetrachloride         ug/L         ND         1.0         05/31/16 10:29         V2           Chlorobenzene         ug/L         ND         1.0         05/31/16 10:29         V3           Chloroform         ug/L         ND         1.0         05/31/16 10:29         V3           Chloromethane         ug/L         ND         1.0         05/31/16 10:29         V3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Allyl chloride                 | ug/L     | ND              | 4.0                | 05/31/16 10:29 | N2         |
| Bromobenzene         ug/L         ND         1.0         05/31/16 10:29         N2           Bromochloromethane         ug/L         ND         4.0         05/31/16 10:29         N2           Bromodichloromethane         ug/L         ND         1.0         05/31/16 10:29         V2           Bromoform         ug/L         ND         4.0         05/31/16 10:29         V2           Bromomethane         ug/L         ND         4.0         05/31/16 10:29         V2           Carbon tetrachloride         ug/L         ND         1.0         05/31/16 10:29         V2           Chlorobenzene         ug/L         ND         1.0         05/31/16 10:29         V3           Chloroform         ug/L         ND         1.0         05/31/16 10:29         V3           Chloromethane         ug/L         ND         1.0         05/31/16 10:29         V3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                              | <u> </u> | ND              | 1.0                | 05/31/16 10:29 |            |
| Bromochloromethane         ug/L         ND         4.0         05/31/16 10:29         N2           Bromodichloromethane         ug/L         ND         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/31/16 10:29         1.0         05/                                               | Bromobenzene                   |          | ND              | 1.0                | 05/31/16 10:29 | N2         |
| Bromodichloromethane         ug/L         ND         1.0         05/31/16 10:29           Bromoform         ug/L         ND         4.0         05/31/16 10:29           Bromomethane         ug/L         ND         4.0         05/31/16 10:29           Carbon tetrachloride         ug/L         ND         4.0         05/31/16 10:29           Chlorobenzene         ug/L         ND         1.0         05/31/16 10:29           Chloroethane         ug/L         ND         1.0         05/31/16 10:29           Chloromethane         ug/L         ND         1.0         05/31/16 10:29           Chloromethane         ug/L         ND         4.0         05/31/16 10:29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bromochloromethane             |          | ND              | 4.0                |                | N2         |
| Bromomethane         ug/L         ND         4.0         05/31/16 10:29           Carbon tetrachloride         ug/L         ND         4.0         05/31/16 10:29           Chlorobenzene         ug/L         ND         1.0         05/31/16 10:29           Chloroethane         ug/L         ND         1.0         05/31/16 10:29           Chloroform         ug/L         ND         1.0         05/31/16 10:29           Chloromethane         ug/L         ND         4.0         05/31/16 10:29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bromodichloromethane           | ~        | ND              | 1.0                | 05/31/16 10:29 |            |
| Bromomethane         ug/L         ND         4.0         05/31/16 10:29           Carbon tetrachloride         ug/L         ND         4.0         05/31/16 10:29           Chlorobenzene         ug/L         ND         1.0         05/31/16 10:29           Chloroethane         ug/L         ND         1.0         05/31/16 10:29           Chloroform         ug/L         ND         1.0         05/31/16 10:29           Chloromethane         ug/L         ND         4.0         05/31/16 10:29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bromoform                      | <u> </u> | ND              | 4.0                | 05/31/16 10:29 |            |
| Carbon tetrachloride         ug/L         ND         4.0         05/31/16 10:29           Chlorobenzene         ug/L         ND         1.0         05/31/16 10:29           Chloroethane         ug/L         ND         1.0         05/31/16 10:29           Chloroform         ug/L         ND         1.0         05/31/16 10:29           Chloromethane         ug/L         ND         4.0         05/31/16 10:29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Bromomethane                   |          | ND              | 4.0                | 05/31/16 10:29 |            |
| Chlorobenzene         ug/L         ND         1.0         05/31/16 10:29           Chloroethane         ug/L         ND         1.0         05/31/16 10:29           Chloroform         ug/L         ND         1.0         05/31/16 10:29           Chloromethane         ug/L         ND         4.0         05/31/16 10:29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                | •        |                 |                    |                |            |
| Chloroethane         ug/L         ND         1.0         05/31/16 10:29           Chloroform         ug/L         ND         1.0         05/31/16 10:29           Chloromethane         ug/L         ND         4.0         05/31/16 10:29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                |          |                 |                    |                |            |
| Chloroform         ug/L         ND         1.0         05/31/16 10:29           Chloromethane         ug/L         ND         4.0         05/31/16 10:29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Chloroethane                   |          |                 |                    |                |            |
| Chloromethane ug/L ND 4.0 05/31/16 10:29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                | · ·      |                 |                    |                |            |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                | ū        |                 |                    |                |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | cis-1,2-Dichloroethene         | ug/L     |                 |                    |                | N2         |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## **QUALITY CONTROL DATA**

Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

METHOD BLANK: 2272549 Matrix: Water

Associated Lab Samples: 10348956016, 10348956017

|                             |       | Blank  | Reporting |                |            |
|-----------------------------|-------|--------|-----------|----------------|------------|
| Parameter                   | Units | Result | Limit     | Analyzed       | Qualifiers |
| cis-1,3-Dichloropropene     | ug/L  | ND     | 4.0       | 05/31/16 10:29 | -          |
| Dibromochloromethane        | ug/L  | ND     | 4.0       | 05/31/16 10:29 | N2         |
| Dibromomethane              | ug/L  | ND     | 4.0       | 05/31/16 10:29 |            |
| Dichlorodifluoromethane     | ug/L  | ND     | 1.0       | 05/31/16 10:29 | N2         |
| Dichlorofluoromethane       | ug/L  | ND     | 1.0       | 05/31/16 10:29 | N2         |
| Diethyl ether (Ethyl ether) | ug/L  | ND     | 4.0       | 05/31/16 10:29 | N2         |
| Ethylbenzene                | ug/L  | ND     | 1.0       | 05/31/16 10:29 |            |
| Hexachloro-1,3-butadiene    | ug/L  | ND     | 1.0       | 05/31/16 10:29 | N2         |
| Isopropylbenzene (Cumene)   | ug/L  | ND     | 1.0       | 05/31/16 10:29 |            |
| m&p-Xylene                  | ug/L  | ND     | 2.0       | 05/31/16 10:29 | N2         |
| Methyl-tert-butyl ether     | ug/L  | ND     | 1.0       | 05/31/16 10:29 | N2         |
| Methylene Chloride          | ug/L  | ND     | 4.0       | 05/31/16 10:29 |            |
| n-Butylbenzene              | ug/L  | ND     | 1.0       | 05/31/16 10:29 | N2         |
| n-Propylbenzene             | ug/L  | ND     | 1.0       | 05/31/16 10:29 | N2         |
| Naphthalene                 | ug/L  | ND     | 4.0       | 05/31/16 10:29 | N2         |
| o-Xylene                    | ug/L  | ND     | 1.0       | 05/31/16 10:29 | N2         |
| p-Isopropyltoluene          | ug/L  | ND     | 1.0       | 05/31/16 10:29 | N2         |
| sec-Butylbenzene            | ug/L  | ND     | 1.0       | 05/31/16 10:29 | N2         |
| Styrene                     | ug/L  | ND     | 1.0       | 05/31/16 10:29 | N2         |
| tert-Butylbenzene           | ug/L  | ND     | 1.0       | 05/31/16 10:29 |            |
| Tetrachloroethene           | ug/L  | ND     | 1.0       | 05/31/16 10:29 |            |
| Tetrahydrofuran             | ug/L  | ND     | 10.0      | 05/31/16 10:29 | N2         |
| Toluene                     | ug/L  | ND     | 1.0       | 05/31/16 10:29 |            |
| trans-1,2-Dichloroethene    | ug/L  | ND     | 1.0       | 05/31/16 10:29 |            |
| trans-1,3-Dichloropropene   | ug/L  | ND     | 4.0       | 05/31/16 10:29 | N2         |
| Trichloroethene             | ug/L  | ND     | 0.40      | 05/31/16 10:29 |            |
| Trichlorofluoromethane      | ug/L  | ND     | 1.0       | 05/31/16 10:29 |            |
| Vinyl chloride              | ug/L  | ND     | 1.0       | 05/31/16 10:29 |            |
| Xylene (Total)              | ug/L  | ND     | 3.0       | 05/31/16 10:29 | N2         |
| 1,2-Dichloroethane-d4 (S)   | %.    | 99     | 75-125    | 05/31/16 10:29 |            |
| 4-Bromofluorobenzene (S)    | %.    | 102    | 75-125    | 05/31/16 10:29 |            |
| Toluene-d8 (S)              | %.    | 99     | 75-125    | 05/31/16 10:29 |            |

| LABORATORY CONTROL SAMPLE:     | 2272550 |       |        |       |        |            |
|--------------------------------|---------|-------|--------|-------|--------|------------|
|                                |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                      | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,1,1,2-Tetrachloroethane      | ug/L    |       | 21.0   | 105   | 75-126 | N2         |
| 1,1,1-Trichloroethane          | ug/L    | 20    | 22.2   | 111   | 72-125 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L    | 20    | 21.1   | 105   | 68-125 |            |
| 1,1,2-Trichloroethane          | ug/L    | 20    | 21.4   | 107   | 75-125 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L    | 20    | 19.4   | 97    | 66-132 | N2         |
| 1,1-Dichloroethane             | ug/L    | 20    | 20.1   | 101   | 68-126 |            |
| 1,1-Dichloroethene             | ug/L    | 20    | 20.1   | 101   | 67-127 |            |
| 1,1-Dichloropropene            | ug/L    | 20    | 21.2   | 106   | 71-126 | N2         |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| LABORATORY CONTROL SAMPLE:  | 2272550 |       |        |       |                 |
|-----------------------------|---------|-------|--------|-------|-----------------|
|                             |         | Spike | LCS    | LCS   | % Rec           |
| Parameter                   | Units   | Conc. | Result | % Rec | Limits Qualifie |
| 1,2,3-Trichlorobenzene      | ug/L    |       | 19.9   | 99    | 63-132 N2       |
| 1,2,3-Trichloropropane      | ug/L    | 20    | 20.0   | 100   | 72-125 N2       |
| 1,2,4-Trichlorobenzene      | ug/L    | 20    | 21.0   | 105   | 59-135          |
| 1,2,4-Trimethylbenzene      | ug/L    | 20    | 19.4   | 97    | 70-132 N2       |
| 1,2-Dibromo-3-chloropropane | ug/L    | 50    | 53.1   | 106   | 58-130 N2       |
| 1,2-Dibromoethane (EDB)     | ug/L    | 20    | 20.4   | 102   | 75-125 N2       |
| 1,2-Dichlorobenzene         | ug/L    | 20    | 21.1   | 106   | 74-125          |
| 1,2-Dichloroethane          | ug/L    | 20    | 20.6   | 103   | 71-125          |
| 1,2-Dichloropropane         | ug/L    | 20    | 19.6   | 98    | 72-125          |
| 1,3,5-Trimethylbenzene      | ug/L    | 20    | 19.8   | 99    | 73-125 N2       |
| 1,3-Dichlorobenzene         | ug/L    | 20    | 20.6   | 103   | 74-125          |
| I,3-Dichloropropane         | ug/L    | 20    | 22.1   | 111   | 75-125          |
| 1,4-Dichlorobenzene         | ug/L    | 20    | 20.0   | 100   | 74-125          |
| 2,2-Dichloropropane         | ug/L    | 20    | 23.8   | 119   | 64-138 N2       |
| 2-Butanone (MEK)            | ug/L    | 100   | 99.7   | 100   | 61-129 N2       |
| 2-Chloroethylvinyl ether    | ug/L    | 50    | 48.3   | 97    | 30-150          |
| 2-Chlorotoluene             | ug/L    | 20    | 19.5   | 98    | 70-126 N2       |
| 1-Chlorotoluene             | ug/L    | 20    | 19.9   | 100   | 73-125 N2       |
| 1-Methyl-2-pentanone (MIBK) | ug/L    | 100   | 104    | 104   | 63-135 N2       |
| Acetone                     | ug/L    | 100   | 96.8   | 97    | 66-150 N2       |
| Allyl chloride              | ug/L    | 20    | 20.8   | 104   | 62-139 N2       |
| 3<br>Benzene                | ug/L    | 20    | 19.6   | 98    | 67-126          |
| Bromobenzene                | ug/L    | 20    | 20.5   | 102   | 72-125 N2       |
| Bromochloromethane          | ug/L    | 20    | 21.4   | 107   | 73-125 N2       |
| Bromodichloromethane        | ug/L    | 20    | 19.7   | 98    | 71-126          |
| Bromoform                   | ug/L    | 20    | 21.3   | 106   | 64-130          |
| Bromomethane                | ug/L    | 20    | 23.6   | 118   | 30-150          |
| Carbon tetrachloride        | ug/L    | 20    | 21.0   | 105   | 71-128          |
| Chlorobenzene               | ug/L    | 20    | 20.1   | 101   | 75-125          |
| Chloroethane                | ug/L    | 20    | 19.7   | 98    | 60-130          |
| Chloroform                  | ug/L    | 20    | 21.2   | 106   | 73-125          |
| Chloromethane               | ug/L    | 20    | 15.2   | 76    | 49-146          |
| cis-1,2-Dichloroethene      | ug/L    | 20    | 20.6   | 103   | 68-131 N2       |
| cis-1,3-Dichloropropene     | ug/L    | 20    | 20.6   | 103   | 73-125          |
| Dibromochloromethane        | ug/L    | 20    | 20.9   | 104   | 71-125 N2       |
| Dibromomethane              | ug/L    | 20    | 20.9   | 105   | 71-131          |
| Dichlorodifluoromethane     | ug/L    | 20    | 18.4   | 92    | 56-145 N2       |
| Dichlorofluoromethane       | ug/L    | 20    | 22.0   | 110   | 69-128 N2       |
| Diethyl ether (Ethyl ether) | ug/L    | 20    | 20.0   | 100   | 65-127 N2       |
| Ethylbenzene                | ug/L    | 20    | 20.7   | 103   | 75-125          |
| Hexachloro-1,3-butadiene    | ug/L    | 20    | 19.7   | 98    | 62-145 N2       |
| sopropylbenzene (Cumene)    | ug/L    | 20    | 20.5   | 103   | 75-133          |
| n&p-Xylene                  | ug/L    | 40    | 40.1   | 100   | 75-126 N2       |
| Methyl-tert-butyl ether     | ug/L    | 20    | 21.3   | 107   | 73-125 N2       |
| Methylene Chloride          | ug/L    | 20    | 19.5   | 97    | 72-128          |
| n-Butylbenzene              | ug/L    | 20    | 19.8   | 99    | 67-131 N2       |
| n-Propylbenzene             | ug/L    | 20    | 19.2   | 96    | 70-128 N2       |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| ABORATORY CONTROL SAMPLE: | 2272550 |       |        |       |        |            |
|---------------------------|---------|-------|--------|-------|--------|------------|
|                           |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                 | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| hthalene                  | ug/L    |       | 19.8   | 99    | 54-139 | N2         |
| ene                       | ug/L    | 20    | 20.3   | 102   | 75-125 | N2         |
| oropyltoluene             | ug/L    | 20    | 21.1   | 105   | 71-128 | N2         |
| utylbenzene               | ug/L    | 20    | 20.0   | 100   | 73-132 | N2         |
| ne                        | ug/L    | 20    | 20.6   | 103   | 75-128 | N2         |
| Butylbenzene              | ug/L    | 20    | 20.6   | 103   | 75-130 |            |
| chloroethene              | ug/L    | 20    | 20.3   | 101   | 67-129 |            |
| nydrofuran                | ug/L    | 200   | 205    | 102   | 73-137 | N2         |
| е                         | ug/L    | 20    | 19.7   | 99    | 74-125 |            |
| 1,2-Dichloroethene        | ug/L    | 20    | 19.6   | 98    | 65-128 |            |
| 1,3-Dichloropropene       | ug/L    | 20    | 21.5   | 107   | 75-125 | N2         |
| proethene                 | ug/L    | 20    | 20.6   | 103   | 72-125 |            |
| orofluoromethane          | ug/L    | 20    | 22.2   | 111   | 70-132 |            |
| chloride                  | ug/L    | 20    | 21.0   | 105   | 69-130 |            |
| ie (Total)                | ug/L    | 60    | 60.4   | 101   | 75-125 | N2         |
| chloroethane-d4 (S)       | %.      |       |        | 100   | 75-125 |            |
| mofluorobenzene (S)       | %.      |       |        | 99    | 75-125 |            |
| ne-d8 (S)                 | %.      |       |        | 101   | 75-125 |            |

| MATRIX SPIKE SAMPLE:           | 2272581 |             |       |        |       |        |            |
|--------------------------------|---------|-------------|-------|--------|-------|--------|------------|
|                                |         | 10348956016 | Spike | MS     | MS    | % Rec  |            |
| Parameter                      | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,1,1,2-Tetrachloroethane      | ug/L    | ND          | 20    | 19.8   | 99    | 55-147 | N2         |
| 1,1,1-Trichloroethane          | ug/L    | ND          | 20    | 22.8   | 114   | 45-150 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L    | ND          | 20    | 19.9   | 99    | 52-143 |            |
| 1,1,2-Trichloroethane          | ug/L    | ND          | 20    | 20.1   | 101   | 57-139 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L    | ND          | 20    | 23.1   | 116   | 40-150 | N2         |
| 1,1-Dichloroethane             | ug/L    | ND          | 20    | 20.1   | 100   | 46-150 |            |
| 1,1-Dichloroethene             | ug/L    | ND          | 20    | 21.2   | 106   | 42-150 |            |
| 1,1-Dichloropropene            | ug/L    | ND          | 20    | 22.2   | 111   | 45-150 | N2         |
| 1,2,3-Trichlorobenzene         | ug/L    | ND          | 20    | 20.8   | 104   | 51-142 | N2         |
| 1,2,3-Trichloropropane         | ug/L    | ND          | 20    | 18.8   | 94    | 55-142 | N2         |
| 1,2,4-Trichlorobenzene         | ug/L    | ND          | 20    | 20.7   | 103   | 50-143 |            |
| 1,2,4-Trimethylbenzene         | ug/L    | ND          | 20    | 18.6   | 93    | 51-147 | N2         |
| 1,2-Dibromo-3-chloropropane    | ug/L    | ND          | 50    | 50.0   | 100   | 44-149 | N2         |
| 1,2-Dibromoethane (EDB)        | ug/L    | ND          | 20    | 19.0   | 95    | 60-138 | N2         |
| 1,2-Dichlorobenzene            | ug/L    | ND          | 20    | 20.2   | 101   | 55-137 |            |
| 1,2-Dichloroethane             | ug/L    | ND          | 20    | 19.1   | 96    | 50-139 |            |
| 1,2-Dichloropropane            | ug/L    | ND          | 20    | 19.1   | 96    | 61-145 |            |
| 1,3,5-Trimethylbenzene         | ug/L    | ND          | 20    | 19.4   | 97    | 34-150 | N2         |
| 1,3-Dichlorobenzene            | ug/L    | ND          | 20    | 19.9   | 99    | 53-138 |            |
| 1,3-Dichloropropane            | ug/L    | ND          | 20    | 20.7   | 103   | 58-139 |            |
| 1,4-Dichlorobenzene            | ug/L    | ND          | 20    | 19.1   | 96    | 52-135 |            |
| 2,2-Dichloropropane            | ug/L    | ND          | 20    | 24.6   | 123   | 30-150 | N2         |
| 2-Butanone (MEK)               | ug/L    | ND          | 100   | 94.2   | 94    | 30-150 | N2         |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| MATRIX SPIKE SAMPLE:        | 2272581      |             |       |              |             |        |               |
|-----------------------------|--------------|-------------|-------|--------------|-------------|--------|---------------|
| Davamatas                   | l laita      | 10348956016 | Spike | MS           | MS<br>% Rec | % Rec  | O a lifi a na |
| Parameter                   | Units        | Result      | Conc. | Result       |             | Limits | Qualifiers    |
| 2-Chloroethylvinyl ether    | ug/L         | ND          | 50    | 10.4         | 21          | 30-125 | -             |
| 2-Chlorotoluene             | ug/L         | ND          | 20    | 19.3         | 96          | 52-146 |               |
| 4-Chlorotoluene             | ug/L         | ND          | 20    | 19.0         | 95          | 43-142 |               |
| 1-Methyl-2-pentanone (MIBK) | ug/L         | ND          | 100   | 95.9         | 96          | 46-148 |               |
| Acetone                     | ug/L         | 25.2        | 100   | 127          | 102         | 44-150 | N2            |
| Allyl chloride              | ug/L         | ND          | 20    | 21.7         | 109         | 40-150 | N2            |
| Benzene                     | ug/L         | ND          | 20    | 19.6         | 98          | 49-143 |               |
| Bromobenzene                | ug/L         | ND          | 20    | 19.7         | 98          | 58-139 | N2            |
| Bromochloromethane          | ug/L         | ND          | 20    | 20.8         | 104         | 53-144 | N2            |
| Bromodichloromethane        | ug/L         | ND          | 20    | 18.9         | 95          | 49-145 |               |
| Bromoform                   | ug/L         | ND          | 20    | 20.1         | 101         | 42-142 |               |
| Bromomethane                | ug/L         | ND          | 20    | 25.5         | 127         | 30-150 |               |
| Carbon tetrachloride        | ug/L         | ND          | 20    | 23.0         | 115         | 30-150 |               |
| Chlorobenzene               | ug/L         | ND          | 20    | 18.8         | 94          | 57-137 |               |
| Chloroethane                | ug/L         | ND          | 20    | 22.0         | 110         | 39-150 |               |
| Chloroform                  | ug/L         | ND          | 20    | 20.6         | 103         | 52-147 |               |
| Chloromethane               | ug/L         | ND          | 20    | 16.4         | 82          | 45-150 |               |
| sis-1,2-Dichloroethene      | ug/L         | ND          | 20    | 19.9         | 100         | 44-149 | N2            |
| sis-1,3-Dichloropropene     | ug/L         | ND          | 20    | 19.5         | 98          | 45-140 |               |
| Dibromochloromethane        | ug/L         | ND          | 20    | 19.7         | 98          | 49-144 | N2            |
| Dibromomethane              | ug/L         | ND          | 20    | 20.1         | 100         | 59-142 |               |
| Dichlorodifluoromethane     | ug/L         | ND          | 20    | 23.9         | 119         | 46-150 | N2            |
| Dichlorofluoromethane       | ug/L         | ND          | 20    | 24.2         | 121         | 53-150 | N2            |
| Diethyl ether (Ethyl ether) | ug/L         | ND          | 20    | 20.5         | 102         | 45-146 | N2            |
| Ethylbenzene                | ug/L         | ND          | 20    | 19.3         | 96          | 49-141 |               |
| Hexachloro-1,3-butadiene    | ug/L         | ND          | 20    | 22.8         | 114         | 33-150 | N2            |
| sopropylbenzene (Cumene)    | ug/L         | ND          | 20    | 19.5         | 97          | 50-150 |               |
| n&p-Xylene                  | ug/L         | ND          | 40    | 36.7         | 92          | 44-150 | N2            |
| Methyl-tert-butyl ether     | ug/L         | ND          | 20    | 20.5         | 102         | 52-138 | N2            |
| Methylene Chloride          | ug/L         | ND          | 20    | 18.2         | 91          | 43-149 |               |
| n-Butylbenzene              | ug/L         | ND          | 20    | 20.0         | 100         | 46-150 | N2            |
| n-Propylbenzene             | ug/L         | ND          | 20    | 19.1         | 96          | 44-150 |               |
| Naphthalene                 | ug/L         | ND          | 20    | 18.8         | 94          | 45-149 |               |
| o-Xylene                    | ug/L         | ND          | 20    | 19.0         | 95          | 48-146 |               |
| o-Isopropyltoluene          | ug/L         | ND          | 20    | 20.9         | 104         | 54-147 |               |
| sec-Butylbenzene            | ug/L         | ND          | 20    | 20.4         | 102         | 51-150 |               |
| Styrene                     | ug/L         | ND          | 20    | 18.9         | 94          | 47-149 |               |
| ert-Butylbenzene            | ug/L         | ND          | 20    | 20.9         | 104         | 49-149 |               |
| etrachloroethene            | ug/L         | 3.1         | 20    | 23.2         | 100         | 30-150 |               |
| etrahydrofuran              | ug/L         | ND          | 200   | 212          | 106         | 52-150 | N2            |
| oluene                      | ug/L         | ND          | 200   | 19.4         | 97          | 48-141 |               |
| rans-1,2-Dichloroethene     | ug/L         | ND          | 20    | 20.4         | 102         | 42-150 |               |
| rans-1,3-Dichloropropene    | ug/L         | ND          | 20    | 19.9         | 99          | 45-143 | N2            |
| Frichloroethene             | ug/L         | ND          | 20    | 20.7         | 104         | 38-150 | 1 14          |
| richlorofluoromethane       | ug/L<br>ug/L | ND<br>ND    | 20    | 26.8         | 134         | 57-150 |               |
| /inyl chloride              | -            | ND<br>ND    | 20    | 23.3         | 117         | 43-150 |               |
| Kylene (Total)              | ug/L<br>ug/L | ND<br>ND    | 60    | 23.3<br>55.7 | 93          | 45-150 | NO            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| MATRIX SPIKE SAMPLE:      | 2272581 | 10348956016 | Spike | MS     | MS    | % Rec  |            |
|---------------------------|---------|-------------|-------|--------|-------|--------|------------|
| Parameter                 | Units   | Result      | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,2-Dichloroethane-d4 (S) | %.      |             |       |        | 98    | 75-125 |            |
| 4-Bromofluorobenzene (S)  | %.      |             |       |        | 101   | 75-125 |            |
| Toluene-d8 (S)            | %.      |             |       |        | 99    | 75-125 |            |

|                                |       | 10348956017 | Dup    |     | Max |            |
|--------------------------------|-------|-------------|--------|-----|-----|------------|
| Parameter                      | Units | Result      | Result | RPD | RPD | Qualifiers |
| 1,1,1,2-Tetrachloroethane      | ug/L  |             | ND     |     | 30  | N2         |
| 1,1,1-Trichloroethane          | ug/L  | ND          | ND     |     | 30  |            |
| 1,1,2,2-Tetrachloroethane      | ug/L  | ND          | ND     |     | 30  |            |
| 1,1,2-Trichloroethane          | ug/L  | ND          | ND     |     | 30  |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L  | ND          | ND     |     | 30  | N2         |
| 1,1-Dichloroethane             | ug/L  | ND          | ND     |     | 30  |            |
| 1,1-Dichloroethene             | ug/L  | ND          | ND     |     | 30  |            |
| 1,1-Dichloropropene            | ug/L  | ND          | ND     |     | 30  | N2         |
| 1,2,3-Trichlorobenzene         | ug/L  | ND          | ND     |     | 30  | N2         |
| 1,2,3-Trichloropropane         | ug/L  | ND          | ND     |     | 30  | N2         |
| 1,2,4-Trichlorobenzene         | ug/L  | ND          | ND     |     | 30  |            |
| 1,2,4-Trimethylbenzene         | ug/L  | ND          | ND     |     | 30  | N2         |
| 1,2-Dibromo-3-chloropropane    | ug/L  | ND          | ND     |     | 30  | N2         |
| 1,2-Dibromoethane (EDB)        | ug/L  | ND          | ND     |     | 30  | N2         |
| 1,2-Dichlorobenzene            | ug/L  | ND          | ND     |     | 30  |            |
| 1,2-Dichloroethane             | ug/L  | ND          | ND     |     | 30  |            |
| 1,2-Dichloropropane            | ug/L  | ND          | ND     |     | 30  |            |
| 1,3,5-Trimethylbenzene         | ug/L  | ND          | ND     |     | 30  | N2         |
| 1,3-Dichlorobenzene            | ug/L  | ND          | ND     |     | 30  |            |
| 1,3-Dichloropropane            | ug/L  | ND          | ND     |     | 30  |            |
| 1,4-Dichlorobenzene            | ug/L  | ND          | ND     |     | 30  |            |
| 2,2-Dichloropropane            | ug/L  | ND          | ND     |     | 30  | N2         |
| 2-Butanone (MEK)               | ug/L  | ND          | ND     |     | 30  | N2         |
| 2-Chloroethylvinyl ether       | ug/L  | ND          | ND     |     | 30  |            |
| 2-Chlorotoluene                | ug/L  | ND          | ND     |     | 30  | N2         |
| 4-Chlorotoluene                | ug/L  | ND          | ND     |     | 30  | N2         |
| 4-Methyl-2-pentanone (MIBK)    | ug/L  | ND          | ND     |     | 30  | N2         |
| Acetone                        | ug/L  | 44.5        | 43.2   | 3   | 30  | N2         |
| Allyl chloride                 | ug/L  | ND          | ND     |     | 30  | N2         |
| Benzene                        | ug/L  | ND          | ND     |     | 30  |            |
| Bromobenzene                   | ug/L  | ND          | ND     |     | 30  | N2         |
| Bromochloromethane             | ug/L  | ND          | ND     |     | 30  | N2         |
| Bromodichloromethane           | ug/L  | ND          | ND     |     | 30  |            |
| Bromoform                      | ug/L  | ND          | ND     |     | 30  |            |
| Bromomethane                   | ug/L  | ND          | ND     |     | 30  |            |
| Carbon tetrachloride           | ug/L  | ND          | ND     |     | 30  |            |
| Chlorobenzene                  | ug/L  | ND          | ND     |     | 30  |            |
| Chloroethane                   | ug/L  | ND          | ND     |     | 30  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..





Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| SAMPLE DUPLICATE: 2272582   |       | 10348956017 | Dup    |     | Max |            |
|-----------------------------|-------|-------------|--------|-----|-----|------------|
| Parameter                   | Units | Result      | Result | RPD | RPD | Qualifiers |
| Chloroform                  | ug/L  |             | ND     |     | 30  |            |
| Chloromethane               | ug/L  | ND          | ND     |     | 30  |            |
| cis-1,2-Dichloroethene      | ug/L  | ND          | ND     |     | 30  | N2         |
| cis-1,3-Dichloropropene     | ug/L  | ND          | ND     |     | 30  |            |
| Dibromochloromethane        | ug/L  | ND          | ND     |     | 30  | N2         |
| Dibromomethane              | ug/L  | ND          | ND     |     | 30  |            |
| Dichlorodifluoromethane     | ug/L  | ND          | ND     |     | 30  | N2         |
| Dichlorofluoromethane       | ug/L  | ND          | ND     |     | 30  | N2         |
| Diethyl ether (Ethyl ether) | ug/L  | ND          | ND     |     | 30  | N2         |
| Ethylbenzene                | ug/L  | ND          | ND     |     | 30  |            |
| Hexachloro-1,3-butadiene    | ug/L  | ND          | ND     |     | 30  | N2         |
| Isopropylbenzene (Cumene)   | ug/L  | ND          | ND     |     | 30  |            |
| m&p-Xylene                  | ug/L  | ND          | ND     |     | 30  | N2         |
| Methyl-tert-butyl ether     | ug/L  | ND          | ND     |     | 30  | N2         |
| Methylene Chloride          | ug/L  | ND          | ND     |     | 30  |            |
| n-Butylbenzene              | ug/L  | ND          | ND     |     | 30  | N2         |
| n-Propylbenzene             | ug/L  | ND          | ND     |     | 30  | N2         |
| Naphthalene                 | ug/L  | ND          | ND     |     | 30  | N2         |
| o-Xylene                    | ug/L  | ND          | ND     |     | 30  | N2         |
| o-Isopropyltoluene          | ug/L  | ND          | ND     |     | 30  | N2         |
| sec-Butylbenzene            | ug/L  | ND          | ND     |     | 30  | N2         |
| Styrene                     | ug/L  | ND          | ND     |     | 30  | N2         |
| tert-Butylbenzene           | ug/L  | ND          | ND     |     | 30  |            |
| Tetrachloroethene           | ug/L  | ND          | ND     |     | 30  |            |
| Tetrahydrofuran             | ug/L  | ND          | ND     |     | 30  | N2         |
| Toluene                     | ug/L  | ND          | ND     |     | 30  |            |
| trans-1,2-Dichloroethene    | ug/L  | ND          | ND     |     | 30  |            |
| trans-1,3-Dichloropropene   | ug/L  | ND          | ND     |     | 30  | N2         |
| Trichloroethene             | ug/L  | ND          | ND     |     | 30  |            |
| Trichlorofluoromethane      | ug/L  | ND          | ND     |     | 30  |            |
| Vinyl chloride              | ug/L  | ND          | ND     |     | 30  |            |
| Xylene (Total)              | ug/L  | ND          | ND     |     | 30  | N2         |
| 1,2-Dichloroethane-d4 (S)   | %.    | 103         | 100    | 3   |     |            |
| 4-Bromofluorobenzene (S)    | %.    | 99          | 99     | 0   |     |            |
| Toluene-d8 (S)              | %.    | 97          | 97     | 1   |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Project: CrC

Pace Project No.: 10348956

QC Batch: MSV/35636 QC Batch Method: EPA 8260B Analysis Method:

EPA 8260B

Analysis Description:

8260B MSV 465 W

Associated Lab Samples: 10348956002

METHOD BLANK: 2264267

Date: 06/02/2016 07:27 AM

Matrix: Water

Associated Lab Samples: 10348956002

|                                |       | Blank  | Reporting |                |                                         |
|--------------------------------|-------|--------|-----------|----------------|-----------------------------------------|
| Parameter                      | Units | Result | Limit     | Analyzed       | Qualifiers                              |
| 1,1,1,2-Tetrachloroethane      | ug/L  | ND     | 1.0       | 05/20/16 00:13 | - · · · · · · · · · · · · · · · · · · · |
| 1,1,1-Trichloroethane          | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| 1,1,2,2-Tetrachloroethane      | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| 1,1,2-Trichloroethane          | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| 1,1,2-Trichlorotrifluoroethane | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| 1,1-Dichloroethane             | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| 1,1-Dichloroethene             | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| 1,1-Dichloropropene            | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| 1,2,3-Trichlorobenzene         | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| 1,2,3-Trichloropropane         | ug/L  | ND     | 4.0       | 05/20/16 00:13 |                                         |
| 1,2,4-Trichlorobenzene         | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| 1,2,4-Trimethylbenzene         | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| 1,2-Dibromo-3-chloropropane    | ug/L  | ND     | 4.0       | 05/20/16 00:13 |                                         |
| 1,2-Dibromoethane (EDB)        | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| 1,2-Dichlorobenzene            | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| 1,2-Dichloroethane             | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| 1,2-Dichloropropane            | ug/L  | ND     | 4.0       | 05/20/16 00:13 |                                         |
| 1,3,5-Trimethylbenzene         | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| 1,3-Dichlorobenzene            | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| 1,3-Dichloropropane            | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| 1,4-Dichlorobenzene            | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| 2,2-Dichloropropane            | ug/L  | ND     | 4.0       | 05/20/16 00:13 |                                         |
| 2-Butanone (MEK)               | ug/L  | ND     | 5.0       | 05/20/16 00:13 |                                         |
| 2-Chlorotoluene                | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| 4-Chlorotoluene                | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| 4-Methyl-2-pentanone (MIBK)    | ug/L  | ND     | 5.0       | 05/20/16 00:13 |                                         |
| Acetone                        | ug/L  | ND     | 20.0      | 05/20/16 00:13 |                                         |
| Allyl chloride                 | ug/L  | ND     | 4.0       | 05/20/16 00:13 |                                         |
| Benzene                        | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| Bromobenzene                   | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| Bromochloromethane             | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| Bromodichloromethane           | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| Bromoform                      | ug/L  | ND     | 4.0       | 05/20/16 00:13 |                                         |
| Bromomethane                   | ug/L  | ND     | 4.0       | 05/20/16 00:13 | CL                                      |
| Carbon tetrachloride           | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| Chlorobenzene                  | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| Chloroethane                   | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| Chloroform                     | ug/L  | ND     | 4.0       | 05/20/16 00:13 |                                         |
| Chloromethane                  | ug/L  | ND     | 4.0       | 05/20/16 00:13 |                                         |
| cis-1,2-Dichloroethene         | ug/L  | ND     | 1.0       | 05/20/16 00:13 |                                         |
| cis-1,3-Dichloropropene        | ug/L  | ND     | 4.0       | 05/20/16 00:13 |                                         |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



## **QUALITY CONTROL DATA**

Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

METHOD BLANK: 2264267 Matrix: Water

Associated Lab Samples: 10348956002

| ·                           |       | Blank  | Reporting |                |            |
|-----------------------------|-------|--------|-----------|----------------|------------|
| Parameter                   | Units | Result | Limit     | Analyzed       | Qualifiers |
| Dibromochloromethane        | ug/L  | ND     | 1.0       | 05/20/16 00:13 |            |
| Dibromomethane              | ug/L  | ND     | 4.0       | 05/20/16 00:13 |            |
| Dichlorodifluoromethane     | ug/L  | ND     | 1.0       | 05/20/16 00:13 |            |
| Dichlorofluoromethane       | ug/L  | ND     | 1.0       | 05/20/16 00:13 |            |
| Diethyl ether (Ethyl ether) | ug/L  | ND     | 4.0       | 05/20/16 00:13 |            |
| Ethylbenzene                | ug/L  | ND     | 1.0       | 05/20/16 00:13 |            |
| Hexachloro-1,3-butadiene    | ug/L  | ND     | 1.0       | 05/20/16 00:13 |            |
| Isopropylbenzene (Cumene)   | ug/L  | ND     | 1.0       | 05/20/16 00:13 |            |
| Methyl-tert-butyl ether     | ug/L  | ND     | 1.0       | 05/20/16 00:13 |            |
| Methylene Chloride          | ug/L  | ND     | 4.0       | 05/20/16 00:13 |            |
| n-Butylbenzene              | ug/L  | ND     | 1.0       | 05/20/16 00:13 |            |
| n-Propylbenzene             | ug/L  | ND     | 1.0       | 05/20/16 00:13 |            |
| Naphthalene                 | ug/L  | ND     | 4.0       | 05/20/16 00:13 |            |
| p-Isopropyltoluene          | ug/L  | ND     | 1.0       | 05/20/16 00:13 |            |
| sec-Butylbenzene            | ug/L  | ND     | 1.0       | 05/20/16 00:13 |            |
| Styrene                     | ug/L  | ND     | 1.0       | 05/20/16 00:13 |            |
| tert-Butylbenzene           | ug/L  | ND     | 1.0       | 05/20/16 00:13 |            |
| Tetrachloroethene           | ug/L  | ND     | 1.0       | 05/20/16 00:13 |            |
| Tetrahydrofuran             | ug/L  | ND     | 10.0      | 05/20/16 00:13 |            |
| Toluene                     | ug/L  | ND     | 1.0       | 05/20/16 00:13 |            |
| trans-1,2-Dichloroethene    | ug/L  | ND     | 1.0       | 05/20/16 00:13 |            |
| trans-1,3-Dichloropropene   | ug/L  | ND     | 4.0       | 05/20/16 00:13 |            |
| Trichloroethene             | ug/L  | ND     | 0.40      | 05/20/16 00:13 |            |
| Trichlorofluoromethane      | ug/L  | ND     | 1.0       | 05/20/16 00:13 |            |
| Vinyl chloride              | ug/L  | ND     | 0.40      | 05/20/16 00:13 |            |
| Xylene (Total)              | ug/L  | ND     | 3.0       | 05/20/16 00:13 |            |
| 1,2-Dichloroethane-d4 (S)   | %.    | 101    | 75-125    | 05/20/16 00:13 |            |
| 4-Bromofluorobenzene (S)    | %.    | 98     | 75-125    | 05/20/16 00:13 |            |
| Toluene-d8 (S)              | %.    | 105    | 75-125    | 05/20/16 00:13 |            |

| LABORATORY CONTROL SAMPLE:     | 2264268 |       |        |       |        |            |
|--------------------------------|---------|-------|--------|-------|--------|------------|
|                                |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                      | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,1,1,2-Tetrachloroethane      | ug/L    |       | 18.9   | 95    | 75-125 |            |
| 1,1,1-Trichloroethane          | ug/L    | 20    | 18.3   | 91    | 73-125 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L    | 20    | 20.1   | 100   | 75-128 |            |
| 1,1,2-Trichloroethane          | ug/L    | 20    | 19.3   | 96    | 75-129 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L    | 20    | 19.3   | 97    | 69-125 |            |
| 1,1-Dichloroethane             | ug/L    | 20    | 18.8   | 94    | 75-131 |            |
| 1,1-Dichloroethene             | ug/L    | 20    | 18.3   | 92    | 72-125 |            |
| 1,1-Dichloropropene            | ug/L    | 20    | 18.1   | 91    | 74-125 |            |
| 1,2,3-Trichlorobenzene         | ug/L    | 20    | 19.1   | 95    | 68-127 |            |
| 1,2,3-Trichloropropane         | ug/L    | 20    | 19.7   | 99    | 75-125 |            |
| 1,2,4-Trichlorobenzene         | ug/L    | 20    | 18.4   | 92    | 70-125 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| LABORATORY CONTROL SAMPLE:  | 2264268 |       |        |       |                 |
|-----------------------------|---------|-------|--------|-------|-----------------|
| _                           |         | Spike | LCS    | LCS   | % Rec           |
| Parameter                   | Units   | Conc. | Result | % Rec | Limits Qualifie |
| ,2,4-Trimethylbenzene       | ug/L    | 20    | 20.2   | 101   | 75-130          |
| 1,2-Dibromo-3-chloropropane | ug/L    | 50    | 45.7   | 91    | 74-125          |
| ,2-Dibromoethane (EDB)      | ug/L    | 20    | 19.3   | 96    | 75-125          |
| ,2-Dichlorobenzene          | ug/L    | 20    | 19.7   | 98    | 75-125          |
| ,2-Dichloroethane           | ug/L    | 20    | 17.2   | 86    | 72-129          |
| ,2-Dichloropropane          | ug/L    | 20    | 19.3   | 96    | 71-129          |
| ,3,5-Trimethylbenzene       | ug/L    | 20    | 20.7   | 103   | 75-127          |
| ,3-Dichlorobenzene          | ug/L    | 20    | 20.2   | 101   | 75-125          |
| ,3-Dichloropropane          | ug/L    | 20    | 19.5   | 98    | 75-125          |
| ,4-Dichlorobenzene          | ug/L    | 20    | 19.3   | 97    | 75-125          |
| ,2-Dichloropropane          | ug/L    | 20    | 17.8   | 89    | 71-125          |
| -Butanone (MEK)             | ug/L    | 100   | 88.6   | 89    | 58-150          |
| -Chlorotoluene              | ug/L    | 20    | 20.1   | 100   | 75-125          |
| -Chlorotoluene              | ug/L    | 20    | 20.3   | 101   | 75-130          |
| -Methyl-2-pentanone (MIBK)  | ug/L    | 100   | 89.8   | 90    | 72-140          |
| cetone                      | ug/L    | 100   | 82.1   | 82    | 69-137          |
| allyl chloride              | ug/L    | 20    | 17.1   | 86    | 68-132          |
| Benzene                     | ug/L    | 20    | 17.5   | 87    | 75-125          |
| romobenzene                 | ug/L    | 20    | 20.8   | 104   | 75-125          |
| romochloromethane           | ug/L    | 20    | 19.9   | 100   | 75-125          |
| romodichloromethane         | ug/L    | 20    | 18.6   | 93    | 69-128          |
| Bromoform                   | ug/L    | 20    | 15.8   | 79    | 75-125          |
| Bromomethane                | ug/L    | 20    | 11.2   | 56    | 30-150 CL       |
| Carbon tetrachloride        | ug/L    | 20    | 17.2   | 86    | 74-125          |
| Chlorobenzene               | ug/L    | 20    | 18.2   | 91    | 75-125          |
| Chloroethane                | ug/L    | 20    | 18.1   | 91    | 60-150          |
| Chloroform                  | ug/L    | 20    | 19.1   | 96    | 75-126          |
| Chloromethane               | ug/L    | 20    | 14.7   | 73    | 46-150          |
| is-1,2-Dichloroethene       | ug/L    | 20    | 17.2   | 86    | 75-126          |
| is-1,3-Dichloropropene      | ug/L    | 20    | 18.5   | 92    | 75-125          |
| Dibromochloromethane        | ug/L    | 20    | 18.1   | 90    | 75-125          |
| Dibromomethane              | ug/L    | 20    | 19.2   | 96    | 72-127          |
| Dichlorodifluoromethane     | ug/L    | 20    | 17.6   | 88    | 58-135          |
| Dichlorofluoromethane       | ug/L    | 20    | 17.6   | 88    | 68-149          |
| Diethyl ether (Ethyl ether) | ug/L    | 20    | 18.3   | 92    | 66-144          |
| Ethylbenzene                | ug/L    | 20    | 17.2   | 86    | 75-125          |
| lexachloro-1,3-butadiene    | ug/L    | 20    | 20.0   | 100   | 73-125          |
| sopropylbenzene (Cumene)    | ug/L    | 20    | 18.7   | 94    | 69-140          |
| Methyl-tert-butyl ether     | ug/L    | 20    | 18.6   | 93    | 75-126          |
| Methylene Chloride          | ug/L    | 20    | 17.6   | 88    | 71-130          |
| -Butylbenzene               | ug/L    | 20    | 19.7   | 98    | 71-129          |
| -Propylbenzene              | ug/L    | 20    | 20.4   | 102   | 71-133          |
| laphthalene                 | ug/L    | 20    | 18.5   | 92    | 59-137          |
| -Isopropyltoluene           | ug/L    | 20    | 20.4   | 102   | 74-127          |
| ec-Butylbenzene             | ug/L    | 20    | 20.8   | 104   | 66-140          |
| Styrene                     | ug/L    | 20    | 18.2   | 91    | 75-125          |
| ert-Butylbenzene            | ug/L    | 20    | 21.4   | 107   | 73-129          |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| ABORATORY CONTROL SAMPLE: | 2264268 |       |        |       |        |            |
|---------------------------|---------|-------|--------|-------|--------|------------|
|                           |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                 | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Tetrachloroethene         | ug/L    |       | 19.4   | 97    | 75-125 |            |
| -<br>etrahydrofuran       | ug/L    | 200   | 181    | 90    | 71-129 |            |
| -<br>oluene               | ug/L    | 20    | 17.4   | 87    | 75-125 |            |
| rans-1,2-Dichloroethene   | ug/L    | 20    | 18.9   | 94    | 75-125 |            |
| ans-1,3-Dichloropropene   | ug/L    | 20    | 18.7   | 93    | 75-125 |            |
| ichloroethene             | ug/L    | 20    | 19.5   | 97    | 75-125 |            |
| ichlorofluoromethane      | ug/L    | 20    | 18.4   | 92    | 74-128 |            |
| nyl chloride              | ug/L    | 20    | 18.5   | 93    | 71-131 |            |
| /lene (Total)             | ug/L    | 60    | 54.6   | 91    | 75-125 |            |
| 2-Dichloroethane-d4 (S)   | %.      |       |        | 101   | 75-125 |            |
| Bromofluorobenzene (S)    | %.      |       |        | 101   | 75-125 |            |
| oluene-d8 (S)             | %.      |       |        | 98    | 75-125 |            |

| MATRIX SPIKE & MATRIX SPIK     | KE DUPLICA | ATE: 22642  | 69    |       | 2264270 |        |       |       |        |     |     |      |
|--------------------------------|------------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                                |            |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                                | 1          | 10348068003 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                      | Units      | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| 1,1,1,2-Tetrachloroethane      | ug/L       | ND ND       | 20    | 20    | 21.9    | 19.9   | 110   | 99    | 75-125 | 10  | 30  |      |
| 1,1,1-Trichloroethane          | ug/L       | ND          | 20    | 20    | 24.3    | 19.8   | 121   | 99    | 71-144 | 20  | 30  |      |
| 1,1,2,2-Tetrachloroethane      | ug/L       | ND          | 20    | 20    | 22.7    | 20.8   | 114   | 104   | 75-131 | 9   | 30  |      |
| 1,1,2-Trichloroethane          | ug/L       | ND          | 20    | 20    | 22.6    | 19.9   | 113   | 99    | 75-125 | 13  | 30  |      |
| 1,1,2-Trichlorotrifluoroethane | ug/L       | ND          | 20    | 20    | 24.5    | 21.5   | 123   | 107   | 75-150 | 13  | 30  |      |
| 1,1-Dichloroethane             | ug/L       | ND          | 20    | 20    | 24.6    | 19.6   | 123   | 98    | 64-150 | 22  | 30  |      |
| 1,1-Dichloroethene             | ug/L       | ND          | 20    | 20    | 23.6    | 20.7   | 118   | 103   | 68-150 | 13  | 30  |      |
| 1,1-Dichloropropene            | ug/L       | ND          | 20    | 20    | 24.0    | 20.9   | 120   | 104   | 68-145 | 14  | 30  |      |
| 1,2,3-Trichlorobenzene         | ug/L       | ND          | 20    | 20    | 20.2    | 20.2   | 101   | 101   | 57-142 | 0   | 30  |      |
| 1,2,3-Trichloropropane         | ug/L       | ND          | 20    | 20    | 21.7    | 20.1   | 109   | 101   | 75-125 | 8   | 30  |      |
| 1,2,4-Trichlorobenzene         | ug/L       | ND          | 20    | 20    | 20.3    | 20.0   | 102   | 100   | 60-135 | 1   | 30  |      |
| 1,2,4-Trimethylbenzene         | ug/L       | ND          | 20    | 20    | 21.8    | 19.8   | 109   | 99    | 67-148 | 9   | 30  |      |
| 1,2-Dibromo-3-                 | ug/L       | ND          | 50    | 50    | 49.0    | 47.4   | 98    | 95    | 32-137 | 3   | 30  |      |
| chloropropane                  | •          |             |       |       |         |        |       |       |        |     |     |      |
| 1,2-Dibromoethane (EDB)        | ug/L       | ND          | 20    | 20    | 21.6    | 19.2   | 108   | 96    | 75-125 | 11  | 30  |      |
| 1,2-Dichlorobenzene            | ug/L       | ND          | 20    | 20    | 21.2    | 19.4   | 106   | 97    | 75-125 | 9   | 30  |      |
| 1,2-Dichloroethane             | ug/L       | ND          | 20    | 20    | 19.1    | 17.1   | 94    | 84    | 62-138 | 11  | 30  |      |
| 1,2-Dichloropropane            | ug/L       | ND          | 20    | 20    | 22.8    | 19.2   | 114   | 96    | 62-144 | 17  | 30  |      |
| 1,3,5-Trimethylbenzene         | ug/L       | ND          | 20    | 20    | 22.0    | 20.5   | 110   | 103   | 67-148 | 7   | 30  |      |
| 1,3-Dichlorobenzene            | ug/L       | ND          | 20    | 20    | 22.1    | 20.1   | 110   | 101   | 74-131 | 9   | 30  |      |
| 1,3-Dichloropropane            | ug/L       | ND          | 20    | 20    | 22.8    | 20.0   | 114   | 100   | 75-127 | 13  | 30  |      |
| 1,4-Dichlorobenzene            | ug/L       | ND          | 20    | 20    | 21.3    | 19.2   | 107   | 96    | 74-126 | 11  | 30  |      |
| 2,2-Dichloropropane            | ug/L       | ND          | 20    | 20    | 22.1    | 19.0   | 110   | 95    | 56-146 | 15  | 30  |      |
| 2-Butanone (MEK)               | ug/L       | ND          | 100   | 100   | 97.8    | 88.0   | 98    | 88    | 47-150 | 11  | 30  |      |
| 2-Chlorotoluene                | ug/L       | ND          | 20    | 20    | 22.0    | 19.8   | 110   | 99    | 74-137 | 11  | 30  |      |
| 4-Chlorotoluene                | ug/L       | ND          | 20    | 20    | 22.5    | 20.0   | 113   | 100   | 72-138 | 12  | 30  |      |
| 4-Methyl-2-pentanone (MIBK)    | ug/L       | ND          | 100   | 100   | 99.6    | 91.0   | 100   | 91    | 60-147 | 9   | 30  |      |
| Acetone                        | ug/L       | ND          | 100   | 100   | 94.8    | 86.6   | 92    | 84    | 61-150 | 9   | 30  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| MATRIX SPIKE & MATRIX SPIR  | KE DUPLIC | ATE: 22642  | 69<br>MS | MSD   | 2264270 |        |       |       |        |     |     |     |
|-----------------------------|-----------|-------------|----------|-------|---------|--------|-------|-------|--------|-----|-----|-----|
|                             |           | 10348068003 | Spike    | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |     |
| Parameter                   | Units     | Result      | Conc.    | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qua |
| Allyl chloride              | ug/L      | ND ND       | 20       | 20    | 21.7    | 19.3   | 109   | 96    | 53-150 | 12  | 30  |     |
| Benzene                     | ug/L      | ND          | 20       | 20    | 20.1    | 17.9   | 100   | 89    | 52-147 | 12  | 30  |     |
| Bromobenzene                | ug/L      | ND          | 20       | 20    | 23.1    | 21.0   | 115   | 105   | 75-129 | 9   | 30  |     |
| Bromochloromethane          | ug/L      | ND          | 20       | 20    | 22.5    | 19.9   | 113   | 100   | 72-128 | 12  | 30  |     |
| Bromodichloromethane        | ug/L      | ND          | 20       | 20    | 21.1    | 18.4   | 105   | 92    | 65-137 | 13  | 30  |     |
| Bromoform                   | ug/L      | ND          | 20       | 20    | 19.1    | 17.4   | 95    | 87    | 59-133 | 9   | 30  |     |
| Bromomethane                | ug/L      | ND          | 20       | 20    | 14.4    | 14.9   | 72    | 75    | 30-150 | 4   | 30  | CL  |
| Carbon tetrachloride        | ug/L      | ND          | 20       | 20    | 20.9    | 18.3   | 105   | 91    | 73-144 | 13  | 30  |     |
| Chlorobenzene               | ug/L      | ND          | 20       | 20    | 21.1    | 18.5   | 106   | 92    | 75-126 | 13  | 30  |     |
| Chloroethane                | ug/L      | ND          | 20       | 20    | 20.1    | 18.0   | 101   | 90    | 55-150 | 11  | 30  |     |
| Chloroform                  | ug/L      | ND          | 20       | 20    | 22.2    | 19.1   | 111   | 95    | 66-143 | 15  | 30  |     |
| Chloromethane               | ug/L      | ND          | 20       | 20    | 14.8    | 16.5   | 74    | 83    | 42-150 | 11  | 30  |     |
| cis-1,2-Dichloroethene      | ug/L      | ND          | 20       | 20    | 23.2    | 19.1   | 116   | 95    | 65-143 | 19  | 30  |     |
| cis-1,3-Dichloropropene     | ug/L      | ND          | 20       | 20    | 20.9    | 18.7   | 105   | 93    | 75-125 | 11  | 30  |     |
| Dibromochloromethane        | ug/L      | ND          | 20       | 20    | 20.5    | 18.2   | 103   | 91    | 75-125 | 12  | 30  |     |
| Dibromomethane              | ug/L      | ND          | 20       | 20    | 21.5    | 20.6   | 107   | 103   | 66-133 | 4   | 30  |     |
| Dichlorodifluoromethane     | ug/L      | ND          | 20       | 20    | 21.8    | 18.9   | 109   | 95    | 74-150 | 14  | 30  |     |
| Dichlorofluoromethane       | ug/L      | ND          | 20       | 20    | 20.4    | 17.3   | 102   | 87    | 68-150 | 16  | 30  |     |
| Diethyl ether (Ethyl ether) | ug/L      | ND          | 20       | 20    | 20.6    | 17.9   | 103   | 89    | 57-148 | 14  | 30  |     |
| Ethylbenzene                | ug/L      | ND          | 20       | 20    | 20.1    | 17.6   | 100   | 88    | 67-149 | 13  | 30  |     |
| Hexachloro-1,3-butadiene    | ug/L      | ND          | 20       | 20    | 23.9    | 27.0   | 119   | 135   | 65-143 | 12  | 30  |     |
| sopropylbenzene (Cumene)    | ug/L      | ND          | 20       | 20    | 22.0    | 19.8   | 110   | 99    | 64-150 | 10  | 30  |     |
| Methyl-tert-butyl ether     | ug/L      | ND          | 20       | 20    | 21.8    | 19.0   | 109   | 95    | 71-130 | 14  | 30  |     |
| Methylene Chloride          | ug/L      | ND          | 20       | 20    | 19.4    | 17.7   | 97    | 88    | 67-137 | 9   | 30  |     |
| n-Butylbenzene              | ug/L      | ND          | 20       | 20    | 21.9    | 20.4   | 110   | 102   | 70-138 | 7   | 30  |     |
| n-Propylbenzene             | ug/L      | ND          | 20       | 20    | 23.4    | 21.0   | 117   | 105   | 70-148 | 11  | 30  |     |
| Naphthalene                 | ug/L      | ND          | 20       | 20    | 19.0    | 19.1   | 95    | 96    | 39-150 | 1   | 30  |     |
| o-Isopropyltoluene          | ug/L      | ND          | 20       | 20    | 21.8    | 20.5   | 109   | 103   | 74-138 | 6   | 30  |     |
| sec-Butylbenzene            | ug/L      | ND          | 20       | 20    | 24.2    | 23.1   | 121   | 116   | 64-150 | 5   | 30  |     |
| Styrene                     | ug/L      | ND          | 20       | 20    | 20.2    | 18.2   | 101   | 91    | 75-132 | 10  | 30  |     |
| ert-Butylbenzene            | ug/L      | ND          | 20       | 20    | 24.4    | 23.9   | 122   | 119   | 75-138 | 2   | 30  |     |
| Tetrachloroethene           | ug/L      | ND          | 20       | 20    | 23.6    | 20.6   | 118   | 103   | 73-136 | 14  | 30  |     |
| Tetrahydrofuran             | ug/L      | ND          | 200      | 200   | 194     | 177    | 97    | 88    | 68-142 | 9   | 30  |     |
| Toluene                     | ug/L      | ND          | 20       | 20    | 20.6    | 17.9   | 103   | 89    | 69-139 | 14  | 30  |     |
| rans-1,2-Dichloroethene     | ug/L      | ND          | 20       | 20    | 21.7    | 20.0   | 108   | 100   | 75-135 | 8   | 30  |     |
| rans-1,3-Dichloropropene    | ug/L      | ND          | 20       | 20    | 21.4    | 19.5   | 107   | 98    | 66-136 | 9   | 30  |     |
| Frichloroethene             | ug/L      | ND          | 20       | 20    | 23.9    | 20.8   | 120   | 104   | 74-135 | 14  | 30  |     |
| Trichlorofluoromethane      | ug/L      | ND          | 20       | 20    | 22.1    | 18.5   | 110   | 92    | 75-150 | 18  | 30  |     |
| Vinyl chloride              | ug/L      | ND          | 20       | 20    | 22.7    | 20.7   | 113   | 103   | 69-150 | 9   | 30  |     |
| Xylene (Total)              | ug/L      | ND          | 60       | 60    | 63.9    | 56.9   | 107   | 95    | 70-147 | 12  | 30  |     |
| 1,2-Dichloroethane-d4 (S)   | %.        |             |          |       |         |        | 100   | 100   | 75-125 |     |     |     |
| 1-Bromofluorobenzene (S)    | %.        |             |          |       |         |        | 100   | 102   | 75-125 |     |     |     |
| Toluene-d8 (S)              | %.        |             |          |       |         |        | 99    | 99    | 75-125 |     |     |     |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: CrC Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

QC Batch: MSV/35661 Analysis Method: EPA 8260B

QC Batch Method: **EPA 8260B** Analysis Description: 8260B MSV 465 W

10348956001, 10348956003, 10348956004, 10348956005, 10348956006, 10348956007, 10348956012, Associated Lab Samples:

10348956013, 10348956014

METHOD BLANK: 2265750 Matrix: Water

10348956001, 10348956003, 10348956004, 10348956005, 10348956006, 10348956007, 10348956012,Associated Lab Samples: Rlank

10348956013, 10348956014

| 100400                         | 30013, 10040330014 | Blank  | Reporting |                |            |
|--------------------------------|--------------------|--------|-----------|----------------|------------|
| Parameter                      | Units              | Result | Limit     | Analyzed       | Qualifiers |
| 1,1,1,2-Tetrachloroethane      | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| 1,1,1-Trichloroethane          | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| 1,1,2-Trichloroethane          | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| 1,1-Dichloroethane             | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| 1,1-Dichloroethene             | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| 1,1-Dichloropropene            | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| 1,2,3-Trichlorobenzene         | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| 1,2,3-Trichloropropane         | ug/L               | ND     | 4.0       | 05/21/16 01:25 |            |
| 1,2,4-Trichlorobenzene         | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| 1,2,4-Trimethylbenzene         | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| 1,2-Dibromo-3-chloropropane    | ug/L               | ND     | 4.0       | 05/21/16 01:25 |            |
| 1,2-Dibromoethane (EDB)        | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| 1,2-Dichlorobenzene            | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| 1,2-Dichloroethane             | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| 1,2-Dichloropropane            | ug/L               | ND     | 4.0       | 05/21/16 01:25 |            |
| 1,3,5-Trimethylbenzene         | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| 1,3-Dichlorobenzene            | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| 1,3-Dichloropropane            | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| 1,4-Dichlorobenzene            | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| 2,2-Dichloropropane            | ug/L               | ND     | 4.0       | 05/21/16 01:25 |            |
| 2-Butanone (MEK)               | ug/L               | ND     | 5.0       | 05/21/16 01:25 |            |
| 2-Chlorotoluene                | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| 4-Chlorotoluene                | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| 4-Methyl-2-pentanone (MIBK)    | ug/L               | ND     | 5.0       | 05/21/16 01:25 |            |
| Acetone                        | ug/L               | ND     | 20.0      | 05/21/16 01:25 |            |
| Allyl chloride                 | ug/L               | ND     | 4.0       | 05/21/16 01:25 |            |
| Benzene                        | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| Bromobenzene                   | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| Bromochloromethane             | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| Bromodichloromethane           | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| Bromoform                      | ug/L               | ND     | 4.0       | 05/21/16 01:25 |            |
| Bromomethane                   | ug/L               | ND     | 4.0       | 05/21/16 01:25 |            |
| Carbon tetrachloride           | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| Chlorobenzene                  | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| Chloroethane                   | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |
| Chloroform                     | ug/L               | ND     | 4.0       | 05/21/16 01:25 |            |
| Chloromethane                  | ug/L               | ND     | 4.0       | 05/21/16 01:25 |            |
| cis-1,2-Dichloroethene         | ug/L               | ND     | 1.0       | 05/21/16 01:25 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

METHOD BLANK: 2265750 Matrix: Water

Associated Lab Samples: 10348956001, 10348956003, 10348956004, 10348956005, 10348956006, 10348956007, 10348956012,

10348956013, 10348956014

| Parameter                   | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|-----------------------------|-------|-----------------|--------------------|----------------|------------|
| cis-1,3-Dichloropropene     | ug/L  |                 | 4.0                | 05/21/16 01:25 |            |
| Dibromochloromethane        | ug/L  | ND              | 1.0                | 05/21/16 01:25 |            |
| Dibromomethane              | ug/L  | ND              | 4.0                | 05/21/16 01:25 |            |
| Dichlorodifluoromethane     | ug/L  | ND              | 1.0                | 05/21/16 01:25 |            |
| Dichlorofluoromethane       | ug/L  | ND              | 1.0                | 05/21/16 01:25 |            |
| Diethyl ether (Ethyl ether) | ug/L  | ND              | 4.0                | 05/21/16 01:25 |            |
| Ethylbenzene                | ug/L  | ND              | 1.0                | 05/21/16 01:25 |            |
| Hexachloro-1,3-butadiene    | ug/L  | ND              | 1.0                | 05/21/16 01:25 |            |
| Isopropylbenzene (Cumene)   | ug/L  | ND              | 1.0                | 05/21/16 01:25 |            |
| Methyl-tert-butyl ether     | ug/L  | ND              | 1.0                | 05/21/16 01:25 |            |
| Methylene Chloride          | ug/L  | ND              | 4.0                | 05/21/16 01:25 |            |
| n-Butylbenzene              | ug/L  | ND              | 1.0                | 05/21/16 01:25 |            |
| n-Propylbenzene             | ug/L  | ND              | 1.0                | 05/21/16 01:25 |            |
| Naphthalene                 | ug/L  | ND              | 4.0                | 05/21/16 01:25 |            |
| p-Isopropyltoluene          | ug/L  | ND              | 1.0                | 05/21/16 01:25 |            |
| sec-Butylbenzene            | ug/L  | ND              | 1.0                | 05/21/16 01:25 |            |
| Styrene                     | ug/L  | ND              | 1.0                | 05/21/16 01:25 |            |
| tert-Butylbenzene           | ug/L  | ND              | 1.0                | 05/21/16 01:25 |            |
| Tetrachloroethene           | ug/L  | ND              | 1.0                | 05/21/16 01:25 |            |
| Tetrahydrofuran             | ug/L  | ND              | 10.0               | 05/21/16 01:25 |            |
| Toluene                     | ug/L  | ND              | 1.0                | 05/21/16 01:25 |            |
| trans-1,2-Dichloroethene    | ug/L  | ND              | 1.0                | 05/21/16 01:25 |            |
| trans-1,3-Dichloropropene   | ug/L  | ND              | 4.0                | 05/21/16 01:25 |            |
| Trichloroethene             | ug/L  | ND              | 0.40               | 05/21/16 01:25 |            |
| Trichlorofluoromethane      | ug/L  | ND              | 1.0                | 05/21/16 01:25 |            |
| Vinyl chloride              | ug/L  | ND              | 0.40               | 05/21/16 01:25 |            |
| Xylene (Total)              | ug/L  | ND              | 3.0                | 05/21/16 01:25 |            |
| 1,2-Dichloroethane-d4 (S)   | %.    | 97              | 75-125             | 05/21/16 01:25 |            |
| 4-Bromofluorobenzene (S)    | %.    | 98              | 75-125             | 05/21/16 01:25 |            |
| Toluene-d8 (S)              | %.    | 104             | 75-125             | 05/21/16 01:25 |            |

| LABORATORY CONTROL SAMPLE:     | 2265751 |       |        |       |        |            |
|--------------------------------|---------|-------|--------|-------|--------|------------|
|                                |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                      | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,1,1,2-Tetrachloroethane      | ug/L    |       | 19.2   | 96    | 75-125 |            |
| 1,1,1-Trichloroethane          | ug/L    | 20    | 19.1   | 95    | 73-125 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L    | 20    | 20.5   | 102   | 75-128 |            |
| 1,1,2-Trichloroethane          | ug/L    | 20    | 19.6   | 98    | 75-129 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L    | 20    | 19.2   | 96    | 69-125 |            |
| 1,1-Dichloroethane             | ug/L    | 20    | 18.3   | 91    | 75-131 |            |
| 1,1-Dichloroethene             | ug/L    | 20    | 17.8   | 89    | 72-125 |            |
| 1,1-Dichloropropene            | ug/L    | 20    | 18.5   | 93    | 74-125 |            |
| 1,2,3-Trichlorobenzene         | ug/L    | 20    | 19.5   | 97    | 68-127 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| LABORATORY CONTROL SAMPLE   | : 2265751 |          |              |          |                  |            |
|-----------------------------|-----------|----------|--------------|----------|------------------|------------|
|                             |           | Spike    | LCS          | LCS      | % Rec            | 0          |
| Parameter                   | Units     | Conc.    | Result       | % Rec    | Limits           | Qualifiers |
| ,2,3-Trichloropropane       | ug/L      | 20       | 19.7         | 99       | 75-125           |            |
| ,2,4-Trichlorobenzene       | ug/L      | 20       | 19.4         | 97       | 70-125           |            |
| ,2,4-Trimethylbenzene       | ug/L      | 20       | 20.6         | 103      | 75-130           |            |
| ,2-Dibromo-3-chloropropane  | ug/L      | 50       | 46.3         | 93       | 74-125           |            |
| ,2-Dibromoethane (EDB)      | ug/L      | 20       | 19.0         | 95       | 75-125           |            |
| ,2-Dichlorobenzene          | ug/L      | 20       | 20.2         | 101      | 75-125           |            |
| ,2-Dichloroethane           | ug/L      | 20       | 17.5         | 87       | 72-129           |            |
| ,2-Dichloropropane          | ug/L      | 20       | 19.1         | 96       | 71-129           |            |
| ,3,5-Trimethylbenzene       | ug/L      | 20       | 20.7         | 104      | 75-127           |            |
| ,3-Dichlorobenzene          | ug/L      | 20       | 20.5         | 102      | 75-125           |            |
| ,3-Dichloropropane          | ug/L      | 20       | 19.7         | 99       | 75-125           |            |
| ,4-Dichlorobenzene          | ug/L      | 20       | 19.3         | 97       | 75-125           |            |
| ,2-Dichloropropane          | ug/L      | 20       | 18.0         | 90       | 71-125           |            |
| -Butanone (MEK)             | ug/L      | 100      | 91.4         | 91       | 58-150           |            |
| 2-Chlorotoluene             | ug/L      | 20       | 20.1         | 100      | 75-125           |            |
| -Chlorotoluene              | ug/L      | 20       | 20.4         | 102      | 75-130           |            |
| -Methyl-2-pentanone (MIBK)  | ug/L      | 100      | 89.9         | 90       | 72-140           |            |
| cetone                      | ug/L      | 100      | 90.9         | 91       | 69-137           |            |
| llyl chloride               | ug/L      | 20       | 17.1         | 86       | 68-132           |            |
| Benzene                     | ug/L      | 20       | 18.2         | 91       | 75-125           |            |
| Bromobenzene                | ug/L      | 20       | 20.6         | 103      | 75-125           |            |
| Bromochloromethane          | ug/L      | 20       | 19.3         | 96       | 75-125           |            |
| romodichloromethane         | ug/L      | 20       | 18.9         | 94       | 69-128           |            |
| Bromoform                   | ug/L      | 20       | 15.8         | 79       | 75-125           |            |
| Bromomethane                | ug/L      | 20       | 13.7         | 69       | 30-150           |            |
| Carbon tetrachloride        | ug/L      | 20       | 17.1         | 86       | 74-125           |            |
| Chlorobenzene               | ug/L      | 20       | 18.5         | 93       | 75-125           |            |
| Chloroethane                | ug/L      | 20       | 18.5         | 93       | 60-150           |            |
| Chloroform                  | ug/L      | 20       | 18.1         | 91       | 75-126           |            |
| Chloromethane               | ug/L      | 20       | 16.1         | 81       | 46-150           |            |
| is-1,2-Dichloroethene       | ug/L      | 20       | 18.9         | 94       | 75-126           |            |
| is-1,3-Dichloropropene      |           | 20       | 18.6         | 93       | 75-126<br>75-125 |            |
| Dibromochloromethane        | ug/L      | 20       | 18.4         | 93<br>92 | 75-125<br>75-125 |            |
| Dibromochioromethane        | ug/L      | 20       | 20.5         | 102      | 75-125<br>72-127 |            |
| Dichlorodifluoromethane     | ug/L      | 20<br>20 | 20.5<br>17.0 | 85       | 72-127<br>58-135 |            |
| Dichlorofluoromethane       | ug/L      | 20       | 17.0         | 92       | 68-149           |            |
|                             | ug/L      | 20<br>20 |              | 92<br>93 | 66-149           |            |
| Diethyl ether (Ethyl ether) | ug/L      |          | 18.5         |          |                  |            |
| thylbenzene                 | ug/L      | 20       | 17.5         | 87       | 75-125           |            |
| lexachloro-1,3-butadiene    | ug/L      | 20       | 19.8         | 99       | 73-125           |            |
| sopropylbenzene (Cumene)    | ug/L      | 20       | 19.2         | 96       | 69-140           |            |
| Methyl-tert-butyl ether     | ug/L      | 20       | 18.7         | 94       | 75-126           |            |
| Methylene Chloride          | ug/L      | 20       | 18.3         | 91       | 71-130           |            |
| -Butylbenzene               | ug/L      | 20       | 19.8         | 99       | 71-129           |            |
| -Propylbenzene              | ug/L      | 20       | 20.4         | 102      | 71-133           |            |
| laphthalene                 | ug/L      | 20       | 19.5         | 97       | 59-137           |            |
| o-Isopropyltoluene          | ug/L      | 20       | 21.0         | 105      | 74-127           |            |
| sec-Butylbenzene            | ug/L      | 20       | 21.0         | 105      | 66-140           |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| ABORATORY CONTROL SAMPLE: | 2265751 |       |        |       |        |            |
|---------------------------|---------|-------|--------|-------|--------|------------|
|                           |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                 | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| tyrene                    | ug/L    | 20    | 18.7   | 93    | 75-125 |            |
| -Butylbenzene             | ug/L    | 20    | 21.6   | 108   | 73-129 |            |
| achloroethene             | ug/L    | 20    | 19.5   | 98    | 75-125 |            |
| ahydrofuran               | ug/L    | 200   | 193    | 96    | 71-129 |            |
| ene                       | ug/L    | 20    | 17.9   | 90    | 75-125 |            |
| s-1,2-Dichloroethene      | ug/L    | 20    | 19.2   | 96    | 75-125 |            |
| -1,3-Dichloropropene      | ug/L    | 20    | 18.5   | 92    | 75-125 |            |
| oroethene                 | ug/L    | 20    | 19.7   | 98    | 75-125 |            |
| orofluoromethane          | ug/L    | 20    | 17.2   | 86    | 74-128 |            |
| chloride                  | ug/L    | 20    | 19.2   | 96    | 71-131 |            |
| ne (Total)                | ug/L    | 60    | 55.8   | 93    | 75-125 |            |
| ichloroethane-d4 (S)      | %.      |       |        | 98    | 75-125 |            |
| mofluorobenzene (S)       | %.      |       |        | 99    | 75-125 |            |
| ene-d8 (S)                | %.      |       |        | 98    | 75-125 |            |

| MATRIX SPIKE & MATRIX SPIR      | KE DUPLICA  | TE: 22657:           | 52                   |                       | 2265753      |               |             |              |                 |     |            |      |
|---------------------------------|-------------|----------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|-----------------|-----|------------|------|
| Parameter                       | 10<br>Units | 0347908001<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qual |
| 1,1,1,2-Tetrachloroethane       | ug/L        | ND                   | 20                   | 20                    | 18.9         | 19.0          | 94          | 95           | 75-125          | 0   | 30         |      |
| 1,1,1-Trichloroethane           | ug/L        | ND                   | 20                   | 20                    | 19.7         | 20.6          | 99          | 103          | 71-144          | 4   | 30         |      |
| 1,1,2,2-Tetrachloroethane       | ug/L        | ND                   | 20                   | 20                    | 18.6         | 19.5          | 93          | 97           | 75-131          | 5   | 30         |      |
| 1,1,2-Trichloroethane           | ug/L        | ND                   | 20                   | 20                    | 19.1         | 19.2          | 96          | 96           | 75-125          | 0   | 30         |      |
| 1,1,2-Trichlorotrifluoroethane  | ug/L        | ND                   | 20                   | 20                    | 21.1         | 21.2          | 105         | 106          | 75-150          | 1   | 30         |      |
| 1,1-Dichloroethane              | ug/L        | ND                   | 20                   | 20                    | 20.0         | 19.6          | 100         | 98           | 64-150          | 2   | 30         |      |
| 1,1-Dichloroethene              | ug/L        | ND                   | 20                   | 20                    | 19.0         | 19.9          | 95          | 99           | 68-150          | 4   | 30         |      |
| 1,1-Dichloropropene             | ug/L        | ND                   | 20                   | 20                    | 20.1         | 19.9          | 100         | 99           | 68-145          | 1   | 30         |      |
| 1,2,3-Trichlorobenzene          | ug/L        | ND                   | 20                   | 20                    | 19.2         | 20.2          | 96          | 101          | 57-142          | 5   | 30         |      |
| 1,2,3-Trichloropropane          | ug/L        | ND                   | 20                   | 20                    | 18.0         | 18.4          | 90          | 92           | 75-125          | 2   | 30         |      |
| 1,2,4-Trichlorobenzene          | ug/L        | ND                   | 20                   | 20                    | 19.0         | 19.4          | 95          | 97           | 60-135          | 2   | 30         |      |
| 1,2,4-Trimethylbenzene          | ug/L        | ND                   | 20                   | 20                    | 18.5         | 18.8          | 92          | 94           | 67-148          | 2   | 30         |      |
| 1,2-Dibromo-3-<br>chloropropane | ug/L        | ND                   | 50                   | 50                    | 42.6         | 43.8          | 85          | 88           | 32-137          | 3   | 30         |      |
| 1,2-Dibromoethane (EDB)         | ug/L        | ND                   | 20                   | 20                    | 17.7         | 18.4          | 89          | 92           | 75-125          | 3   | 30         |      |
| 1,2-Dichlorobenzene             | ug/L        | ND                   | 20                   | 20                    | 18.5         | 18.7          | 92          | 94           | 75-125          | 1   | 30         |      |
| 1,2-Dichloroethane              | ug/L        | ND                   | 20                   | 20                    | 16.7         | 16.5          | 83          | 82           | 62-138          | 1   | 30         |      |
| 1,2-Dichloropropane             | ug/L        | ND                   | 20                   | 20                    | 18.6         | 19.8          | 93          | 99           | 62-144          | 6   | 30         |      |
| 1,3,5-Trimethylbenzene          | ug/L        | ND                   | 20                   | 20                    | 18.6         | 19.3          | 93          | 97           | 67-148          | 4   | 30         |      |
| 1,3-Dichlorobenzene             | ug/L        | ND                   | 20                   | 20                    | 19.3         | 19.2          | 96          | 96           | 74-131          | 0   | 30         |      |
| 1,3-Dichloropropane             | ug/L        | ND                   | 20                   | 20                    | 19.2         | 19.3          | 96          | 97           | 75-127          | 1   | 30         |      |
| 1,4-Dichlorobenzene             | ug/L        | ND                   | 20                   | 20                    | 18.3         | 18.3          | 92          | 91           | 74-126          | 0   | 30         |      |
| 2,2-Dichloropropane             | ug/L        | ND                   | 20                   | 20                    | 18.2         | 18.3          | 91          | 92           | 56-146          | 1   | 30         |      |
| 2-Butanone (MEK)                | ug/L        | ND                   | 100                  | 100                   | 88.5         | 88.5          | 89          | 88           | 47-150          | 0   | 30         |      |
| 2-Chlorotoluene                 | ug/L        | ND                   | 20                   | 20                    | 18.4         | 18.9          | 92          | 95           | 74-137          | 3   | 30         |      |
| 4-Chlorotoluene                 | ug/L        | ND                   | 20                   | 20                    | 19.2         | 19.2          | 96          | 96           | 72-138          | 0   | 30         |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| MATRIX SPIKE & MATRIX SPI                           | KE DUPLICAT  | TE: 22657 | 52       |          | 2265753 |        |          |          |                  |     |     |     |
|-----------------------------------------------------|--------------|-----------|----------|----------|---------|--------|----------|----------|------------------|-----|-----|-----|
|                                                     |              |           | MS       | MSD      |         |        |          |          |                  |     |     |     |
|                                                     | 10           | 347908001 | Spike    | Spike    | MS      | MSD    | MS       | MSD      | % Rec            |     | Max |     |
| Parameter                                           | Units        | Result    | Conc.    | Conc.    | Result  | Result | % Rec    | % Rec    | Limits           | RPD | RPD | Qua |
| I-Methyl-2-pentanone<br>MIBK)                       | ug/L         | ND        | 100      | 100      | 84.6    | 85.4   | 85       | 85       | 60-147           | 1   | 30  |     |
| Acetone                                             | ug/L         | ND        | 100      | 100      | 85.8    | 83.7   | 86       | 84       | 61-150           | 2   | 30  |     |
| Allyl chloride                                      | ug/L         | ND        | 20       | 20       | 18.1    | 18.4   | 91       | 92       | 53-150           | 1   | 30  |     |
| Benzene                                             | ug/L         | ND        | 20       | 20       | 17.1    | 17.6   | 85       | 88       | 52-147           | 3   | 30  |     |
| Bromobenzene                                        | ug/L         | ND        | 20       | 20       | 18.6    | 19.2   | 93       | 96       | 75-129           | 3   | 30  |     |
| Bromochloromethane                                  | ug/L         | ND        | 20       | 20       | 18.6    | 19.6   | 93       | 98       | 72-128           | 5   | 30  |     |
| Bromodichloromethane                                | ug/L         | ND        | 20       | 20       | 17.9    | 17.9   | 89       | 90       | 65-137           | 0   | 30  |     |
| Bromoform                                           | ug/L         | ND        | 20       | 20       | 16.0    | 16.2   | 80       | 81       | 59-133           | 1   | 30  |     |
| Bromomethane                                        | ug/L         | ND        | 20       | 20       | 8.1     | 13.3   | 40       | 66       | 30-150           | 49  | 30  | R1  |
| Carbon tetrachloride                                | ug/L         | ND        | 20       | 20       | 17.7    | 17.9   | 88       | 90       | 73-144           | 1   |     |     |
| Chlorobenzene                                       | ug/L         | ND        | 20       | 20       | 18.1    | 18.1   | 91       | 90       | 75-126           |     |     |     |
| Chloroethane                                        | ug/L         | ND        | 20       | 20       | 15.2    | 19.8   | 76       | 99       | 55-150           | 26  |     |     |
| Chloroform                                          | ug/L         | ND        | 20       | 20       | 17.5    | 17.5   | 88       | 88       | 66-143           | 0   |     |     |
| Chloromethane                                       | ug/L         | ND        | 20       | 20       | 10.2    | 16.6   | 51       | 83       | 42-150           |     |     | R1  |
| is-1,2-Dichloroethene                               | ug/L         | ND        | 20       | 20       | 20.5    | 19.7   | 98       | 94       | 65-143           | 4   |     |     |
| sis-1,3-Dichloropropene                             | ug/L         | ND        | 20       | 20       | 17.9    | 18.1   | 90       | 91       | 75-125           |     |     |     |
| Dibromochloromethane                                | ug/L         | ND        | 20       | 20       | 17.0    | 17.5   | 85       | 87       | 75-125           |     |     |     |
| Dibromomethane                                      | ug/L         | ND        | 20       | 20       | 19.1    | 19.8   | 95       | 99       | 66-133           | 4   |     |     |
| Dichlorodifluoromethane                             | ug/L         | ND        | 20       | 20       | 14.4    | 20.4   | 72       | 102      | 74-150           |     |     | M1, |
| Dichlorofluoromethane                               | ug/L         | ND        | 20       | 20       | 14.1    | 20.4   | 70       | 100      | 68-150           | 35  |     | ,   |
| Diethyl ether (Ethyl ether)                         | ug/L         | ND        | 20       | 20       | 18.6    | 18.6   | 93       | 93       | 57-148           | 0   |     |     |
| Ethylbenzene                                        | ug/L         | ND        | 20       | 20       | 17.2    | 17.1   | 86       | 86       | 67-149           | 0   |     |     |
| lexachloro-1,3-butadiene                            | ug/L<br>ug/L | ND        | 20       | 20       | 20.1    | 25.3   | 100      | 127      | 65-143           | 23  |     |     |
| •                                                   | ug/L<br>ug/L | ND<br>ND  | 20       | 20       | 19.2    | 19.6   | 96       | 98       | 64-150           |     |     |     |
| sopropylbenzene (Cumene)<br>Nethyl-tert-butyl ether | _            | ND<br>ND  | 20       | 20       | 19.2    | 19.0   | 95       | 95       | 71-130           | 0   |     |     |
|                                                     | ug/L         | ND<br>ND  | 20       | 20       | 16.5    | 17.3   | 93<br>82 | 95<br>87 | 67-137           | 5   |     |     |
| Methylene Chloride                                  | ug/L         | ND<br>ND  | 20       | 20       | 19.3    | 17.3   | 96       | 98       | 70-138           | 2   |     |     |
| -Butylbenzene                                       | ug/L         | ND<br>ND  |          |          |         | 20.1   |          |          |                  | 2   |     |     |
| -Propylbenzene                                      | ug/L         | ND<br>ND  | 20<br>20 | 20<br>20 | 19.6    | 18.8   | 98       | 100      | 70-148<br>39-150 |     |     |     |
| laphthalene                                         | ug/L         |           |          |          | 17.9    |        | 89       | 94       |                  |     |     |     |
| -Isopropyltoluene                                   | ug/L         | ND        | 20       | 20<br>20 | 18.5    | 19.4   | 93       | 97       | 74-138           | 4   |     |     |
| ec-Butylbenzene                                     | ug/L         | ND        | 20       |          | 20.6    | 21.8   | 103      | 109      | 64-150           |     |     |     |
| Styrene                                             | ug/L         | ND        | 20       | 20       | 17.5    | 17.7   | 87       | 89       | 75-132           |     |     |     |
| ert-Butylbenzene                                    | ug/L         | ND        | 20       | 20       | 20.4    | 22.5   | 102      | 113      | 75-138           | 10  |     |     |
| etrachloroethene                                    | ug/L         | 8.7       | 20       | 20       | 26.3    | 27.6   | 88       | 95       | 73-136           | 5   |     |     |
| etrahydrofuran                                      | ug/L         | ND        | 200      | 200      | 173     | 172    | 86       | 86       | 68-142           |     |     |     |
| oluene                                              | ug/L         | ND        | 20       | 20       | 17.0    | 17.1   | 85       | 86       | 69-139           |     |     |     |
| ans-1,2-Dichloroethene                              | ug/L         | ND        | 20       | 20       | 18.7    | 19.5   | 93       | 98       | 75-135           |     |     |     |
| ans-1,3-Dichloropropene                             | ug/L         | ND        | 20       | 20       | 17.7    | 17.8   | 89       | 89       | 66-136           |     |     |     |
| richloroethene                                      | ug/L         | 0.49      | 20       | 20       | 20.5    | 20.9   | 100      | 102      | 74-135           |     |     |     |
| richlorofluoromethane                               | ug/L         | ND        | 20       | 20       | 15.1    | 21.6   | 75       | 108      | 75-150           |     |     | R1  |
| /inyl chloride                                      | ug/L         | ND        | 20       | 20       | 15.7    | 22.8   | 78       | 114      | 69-150           |     |     | R1  |
| (ylene (Total)                                      | ug/L         | ND        | 60       | 60       | 55.3    | 55.0   | 92       | 92       | 70-147           |     | 30  |     |
| ,2-Dichloroethane-d4 (S)                            | %.           |           |          |          |         |        | 100      | 98       | 75-125           |     |     |     |
| I-Bromofluorobenzene (S)                            | %.           |           |          |          |         |        | 96       | 99       | 75-125           |     |     |     |
| oluene-d8 (S)                                       | %.           |           |          |          |         |        | 97       | 98       | 75-125           |     |     |     |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL DATA**

Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

QC Batch: MSV/35693 Analysis Method: EPA 8260B
QC Batch Method: EPA 8260B Analysis Description: 8260B MSV 465 W

Associated Lab Samples: 10348956008, 10348956010, 10348956015

METHOD BLANK: 2267622 Matrix: Water

Associated Lab Samples: 10348956008, 10348956010, 10348956015

|                                |       | Blank R |       |                |            |
|--------------------------------|-------|---------|-------|----------------|------------|
| Parameter                      | Units | Result  | Limit | Analyzed       | Qualifiers |
| 1,1,1,2-Tetrachloroethane      | ug/L  | ND      | 4.0   | 05/25/16 02:35 |            |
| 1,1,1-Trichloroethane          | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| 1,1,2-Trichloroethane          | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| 1,1-Dichloroethane             | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| 1,1-Dichloroethene             | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| 1,1-Dichloropropene            | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| 1,2,3-Trichlorobenzene         | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| 1,2,3-Trichloropropane         | ug/L  | ND      | 4.0   | 05/25/16 02:35 |            |
| 1,2,4-Trichlorobenzene         | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| 1,2,4-Trimethylbenzene         | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| 1,2-Dibromo-3-chloropropane    | ug/L  | ND      | 10.0  | 05/25/16 02:35 |            |
| 1,2-Dibromoethane (EDB)        | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| 1,2-Dichlorobenzene            | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| 1,2-Dichloroethane             | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| 1,2-Dichloropropane            | ug/L  | ND      | 4.0   | 05/25/16 02:35 |            |
| 1,3,5-Trimethylbenzene         | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| 1,3-Dichlorobenzene            | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| 1,3-Dichloropropane            | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| 1,4-Dichlorobenzene            | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| 2,2-Dichloropropane            | ug/L  | ND      | 4.0   | 05/25/16 02:35 |            |
| 2-Butanone (MEK)               | ug/L  | ND      | 5.0   | 05/25/16 02:35 |            |
| 2-Chlorotoluene                | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| 4-Chlorotoluene                | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| 4-Methyl-2-pentanone (MIBK)    | ug/L  | ND      | 5.0   | 05/25/16 02:35 |            |
| Acetone                        | ug/L  | ND      | 20.0  | 05/25/16 02:35 |            |
| Allyl chloride                 | ug/L  | ND      | 4.0   | 05/25/16 02:35 |            |
| Benzene                        | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| Bromobenzene                   | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| Bromochloromethane             | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| Bromodichloromethane           | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| Bromoform                      | ug/L  | ND      | 4.0   | 05/25/16 02:35 |            |
| Bromomethane                   | ug/L  | ND      | 4.0   | 05/25/16 02:35 |            |
| Carbon tetrachloride           | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| Chlorobenzene                  | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| Chloroethane                   | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| Chloroform                     | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| Chloromethane                  | ug/L  | ND      | 4.0   | 05/25/16 02:35 |            |
| cis-1,2-Dichloroethene         | ug/L  | ND      | 1.0   | 05/25/16 02:35 |            |
| cis-1,3-Dichloropropene        | ug/L  | ND      | 4.0   | 05/25/16 02:35 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## **QUALITY CONTROL DATA**

Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

METHOD BLANK: 2267622 Matrix: Water

Associated Lab Samples: 10348956008, 10348956010, 10348956015

| Parameter                   | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|-----------------------------|-------|-----------------|--------------------|----------------|------------|
| Dibromochloromethane        | ug/L  | ND ND           | 1.0                | 05/25/16 02:35 |            |
| Dibromomethane              | ug/L  | ND              | 4.0                | 05/25/16 02:35 |            |
| Dichlorodifluoromethane     | ug/L  | ND              | 1.0                | 05/25/16 02:35 |            |
| Dichlorofluoromethane       | ug/L  | ND              | 1.0                | 05/25/16 02:35 |            |
| Diethyl ether (Ethyl ether) | ug/L  | ND              | 4.0                | 05/25/16 02:35 |            |
| Ethylbenzene                | ug/L  | ND              | 1.0                | 05/25/16 02:35 |            |
| Hexachloro-1,3-butadiene    | ug/L  | ND              | 4.0                | 05/25/16 02:35 |            |
| Isopropylbenzene (Cumene)   | ug/L  | ND              | 1.0                | 05/25/16 02:35 |            |
| Methyl-tert-butyl ether     | ug/L  | ND              | 1.0                | 05/25/16 02:35 |            |
| Methylene Chloride          | ug/L  | ND              | 4.0                | 05/25/16 02:35 |            |
| n-Butylbenzene              | ug/L  | ND              | 1.0                | 05/25/16 02:35 |            |
| n-Propylbenzene             | ug/L  | ND              | 1.0                | 05/25/16 02:35 |            |
| Naphthalene                 | ug/L  | ND              | 4.0                | 05/25/16 02:35 |            |
| p-Isopropyltoluene          | ug/L  | ND              | 1.0                | 05/25/16 02:35 |            |
| sec-Butylbenzene            | ug/L  | ND              | 1.0                | 05/25/16 02:35 |            |
| Styrene                     | ug/L  | ND              | 1.0                | 05/25/16 02:35 |            |
| tert-Butylbenzene           | ug/L  | ND              | 1.0                | 05/25/16 02:35 |            |
| Tetrachloroethene           | ug/L  | ND              | 1.0                | 05/25/16 02:35 |            |
| Tetrahydrofuran             | ug/L  | ND              | 10.0               | 05/25/16 02:35 |            |
| Toluene                     | ug/L  | ND              | 1.0                | 05/25/16 02:35 |            |
| trans-1,2-Dichloroethene    | ug/L  | ND              | 1.0                | 05/25/16 02:35 |            |
| trans-1,3-Dichloropropene   | ug/L  | ND              | 4.0                | 05/25/16 02:35 |            |
| Trichloroethene             | ug/L  | ND              | 0.40               | 05/25/16 02:35 |            |
| Trichlorofluoromethane      | ug/L  | ND              | 1.0                | 05/25/16 02:35 |            |
| Vinyl chloride              | ug/L  | ND              | 0.40               | 05/25/16 02:35 |            |
| Xylene (Total)              | ug/L  | ND              | 3.0                | 05/25/16 02:35 |            |
| 1,2-Dichloroethane-d4 (S)   | %.    | 102             | 75-125             | 05/25/16 02:35 |            |
| 4-Bromofluorobenzene (S)    | %.    | 102             | 75-125             | 05/25/16 02:35 |            |
| Toluene-d8 (S)              | %.    | 100             | 75-125             | 05/25/16 02:35 |            |

| LABORATORY CONTROL SAMPLE:     | 2267623 |       |        |       |        |            |
|--------------------------------|---------|-------|--------|-------|--------|------------|
|                                |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                      | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,1,1,2-Tetrachloroethane      | ug/L    | 20    | 17.8   | 89    | 75-125 |            |
| 1,1,1-Trichloroethane          | ug/L    | 20    | 19.9   | 100   | 73-125 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L    | 20    | 19.2   | 96    | 75-128 |            |
| 1,1,2-Trichloroethane          | ug/L    | 20    | 20.2   | 101   | 75-129 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L    | 20    | 20.4   | 102   | 69-125 |            |
| 1,1-Dichloroethane             | ug/L    | 20    | 18.0   | 90    | 75-131 |            |
| 1,1-Dichloroethene             | ug/L    | 20    | 17.9   | 89    | 72-125 |            |
| 1,1-Dichloropropene            | ug/L    | 20    | 17.4   | 87    | 74-125 |            |
| 1,2,3-Trichlorobenzene         | ug/L    | 20    | 18.6   | 93    | 68-127 |            |
| 1,2,3-Trichloropropane         | ug/L    | 20    | 20.0   | 100   | 75-125 |            |
| 1,2,4-Trichlorobenzene         | ug/L    | 20    | 17.8   | 89    | 70-125 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| ABORATORY CONTROL SAMPLE:   | 2267623      |       |        |       |        |           |
|-----------------------------|--------------|-------|--------|-------|--------|-----------|
|                             |              | Spike | LCS    | LCS   | % Rec  |           |
| Parameter                   | Units        | Conc. | Result | % Rec | Limits | Qualifier |
| ,2,4-Trimethylbenzene       | ug/L         |       | 19.2   | 96    | 75-130 |           |
| ,2-Dibromo-3-chloropropane  | ug/L         | 50    | 44.3   | 89    | 74-125 |           |
| ,2-Dibromoethane (EDB)      | ug/L         | 20    | 19.7   | 98    | 75-125 |           |
| ,2-Dichlorobenzene          | ug/L         | 20    | 19.3   | 97    | 75-125 |           |
| ,2-Dichloroethane           | ug/L         | 20    | 17.2   | 86    | 72-129 |           |
| ,2-Dichloropropane          | ug/L         | 20    | 19.2   | 96    | 71-129 |           |
| ,3,5-Trimethylbenzene       | ug/L         | 20    | 19.6   | 98    | 75-127 |           |
| ,3-Dichlorobenzene          | ug/L         | 20    | 19.3   | 97    | 75-125 |           |
| ,3-Dichloropropane          | ug/L         | 20    | 19.3   | 97    | 75-125 |           |
| 4-Dichlorobenzene           | ug/L         | 20    | 19.6   | 98    | 75-125 |           |
| ,2-Dichloropropane          | ug/L         | 20    | 17.8   | 89    | 71-125 |           |
| -Butanone (MEK)             | ug/L         | 100   | 85.2   | 85    | 58-150 |           |
| -Chlorotoluene              | ug/L         | 20    | 19.4   | 97    | 75-125 |           |
| -Chlorotoluene              | ug/L         | 20    | 19.0   | 95    | 75-130 |           |
| -Methyl-2-pentanone (MIBK)  | ug/L         | 100   | 90.7   | 91    | 72-140 |           |
| cetone                      | ug/L         | 100   | 96.4   | 96    | 69-137 |           |
| Ilyl chloride               | ug/L         | 20    | 18.6   | 93    | 68-132 |           |
| enzene                      | ug/L         | 20    | 18.9   | 95    | 75-125 |           |
| romobenzene                 | ug/L         | 20    | 20.7   | 103   | 75-125 |           |
| romochloromethane           | ug/L         | 20    | 21.1   | 105   | 75-125 |           |
| romodichloromethane         | ug/L         | 20    | 21.2   | 106   | 69-128 |           |
| romoform                    | ug/L         | 20    | 15.8   | 79    | 75-125 |           |
| romomethane                 | ug/L         | 20    | 12.7   | 63    | 30-150 |           |
| arbon tetrachloride         | ug/L         | 20    | 20.4   | 102   | 74-125 |           |
| hlorobenzene                | ug/L         | 20    | 18.0   | 90    | 75-125 |           |
| hloroethane                 | ug/L         | 20    | 23.7   | 118   | 60-150 |           |
| hloroform                   | ug/L         | 20    | 19.7   | 99    | 75-126 |           |
| hloromethane                | ug/L         | 20    | 17.6   | 88    | 46-150 |           |
| is-1,2-Dichloroethene       | ug/L         | 20    | 19.1   | 96    | 75-126 |           |
| s-1,3-Dichloropropene       | ug/L         | 20    | 18.7   | 93    | 75-125 |           |
| ibromochloromethane         | ug/L         | 20    | 17.0   | 85    | 75-125 |           |
| Dibromomethane              | ug/L         | 20    | 21.4   | 107   | 72-127 |           |
| Dichlorodifluoromethane     | ug/L         | 20    | 23.7   | 119   | 58-135 |           |
| vichlorofluoromethane       | ug/L         | 20    | 21.7   | 108   | 68-149 |           |
| riethyl ether (Ethyl ether) | ug/L         | 20    | 18.8   | 94    | 66-144 |           |
| thylbenzene                 | ug/L         | 20    | 17.4   | 87    | 75-125 |           |
| lexachloro-1,3-butadiene    | ug/L         | 20    | 20.5   | 103   | 73-125 |           |
| sopropylbenzene (Cumene)    | ug/L         | 20    | 17.9   | 90    | 69-140 |           |
| lethyl-tert-butyl ether     | ug/L         | 20    | 19.0   | 95    | 75-126 |           |
| lethylene Chloride          | ug/L         | 20    | 18.0   | 90    | 71-130 |           |
| -Butylbenzene               | ug/L         | 20    | 19.2   | 96    | 71-129 |           |
| -Propylbenzene              | ug/L         | 20    | 18.4   | 92    | 71-123 |           |
| aphthalene                  | ug/L         | 20    | 18.0   | 90    | 59-137 |           |
| -Isopropyltoluene           | ug/L         | 20    | 19.9   | 99    | 74-127 |           |
| ec-Butylbenzene             | ug/L         | 20    | 18.3   | 91    | 66-140 |           |
| tyrene                      | ug/L         | 20    | 18.7   | 94    | 75-125 |           |
| ert-Butylbenzene            | ug/L<br>ug/L | 20    | 18.6   | 93    | 73-125 |           |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| LABORATORY CONTROL SAMPLE: | 2267623 |       |        |       |        |            |
|----------------------------|---------|-------|--------|-------|--------|------------|
|                            |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                  | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| Tetrachloroethene          | ug/L    | 20    | 18.4   | 92    | 75-125 |            |
| Tetrahydrofuran            | ug/L    | 200   | 190    | 95    | 71-129 |            |
| Toluene                    | ug/L    | 20    | 17.0   | 85    | 75-125 |            |
| trans-1,2-Dichloroethene   | ug/L    | 20    | 19.7   | 98    | 75-125 |            |
| trans-1,3-Dichloropropene  | ug/L    | 20    | 18.6   | 93    | 75-125 |            |
| Trichloroethene            | ug/L    | 20    | 20.4   | 102   | 75-125 |            |
| Trichlorofluoromethane     | ug/L    | 20    | 21.5   | 107   | 74-128 |            |
| Vinyl chloride             | ug/L    | 20    | 21.8   | 109   | 71-131 |            |
| Xylene (Total)             | ug/L    | 60    | 52.8   | 88    | 75-125 |            |
| 1,2-Dichloroethane-d4 (S)  | %.      |       |        | 96    | 75-125 |            |
| 4-Bromofluorobenzene (S)   | %.      |       |        | 99    | 75-125 |            |
| Toluene-d8 (S)             | %.      |       |        | 94    | 75-125 |            |

| MATRIX SPIKE & MATRIX SPIR     | KE DUPLIC | ATE: 22689  | 78    |       | 2268979 |        |       |       |        |     |          |
|--------------------------------|-----------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|----------|
|                                |           |             | MS    | MSD   |         |        |       |       |        |     |          |
|                                | •         | 10349683001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max      |
| Parameter                      | Units     | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD Qual |
| 1,1,1,2-Tetrachloroethane      | ug/L      | ND          | 20    | 20    | 16.7    | 14.5   | 84    | 72    | 75-125 | 14  | 30 M1    |
| 1,1,1-Trichloroethane          | ug/L      | ND          | 20    | 20    | 21.2    | 17.3   | 106   | 86    | 71-144 | 20  | 30       |
| 1,1,2,2-Tetrachloroethane      | ug/L      | ND          | 20    | 20    | 18.2    | 15.3   | 91    | 76    | 75-131 | 17  | 30       |
| 1,1,2-Trichloroethane          | ug/L      | ND          | 20    | 20    | 18.8    | 16.1   | 94    | 81    | 75-125 | 15  | 30       |
| 1,1,2-Trichlorotrifluoroethane | ug/L      | ND          | 20    | 20    | 22.0    | 17.5   | 110   | 88    | 75-150 | 23  | 30       |
| 1,1-Dichloroethane             | ug/L      | ND          | 20    | 20    | 19.5    | 16.1   | 98    | 81    | 64-150 | 19  | 30       |
| 1,1-Dichloroethene             | ug/L      | ND          | 20    | 20    | 19.5    | 16.7   | 97    | 84    | 68-150 | 15  | 30       |
| 1,1-Dichloropropene            | ug/L      | ND          | 20    | 20    | 18.4    | 15.2   | 92    | 76    | 68-145 | 19  | 30       |
| 1,2,3-Trichlorobenzene         | ug/L      | ND          | 20    | 20    | 17.6    | 16.1   | 88    | 81    | 57-142 | 9   | 30       |
| 1,2,3-Trichloropropane         | ug/L      | ND          | 20    | 20    | 18.0    | 14.9   | 90    | 75    | 75-125 | 19  | 30       |
| 1,2,4-Trichlorobenzene         | ug/L      | ND          | 20    | 20    | 17.6    | 14.4   | 88    | 72    | 60-135 | 20  | 30       |
| 1,2,4-Trimethylbenzene         | ug/L      | ND          | 20    | 20    | 17.6    | 14.2   | 88    | 71    | 67-148 | 22  | 30       |
| 1,2-Dibromo-3-                 | ug/L      | ND          | 50    | 50    | 39.9    | 35.4   | 80    | 71    | 32-137 | 12  | 30       |
| chloropropane                  | -         |             |       |       |         |        |       |       |        |     |          |
| 1,2-Dibromoethane (EDB)        | ug/L      | ND          | 20    | 20    | 18.3    | 15.4   | 91    | 77    | 75-125 |     | 30       |
| 1,2-Dichlorobenzene            | ug/L      | ND          | 20    | 20    | 18.1    | 14.3   | 91    | 71    | 75-125 |     | 30 M1    |
| 1,2-Dichloroethane             | ug/L      | ND          | 20    | 20    | 17.3    | 14.4   | 86    | 71    | 62-138 |     | 30       |
| 1,2-Dichloropropane            | ug/L      | ND          | 20    | 20    | 19.2    | 16.2   | 96    | 81    | 62-144 |     | 30       |
| 1,3,5-Trimethylbenzene         | ug/L      | ND          | 20    | 20    | 17.9    | 14.6   | 89    | 73    | 67-148 | 20  | 30       |
| 1,3-Dichlorobenzene            | ug/L      | ND          | 20    | 20    | 18.6    | 14.4   | 93    | 72    | 74-131 | 25  | 30 M1    |
| 1,3-Dichloropropane            | ug/L      | ND          | 20    | 20    | 18.0    | 15.3   | 90    | 77    | 75-127 | 16  | 30       |
| 1,4-Dichlorobenzene            | ug/L      | ND          | 20    | 20    | 19.1    | 14.9   | 95    | 75    | 74-126 | 24  | 30       |
| 2,2-Dichloropropane            | ug/L      | ND          | 20    | 20    | 17.6    | 14.2   | 88    | 71    | 56-146 | 22  | 30       |
| 2-Butanone (MEK)               | ug/L      | ND          | 100   | 100   | 77.5    | 65.8   | 78    | 66    | 47-150 | 16  | 30       |
| 2-Chlorotoluene                | ug/L      | ND          | 20    | 20    | 18.2    | 14.6   | 91    | 73    | 74-137 | 22  | 30 M1    |
| 4-Chlorotoluene                | ug/L      | ND          | 20    | 20    | 18.2    | 14.5   | 91    | 73    | 72-138 | 22  | 30       |
| 4-Methyl-2-pentanone (MIBK)    | ug/L      | ND          | 100   | 100   | 85.6    | 72.8   | 86    | 73    | 60-147 | 16  | 30       |
| Acetone                        | ug/L      | ND          | 100   | 100   | 90.4    | 77.9   | 90    | 78    | 61-150 | 15  | 30       |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| MATRIX SPIKE & MATRIX SPI   | KE DUPLIC | ATE: 22689  | 78<br>MS | MSD   | 2268979 |        |       |       |        |     |     |     |
|-----------------------------|-----------|-------------|----------|-------|---------|--------|-------|-------|--------|-----|-----|-----|
|                             |           | 10349683001 | Spike    | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |     |
| Parameter                   | Units     | Result      | Conc.    | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qua |
| Allyl chloride              | ug/L      | ND          | 20       | 20    | 18.2    | 16.2   | 91    | 81    | 53-150 | 12  | 30  |     |
| Benzene                     | ug/L      | ND          | 20       | 20    | 17.4    | 14.7   | 87    | 73    | 52-147 | 17  | 30  |     |
| Bromobenzene                | ug/L      | ND          | 20       | 20    | 18.6    | 15.0   | 93    | 75    | 75-129 | 21  | 30  | M1  |
| Bromochloromethane          | ug/L      | ND          | 20       | 20    | 19.5    | 16.3   | 98    | 81    | 72-128 | 18  | 30  |     |
| Bromodichloromethane        | ug/L      | ND          | 20       | 20    | 19.4    | 16.0   | 97    | 80    | 65-137 | 19  | 30  |     |
| Bromoform                   | ug/L      | ND          | 20       | 20    | 15.1    | 13.0   | 76    | 65    | 59-133 | 15  | 30  |     |
| Bromomethane                | ug/L      | ND          | 20       | 20    | 13.4    | 16.9   | 67    | 84    | 30-150 | 23  | 30  |     |
| Carbon tetrachloride        | ug/L      | ND          | 20       | 20    | 20.4    | 17.4   | 102   | 87    | 73-144 | 16  | 30  |     |
| Chlorobenzene               | ug/L      | ND          | 20       | 20    | 17.1    | 14.6   | 86    | 73    | 75-126 | 16  | 30  | M1  |
| Chloroethane                | ug/L      | ND          | 20       | 20    | 20.1    | 18.7   | 101   | 94    | 55-150 | 7   | 30  |     |
| Chloroform                  | ug/L      | ND          | 20       | 20    | 18.4    | 15.1   | 92    | 76    | 66-143 | 20  | 30  |     |
| Chloromethane               | ug/L      | ND          | 20       | 20    | 10.9    | 15.0   | 55    | 75    | 42-150 | 31  | 30  | R1  |
| is-1,2-Dichloroethene       | ug/L      | ND          | 20       | 20    | 18.7    | 15.3   | 94    | 77    | 65-143 | 20  | 30  |     |
| is-1,3-Dichloropropene      | ug/L      | ND          | 20       | 20    | 17.3    | 14.5   | 86    | 73    | 75-125 | 17  | 30  | M1  |
| Dibromochloromethane        | ug/L      | ND          | 20       | 20    | 16.1    | 13.7   | 80    | 68    | 75-125 | 16  | 30  | M1  |
| Dibromomethane              | ug/L      | ND          | 20       | 20    | 19.5    | 17.2   | 97    | 86    | 66-133 | 12  | 30  |     |
| Dichlorodifluoromethane     | ug/L      | ND          | 20       | 20    | 22.4    | 21.1   | 112   | 106   | 74-150 | 6   | 30  |     |
| Dichlorofluoromethane       | ug/L      | ND          | 20       | 20    | 18.3    | 16.9   | 92    | 85    | 68-150 | 8   | 30  |     |
| Diethyl ether (Ethyl ether) | ug/L      | ND          | 20       | 20    | 16.9    | 14.2   | 84    | 71    | 57-148 | 17  | 30  |     |
| thylbenzene                 | ug/L      | ND          | 20       | 20    | 16.9    | 14.2   | 85    | 71    | 67-149 | 18  | 30  |     |
| lexachloro-1,3-butadiene    | ug/L      | ND          | 20       | 20    | 21.5    | 22.5   | 108   | 113   | 65-143 | 4   | 30  |     |
| sopropylbenzene (Cumene)    | ug/L      | ND          | 20       | 20    | 17.7    | 14.8   | 88    | 74    | 64-150 | 18  | 30  |     |
| flethyl-tert-butyl ether    | ug/L      | ND          | 20       | 20    | 17.6    | 15.1   | 88    | 75    | 71-130 | 16  | 30  |     |
| lethylene Chloride          | ug/L      | ND          | 20       | 20    | 16.1    | 13.6   | 80    | 68    | 67-137 | 17  | 30  |     |
| -Butylbenzene               | ug/L      | ND          | 20       | 20    | 19.3    | 15.7   | 97    | 78    | 70-138 | 21  | 30  |     |
| -Propylbenzene              | ug/L      | ND          | 20       | 20    | 18.5    | 14.7   | 92    | 73    | 70-148 | 23  | 30  |     |
| laphthalene                 | ug/L      | ND          | 20       | 20    | 16.3    | 14.7   | 78    | 70    | 39-150 | 10  | 30  |     |
| -Isopropyltoluene           | ug/L      | ND          | 20       | 20    | 18.8    | 15.2   | 94    | 76    | 74-138 | 21  | 30  |     |
| ec-Butylbenzene             | ug/L      | ND          | 20       | 20    | 18.8    | 16.1   | 94    | 81    | 64-150 | 15  | 30  |     |
| Styrene                     | ug/L      | ND          | 20       | 20    | 17.2    | 14.7   | 86    | 73    | 75-132 | 16  | 30  | M1  |
| ert-Butylbenzene            | ug/L      | ND          | 20       | 20    | 18.7    | 16.3   | 94    | 82    | 75-138 | 13  | 30  |     |
| etrachloroethene            | ug/L      | ND          | 20       | 20    | 19.2    | 15.6   | 96    | 78    | 73-136 | 21  | 30  |     |
| -<br>etrahydrofuran         | ug/L      | ND          | 200      | 200   | 183     | 149    | 92    | 75    | 68-142 | 20  | 30  |     |
| oluene                      | ug/L      | ND          | 20       | 20    | 16.1    | 13.6   | 81    | 68    | 69-139 | 17  | 30  | M1  |
| rans-1,2-Dichloroethene     | ug/L      | ND          | 20       | 20    | 18.2    | 15.9   | 91    | 79    | 75-135 | 14  | 30  |     |
| rans-1,3-Dichloropropene    | ug/L      | ND          | 20       | 20    | 17.4    | 14.8   | 87    | 74    | 66-136 | 16  | 30  |     |
| richloroethene              | ug/L      | ND          | 20       | 20    | 18.5    | 16.5   | 92    | 83    | 74-135 | 11  | 30  |     |
| richlorofluoromethane       | ug/L      | ND          | 20       | 20    | 20.1    | 18.4   | 100   | 92    | 75-150 | 9   | 30  |     |
| inyl chloride               | ug/L      | ND          | 20       | 20    | 18.3    | 19.7   | 92    | 99    | 69-150 |     | 30  |     |
| (ylene (Total)              | ug/L      | ND          | 60       | 60    | 51.3    | 41.8   | 85    | 70    | 70-147 | 20  | 30  |     |
| ,2-Dichloroethane-d4 (S)    | %.        |             |          |       |         |        | 100   | 100   | 75-125 |     |     |     |
| -Bromofluorobenzene (S)     | %.        |             |          |       |         |        | 100   | 101   | 75-125 |     |     |     |
| oluene-d8 (S)               | %.        |             |          |       |         |        | 94    | 96    | 75-125 |     |     |     |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**

(612)607-1700



#### **QUALITY CONTROL DATA**

Project: CrC

Date: 06/02/2016 07:27 AM

Pace Project No.: 10348956

QC Batch: MSV/35707 Analysis Method: EPA 8260B

QC Batch Method: EPA 8260B Analysis Description: 8260B MSV 465 W

Associated Lab Samples: 10348956009, 10348956011

METHOD BLANK: 2268931 Matrix: Water

Associated Lab Samples: 10348956009, 10348956011

| Parameter                      | Units | Blank<br>Result | Reporting<br>Limit | Analyzed       | Qualifiers |
|--------------------------------|-------|-----------------|--------------------|----------------|------------|
| 1,1,1,2-Tetrachloroethane      | ug/L  | ND ND           | 4.0                | 05/25/16 12:12 |            |
| 1,1,1-Trichloroethane          | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| 1,1,2-Trichloroethane          | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| 1,1-Dichloroethane             | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| 1,1-Dichloroethene             | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| 1,1-Dichloropropene            | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| 1,2,3-Trichlorobenzene         | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| 1,2,3-Trichloropropane         | ug/L  | ND              | 4.0                | 05/25/16 12:12 |            |
| 1,2,4-Trichlorobenzene         | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| 1,2,4-Trimethylbenzene         | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| 1,2-Dibromo-3-chloropropane    | ug/L  | ND              | 10.0               | 05/25/16 12:12 |            |
| 1,2-Dibromoethane (EDB)        | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| 1,2-Dichlorobenzene            | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| 1,2-Dichloroethane             | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| 1,2-Dichloropropane            | ug/L  | ND              | 4.0                | 05/25/16 12:12 |            |
| 1,3,5-Trimethylbenzene         | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| 1,3-Dichlorobenzene            | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| 1,3-Dichloropropane            | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| 1,4-Dichlorobenzene            | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| 2,2-Dichloropropane            | ug/L  | ND              | 4.0                | 05/25/16 12:12 |            |
| 2-Butanone (MEK)               | ug/L  | ND              | 5.0                | 05/25/16 12:12 |            |
| 2-Chlorotoluene                | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| 4-Chlorotoluene                | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| 4-Methyl-2-pentanone (MIBK)    | ug/L  | ND              | 5.0                | 05/25/16 12:12 |            |
| Acetone                        | ug/L  | ND              | 20.0               | 05/25/16 12:12 |            |
| Allyl chloride                 | ug/L  | ND              | 4.0                | 05/25/16 12:12 |            |
| Benzene                        | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| Bromobenzene                   | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| Bromochloromethane             | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| Bromodichloromethane           | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| Bromoform                      | ug/L  | ND              | 4.0                | 05/25/16 12:12 |            |
| Bromomethane                   | ug/L  | ND              | 4.0                | 05/25/16 12:12 |            |
| Carbon tetrachloride           | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| Chlorobenzene                  | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| Chloroethane                   | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| Chloroform                     | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| Chloromethane                  | ug/L  | ND              | 4.0                | 05/25/16 12:12 |            |
| cis-1,2-Dichloroethene         | ug/L  | ND              | 1.0                | 05/25/16 12:12 |            |
| cis-1,3-Dichloropropene        | ug/L  | ND              | 4.0                | 05/25/16 12:12 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**





Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

METHOD BLANK: 2268931 Matrix: Water

Associated Lab Samples: 10348956009, 10348956011

| _                           |       | Blank  | Reporting |                |            |
|-----------------------------|-------|--------|-----------|----------------|------------|
| Parameter                   | Units | Result | Limit     | Analyzed       | Qualifiers |
| Dibromochloromethane        | ug/L  | ND     | 1.0       | 05/25/16 12:12 |            |
| Dibromomethane              | ug/L  | ND     | 4.0       | 05/25/16 12:12 |            |
| Dichlorodifluoromethane     | ug/L  | ND     | 1.0       | 05/25/16 12:12 |            |
| Dichlorofluoromethane       | ug/L  | ND     | 1.0       | 05/25/16 12:12 |            |
| Diethyl ether (Ethyl ether) | ug/L  | ND     | 4.0       | 05/25/16 12:12 |            |
| Ethylbenzene                | ug/L  | ND     | 1.0       | 05/25/16 12:12 |            |
| Hexachloro-1,3-butadiene    | ug/L  | ND     | 4.0       | 05/25/16 12:12 |            |
| Isopropylbenzene (Cumene)   | ug/L  | ND     | 1.0       | 05/25/16 12:12 |            |
| Methyl-tert-butyl ether     | ug/L  | ND     | 1.0       | 05/25/16 12:12 |            |
| Methylene Chloride          | ug/L  | ND     | 4.0       | 05/25/16 12:12 |            |
| n-Butylbenzene              | ug/L  | ND     | 1.0       | 05/25/16 12:12 |            |
| n-Propylbenzene             | ug/L  | ND     | 1.0       | 05/25/16 12:12 |            |
| Naphthalene                 | ug/L  | ND     | 4.0       | 05/25/16 12:12 |            |
| p-Isopropyltoluene          | ug/L  | ND     | 1.0       | 05/25/16 12:12 |            |
| sec-Butylbenzene            | ug/L  | ND     | 1.0       | 05/25/16 12:12 |            |
| Styrene                     | ug/L  | ND     | 1.0       | 05/25/16 12:12 |            |
| tert-Butylbenzene           | ug/L  | ND     | 1.0       | 05/25/16 12:12 |            |
| Tetrachloroethene           | ug/L  | ND     | 1.0       | 05/25/16 12:12 |            |
| Tetrahydrofuran             | ug/L  | ND     | 10.0      | 05/25/16 12:12 |            |
| Toluene                     | ug/L  | ND     | 1.0       | 05/25/16 12:12 |            |
| trans-1,2-Dichloroethene    | ug/L  | ND     | 1.0       | 05/25/16 12:12 |            |
| trans-1,3-Dichloropropene   | ug/L  | ND     | 4.0       | 05/25/16 12:12 |            |
| Trichloroethene             | ug/L  | ND     | 0.40      | 05/25/16 12:12 |            |
| Trichlorofluoromethane      | ug/L  | ND     | 1.0       | 05/25/16 12:12 |            |
| Vinyl chloride              | ug/L  | ND     | 0.40      | 05/25/16 12:12 |            |
| Xylene (Total)              | ug/L  | ND     | 3.0       | 05/25/16 12:12 |            |
| 1,2-Dichloroethane-d4 (S)   | %.    | 98     | 75-125    | 05/25/16 12:12 |            |
| 4-Bromofluorobenzene (S)    | %.    | 100    | 75-125    | 05/25/16 12:12 |            |
| Toluene-d8 (S)              | %.    | 102    | 75-125    | 05/25/16 12:12 |            |

| LABORATORY CONTROL SAMPLE:     | 2268932 |       |        |       |        |            |
|--------------------------------|---------|-------|--------|-------|--------|------------|
|                                |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                      | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| 1,1,1,2-Tetrachloroethane      | ug/L    |       | 17.3   | 86    | 75-125 |            |
| 1,1,1-Trichloroethane          | ug/L    | 20    | 18.7   | 94    | 73-125 |            |
| 1,1,2,2-Tetrachloroethane      | ug/L    | 20    | 19.0   | 95    | 75-128 |            |
| 1,1,2-Trichloroethane          | ug/L    | 20    | 19.6   | 98    | 75-129 |            |
| 1,1,2-Trichlorotrifluoroethane | ug/L    | 20    | 19.1   | 95    | 69-125 |            |
| 1,1-Dichloroethane             | ug/L    | 20    | 18.0   | 90    | 75-131 |            |
| 1,1-Dichloroethene             | ug/L    | 20    | 17.4   | 87    | 72-125 |            |
| 1,1-Dichloropropene            | ug/L    | 20    | 16.7   | 83    | 74-125 |            |
| 1,2,3-Trichlorobenzene         | ug/L    | 20    | 18.9   | 94    | 68-127 |            |
| 1,2,3-Trichloropropane         | ug/L    | 20    | 19.3   | 96    | 75-125 |            |
| 1,2,4-Trichlorobenzene         | ug/L    | 20    | 18.4   | 92    | 70-125 |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| _ABORATORY CONTROL SAMPLE   | : 2268932 |       |        |       |                 |
|-----------------------------|-----------|-------|--------|-------|-----------------|
| _                           |           | Spike | LCS    | LCS   | % Rec           |
| Parameter                   | Units     | Conc. | Result | % Rec | Limits Qualifie |
| ,2,4-Trimethylbenzene       | ug/L      | 20    | 19.0   | 95    | 75-130          |
| ,2-Dibromo-3-chloropropane  | ug/L      | 50    | 43.7   | 87    | 74-125          |
| I,2-Dibromoethane (EDB)     | ug/L      | 20    | 19.5   | 98    | 75-125          |
| 1,2-Dichlorobenzene         | ug/L      | 20    | 19.4   | 97    | 75-125          |
| ,2-Dichloroethane           | ug/L      | 20    | 17.8   | 89    | 72-129          |
| ,2-Dichloropropane          | ug/L      | 20    | 19.2   | 96    | 71-129          |
| ,3,5-Trimethylbenzene       | ug/L      | 20    | 18.7   | 93    | 75-127          |
| 1,3-Dichlorobenzene         | ug/L      | 20    | 19.0   | 95    | 75-125          |
| ,3-Dichloropropane          | ug/L      | 20    | 18.9   | 95    | 75-125          |
| ,4-Dichlorobenzene          | ug/L      | 20    | 19.5   | 97    | 75-125          |
| 2,2-Dichloropropane         | ug/L      | 20    | 19.8   | 99    | 71-125          |
| 2-Butanone (MEK)            | ug/L      | 100   | 84.2   | 84    | 58-150          |
| 2-Chlorotoluene             | ug/L      | 20    | 19.2   | 96    | 75-125          |
| l-Chlorotoluene             | ug/L      | 20    | 18.7   | 93    | 75-130          |
| l-Methyl-2-pentanone (MIBK) | ug/L      | 100   | 92.6   | 93    | 72-140          |
| Acetone                     | ug/L      | 100   | 97.0   | 97    | 69-137          |
| Allyl chloride              | ug/L      | 20    | 18.6   | 93    | 68-132          |
| Benzene                     | ug/L      | 20    | 18.4   | 92    | 75-125          |
| Bromobenzene                | ug/L      | 20    | 19.6   | 98    | 75-125          |
| Bromochloromethane          | ug/L      | 20    | 20.0   | 100   | 75-125          |
| Bromodichloromethane        | ug/L      | 20    | 21.0   | 105   | 69-128          |
| Bromoform                   | ug/L      | 20    | 14.9   | 75    | 75-125          |
| Bromomethane                | ug/L      | 20    | 14.2   | 71    | 30-150          |
| Carbon tetrachloride        | ug/L      | 20    | 18.8   | 94    | 74-125          |
| Chlorobenzene               | ug/L      | 20    | 17.7   | 88    | 75-125          |
| Chloroethane                | ug/L      | 20    | 23.4   | 117   | 60-150          |
| Chloroform                  | ug/L      | 20    | 19.6   | 98    | 75-126          |
| Chloromethane               | ug/L      | 20    | 14.1   | 71    | 46-150          |
| cis-1,2-Dichloroethene      | ug/L      | 20    | 17.4   | 87    | 75-126          |
| sis-1,3-Dichloropropene     | ug/L      | 20    | 19.3   | 96    | 75-125          |
| Dibromochloromethane        | ug/L      | 20    | 16.5   | 82    | 75-125          |
| Dibromomethane              | ug/L      | 20    | 21.2   | 106   | 72-127          |
| Dichlorodifluoromethane     | ug/L      | 20    | 27.2   | 136   | 58-135 L0       |
| Dichlorofluoromethane       | ug/L      | 20    | 20.6   | 103   | 68-149          |
| Diethyl ether (Ethyl ether) | ug/L      | 20    | 17.9   | 90    | 66-144          |
| Ethylbenzene                | ug/L      | 20    | 17.3   | 86    | 75-125          |
| Hexachloro-1,3-butadiene    | ug/L      | 20    | 21.2   | 106   | 73-125          |
| sopropylbenzene (Cumene)    | ug/L      | 20    | 17.5   | 87    | 69-140          |
| Methyl-tert-butyl ether     | ug/L      | 20    | 19.7   | 99    | 75-126          |
| Methylene Chloride          | ug/L      | 20    | 17.5   | 88    | 71-130          |
| n-Butylbenzene              | ug/L      | 20    | 19.5   | 98    | 71-129          |
| i-Propylbenzene             | ug/L      | 20    | 18.0   | 90    | 71-133          |
| Naphthalene                 | ug/L      | 20    | 17.5   | 88    | 59-137          |
| o-Isopropyltoluene          | ug/L      | 20    | 19.5   | 98    | 74-127          |
| sec-Butylbenzene            | ug/L      | 20    | 17.7   | 88    | 66-140          |
| Styrene                     | ug/L      | 20    | 18.4   | 92    | 75-125          |
| ert-Butylbenzene            | ug/L      | 20    | 17.7   | 89    | 73-129          |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| ABORATORY CONTROL SAMPLE: | 2268932 |       |        |       |        |            |
|---------------------------|---------|-------|--------|-------|--------|------------|
|                           |         | Spike | LCS    | LCS   | % Rec  |            |
| Parameter                 | Units   | Conc. | Result | % Rec | Limits | Qualifiers |
| etrachloroethene          | ug/L    |       | 18.1   | 91    | 75-125 |            |
| etrahydrofuran            | ug/L    | 200   | 198    | 99    | 71-129 |            |
| oluene                    | ug/L    | 20    | 16.7   | 84    | 75-125 |            |
| ans-1,2-Dichloroethene    | ug/L    | 20    | 18.8   | 94    | 75-125 |            |
| ans-1,3-Dichloropropene   | ug/L    | 20    | 18.4   | 92    | 75-125 |            |
| richloroethene            | ug/L    | 20    | 19.6   | 98    | 75-125 |            |
| richlorofluoromethane     | ug/L    | 20    | 22.3   | 111   | 74-128 |            |
| nyl chloride              | ug/L    | 20    | 20.3   | 101   | 71-131 |            |
| ylene (Total)             | ug/L    | 60    | 51.2   | 85    | 75-125 |            |
| 2-Dichloroethane-d4 (S)   | %.      |       |        | 98    | 75-125 |            |
| Bromofluorobenzene (S)    | %.      |       |        | 100   | 75-125 |            |
| oluene-d8 (S)             | %.      |       |        | 96    | 75-125 |            |

| MATRIX SPIKE & MATRIX SPIR     | KE DUPLICA | ATE: 22689 | 33    |       | 2268934 |        |       |       |        |     |     |      |
|--------------------------------|------------|------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                                |            |            | MS    | MSD   |         |        |       |       |        |     |     |      |
|                                | 1          | 0348413005 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                      | Units      | Result     | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| 1,1,1,2-Tetrachloroethane      | ug/L       | ND ND      | 20    | 20    | 16.2    | 16.1   | 81    | 80    | 75-125 | 1   | 30  |      |
| 1,1,1-Trichloroethane          | ug/L       | ND         | 20    | 20    | 18.8    | 18.7   | 94    | 94    | 71-144 | 0   | 30  |      |
| 1,1,2,2-Tetrachloroethane      | ug/L       | ND         | 20    | 20    | 18.0    | 17.6   | 90    | 88    | 75-131 | 2   | 30  |      |
| 1,1,2-Trichloroethane          | ug/L       | ND         | 20    | 20    | 18.6    | 18.0   | 93    | 90    | 75-125 | 3   | 30  |      |
| 1,1,2-Trichlorotrifluoroethane | ug/L       | ND         | 20    | 20    | 20.5    | 20.4   | 103   | 102   | 75-150 | 1   | 30  |      |
| 1,1-Dichloroethane             | ug/L       | ND         | 20    | 20    | 17.8    | 17.8   | 89    | 89    | 64-150 | 0   | 30  |      |
| 1,1-Dichloroethene             | ug/L       | ND         | 20    | 20    | 17.8    | 17.6   | 89    | 88    | 68-150 | 1   | 30  |      |
| 1,1-Dichloropropene            | ug/L       | ND         | 20    | 20    | 17.3    | 16.2   | 87    | 81    | 68-145 | 7   | 30  |      |
| 1,2,3-Trichlorobenzene         | ug/L       | ND         | 20    | 20    | 17.9    | 20.3   | 89    | 102   | 57-142 | 13  | 30  |      |
| 1,2,3-Trichloropropane         | ug/L       | ND         | 20    | 20    | 17.9    | 18.2   | 90    | 91    | 75-125 | 1   | 30  |      |
| 1,2,4-Trichlorobenzene         | ug/L       | ND         | 20    | 20    | 17.1    | 18.5   | 86    | 92    | 60-135 | 8   | 30  |      |
| 1,2,4-Trimethylbenzene         | ug/L       | ND         | 20    | 20    | 17.3    | 17.1   | 86    | 85    | 67-148 | 1   | 30  |      |
| 1,2-Dibromo-3-                 | ug/L       | ND         | 50    | 50    | 40.0    | 41.5   | 80    | 83    | 32-137 | 4   | 30  |      |
| chloropropane                  | •          |            |       |       |         |        |       |       |        |     |     |      |
| 1,2-Dibromoethane (EDB)        | ug/L       | ND         | 20    | 20    | 18.0    | 17.4   | 90    | 87    | 75-125 | 4   | 30  |      |
| 1,2-Dichlorobenzene            | ug/L       | ND         | 20    | 20    | 17.8    | 18.0   | 89    | 90    | 75-125 | 1   | 30  |      |
| 1,2-Dichloroethane             | ug/L       | ND         | 20    | 20    | 15.7    | 15.4   | 78    | 77    | 62-138 | 2   | 30  |      |
| 1,2-Dichloropropane            | ug/L       | ND         | 20    | 20    | 19.3    | 18.2   | 96    | 91    | 62-144 | 6   | 30  |      |
| 1,3,5-Trimethylbenzene         | ug/L       | ND         | 20    | 20    | 17.7    | 17.5   | 89    | 88    | 67-148 | 1   | 30  |      |
| 1,3-Dichlorobenzene            | ug/L       | ND         | 20    | 20    | 18.0    | 18.0   | 90    | 90    | 74-131 | 0   | 30  |      |
| 1,3-Dichloropropane            | ug/L       | ND         | 20    | 20    | 18.0    | 17.4   | 90    | 87    | 75-127 | 4   | 30  |      |
| 1,4-Dichlorobenzene            | ug/L       | ND         | 20    | 20    | 18.6    | 18.2   | 93    | 91    | 74-126 | 2   | 30  |      |
| 2,2-Dichloropropane            | ug/L       | ND         | 20    | 20    | 20.6    | 19.9   | 103   | 99    | 56-146 | 3   | 30  |      |
| 2-Butanone (MEK)               | ug/L       | ND         | 100   | 100   | 78.3    | 78.0   | 78    | 78    | 47-150 | 0   | 30  |      |
| 2-Chlorotoluene                | ug/L       | ND         | 20    | 20    | 18.1    | 17.7   | 91    | 88    | 74-137 | 2   | 30  |      |
| 4-Chlorotoluene                | ug/L       | ND         | 20    | 20    | 18.1    | 17.7   | 90    | 88    | 72-138 | 2   | 30  |      |
| 4-Methyl-2-pentanone<br>(MIBK) | ug/L       | ND         | 100   | 100   | 85.5    | 82.7   | 85    | 83    | 60-147 | 3   | 30  |      |
| Acetone                        | ug/L       | ND         | 100   | 100   | 87.0    | 89.9   | 87    | 90    | 61-150 | 3   | 30  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| MATRIX SPIKE & MATRIX SPI   | KE DUPLIC | ATE: 22689  | 33<br>MS | MSD   | 2268934 |        |       |       |        |     |     |     |
|-----------------------------|-----------|-------------|----------|-------|---------|--------|-------|-------|--------|-----|-----|-----|
|                             |           | 10348413005 | Spike    | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |     |
| Parameter                   | Units     | Result      | Conc.    | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qua |
| Allyl chloride              | ug/L      | ND          | 20       | 20    | 17.6    | 18.3   | 88    | 91    | 53-150 | 4   | 30  |     |
| Benzene                     | ug/L      | ND          | 20       | 20    | 17.1    | 16.3   | 85    | 81    | 52-147 | 4   | 30  |     |
| Bromobenzene                | ug/L      | ND          | 20       | 20    | 18.3    | 18.2   | 91    | 91    | 75-129 | 1   | 30  |     |
| Bromochloromethane          | ug/L      | ND          | 20       | 20    | 18.3    | 18.0   | 91    | 90    | 72-128 | 2   | 30  |     |
| Bromodichloromethane        | ug/L      | ND          | 20       | 20    | 18.8    | 18.6   | 94    | 93    | 65-137 | 2   | 30  |     |
| Bromoform                   | ug/L      | ND          | 20       | 20    | 15.1    | 14.3   | 76    | 71    | 59-133 | 6   | 30  |     |
| Bromomethane                | ug/L      | ND          | 20       | 20    | 16.1    | 17.8   | 80    | 89    | 30-150 | 10  | 30  |     |
| Carbon tetrachloride        | ug/L      | ND          | 20       | 20    | 19.4    | 18.8   | 97    | 94    | 73-144 | 3   | 30  |     |
| Chlorobenzene               | ug/L      | ND          | 20       | 20    | 16.7    | 16.4   | 84    | 82    | 75-126 | 2   | 30  |     |
| Chloroethane                | ug/L      | ND          | 20       | 20    | 21.6    | 22.4   | 108   | 112   | 55-150 | 4   | 30  |     |
| Chloroform                  | ug/L      | ND          | 20       | 20    | 16.6    | 16.5   | 83    | 82    | 66-143 | 1   | 30  |     |
| Chloromethane               | ug/L      | ND          | 20       | 20    | 14.8    | 16.2   | 74    | 81    | 42-150 | 9   | 30  |     |
| sis-1,2-Dichloroethene      | ug/L      | ND          | 20       | 20    | 18.0    | 17.7   | 90    | 88    | 65-143 | 2   | 30  |     |
| cis-1,3-Dichloropropene     | ug/L      | ND          | 20       | 20    | 17.6    | 17.1   | 88    | 86    | 75-125 | 3   | 30  |     |
| Dibromochloromethane        | ug/L      | ND          | 20       | 20    | 15.9    | 15.4   | 80    | 77    | 75-125 | 3   | 30  |     |
| Dibromomethane              | ug/L      | ND          | 20       | 20    | 19.0    | 18.3   | 95    | 92    | 66-133 | 3   | 30  |     |
| Dichlorodifluoromethane     | ug/L      | ND          | 20       | 20    | 27.4    | 30.2   | 137   | 151   | 74-150 | 10  | 30  | M0  |
| Dichlorofluoromethane       | ug/L      | ND          | 20       | 20    | 18.8    | 20.1   | 94    | 100   | 68-150 | 7   | 30  |     |
| Diethyl ether (Ethyl ether) | ug/L      | ND          | 20       | 20    | 14.8    | 15.7   | 74    | 78    | 57-148 | 5   | 30  |     |
| Ethylbenzene                | ug/L      | ND          | 20       | 20    | 16.5    | 16.2   | 83    | 81    | 67-149 | 2   | 30  |     |
| lexachloro-1,3-butadiene    | ug/L      | ND          | 20       | 20    | 20.9    | 25.4   | 105   | 127   | 65-143 | 20  | 30  |     |
| sopropylbenzene (Cumene)    | ug/L      | ND          | 20       | 20    | 17.3    | 17.0   | 86    | 85    | 64-150 | 2   | 30  |     |
| Methyl-tert-butyl ether     | ug/L      | ND          | 20       | 20    | 16.6    | 17.3   | 83    | 87    | 71-130 | 4   | 30  |     |
| Methylene Chloride          | ug/L      | ND          | 20       | 20    | 14.9    | 14.8   | 75    | 74    | 67-137 | 1   | 30  |     |
| n-Butylbenzene              | ug/L      | ND          | 20       | 20    | 19.3    | 19.3   | 96    | 96    | 70-138 | 0   | 30  |     |
| n-Propylbenzene             | ug/L      | ND          | 20       | 20    | 18.2    | 17.9   | 91    | 90    | 70-148 | 1   | 30  |     |
| Naphthalene                 | ug/L      | ND          | 20       | 20    | 16.7    | 18.4   | 81    | 89    | 39-150 | 10  | 30  |     |
| o-Isopropyltoluene          | ug/L      | ND          | 20       | 20    | 18.2    | 18.6   | 91    | 93    | 74-138 | 2   | 30  |     |
| sec-Butylbenzene            | ug/L      | ND          | 20       | 20    | 18.3    | 18.8   | 92    | 94    | 64-150 | 3   | 30  |     |
| Styrene                     | ug/L      | ND          | 20       | 20    | 17.1    | 16.8   | 85    | 84    | 75-132 | 2   | 30  |     |
| ert-Butylbenzene            | ug/L      | ND          | 20       | 20    | 17.9    | 18.7   | 89    | 94    | 75-138 | 5   | 30  |     |
| Tetrachloroethene           | ug/L      | ND          | 20       | 20    | 19.1    | 18.3   | 96    | 92    | 73-136 | 4   | 30  |     |
| Tetrahydrofuran             | ug/L      | ND          | 200      | 200   | 179     | 178    | 90    | 89    | 68-142 | 1   | 30  |     |
| Toluene                     | ug/L      | ND          | 20       | 20    | 15.7    | 15.6   | 78    | 78    | 69-139 | 0   | 30  |     |
| rans-1,2-Dichloroethene     | ug/L      | ND          | 20       | 20    | 17.7    | 17.1   | 88    | 86    | 75-135 | 3   | 30  |     |
| rans-1,3-Dichloropropene    | ug/L      | ND          | 20       | 20    | 17.5    | 17.0   | 87    | 85    | 66-136 | 3   | 30  |     |
| richloroethene              | ug/L      | ND          | 20       | 20    | 19.3    | 18.2   | 97    | 91    | 74-135 | 6   | 30  |     |
| richlorofluoromethane       | ug/L      | ND          | 20       | 20    | 22.6    | 24.3   | 113   | 122   | 75-150 | 8   |     |     |
| /inyl chloride              | ug/L      | ND          | 20       | 20    | 20.9    | 22.6   | 105   | 113   | 69-150 |     |     |     |
| Kylene (Total)              | ug/L      | ND          | 60       | 60    | 49.2    | 48.6   | 82    | 81    | 70-147 | 1   | 30  |     |
| ,2-Dichloroethane-d4 (S)    | %.        |             |          |       |         |        | 95    | 96    | 75-125 |     |     |     |
| I-Bromofluorobenzene (S)    | %.        |             |          |       |         |        | 102   | 101   | 75-125 |     |     |     |
| Toluene-d8 (S)              | %.        |             |          |       |         |        | 95    | 96    | 75-125 |     |     |     |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| MATRIX SPIKE & MATRIX SPI               | KE DUPLI     | CATE: 22689 | 35<br>MS | MSD      | 2268936      |              |           |           |                  |        |          |     |
|-----------------------------------------|--------------|-------------|----------|----------|--------------|--------------|-----------|-----------|------------------|--------|----------|-----|
|                                         |              | 10348413006 | Spike    | Spike    | MS           | MSD          | MS        | MSD       | % Rec            |        | Max      |     |
| Parameter                               | Units        | Result      | Conc.    | Conc.    | Result       | Result       | % Rec     | % Rec     | Limits           | RPD    |          | Qua |
| 1,1,1,2-Tetrachloroethane               | ug/L         | ND          | 20       | 20       | 17.4         | 17.2         | 87        | 86        | 75-125           | 1      | 30       |     |
| 1,1,1-Trichloroethane                   | ug/L         | ND          | 20       | 20       | 20.7         | 19.2         | 104       | 96        | 71-144           | 8      | 30       |     |
| 1,1,2,2-Tetrachloroethane               | ug/L         | ND          | 20       | 20       | 19.5         | 19.6         | 98        | 98        | 75-131           | 0      | 30       |     |
| 1,1,2-Trichloroethane                   | ug/L         | ND          | 20       | 20       | 18.6         | 19.5         | 93        | 98        | 75-125           | 5      | 30       |     |
| 1,1,2-Trichlorotrifluoroethane          | ug/L         | ND          | 20       | 20       | 20.9         | 21.1         | 105       | 105       | 75-150           | 1      | 30       |     |
| 1.1-Dichloroethane                      | ug/L         | ND          | 20       | 20       | 18.8         | 18.7         | 94        | 94        | 64-150           | 0      | 30       |     |
| 1,1-Dichloroethene                      | ug/L         | ND          | 20       | 20       | 18.7         | 18.1         | 93        | 91        | 68-150           | 3      | 30       |     |
| 1,1-Dichloropropene                     | ug/L         | ND          | 20       | 20       | 18.0         | 18.3         | 90        | 92        | 68-145           | 2      | 30       |     |
| 1,2,3-Trichlorobenzene                  | ug/L         | ND          | 20       | 20       | 21.0         | 22.2         | 105       | 111       | 57-142           | 6      | 30       |     |
| 1,2,3-Trichloropropane                  | ug/L         | ND          | 20       | 20       | 19.1         | 18.9         | 95        | 95        | 75-125           | 1      | 30       |     |
| 1,2,4-Trichlorobenzene                  | ug/L         | ND          | 20       | 20       | 18.9         | 20.1         | 95        | 100       | 60-135           | 6      | 30       |     |
| 1,2,4-Trimethylbenzene                  | _            | ND<br>ND    | 20       | 20       | 18.2         | 18.3         | 95<br>91  | 92        | 67-148           | 1      | 30       |     |
| 1,2,4-mmethylbenzene<br>1,2-Dibromo-3-  | ug/L<br>ug/L | ND<br>ND    | 50       | 50       | 16.2<br>46.4 | 44.0         | 93        | 92<br>88  | 32-137           | 5      | 30       |     |
| chloropropane                           | ug/L         | ND          | 50       | 50       | 40.4         | 44.0         | 93        | 00        | 32-137           | 5      | 30       |     |
| ,2-Dibromoethane (EDB)                  | ug/L         | ND          | 20       | 20       | 18.5         | 18.6         | 93        | 93        | 75-125           | 1      | 30       |     |
| ,2-Dichlorobenzene                      | ug/L         | ND          | 20       | 20       | 18.6         | 18.4         | 93        | 92        | 75-125           | 1      | 30       |     |
| ,2-Dichloroethane                       | ug/L         | ND          | 20       | 20       | 16.9         | 16.9         | 84        | 84        | 62-138           | 0      | 30       |     |
| ,2-Dichloropropane                      | ug/L         | ND          | 20       | 20       | 19.5         | 19.7         | 98        | 99        | 62-144           | 1      | 30       |     |
| ,3,5-Trimethylbenzene                   | ug/L         | ND          | 20       | 20       | 18.8         | 18.9         | 94        | 95        | 67-148           | 1      | 30       |     |
| ,3-Dichlorobenzene                      | ug/L         | ND          | 20       | 20       | 18.7         | 18.9         | 94        | 94        | 74-131           | 1      | 30       |     |
| ,3-Dichloropropane                      | ug/L         | ND          | 20       | 20       | 18.6         | 18.5         | 93        | 92        | 75-127           | 1      | 30       |     |
| ,4-Dichlorobenzene                      | ug/L         | ND          | 20       | 20       | 19.3         | 19.4         | 97        | 97        | 74-126           | 0      | 30       |     |
| ,4-Dichloropropane                      | ug/L         | ND          | 20       | 20       | 21.4         | 21.0         | 107       | 105       | 56-146           | 2      | 30       |     |
| 2-Butanone (MEK)                        | ug/L         | ND          | 100      | 100      | 82.9         | 81.1         | 83        | 81        | 47-150           | 2      | 30       |     |
| 2-Chlorotoluene                         |              | ND          | 20       | 20       | 18.9         | 19.0         | 95        | 95        | 74-137           | 0      | 30       |     |
|                                         | ug/L         | ND<br>ND    | 20       | 20       | 18.7         | 18.8         | 95        | 95        | 74-137           | _      | 30       |     |
| I-Chlorotoluene<br>I-Methyl-2-pentanone | ug/L         | ND<br>ND    | 100      | 100      | 88.9         | 88.2         | 94<br>89  | 94<br>88  | 60-147           | 0<br>1 | 30       |     |
| MIBK)                                   | ug/L         | ואט         | 100      | 100      | 00.9         | 00.2         | 09        | 00        | 00-147           |        | 30       |     |
| Acetone                                 | ug/L         | ND          | 100      | 100      | 89.5         | 89.9         | 89        | 90        | 61-150           | 0      | 30       |     |
| Allyl chloride                          | ug/L         | ND          | 20       | 20       | 19.0         | 19.1         | 95        | 96        | 53-150           | 1      | 30       |     |
| Benzene                                 | ug/L         | ND          | 20       | 20       | 17.7         | 17.8         | 88        | 89        | 52-147           | 0      | 30       |     |
| Bromobenzene                            | ug/L         | ND          | 20       | 20       | 19.1         | 19.0         | 95        | 95        | 75-129           | 0      | 30       |     |
| Bromochloromethane                      | ug/L         | ND          | 20       | 20       | 20.0         | 19.4         | 100       | 97        | 72-128           | 3      | 30       |     |
| Bromodichloromethane                    | ug/L         | ND          | 20       | 20       | 20.0         | 20.2         | 100       | 101       | 65-137           | 1      | 30       |     |
| Bromoform                               | ug/L         | ND          | 20       | 20       | 15.7         | 15.8         | 78        | 79        | 59-133           | 1      | 30       |     |
| Bromomethane                            | ug/L         | ND          | 20       | 20       | 22.4         | 24.1         | 112       | 121       | 30-150           | 7      | 30       |     |
|                                         | _            | ND          | 20       | 20       | 20.5         | 20.4         | 103       |           | 73-144           | 1      | 30       |     |
| Carbon tetrachloride                    | ug/L         |             | _        |          |              |              |           | 102       |                  | -      |          |     |
| Chlorobenzene<br>Chloroethane           | ug/L         | ND<br>ND    | 20<br>20 | 20<br>20 | 17.5<br>23.8 | 17.5<br>23.2 | 88<br>110 | 88<br>116 | 75-126<br>55-150 | 0      | 30<br>30 |     |
|                                         | ug/L         |             |          |          |              |              | 119       |           |                  | 2      |          |     |
| Chloroform                              | ug/L         | ND          | 20       | 20       | 17.8         | 18.5         | 89        | 93        | 66-143           | 4      | 30       |     |
| Chloromethane                           | ug/L         | ND          | 20       | 20       | 23.1         | 19.3         | 116       | 96        | 42-150           | 18     | 30       |     |
| is-1,2-Dichloroethene                   | ug/L         | ND          | 20       | 20       | 18.1         | 19.5         | 90        | 98        | 65-143           | 8      | 30       |     |
| is-1,3-Dichloropropene                  | ug/L         | ND          | 20       | 20       | 17.5         | 18.4         | 87        | 92        | 75-125           | 5      | 30       |     |
| Dibromochloromethane                    | ug/L         | ND          | 20       | 20       | 16.2         | 16.5         | 81        | 82        | 75-125           | 1      | 30       |     |
| Dibromomethane                          | ug/L         | ND          | 20       | 20       | 20.1         | 20.2         | 101       | 101       | 66-133           | 0      | 30       |     |
| Dichlorodifluoromethane                 | ug/L         | ND          | 20       | 20       | 29.7         | 29.4         | 149       | 147       | 74-150           | 1      | 30       |     |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**

(612)607-1700



## **QUALITY CONTROL DATA**

Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| MATRIX SPIKE & MATRIX SPI   | KE DUPLICA | ATE: 22689: | 35    |       | 2268936 |        |       |       |        |     |     |     |
|-----------------------------|------------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|-----|
|                             |            |             | MS    | MSD   |         |        |       |       |        |     |     |     |
|                             | 1          | 0348413006  | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |     |
| Parameter                   | Units      | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qua |
| Dichlorofluoromethane       | ug/L       | ND          | 20    | 20    | 20.8    | 21.2   | 104   | 106   | 68-150 | 2   | 30  |     |
| Diethyl ether (Ethyl ether) | ug/L       | ND          | 20    | 20    | 17.2    | 16.8   | 86    | 84    | 57-148 | 2   | 30  |     |
| Ethylbenzene                | ug/L       | ND          | 20    | 20    | 17.5    | 17.1   | 87    | 86    | 67-149 | 2   | 30  |     |
| Hexachloro-1,3-butadiene    | ug/L       | ND          | 20    | 20    | 29.1    | 30.8   | 145   | 154   | 65-143 | 6   | 30  | M1  |
| Isopropylbenzene (Cumene)   | ug/L       | ND          | 20    | 20    | 18.2    | 18.6   | 91    | 93    | 64-150 | 2   | 30  |     |
| Methyl-tert-butyl ether     | ug/L       | ND          | 20    | 20    | 18.4    | 18.5   | 92    | 93    | 71-130 | 0   | 30  |     |
| Methylene Chloride          | ug/L       | ND          | 20    | 20    | 16.2    | 16.2   | 81    | 81    | 67-137 | 0   | 30  |     |
| n-Butylbenzene              | ug/L       | ND          | 20    | 20    | 20.7    | 20.6   | 104   | 103   | 70-138 | 1   | 30  |     |
| n-Propylbenzene             | ug/L       | ND          | 20    | 20    | 18.9    | 19.0   | 95    | 95    | 70-148 | 0   | 30  |     |
| Naphthalene                 | ug/L       | ND          | 20    | 20    | 19.4    | 19.7   | 97    | 99    | 39-150 | 2   | 30  |     |
| o-Isopropyltoluene          | ug/L       | ND          | 20    | 20    | 20.1    | 19.5   | 100   | 98    | 74-138 | 3   | 30  |     |
| sec-Butylbenzene            | ug/L       | ND          | 20    | 20    | 20.5    | 20.2   | 102   | 101   | 64-150 | 2   | 30  |     |
| Styrene                     | ug/L       | ND          | 20    | 20    | 17.6    | 18.1   | 88    | 91    | 75-132 | 3   | 30  |     |
| ert-Butylbenzene            | ug/L       | ND          | 20    | 20    | 20.4    | 20.3   | 102   | 102   | 75-138 | 0   | 30  |     |
| Tetrachloroethene           | ug/L       | ND          | 20    | 20    | 19.0    | 19.2   | 95    | 96    | 73-136 | 1   | 30  |     |
| Tetrahydrofuran             | ug/L       | ND          | 200   | 200   | 192     | 190    | 96    | 95    | 68-142 | 1   | 30  |     |
| Toluene                     | ug/L       | ND          | 20    | 20    | 15.9    | 16.3   | 80    | 81    | 69-139 | 2   | 30  |     |
| rans-1,2-Dichloroethene     | ug/L       | ND          | 20    | 20    | 19.0    | 18.5   | 95    | 93    | 75-135 | 2   | 30  |     |
| rans-1,3-Dichloropropene    | ug/L       | ND          | 20    | 20    | 18.1    | 18.2   | 91    | 91    | 66-136 | 0   | 30  |     |
| Trichloroethene             | ug/L       | ND          | 20    | 20    | 19.7    | 19.9   | 99    | 99    | 74-135 | 1   | 30  |     |
| Trichlorofluoromethane      | ug/L       | ND          | 20    | 20    | 25.2    | 24.8   | 126   | 124   | 75-150 | 2   | 30  |     |
| Vinyl chloride              | ug/L       | ND          | 20    | 20    | 26.0    | 24.8   | 130   | 124   | 69-150 | 5   | 30  |     |
| Kylene (Total)              | ug/L       | ND          | 60    | 60    | 51.4    | 51.8   | 86    | 86    | 70-147 | 1   | 30  |     |
| 1,2-Dichloroethane-d4 (S)   | %.         |             |       |       |         |        | 97    | 97    | 75-125 |     |     |     |
| 4-Bromofluorobenzene (S)    | %.         |             |       |       |         |        | 103   | 102   | 75-125 |     |     |     |
| Toluene-d8 (S)              | %.         |             |       |       |         |        | 93    | 96    | 75-125 |     |     |     |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**



#### **QUALIFIERS**

Project: CrC
Pace Project No.: 10348956

#### **DEFINITIONS**

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### **ANALYTE QUALIFIERS**

c2

Date: 06/02/2016 07:27 AM

| CL | The continuing calibration for this compound is outside of Pace Analytical acceptance limits. The results may be biased low.                                                |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L0 | Analyte recovery in the laboratory control sample (LCS) was outside QC limits.                                                                                              |
| L3 | Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias. |
| M0 | Matrix spike recovery and/or matrix spike duplicate recovery was outside laboratory control limits.                                                                         |
| M1 | Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.                                                                 |
| N2 | The lab does not hold TNI accreditation for this parameter.                                                                                                                 |
| P5 | The EPA or method required sample preservation degrades this compound, therefore acceptable recoveries may not be achieved in sample matrix spikes.                         |
| R1 | RPD value was outside control limits.                                                                                                                                       |

Acid preservation may not be appropriate for the analysis of 2-Chloroethylvinyl ether.

#### **REPORT OF LABORATORY ANALYSIS**





## **QUALITY CONTROL DATA CROSS REFERENCE TABLE**

Project: CrC
Pace Project No.: 10348956

Date: 06/02/2016 07:27 AM

| _ab ID      | Sample ID | QC Batch Method | QC Batch  | Analytical Method | Analytical<br>Batch |
|-------------|-----------|-----------------|-----------|-------------------|---------------------|
| 10348956016 | Influent  | EPA 624         | MSV/35762 |                   |                     |
| 10348956017 | Effluent  | EPA 624         | MSV/35762 |                   |                     |
| 10348956001 | MW-14     | EPA 8260B       | MSV/35661 |                   |                     |
| 10348956002 | MW-15     | EPA 8260B       | MSV/35636 |                   |                     |
| 10348956003 | MW-16     | EPA 8260B       | MSV/35661 |                   |                     |
| 10348956004 | MW-17     | EPA 8260B       | MSV/35661 |                   |                     |
| 10348956005 | MW-18     | EPA 8260B       | MSV/35661 |                   |                     |
| 10348956006 | MW-19     | EPA 8260B       | MSV/35661 |                   |                     |
| 10348956007 | MW-20     | EPA 8260B       | MSV/35661 |                   |                     |
| 10348956008 | DPE-1     | EPA 8260B       | MSV/35693 |                   |                     |
| 10348956009 | DPE-2     | EPA 8260B       | MSV/35707 |                   |                     |
| 10348956010 | DPE-3     | EPA 8260B       | MSV/35693 |                   |                     |
| 10348956011 | DPE-4     | EPA 8260B       | MSV/35707 |                   |                     |
| 10348956012 | DPE-5     | EPA 8260B       | MSV/35661 |                   |                     |
| 10348956013 | DPE-6     | EPA 8260B       | MSV/35661 |                   |                     |
| 10348956014 | DPE-7     | EPA 8260B       | MSV/35661 |                   |                     |
| 10348956015 | DPE-8     | EPA 8260B       | MSV/35693 |                   |                     |

# CHAIN-OF-CUSTODY / Analytical Request Document

9568 250 The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

DRINKING WATER 2023981 J OTHER F GROUND WATER F Page: REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/N) STATE: NPDES Site Location TSU T mag andment Ven i Secusion Invoice Information:
Attention: 5 hours in Company Name: Pace Quote Reference: Pace Project Manager: Pace Profile #; Section C Address: Report To Kraws faul warkeens. Com Copy To: 15 Kraws faul @ landown Kens. Com しょう Section B Required Project Information: Purchase Order No.: Project Number: Project Name: Email To, Lucke / Land were Kend Con and anail Eurisa named Requested Due Date/TAT: Mのいれる Pace Analytical www.parellets.com Section A Required Client Information: Company: Address: Phone:

|          | Section D Required Client Information              | 흏닭                                                                                                                                                                              |                 |            |                               | COLLECTED                             | TED                        |              |                  | Pre              | Preservatives            | sə,                                                 | N/A         |                           |        |      |          |             |                                |            |                   |
|----------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|-------------------------------|---------------------------------------|----------------------------|--------------|------------------|------------------|--------------------------|-----------------------------------------------------|-------------|---------------------------|--------|------|----------|-------------|--------------------------------|------------|-------------------|
|          |                                                    | Drinking Water DW Water WT Waste Water WW Product P Soil/Soild SL                                                                                                               | see valid codes | -GRAB C≂CC | COMPOSITE                     | , , , , , , , , , , , , , , , , , , , | COMPOSITE<br>END/GRAB      | OLLECTION    | S                |                  |                          |                                                     |             |                           |        |      |          | (N/X) €     |                                |            |                   |
|          | SAMPLE ID (A-2, 0-9 / -) Sample IDS MUST BE UNIQUE | Oil OIL Wipe WP Air AR Tissue TS Other OT                                                                                                                                       |                 | :D) 39YT:  |                               |                                       |                            | TA 9M3T      | NTAINER<br>Pevie | ne               |                          |                                                     | iseT sisy   | מרצ                       |        |      |          | al Chlorine |                                |            |                   |
| TEM#     |                                                    |                                                                                                                                                                                 |                 | BJ9MA8     | DATE                          | TIME                                  | DATE                       | TIME SAMPLE  | # OE CC          | HNO <sup>3</sup> | N <sup>g</sup> OH<br>HCl | Na <sub>2</sub> S <sub>2</sub> C<br>Methan<br>Other |             | 7.×                       |        |      |          |             | Pace Project No./ Lab I.D.     | ect No./ L | ab I.D.           |
|          | MW-ly                                              |                                                                                                                                                                                 |                 | 3          | 5/13/16 15                    | 15:30                                 |                            |              | ٤                |                  |                          |                                                     | ×           |                           |        |      |          |             |                                |            | 100               |
| 2        | MW-15                                              |                                                                                                                                                                                 |                 | 5          | 11/61/5                       | 15:45                                 |                            |              | 2                |                  |                          |                                                     | ×           |                           |        |      |          |             |                                |            | 8                 |
| <u>۳</u> | MW-16                                              |                                                                                                                                                                                 |                 | 5,         | 5/17/16 16                    | 12:50                                 |                            |              | 8                |                  |                          |                                                     | <b>&gt;</b> | - 1                       |        |      |          |             |                                |            | 803               |
| 4        | ti-mu                                              |                                                                                                                                                                                 |                 | 5/         | 118/16                        | 11:205                                |                            |              | ~                |                  |                          |                                                     | <u>~</u>    | 7                         |        |      |          |             |                                |            | Ď,                |
| 1.C      |                                                    |                                                                                                                                                                                 | -               | 177        | 18/16                         | 11.30                                 |                            |              | ٦.               |                  |                          |                                                     | _           |                           |        |      |          |             |                                | ļ          | 200               |
| 9        | p]-MM                                              |                                                                                                                                                                                 |                 | 12,        | 117/16/18                     | 18:45                                 |                            |              | ~                |                  |                          |                                                     |             | )                         |        |      |          |             |                                |            | 8                 |
| 7        |                                                    |                                                                                                                                                                                 |                 | 2          | 115/1616                      | 60:01                                 |                            |              | ٤                |                  |                          |                                                     | ^           | *                         |        |      |          |             |                                |            | g                 |
| 80       |                                                    |                                                                                                                                                                                 |                 | 5,         | 116/16                        | 10:40                                 |                            |              | ~                |                  |                          |                                                     | *           |                           |        |      |          |             |                                |            | ģ                 |
| 6        | 2-200                                              |                                                                                                                                                                                 |                 | 15         | 9]/8]                         | 115                                   |                            |              | <b>~</b>         |                  |                          |                                                     | <u>~</u>    | <b>x</b>                  |        |      | $\dashv$ |             |                                | į          | , 6g              |
| 9        | DPE-3                                              |                                                                                                                                                                                 |                 | 7,         | 7//81/                        | 05:01                                 |                            |              | 3                |                  |                          |                                                     | <u>×</u>    |                           |        |      |          |             |                                |            | <b>8</b>          |
| 7        | カーヨdへ !                                            |                                                                                                                                                                                 |                 | 15         | 21/81                         | oo tol                                |                            |              | ار<br>د          |                  |                          |                                                     | <u>^</u>    |                           |        |      |          |             |                                |            | ) 0               |
| 12       | 2 DPE-5                                            |                                                                                                                                                                                 |                 | 74         | 1 19/4/19                     | 12:3                                  |                            |              | 3                |                  |                          |                                                     | <u> </u>    |                           |        |      |          |             |                                |            | ې۵                |
| L        | ADDITIONAL COMMENTS                                | NTS                                                                                                                                                                             | RELIN           | งดบเร่า    | RELINQUISHED BY / AFFILIATION | FILIATION                             |                            | DATE         | TIME             | JIJ .            |                          | ACCEPTE                                             | D BY / A    | ACCEPTED BY / AFFILIATION | DATE   | TIME | fe fe    | S           | SAMPLE CONDITIONS              | NDITIONS   |                   |
|          |                                                    |                                                                                                                                                                                 | 1               | 1          | 13                            | $  \  $                               | 1                          | 91/81/       | 2                | 52               | /                        | K                                                   | 1           | PHE                       | 5-1816 | 16   | 433      | 3 \         | V /                            | と          |                   |
| 1        |                                                    |                                                                                                                                                                                 | 5               |            | 2                             |                                       |                            | -            |                  |                  |                          |                                                     |             |                           |        |      |          |             |                                |            | _                 |
| 1        |                                                    |                                                                                                                                                                                 |                 |            |                               |                                       |                            |              |                  |                  |                          |                                                     |             |                           |        |      |          |             |                                |            |                   |
|          |                                                    |                                                                                                                                                                                 |                 |            |                               |                                       |                            |              |                  | $\vdash$         |                          |                                                     |             |                           |        |      |          |             |                                |            |                   |
| _gye     |                                                    |                                                                                                                                                                                 |                 |            | ŝ                             | AMPLER N                              | SAMPLER NAME AND SIGNATURE | GNATUR       | Ш                | ┧,               |                          | : .                                                 |             | : -                       |        | -    |          | uo          | ۸                              |            | tastr             |
| 70 o     | 70 -                                               | CAIGINAL                                                                                                                                                                        | 4               |            | 1                             | H.                                    | PRINT Name of SAMPLER:     | SAMPLER      |                  | tara             | 7                        | nek                                                 |             |                           |        |      |          | cejved      | N/Y) ec                        | (N/A)      | il səlqi<br>(N/Y) |
| 112      | f 70                                               |                                                                                                                                                                                 |                 |            |                               | SIC                                   | SIGNATURE of SAMPLER:      | SAMPLER      | Ŋ                |                  | 1                        |                                                     | ١           | DATE Signed (MM/DD/YY):   | 05/18  | 9)/  | _        | <br>9A      | )                              |            | Sam               |
|          |                                                    | Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1,5% per month for any invoices not paid within 30 days. | VET 30 day      | ıy payme   | ent terms and                 | agreeing to la                        | te charges of 1.           | .5% per mont | h for any in     | voices not       | paid withi               | 1 30 days.                                          |             |                           |        |      | Ľ        | ALL-Q-02    | F-ALL-Q-020rev.07, 15-May-2007 | -May-2007  |                   |
|          |                                                    |                                                                                                                                                                                 |                 |            |                               |                                       |                            |              |                  |                  |                          |                                                     |             |                           |        |      |          |             |                                |            |                   |

# CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

102 4801 EC

DRINKING WATER 2023985 4 OTHER GROUND WATER | Page: REGULATORY AGENCY RCRA Requested Analysis Filtered (Y/N) NPDES F Site Location STATE T UST An Bush Altention: Sparon Paradize 4 Yemi Sompany Name Pace Quote Reference: Pace Project Manager: Pace Profile #: Section C Address: CODY TO: SYVEWYSHO, CI() and markenion Section B
Required Project Information:
Report To: GI KNCKE Introdymark (1) And Prince In Internation ر ر Purchase Order No.: Project Number: roject Name: Email To Kuck @ Jandynay Lini @ Chryson Ward 2 Pace Analytical www.pacelabs.com company. L. Sin dynus K Section A Required Glent Information: Requested Due Date/TAT: Phone:

|                                                       |                                                       | Sol P                                                                        | ्रेट<br>© Pace Project No./ Lab I.D. | < >>        | hig   | ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا ا | d)s           | (F)              |   |   |   |   |   |   |    | DATE TIME                      | ARE 5194 1643 33 7 N Y |   |   | on<br>y<br>y<br>noter      | mi qma<br>Custod<br>Custod<br>(V/V) | 문 등<br>( Ses          |
|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------|-------------|-------|---------------------------------------|---------------|------------------|---|---|---|---|---|---|----|--------------------------------|------------------------|---|---|----------------------------|-------------------------------------|-----------------------|
| Z<br>Preservatives                                    |                                                       | e(<br>loi<br>iseaT sisy                                                      | NOV                                  | <b>×</b>    |       | ×                                     | , , ,         |                  |   |   |   |   |   |   |    | TIME ACCEPTED BY / AFFILIATION | 1643 //L-That          |   |   |                            | Agron Kuck                          | la la Min             |
| COLLECTED                                             | COMPOSITE                                             | D TA GMET :                                                                  |                                      | 5 35        | 15.16 | 9:40                                  | e   ora       | 3,15             |   |   |   |   | - |   |    | DATE                           | 1 19/18/19             |   |   | SAMPLER NAME AND SIGNATURE | PRINT Name of SAMPLER:              | SIGNATURE of SAMPLER: |
| (Heli c                                               | WW TOW COMPOSITE  See valid codes to COMPOSITE  START | (CODE                                                                        | элчмаг<br>Р<br>Б                     | NATE S/FILL | · 2年6 | 0/18/16 c                             | 1/10/1/6/1/6/ | 4 + Kingle 11:15 |   |   |   |   |   |   |    | RELINQUISHED BY / AFFILIATION  | MAN                    | 3 |   | /s                         |                                     |                       |
| Section D  Required Client Information  MATRIX / CODE |                                                       | SAMPLE ID Wipe Wipe (A-Z, 0-91,-) Air Sample IDs MUST BE UNIQUE Tissue Other |                                      | 0.550       | 5PE-7 | DPE - 8                               | Influct       | FFFlyent         |   |   |   |   |   |   |    | ADDITIONAL COMMENTS            |                        |   |   |                            | 5                                   |                       |
| ν̈́κ                                                  |                                                       |                                                                              | ITEM#                                | -           | 7     | က                                     | 4             | 2                | 9 | 7 | 8 | 6 | 9 | 7 | 12 |                                |                        |   | P | age                        | 71 of                               | 72                    |



## Document Name: Sample Condition Upon Receipt Form

Document No.: F-MN-L-213-rev.16 Document Revised: 04Apr2016

Page 1 of 1

Issuing Authority: Pace Minnesota Quality Office

| Sample Condition                                              | Client Name:                                  |                                            |              | -             | Project         | ** W0#:10348956                                                                                                       |
|---------------------------------------------------------------|-----------------------------------------------|--------------------------------------------|--------------|---------------|-----------------|-----------------------------------------------------------------------------------------------------------------------|
| Upon Receipt                                                  | Landow                                        | k Ens.                                     |              | •.            |                 | MOH. TOOHOOOO                                                                                                         |
| Courier:                                                      | Fed Ex                                        |                                            | TUSP5        | <b>W</b>      | Client          |                                                                                                                       |
| Commercial                                                    | Pace                                          | SpeeDee [                                  | _<br>]Other: |               |                 | 10348956                                                                                                              |
| Tracking Number:                                              |                                               |                                            |              |               |                 | 10070000                                                                                                              |
| Custody Seal on Coc                                           | oler/Box Present?                             | ☐Yes ✓No                                   |              | Seals Int     | tact?           | Yes No Optional: Proj. Due Date: Proj. Name:                                                                          |
| Packing Material:                                             | Bubble Wrap                                   | Bubble Bags                                | ■Nor         | ne 🗌          | Other:          | Temp Blank? Yes                                                                                                       |
| =                                                             | 151401163<br>151401164                        | <b>⊉</b> 888A912167504<br>□ B88A0143310098 | Тур          | e of Ice:     | <b>∡</b> We     | et Blue None Samples on ice, cooling process has begun                                                                |
| Cooler Temp Read (°                                           | , <u>, , , , , , , , , , , , , , , , , , </u> | Cooler Temp Corre                          | cted (°C     | ): 3,         | 3               | Biological Tissue Frozen? Yes No / M/A                                                                                |
| Temp should be above                                          | -                                             | Correction Factor                          |              | rue           |                 | ate and Initials of Person Examining Contents: Class 5-1816                                                           |
| USDA Regulated Soil Did samples originate in                  |                                               |                                            | ntor: Al     | AD A7 C       | A EL GA         | ID IA Did grant to extering to from a foreign power fiction with                                                      |
| MS, NC, NM, NY, OK, O                                         |                                               |                                            | ates. AL,    | AN, AZ, C     | Yes             | , ID, LA. Did samples originate from a foreign source (internationally,  No including Hawaii and Puerto Rico)? Yes No |
| If                                                            | Yes to either quest                           | ion, fill out a Regul                      | ated So      | l Checkli     | st (F-MN-       | N-Q-338) and include with SCUR/COC paperwork.                                                                         |
|                                                               |                                               | •                                          |              | - · · · · · - |                 | COMMENTS:                                                                                                             |
| Chain of Custody Pres                                         | ent?                                          |                                            | Yes          | □No           | □N/A            | 1.                                                                                                                    |
| Chain of Custody Fille                                        | d Out?                                        | <u></u>                                    | Yes          | □No           | □N/A            | 2.                                                                                                                    |
| Chain of Custody Relia                                        | nguished?                                     |                                            | Yes          | □No           | □N/A            | 3.                                                                                                                    |
| Sampler Name and/or                                           | Signature on COC?                             |                                            | ₹Yes         | □No           | □n/a            | 4.                                                                                                                    |
| Samples Arrived withi                                         | n Hold Time?                                  |                                            | ¥Yes         | □No           | □N/A            | 5.                                                                                                                    |
| Short Hold Time Anal                                          | ysis (<72 hr)?                                |                                            | ∐Yes         | Mo            | □N/A            | 6.                                                                                                                    |
| Rush Turn Around Tir                                          | ne Requested?                                 |                                            | Yes          | No            | □N/A            | 7.                                                                                                                    |
| Sufficient Volume?                                            |                                               | .**                                        | Yes          | ∏No           | □N/A            | 8.                                                                                                                    |
| Correct Containers Us                                         | ed?                                           |                                            | Yes          | □No           | □n/a            | 9.                                                                                                                    |
| -Pace Containers U                                            | sed?                                          |                                            | Yes          | □No           | □n/a            |                                                                                                                       |
| Containers Intact?                                            |                                               |                                            | Yes          | □No           | N/A             | 10.                                                                                                                   |
| Filtered Volume Recei                                         | ved for Dissolved Te                          | sts?                                       | □Yes         | No            |                 |                                                                                                                       |
| Sample Labels Match                                           | COC?                                          |                                            | Yes          | □No           | □N/A            |                                                                                                                       |
| -Includes Date/Tim                                            | e/ID/Analysis Matr                            | ix: <b>6-T</b>                             |              |               |                 |                                                                                                                       |
| All containers needing                                        | <del></del>                                   |                                            |              |               |                 | 13 Dung Musa Dung Musa                                                                                                |
| checked?                                                      |                                               |                                            | □Yes         | □No           | A/N             | 13. □HNO <sub>3</sub> □H <sub>2</sub> 5O <sub>4</sub> □N∂OH □HCl                                                      |
| All containers needing compliance with EPA                    |                                               | una to be in                               |              | •             | •               | Sample #                                                                                                              |
| (HNO <sub>3</sub> , H <sub>2</sub> SO <sub>4</sub> , HCl<2; I |                                               |                                            | □Yes         | □No           | <b>∡</b> N/A    |                                                                                                                       |
| Exceptions: VOX, Colif<br>DRO/8015 (water) DO                 |                                               | rease,                                     | <b>∏</b> Yes | □No           | □n/a            | Initial when Lot # of added completed: preservative:                                                                  |
| Headspace in VOA Via                                          |                                               | CW 5.18.16                                 |              |               | <b>[</b> □]\\/A |                                                                                                                       |
| Trip Blank Present?                                           |                                               | . (20 31112                                | Yes          | X No          | □N/A            |                                                                                                                       |
| Trip Blank Custody Sea                                        | als Present?                                  |                                            | □Yes         | □No           | DaN/A           |                                                                                                                       |
| Pace Trip Blank Lot # (                                       | if purchased):                                |                                            |              |               |                 | 1                                                                                                                     |
| CLIENT NO                                                     | OTIFICATION/RESO                              | LUTION                                     |              |               |                 | Field Data Required? Yes No                                                                                           |
| Person Contacted:                                             |                                               |                                            |              |               |                 | Date/Time:                                                                                                            |
| Comments/Resolutio                                            |                                               |                                            |              |               | ·· ·· ·         |                                                                                                                       |
|                                                               |                                               |                                            |              |               |                 |                                                                                                                       |
|                                                               |                                               |                                            |              |               |                 |                                                                                                                       |
| Project Mar                                                   | nager Review:                                 | . 4                                        |              |               |                 | Date: 5/18/16                                                                                                         |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers).

## Attachment B

## FIELD DATA SHEET 1 of 2 (REVISED 4/13/10)

| CLIENT NAME: CITY OF ROCHESTER                                        |                       | DATE:      | 12/14      | 15           |              |
|-----------------------------------------------------------------------|-----------------------|------------|------------|--------------|--------------|
| PROJECT ID: CRC                                                       |                       | TIME: //   | 1300       |              |              |
| PROJECT NAME: MN BIO BUSINESS CENTER                                  |                       | RECORDE    | D BY: 🖊    | DIC &        | SMR          |
| 2009 SYSTEM STARTUP INFORMATION                                       | 9.43 for a f          | en seconds |            |              |              |
| Startup Date: 6/29/2009 MS Discharge Totali                           | izer: 68              | Sump Disch | narge Tota | alizer: 200  | ) ,          |
| NOTES - LEAVE VACUUM RELIEF VALVE SELE LEAVE AIR STRIPPER SELECTOR SW | 1                     |            |            |              |              |
| CURRENT OPERATING WELL:                                               |                       | STA        | ATIC WAT   | TER LEVE     | ELS          |
| DPE WELL BLEED VALVE % OPEN:                                          | an de comme           |            |            | Well         | Depth to     |
| DPE PUMP BLEED VALVE % OPEN:                                          |                       | C          | Clean to   | Depth        | Water        |
| DPEH 12/15/15                                                         | #2                    |            | Dirty      | below        | below        |
| ANALOG PANEL READINGS                                                 |                       | F          | Ranking    | TOC (FT)     | TOC (FT)     |
| DPE PUMP AIR FLOW (SCFM): 53.5                                        | 54.1                  | √MW-14     | 3          | 17.5         | 11.30        |
| DPE WELL VACUUM (IN. HG): 16,43                                       | 16.67                 | /MW-15     | 4          | 18           | 13.65        |
| DPE PUMP INLET VACUUM (IN. HG): 17,87                                 | 17.87                 | √MW-16     | 10         | 18           | 11.64        |
| DPE PUMP OUTLET PRESSURE (PSI): 0,07                                  |                       | / MW-17    | 7          | 25           | 12.39        |
| DPE PUMP OUTLET TEMP (DEG. F): 206.1                                  | 0.08                  | /_MW-18    | 6          | 60           | 12.94        |
| MS PUMP WATER FLOW (GPM): 0,0?                                        | 726,2                 | MW-19      | 1          |              | 3.10         |
| 1                                                                     |                       | MW-20      | 8          | V            | 2.41         |
| TOTAL PANEL READINGS                                                  |                       | DPE-1      | 15         | 21.9         | 14.55        |
| BI E VIGOGIAIT GIVII (TITO)                                           | CONTRACTOR CONTRACTOR | DPE-2      | 13         | 20.5         | 14.71        |
| MS PUMP (HRS): 2105                                                   |                       | DPE-3      | 14         | 17.1         | 14.89        |
| MS VACUUM VALVE (HRS): 693                                            | 693                   | ✓ DPE-4    | 12         | 19.3         | 14.91        |
| AIR STRIPPER BLOWER (HRS): 12868                                      | 12868                 | DPE-5      | 9          | 18.1         | 14.49        |
| AIR STRIPPER PUMP (HRS): 825                                          | 825                   | ✓ DPE-6    | 5          |              | 14.35        |
| DPE AIR FLOW (SCF): 108597000                                         | 108598000             | ✓ DPE-7    | 2          |              | 5.61         |
| MS PUMP WATER FLOW (GAL): 1982639                                     | 1982659               | DPE-8      | 11         |              | 15.43        |
| SUMP PUMP WATER FLOW (GAL):                                           | 610                   | Sump       | 11         | 7.74         |              |
| FIELD MEASUREMENTS                                                    | 610                   | ODER       | ATING W    | VATER LE     | VEI S        |
| DPE WELL CASING VACUUM (MM HG): 15.0                                  | 7 +                   | DPE-1      | ATING V    | VAILIVLL     | VLLO         |
| DDE MANUEOLD MACHUNA (INL. LIC)                                       | 7.5                   | DPE-2      |            | <del>\</del> |              |
| DPE WELL (PRE-MS-1) VACUUM (IN.HG): 16.9                              | 7.0                   | DPE-3      |            | 7            |              |
|                                                                       | 16.8                  | DPE-4      | 7          |              |              |
| POST-MS-1 VACUUM (IN. HG): 16.9 POST-MS-2 VACUUM (IN. HG): 17.        | 17.1                  | DPE-5      |            |              |              |
| DPE PUMP AIR FLOW (SCFM): 55                                          | 55                    | DPE-6      |            |              |              |
| DPE EXHAUST PID CONC. (PPM): 45,3                                     | 21.6                  | DPE-7      |            |              |              |
| DPE PUMP OUTLET PRESSURE (IN. H2O)): 0                                | 0                     | DPE-8      |            |              |              |
| DPE PUMP OUTLET TEMP (DEG. F): 200                                    | 720                   |            |            |              | <del></del>  |
|                                                                       |                       | SUMP RO    | OM PID:    |              |              |
| MS PUMP WATER FLOWRATE (WHILE PUMPING) (GP                            | M):                   |            |            |              | <del></del>  |
| MS PUMP WATER PRESSURE (WHILE PUMPING) (PSI                           |                       | BASEMEN    | IT PID RE  | ADINGS:      |              |
| MS PUMP FLOW TOTALIZER READING (GAL):                                 | .,,                   |            |            |              |              |
| me i em i zevi revi alezivite (ene).                                  |                       | COMMEN     | TS/MAIN    | TENANCE      | :            |
| AS EXHAUST PRESSURE (IN. H20):                                        | . 10,                 | , <i>Ù</i> |            |              | -            |
| AS DISCHARGE PUMP PRESSURÉ (WHILE PUMPING)                            | (PSI): 0.0 0.         | . 0        |            |              |              |
| AS BLOWER PRESSURE (IN. H20):                                         | 1/                    | /:         |            |              |              |
| AS EXHAUST PID (PPM):                                                 |                       | ·          |            |              |              |
|                                                                       |                       |            |            |              |              |
| ELEVATOR DRAIN TILE SUMP FLOW TOTALIZER (GAL                          | _):                   |            |            |              |              |
|                                                                       |                       |            |            |              |              |
| F:\PROJECTS\Crc-City of Rochester\Field Data\DPE FIELD FORM           | 18.0 PSI              | MS Pan     | e water    | Flour F      | 77: 11 1.4   |
| F:\PROJECTS\Crc-City of Rochester\Field Data\DPE FIELD FORM           | Amaza Amaza           |            | ( x        | 1000         | 2, 11.07 gpm |

# Landmark Environmental, LLC

# **Field Information Data Sheet**

| Client Name: _C        | City of Roche | ester           |            |              |            |         |          |       |
|------------------------|---------------|-----------------|------------|--------------|------------|---------|----------|-------|
| Project Name:C         | CRC           |                 | Proj       | ect Numb     | er:        |         | 2        |       |
| Location: Multip       | ole Location  |                 | Date       | <b>:</b>     |            | 12/     | 14/15    | ,     |
| Station:               |               |                 | Sam        | ple time:    | -          | 11:30   | /        | ,     |
|                        |               |                 |            |              |            |         |          |       |
| Multiple Sampling Log: | ·             | Time/<br>Volume | Temp<br>°C | Cond<br>@ 25 | pН         | Eh      | D.O.     |       |
| Location:              |               |                 |            |              |            |         |          |       |
| DPE-1:                 |               | 13:25           | 19,56      | 4053         | 7.53       | 218.1   | 1        |       |
| DPE-2:                 |               | 13:05           | 19.00      | 5 137        | 7.70       | 79.8    | 3.65     |       |
| DPE-3:                 |               | 13:15           | 19.31      | 8178         | 7.56       | 153. 3  | 34.63    | 23.67 |
| DPE-4:                 |               | 12:55           | 19.88      | 5983         | 6.69       | -64.3   | 2,14     |       |
| DPE-5:                 |               | 12:35           | 19.67      | 4175         | 3.01       | 1624    | 2.70     |       |
| DPE-6:                 |               | 12105           | 19.65      | 1390         | 7,50       | 274.3   | 3,60     |       |
| DPE-7:                 |               | 11:40           | 19.73      | 2297         | 7.41       | 182.7   | 3.01     |       |
| DPE-8:                 |               | 12:45           | 19.86      | 9141         | 7,28       | 160.3   | 3.08     |       |
| Rate, gpm:             |               |                 |            |              |            |         |          |       |
| Volume purged:         |               |                 |            |              |            |         |          |       |
| Duplicate collected?   |               |                 |            |              |            |         |          |       |
| Sampled by:            | AOK           |                 |            |              | (8)        |         |          |       |
| Others present:        | SMR           |                 |            | Well Co      | ndition    |         |          |       |
| Analysis:              | VOC           | filtered me     | tal 1      | nl filter    | in-line fi | lter (  | others:  | 0     |
| MW:gw monitoring       | well WS:wa    | iter supply     | well SW    | :surface v   | vater SE   | :sedime | nt other | :     |

MW:gw monitoring well WS:water supply well SW:surface water SE:sediment Measurements are referenced from top of riser pipe, unless otherwise indicated.

| Client Name:               | City of Roche | ester             |         |           |           |          |          |    |     |
|----------------------------|---------------|-------------------|---------|-----------|-----------|----------|----------|----|-----|
| Project Name:              | CRC           |                   | Proj    | ect Numb  | er:       |          |          |    |     |
| Location: MW-              | -14           |                   | Date    | <b>:</b>  |           | 2/14/    | 15       |    |     |
| Station:                   |               |                   | Sam     | ple time: |           | 20       |          |    |     |
|                            |               |                   |         |           |           |          |          |    |     |
| Casing diameter:           | 2"            | Time/             | Temp    | Cond      | рН        | Eh       | D.O.     |    | rb. |
| Total well depth:          | 17.5          | Volume            | °C      | @ 25      |           |          |          | N' | ľU  |
| Static water level:        | 11.30         |                   | 17.99   | 7173      | 6.47      | 69.8     | 2.48     |    |     |
| Water depth <sup>1</sup> : | 6,2           | 11:50             | 19.76   | 0987      |           | 218.9    | 4.47     |    |     |
| Well volume (gal):         | 1.01          |                   |         |           |           |          |          |    |     |
| Purge method:              |               |                   |         |           |           |          |          |    |     |
| Sample Method:             |               |                   |         |           |           |          |          |    |     |
| Start time:                |               |                   |         |           |           |          |          |    |     |
| Stop time:                 |               |                   |         |           |           |          |          |    |     |
| Duration (min.):           |               | Odor:             |         |           |           |          |          |    |     |
| Rate, gpm:                 |               | Purge<br>appearan | ce:     |           |           |          |          |    |     |
| Volume purged:             | 1.0           | Sample appearan   | ice:    | C         | loudy     | brou     | Jn -     |    |     |
| Duplicate collected?       | No            | Commen            |         |           |           |          |          |    |     |
| Sampled by:                | ADK           |                   |         | Volum     | ne o      | 17       |          |    |     |
| Others present:            | SMPL          |                   |         | Well Co   | ndition   |          |          |    |     |
| Analysis:                  | VOC           | filtered me       | tal r   | nl filter | in-line f | lter     | others:  |    |     |
| MW:gw monitorin            | ig well WS:wa | ter supply        | well SW | surface v | vater SF  | E:sedime | nt other |    |     |

Measurements are referenced from top of riser pipe, unless otherwise indicated.

(water )x (diametra & the well )=4 (.0408) = Valume ingallows

| Client Name:               | City of Roche | ester             |         |            |            |          |          |       |
|----------------------------|---------------|-------------------|---------|------------|------------|----------|----------|-------|
| Project Name:              | CRC           |                   | Proj    | ect Numb   | er:        |          |          |       |
| Location: MW-              | 15            |                   | Date    | <b>)</b> : |            | 2/14/    | 15       |       |
| Station:                   |               |                   | Sam     | ple time:  |            | 11:50    |          |       |
|                            |               | 1                 | 1       | T          |            |          |          |       |
| Casing diameter:           | 2"            | Time/             | Temp    | Cond       | рН         | Eh       | D.O.     | Turb. |
| Total well depth:          | 18            | Volume            | °C      | @ 25       |            |          |          | NTU   |
| Static water level:        | 13.65         | 11:50             | 20.62   | 2249       | 7.39       | 235.4    | 3.27     |       |
| Water depth <sup>1</sup> : | 4.35          |                   |         |            |            |          |          |       |
| Well volume (gal):         | 0.71          |                   |         |            |            |          |          |       |
| Purge method:              |               |                   |         |            |            |          |          |       |
| Sample Method:             |               |                   |         |            |            |          |          |       |
| Start time:                |               |                   |         |            |            |          |          |       |
| Stop time:                 |               |                   |         |            |            |          |          |       |
| Duration (min.):           |               | Odor:             |         |            |            |          |          |       |
| Rate, gpm:                 |               | Purge<br>appearan | ice:    |            |            |          |          |       |
| Volume purged:             | 3/4 201       | Sample appearan   | ice:    | C          | (ear       |          |          |       |
| Duplicate collected?       | No            | Commer            | nts:    | 6          |            |          |          |       |
| Sampled by:                | AOK           |                   |         | Volum      | eo         | ) of     |          |       |
| Others present:            | SMR           |                   |         | Well Co    | ndition    |          |          |       |
| Analysis:                  | VOC           | filtered me       | etal r  | nl filter  | in-line fi | ilter    | others:  |       |
| MW:gw monitoring           | g well WS:wa  | nter supply       | well SW | :surface v | vater SI   | E:sedime | nt other | ;     |

<sup>&</sup>lt;sup>1</sup> Measurements are referenced from top of riser pipe, unless otherwise indicated.

| Client Name:               | City of Roche | ester             |         |            |           |          |           |        |
|----------------------------|---------------|-------------------|---------|------------|-----------|----------|-----------|--------|
| Project Name:              | CRC           |                   | Proj    | ect Numb   | er:       | CRC-     | -14       |        |
| Location: MW-              | 16            |                   | Date    | ):         | Aug       | ust 22,  | 2014      | 2/14/1 |
| Station:                   |               |                   | Sam     | ple time:  | ·         |          |           | / /    |
|                            |               |                   |         | Г          | Т         |          |           |        |
| Casing diameter:           | 2"            | Time/             | Temp    | Cond       | рН        | Eh       | D.O.      | Turb.  |
| Total well depth:          | 18            | Volume            | °C      | @ 25       |           |          |           | NTU    |
| Static water level:        | 11.64         | 12:25             | 19.89   | 4269       | 7.49      | 111.4    | 2,55      |        |
| Water depth <sup>1</sup> : | 6.34          |                   |         |            |           | 2        |           |        |
| Well volume (gal):         | 1.04          |                   |         |            |           |          |           |        |
| Purge method:              |               |                   |         |            |           |          |           |        |
| Sample Method:             |               |                   |         |            |           |          |           |        |
| Start time:                |               |                   |         |            |           |          |           |        |
| Stop time:                 |               |                   |         |            |           |          |           |        |
| Duration (min.):           |               | Odor:             |         | 1          |           |          |           |        |
| Rate, gpm:                 |               | Purge<br>appearan | ce:     |            |           |          |           |        |
| Volume purged:             | 1.0           | Sample appearan   | ice:    | Clo        | ybu       | brow     | 'n        |        |
| Duplicate collected?       | NU            | Commen            |         | 1 90       |           |          |           |        |
| Sampled by:                | ADIC          |                   |         | 1 ga       |           | 1        |           |        |
| Others present:            | SM2           | -                 |         | Well Co    | ndition   |          |           |        |
| Analysis:                  | VOC           | filtered me       | etal 1  | ml filter  | in-line f | ilter    | others:   |        |
| MW:gw monitoring           | g well WS:wa  | iter supply       | well SW | :surface v | water SI  | E:sedime | ent other | :      |

MW:gw monitoring well WS:water supply well SW:surface water SE:sediment Measurements are referenced from top of riser pipe, unless otherwise indicated.

# Landmark Environmental, LLC

# **Field Information Data Sheet**

| Client Name:               | City of Roche | ester             |         |            |           | 12       |          |       |  |  |
|----------------------------|---------------|-------------------|---------|------------|-----------|----------|----------|-------|--|--|
| Project Name:              | CRC           |                   | Proje   | ect Numb   | er:       |          |          |       |  |  |
| Location: MW-              | ·17           |                   | Date    | <b>:</b> : |           | 12/14    | 15       |       |  |  |
| Station: 2                 | 5             |                   | Sam     | ple time:  |           | ¥        |          |       |  |  |
|                            |               | 1                 | ı       | Г          | 1         |          |          |       |  |  |
| Casing diameter:           | 2"            | Time/             | Temp    | Cond       | pН        | Eh       | D.O.     | Turb. |  |  |
| Total well depth:          | 25            | Volume            | °C      | @ 25       |           |          |          | NTU   |  |  |
| Static water level:        | 12.39         | 12:15             | 19.68   | 1952       | 8.65      | -78.3    | 0.81     |       |  |  |
| Water depth <sup>1</sup> : | 12.6          |                   |         |            |           |          |          |       |  |  |
| Well volume (gal):         | 2.06          |                   |         |            |           |          |          |       |  |  |
| Purge method:              |               |                   |         |            |           |          |          |       |  |  |
| Sample Method:             |               |                   |         |            |           |          |          |       |  |  |
| Start time:                |               |                   |         |            |           |          |          |       |  |  |
| Stop time:                 |               |                   |         |            |           |          |          |       |  |  |
| Duration (min.):           |               | Odor:             |         |            |           |          |          |       |  |  |
| Rate, gpm:                 |               | Purge<br>appearan | ice:    |            |           |          | 140)     |       |  |  |
| Volume purged:             | 2 gal         | Sample appearan   | ice:    |            |           |          |          |       |  |  |
| Duplicate collected?       | No            | Commen            |         |            | 17        | . /      |          |       |  |  |
| Sampled by:                | ADK           |                   | 1       | umped      | 71        | 7        |          |       |  |  |
| Others present:            | SMR           |                   |         | Well Co    | ondition  |          |          |       |  |  |
| Analysis:                  | VOC           | filtered me       | etal 1  | ml filter  | in-line f | ilter    | others:  |       |  |  |
| MW:gw monitoring           | ng well WS:wa | ater supply       | well SW | :surface   | water SI  | E:sedime | nt other | :     |  |  |

Measurements are referenced from top of riser pipe, unless otherwise indicated.

| Client Name: _C            | City of Roche | ester             |          |            |           |          |           |       |
|----------------------------|---------------|-------------------|----------|------------|-----------|----------|-----------|-------|
| Project Name:              | CRC           |                   | Proje    | ect Numb   | er:       |          |           |       |
| Location: MW-1             | 8             |                   | Date     | :          |           | 12/1     | 4/15      |       |
| Station:                   |               |                   | Sam      | ple time:  |           |          |           |       |
|                            |               |                   |          |            |           |          | 1         | 1     |
| Casing diameter:           | 2"            | Time/             | Temp     | Cond       | pН        | Eh       | D.O.      | Turb. |
| Total well depth:          | 60            | Volume            | °C       | @ 25       |           |          |           | NTU   |
| Static water level:        | 12.94         | 12:10             | 19.78    | 1392       | 11.01     | 68.1     | 1.93      |       |
| Water depth <sup>1</sup> : | 47.06         |                   |          |            |           |          |           |       |
| Well volume (gal):         | 7.68          |                   |          |            |           |          |           |       |
| Purge method:              |               |                   |          |            |           |          |           |       |
| Sample Method:             |               |                   |          |            |           |          |           |       |
| Start time:                |               |                   |          |            |           |          |           |       |
| Stop time:                 |               |                   |          |            |           |          |           |       |
| Duration (min.):           |               | Odor:             |          |            |           |          |           |       |
| Rate, gpm:                 |               | Purge<br>appearan | nce:     | × 5        |           |          |           |       |
| Volume purged:             |               | Sample appearan   | nce:     |            |           |          |           |       |
| Duplicate collected?       |               | Commen            |          |            | for       | 10 +     | mine      | tes   |
| Sampled by:                | AOK           | Collecte          | & Sample | le jus     | t bel     | ow Wi    | nter to   | ble.  |
| Others present:            | SMH           | ¥                 |          | Well Co    | ndition   |          |           |       |
| Analysis:                  | VOC           | filtered me       | etal 1   | ml filter  | in-line f | ilter    | others:   |       |
| MW:gw monitoring           | g well WS:wa  | iter supply       | well SW  | :surface v | water SI  | E:sedime | ent other | r:    |

<sup>&</sup>lt;sup>1</sup> Measurements are referenced from top of riser pipe, unless otherwise indicated.

| Client Name:               | City of Roche | ester             |         |           |            |          |          |       |
|----------------------------|---------------|-------------------|---------|-----------|------------|----------|----------|-------|
| Project Name:              | CRC           |                   | Proje   | ect Numb  | er:        |          |          |       |
| Location: MW-1             | 9             |                   | Date    | :         |            | 12/1     | 4/15     |       |
| Station:                   |               |                   | Sam     | ple time: |            | (20      |          |       |
|                            |               |                   |         |           |            |          |          |       |
| Casing diameter:           | 2"            | Time/             | Temp    | Cond      | pН         | Eh       | D.O.     | Turb. |
| Total well depth:          | 20            | Volume            | °C      | @ 25      |            |          |          | NTU   |
| Static water level:        | 13.10         |                   | 17.99   | 7173      | 6.47       | 69.8     | 2.48     |       |
| Water depth <sup>1</sup> : | 6.9           |                   |         |           |            |          |          |       |
| Well volume (gal):         | 1.13          |                   |         |           |            |          |          |       |
| Purge method:              |               |                   |         |           |            |          |          |       |
| Sample Method:             |               |                   |         |           |            |          |          |       |
| Start time:                |               |                   |         |           |            |          |          |       |
| Stop time:                 |               |                   |         |           |            |          |          |       |
| Duration (min.): Odor:     |               |                   |         |           |            |          |          |       |
| Rate, gpm:                 |               | Purge<br>appearan | ce:     |           |            |          |          |       |
| Volume purged:             | 1.0           | Sample appearan   | .ce:    | cl        | ondy       |          |          |       |
| Duplicate collected?       | No            | Commen            | its:    | volu      | ,          | 10.      |          |       |
| Sampled by:                | ADU           |                   | [~      | Volu      | MC C       | , ,      |          |       |
| Others present:            | SMH           | 1                 |         | Well Co   | ndition    |          |          |       |
| Analysis:                  | VOC :         | filtered me       | tal r   | nl filter | in-line fi | lter     | others:  |       |
| MW:gw monitoring           | well WS:wa    | ter supply        | well SW | surface v | vater SE   | E:sedime | nt other | :     |

| Client Name:               | City of Roche | ester               |         |            |            |          |          |       |
|----------------------------|---------------|---------------------|---------|------------|------------|----------|----------|-------|
| Project Name:              | CRC           |                     | Proj    | ect Numb   | er:        |          |          |       |
| Location: MW-2             | 20            |                     | Date    | <b>:</b> : | 12         | -114/1   | 5        |       |
| Station:                   |               |                     | Sam     | ple time:  |            | 3:35     |          |       |
|                            |               |                     |         | T          |            |          |          |       |
| Casing diameter:           | 2"            | Time/               | Temp    | Cond       | pН         | Eh       | D.O.     | Turb. |
| Total well depth:          | 16.7          | Volume              | °C      | @ 25       |            |          |          | NTU   |
| Static water level:        | 12.41         | 13:35               | 19.38   | 1006       | 6.93       | 137.3    | 3.66     |       |
| Water depth <sup>1</sup> : | 4.29          |                     |         |            |            |          |          |       |
| Well volume (gal):         | 0.70          |                     |         |            |            |          |          |       |
| Purge method:              |               |                     |         |            |            |          |          |       |
| Sample Method:             |               |                     |         |            |            |          |          |       |
| Start time:                |               |                     |         |            |            |          |          |       |
| Stop time:                 |               |                     |         |            |            |          |          |       |
| Duration (min.):           |               | Odor:               |         |            |            |          |          |       |
| Rate, gpm:                 |               | Purge<br>appearance | ce:     |            |            |          |          |       |
| Volume purged:             | 3/4 gal       | Sample appearance   | ce:     | C          | loudy      | po       | N        |       |
| Duplicate collected?       | No            | Commen              |         | ŧ          | ā          |          |          |       |
| Sampled by:                | AOK           |                     |         | V d &      | re du      | 7        |          |       |
| Others present:            | SMR           |                     |         | Well Co    | ndition    |          |          |       |
| Analysis:                  | VOC           | filtered met        | tal 1   | nl filter  | in-line fi | ilter (  | others:  |       |
| MW:gw monitoring           | well WS:wa    | ter supply          | well SW | :surface v | vater SE   | E:sedime | nt other | :     |

<sup>&</sup>lt;sup>1</sup> Measurements are referenced from top of riser pipe, unless otherwise indicated.

## FIELD DATA SHEET 1 of 2 (REVISED 4/13/10)

| ·                                                         | . 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CLIENT NAME: CITY OF ROCHESTER                            | DATE: 1/11/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| PROJECT ID: CRC                                           | TIME: 9:25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| PROJECT NAME: MN BIO BUSINESS CENTER                      | RECORDED BY: ADK & SMR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TROCEST TARIE.                                            | THE STATE OF STATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2009 SYSTEM STARTUP INFORMATION                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Startup Date: 6/29/2009 MS Discharge Totalizer: 68        | Sump Discharge Totalizer: 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Startup Date. 0/29/2009 WIS Discharge Totalizer. 00       | Sump Discharge Totalizer. 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| NOTES - LEAVE VACUUM RELIEF VALVE SELECTOR SWITC          | H IN OFF POSITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| LEAVE AIR STRIPPER SELECTOR SWITCHES IN AL                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LEAVE AIR STRIPPER SELECTOR SWITCHES IN AC                | TO FOSITION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CURRENT ORERATING MELL.                                   | STATIC WATER LEVELS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CURRENT OPERATING WELL:                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DPE WELL BLEED VALVE % OPEN:                              | The state of the s |
| DPE PUMP BLEED VALVE % OPEN:                              | Clean to Depth Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| DREY 1/12/16 2:10                                         | Dirty below below                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ANALOG PANEL READINGS                                     | Ranking TOC (FT) TOC (FT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DPE PUMP AIR FLOW (SCFM): 46.7                            | MW-14 3 17.5 //.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DPE WELL VACUUM (IN. HG): 18.84                           | MW-15 4 18 (3.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DPE PUMP INLET VACUUM (IN. HG): 19.87                     | MW-16 10 18 /1.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DPE PUMP OUTLET PRESSURE (PSI): 0,09                      | MW-17 7 25 /2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DPE PUMP OUTLET TEMP (DEG. F): 750,6                      | MW-18 6 60 12. 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MS PUMP WATER FLOW (GPM): 0.81 -> 4.73                    | MW-19 1 20 3.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - CAN                                                     | MW-20 8 16.7 /2.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TOTAL PANEL READINGS                                      | DPE-1 15 21.9 15.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DPE VACUUM PUMP (HRS): 2859                               | DPE-2 13 20.5   4 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MS PUMP (HRS): 2260                                       | DPE-3 14 17.1 15.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| MS VACUUM VALVE (HRS): (693                               | DPE-4 12 19.3 15.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| AIR STRIPPER BLOWER (HRS): 13367                          | DPE-5 9 18.1 /6.//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AIR STRIPPER PUMP (HRS): 8 54                             | DPE-6 5 19.5 14.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DPE AIR FLOW (SCF): 11088000                              | DPE-7 2 22.2 15.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MS PUMP WATER FLOW (GAL): 1993342                         | DPE-8 11 17.5 15.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SUMP PUMP WATER FLOW (GAL): (6/0                          | Sump <b>ES</b> 1 7.74 (g. 8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                           | 0000471110114475045151                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| FIELD MEASUREMENTS                                        | OPERATING WATER LEVELS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DPE WELL CASING VACUUM (MM HG): 245 in H20 = 457.28 mm Hz | DPE-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| PRE-MANIFOLD VACUUM (IN. HG): Granze broke                | DPE-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DPE WELL (PRE-MS-1) VACUUM (IN.HG): 18,5                  | DPE-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| POST-MS-1 VACUUM (IN. HG): 18.5                           | DPE-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| POST-MS-2 VACUUM (IN. HG): 17.5                           | DPE-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DPE PUMP AIR FLOW (SCFM): 50                              | DPE-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DPE EXHAUST PID CONC. (PPM): 152.5                        | DPE-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DPE PUMP OUTLET PRESSURE (IN. H2O)):                      | DPE-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DPE PUMP OUTLET TEMP (DEG. F): 230                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                           | SUMP ROOM PID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MS PUMP WATER FLOWRATE (WHILE PUMPING) (GPM): 4.40        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MS PUMP WATER PRESSURE (WHILE PUMPING) (PSI): 13 role     | BASEMENT PID READINGS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MS PUMP FLOW TOTALIZER READING (GAL): 407700              | J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                           | COMMENTS/MAINTENANCE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AS EXHAUST PRESSURE (IN. H20): 8,0                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AS DISCHARGE PUMP PRESSURE (WHILE PUMPING) (PSI): 18      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AS BLOWER PRESSURE (IN. H20):                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| AS EXHAUST PID (PPM): 0,0                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| *                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ELEVATOR DRAIN TILE SUMP FLOW TOTALIZER (GAL): 525        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Client Name:           | City of Roche | ester              |            |              |            |          |          |   |  |
|------------------------|---------------|--------------------|------------|--------------|------------|----------|----------|---|--|
| Project Name:          | CRC           | RC Project Number: |            |              |            |          |          |   |  |
| Location: Multip       | ole Location  |                    | Date       | :            |            | 1/11/10  | Q        |   |  |
| Station:               |               |                    | Sam        | ple time:    |            | 1        |          |   |  |
| Multiple Sampling Log: |               | Time/<br>Volume    | Temp<br>°C | Cond<br>@ 25 | рН         | Eh       | D.O.     |   |  |
| Location: DPE-1:       |               | 11:35              | 18.52      | 2309         | 7 54       | 292,7    | 3,56     | , |  |
| DPE-1:                 |               | 11:25              | 18,22      | 3074         |            | 279.1    | 3.88     |   |  |
| DPE-3:                 |               | 11:30              | 18.07      | 7290         |            | 286.7    | _        |   |  |
| DPE-4:                 |               | 11:20              | 18:61      | 3878         | 2065       |          | 5.28     |   |  |
| DPE-5:                 |               | 10:55              | 17.95      | 3497         | 7.88       | 179.5    | 5.81     |   |  |
| DPE-6:                 |               | 11:10              | 18.38      | 1486         | 7.58       | 1930     | 3,53     |   |  |
| DPE-7:                 |               | 10:05              | 20.17      | 1845         | 7.22       | 191.1    | 4.51     |   |  |
| DPE-8:                 |               | भगड                | 18.17      | 7311         | 7.35       | 239.3    | 5.57     | • |  |
| Rate, gpm:             |               |                    |            |              |            |          |          |   |  |
| Volume purged:         |               |                    |            |              |            |          |          |   |  |
| Duplicate collected?   |               |                    |            |              |            |          |          |   |  |
| Sampled by:            | ADK           |                    |            |              |            | _        |          |   |  |
| Others present:        | SMR           |                    |            | Well Co      | ndition    |          |          |   |  |
| Analysis:              | VOC           | filtered me        | tal r      | nl filter    | in-line fi | lter     | others:  |   |  |
| MW:gw monitoring       | g well WS:wa  | iter supply        | well SW    | :surface v   | vater SE   | E:sedime | nt other | • |  |

Measurements are referenced from top of riser pipe, unless otherwise indicated.

# Landmark Environmental, LLC

# **Field Information Data Sheet**

| Client Name:               | City of Roche | ester              |         |           |            |          |            |       |  |
|----------------------------|---------------|--------------------|---------|-----------|------------|----------|------------|-------|--|
| Project Name:              | CRC           | RC Project Number: |         |           |            |          |            |       |  |
| Location: MW-1             | 14            | Date: Date:        |         |           |            |          |            |       |  |
| Station:                   |               |                    | Sam     | ple time: |            | 10:15    |            |       |  |
|                            |               |                    |         |           |            |          |            |       |  |
| Casing diameter:           | 2"            | Time/              | Temp    | Cond      | рН         | Eh       | D.O.       | Turb. |  |
| Total well depth:          | 17.5          | Volume             | °C      | @ 25      |            |          |            | NTU   |  |
| Static water level:        | 11.60         | 10:15              | 19.51   | 1313      | 7.34       | 3.9      | 3.94       |       |  |
| Water depth <sup>1</sup> : | 5.90          |                    |         |           |            |          |            |       |  |
| Well volume (gal):         | 0.96          |                    |         |           |            |          |            |       |  |
| Purge method:              |               |                    |         |           |            |          |            |       |  |
| Sample Method:             |               |                    |         |           |            |          |            |       |  |
| Start time:                |               |                    |         |           |            |          |            |       |  |
| Stop time:                 |               |                    |         |           |            |          |            |       |  |
| Duration (min.):           |               | Odor:              |         |           |            |          |            |       |  |
| Rate, gpm:                 |               | Purge<br>appearan  | ce:     | Cl        | ndy        | bro.     | <b>~</b> ~ |       |  |
| Volume purged:             | 1.0           | Sample appearan    | ce:     |           | /          |          |            |       |  |
| Duplicate collected?       | No            | Commen             | its:    | Volu      |            |          |            |       |  |
| Sampled by:                | AUK           |                    | /       | Volu      | me         |          |            |       |  |
| Others present:            | SMR           |                    |         | Well Co   | ndition    |          |            |       |  |
| Analysis:                  | VOC           | filtered me        | tal r   | nl filter | in-line fi | ilter    | others:    |       |  |
| MW:gw monitoring           | gwell WS:wa   | ter supply         | well SW | surface v | vater SE   | E:sedime | ent other  | :     |  |

<sup>&</sup>lt;sup>1</sup> Measurements are referenced from top of riser pipe, unless otherwise indicated.

| Client Name:               | City of Roche       | ester             |         |            |            |          |           |       |
|----------------------------|---------------------|-------------------|---------|------------|------------|----------|-----------|-------|
| Project Name:              | CRC Project Number: |                   |         |            |            |          |           |       |
| Location: MW-1             | 15                  |                   | Date    | <b>:</b> : |            | 11/20    | , ( (4    |       |
| Station:                   |                     |                   | Sam     | ple time:  |            |          |           |       |
|                            |                     |                   |         |            |            |          |           |       |
| Casing diameter:           | 2"                  | Time/             | Temp    | Cond       | pН         | Eh       | D.O.      | Turb. |
| Total well depth:          | 18                  | Volume            | °C      | @ 25       |            |          |           | NTU   |
| Static water level:        | 13.81               | 10:20             | 20.27   | 3590       | 7.46       | 101, 8   | 3,65      |       |
| Water depth <sup>1</sup> : | 4.19                |                   |         |            |            |          |           |       |
| Well volume (gal):         | 0.68                |                   |         |            |            |          |           |       |
| Purge method:              |                     |                   |         |            |            |          |           |       |
| Sample Method:             |                     |                   |         |            |            |          |           |       |
| Start time:                |                     |                   |         |            |            |          |           |       |
| Stop time:                 |                     |                   |         |            |            |          |           |       |
| Duration (min.):           |                     | Odor:             |         |            |            |          |           |       |
| Rate, gpm:                 |                     | Purge<br>appearan | ice:    | C          | lear       |          |           |       |
| Volume purged:             | 1. Bgal             | Sample appearan   | ice:    |            |            |          |           |       |
| Duplicate collected?       | No                  | Commen            | nts:    | Volum      |            |          |           |       |
| Sampled by:                | ADIC                |                   | /       | Volum      | e          |          |           |       |
| Others present:            | SMR                 | 1                 |         | Well Co    | ndition    |          |           |       |
| Analysis:                  | VOC                 | filtered me       | etal 1  | nl filter  | in-line fi | lter     | others:   |       |
| MW:gw monitoring           | well WS:wa          | ter supply        | well SW | :surface v | vater SE   | E:sedime | ent other | :     |

<sup>&</sup>lt;sup>1</sup> Measurements are referenced from top of riser pipe, unless otherwise indicated.

| Client Name:                             | city of Roche | ester             |         |           |             |          |           |         |
|------------------------------------------|---------------|-------------------|---------|-----------|-------------|----------|-----------|---------|
| Project Name: CRC Project Number: CRC-14 |               |                   |         |           |             |          |           |         |
| Location: MW-1                           | 16            |                   | Date    | <b>:</b>  | Aug         | ust 22,  | 2014      | 1/11/16 |
| Station:                                 |               |                   | Sam     | ple time: |             |          |           | 1 \     |
|                                          |               | r                 |         | T         |             |          |           |         |
| Casing diameter:                         | 2"            | Time/             | Temp    | Cond      | рН          | Eh       | D.O.      | Turb.   |
| Total well depth:                        | 18            | Volume            | °C      | @ 25      |             |          |           | NTU     |
| Static water level:                      | 11.99         | 10:40             | 19.70   | 2876      | 7.28        | 83.5     | 3.19      |         |
| Water depth <sup>1</sup> :               | 6-01          |                   |         |           |             |          |           |         |
| Well volume (gal):                       | 0.98          |                   |         |           |             |          |           |         |
| Purge method:                            |               |                   |         |           |             |          |           |         |
| Sample Method:                           |               |                   |         |           |             |          |           |         |
| Start time:                              |               |                   |         |           |             |          |           |         |
| Stop time:                               |               |                   |         |           |             |          |           |         |
| Duration (min.):                         |               | Odor:             |         |           |             |          |           |         |
| Rate, gpm:                               |               | Purge<br>appearan | nce:    | Clos      | ndy<br>lear | brow     | 1         |         |
| Volume purged:                           | 1,5941        | Sample appearan   | ice:    | C         | lear        |          |           |         |
| Duplicate collected?                     | NO<br>AOU     | Commen            | nts:    |           |             |          |           |         |
| Sampled by:                              | AUR           |                   |         |           |             |          |           |         |
| Others present:                          | SMR           |                   |         | Well Co   | ondition    |          |           |         |
| Analysis:                                | VOC           | filtered me       | etal 1  | ml filter | in-line f   | ilter    | others:   |         |
| MW:gw monitoring                         | g well WS:wa  | iter supply       | well SV | V:surface | water SI    | E:sedime | ent other | :       |

Measurements are referenced from top of riser pipe, unless otherwise indicated.

## Landmark Environmental, LLC **Field Information Data Sheet**

| Client Name:                    | City of Roche       | ster  |      |           |    |     |      |       |
|---------------------------------|---------------------|-------|------|-----------|----|-----|------|-------|
| Project Name:                   | CRC Project Number: |       |      |           |    |     |      |       |
| Location: MW-17 Date: $ / / / $ |                     |       |      |           |    |     |      |       |
| Station: 25                     | ;                   | ×     | Sam  | ple time: |    | ( ' |      |       |
|                                 |                     |       |      |           |    |     |      |       |
| Casing diameter:                | 2"                  | Time/ | Temp | Cond      | pН | Eh  | D.O. | Turb. |

| Casing diameter:                   | 2"    | Time/<br>Volume   | Temp<br>°C | Cond<br>@ 25  | pН         | Eh    | D.O.    | Turb.<br>NTU |
|------------------------------------|-------|-------------------|------------|---------------|------------|-------|---------|--------------|
| Total well depth:                  | 25    |                   |            |               |            |       |         |              |
| Static water level:                | 12.25 | 10:35             | 19,59      | 1817          | 7.67       | -89.3 | 0.73    |              |
| Water depth <sup>1</sup> :         | 12.95 |                   |            |               |            |       |         |              |
| Well volume (gal):                 | 2.08  |                   |            |               |            |       |         |              |
| Purge method:                      |       |                   |            |               |            |       |         |              |
| Sample Method:                     |       |                   |            |               |            |       |         |              |
| Start time:                        |       |                   |            |               |            |       |         |              |
| Stop time:                         |       |                   |            |               |            |       |         |              |
| Duration (min.):                   |       | Odor:             |            |               |            |       |         |              |
| Rate, gpm:                         |       | Purge<br>appearan | .ce:       |               |            |       |         |              |
| Volume purged:                     | 2 201 | Sample appearan   | ce:        | C             | loudy      | ,     |         |              |
| Duplicate collected?               | No    | Commen            |            | 2             | / /        |       | 100 C   |              |
| Sampled by:                        | AOK   |                   | 1          | rimped<br>for | 5 m        | nute  | 5       | 1            |
| Others present:                    | SMR   |                   |            | Well Co       | ondition   |       |         |              |
| Analysis:                          | VOC : | filtered me       | tal r      | nl filter     | in-line fi | lter  | others: |              |
| MW:gw monitoring  Measurements are |       |                   |            |               |            |       |         | :            |

# Landmark Environmental, LLC

| Client Name:               | City of Roche | ester              |          |            |           |          |          |         |  |
|----------------------------|---------------|--------------------|----------|------------|-----------|----------|----------|---------|--|
| Project Name:              | CRC           | RC Project Number: |          |            |           |          |          |         |  |
| Location: MW-1             | 18            |                    | Date     | <b>:</b> : |           | 1/11/1   | 6        |         |  |
| Station:                   |               |                    | Sam      | ple time:  |           |          |          |         |  |
|                            |               |                    |          |            |           |          |          |         |  |
| Casing diameter:           | 2"            | Time/              | Temp     | Cond       | pН        | Eh       | D.O.     | Turb.   |  |
| Total well depth:          | 60            | Volume             | °C       | @ 25       |           |          |          | NTU     |  |
| Static water level:        | 12.64         | 10:27              | 19.64    | 2180       | 7.37      | -83.8    | 2.08     |         |  |
| Water depth <sup>1</sup> : | 47.36         |                    |          |            |           |          |          |         |  |
| Well volume (gal):         | 7.73          |                    |          |            |           |          |          |         |  |
| Purge method:              |               |                    |          |            |           |          |          |         |  |
| Sample Method:             |               |                    |          |            |           |          |          |         |  |
| Start time:                |               |                    |          |            |           |          |          |         |  |
| Stop time:                 |               |                    |          |            |           |          |          |         |  |
| Duration (min.):           |               | Odor:              |          |            |           |          |          |         |  |
| Rate, gpm:                 |               | Purge<br>appearan  |          |            |           |          |          | (a) * 1 |  |
| Volume purged:             |               | Sample appearan    | ce:      | Clo        | nely      |          |          |         |  |
| Duplicate collected?       | No            | Commen             | its: Ran | Clo        | for       | 15 m     | inut     | 4       |  |
| Sampled by:                | AOK           |                    |          |            |           |          |          |         |  |
| Others present:            | SMR           | •                  |          | Well Co    | ndition   |          |          |         |  |
| Analysis:                  | VOC           | filtered me        | tal r    | nl filter  | in-line f | ilter    | others:  |         |  |
| MW:gw monitoring           | g well WS:wa  | ter supply         | well SW  | :surface v | vater SI  | E:sedime | nt other | r:      |  |

<sup>1</sup> Measurements are referenced from top of riser pipe, unless otherwise indicated.

| Client Name:               | City of Roche | ester              |         |            |           |          |          |       |  |
|----------------------------|---------------|--------------------|---------|------------|-----------|----------|----------|-------|--|
| Project Name:              | CRC           | RC Project Number: |         |            |           |          |          |       |  |
| Location: MW-              | 19            |                    | Date    | <b>:</b> : |           | 111/1    | 4        |       |  |
| Station:                   |               |                    | Sam     | ple time:  |           | 11/1     |          |       |  |
|                            |               |                    | r       |            |           |          |          |       |  |
| Casing diameter:           | 2"            | Time/              | Temp    | Cond       | рН        | Eh       | D.O.     | Turb. |  |
| Total well depth:          | 20            | Volume             | °C      | @ 25       |           |          | . *      | NTU   |  |
| Static water level:        | 13.63         |                    | 17.87   | 6853       | 6.53      | 82.7     | 2.94     |       |  |
| Water depth <sup>1</sup> : | 6.37          |                    |         |            |           |          |          |       |  |
| Well volume (gal):         | 1.04          |                    |         |            |           |          |          |       |  |
| Purge method:              | ,             |                    |         |            |           |          |          |       |  |
| Sample Method:             |               |                    |         |            |           |          |          |       |  |
| Start time:                |               |                    |         |            |           |          |          |       |  |
| Stop time:                 |               |                    |         |            |           |          |          |       |  |
| Duration (min.):           |               | Odor:              |         |            |           |          |          |       |  |
| Rate, gpm:                 |               | Purge<br>appearan  | ce:     | C/6        | ady       |          |          |       |  |
| Volume purged:             | 1.0           | Sample appearan    | ice:    |            | /         |          |          |       |  |
| Duplicate collected?       | No            | Commen             | ats:    | / Vol      | /         |          |          |       |  |
| Sampled by:                | AOK           |                    | ,       | / V*/S     | ine       | dy       |          |       |  |
| Others present:            | SMR           |                    |         | Well Co    | ndition   |          |          |       |  |
| Analysis:                  | VOC           | filtered me        | tal r   | nl filter  | in-line f | ilter    | others:  |       |  |
| MW:gw monitoring           | well WS:wa    | ter supply         | well SW | :surface v | vater SE  | E:sedime | nt other | :     |  |

# Landmark Environmental, LLC

# **Field Information Data Sheet**

| Client Name: _             | City of Roche | ster               |         |              |            |          |          |       |  |  |
|----------------------------|---------------|--------------------|---------|--------------|------------|----------|----------|-------|--|--|
| Project Name:              | CRC           | RC Project Number: |         |              |            |          |          |       |  |  |
| Location: MW-              | 20            |                    | Date    | :            |            | 1/11/    | 16       |       |  |  |
| Station:                   |               |                    | Sam     | Sample time: |            |          |          |       |  |  |
|                            |               |                    |         |              |            |          |          |       |  |  |
| Casing diameter:           | 2"            | Time/              | Temp    | Cond         | pН         | Eh       | D.O.     | Turb. |  |  |
| Total well depth:          | 16.7          | Volume             | °C      | @ 25         |            |          |          | NTU   |  |  |
| Static water level:        | 12.54         | 10:45              | 19.23   | 9861         | 7.24       | 143.2    | 4.12     |       |  |  |
| Water depth <sup>1</sup> : | 4.14          |                    |         |              |            |          |          |       |  |  |
| Well volume (gal):         | 0.68          | =                  |         |              |            |          |          |       |  |  |
| Purge method:              |               |                    |         |              |            |          |          |       |  |  |
| Sample Method:             |               |                    |         |              |            |          |          |       |  |  |
| Start time:                |               |                    |         |              |            |          |          |       |  |  |
| Stop time:                 |               |                    |         |              |            |          |          |       |  |  |
| Duration (min.):           |               | Odor:              |         |              |            |          |          |       |  |  |
| Rate, gpm:                 |               | Purge<br>appearan  | ice:    | cl           | only       | bro      | wn       |       |  |  |
| Volume purged:             | 1.5 gal       | Sample appearan    | ice:    | ±            | /          |          |          |       |  |  |
| Duplicate collected?       | No            | Commen             |         |              |            |          |          |       |  |  |
| Sampled by:                | ADK           |                    | /       | Volum        | e          |          |          |       |  |  |
| Others present:            | SMR           |                    |         | Well Co      | ndition    |          |          |       |  |  |
| Analysis:                  | VOC           | filtered me        | tal r   | nl filter    | in-line fi | lter     | others:  |       |  |  |
| MW:gw monitorin            | g well WS:wa  | ter supply         | well SW | surface v    | vater SE   | E:sedime | nt other |       |  |  |

Measurements are referenced from top of riser pipe, unless otherwise indicated.

## FIELD DATA SHEET 1 of 2 (REVISED 4/13/10)

| CLIENT NAME: CITY OF ROCHESTER                                           | DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2/2                                    | 3/16        |              |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------|--------------|
| PROJECT ID: CRC                                                          | TIME:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4/2                                    | , - /10     | <del>-</del> |
| PROJECT NAME: MN BIO BUSINESS CENTER                                     | RECORD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FD BY                                  |             |              |
| THOUGH WANE.                                                             | TEGGILD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                        |             |              |
| 2009 SYSTEM STARTUP INFORMATION                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |             |              |
| Startup Date: 6/29/2009 MS Discharge Totalizer: 68                       | Sump Dis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | charge To                              | talizer: 20 | 0            |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ************************************** |             |              |
| NOTES - LEAVE VACUUM RELIEF VALVE SELECTOR SWITE                         | CH IN OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | POSITION                               |             |              |
| LEAVE AIR STRIPPER SELECTOR SWITCHES IN A                                | UTO POSIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ΓΙΟΝ                                   |             |              |
| DPE-5 2/24/10 3:                                                         | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |             |              |
| CURRENT OPERATING WELL:                                                  | S <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TATIC WA                               | TER LEVE    | ELS          |
| DPE WELL BLEED VALVE % OPEN:                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        | Well        | Depth to     |
| DPE PUMP BLEED VALVE % OPEN:                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Clean to                               | Depth       | Water        |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dirty                                  | below       | below        |
| ANALOG PANEL READINGS                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                      | TOC (FT)    | TOC (FT)     |
| DPE PUMP AIR FLOW (SCFM): 76.6                                           | MW-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                      | 17.5        | 10.97        |
| DPE WELL VACUUM (IN. HG): \5,55                                          | MW-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                      | 18          | 13-29 1      |
| DPE PUMP INLET VACUUM (IN. HG): 14.0%                                    | MW-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                                     | 18          | 11.27        |
| DPE PUMP OUTLET PRESSURE (PSI): 0,05                                     | MW-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7                                      | 25          | 11.92 V      |
| DPE PUMP OUTLET TEMP (DEG. F): 197.90                                    | MW-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                      | 60          | 12,20 W      |
| MS PUMP WATER FLOW (GPM): 4g. 00 (DRE-6)                                 | MW-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                      | 20          | 13-10 2      |
| MICT CHILL WATER LOW (CF M). (2.20 ( ))                                  | MW-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                      | 16.7        | 12.55        |
| TOTAL PANEL READINGS                                                     | DPE-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15                                     | 21.9        | 13.98        |
| DPE VACUUM PUMP (HRS): 19503                                             | DPE-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13                                     | 20.5        | 14.29 V      |
| MS PUMP (HRS): 2 34 7                                                    | DPE-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14                                     | 17.1        | 14.40 V      |
| MS VACUUM VALVE (HRS): 643                                               | DPE-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12                                     | 19.3        | 14.49        |
| AIR STRIPPER BLOWER (HRS): 14040                                         | DPE-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9                                      | 18.1        |              |
| AIR STRIPPER PUMP (HRS): 643                                             | DPE-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                      | 19.5        | 14,30 L      |
|                                                                          | DPE-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                      | 22.2        | 15.21        |
| DPE AIR FLOW (SCF): 114747000<br>MS PUMP WATER FLOW (GAL): 2232374       | DPE-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11                                     | 17.5        | 15.08        |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                      | 7.74        | 1-00 0       |
| SUMP PUMP WATER FLOW (GAL): 610                                          | Sump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | 1.14        |              |
| FIELD MEASUREMENTS ( in Has                                              | ODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DATING                                 | WATER LE    | EVELS        |
|                                                                          | DPE-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | AAVI EIV EI | -VLLO        |
| DPE WELL CASING VACUUM (MM-HG): 200 PRE-MANIFOLD VACUUM (IN. HG): 15,75  | DPE-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |             |              |
|                                                                          | DPE-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        | ~           |              |
|                                                                          | DPE-3<br>DPE-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |             |              |
| POST-MS-1 VACUUM (IN. HG): 15.5 POST-MS-2 VACUUM (IN. HG): 5.5           | DPE-4<br>DPE-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |             |              |
|                                                                          | DPE-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |             |              |
| , ,                                                                      | DPE-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |             |              |
| DPE EXHAUST PID CONC. (PPM): 0.0  DPE PUMP OUTLET PRESSURE (IN. H2O)): 7 | DPE-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |             |              |
|                                                                          | DFE-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |             | ·            |
| DPE PUMP OUTLET TEMP (DEG. F): 195                                       | S CHMD D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OOM DID.                               |             |              |
| MS DUMP WATER ELOWRATE WALL E DUMPINO (CRA), COCK                        | SUMP R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | OOM FID.                               |             |              |
| MS PUMP WATER FLOWRATE (WHILE PUMPING) (GPM): 904 TOKE                   | DAGENAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | THE DID D                              | EADIMOO     | _            |
| MS PUMP WATER PRESSURE (WHILE PUMPING) (PSI):                            | BASEME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | א עוץ וא:                              | EADINGS     |              |
| MS PUMP FLOW TOTALIZER READING (GAL): 409210                             | 0011115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NITOMAN                                | ITENIANIO   | <b>-</b> .   |
| AS EXHAUST PRESSURE (IN. H20): B (DPG-2)                                 | COMME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N I S/MAIN                             | ITENANCE    |              |
|                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |             | ·····        |
| AS DISCHARGE PUMP PRESSURE (WHILE PUMPING) (PSI): 16                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |             |              |
| AS BLOWER PRESSURE (IN. H20): 2 (PPE-1)                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |             |              |
| AS EXHAUST PID (PPM): (), ()                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |             |              |
|                                                                          | hand the second | w                                      |             |              |
| ELEVATOR DRAIN TILE SUMP FLOW TOTALIZER (GAL):                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |             |              |

| Client Name:              | City of Roche | ester                                   |                |              |           |          |           |        |  |  |  |
|---------------------------|---------------|-----------------------------------------|----------------|--------------|-----------|----------|-----------|--------|--|--|--|
| Project Name:             | CRC           | CRC Project Number:                     |                |              |           |          |           |        |  |  |  |
| Location: Mult            | iple Location | , , , , , , , , , , , , , , , , , , , , | Date: 2/27/1/4 |              |           |          |           |        |  |  |  |
| Station:                  |               |                                         | Sam            | ple time:    |           |          |           |        |  |  |  |
|                           |               | - At-                                   | ,              |              |           | T        |           |        |  |  |  |
| Multiple Sampling<br>Log: |               | Time/<br>Volume                         | Temp           | -Cond<br>@25 | pН        | Eh       | D.O.      |        |  |  |  |
| Location:                 |               |                                         |                |              |           |          |           |        |  |  |  |
| DPE-1:                    | 2/23/10       | 5:10                                    |                |              |           |          |           |        |  |  |  |
| DPE-2:                    | 423/16        | 4:40                                    |                |              | ( volu    | tu.      |           | Cloudy |  |  |  |
| DPE-3:                    | 2/23/16       | 4:55                                    |                |              | lvolv     | Michigan |           | cloudy |  |  |  |
| DPE-4:                    | 2/23/16       | 4:25                                    |                |              | 186       | ~        |           | Clouds |  |  |  |
| DPE-5:                    | 2/23/16       | 3:35                                    |                |              | Ivolu     | ~        |           | elear  |  |  |  |
| DPE-6;                    | 42/16         | 3.05                                    |                |              | Ivalur    | - 6      |           | clear  |  |  |  |
| DPE-7:                    | 2/23/14       | 1:15                                    |                |              | 1 vol     | ne       |           | Clear  |  |  |  |
| DPE-8:                    | 2/23/10       | 4.00                                    |                |              | 1000      | ~e       |           | Cloudy |  |  |  |
| Rate, gpm:                |               |                                         |                |              |           |          |           |        |  |  |  |
| Volume purged:            |               |                                         |                |              |           |          |           |        |  |  |  |
| Duplicate collected?      | No            |                                         |                |              |           | ٠        |           |        |  |  |  |
| Sampled by:               | The           |                                         |                |              |           |          |           |        |  |  |  |
| Others present:           | Cle           |                                         |                | Well Co      | ondition  |          |           |        |  |  |  |
| Analysis:                 | VOC           | filtered me                             | etal 1         | ml filter    | in-line f | ilter    | others:   |        |  |  |  |
| MW:gw monitoring          | ng well WS:wa | ter supply                              | well SV        | V:surface    | water SI  | E:sedim  | nent othe | r:     |  |  |  |

<sup>&</sup>lt;sup>1</sup> Measurements are referenced from top of riser pipe, unless otherwise indicated.

## Landmark Environmental, LLC

# **Field Information Data Sheet**

| Client Name:                                                                   | City of Roche       | ester                                           |            |                |       |         |      |              |  |
|--------------------------------------------------------------------------------|---------------------|-------------------------------------------------|------------|----------------|-------|---------|------|--------------|--|
| Project Name:                                                                  | CRC Project Number: |                                                 |            |                |       |         |      |              |  |
| Location: MW-14                                                                |                     |                                                 | Date       | e:             |       | 2/23/16 |      |              |  |
| Station:                                                                       |                     |                                                 | Sam        | ple time:      | 11,40 |         |      |              |  |
|                                                                                |                     |                                                 |            |                | -     |         | T    | I            |  |
| Casing diameter:                                                               | 2"                  | Time/<br>Volume                                 | Temp<br>°C | Cond<br>@ 25   | pН    | Eh      | D.O. | Turb.<br>NTU |  |
| Total well depth:                                                              | 17.5                |                                                 |            |                |       |         |      |              |  |
| Static water level:                                                            | 10.97               |                                                 |            |                |       |         |      |              |  |
| Water depth <sup>1</sup> :                                                     | 6.53                |                                                 |            |                |       |         |      |              |  |
| Well volume (gal):                                                             | 1                   |                                                 |            |                |       |         |      |              |  |
| Purge method:                                                                  |                     |                                                 |            |                |       |         |      |              |  |
| Sample Method:                                                                 |                     |                                                 |            |                |       |         |      |              |  |
| Start time:                                                                    |                     |                                                 |            |                |       |         |      |              |  |
| Stop time:                                                                     |                     |                                                 |            |                |       |         |      |              |  |
| Duration (min.):                                                               |                     | Odor:                                           |            |                |       |         |      |              |  |
| Rate, gpm:                                                                     |                     | Purge<br>appearan                               | ce:        | brown cloudy   |       |         |      |              |  |
| Volume purged:                                                                 | \                   | Sample appearan                                 | ce:        | cloudy         |       |         |      |              |  |
| Duplicate collected?                                                           | No                  | Commen                                          | its:       |                |       |         |      |              |  |
| Sampled by:                                                                    | No<br>SMP<br>CRE    | Volume                                          |            |                |       |         |      |              |  |
| Others present:                                                                | CRE                 |                                                 |            | Well Condition |       |         |      |              |  |
| Analysis:                                                                      | VOC)                | filtered metal ml filter in-line filter others: |            |                |       |         |      |              |  |
| MW:gw monitoring well WS:water supply well SW:surface water SE:sediment other: |                     |                                                 |            |                |       |         |      |              |  |

<sup>&</sup>lt;sup>1</sup> Measurements are referenced from top of riser pipe, unless otherwise indicated.

| Chent Name:                                                                    | 11y of Roche | ester                                           |        |                  |          |                 |      |                                       |  |
|--------------------------------------------------------------------------------|--------------|-------------------------------------------------|--------|------------------|----------|-----------------|------|---------------------------------------|--|
| Project Name:                                                                  | CRC          | Project Number:                                 |        |                  |          |                 |      |                                       |  |
| Location: MW-15                                                                |              |                                                 | Date:  |                  |          | 2/23/16         |      |                                       |  |
| Station:                                                                       |              | Sample time:                                    |        |                  |          | 2/23/14<br>1:55 |      |                                       |  |
|                                                                                |              |                                                 | ,      |                  |          |                 |      | · · · · · · · · · · · · · · · · · · · |  |
| Casing diameter:                                                               | 2"           | Time/                                           | Temp   | Cond             | pН       | Eh              | D.O. | Turb.                                 |  |
| Total well depth:                                                              | 18           | Volume                                          | °C     | @ 25             |          |                 |      | NTU                                   |  |
| Static water level:                                                            | 13,29        |                                                 |        |                  |          |                 |      |                                       |  |
| Water depth <sup>1</sup> :                                                     | 4.7/         |                                                 |        |                  |          | ļ.              |      |                                       |  |
| Well volume (gal):                                                             | 0,9          |                                                 |        |                  |          |                 |      |                                       |  |
| Purge method:                                                                  |              |                                                 |        |                  |          |                 |      |                                       |  |
| Sample Method:                                                                 |              |                                                 |        |                  |          |                 |      |                                       |  |
| Start time:                                                                    |              |                                                 |        |                  |          |                 |      |                                       |  |
| Stop time:                                                                     |              |                                                 |        |                  |          |                 |      |                                       |  |
| Duration (min.):                                                               |              | Odor:                                           |        |                  |          |                 |      |                                       |  |
| Rate, gpm:                                                                     |              | Purge<br>appearan                               | nce:   | Clo-dr           |          |                 |      |                                       |  |
| Volume purged:                                                                 | 1.           | Sample appearan                                 | nce:   | Clordy<br>clordy |          |                 |      |                                       |  |
| Duplicate collected?                                                           | No           | Commen                                          | ments: |                  |          |                 |      |                                       |  |
| Sampled by:                                                                    | Zho<br>No    |                                                 |        |                  |          |                 |      |                                       |  |
| Others present:                                                                | CRE          | CLE                                             |        |                  | ondition |                 |      |                                       |  |
| Analysis:                                                                      | Voc          | filtered metal ml filter in-line filter others: |        |                  |          |                 |      |                                       |  |
| MW:gw monitoring well WS:water supply well SW:surface water SE:sediment other: |              |                                                 |        |                  |          |                 |      |                                       |  |

<sup>&</sup>lt;sup>1</sup> Measurements are referenced from top of riser pipe, unless otherwise indicated.

| Client Name:               | City of Roche | ester             |         |                    | •               |         |          |         |  |  |
|----------------------------|---------------|-------------------|---------|--------------------|-----------------|---------|----------|---------|--|--|
| Project Name:              | CRC           | RC                |         |                    | Project Number: |         |          | CRC-14  |  |  |
| Location: MW-              | 16            |                   | Dat     | Date: August 22, 2 |                 |         | 2014-    | 2/23/14 |  |  |
| Station:                   |               |                   | San     | ample time: 3:45   |                 |         |          |         |  |  |
| Casing diameter:           | 2"            | Time/             | Temp    | Cond               | рН              | Eh      | D.O.     | Turb.   |  |  |
| Total well depth:          | 18            | Volume            | °C      | @ 25               |                 |         |          | NTU     |  |  |
| Static water level:        | 11.27         |                   |         |                    |                 |         |          |         |  |  |
| Water depth <sup>1</sup> : | 6.73          |                   | ***     |                    |                 |         |          |         |  |  |
| Well volume (gal):         | 1.1           |                   |         |                    |                 |         |          |         |  |  |
| Purge method:              |               |                   |         |                    |                 |         |          |         |  |  |
| Sample Method:             |               |                   |         |                    |                 |         |          |         |  |  |
| Start time:                |               |                   |         |                    |                 |         |          |         |  |  |
| Stop time:                 |               |                   |         |                    |                 |         |          |         |  |  |
| Duration (min.):           |               | Odor:             |         |                    |                 |         |          |         |  |  |
| Rate, gpm:                 |               | Purge appearance  | ce:     | С                  | Coudy           |         |          |         |  |  |
| Volume purged:             | ١,،           | Sample appearance | ce:     | C                  | loudy           |         |          |         |  |  |
| Duplicate collected?       | No            | Commen            |         | ,                  |                 |         |          |         |  |  |
| Sampled by:                | SWA           |                   | ( (     | rolum              |                 |         |          |         |  |  |
| Others present:            | at            |                   | **      | Well Co            | ndition         |         |          |         |  |  |
| Analysis:                  | vod           | filtered met      | tal     | ml filter          | in-line f       | ilter   | others:  |         |  |  |
| MW:gw monitorin            | g well WS:wa  | ater supply       | well SV | W:surface v        | water SI        | E:sedim | ent othe | r:      |  |  |

<sup>&</sup>lt;sup>1</sup> Measurements are referenced from top of riser pipe, unless otherwise indicated.

## **Field Information Data Sheet**

| Client Name:               | City of Roch | City of Rochester                                     |                 |                 |          |         |          |       |  |  |
|----------------------------|--------------|-------------------------------------------------------|-----------------|-----------------|----------|---------|----------|-------|--|--|
| Project Name:              | CRC          |                                                       | Proj            | Project Number: |          |         |          |       |  |  |
| Location: MW-              | -17          |                                                       | Date            | Date: 2/23      |          |         | 9        |       |  |  |
| Station: 2                 | 5            |                                                       | Sam             | ple time:       | 5:75     |         |          |       |  |  |
| Casing diameter:           | 2"           | Time/                                                 | Temp            | Cond            | рН       | Eh      | D.O.     | Turb. |  |  |
| Total well depth:          | 25           | Volume                                                | °C              | @ 25            |          |         |          | NTU   |  |  |
| Static water level:        | 11,92        |                                                       |                 |                 |          |         |          |       |  |  |
| Water depth <sup>1</sup> : | 13.08        |                                                       |                 |                 |          |         |          |       |  |  |
| Well volume (gal):         | 2.13         |                                                       |                 |                 |          |         |          |       |  |  |
| Purge method:              |              |                                                       |                 |                 |          |         |          |       |  |  |
| Sample Method:             |              |                                                       |                 |                 |          |         |          |       |  |  |
| Start time:                |              |                                                       |                 |                 |          |         |          |       |  |  |
| Stop time:                 |              |                                                       |                 |                 | <u> </u> |         |          |       |  |  |
| Duration (min.):           |              | Odor:                                                 |                 |                 |          |         |          |       |  |  |
| Rate, gpm:                 |              | Purge<br>appearan                                     | ıce:            | C               | Loudy    |         |          |       |  |  |
| Volume purged:             |              | Sample appearan                                       | ice:            |                 |          |         |          |       |  |  |
| Duplicate collected?       | No           | Commer                                                |                 | a - Ger         | 16       | ms      |          |       |  |  |
| Sampled by:                | Shib         |                                                       | You for 15 mons |                 |          |         |          |       |  |  |
| Others present:            | CRE          |                                                       |                 | Well Co         | ndition  |         |          |       |  |  |
| Analysis:                  | (voc)        | (VOC) filtered metal ml filter in-line filter others: |                 |                 |          |         |          |       |  |  |
| MW:gw monitorin            | ng well WS:w | ater supply                                           | well SV         | V:surface v     | water_S  | E:sedim | ent othe | r:    |  |  |

<sup>&</sup>lt;sup>1</sup> Measurements are referenced from top of riser pipe, unless otherwise indicated.

| Client Name: _C            | City of Rochester |                                                       |         |                   |          |          |           |            |  |
|----------------------------|-------------------|-------------------------------------------------------|---------|-------------------|----------|----------|-----------|------------|--|
| Project Name:              | CRC               |                                                       | Proje   | Project Number: 4 |          |          |           |            |  |
| Location: MW-1             | .8                |                                                       | Date    | Date:             |          |          |           |            |  |
| Station:                   |                   |                                                       | Sam     | Sample time: 6:00 |          |          |           |            |  |
|                            | I                 |                                                       | ı       |                   |          | 1        | Г         |            |  |
| Casing diameter:           | 2"                |                                                       | Temp    | Cond              | pН       | Eh       | D.O.      | Turb.      |  |
| Total well depth:          | 60                | Volume                                                | °C      | @ 25              |          |          |           | NTU        |  |
| Static water level:        | 12.20             |                                                       |         |                   | :        |          |           |            |  |
| Water depth <sup>1</sup> : | 47.8              |                                                       |         |                   |          |          |           |            |  |
| Well volume (gal):         | 7.8               |                                                       |         |                   |          |          |           |            |  |
| Purge method:              |                   |                                                       |         |                   |          |          |           |            |  |
| Sample Method:             |                   |                                                       |         |                   |          |          |           |            |  |
| Start time:                |                   |                                                       |         |                   |          |          |           |            |  |
| Stop time:                 |                   |                                                       |         |                   |          |          |           |            |  |
| Duration (min.):           |                   | Odor:                                                 |         | 1                 |          |          |           |            |  |
| Rate, gpm:                 |                   | Purge<br>appearanc                                    | e:      | cloudy            |          |          |           |            |  |
| Volume purged:             |                   | Sample appearanc                                      | e:      |                   |          |          |           |            |  |
| Duplicate collected?       | 1/10              | Comment                                               | s:      | Av                | 15 mm    | r        |           |            |  |
| Sampled by:                | 2ho               | ran for 15 mins                                       |         |                   |          |          |           |            |  |
| Others present:            | CRE               | 1                                                     |         | Well Co           | ondition |          |           | •          |  |
| Analysis:                  | (voc)             | (VOC) filtered metal ml filter in-line filter others: |         |                   |          |          |           |            |  |
| MW:gw monitoring           | g well WS:wa      | ter supply v                                          | vell SW | surface           | water SI | E:sedime | ent other | r <b>:</b> |  |

<sup>&</sup>lt;sup>1</sup> Measurements are referenced from top of riser pipe, unless otherwise indicated.

| Client Name:               | City of Roche | aty of Rochester  |            |                    |          |         |          |       |  |  |
|----------------------------|---------------|-------------------|------------|--------------------|----------|---------|----------|-------|--|--|
| Project Name:              | CRC           |                   | Proj       | ect Numb           | er:      |         |          |       |  |  |
| Location: MW-              | 19            |                   | Date       | Date:              |          |         | 2/23/10  |       |  |  |
| Station:                   |               |                   | Sam        | Sample time: 12 50 |          |         |          |       |  |  |
|                            |               |                   |            |                    |          |         | 1        | 1     |  |  |
| Casing diameter:           | 2"            | Time/             | Temp       | Cond               | pН       | Eh      | D.O.     | Turb. |  |  |
| Total well depth:          | 20            | Volume            | °C         | @ 25               |          |         |          | NTU   |  |  |
| Static water level:        | 13-10         |                   |            |                    |          |         |          |       |  |  |
| Water depth <sup>1</sup> : | 6.9           |                   |            |                    |          |         |          |       |  |  |
| Well volume (gal):         | 1,1           |                   |            |                    |          |         |          |       |  |  |
| Purge method:              |               |                   |            |                    |          |         |          |       |  |  |
| Sample Method:             |               |                   |            |                    |          |         |          |       |  |  |
| Start time:                |               |                   |            |                    |          |         |          |       |  |  |
| Stop time:                 |               |                   |            |                    |          |         |          |       |  |  |
| Duration (min.):           |               | Odor:             |            | <del></del>        |          | a.      |          |       |  |  |
| Rate, gpm:                 |               | Purge<br>appearan | ice:       | Cloudy             |          |         |          |       |  |  |
| Volume purged:             | 1.5           | Sample appearan   | ice:       |                    | Cloudy   |         |          |       |  |  |
| Duplicate collected?       | No            | Commen            | nts:       | . 1                | ( )      |         |          |       |  |  |
| Sampled by:                | SMI           |                   | 1,3 volume |                    |          |         |          |       |  |  |
| Others present:            | CRE           | ·                 |            | Well Co            | ondition |         |          |       |  |  |
| Analysis:                  | VOC.          |                   |            |                    |          |         |          |       |  |  |
| MW:gw monitorin            | g well WS:wa  | ter supply        | well SV    | V:surface v        | water SI | E:sedim | ent othe | r:    |  |  |

| Client Name:                                                                   | City of Roche | ity of Rochester                                      |        |                   |       |      |         |       |  |  |
|--------------------------------------------------------------------------------|---------------|-------------------------------------------------------|--------|-------------------|-------|------|---------|-------|--|--|
| Project Name:                                                                  | CRC           | RC Project Number:                                    |        |                   |       |      |         |       |  |  |
| Location: MW-                                                                  | 20            |                                                       | Date   | Date:             |       |      | 2/23/14 |       |  |  |
| Station:                                                                       |               |                                                       | San    | Sample time: 3:20 |       |      |         |       |  |  |
|                                                                                |               |                                                       |        |                   |       |      |         |       |  |  |
| Casing diameter:                                                               | 2"            | Time/                                                 | Temp   | Cond              | pН    | Eh   | D.O.    | Turb. |  |  |
| Total well depth:                                                              | 16.7          | Volume                                                | °C     | @ 25              |       |      |         | NTU   |  |  |
| Static water level:                                                            | 12.55         |                                                       |        |                   |       |      |         |       |  |  |
| Water depth <sup>1</sup> :                                                     | 4.15          |                                                       |        |                   |       |      |         |       |  |  |
| Well volume (gal):                                                             | 0.7           |                                                       |        |                   |       |      |         |       |  |  |
| Purge method:                                                                  |               |                                                       |        |                   |       |      |         |       |  |  |
| Sample Method:                                                                 |               |                                                       |        |                   |       |      |         |       |  |  |
| Start time:                                                                    |               |                                                       |        |                   |       |      |         |       |  |  |
| Stop time:                                                                     |               |                                                       |        |                   |       |      |         |       |  |  |
| Duration (min.):                                                               |               | Odor:                                                 |        |                   |       |      |         |       |  |  |
| Rate, gpm:                                                                     |               | Purge<br>appearan                                     | ice:   | Drown & cloudy    |       |      |         |       |  |  |
| Volume purged:                                                                 |               | Sample appearan                                       | ice:   | b                 | rnn t | dovd | Y       |       |  |  |
| Duplicate collected?                                                           | No            | Commen                                                | nts:   |                   |       |      |         |       |  |  |
| Sampled by:                                                                    | No            |                                                       | Volume |                   |       |      |         |       |  |  |
| Others present:                                                                | CRE           |                                                       |        | Well Condition    |       |      |         |       |  |  |
| Analysis:                                                                      | (VOC)         | (VOC) filtered metal ml filter in-line filter others: |        |                   |       |      |         |       |  |  |
| MW:gw monitoring well WS:water supply well SW:surface water SE:sediment other: |               |                                                       |        |                   |       |      |         |       |  |  |

<sup>1</sup> Measurements are referenced from top of riser pipe, unless otherwise indicated.

### FIELD DATA SHEET 1 of 2 (REVISED 4/13/10)

| CLIENT NAME: CITY OF ROCHESTER                                                               | DATE: 3/30/16  |           |                                         |          |  |
|----------------------------------------------------------------------------------------------|----------------|-----------|-----------------------------------------|----------|--|
| PROJECT ID: CRC                                                                              | TIME: 9:09 PM  |           |                                         |          |  |
| PROJECT NAME: MN BIO BUSINESS CENTER                                                         | RECORD         | ED BY: †  | IDK SM                                  | . [2     |  |
| 2009 SYSTEM STARTUP INFORMATION                                                              |                |           |                                         |          |  |
|                                                                                              | Sump Dis       | charge To | talizer: 200                            | )        |  |
| Me Bloomings Formings                                                                        | oump bio       | onango no | toning of the                           |          |  |
| NOTES - LEAVE VACUUM RELIEF VALVE SELECTOR SWITCH LEAVE AIR STRIPPER SELECTOR SWITCHES IN AU |                |           |                                         |          |  |
| LEAVE AIR STRIFFER SELECTOR SWITCHES IN AU                                                   | 10 10311       | ION       |                                         |          |  |
| CURRENT OPERATING WELL:                                                                      | s <sup>.</sup> | TATIC WA  | TER LEVE                                | LS       |  |
| DPE WELL BLEED VALVE % OPEN:                                                                 |                |           | Well                                    | Depth to |  |
| DPE PUMP BLEED VALVE % OPEN:                                                                 |                | Clean to  | Depth                                   | Water    |  |
| ANALOG DANEL PEARINGS DPE -3 2:46                                                            |                | Dirty     | below                                   | below    |  |
| ANALOG PANEL READINGS                                                                        |                | •         | TOC (FT)                                |          |  |
| DPE PUMP AIR FLOW (SCFM): 52.4                                                               | MW-14          | 3         | 17.5                                    | 100 (11) |  |
| 2, 2, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,                               | MW-15          | 4         | 18                                      |          |  |
| DPE WELL VACUUM (IN. HG): 19.95                                                              |                |           |                                         |          |  |
| DPE PUMP INLET VACUUM (IN. HG): 20.01                                                        | MW-16          | 10        | 18                                      |          |  |
| DPE PUMP OUTLET PRESSURE (PSI): -0-04 0.04                                                   | MW-17          | 7         | 25                                      |          |  |
| DPE PUMP OUTLET TEMP (DEG. F): 256-                                                          | MW-18          | 6         | 60                                      |          |  |
| MS PUMP WATER FLOW (GPM): 48.00                                                              | MW-19 '        |           | 20                                      |          |  |
| •                                                                                            | MW-20          | 8         | 16.7                                    |          |  |
| TOTAL PANEL READINGS                                                                         | DPE-1          | 15        | 21.9                                    |          |  |
| DPE VACUUM PUMP (HRS): 3025は                                                                 | DPE-2          | 13        | 20.5                                    |          |  |
| MS PUMP (HRS): 2436                                                                          | DPE-3          | 14        | 17.1                                    |          |  |
| MS VÁCUUM VALVE (HRS): 6 13                                                                  | DPE-4          | 12        | 19.3                                    |          |  |
| AIR STRIPPER BLOWER (HRS): 14 59 9                                                           | DPE-5          | 9         | 18.1                                    |          |  |
| AIR STRIPPER PUMP (HRS): 924                                                                 | DPE-6          | 5         | 19.5                                    |          |  |
| DPE AIR FLOW (SCF): 117920000                                                                | DPE-7          | 2         | 22.2                                    |          |  |
| MS PUMP WATER FLOW (GAL): 2409395                                                            | DPE-8          | 11        | 17.5                                    |          |  |
| SUMP PUMP WATER FLOW (GAL): 410                                                              | Sump           | 1         | 7.74                                    |          |  |
| FIELD MEASUREMENTS                                                                           | OPF            | RATING    | WATER LE                                | VFLS     |  |
| DPE WELL CASING VACUUM (MM HG): 225 in. H20                                                  | DPE-1          |           | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |          |  |
| PRE-MANIFOLD VACUUM (IN. HG):                                                                | DPE-2          |           |                                         |          |  |
| DPE WELL (PRE-MS-1) VACUUM (IN.HG):                                                          | DPE-3          |           |                                         |          |  |
|                                                                                              | DPE-4          |           |                                         |          |  |
|                                                                                              | DPE-5          |           |                                         |          |  |
|                                                                                              | DPE-6          |           |                                         |          |  |
|                                                                                              | DPE-7          |           |                                         |          |  |
|                                                                                              | DPE-8          |           |                                         |          |  |
|                                                                                              | DPE-0          |           |                                         |          |  |
| DPE PUMP OUTLET TEMP (DEG. F):                                                               | CHMDD          | OOM DID.  |                                         |          |  |
| THE BUILD WATER ELONDATE AND THE BUILDING VORING                                             | SUMP R         | OOM PID:  |                                         |          |  |
| MS PUMP WATER FLOWRATE (WHILE PUMPING) (GPM): Broken                                         |                |           |                                         |          |  |
| , , , , , , , , , , , , , , , , , , ,                                                        | BASEME         | NT PID R  | EADINGS:                                |          |  |
| MS PUMP FLOW TOTALIZER READING (GAL): 408366                                                 |                |           |                                         |          |  |
| 40 EXHALIOT PRECOURE (IN 190): 12 17                                                         | COMME          | NTS/MAIN  | ITENANCE                                | 1        |  |
| AS EXHAUST PRESSURE (IN. H20): \3. \(\begin{array}{c}\)                                      |                |           |                                         |          |  |
| AS DISCHARGE PUMP PRESSURE (WHILE PUMPING) (PSI):                                            | ) <u>.</u> U   |           |                                         | · · -    |  |
| AS BLOWER PRESSURE (IN. H20):                                                                |                |           |                                         |          |  |
| AS EXHAUST PID (PPM): 0.0                                                                    |                |           |                                         |          |  |
| ELEVATOR DRAIN THE SLIMP ELOW TOTALIZER (GAL):                                               | ******         |           |                                         |          |  |

#### FIELD DATA SHEET 2 of 2 (REVISED 4/13/10)

**CLIENT NAME:** CITY OF ROCHESTER PROJECT ID: CRC

PROJECT NAME: MN BIO BUSINESS CENTER **RECORDED BY:** ADK SMR

|       | PID<br>READINGS | DPE<br>EXHAUST<br>FLOW RATE | DPE<br>PUMP INLET<br>VACUUM √√2<br>A^\o1 | WELL CASING<br>VACUUMS |  |
|-------|-----------------|-----------------------------|------------------------------------------|------------------------|--|
| DPE-1 | <b>多格31.5</b>   | 5 <b>S</b>                  | 19.64                                    | 240                    |  |
| DPE-2 | 16.6            | 40                          | 19.34                                    | 235                    |  |
| DPE-3 | 19.0            | 55                          | 9.89                                     | 225                    |  |
| DPE-4 | 23.7            | 50                          | 20.41                                    | 250                    |  |
| DPE-5 | 10.3            | 75                          | 16.72                                    | 210                    |  |
| DPE-6 | 5,3             | 70                          | 17.43                                    | 215                    |  |
| DPE-7 | 4.3.5           | 70                          | XVII. 16.6                               | 2 200                  |  |
| DPE-8 | 2.7             | 90                          | 15.07                                    | 200                    |  |

Inffluent 15:30 Effluent 16:00

FC 4224

Start 20.2 3:15 -29

Stop

Stop

### FIELD DATA SHEET 1 of 2 (REVISED 4/13/10)

|                                                                                                                   | ,                   | 1        | 1.                                    |          |  |  |
|-------------------------------------------------------------------------------------------------------------------|---------------------|----------|---------------------------------------|----------|--|--|
| CLIENT NAME: CITY OF ROCHESTER                                                                                    | DATE:               | 4/20     | /16                                   |          |  |  |
| PROJECT ID: CRC                                                                                                   | TIME: 971           |          | t                                     |          |  |  |
| PROJECT NAME: MN BIO BUSINESS CENTER                                                                              | RECORDE             | ED BY:   | ADK +                                 | CJT      |  |  |
|                                                                                                                   |                     | ·        |                                       |          |  |  |
| 2009 SYSTEM STARTUP INFORMATION                                                                                   |                     |          |                                       |          |  |  |
| Startup Date: 6/29/2009 MS Discharge Totalizer: 68                                                                | Sump Disc           | harge To | talizer: 200                          | )        |  |  |
|                                                                                                                   |                     | X        |                                       |          |  |  |
| NOTES - LEAVE VACUUM RELIEF VALVE SELECTOR SWITCH                                                                 | H IN OFF F          | POSITION |                                       |          |  |  |
| LEAVE AIR STRIPPER SELECTOR SWITCHES IN AU                                                                        | JTO POSIT           | ION      |                                       |          |  |  |
|                                                                                                                   |                     |          |                                       |          |  |  |
| CURRENT OPERATING WELL:                                                                                           | STATIC WATER LEVELS |          |                                       |          |  |  |
| DPE WELL BLEED VALVE % OPEN:                                                                                      |                     |          | Well                                  | Depth to |  |  |
| DPE PUMP BLEED VALVE % OPEN:                                                                                      |                     | Clean to | Depth                                 | Water    |  |  |
| ANALOG PANEL READINGS                                                                                             |                     | Dirty    | below                                 | below    |  |  |
|                                                                                                                   |                     | Ranking  | TOC (FT)                              | TOC (FT) |  |  |
| DPE PUMP AIR FLOW (SCFM): 75,5                                                                                    | MW-14               | 3        | 17.5                                  | 10.89    |  |  |
| DPE WELL VACUUM (IN. HG): 16.17                                                                                   | MW-15               | 4        | 18                                    | 13.64    |  |  |
| DPE PUMP INLET VACUUM (IN. HG): 16.67                                                                             | MW-16               | 10       | 18                                    | 11.28    |  |  |
| DPE PUMP OUTLET PRESSURE (PSI): 10.10                                                                             | MW-17               | 7        | 25                                    | 11.44    |  |  |
| DPE PUMP OUTLET TEMP (DEG. F): 124                                                                                | MW-18               | 6        | 60                                    | 11. lat  |  |  |
| MS PUMP WATER FLOW (GPM):                                                                                         | MW-19               | 1        | 20                                    | 12.77    |  |  |
| VU                                                                                                                | MW-20               | 8        | 16.7                                  | 11.97    |  |  |
| TOTAL PANEL READINGS                                                                                              | DPE-1               | 15       | 21.9                                  | 14.15    |  |  |
| DPE VACUUM PUMP (HRS): 30, 758                                                                                    | DPE-2               | 13       | 20.5                                  | 14.34    |  |  |
| MS PUMP (HRS): 2,5\5                                                                                              | DPE-3               | 14       | 17.1                                  | 14.72    |  |  |
| MS VACUUM VALVE (HRS): 693                                                                                        | _DPE-4              | 12       | 19.3                                  | 14.58    |  |  |
| AIR STRIPPER BLOWER (HRS): 14,992                                                                                 | DPE-5               | 9        | 18.1                                  | 15.76    |  |  |
| AIR STRIPPER PUMP (HRS):                                                                                          | DPE-6               | 5        | 19.5                                  | 13,93    |  |  |
| DPE AIR FLOW (SCF): 19987,000                                                                                     | DPE-7               | 2        | 22.2                                  | 14.82    |  |  |
| MS PUMP WATER FLOW (GAL): 2710,043                                                                                | DPE-8               | 11       | 17.5                                  | 14.45    |  |  |
| SUMP PUMP WATER FLOW (GAL): 610                                                                                   | Sump                | 1        | 7.74                                  |          |  |  |
| FIELD MEAGLIDEMENTO                                                                                               |                     |          |                                       |          |  |  |
| PE WELL CASING VACUUM (MM HG): 205 "Hz"                                                                           |                     | RATING   | WATER LE                              | VELS     |  |  |
| DPE WELL CASING VACUUM (MM HG): 2.05 Hz <sup>0</sup>                                                              | DPE-1               |          |                                       |          |  |  |
| PRE-MANIFOLD VACUUM (IN. HG): 17.5 "Ho  DPE WELL (PRE-MS-1) VACUUM (IN.HG):                                       | DPE-2               |          |                                       |          |  |  |
|                                                                                                                   | DPE-3               |          |                                       |          |  |  |
|                                                                                                                   | DPE-4<br>DPE-5      | AU       |                                       |          |  |  |
|                                                                                                                   | DPE-6               | *        |                                       |          |  |  |
| DPE PUMP AIR FLOW (SCFM): 75  DPE EXHAUST PID CONC. (PPM): 0.1                                                    | DPE-7               |          |                                       |          |  |  |
| DPE PUMP OUTLET PRESSURE (IN. H2O)): MF                                                                           | DPE-8               | <u>.</u> | <del></del>                           |          |  |  |
| DPE PUMP OUTLET TEMP (DEG. F): 220° F                                                                             | DI L-0              |          | -,                                    |          |  |  |
| DIETOWN COTEET TEWN (DEC.T).                                                                                      | SUMP RO             | OM PID-  |                                       |          |  |  |
| MS PUMP WATER FLOWRATE (WHILE PUMPING) (GPM):                                                                     | John Ite            | ON TID.  | <del> </del>                          |          |  |  |
| MS PUMP WATER PRESSURE (WHILE PUMPING) (PSI):                                                                     | RASEME              | NT DID B | EADINGS:                              |          |  |  |
| MS PUMP FLOW TOTALIZER READING (GAL): 408480                                                                      | DAGLIVIE            | NIFIDIX  | LADINGS.                              |          |  |  |
| MO FOME LOW TOTALIZER READING (GAL). 900 9.00                                                                     | COMMEN              | ITS/MAIN | TENANCE                               | •        |  |  |
| AS EXHAUST PRESSURE (IN. H20): 8.5                                                                                | COMMEN              | I SHWAIN | LIVANOE                               | •        |  |  |
| AS DISCHARGE PUMP PRESSURE (WHILE PUMPING) (PSI): 18.0                                                            |                     |          | <u> </u>                              |          |  |  |
| AS DISCHARGE PUMP PRESSURE (WHILE PUMPING) (PSI): 18.0  AS BLOWER PRESSURE (IN. H20): 15.5  AS EXHAUST PID (PPM): |                     |          | 11-1                                  |          |  |  |
| AS EXHAUST PID (PPM):                                                                                             |                     |          | -                                     |          |  |  |
| 7.0 EXT. 7.001 1 ID (1 1 W).                                                                                      |                     |          |                                       |          |  |  |
| ELEVATOR DRAIN THE SHIMP ELOW TOTALIZER (GAL):                                                                    |                     |          | , , , , , , , , , , , , , , , , , , , |          |  |  |

### FIELD DATA SHEET 2 of 2 (REVISED 4/13/10)

**CLIENT NAME:** CITY OF ROCHESTER DATE: PROJECT ID: CRC TIME: RECORDED BY: ADIC & CJ PROJECT NAME: MN BIO BUSINESS CENTER DPE DPE PID **EXHAUST PUMP INLET WELL CASING READINGS FLOW RATE VACUUM VACUUMS** 50 250 21.8 20.00 DPE-1 245 55 19.70 DPE-2 230 37.4 55 20.20 DPE-3 19.6 250 20.76 50 DPE-4 16.67 205 DPE-5 0.5 17.61 215 DPE-6 225 16-69 0.0 DPE-7 95 205

15.42

DPE-8

### FIELD DATA SHEET 1 of 2 (REVISED 4/13/10)

| CLIENT NAME: CITY OF ROCHESTER                        | DATE: 5/17/16                 |          |
|-------------------------------------------------------|-------------------------------|----------|
| PROJECT ID: CRC                                       | TIME: /0200                   |          |
| PROJECT NAME: MN BIO BUSINESS CENTER                  | RECORDED BY: ADK & Se         | MD       |
| PROJECT NAME. MIN DIO BOSINESS CENTER                 | RECORDED B1. /TVF & 3         |          |
| 2009 SYSTEM STARTUP INFORMATION                       |                               |          |
| Startup Date: 6/29/2009 MS Discharge Totalizer: 68    | Sump Discharge Totalizer: 200 | ١.       |
| otalitap Date. 0/29/2009 Milo Discharge Totalizer. 00 | Cump Discharge Totalizer. 200 |          |
| NOTES - LEAVE VACUUM RELIEF VALVE SELECTOR SWI        | CH IN OFF POSITION            |          |
| LEAVE AIR STRIPPER SELECTOR SWITCHES IN               |                               |          |
| LEAVE AIR OTHER TER SELECTION OWN OTHER IN            | 101010011011                  |          |
| CURRENT OPERATING WELL:                               | STATIC WATER LEVE             | ıs       |
| DPE WELL BLEED VALVE % OPEN:                          | Well                          | Depth to |
| DPE PUMP BLEED VALVE % OPEN:                          | Clean to Depth                | Water    |
|                                                       | Dirty below                   | below    |
| ANALOG PANEL READINGS                                 | Ranking TOC (FT)              |          |
| DPE PUMP AIR FLOW (SCFM): 46.9                        | MW-14 3 17.5                  | 10.4     |
| DPE WELL VACUUM (IN. HG): 19,58                       | ✓ MW-15 4 18                  | (3,04    |
| DPE PUMP INLET VACUUM (IN. HG): 20,64                 | MW-16 10 18                   | 1138     |
| DPE PUMP OUTLET PRESSURE (PSI): 0.04                  | MW-17 7 25                    | 11.31    |
| DPE PUMP OUTLET TEMP (DEG. F): 249.6                  |                               | 11,26    |
| MS PUMP WATER FLOW (GPM): 48.00                       | MW-19 1 20                    | 12,50    |
| MOTOWN WATER LOW (OF M). 40.00                        | MW-20 8 16.7                  | 11,51    |
| TOTAL PANEL READINGS                                  | DPE-1 15 21.9                 | 13.80    |
| DPE VACUUM PUMP (HRS): 31.395                         | DPE-2 13 20.5                 | 14,42    |
| MS PUMP (HRS): 2637                                   |                               | 14.01    |
| MS VACUUM VALVE (HRS): 693                            | DPE-4 12 19.3                 | 4.23     |
| AIR STRIPPER BLOWER (HRS): 15,487                     | DPE-5 9 18.1                  | 13.54    |
| AIR STRIPPER PUMP (HRS): 978                          | DPE-6 5 19.5                  | 14,28    |
| DPE AIR FLOW (SCF): 17.2 (ALL AS                      | ✓ DPE-7 2 22.2                | 15.87    |
| MS PUMP WATER FLOW (GAL): My MATER FLOW (GAL): 233    | ✓ DPE-8 11 17.5               | 14,23    |
| SUMP PUMP WATER FLOW (GAL): (610)                     | Sump 1 7.74                   | 11,2     |
| COMIT TOMIT WITH EST (CONE).                          | <u> </u>                      |          |
| FIELD MEASUREMENTS                                    | OPERATING WATER LE            | VELS     |
| DPE WELL CASING VACUUM (MM HG): ZZO                   | DPE-1                         |          |
| PRE-MANIFOLD VACUUM (IN. HG): 17.5                    | DPE-2                         |          |
| DPE WELL (PRE-MS-1) VACUUM (IN.HG):                   | DPE-3                         |          |
| POST-MS-1 VACUUM (IN. HG): 19.5                       | DPE-4                         |          |
| POST-MS-2 VACUUM (IN. HG): 19.5                       | DPE-5                         | -        |
| DPE PUMP AIR FLOW (SCFM): 50                          | DPE-6                         |          |
| DPE EXHAUST PID CONC. (PPM):                          | DPE-7                         |          |
| DPE PUMP OUTLET PRESSURE (IN. H2O)): MF               | DPE-8                         |          |
| DPE PUMP OUTLET TEMP (DEG. F): 230                    |                               | ,        |
|                                                       | SUMP ROOM PID:                |          |
| MS PUMP WATER FLOWRATE (WHILE PUMPING) (GPM):         |                               |          |
| MS PUMP WATER PRESSURE (WHILE PUMPING) (PSI): 8,0     | BASEMENT PID READINGS:        |          |
| MS PUMP FLOW TOTALIZER READING (GAL): 408,749 MF      |                               | AATTE    |
|                                                       | COMMENTS/MAINTENANCE          |          |
| AS EXHAUST PRESSURE (IN. H20):                        |                               |          |
| AS DISCHARGE PUMP PRESSURE (WHILE PUMPING) (PSI): \-  |                               | :        |
| AS BLOWER PRESSURE (IN. H20): (6,1)                   |                               |          |
| AS EXHAUST PID (PPM): 0,0                             |                               |          |
|                                                       |                               |          |
| ELEVATOR DRAIN TILE SUMP FLOW TOTALIZER (GAL): 525.7  |                               |          |



### FIELD DATA SHEET 2 of 2 (REVISED 4/13/10)

CLIENT NAME:

CITY OF ROCHESTER

PROJECT ID:

CRC

PROJECT NAME:

MN BIO BUSINESS CENTER

DATE: 5/18/16

TIME: 2215

RECORDED BY: HOLE I SMR

|       | PID<br>READINGS | DPE<br>EXHAUST<br>FLOW RATE | DPE<br>PUMP INLET<br>VACUUM | WELL CASING<br>VACUUMS |  |
|-------|-----------------|-----------------------------|-----------------------------|------------------------|--|
| DPE-1 | 8.3             | 50                          | 20,45                       | 250                    |  |
| DPE-2 | By 2.9          | 55                          | 20.11                       | 250                    |  |
| DPE-3 | 14.5            | 50                          | 20.69                       | 220                    |  |
| DPE-4 | 12.1            | 50                          | 20.95                       | 250                    |  |
| DPE-5 | 5.2             | 80                          | 16.91                       | 215                    |  |
| DPE-6 | 3.9             | 70                          | 17.91                       | 220                    |  |
| DPE-7 | 2.6             | 80                          | 17.07                       | 215                    |  |
| DPE-8 | 1.5             | 95                          | 15.69                       | 200                    |  |

| <br>PREC | DINC | J  | Fans                                               | ON            |
|----------|------|----|----------------------------------------------------|---------------|
| 111      | 200  | v. | CANADA SANCE AND ASSESSMENT OF THE PERSON NAMED IN | galilla 1/141 |

DRE Off & Fans OW

## **Field Information Data Sheet**

| Client Name:              | City of Roche                                                                  | ty of Rochester                                     |            |              |         |       |      |     |  |  |
|---------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------|------------|--------------|---------|-------|------|-----|--|--|
| Project Name:             | CRC                                                                            |                                                     | Proje      | ect Numb     | er:     |       |      |     |  |  |
| Location: Mult            | tiple Location                                                                 | Date:                                               |            |              | 5/17/16 |       |      |     |  |  |
| Station:                  | ·                                                                              | Sample time: 11-30                                  |            |              |         |       |      |     |  |  |
| Multiple Sampling<br>Log: | 5                                                                              | Time/<br>Volume                                     | Temp<br>°C | Cond<br>@ 25 | рН      | Eh    | D.O. |     |  |  |
| Location:                 |                                                                                |                                                     |            |              |         |       |      |     |  |  |
| DPE-1:                    |                                                                                |                                                     | 18.63      | 2257         | 7.29    | 158.3 | 6.55 |     |  |  |
| DPE-2:                    |                                                                                |                                                     | 19.62      | 3689         | 7.22    | 141.3 | 4.61 |     |  |  |
| DPE-3:                    |                                                                                |                                                     | 18.85      | 7065         | 6.97    | 165.1 | 5.51 |     |  |  |
| DPE-4:                    |                                                                                |                                                     | 19.43      | 3915         | 6.65    | 200.1 | 4.21 |     |  |  |
| DPE-5:                    |                                                                                |                                                     | (8.61      | 3308         | 7.12    | 163.1 | 6.17 |     |  |  |
| DPE-6:                    |                                                                                |                                                     | 19.27      | 1563         | 7.14    | 162.5 | 4.95 |     |  |  |
| DPE-7:                    |                                                                                |                                                     | 19.93      | 2311         | 7.02    | 157.9 | 5.08 | ,   |  |  |
| DPE-8:                    |                                                                                |                                                     | 17-69      | 7234         | 6.88    | 174   | 6.50 |     |  |  |
| Rate, gpm:                |                                                                                |                                                     |            |              | !       |       | •    | - N |  |  |
| Volume purged:            |                                                                                |                                                     |            |              |         |       |      |     |  |  |
| Duplicate collected?      |                                                                                |                                                     |            |              |         |       |      |     |  |  |
| Sampled by:               | ADICISM                                                                        | <u></u>                                             |            |              |         |       |      |     |  |  |
| Others present:           |                                                                                |                                                     |            | Well Co      | ndition |       |      |     |  |  |
| Analysis:                 | VOC                                                                            | VOC filtered metal ml filter in-line filter others: |            |              |         |       |      |     |  |  |
| MW:gw monitoria           | MW:gw monitoring well WS:water supply well SW:surface water SE:sediment other: |                                                     |            |              |         |       |      |     |  |  |

<sup>&</sup>lt;sup>1</sup> Measurements are referenced from top of riser pipe, unless otherwise indicated.

## Field Information Data Sheet

| Client Name:                                                                   | City of Roche | ester              |       |             |            |        |         |        |  |  |  |  |
|--------------------------------------------------------------------------------|---------------|--------------------|-------|-------------|------------|--------|---------|--------|--|--|--|--|
| Project Name:                                                                  | CRC           |                    | Proje | ect Numb    | er:        |        |         |        |  |  |  |  |
| Location: MW-1                                                                 | 4             |                    | Date  | :           | 5          | /17/1  | 6       |        |  |  |  |  |
| Station:                                                                       |               |                    | Sam   | ple time:   |            | 11:5   | 5       |        |  |  |  |  |
| Casing diameter:                                                               | 2"            | Time/              | Temp  | Cond        | рН         | Eh     | D.O.    | Turb'. |  |  |  |  |
| Total well depth:                                                              | 17.5          | Volume             | °C    | @ 25        |            |        |         | NTU    |  |  |  |  |
| Static water level:                                                            | 10,91         |                    | 19,21 | 1522        | 7,44       | 111.9  | 3.09    |        |  |  |  |  |
| Water depth <sup>1</sup> :                                                     | 6.59          |                    |       |             |            |        |         |        |  |  |  |  |
| Well volume (gal):                                                             | 1.08          |                    |       |             |            |        |         |        |  |  |  |  |
| Purge method:                                                                  |               |                    |       |             |            |        |         |        |  |  |  |  |
| Sample Method:                                                                 |               |                    |       |             |            |        |         |        |  |  |  |  |
| Start time:                                                                    |               |                    |       |             |            |        |         |        |  |  |  |  |
| Stop time:                                                                     |               |                    |       |             |            |        |         |        |  |  |  |  |
| Duration (min.):                                                               |               | Odor:              |       | <del></del> |            |        |         |        |  |  |  |  |
| Rate, gpm:                                                                     |               | Purge<br>appearan  | ce:   |             |            |        |         |        |  |  |  |  |
| Volume purged:                                                                 | 1.0           | Sample<br>appearan | ce:   | Clou        | dy, 1      | ight b | orn     |        |  |  |  |  |
| Duplicate collected?                                                           | No            | Commen             | its:  |             |            |        |         |        |  |  |  |  |
| Sampled by:                                                                    | ADKT          |                    |       |             |            |        |         |        |  |  |  |  |
|                                                                                | SMR           |                    |       |             |            |        |         |        |  |  |  |  |
| Others present:                                                                |               |                    |       | Well Co     | ndition    |        |         |        |  |  |  |  |
| Analysis:                                                                      | Voc           | filtered me        | tal r | nl filter   | in-line fi | lter o | others: |        |  |  |  |  |
| MW:gw monitoring well WS:water supply well SW:surface water SE:sediment other: |               |                    |       |             |            |        |         |        |  |  |  |  |

Measurements are referenced from top of riser pipe, unless otherwise indicated.

### **Field Information Data Sheet**

| Client Name: _             | City of Roche  | ester             |         |            |            |          |           |       |  |
|----------------------------|----------------|-------------------|---------|------------|------------|----------|-----------|-------|--|
| Project Name: _            | CRC            |                   | Proje   | ect Numb   | er:        |          |           |       |  |
| Location: MW-              | 15             |                   | Date    | ) <b>.</b> |            | 5/17,    | /16       |       |  |
| Station:                   |                |                   | Sam     | ple time:  |            |          | 11:35     |       |  |
|                            | <del></del>    |                   | ,       |            |            |          |           |       |  |
| Casing diameter:           | 2"             | Time/             | Temp    | Cond       | pН         | Eh       | D.O.      | Turb. |  |
| Total well depth:          | 18             | Volume            | °C      | @ 25       |            |          |           | NTU   |  |
| Static water level:        | 13.04          |                   | 20.80   | 3226       | 7.05       | 149.9    | 3.69      |       |  |
| Water depth <sup>1</sup> : | 4.96           |                   | -       |            |            |          |           |       |  |
| Well volume (gal):         | 0.8            |                   |         |            |            |          |           |       |  |
| Purge method:              |                |                   |         |            |            |          |           |       |  |
| Sample Method:             |                |                   |         |            |            |          |           |       |  |
| Start time:                |                |                   |         |            |            |          |           |       |  |
| Stop time:                 |                |                   |         |            |            |          |           |       |  |
| Duration (min.):           |                | Odor:             |         |            |            |          |           |       |  |
| Rate, gpm:                 |                | Purge<br>appearar | nce:    |            |            |          |           |       |  |
| Volume purged:             | pumped         | Sample appearan   | nce:    | Clan       | dy , (     | ight bis | w         |       |  |
| Duplicate collected?       | No             | Commer            | nts:    |            |            |          |           |       |  |
| Sampled by:                | ADIC +<br>SMIZ | į                 |         |            |            |          |           |       |  |
| Others present:            |                | · ,               |         | Well Co    | ndition    |          |           |       |  |
| Analysis:                  | VOC            | filtered me       | etal 1  | ml filter  | in-line fi | lter     | others:   |       |  |
| MW:gw monitorin            | g well WS:wa   | iter supply       | well SW | :surface v | water SE   | E:sedime | ent other | ••    |  |

<sup>&</sup>lt;sup>1</sup> Measurements are referenced from top of riser pipe, unless otherwise indicated.

| Client Name:                                                                    | ity of Roche | ester             |                 |            |           |          |           |       |  |  |  |  |
|---------------------------------------------------------------------------------|--------------|-------------------|-----------------|------------|-----------|----------|-----------|-------|--|--|--|--|
| Project Name:                                                                   | CRC          |                   | Project Number: |            |           |          |           |       |  |  |  |  |
| Location: MW-1                                                                  | .6           |                   | Date            | <b>:</b> : | _5/       | 17/16    |           |       |  |  |  |  |
| Station:                                                                        |              |                   | Sam             | ple time:  | l         | 1:45     |           |       |  |  |  |  |
| Casing diameter:                                                                | 2"           | Time/             | Temp            | Cond       | pН        | Eh       | D.O.      | Turb. |  |  |  |  |
| Total well depth:                                                               | 18           | Volume            | °C              | @ 25       |           |          |           | NTU   |  |  |  |  |
| Static water level:                                                             | 11,38        |                   | 19.58           | 3358       | 7,25      | 13/.6    | 4.49      |       |  |  |  |  |
| Water depth <sup>1</sup> :                                                      | ar. 6.62     | ,                 |                 |            |           | - '      |           |       |  |  |  |  |
| Well volume (gal):                                                              | 1.08         |                   |                 |            |           |          |           |       |  |  |  |  |
| Purge method:                                                                   |              |                   |                 |            |           |          |           |       |  |  |  |  |
| Sample Method:                                                                  |              |                   |                 |            |           |          |           |       |  |  |  |  |
| Start time:                                                                     |              |                   |                 |            |           |          |           |       |  |  |  |  |
| Stop time:                                                                      |              |                   |                 |            |           |          |           |       |  |  |  |  |
| Duration (min.):                                                                |              | Odor:             |                 |            |           |          |           |       |  |  |  |  |
| Rate, gpm:                                                                      |              | Purge<br>appearan | ice:            |            |           |          |           |       |  |  |  |  |
| Volume purged:                                                                  | 1,0          | Sample appearar   | nce:            |            |           |          |           |       |  |  |  |  |
| Duplicate collected?                                                            | No           | Commer            | nts:            |            |           |          |           |       |  |  |  |  |
| Sampled by:  ADK +  5MR                                                         |              |                   |                 |            |           |          |           |       |  |  |  |  |
| Others present:                                                                 |              |                   |                 | Well Co    | ondition  |          |           |       |  |  |  |  |
| Analysis:                                                                       | VOC          | filtered me       | etal 1          | ml filter  | in-line f | ilter    | others:   |       |  |  |  |  |
| MW:gw monitoring                                                                | g well WS:wa | ater supply       | well SW         | V:surface  | water SI  | E:sedime | ent other | ••    |  |  |  |  |
| Measurements are referenced from top of riser pipe, unless otherwise indicated. |              |                   |                 |            |           |          |           |       |  |  |  |  |

## **Field Information Data Sheet**

| Client Name:               | City of Roche | ster              |         |            |           |          |         |       |  |  |
|----------------------------|---------------|-------------------|---------|------------|-----------|----------|---------|-------|--|--|
| Project Name:              | CRC           |                   | Proje   | ect Numb   | er:       |          |         |       |  |  |
| Location: MW-              | -17           |                   | Date    | <b>:</b>   |           | 5/17     | 116     |       |  |  |
| Station: 2                 | 5             |                   | Sam     | ple time:  |           | 150      |         |       |  |  |
| Casing diameter:           | 2"            | Time/             | Temp    | Cond       | рН        | Eh       | D.O.    | Turb. |  |  |
| Total well depth:          | 25            | Volume            | °C      | @ 25       |           |          |         | NTU   |  |  |
| Static water level:        | 11.3          |                   | 19.44   | 1539       | 10.39     | -195.6   | 0.47    |       |  |  |
| Water depth <sup>1</sup> : | 13,69         |                   |         |            |           |          |         |       |  |  |
| Well volume (gal):         | 2.23          |                   |         |            |           |          |         |       |  |  |
| Purge method:              |               |                   |         |            |           |          |         |       |  |  |
| Sample Method:             |               |                   |         |            |           |          |         |       |  |  |
| Start time:                |               |                   |         |            |           |          |         |       |  |  |
| Stop time:                 |               |                   |         |            |           |          |         |       |  |  |
| Duration (min.):           |               | Odor:             |         |            |           |          |         |       |  |  |
| Rate, gpm:                 | ,             | Purge<br>appearan | ice:    | Bre        | own -     | sun so   | ear     |       |  |  |
| Volume purged:             | La was Du     | Sample appearan   | ice:    | Cleur      | -w/bn     | own 50   | lids    |       |  |  |
| Duplicate collected?       | No            | Commen            |         | 1          | .1.       | _        |         |       |  |  |
| Sampled by:                | ADK           |                   | ţ       | umpeel     | an        | (        |         |       |  |  |
| Others present:            |               |                   |         | Well Co    | ndition   |          |         |       |  |  |
| Analysis:                  | VOC :         | filtered me       | etal r  | nl filter  | in-line f | ilter    | others: |       |  |  |
| MW:gw monitoring           | ng well WS:wa | ter supply        | well SW | :surface v | water SI  | E:sedime | nt othe | r:    |  |  |

<sup>&</sup>lt;sup>1</sup> Measurements are referenced from top of riser pipe, unless otherwise indicated.

## Landmark Environmental, LLC

| Client Name:               | City of Roche  | ster              |            |                |           |                |          |       |
|----------------------------|----------------|-------------------|------------|----------------|-----------|----------------|----------|-------|
| Project Name:              | CRC            |                   | Proj       | ect Numl       | er:       |                |          |       |
| Location: MW-1             | 18             |                   | Date       | <del>)</del> : | 5         | [[17/1<br>[:40 | 6        |       |
| Station:                   |                |                   | Sam        | ple time:      |           | (:40           |          |       |
|                            | · · · I        |                   | 1          | I              | 1         | 1              |          |       |
| Casing diameter:           | 2"             | Time/             | Temp<br>°C | Cond           | pН        | Eh             | D.O.     | Turb. |
| Total well depth:          | 60             | Volume            | _          | @ 25           |           |                |          | NTU   |
| Static water level:        | 11.26          |                   | 19.61      | 2114           | 10,47     | -210.8         | 0.74     |       |
| Water depth <sup>1</sup> : | 48.74          |                   |            |                |           |                |          |       |
| Well volume (gal):         | 7.95           |                   |            |                |           |                |          |       |
| Purge method:              |                |                   |            |                |           |                |          |       |
| Sample Method:             |                |                   |            |                |           |                |          |       |
| Start time:                |                |                   |            |                |           |                |          |       |
| Stop time:                 |                |                   |            |                | ļ         |                |          |       |
| Duration (min.):           |                | Odor:             |            |                |           |                |          |       |
| Rate, gpm:                 | !              | Purge<br>appearan | ice:       |                |           |                |          |       |
| Volume purged:             | For 15 minutes | Sample appearan   | ice:       |                |           |                |          |       |
| Duplicate collected?       | Mr No          | Commer            | nts:       |                |           |                |          |       |
| Sampled by:                | AOICH          |                   |            |                |           |                |          |       |
| Others present:            |                |                   |            | Well Co        | ondition  |                |          |       |
| Analysis:                  | VOC 1          | filtered me       | etal 1     | ml filter      | in-line f | ilter          | others:  |       |
| MW:gw monitoring           | g well WS:wa   | ter supply        | well SW    | V:surface      | water SI  | E:sedime       | nt other | •     |

<sup>1</sup> Measurements are referenced from top of riser pipe, unless otherwise indicated.

## **Field Information Data Sheet**

| Chent Name:                | of Roche     | ster              |         |            |           |          |          |       |  |  |  |
|----------------------------|--------------|-------------------|---------|------------|-----------|----------|----------|-------|--|--|--|
| Project Name:              | CRC          | Project Number:   |         |            |           |          |          |       |  |  |  |
| Location: MW-1             | 9            |                   | Date    | <b>:</b>   | 5         | /17/     | 6        |       |  |  |  |
| Station:                   |              |                   | Sam     | ple time:  |           | 12:0     | 0        |       |  |  |  |
| Casing diameter:           | 2"           | Time/             | Temp    | Cond       | pН        | Eh       | D.O.     | Turb. |  |  |  |
| Total well depth:          | 20           | Volume            | °C      | @ 25       |           |          |          | NTU   |  |  |  |
| Static water level:        | 12.30        |                   | 17,32   | 6835       | 6.69      | 153,9    | 2.8      |       |  |  |  |
| Water depth <sup>1</sup> : | NUMBER 7,5   |                   |         | -          |           |          |          |       |  |  |  |
| Well volume (gal):         | 1,22         |                   | -       |            |           |          |          |       |  |  |  |
| Purge method:              |              |                   |         |            |           |          |          |       |  |  |  |
| Sample Method:             |              |                   |         |            |           |          |          |       |  |  |  |
| Start time:                |              |                   |         |            |           |          |          |       |  |  |  |
| Stop time:                 |              |                   |         |            |           |          |          |       |  |  |  |
| Duration (min.):           |              | Odor:             |         |            |           |          |          |       |  |  |  |
| Rate, gpm:                 |              | Purge<br>appearan | ice;    | Cl         | ouly      | brod     | ión      |       |  |  |  |
| Volume purged:             | 1,0          | Sample appearan   | ice:    |            | •         | 1        |          |       |  |  |  |
| Duplicate collected?       | No BAME      | Commer            | nts:    |            |           |          |          |       |  |  |  |
| Sampled by:                | ADK J<br>SMR |                   |         |            |           |          |          |       |  |  |  |
| Others present:            |              |                   |         | Well Co    | ndition   |          |          |       |  |  |  |
| Analysis:                  | (VOC)        | filtered me       | etal 1  | nl filter  | in-line f | ilter    | others:  |       |  |  |  |
| MW:gw monitoring           | g well WS:wa | ter supply        | well SW | :surface v | vater SI  | E:sedime | ent othe | r:    |  |  |  |

13:45

### **Field Information Data Sheet**

| Client Name: _             | City of Roche | ester             |         |            |            |          |          |       |  |  |  |  |
|----------------------------|---------------|-------------------|---------|------------|------------|----------|----------|-------|--|--|--|--|
| Project Name: _            | CRC           |                   | Proj    | ect Numb   | er:        |          |          |       |  |  |  |  |
| Location: MW-              | 20            |                   | Date    | <b>)</b> : | 5          | /17/1    | 4        |       |  |  |  |  |
| Station:                   |               |                   | Sam     | ple time:  | 1          | 2:10     |          |       |  |  |  |  |
|                            | 1             |                   |         | 1          |            |          |          |       |  |  |  |  |
| Casing diameter:           | 2"            | Time/             | Temp    | Cond       | pН         | Eh       | D.O.     | Turb. |  |  |  |  |
| Total well depth:          | 16.7          | Volume            | °C      | @ 25       |            |          |          | NTU   |  |  |  |  |
| Static water level:        | 11,31         |                   | 19.00   | 1033       | 8.16       | -22.7    | 6.35     |       |  |  |  |  |
| Water depth <sup>1</sup> : | 5.19          |                   |         |            |            |          |          |       |  |  |  |  |
| Well volume (gal):         | 0,85          |                   |         |            |            |          |          |       |  |  |  |  |
| Purge method:              |               |                   |         |            |            |          |          |       |  |  |  |  |
| Sample Method:             |               |                   |         |            |            |          |          |       |  |  |  |  |
| Start time:                |               |                   |         |            |            |          |          |       |  |  |  |  |
| Stop time:                 |               |                   |         |            |            |          |          |       |  |  |  |  |
| Duration (min.):           |               | Odor:             |         |            |            |          |          | n. n. |  |  |  |  |
| Rate, gpm:                 |               | Purge<br>appearan | ice:    |            | u          | n<br>o   |          |       |  |  |  |  |
| Volume purged:             | Pringer       | Sample            | ıce:    | C'         | loudy,     | darker   | n        |       |  |  |  |  |
| Duplicate collected?       | No            | Commen            | nts:    |            |            |          |          |       |  |  |  |  |
| Sampled by:                | ADIL. J       |                   |         |            |            |          |          |       |  |  |  |  |
|                            | SMR           |                   |         |            |            |          |          |       |  |  |  |  |
| Others present:            |               | •                 |         | Well Co    | ondition   |          |          |       |  |  |  |  |
| Analysis:                  | voc           | filtered me       | etal 1  | ml filter  | in-line fi | ilter    | others:  |       |  |  |  |  |
| MW:gw.monitorin            | g well WS:wa  | iter supply       | well SW | V:surface  | water SE   | E:sedime | nt other | ••    |  |  |  |  |
| 1 Measurements ar          |               |                   |         |            |            |          |          |       |  |  |  |  |

### Attachment C

## DPE System Operational Data MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

| Date                                | Time         | Extraction     | DPE<br>Pump        | Hours per       | Days per<br>Period |                 | Flo              | w Rate           |                  | DPE Air Flow               | Pump Inlet<br>Vacuum (in. | Post-MS-2<br>Vacuum (in. | Post-MS-1<br>Vacuum | _              | /Pre-MS-1<br>n (in. Hg) | Pre-Manifold<br>Vacuum (in. | DPE Well<br>Casing               |                 | np Outlet<br>sure              |            | Outlet Temp.<br>g. F) | DPE<br>Exhaust | Extraction<br>Well Bleed | DPE Pump | e Comments                                                                  |
|-------------------------------------|--------------|----------------|--------------------|-----------------|--------------------|-----------------|------------------|------------------|------------------|----------------------------|---------------------------|--------------------------|---------------------|----------------|-------------------------|-----------------------------|----------------------------------|-----------------|--------------------------------|------------|-----------------------|----------------|--------------------------|----------|-----------------------------------------------------------------------------|
| Date                                | Time         | Well           | Hours              | Period          |                    | Field<br>(scfm) | Analog<br>(scfm) | Analog<br>(m³/s) | Analog<br>(acfm) | (scf)                      | Hg)                       | Hg)                      | (in. Hg)            | Analog         | Field                   | Hg)                         | Vacuum (in.<br>H <sub>2</sub> O) | Analog<br>(psi) | Field<br>(in H <sub>2</sub> O) | Analog     | Field                 | PID (ppm)      | Valve %<br>Open          | % Open   | Comments                                                                    |
| 6/29/2009                           | 1640         | DPE-1          | 88.0               | 88.0            | NA                 | 25              | 20.9             | 0.010            | 134.3            | 6,000                      | 25.29                     | NA                       | NR                  | 24.95          | 24.5                    | 24.0                        | NR                               | 0               | 0                              | 229        | 200                   | NR             | 0                        | 0        |                                                                             |
| 9/4/2009                            | 805          | DPE-1          | 957.0              | 869.0           | 36.2               | 25              | 24.3             | 0.011            | 109.5            | 1,208,000                  | 23.32                     | NA                       | 9.4                 | 9.66           | 9.8                     | 9.1                         | 86                               | 0.02            | 0                              | 307        | 310                   | 34             | 100                      | 0        | DPE Pump Screen plugged                                                     |
| 9/4/2009<br>9/4/2009                | 946<br>1135  | DPE-1<br>DPE-1 | 957.0<br>959.0     | 2.0             | 0.0                | 40<br>25        | 36.1<br>27.3     | 0.017<br>0.013   | 120.5<br>117.2   | 1,209,000<br>1,212,000     | 21.01<br>22.99            | NA<br>NA                 | 21.0<br>22.5        | 20.43<br>22.70 | 21.0<br>22.5            | 20.0<br>22.5                | 149<br>>150                      | 0               | 0                              | 210<br>275 | 248<br>270            | >4000<br>>4000 | 100<br>30                | 0        | DPE & AS exhaust sampled  1 micron MS filter installed                      |
| 10/15/2009                          | 1120         | DPE-1          | 1899.0             | 940.0           | 39.2               | 35              | 31.6             | 0.015            | 135.9            | 2,658,000                  | 23.00                     | NA                       | 22.5                | 22.22          | 22.5                    | 22.5                        | >150                             | 0               | 0                              | 283        | 270                   | ND             | 20                       | 0        | Exhaust sampled                                                             |
| 10/16/2009                          | 621          | DPE-1          | 1911.0             | 12.0            | 0.5                | 35              | 32.4             | 0.015            | 142.2            | 2,684,000                  | 23.14                     | NA                       | 22.5                | 22.35          | 22.5                    | 22.0                        | >150                             | NR              | 0                              | 291        | 299                   | ND             | 100                      | 0        | 6-hr composite air sample collected                                         |
| 10/23/2009                          | 922          | DPE-3          | 1924.0             | 13.0            | 0.5                | 70              | 70.6             | 0.033            | 143.0            | 2,715,000                  | 15.23                     | NA                       | 14.1                | 14.58          | 14.0                    | 13.8                        | 90                               | 0               | NR                             | 199        | 190                   | ND             | 100                      | 0        |                                                                             |
| 11/17/2009<br>12/17/2009            | 1800<br>907  | DPE-1<br>DPE-5 | 2361.0<br>2960.0   | 437.0<br>599.0  | 18.2<br>25.0       | 30<br>ND        | 28.6             | 0.013            | 144.2            | 3,992,000                  | 24.02<br>19.53            | NA<br>NA                 | 23.5<br>19.0        | 23.01<br>18.70 | 23.5<br>18.9            | 23.0<br>18.9                | >150<br>155                      | 0.00            | 0                              | 301<br>247 | 300<br>248            | >4000<br>850   | 100<br>NR                | 0        | 6-hr composite air sample collected                                         |
| 12/17/2009                          | 1300         | DPE-3          | 3228.0             | 268.0           | 11.2               | NR<br>60        | 62.1<br>60.7     | 0.029<br>0.029   | 177.8<br>187.9   | 6,218,000<br>7,333,000     | 20.31                     | NA<br>NA                 | 17.2                | 17.21          | 17.20                   | 17.2                        | 122                              | 0.00            | 0                              | 266        | 268                   | 720            | NR                       | 0        | 6-hr composite air sample collected                                         |
| 1/14/2010                           | 923          | DPE-5          | 3568.0             | 340.0           | 14.2               | 100             | 97.8             | 0.046            | 201.1            | 8,769,000                  | 15.45                     | NA                       | 14.9                | 14.46          | NR                      | 14.9                        | 98                               | 0.00            | 0                              | 182        | 156                   | NR             | NR                       | 0        | 6-hr composite air sample collected                                         |
| 1/27/2010                           | NR           | DPE-7          | 3789.0             | 221.0           | 9.2                | 75              | 88.6             | 0.042            | 215.3            | 9,633,000                  | 17.68                     | NA                       | 18.0                | 16.87          | 16.00                   | 16.0                        | 68                               | 0.00            | 0                              | 156        | 165                   | NR             | NR                       | 0        |                                                                             |
| 2/22/2010                           | 800          | DPE-8          | 4161.0             | 372.0           | 15.5               | 105             | 101.5            | 0.048            | 224.8            | 11,221,000                 | 16.49                     | NA                       | 15.5                | 15.33          | 14.50                   | 14.5                        | 91                               | 0.00            | 0                              | 215        | 219                   | ND             | NR                       | 0        | 6-hr composite air sample collected                                         |
| 3/9/2010                            | NR<br>742    | DPE-8<br>DPE-2 | 4472.0<br>4868.0   | 311.0<br>396.0  | 13.0               | 105             | 103.6            | 0.049            | 226.1            | 12,597,000                 | 16.29<br>16.45            | NA<br>NA                 | 15.8<br>16.1        | 15.64<br>15.66 | 15.10<br>15.10          | 14.8<br>14.9                | NR<br>165                        | 0.00            | NR<br>0                        | 160<br>251 | 161<br>248            | NR<br>105      | NR<br>100                | 0        | Pump inlet screen removed; DPE oil changed                                  |
| 3/25/2010 <sup>1</sup><br>4/16/2010 | 742<br>731   | DPE-3          | 5308.0             | 440.0           | 16.5<br>18.3       | 110<br>72       | 110.1<br>72.7    | 0.052<br>0.034   | 243.2<br>218.0   | 14,285,000<br>16,587,000   | 20.00                     | 18.5                     | 18.5                | 19.21          | 18.00                   | 18.0                        | 130                              | 0.02            | 0                              | 255        | 251                   | 105<br>17.5    | 100                      | 0        | 6-hr composite air sample collected 6-hr composite air sample collected     |
| 5/12/2010                           | 1330         | DPE-5          | 5908.0             | 600.0           | 25.0               | 135             | 132.4            | 0.062            | 293.5            | 19,502,000                 | 16.50                     | 16.1                     | 15.8                | 15.61          | 14.90                   | 15.0                        | 75                               | 0.07            | 0                              | 222        | 224                   | 0.8            | 100                      | 0        | 6-hr composite air sample collected                                         |
| 6/17/2010                           | 1047         | DPE-2          | 6768.0             | 860.0           | 35.8               | 35              | 36.9             | 0.017            | 146.6            | 22,356,000                 | 22.43                     | 22.5                     | 22                  | 21.38          | 21.00                   | 21.0                        | 210                              | 0.08            | 0                              | 287        | 276                   | 8.5            | 100                      | 0        | 6-hr composite air sample collected                                         |
| 7/26/2010                           | 1100         | DPE-8          | 7671.0             | 903.0           | 37.6               | 105             | 99.8             | 0.047            | 225.3            | 25,890,000                 | 16.74                     | 16.5                     | 16.5                | 15.91          | 15.00                   | 14.5                        | 80                               | 0.10            | 0                              | 226        | 220                   | 3.8            | 100                      | 0        | 3-hr composite air sample collected due to flow controller malfunction      |
| 9/27/2010                           | 1530         | DPE-5          | 8222.0             | 551.0           | 23.0               | 135             | 122.7            | 0.058            | 257.6            | 28,334,000                 | 15.75                     | 15.0                     | 15.0                | 14.93          | 14.00                   | 14.0                        | 90                               | 0.02            | 0                              | 211        | 210                   | >4000          | 100                      | 0        | 30-minute composite air sample collected due to flow controller malfunction |
| 10/18/2010<br>12/22/2010            | 950<br>1200  | DPE-5<br>DPE-1 | 8662.0<br>9378.0   | 440.0<br>716.0  | 18.3<br>29.8       | 130<br>50       | 128.3<br>51.5    | 0.061<br>0.024   | 275.4<br>219.8   | 30,379,000<br>37,039,000   | 16.06<br>22.95            | 15.1<br>NR               | 15.1<br>23.0        | 15.31<br>22.02 | 15.00<br>22.00          | 15.0<br>22.0                | 100<br>60                        | 0.00<br>0.02    | 0                              | 200<br>229 | 198<br>209            | ND<br>10.1     | 100<br>100               | 0        | 6-hr composite air sample collected 6-hr composite air sample collected     |
| 1/6/2011                            | 800          | DPE-1          | 9717.0             | 339.0           | 14.1               | 75              | 75.5             | 0.024            | 264.3            | 41,669,000                 | 21.42                     | 24.5                     | 20.5                | 20.49          | 20.50                   | 19.0                        | 54                               | 0.02            | 0                              | 164        | 151                   | 17.8           | 100                      | 0        | 5 THE SETTIPORTO OF SETTIPO CONCOLOU                                        |
| 1/20/2011                           | 800          | DPE-8          | 10034.0            | 317.0           | 13.2               | 120             | 119              | 0.056            | 252.2            | 44,097,000                 | 15.88                     | 15.0                     | 15.0                | 15.12          | NR                      | 14.5                        | 14                               | 0.00            | 0                              | 202        | 186                   | 3.1            | 100                      | 0        | 6-hr composite air sample collected                                         |
| 2/27/2011                           | 1100         | DPE-8          | 10969.0            | 935.0           | 39.0               | 100             | 103.6            | 0.049            | 257.7            | 48,884,000                 | 17.96                     | 18.0                     | 16.5                | 17.07          | 16.50                   | 16.5                        | 84                               | 0.00            | 0                              | 224        | 218                   | 0.8            | 100                      | 0        | 6-hr composite air sample collected                                         |
| 3/7/2011                            | 800          | DPE-5          | 11014.0            | 45.0            | 1.9                | 115             | 117.8            | 0.056            | 271.7            | 49,157,000                 | 17.02                     | NR<br>20.0               | 16.0                | 16.15          | 15.50                   | 15.5                        | 115                              | 0.00            | 0                              | 110        | 112                   | 22.7           | 100                      | 0        |                                                                             |
| 3/18/2011<br>3/23/2011              | 1330<br>900  | DPE-1<br>DPE-7 | 11274.0<br>11277.0 | 260.0<br>3.0    | 10.8<br>0.1        | 55<br>75        | 55<br>72.7       | 0.026<br>0.034   | 187.0<br>188.6   | 50,861,000<br>50.872.000   | 21.17<br>18.45            | 22.0<br>18.5             | 21.5<br>17.0        | 21.17<br>17.44 | 19.50<br>16.00          | 19.5<br>16.5                | 55<br>30                         | 0.00            | 0                              | 235<br>209 | 213<br>185            | 3.0<br>8.6     | 100<br>100               | 0        | 6-hr composite air sample collected                                         |
| 4/22/2011                           | 910          | DPE-7          | 11995.0            | 718.0           | 29.9               | 75              | 72.7             | 0.034            | 191.4            | 53,741,000                 | 18.62                     | 18.5                     | 17.5                | 17.70          | 17.00                   | 17.0                        | 29                               | 0.02            | 0                              | 240        | 250                   | 5.4            | 100                      | 0        | 6-hr composite air sample collected                                         |
| 5/3/2011                            | 2100         | DPE-5          | 12268.0            | 273.0           | 11.4               | 65              | 72.4             | 0.034            | 229.4            | 54,865,000                 | 20.53                     | 20.5                     | 19.0                | 19.28          | 18.50                   | 18.0                        | NR                               | 0.00            | 0                              | 165        | 168                   | NR             | NR                       | NR       |                                                                             |
| 5/5/2011                            | NR           | DPE-4          | 12313.0            | 45.0            | 1.9                | 65              | 62.1             | 0.029            | 196.7            | 55,073,000                 | 20.53                     | 20.5                     | 19.0                | 19.23          | 18.50                   | 18.0                        | NR                               | 0.00            | 0                              | 155        | 149                   | NR             | NR                       | NR       |                                                                             |
| 5/19/2011<br>6/16/2011              | 600<br>1200  | DPE-2<br>DPE-1 | 12645.0<br>13314.0 | 332.0<br>669.0  | 13.8<br>27.9       | 40<br>45        | 40.9<br>44       | 0.019            | 165.5<br>172.5   | 56,604,000<br>59,908,000   | 22.57<br>22.33            | 22.5<br>22.5             | 22.0<br>22.0        | 21.34<br>21.37 | 19.30<br>21.00          | 19.0<br>19.0                | 125<br>55                        | 0.00            | 0                              | 234<br>256 | 239<br>240            | 7.1<br>0.5     | 100<br>100               | 0        | 6-hr composite air sample collected                                         |
| 7/25/2011                           | 900          | DPE-1          | 14169.0            | 855.0           | 35.6               | 40              | 39               | 0.021<br>0.018   | 157.0            | 63,072,000                 | 22.53                     | 23.0                     | 21.5                | 21.50          | 20.50                   | 19.6                        | 60                               | 0.02            | 0                              | 235        | 225                   | 55.1           | 100                      | 0        | 6-hr composite air sample collected 6-hr composite air sample collected     |
| 8/28/2011                           | 1100         | DPE-7          | 14962.0            | 793.0           | 33.0               | 70              | 68.4             | 0.032            | 200.7            | 66,305,000                 | 19.78                     | 19.5                     | 17.0                | 18.71          | 18.00                   | 18.1                        | 49                               | 0.00            | 0                              | 244        | 225                   | 0.0            | 100                      | 0        | 6-hr composite air sample collected                                         |
| 9/29/2011                           | 1140         | DPE-4          | 15722.0            | 760.0           | 31.7               | 65              | 66               | 0.031            | 205.4            | 69,249,000                 | 20.36                     | 20.0                     | 17.0                | 19.58          | 18.00                   | 16.5                        | 130                              | 0.04            | MF                             | 245        | 225                   | 2.8            | 100                      | 0        | 6-hr composite air sample collected                                         |
| 10/18/2011                          | NR           | DPE-4          | 15799.0            | 77.0            | 3.2                | NR<br>40        | 66.7             | 0.031            | 210.4            | 69,540,000                 | 20.49                     | NR<br>20.5               | NR<br>20.0          | 19.83          | NR                      | NR<br>10.0                  | NR<br>or                         | 0.02            | NR<br>0                        | 221        | NR                    | NR<br>477.0    | 100                      | 0        | C be accessive size accessive self-acted                                    |
| 10/27/2011                          | 800<br>1100  | DPE-2<br>DPE-2 | 16013.0<br>16619.0 | 214.0<br>606.0  | 8.9<br>25.3        | 40              | 38.1<br>39.2     | 0.018<br>0.018   | 157.0<br>161.5   | 70,230,000<br>72,526,000   | 22.70<br>22.70            | 22.5<br>22.5             | 22.0<br>21.5        | 22.40<br>22.50 | 20.00<br>19.00          | 19.0<br>18.9                | 95<br>151                        | 0.03            | 0                              | 250<br>256 | 226<br>238            | 177.0<br>365.0 | 100<br>100               | 0        | 6-hr composite air sample collected 6-hr composite air sample collected     |
| 1/20/2012                           | 800          | DPE-1          | 16879.0            | 260.0           | 10.8               | 50              | 44.7             | 0.021            | 101.9            | 73,361,000                 | 16.87                     | 16.5                     | 15.0                | 16.83          | 14.50                   | 14.5                        | 50                               | 0.00            | 0                              | 201        | 196                   | 5.7            | 100                      | 0        | o in composite an campie concerca                                           |
| 1/27/2012                           | 900          | DPE-2          | 17042.0            | 163.0           | 6.8                | 30              | 29.3             | 0.014            | 92.7             | 73,847,000                 | 20.52                     | 20.5                     | 18.5                | 20.18          | 18.00                   | 17.5                        | 149                              | 0.03            | NR                             | 245        | 224                   | 6.4            | 100                      | 0        | 6-hr composite air sample collected                                         |
| 2/16/2012                           | 900          | DPE-2          | 17520.0            | 478.0           | 19.9               | 30              | 27.5             | 0.013            | 104.4            | 75,246,000                 | 22.08                     | 22.0                     | 21.0                | 21.64          | 18.00                   | 18.5                        | 151                              | 0.02            | 0                              | 262        | 235                   | 6.0            | 100                      | 0        | 6-hr composite air sample collected                                         |
| 3/16/2012<br>3/27/2012              | 1100<br>700  | DPE-4<br>DPE-1 | 18219.0<br>18443.0 | 699.0<br>224.0  | 29.1<br>9.3        | 70<br>30        | 71.2<br>29.2     | 0.034<br>0.014   | 137.4<br>101.0   | 77,432,000<br>78,086,000   | 14.50<br>21.32            | 14.0<br>21.0             | 12.5<br>19.5        | 14.40<br>20.73 | 12.50<br>19.00          | 12.0<br>18.5                | 80<br>48                         | 0.03            | 0                              | 199<br>146 | 185<br>148            | NA<br>10.3     | 100                      | 0        | 6-hr composite air sample collected                                         |
| 4/17/2012                           | 1025         | DPE-1          | 18964.0            | 521.0           | 21.7               | 30              | 31.3             | 0.014            | 91.7             | 79,504,000                 | 19.76                     | 19.5                     | 18.0                | 19.21          | 18.00                   | 17.5                        | 130                              | 0.00            | 0                              | 229        | 220                   | 13.4           | 100                      | 0        | 6-hr composite air sample collected                                         |
| 5/17/2012                           | 1000         | DPE-8          | 19660.0            | 696.0           | 29.0               | 50              | 48.6             | 0.023            | 103.1            | 82,983,000                 | 15.90                     | 15.5                     | 14.1                | 15.70          | 14.10                   | 12.5                        | 68                               | 0.03            | 0                              | 208        | 199                   | 1.0            | 100                      | 0        | 6-hr composite air sample collected                                         |
| 5/31/2012                           | 1059         | DPE-4          | 19950.0            | 290.0           | 12.1               | 30              | 25.5             | 0.012            | 81.8             | 83,649,000                 | 20.65                     | 20.0                     | MF                  | 19.19          | MF                      | MF                          | 140                              | 0.02            | 0                              | 235        | 218                   | 6.8            | 100                      | 0        |                                                                             |
| 6/14/2012                           | 1017         | DPE-4          | 20279.0            | 329.0           | 13.7               | 40              | 42               | 0.020            | 124.7            | 85,460,000                 | 19.90                     | 19.5                     | 15.9                | 17.50          | 15.10                   | 15.1                        | 90                               | 0.03            | 0                              | 233        | 225                   | 8.5            | 100                      | 0        | 6-hr composite air sample collected                                         |
| 7/19/2012<br>8/23/2012              | 730          | DPE-3<br>DPE-3 | 21119.0<br>21872.0 | 840.0<br>753.0  | 35.0<br>31.4       | 50<br>35        | 49.6<br>36.1     | 0.023<br>0.017   | 139.7<br>116.6   | 86,992,000<br>89,163,000   | 19.36<br>20.71            | 18.5<br>20.0             | 14.5<br>10.5        | 15.67<br>10.87 | 15.00<br>11.50          | 15.0<br>11.5                | 126<br>75                        | 0.05            | 0                              | 239<br>240 | 226<br>220            | 15.6<br>NR     | 100<br>100               | 0        | 6-hr composite air sample collected 6-hr composite air sample collected     |
| 9/26/2012                           | 2012         | DPE-3          | 22695.0            | 823.0           | 34.3               | 46              | 45               | 0.017            | 126.2            | 91,533,000                 | 19.31                     | 18.5                     | 17.0                | 17.95          | 18.50                   | 18.5                        | 135                              | 0.00            | 0                              | 237        | 220                   | 11.3           | 100                      | 0        | 6-hr composite air sample collected                                         |
| 10/26/2012                          |              | DPE-3          | 23397.0            | 702.0           | 29.3               |                 | 45.8             | 0.022            | 128.1            | 93,568,000                 | 19.28                     | 18.5                     | 17.0                | 18.32          | 17.00                   | 17.0                        | 130                              | 0.04            | 0                              | 241        | 220                   | 12.2           | 100                      | 0        | 6-hr composite air sample collected                                         |
| 12/21/2012                          | 830          | DPE-3          | 23442.0            | 45.0            | 1.9                | 50              | 49.6             | 0.023            | 144.4            | 93,698,000                 | 19.70                     | 19.0                     | 17.0                | 16.60          | 19.00                   | 18.0                        | 125                              | 0.02            | 0                              | 216        | 200                   | 97.0           | 100                      | 0        | 6-hr composite air sample collected                                         |
| 1/4/2013<br>1/30/2013               | 940<br>600   | DPE-3<br>DPE-3 | 23665.0<br>24138.0 | 223.0<br>473.0  | 9.3<br>19.7        | 45<br>45        | 429<br>42.1      | 0.202<br>0.020   | 1250.0<br>116.6  | 94,374,000<br>95.732.000   | 19.71<br>19.18            | 19.0<br>18.5             | 18.0<br>17.5        | 16.87<br>19.20 | 19.00<br>17.50          | 18.0<br>17.5                | NR<br>125                        | 0.00            | 0                              | 98<br>245  | 115<br>227            | 21.7<br>29.0   | 100<br>100               | 0        | 6-hr composite air sample collected                                         |
| 2/13/2013                           | 800          | DPE-3          | 24315.0            | 177.0           | 7.4                | NR              | 35.2             | 0.020            | 132.2            | 96,215,000                 | 22.00                     | NR                       | NR                  | 18.99          | 17.50<br>NR             | NR                          | NR                               | 0.03            | NR                             | 182        | NR                    | 29.0<br>NR     | 100                      | 0        | o in composite an sample conected                                           |
| 2/26/2013                           | 600          | DPE-2          | 24625.0            | 310.0           | 12.9               | 30              | 29.3             | 0.014            | 110.1            | 97,097,000                 | 22.00                     | 21.0                     | 19.0                | 19.70          | 21.00                   | 17.5                        | 145                              | 0.02            | 0                              | 205        | 180                   | 5.8            | 100                      | 0        | 6-hr composite air sample collected                                         |
| 3/21/2013                           | 800          | DPE-1          | 25176.0            | 551.0           | 23.0               | 35              | 33.6             | 0.016            | 110.5            | 98,617,000                 | 20.87                     | 20.0                     | 18.5                | 19.85          | GF                      | 18.0                        | 37                               | 0.02            | 0                              | 230        | 208                   | 10.6           | 100                      | 0        | 6-hr composite air sample collected                                         |
| 5/23/2013                           | 1600         | DPE-3          | 25691.0            | 515.0           | 21.5               | 40              | 40               | 0.019            | 127.5            | 100,050,000                | 20.59                     | 20.0                     | 18.0                | 19.40          | 20.00                   | 20.5                        | 120                              | 0.02            | 0                              | 245        | 224                   | 12.3           | 100                      | 0        | 6-hr composite air sample collected                                         |
| 6/26/2013<br>8/26/2013              | 1040<br>1730 | DPE-4<br>DPE-4 | 26501.0<br>27889.0 | 810.0<br>1388.0 | 33.8<br>57.8       | 60<br>190       | 56.3<br>164      | 0.027<br>0.077   | 179.3<br>309.0   | 102,418,000<br>108,474,000 | 20.58<br>14.13            | 20.0<br>12.0             | 18.0<br>9.5         | 20.39<br>13.52 | 21.00<br>16.00          | 21.0<br>16.0                | 90<br>130                        | 0.03            | 0                              | 246<br>200 | 220<br>211            | 1.4<br>1.4     | 100<br>100               | 0        | 6-hr composite air sample collected 6-hr composite air sample collected     |
| 10/12/2015                          | 1100         | DPE-2          | 27898.0            | 9.0             | 0.4                | 35              | 34               | 0.016            | 108.3            | 108,521,000                | 20.58                     | 19.0                     | 8.0 (MF)            | 16.62          | 21.00                   | 10.0                        | NR                               | 0.00            | 0                              | 230        | 220                   | 38.0           | 100                      | 0        | 5 Th SSTIPOORS ON SURPLY CONCOLOR                                           |
| 10/13/2015                          | 1400         | DPE-3          | 27914.0            | 16.0            | 0.7                | 50              | 53.2             | 0.025            | 128.9            | 108,580,000                | 17.64                     | 17.0                     | 8.0 (MF)            | 16.60          | 17.00                   | 16.00                       | NR                               | 0.13            | 0                              | 228        | 210                   | N/A*           | 100                      | 0        | 6-hr composite air sample collected                                         |
| 12/15/2015                          | 1300         | DPE-1          | 27919.0            | 5.0             | 0.2                | 55              | 53.5             | 0.025            | 132.1            | 108,597,000                | 17.87                     | 17.1                     | 16.9                | 16.43          | 16.90                   | 15.00                       | NR                               | 0.07            | 0                              | 206        | 200                   | 45             | 100                      | 0        |                                                                             |
| 1/12/2016                           | 1430         | DPE-4<br>DPE-5 | 28591.0<br>29503.0 | 672.0<br>912.0  | 28.0               | 50              | 46.7             | 0.022            | 138.2            | 111,088,000                | 19.87<br>16.08            | 19.5<br>15.5             | 18.5<br>15.5        | 18.84<br>15.55 | 18.50<br>15.50          | MF<br>15.75                 | 245<br>200                       | 0.09            | 0                              | 250<br>198 | 230<br>185            | 153            | 100<br>100               | 0        | 6-hr composite air sample collected                                         |
| 2/23/2016<br>3/30/2016              | 1250<br>1440 | DPE-3          | 30254.0            | 751.0           | 38.0<br>31.3       | 80<br>55        | 76.6<br>52.4     | 0.036<br>0.025   | 164.7<br>157.5   | 114,747,000<br>117,920,000 | 20.02                     | 19.0                     | 19.0                | 18.85          | 19.00                   | 18.50                       | 225                              | 0.05<br>0.04    | MF                             | 198        | 200                   | 17             | 100                      | 0        | 6-hr composite air sample collected 6-hr composite air sample collected     |
| 4/20/2016                           | 915          | DPE-5          | 30758.0            | 504.0           | 21.0               | 75              | 75.5             | 0.036            | 169.5            | 119,987,000                | 16.67                     | 16.0                     | 16.0                | 16.17          | 16.00                   | 17.50                       | 205                              | 0.10            | MF                             | 234        | 220                   | 0.1            | 100                      | 0        | 6-hr composite air sample collected                                         |
| 5/18/2016                           | 1415         | DPE-3          | 31395.0            | 637.0           | 26.5               | 50              | 46.9             | 0.022            | 151.2            | 122,641,000                | 20.69                     | 19.5                     | 19.5                | 19.58          | 19.00                   | 17.50                       | 220                              | 0.04            | MF                             | 250        | 230                   | 14.5           | 100                      | 0        | 6-hr composite air sample collected                                         |
| Notes:                              |              |                |                    |                 |                    | l               |                  |                  |                  |                            |                           |                          |                     |                |                         |                             |                                  |                 |                                |            |                       |                |                          |          |                                                                             |

7/29/2016

Notes:
1: There was a typo when entering the DPE pump hours; therefore, this value was revised while entering the data from 4/16/10.

NR: Not recorded.

NA: Not applicable.

MF: Meter Failure

GF: Gauge Failure

F:VPROJECTS/Crc-City of Rochester/data tables\
System O&M Data 2015

#### Moisture Separator and Sump Operational Data MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

| Date                     | Time         | MS<br>Vacuum<br>Valve<br>hours | MS pump<br>Hours | MS Pum<br>Totalize         |                    |                | Flow Rate om) | MS Pump<br>Pressure<br>(psi) | Elevator Sump<br>Water Flow (gal) |            | Comments                                                                                                                               |
|--------------------------|--------------|--------------------------------|------------------|----------------------------|--------------------|----------------|---------------|------------------------------|-----------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 6/29/2009                | 1640         | 49                             | 48               | 8,464                      | 8,473              | NR             | 10.2          | NR                           | 300                               | NR         |                                                                                                                                        |
| 9/4/2009                 | 805          | 49                             | 96               | 38,299                     | 38,213             | NP             | 12.0          | 21.0                         | 300                               | 500        |                                                                                                                                        |
| 10/15/2009               | 1120         | 49                             | 131              | 62,643                     | 64,283             | NP             | 11.8          | 44.0                         | 300                               | 500        |                                                                                                                                        |
| 10/16/2009               | 621          | 49                             | 131              | 62,886                     | NR                 | NP             | NR            | NR                           | 300                               | 500        |                                                                                                                                        |
| 10/23/2009               | 922          | 49                             | 132              | 63,113                     | NR                 | NR             | NR            | NR                           | 300                               | 500        |                                                                                                                                        |
| 11/17/2009               | 1800         | 49                             | 148              | 73,800                     | 75,787             | 11.09          | 11.2          | 28.0                         | 300                               | NR         |                                                                                                                                        |
| 12/17/2009               | 907          | 49                             | 175              | 89,800                     | 92,293             | NR             | 10.3          | 30.8                         | 330                               | NR         |                                                                                                                                        |
| 12/28/2009<br>1/14/2010  | 1300<br>923  | 49<br>49                       | 187<br>202       | 97,028<br>106,024          | 99,694<br>108,984  | NR<br>NR       | 11.0<br>10.7  | NR<br>36.0                   | 330<br>330                        | NR<br>NR   |                                                                                                                                        |
| 1/27/2010                | NR           | 49                             | 210              | 111,633                    | 114,661            | 12.85          | 12.2          | 16.0                         | 330                               | NR         |                                                                                                                                        |
| 2/22/2010                | 8:00         | 49                             | 232              | 122,167                    | 128,552            | 12.90          | 12.9          | 14.0                         | 330                               | 500        |                                                                                                                                        |
| 3/9/2010                 | NR           | 50                             | 255              | 131,361                    | 137,839            | 12.91          | 12.9          | 14.0                         | 330                               | NR         |                                                                                                                                        |
| 3/25/2010                | 742          | 50                             | 270              | 141,405                    | 148,206            | NR             | 12.9          | 15.0                         | 330                               | 500        |                                                                                                                                        |
| 4/16/2010                | 731          | 50                             | 287              | 154,622                    | 161,857            | 12.85          | 12.9          | 14.0                         | 330                               | 500        |                                                                                                                                        |
| 5/12/2010                | 1330         | 50                             | 308              | 170,079                    | 177,797            | 12.83          | 12.9          | 14.0                         | 330                               | 500        |                                                                                                                                        |
| 6/17/2010<br>7/26/2010   | 1047<br>1100 | 50<br>50                       | 337<br>371       | 191,958<br>217,314         | 200,398<br>226,504 | 13.90<br>12.94 | 12.9<br>13.1  | 14.0<br>15.0                 | 330<br>330                        | 500<br>500 |                                                                                                                                        |
| 9/27/2010                | 1030         | 50                             | 389              | 228,896                    | 240,247            | 13.19          | 13.1          | 14.0                         | 350                               | 514        |                                                                                                                                        |
| 10/18/2010               | 950          | 50                             | 408              | 243,396                    | 255,417            | 12.70          | 12.9          | 14.0                         | 350                               | 514        |                                                                                                                                        |
| 12/22/2010               | 1200         | 50                             | 445              | 270,572                    | 283,957            | 12.85          | 12.9          | 14.0                         | 450                               | 514        |                                                                                                                                        |
| 1/6/2011                 | NR           | 50                             | 484              | 292,343                    | 306,476            | 12.68          | 12.7          | 14.0                         | 450                               | NR         |                                                                                                                                        |
| 1/20/2011                | 800          | 50                             | 504              | 314,178                    | 328,912            | 12.84          | 12.8          | 14.0                         | 460                               | 514        |                                                                                                                                        |
| 2/27/2011                | 1100         | 50                             | 547              | 342,283                    | 357,774            | 12.77          | 12.8          | 14.0                         | 470                               | 514        |                                                                                                                                        |
| 3/7/2011                 | 800          | 170<br>170                     | 549              | 343,924                    | 359,443<br>369,445 | 12.79          | 12.7          | 14.0                         | 470<br>470                        | 514<br>514 |                                                                                                                                        |
| 3/18/2011<br>3/23/2011   | 1330<br>900  | 170                            | 562<br>562       | 350,182<br>350,324         | 369,603            | 13.30<br>12.60 | 12.5<br>12.6  | 17.0<br>20.0                 | 470                               | 514        |                                                                                                                                        |
| 4/22/2011 <sup>1</sup>   | 910          | 171                            | 608              | 461,499                    | 373,802            | MF             | MF            | 18.0                         | 470                               | 514        |                                                                                                                                        |
| 5/3/2011                 | 2100         | 171                            | 625              | 462,745                    | MF                 | 12.80          | 12.8          | 16.0                         | 480                               | NR         |                                                                                                                                        |
| 5/5/2011                 | NR           | 171                            | 628              | 464,860                    | 2,307              | 12.66          | 12.3          | 16.0                         | 480                               | NR         |                                                                                                                                        |
| 5/19/2011                | 600          | 171                            | 650              | 480,836                    | 18,817             | 12.50          | 12.6          | 16.0                         | 480                               | 514        |                                                                                                                                        |
| 6/16/2011                | 1200         | 171                            | 691              | 487,852                    | 27,076             | MF             | MF            | 16.0                         | 480                               | 514        |                                                                                                                                        |
| 7/25/2011                | 900          | 171                            | 745              | 606,917                    | MF                 | 14.21          | 14.4          | 25.0                         | 490                               | 541        |                                                                                                                                        |
| 8/28/2011<br>9/29/2011   | 1100<br>1140 | 197                            | 875<br>921       | 645,249                    | 63,442<br>94,268   | 12.80          | 12.9<br>12.5  | 14.0<br>15.0                 | 490<br>490                        | NA<br>515  |                                                                                                                                        |
| 10/18/2011               | NR           | 198<br>199                     | 978              | 673,352<br>681,235         | 94,266<br>NR       | 12.07<br>NR    | NR            | NR                           | 560                               | NR         |                                                                                                                                        |
| 10/27/2011 <sup>2</sup>  | 800          | 199                            | 992              | 694,330                    | 115,245            | 11.60          | 12.0          | 15.0                         | 560                               | 541        |                                                                                                                                        |
| 11/21/2011               | 1100         | 199                            | 1040             | 716,049                    | 143,520            | 12.08          | 12.2          | 16.5                         | NR                                | 541        |                                                                                                                                        |
| 1/20/2012                | 800          | 199                            | 1057             | 725,742                    | 153,493            | 12.60          | 12.7          | 18.0                         | 610                               | 541        |                                                                                                                                        |
| 1/27/2012                | 900          | 199                            | 1065             | 731,337                    | 159,280            | 12.20          | 12.2          | 17.0                         | 610                               | 541        |                                                                                                                                        |
| 2/16/2012                | 900          | 199                            | 1090             | 746,725                    | 175,164            | 10.10          | 10.0          | 16.0                         | 610                               | 541        |                                                                                                                                        |
| 3/16/2012                | 1100<br>700  | 199                            | 1127             | 757,124                    | 184,976            | 12.40          | 12.5          | 20.0                         | 610                               | 541        |                                                                                                                                        |
| 3/27/2012<br>4/17/2012   | 1025         | 200<br>206                     | 1142<br>1201     | 764,672<br>783,561         | 192,639<br>210,594 | 11.91<br>12.20 | 12.0<br>12.2  | 18.0<br>21.0                 | 610<br>610                        | NR<br>541  |                                                                                                                                        |
| 5/17/2012                | 1000         | 211                            | 1255             | 809,091                    | 236,394            | 11.96          | 12.2          | 21.0                         | 610                               | 541        |                                                                                                                                        |
| 5/31/2012                | 1059         | 215                            | 1290             | 819,567                    | NR                 | 11.20          | 11.2          | 20.0                         | 610                               | NR         |                                                                                                                                        |
| 6/14/2012                | 1017         | 220                            | 1335             | 830,565                    | 256,390            | 10.90          | 11.0          | 26.0                         | 610                               | 541        |                                                                                                                                        |
| 7/19/2012                | 1111         | 220                            | 1364             | 835,414                    | 260,681            | 9.80           | 9.8           | 35.0                         | 610                               | 541        |                                                                                                                                        |
| 8/23/2012                | 730          | 302                            | 1399             | 849,507                    | 275,367            | 13.20          | 13.2          | 12.0                         | 610                               | 541        |                                                                                                                                        |
| 9/26/2012                | 2012         | 302                            | 1414             | 860,318                    | 286,603            | 14.00          | 14.0          | 8.0                          | 610                               | 541<br>541 |                                                                                                                                        |
| 10/26/2012<br>12/21/2012 | 600<br>830   | 309<br>385                     | 1536<br>1662     | 951,486<br>MF <sup>3</sup> | 300,594            | 11.80<br>MF    | 12.0<br>MF    | 16.0<br>12.0                 | 610<br>610                        | 541<br>541 | meter failure; DPE system shut down from Oct. 26 thru Dec. 21                                                                          |
| 1/4/2013                 | 940          | 497                            | 1735             | 1,523,769                  | 309,790            | 48.00          | MF            | NR                           | 610                               | 541        |                                                                                                                                        |
| 1/30/2013                | 600          | 640                            | 1827             | 1,789,194                  | 314,080            | 48.00          | NA            | 12.0                         | 610                               | 541        |                                                                                                                                        |
| 2/13/2013                | 800          | 684                            | 1864             | 1,894,598                  | NR                 | 12.00          | NR            | NR                           | NR                                | NR         |                                                                                                                                        |
| 2/26/2013                | 600          | 684                            | 1883             | 1,905,916                  |                    | 10.82          | 11.0          | 16.0                         | 610                               | 541        |                                                                                                                                        |
| 3/21/2013<br>5/23/2013   | 800<br>1600  | 684                            | 1916             | 1,925,225                  |                    | 11.30          | 10.8<br>12.3  | 18.0                         | 610                               | 541<br>541 |                                                                                                                                        |
| 6/26/2013                | 1600<br>1040 | 684<br>684                     | 1950<br>2035     | 1,941,137<br>1,954,470     |                    | 12.60<br>1.80  | 9.0           | 15.0<br>14.0                 | 610<br>610                        | 541<br>541 |                                                                                                                                        |
| 8/26/2013                | 1730         | 693                            | 2201             | 1,981,481                  | NR                 | 0.00           | 12.8          | NR                           | 610                               | 541        |                                                                                                                                        |
| 10/13/2015               | 1400         | 693                            | 2205             | 1,982,572                  | NR                 | 0.81           | NR            | NR                           | 610                               | 541        |                                                                                                                                        |
| 12/15/2015               | 1300         | 693                            | 2205             | 1,982,639                  | NR                 | 11.64          | NR            | NR                           | 610                               | 541        |                                                                                                                                        |
| 1/12/2016                | 1430         | 693                            | 2260             | 1,993,342                  | 407,700            | 4.73           | 4.4           | MF                           | 610                               | 541        |                                                                                                                                        |
| 2/23/2016                | 1250         | 693                            | 2347             | 2,232,374                  | 408,210            | 48.00          | NR            | MF                           | 610                               | NR         | Both analog and field flow totalizer reading indicate the flow meter is failing                                                        |
| 3/30/2016                | 1440         | 693                            | 2436             | 2,489,395                  |                    | 48.00          | MF            | MF                           | 610                               | NR         | Both analog and field flow totalizer reading indicate the flow meter is failing                                                        |
| 4/20/2016                | 915          | 693                            | 2515             | 2,716,043                  |                    | 48.00          | MF            | 8.0                          | 610                               | NR         | Both analog and field flow totalizer reading indicate the flow meter is failing  Both analog and field flow totalizer reading indicate |
| 5/18/2016                | 1415         | 693                            | 2637             | 3,068,238                  | 408,749            | 48.00          | MF            | 8.0                          | 610                               | 541        | the flow meter is failing                                                                                                              |

#### Notes:

NR: Not recorded. NP: Not pumping MF: Meter Failure

2. Analog flow totalizer reading estimated from field readings from Oct. 27 and Sept 29, 2011.

<sup>1.</sup> Discharge flowmeter malfunction caused invalid field totalizer reading; therefore, analog flow totalizer was used.

<sup>3.</sup> Flow meter and totalizer not working. The DPE system was off from Oct. 26 through Dec. 21, 2012; therefore, the volume discharged during this period was 0 gallons.

#### Air Stripper Operational Data MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

| Date                   | Time        | AS Blower<br>Hours | AS Discharge<br>Pump Hours | AS Blower<br>Pressure<br>(in. H <sub>2</sub> O) | AS Exhaust<br>Pressure<br>(in. H <sub>2</sub> O) | AS Discharge<br>Pump<br>Pressure (psi) | AS Exhaust<br>PID (ppm) | Comments |
|------------------------|-------------|--------------------|----------------------------|-------------------------------------------------|--------------------------------------------------|----------------------------------------|-------------------------|----------|
| 9/27/2010              | 1030        | 2578               | 192                        | 18                                              | 7                                                | 25                                     | ND                      |          |
| 10/18/2010             | 950         | 2742               | 204                        | 24                                              | 5                                                | 18                                     | ND                      |          |
| 12/22/2010             | 1200        | 3049               | 226                        | 18                                              | 9                                                | 24                                     | ND                      |          |
| 1/6/2011               | 800         | NR                 | 244                        | 18                                              | 7                                                | 25                                     | ND                      |          |
| 1/20/2011              | 800         | 3524               | 263                        | 18                                              | 6                                                | 24                                     | ND                      |          |
| 2/27/2011              | 1100        | 3867               | 288                        | 17                                              | 9                                                | 26                                     | ND                      |          |
| 3/7/2011               | 800         | 3885               | 289                        | 18                                              | 9                                                | 25                                     | ND                      |          |
| 3/18/2011              | 1330        | 4060               | 298                        | 17                                              | 10                                               | 25                                     | ND                      |          |
| 3/23/2011              | 900         | 4060               | 298                        | 17                                              | 8                                                | 26                                     | ND                      |          |
| 4/22/2011              | 910         | 4408               | 325                        | 18                                              | 9                                                | 25                                     | ND                      |          |
| 5/3/2011               | 2100        | 4540               | 335                        | 18                                              | NR                                               | 25                                     | NR                      |          |
| 5/5/2011               | NR          | 4564               | 336                        | 18                                              | NR                                               | 25                                     | NR                      |          |
| 5/19/2011              | 600         | 4734               | 349                        | 17                                              | 11<br>ND                                         | 26                                     | ND<br>05.7              |          |
| 6/16/2011              | 1200        | 5140               | 374                        | 17                                              | NR                                               | 25                                     | 25.7                    |          |
| 7/25/2011<br>8/28/2011 | 900<br>1100 | 5575<br>5892       | 405<br>432                 | 17<br>16                                        | <u>8</u><br>9                                    | 25<br>26                               | 4.3<br>0.0              |          |
| 9/29/2011              | 1140        | 6332               | 455                        | 17                                              | 7                                                | 25                                     | 0.0                     |          |
| 10/18/2011             | NR          | 6398               | 458                        | NR                                              | NR                                               | NR                                     | NR                      |          |
| 10/18/2011             | 800         | 6524               | 465                        | 17                                              | 9                                                | 25                                     | ND<br>ND                |          |
| 11/21/2011             | 1100        | 6884               | 485                        | 17                                              | 9                                                | 24                                     | ND                      |          |
| 1/20/2012              | 800         | 7025               | 493                        | 16                                              | 9                                                | 25                                     | ND                      |          |
| 1/27/2012              | 900         | 7103               | 498                        | 16                                              | 8                                                | 25                                     | ND                      |          |
| 2/16/2012              | 900         | 7329               | 510                        | 17                                              | 9                                                | 24                                     | ND                      |          |
| 3/16/2012              | 1100        | 7664               | 530                        | 16                                              | 8                                                | 26                                     | NR                      |          |
| 3/27/2012              | 700         | 7767               | 535                        | 16                                              | 9                                                | 25                                     | ND                      |          |
| 4/17/2012              | 1025        | 8019               | 549                        | 16                                              | 10                                               | 24                                     | ND                      |          |
| 5/17/2012              | 1000        | 8359               | 563                        | 16                                              | 9                                                | 24                                     | ND                      |          |
| 5/31/2012              | 1059        | 8498               | 574                        | 16                                              | 8                                                | NR                                     | ND                      |          |
| 6/14/2012              | 1017        | 8602               | 586                        | 17                                              | 9                                                | 18                                     | ND                      |          |
| 7/19/2012              | 1111        | 8903               | 602                        | 16                                              | 8                                                | 19                                     | ND                      |          |
| 8/23/2012              | 730         | 9110               | 615                        | 9                                               | 16                                               | 19                                     | ND                      |          |
| 9/26/2012              | 2012        | 9268               | 626                        | 16                                              | 9                                                | 19                                     | ND                      |          |
| 10/26/2012             | 600         | 9527               | 638                        | 17                                              | 11                                               | NR                                     | ND                      |          |
| 12/21/2012             | 830         | 9625               | 639                        | 16                                              | 9                                                | NR                                     | ND                      |          |
| 1/4/2013               | 940         | 9777               | 644                        | 17                                              | 9                                                | 16                                     | ND                      |          |
| 1/30/2013              | 600         | 10054              | 658                        | 16                                              | 9                                                | 19                                     | ND                      |          |
| 2/13/2013              | 800         | 10788              | 665                        | NR<br>45                                        | NR<br>0                                          | NR<br>48                               | NR                      |          |
| 2/26/2013              | 600<br>800  | 10381<br>10711     | 684                        | 15                                              | 9<br>16                                          | 18                                     | ND<br>ND                |          |
| 3/21/2013<br>5/23/2013 | 1600        | 10/11              | 696<br>714                 | 5<br>19                                         | 16<br>8                                          | 21<br>16                               | ND<br>ND                |          |
| 6/26/2013              | 1040        | 11713              | 714<br>757                 | 16                                              | 4                                                | 20                                     | ND<br>ND                |          |
| 8/26/2013              | 1730        | 12844              | 823                        | 16                                              | 8                                                | 18                                     | ND<br>ND                |          |
| 10/13/2015             | 1400        | 12850              | 824                        | 17                                              | 9                                                | 18                                     | ND<br>ND                |          |
| 12/15/2015             | 1300        | 12868              | 825                        | 16                                              | 10                                               | 18                                     | NR                      |          |
| 1/12/2016              | 1430        | 13367              | 854                        | 16                                              | 8                                                | 18                                     | 0.0                     |          |
| 2/23/2016              | 1250        | 14040              | 893                        | 12                                              | 8                                                | 16                                     | 0.0                     |          |
| 3/30/2016              | 1440        | 14599              | 924                        | 16                                              | 13                                               | 18                                     | 0.0                     |          |
| 4/20/2016              | 915         | 14992              | 947                        | 16                                              | 9                                                | 18                                     | 0.0                     |          |
| 5/18/2016              | 1415        | 15487              | 978                        | 16                                              | 11                                               | 17                                     | 0.0                     |          |
|                        |             | 1                  |                            |                                                 |                                                  |                                        |                         |          |

Notes: NR: Not recorded. NP: Not pumping. ND: Not detected.

#### DPE Well Casing Vacuum Data (in. H<sub>2</sub>O) MN Bio Business Center 221 1st Avenue SW Rochester, Minnesota

| Date                      | DPE-1      | DPE-2      | DPE-3      | DPE-4     | DPE-5     | DPE-6      | DPE-7     | DPE-8      |
|---------------------------|------------|------------|------------|-----------|-----------|------------|-----------|------------|
| 7/9/2009                  | 129.0      | 2.6        | 0.1        | 0.1       | 0.4       | 1.9        | 2.4       | 0.0        |
| 8/11/2009                 | 117.0      | 0.0        | 0.0        | 0.8       | 0.0       | 2.2        | 2.9       | 0.0        |
| 9/4/2009                  | 86.0       | NR         | NR         | NR        | NR        | NR         | NR        | NR         |
| 9/4/2009                  | 149.0      | NR         | NR         | NR        | NR        | NR         | NR        | NR         |
| 9/4/2009                  | >150       | NR         | NR         | NR        | NR        | NR         | NR        | NR         |
| 10/15/2009                | >150       | 3.4        | 0.3        | 0.9       | 1.3       | 1.9        | 0.5       | 0.04       |
| 10/23/2009                | 0.001      | 0.002      | 90.0       | 0.001     | 0.002     | 0.002      | 0.003     | 0.001      |
| 11/17/2009                | 0.000      | 0.000      | 0.000      | 0.000     | >150      | 0.000      | 0.000     | 0.000      |
| 2/22/2010                 | 48         | 200        | 128        | 99        | 90        | 108        | 70        | 91         |
| 3/25/2010                 | 51         | 168        | 125        | 140       | 86        | 120        | 64        | 94         |
| 4/16/2010                 | 48         | 210        | 130        | 130       | 98        | 88         | 55        | NA         |
| 5/12/2010                 | 51         | 195        | 127        | 87        | 75        | 148        | 68        | 86         |
| 6/17/2010                 | 50<br>10   | 210        | 125        | 88<br>148 | 79<br>100 | 115<br>115 | 71<br>70  | 81         |
| 7/26/10*<br>9/27/2010     | 52         | 158<br>200 | 126<br>130 | 125       | 90        | 100        | 40        | 80<br>90   |
| 10/18/2010                | 60         | 151        | 126        | 85        | 100       | 110        | 31        | 60         |
| 12/22/2010                | 60         | 150        | 170        | 77        | 110       | 118        | 185       | 90         |
| 1/6/2011                  | 54         | 149        | 120        | 148       | 75        | 98         | 30        | 70         |
| 1/20/2011                 | 62         | 145        | 120        | 130       | 120       | 145        | 30        | 70         |
| 2/27/2011                 | 35         | 145        | 98         | 64        | 74        | 138        | 32        | 84         |
| 3/7/2011                  | 55         | 148        | 135        | 70        | 115       | 99         | 30        | 74         |
| 3/18/2011                 | 55         | 148        | 150        | 130       | 115       | 100        | 35        | 80         |
| 3/23/2011                 | 58         | 145        | 135        | 120       | 120       | 90         | 30        | 80         |
| 4/22/2011                 | 68         | 150        | 125        | 128       | 120       | 100        | 29        | 80         |
| 5/19/2011                 | 40         | 125        | 140        | 80        | 75        | 85         | 30        | 75         |
| 6/16/2011                 | 55         | 200        | 125        | 130       | 120       | 100        | 40        | 85         |
| 7/25/2011                 | 60         | 145        | 125        | 120       | 110       | 105        | 40        | 80         |
| 8/28/2011                 | 58         | 158        | 130        | 140       | 120       | 100        | 49        | 75         |
| 9/29/2011                 | 50         | 150        | 135        | 130       | 110       | 150        | 65        | 80         |
| 10/27/2011                | 50         | 150        | 124        | 89        | 100       | 128        | 48        | 74         |
| 11/21/2011                | 49         | 151        | 148        | 125       | 115       | 105        | 49        | 75         |
| 1/20/2012                 | 50         | 115        | 98         | 75        | 100       | 98         | 33        | 65         |
| 1/27/2012                 | 40         | 148        | 130        | 120       | 110       | 105        | 40        | 80         |
| 2/16/2012                 | 40         | 151        | 147        | 128       | 110       | 108        | 50        | 80         |
| 3/16/2012<br>3/27/2012    | 48<br>48   | 130<br>150 | 115<br>125 | 80<br>120 | 80<br>110 | 105<br>100 | 48<br>28  | 80<br>78   |
| 4/17/2012                 | 48         | 149        | 130        | 130       | 110       | 100        | 49        | 75         |
| 5/17/2012                 | 42         | 98         | 126        | 90        | 100       | 98         | 30        | 68         |
| 5/31/2012                 | 32         | 149        | 126        | 140       | 85        | 100        | 48        | 95         |
| 6/14/2012                 | 35         | 130        | 126        | 90        | 90        | 120        | 50        | 80         |
| 7/19/2012                 | 35         | 148        | 126        | 125       | 100       | 109        | 48        | 80         |
| 8/23/2012                 | 27         | 112        | 75         | 95        | 78        | 75         | 25        | 60         |
| 9/26/2012                 | 40         | 128        | 135        | 128       | 115       | 109        | 49        | 80         |
| 10/26/2012                | 50         | 120        | 130        | 115       | 80        | 100        | 45        | 75         |
| 12/21/2012                | 50         | 128        | 125        | 118       | 100       | 100        | 49        | 75         |
| 1/30/2013                 | 55         | 125        | 125        | 115       | 100       | 100        | 40        | 75         |
| 2/26/2013                 | 45         | 145        | 120        | 115       | 105       | 115        | 48        | 80         |
| 3/21/2013                 | 37         | 148        | 127        | 125       | 98        | 120        | 49        | 80         |
| 5/23/2013                 | 50         | 126        | 120        | 110       | 95        | 95         | 35        | 75         |
| 6/26/2013                 | 45         | 115        | 125        | 90        | 115       | 80         | 30        | 60         |
| 8/26/2013                 | 25<br>ND   | 95<br>ND   | 75<br>ND   | 130       | 100       | 75         | 30<br>ND  | 70<br>ND   |
| 10/13/2015                | NR<br>204  | NR<br>102  | NR<br>41   | NR<br>ND  | NR<br>177 | NR<br>157  | NR<br>190 | NR<br>122  |
| 12/14/2015**<br>1/12/2016 | 204<br>230 | 102<br>225 | 41<br>230  | NR<br>245 | 180       | 157<br>190 | 190<br>NR | 122        |
| 2/23/2016                 | 235        | 235        | 225        | 250       | 200       | 210        | 200       | 195<br>175 |
| 3/30/2016                 | 240        | 235        | 225        | 250       | 210       | 215        | 200       | 200        |
| 4/20/2016                 | 250        | 245        | 230        | 250       | 205       | 215        | 225       | 205        |
| 5/18/2016                 | 250        | 250        | 220        | 250       | 215       | 220        | 215       | 200        |
|                           |            |            |            |           |           |            | : •       | 230        |

Notes: **Bold** indicates the current operating extraction well.

NR: Not recorded

\* - DPE-1 issues

\*\* - Pressure readings taken off the manifold piping in inches of Hg and converted to in. H2O

| Pide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |           |         | DPE  | DPE Pump |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|---------|------|----------|
| Well ID         Date (ppm)         Flow Rate (scfm) (scfm)         Vacuum (in. Hg)           DPE-1         27-Oct-09         37.0         45.0         18.00           DPE-1         16-Nov-09         4,000.0         56.3         20.28           DPE-1         17-Dec-09         4,000.0         62.1         19.53           DPE-1         28-Dec-09         1,120.0         NR         NR           DPE-1         124-Jan-10         NR         NR         NR           DPE-1         125-Mar-10         868.0         40.0         23           DPE-1         16-Apr-10         287.0         40.0         22           DPE-1         17-Jun-10         32.1         30.0         22           DPE-1         17-Jun-10         32.1         30.0         22           DPE-1         17-Jun-10         32.1         30.0         22           DPE-1         17-Sep-10         >1750         82.0         18.23           DPE-1         18-Oct-10         25.0         40.0         20           DPE-1         18-Oct-10         25.0         40.0         20           DPE-1         18-Oct-10         25.0         40.0         20                                                                     |         |           |         |      |          |
| Well ID         Date         (ppm)         (scfm)         Hg)           DPE-1         27-Oct-09         37.0         45.0         18.00           DPE-1         16-Nov-09         4,000.0         56.3         20.28           DPE-1         17-Dec-09         4,000.0         62.1         19.53           DPE-1         28-Dec-09         1,120.0         NR         NR           DPE-1         28-Dec-09         1,120.0         NR         NR           DPE-1         14-Jan-10         NR         NR         NR           DPE-1         12-Feb-10         914.0         35.0         22.5           DPE-1         12-May-10         9.9         45.0         23.5           DPE-1         17-Jun-10         32.1         30.0         22           DPE-1         17-Jun-10         32.1         30.0         20           DPE-1         18-Oct-10         25.0         40.0         20           DPE-1                                                                             |         |           | PID     |      |          |
| DPE-1         27-Oct-09         37.0         45.0         18.00           DPE-1         16-Nov-09         4,000.0         56.3         20.28           DPE-1         18-Nov-09         4,000.0         62.1         19.53           DPE-1         28-Dec-09         1,120.0         NR         NR           DPE-1         28-Dec-09         1,120.0         NR         NR           DPE-1         12-Feb-10         914.0         35.0         22.5           DPE-1         12-Feb-10         914.0         35.0         22.5           DPE-1         16-Apr-10         287.0         40.0         22           DPE-1         12-May-10         9.9         45.0         23.5           DPE-1         17-Jun-10         32.1         30.0         22           DPE-1         17-Jun-10         32.1         30.0         20           DPE-1         18-Oct-10         25.0         40.0         20           DPE                                                                        | Well ID | Date      |         |      | , ,      |
| DPE-1         16-Nov-09         4,000.0         66.3         20.28           DPE-1         17-Dec-09         4,000.0         62.1         19.53           DPE-1         128-Dec-09         1,120.0         NR         NR           DPE-1         124-Jan-10         NR         NR         NR           DPE-1         12-May-10         98.0         40.0         23           DPE-1         12-May-10         9.9         45.0         23.5           DPE-1         12-May-10         9.9         45.0         23.5           DPE-1         17-Jun-10         32.1         30.0         22           DPE-1         17-Sep-10         -1750         82.0         18.23           DPE-1         27-Sep-10         -1750         82.0         18.23           DPE-1         18-Oct-10         25.0         40.0         20           DPE-1 </td <td>DPE-1</td> <td>27-Oct-09</td> <td></td> <td>45.0</td> <td></td> | DPE-1   | 27-Oct-09 |         | 45.0 |          |
| DPE-1         17-Dec-09         4,000.0         62.1         19.53           DPE-1         28-Dec-09         1,120.0         NR         NR           DPE-1         14-Jan-10         NR         NR         NR           DPE-1         12-Feb-10         914.0         35.0         22.5           DPE-1         22-Feb-10         914.0         35.0         22.5           DPE-1         12-May-10         868.0         40.0         23           DPE-1         16-Apr-10         287.0         40.0         22           DPE-1         17-Jun-10         32.1         30.0         22           DPE-1         17-Jun-10         32.1         30.0         22           DPE-1         17-Sep-10         -1750         82.0         18.23           DPE-1         17-Jec-10         1.4         40.0         19           DPE-1         17-Jec-10         1.4         40.0         19           DPE-1         17-Jec-10         1.1         40.0         22           DPE-1         18-Dec-10         10.1         55.0         20.9           DPE-1         12-Dec-10         10.1         55.0         20.9           DPE-1                                                                               | DPE-1   |           |         |      |          |
| DPE-1         14-Jan-10         NR         NR         NR           DPE-1         22-Feb-10         914.0         35.0         22.5           DPE-1         25-Mar-10         868.0         40.0         22           DPE-1         16-Apr-10         287.0         40.0         22           DPE-1         12-May-10         9.9         45.0         23.5           DPE-1         17-Jun-10         32.1         30.0         22           DPE-1         26-Jul-10         1.4         40.0         19           DPE-1         27-Sep-10         >1750         82.0         18.23           DPE-1         18-Oct-10         25.0         40.0         20           DPE-1         27-Dec-10         10.1         55.0         20.2           DPE-1         27-Mar-11         17.3         30.0         21.23           DPE-1                                                                                     | DPE-1   | 17-Dec-09 | 4,000.0 | 62.1 |          |
| DPE-1         22-Feb-10         914.0         35.0         22.5           DPE-1         25-Mar-10         868.0         40.0         23           DPE-1         16-Apr-10         287.0         40.0         22           DPE-1         17-Jun-10         32.1         30.0         22           DPE-1         17-Jun-10         32.1         30.0         22           DPE-1         17-Sep-10         >1750         82.0         18.23           DPE-1         27-Sep-10         >1750         82.0         18.23           DPE-1         18-Oct-10         25.0         40.0         20           DPE-1         18-Oct-10         25.0         40.0         20           DPE-1         22-Dec-10         10.1         55.0         20.2           DPE-1         22-Jan-11         17.8         82.0         20.2           DPE-1         27-Feb-11         6.4         61.0         20.66           DPE-1         18-Mar-11         33.4         50.0         21.23           DPE-1         18-Mar-11         13.3         40.0         21           DPE-1         18-Mar-11         17.5         39.0         21.26           DPE                                                                        | DPE-1   | 28-Dec-09 | 1,120.0 | NR   | NR       |
| DPE-1         25-Mar-10         868.0         40.0         23           DPE-1         16-Apr-10         287.0         40.0         22           DPE-1         12-May-10         9.9         45.0         23.5           DPE-1         17-Jun-10         32.1         30.0         22           DPE-1         17-Jun-10         32.1         30.0         22           DPE-1         27-Sep-10         >1750         82.0         18.23           DPE-1         27-Sep-10         >1750         82.0         18.23           DPE-1         18-Oct-10         25.0         40.0         20           DPE-1         22-Dec-10         10.1         55.0         20.9           DPE-1         6-Jan-11         17.8         82.0         20.2           DPE-1         20-Jan-11         12.1         55.0         20.9           DPE-1         27-Mar-11         33.4         50.0         21.23           DPE-1         18-Mar-11         3.0         57.0         21.1           DPE-1         18-Mar-11         1.3         40.0         21           DPE-1         19-May-11         17.5         39.0         21.26           DPE-1<                                                                        | DPE-1   | 14-Jan-10 | NR      | NR   | NR       |
| DPE-1         16-Apr-10         287.0         40.0         22           DPE-1         12-May-10         9.9         45.0         23.5           DPE-1*         17-Jun-10         32.1         30.0         22           DPE-1*         26-Jul-10         1.4         40.0         19           DPE-1         27-Sep-10         >1750         82.0         18.23           DPE-1         18-Oct-10         25.0         40.0         20           DPE-1         18-Oct-10         25.0         40.0         20           DPE-1         22-Dec-10         10.1         55.0         22.95           DPE-1         22-Jan-11         17.8         82.0         20.2           DPE-1         20-Jan-11         12.1         55.0         20.9           DPE-1         27-Mar-11         33.4         50.0         21.23           DPE-1         18-Mar-11         3.0         57.0         21.1           DPE-1         27-Apr-11         17.5         39.0         21.26           DPE-1         19-May-11         4.4         30.0         21.5           DPE-1         19-May-11         27.0         37.0         22           DPE-1<                                                                        | DPE-1   | 22-Feb-10 | 914.0   | 35.0 | 22.5     |
| DPE-1         12-May-10         9.9         45.0         23.5           DPE-1         17-Jun-10         32.1         30.0         22           DPE-1*         26-Jul-10         1.4         40.0         19           DPE-1         27-Sep-10         >1750         82.0         18.23           DPE-1         18-Oct-10         25.0         40.0         20           DPE-1         22-Dec-10         10.1         55.0         22.95           DPE-1         22-Dec-10         10.1         55.0         20.9           DPE-1         22-Jan-11         17.8         82.0         20.2           DPE-1         20-Jan-11         12.5         55.0         20.9           DPE-1         27-Feb-11         6.4         61.0         20.66           DPE-1         17-Mar-11         33.4         50.0         21.23           DPE-1         18-Mar-11         1.3         40.0         21.1           DPE-1         18-Mar-11         1.7.5         39.0         21.26           DPE-1         19-May-11         4.4         30.0         21.5           DPE-1         19-May-11         27.0         37.0         22           DPE                                                                        |         | 25-Mar-10 | 868.0   | 40.0 |          |
| DPE-1         17-Jun-10         32.1         30.0         22           DPE-1*         26-Jul-10         1.4         40.0         19           DPE-1         27-Sep-10         >1750         82.0         18.23           DPE-1         18-Oct-10         25.0         40.0         20           DPE-1         18-Oct-10         25.0         40.0         20           DPE-1         22-Dec-10         10.1         55.0         22.95           DPE-1         26-Jan-11         17.8         82.0         20.2           DPE-1         29-Jan-11         12.1         55.0         20.9           DPE-1         27-Feb-11         6.4         61.0         20.66           DPE-1         27-Mar-11         33.4         50.0         21.23           DPE-1         18-Mar-11         3.0         57.0         21.1           DPE-1         18-Mar-11         1.3         40.0         21           DPE-1         23-Mar-11         17.5         39.0         21.26           DPE-1         16-Jun-11         27.0         37.0         22           DPE-1         16-Jun-11         27.0         37.0         22           DPE-1 <td>DPE-1</td> <td></td> <td>287.0</td> <td>40.0</td> <td>22</td>          | DPE-1   |           | 287.0   | 40.0 | 22       |
| DPE-1*         26-Jul-10         1.4         40.0         19           DPE-1         27-Sep-10         >1750         82.0         18.23           DPE-1         18-Oct-10         25.0         40.0         20           DPE-1         22-Dec-10         10.1         55.0         22.95           DPE-1         6-Jan-11         17.8         82.0         20.2           DPE-1         20-Jan-11         12.1         55.0         20.9           DPE-1         27-Feb-11         6.4         61.0         20.66           DPE-1         7-Mar-11         33.4         50.0         21.23           DPE-1         18-Mar-11         3.0         57.0         21.1           DPE-1         18-Mar-11         1.3         40.0         21           DPE-1         18-Mar-11         1.3         40.0         21           DPE-1         19-May-11         4.4         30.0         21.26           DPE-1         19-May-11         4.4         30.0         21.5           DPE-1         19-May-11         5.0         37.0         22           DPE-1         19-May-11         5.0         37.0         22.15           DPE-1                                                                              |         |           |         |      |          |
| DPE-1         27-Sep-10         >1750         82.0         18.23           DPE-1         18-Oct-10         25.0         40.0         20           DPE-1         22-Dec-10         10.1         55.0         22.95           DPE-1         6-Jan-11         17.8         82.0         20.2           DPE-1         20-Jan-11         12.1         55.0         20.9           DPE-1         27-Feb-11         6.4         61.0         20.66           DPE-1         27-Feb-11         6.4         61.0         20.66           DPE-1         7-Mar-11         33.4         50.0         21.23           DPE-1         18-Mar-11         3.0         57.0         21.1           DPE-1         23-Mar-11         1.3         40.0         21.2           DPE-1         19-May-11         4.4         30.0         21.26           DPE-1         19-May-11         4.4         30.0         21.26           DPE-1         16-Jun-11         27.0         37.0         22           DPE-1         16-Jun-11         27.0         37.0         22           DPE-1         25-Jul-11         45.5         21.4           DPE-1         27-                                                                        |         |           |         |      |          |
| DPE-1         18-Oct-10         25.0         40.0         20           DPE-1         22-Dec-10         10.1         55.0         22.95           DPE-1         6-Jan-11         17.8         82.0         20.2           DPE-1         20-Jan-11         12.1         55.0         20.9           DPE-1         27-Feb-11         6.4         61.0         20.66           DPE-1         7-Mar-11         33.4         50.0         21.23           DPE-1         18-Mar-11         3.0         57.0         21.1           DPE-1         23-Mar-11         1.3         40.0         21           DPE-1         23-Mar-11         1.3         40.0         21.26           DPE-1         19-May-11         4.4         30.0         21.26           DPE-1         19-May-11         4.4         30.0         21.5           DPE-1         19-May-11         2.4         30.0         21.5           DPE-1         16-Jun-11         27.0         37.0         22           DPE-1         16-Jun-11         27.0         37.0         22           DPE-1         16-Jun-11         27.5         45.5         21.4           DPE-1                                                                             |         |           |         |      |          |
| DPE-1         22-Dec-10         10.1         55.0         22.95           DPE-1         6-Jan-11         17.8         82.0         20.2           DPE-1         20-Jan-11         12.1         55.0         20.9           DPE-1         27-Feb-11         6.4         61.0         20.66           DPE-1         7-Mar-11         33.4         50.0         21.23           DPE-1         18-Mar-11         3.0         57.0         21.1           DPE-1         23-Mar-11         1.3         40.0         21           DPE-1         22-Apr-11         17.5         39.0         21.26           DPE-1         19-May-11         4.4         30.0         21.5           DPE-1         19-May-11         4.4         30.0         21.5           DPE-1         19-May-11         5.0         37.0         22           DPE-1         19-May-11         5.0         37.0         22           DPE-1         19-May-11         5.0         37.0         22           DPE-1         25-Jul-11         57.5         45.5         21.4           DPE-1         25-Jul-11         57.5         45.5         21.4           DPE-1                                                                               |         |           |         |      |          |
| DPE-1         6-Jan-11         17.8         82.0         20.2           DPE-1         20-Jan-11         12.1         55.0         20.9           DPE-1         27-Feb-11         6.4         61.0         20.66           DPE-1         7-Mar-11         33.4         50.0         21.23           DPE-1         18-Mar-11         1.3         40.0         21           DPE-1         23-Mar-11         1.3         40.0         21           DPE-1         23-Mar-11         1.3         40.0         21           DPE-1         19-May-11         4.4         30.0         21.26           DPE-1         19-May-11         4.4         30.0         21.5           DPE-1         19-May-11         4.4         30.0         21.5           DPE-1         19-May-11         55.1         35.3         21.53           DPE-1         16-Jun-11         27.0         37.0         22           DPE-1         25-Jul-11         55.1         35.3         21.53           DPE-1         27-Oct-11         41.7         30.0         22.6           DPE-1         27-Oct-11         41.7         30.0         22.6           DPE-1                                                                             |         |           |         |      |          |
| DPE-1         20-Jan-11         12.1         55.0         20.9           DPE-1         27-Feb-11         6.4         61.0         20.66           DPE-1         7-Mar-11         33.4         50.0         21.23           DPE-1         18-Mar-11         3.0         57.0         21.1           DPE-1         18-Mar-11         1.3         40.0         21           DPE-1         22-Apr-11         17.5         39.0         21.26           DPE-1         19-May-11         4.4         30.0         21.5           DPE-1         19-May-11         4.4         30.0         21.5           DPE-1         19-May-11         4.4         30.0         22.15           DPE-1         19-May-11         55.1         35.3         21.53           DPE-1         25-Jul-11         55.1         35.3         21.53           DPE-1         28-Aug-11         27.5         45.5         21.4           DPE-1         28-Aug-11         27.5         45.5         21.4           DPE-1         29-Sep-11         12.2         46.7         22.41           DPE-1         27-Jan-12         12.0         34.3         20.3                                                                                   |         |           |         |      |          |
| DPE-1         27-Feb-11         6.4         61.0         20.66           DPE-1         7-Mar-11         33.4         50.0         21.23           DPE-1         18-Mar-11         3.0         57.0         21.1           DPE-1         23-Mar-11         1.3         40.0         21           DPE-1         22-Apr-11         17.5         39.0         21.26           DPE-1         19-May-11         4.4         30.0         21.5           DPE-1         19-May-11         4.4         30.0         21.5           DPE-1         16-Jun-11         27.0         37.0         22           DPE-1         25-Jul-11         55.1         35.3         21.53           DPE-1         28-Aug-11         27.5         45.5         21.4           DPE-1         29-Sep-11         12.2         46.7         22.41           DPE-1         29-Sep-11         12.2         46.7         22.41           DPE-1         27-Oct-11         41.7         30.0         22.6           DPE-1         21-Nov-11         580.0         44.0         22.08           DPE-1         27-Jan-12         12.0         34.3         20.3                                                                                   |         |           |         |      |          |
| DPE-1         7-Mar-11         33.4         50.0         21.23           DPE-1         18-Mar-11         3.0         57.0         21.1           DPE-1         23-Mar-11         1.3         40.0         21           DPE-1         22-Apr-11         17.5         39.0         21.26           DPE-1         19-May-11         4.4         30.0         21.5           DPE-1         19-May-11         5.1         35.3         21.53           DPE-1         25-Jul-11         55.1         35.3         21.53           DPE-1         28-Sep-11         12.2         46.7         22.41           DPE-1         29-Sep-11         12.2         46.7         22.41           DPE-1         27-Oct-11         41.7         30.0         22.6           DPE-1         27-Jan-12         12.0         34.3         20.3           DPE-1         27-Jan-12         12.0         34.3         20.3           DP                                                                        |         |           |         |      |          |
| DPE-1         18-Mar-11         3.0         57.0         21.1           DPE-1         23-Mar-11         1.3         40.0         21           DPE-1         22-Apr-11         17.5         39.0         21.26           DPE-1         19-May-11         4.4         30.0         21.5           DPE-1         19-May-11         4.4         30.0         21.5           DPE-1         16-Jun-11         27.0         37.0         22           DPE-1         25-Jul-11         55.1         35.3         21.53           DPE-1         28-Aug-11         27.5         45.5         21.4           DPE-1         28-Sep-11         12.2         46.7         22.41           DPE-1         29-Sep-11         12.2         46.7         22.41           DPE-1         27-Oct-11         41.7         30.0         22.6           DPE-1         27-Oct-11         41.7         30.0         22.6           DPE-1         27-Jan-12         15.7         51.6         16.79           DPE-1         27-Jan-12         12.0         34.3         20.3           DPE-1         16-Feb-12         3.5         30.6         20.65           D                                                                        |         |           |         |      |          |
| DPE-1         23-Mar-11         1.3         40.0         21           DPE-1         22-Apr-11         17.5         39.0         21.26           DPE-1         19-May-11         4.4         30.0         21.5           DPE-1         16-Jun-11         27.0         37.0         22           DPE-1         25-Jul-11         55.1         35.3         21.53           DPE-1         28-Aug-11         27.5         45.5         21.4           DPE-1         29-Sep-11         12.2         46.7         22.41           DPE-1         29-Sep-11         12.2         46.7         22.41           DPE-1         27-Oct-11         41.7         30.0         22.6           DPE-1         27-Oct-11         41.7         30.0         22.6           DPE-1         27-Jan-12         5.7         51.6         16.79           DPE-1         27-Jan-12         12.0         34.3         20.3           DPE-1         16-Reb-12         3.5         30.6         20.65           DPE-1         16-Mar-12         NA         23.0         21.14           DPE-1         17-Apr-12         11.3         25.5         21.05                                                                                   |         |           |         |      |          |
| DPE-1         22-Apr-11         17.5         39.0         21.26           DPE-1         19-May-11         4.4         30.0         21.5           DPE-1         16-Jun-11         27.0         37.0         22           DPE-1         25-Jul-11         55.1         35.3         21.53           DPE-1         28-Aug-11         27.5         45.5         21.4           DPE-1         29-Sep-11         12.2         46.7         22.41           DPE-1         29-Sep-11         12.2         46.7         22.41           DPE-1         27-Oct-11         41.7         30.0         22.6           DPE-1         27-Jan-12         5.7         51.6         16.79           DPE-1         20-Jan-12         5.7         51.6         16.79           DPE-1         27-Jan-12         12.0         34.3         20.3           DPE-1         16-Reb-12         3.5         30.6         20.65           DPE-1         16-Mar-12         NA         23.0         21.14           DPE-1         17-Apr-12         11.3         25.5         21.05           DPE-1         17-Apr-12         11.3         25.5         21.05                                                                               |         |           |         |      |          |
| DPE-1         19-May-11         4.4         30.0         21.5           DPE-1         16-Jun-11         27.0         37.0         22           DPE-1         25-Jul-11         55.1         35.3         21.53           DPE-1         28-Aug-11         27.5         45.5         21.4           DPE-1         29-Sep-11         12.2         46.7         22.41           DPE-1         29-Sep-11         12.2         46.7         22.41           DPE-1         29-Sep-11         12.2         46.7         22.41           DPE-1         27-Oct-11         41.7         30.0         22.6           DPE-1         27-Oct-11         41.7         30.0         22.6           DPE-1         20-Jan-12         5.7         51.6         16.79           DPE-1         20-Jan-12         5.7         51.6         16.79           DPE-1         16-Feb-12         3.5         30.6         20.65           DPE-1         16-Feb-12         3.5         30.6         20.65           DPE-1         16-Mar-12         NA         23.0         21.14           DPE-1         17-Apr-12         11.3         25.5         21.05           <                                                                    |         |           |         |      |          |
| DPE-1         16-Jun-11         27.0         37.0         22           DPE-1         25-Jul-11         55.1         35.3         21.53           DPE-1         28-Aug-11         27.5         45.5         21.4           DPE-1         29-Sep-11         12.2         46.7         22.41           DPE-1         27-Oct-11         41.7         30.0         22.6           DPE-1         27-Oct-11         41.7         30.0         22.6           DPE-1         27-Oct-11         41.7         30.0         22.6           DPE-1         27-Jan-12         5.7         51.6         16.79           DPE-1         20-Jan-12         5.7         51.6         16.79           DPE-1         16-Feb-12         3.5         30.6         20.65           DPE-1         16-Feb-12         3.5         30.6         20.65           DPE-1         16-Mar-12         NA         23.0         21.14           DPE-1         17-Apr-12         11.3         25.5         21.05           DPE-1         17-Apr-12         11.3         25.5         21.05           DPE-1         17-May-12         13.1         16.0         20.9           <                                                                    |         |           |         |      |          |
| DPE-1         25-Jul-11         55.1         35.3         21.53           DPE-1         28-Aug-11         27.5         45.5         21.4           DPE-1         29-Sep-11         12.2         46.7         22.41           DPE-1         27-Oct-11         41.7         30.0         22.6           DPE-1         27-Oct-11         41.7         30.0         22.6           DPE-1         27-Nov-11         580.0         44.0         22.08           DPE-1         20-Jan-12         5.7         51.6         16.79           DPE-1         27-Jan-12         12.0         34.3         20.3           DPE-1         16-Feb-12         3.5         30.6         20.65           DPE-1         16-Mar-12         NA         23.0         21.14           DPE-1         16-Mar-12         NA         23.0         21.14           DPE-1         17-Apr-12         11.3         25.5         21.05           DPE-1         17-May-12         11.3         25.5         21.05           DPE-1         17-May-12         13.1         16.0         20.9           DPE-1         14-Jun-12         6.9         37.0         19.4                                                                              |         |           |         |      |          |
| DPE-1         28-Aug-11         27.5         45.5         21.4           DPE-1         29-Sep-11         12.2         46.7         22.41           DPE-1         27-Oct-11         41.7         30.0         22.6           DPE-1         21-Nov-11         580.0         44.0         22.08           DPE-1         20-Jan-12         5.7         51.6         16.79           DPE-1         20-Jan-12         5.7         51.6         16.79           DPE-1         27-Jan-12         12.0         34.3         20.3           DPE-1         16-Feb-12         3.5         30.6         20.65           DPE-1         16-Mar-12         NA         23.0         21.14           DPE-1         17-Apr-12         10.5         29.6         20.73           DPE-1         17-Apr-12         11.3         25.5         21.05           DPE-1         17-May-12         13.1         16.0         20.12                                                                         |         |           |         |      |          |
| DPE-1         29-Sep-11         12.2         46.7         22.41           DPE-1         27-Oct-11         41.7         30.0         22.6           DPE-1         21-Nov-11         580.0         44.0         22.08           DPE-1         20-Jan-12         5.7         51.6         16.79           DPE-1         27-Jan-12         12.0         34.3         20.3           DPE-1         16-Feb-12         3.5         30.6         20.65           DPE-1         16-Mar-12         NA         23.0         21.14           DPE-1         16-Mar-12         NA         23.0         21.14           DPE-1         17-Apr-12         10.5         29.6         20.73           DPE-1         17-Apr-12         11.3         25.5         21.05           DPE-1         17-May-12         13.1         16.0         20.9           DPE-1         17-May-12         13.1         16.0         20.9           DPE-1         14-Jun-12         6.9         37.0         19.4           DPE-1         14-Jun-12         6.9         37.0         19.4           DPE-1         19-Jul-12         10.9         40.9         18.6           <                                                                    |         |           |         |      |          |
| DPE-1         27-Oct-11         41.7         30.0         22.6           DPE-1         21-Nov-11         580.0         44.0         22.08           DPE-1         20-Jan-12         5.7         51.6         16.79           DPE-1         27-Jan-12         12.0         34.3         20.3           DPE-1         16-Feb-12         3.5         30.6         20.65           DPE-1         16-Mar-12         NA         23.0         21.14           DPE-1         27-Mar-12         10.5         29.6         20.73           DPE-1         17-Apr-12         11.3         25.5         21.05           DPE-1         14-Jun-12         6.9         37.0         19.4                                                                         |         |           |         |      |          |
| DPE-1         21-Nov-11         580.0         44.0         22.08           DPE-1         20-Jan-12         5.7         51.6         16.79           DPE-1         27-Jan-12         12.0         34.3         20.3           DPE-1         16-Feb-12         3.5         30.6         20.65           DPE-1         16-Feb-12         NA         23.0         21.14           DPE-1         16-Mar-12         NA         23.0         21.14           DPE-1         27-Mar-12         10.5         29.6         20.73           DPE-1         17-Apr-12         11.3         25.5         21.05           DPE-1         17-May-12         13.1         16.0         20.9           DPE-1         31-May-12         31.4         24.0         20.12           DPE-1         14-Jun-12         6.9         37.0         19.4           DPE-1         19-Jul-12         10.9         40.9         18.6           DPE-1         19-Jul-12         10.9         40.9         18.6           DPE-1         23-Aug-12         13.6         30.9         14.4           DPE-1         26-Sep-12         6.9         30.4         19.11                                                                               |         |           |         |      |          |
| DPE-1         27-Jan-12         12.0         34.3         20.3           DPE-1         16-Feb-12         3.5         30.6         20.65           DPE-1         16-Mar-12         NA         23.0         21.14           DPE-1         27-Mar-12         10.5         29.6         20.73           DPE-1         17-Apr-12         11.3         25.5         21.05           DPE-1         17-May-12         13.1         16.0         20.9           DPE-1         31-May-12         31.4         24.0         20.12           DPE-1         31-May-12         31.4         24.0         20.12           DPE-1         14-Jun-12         6.9         37.0         19.4           DPE-1         19-Jul-12         10.9         40.9         18.6           DPE-1         19-Jul-12         10.9         40.9         18.6           DPE-1         23-Aug-12         13.6         30.9         14.4           DPE-1         26-Sep-12         6.9         30.4         19.11           DPE-1         26-Sep-12         6.2         27.0         13.65           DPE-1         21-Dec-12         66.0         31.0         17 <t< td=""><td>DPE-1</td><td></td><td>580.0</td><td>44.0</td><td></td></t<>      | DPE-1   |           | 580.0   | 44.0 |          |
| DPE-1         16-Feb-12         3.5         30.6         20.65           DPE-1         16-Mar-12         NA         23.0         21.14           DPE-1         27-Mar-12         10.5         29.6         20.73           DPE-1         17-Apr-12         11.3         25.5         21.05           DPE-1         17-May-12         13.1         16.0         20.9           DPE-1         31-May-12         31.4         24.0         20.12           DPE-1         31-May-12         31.4         24.0         20.12           DPE-1         19-Jul-12         6.9         37.0         19.4           DPE-1         19-Jul-12         10.9         40.9         18.6           DPE-1         26-Sep-12         6.9         30.4         19.11           DPE-1         26-Sep-12         6.9         30.4         19.11                                                                               | DPE-1   | 20-Jan-12 | 5.7     | 51.6 | 16.79    |
| DPE-1         16-Mar-12         NA         23.0         21.14           DPE-1         27-Mar-12         10.5         29.6         20.73           DPE-1         17-Apr-12         11.3         25.5         21.05           DPE-1         17-May-12         13.1         16.0         20.9           DPE-1         17-May-12         13.1         16.0         20.9           DPE-1         31-May-12         31.4         24.0         20.12           DPE-1         14-Jun-12         6.9         37.0         19.4           DPE-1         19-Jul-12         10.9         40.9         18.6           DPE-1         19-Jul-12         10.9         40.9         18.6           DPE-1         23-Aug-12         13.6         30.9         14.4           DPE-1         26-Sep-12         6.9         30.4         19.11           DPE-1         26-Sep-12         6.9         30.4         19.11           DPE-1         26-Oct-12         66.0         31.0         17           DPE-1         26-Oct-12         66.0         31.0         17           DPE-1         30-Jan-13         43.4         26.0         18           DPE                                                                        | DPE-1   | 27-Jan-12 | 12.0    | 34.3 | 20.3     |
| DPE-1         27-Mar-12         10.5         29.6         20.73           DPE-1         17-Apr-12         11.3         25.5         21.05           DPE-1         17-May-12         13.1         16.0         20.9           DPE-1         31-May-12         31.4         24.0         20.12           DPE-1         14-Jun-12         6.9         37.0         19.4           DPE-1         19-Jul-12         10.9         40.9         18.6           DPE-1         23-Aug-12         13.6         30.9         14.4           DPE-1         23-Aug-12         6.9         30.4         19.11           DPE-1         26-Sep-12         6.9         30.4         19.11           DPE-1         26-Oct-12         6.2         27.0         13.65           DPE-1         21-Dec-12         66.0         31.0         17           DPE-1         21-Dec-12         66.0         31.0         17           DPE-1         30-Jan-13         43.4         26.0         18           DPE-1         33-Feb-13         64.8         NR         NR           DPE-1         25-Feb-13         10.8         36.0         20.35           DPE-1                                                                        | DPE-1   | 16-Feb-12 | 3.5     | 30.6 | 20.65    |
| DPE-1         17-Apr-12         11.3         25.5         21.05           DPE-1         17-May-12         13.1         16.0         20.9           DPE-1         31-May-12         31.4         24.0         20.12           DPE-1         14-Jun-12         6.9         37.0         19.4           DPE-1         19-Jul-12         10.9         40.9         18.6           DPE-1         23-Aug-12         13.6         30.9         14.4           DPE-1         26-Sep-12         6.9         30.4         19.11           DPE-1         26-Oct-12         6.2         27.0         13.65           DPE-1         21-Dec-12         66.0         31.0         17           DPE-1         21-Dec-12         66.0         31.0         17           DPE-1         4-Jan-13         42.7         NR         NR           DPE-1         30-Jan-13         43.4         26.0         18           DPE-1         35-Feb-13         64.8         NR         NR           DPE-1         25-Feb-13         10.8         36.0         20.35           DPE-1         21-Mar-13         10.6         37.0         18.2           DPE-1                                                                              | DPE-1   | 16-Mar-12 | NA      | 23.0 | 21.14    |
| DPE-1         17-May-12         13.1         16.0         20.9           DPE-1         31-May-12         31.4         24.0         20.12           DPE-1         14-Jun-12         6.9         37.0         19.4           DPE-1         19-Jul-12         10.9         40.9         18.6           DPE-1         23-Aug-12         13.6         30.9         14.4           DPE-1         26-Sep-12         6.9         30.4         19.11           DPE-1         26-Oct-12         6.2         27.0         13.65           DPE-1         21-Dec-12         66.0         31.0         17           DPE-1         21-Dec-12         66.0         31.0         17           DPE-1         4-Jan-13         42.7         NR         NR           DPE-1         30-Jan-13         43.4         26.0         18           DPE-1         33-Jan-13         43.4         26.0         18           DPE-1         13-Feb-13         64.8         NR         NR           DPE-1         13-Feb-13         10.8         36.0         20.35           DPE-1         25-Feb-13         10.8         36.0         20.35           DPE-1                                                                                | DPE-1   | 27-Mar-12 | 10.5    | 29.6 | 20.73    |
| DPE-1         31-May-12         31.4         24.0         20.12           DPE-1         14-Jun-12         6.9         37.0         19.4           DPE-1         19-Jul-12         10.9         40.9         18.6           DPE-1         23-Aug-12         13.6         30.9         14.4           DPE-1         26-Sep-12         6.9         30.4         19.11           DPE-1         26-Oct-12         6.2         27.0         13.65           DPE-1         21-Dec-12         66.0         31.0         17           DPE-1         21-Dec-12         66.0         31.0         17           DPE-1         24-Jan-13         42.7         NR         NR           DPE-1         30-Jan-13         43.4         26.0         18           DPE-1         13-Feb-13         64.8         NR         NR           DPE-1         25-Feb-13         10.8         36.0         20.35           DPE-1         21-Mar-13         10.6         37.0         18.2           DPE-1         23-May-13         18.6         30.6         18.8           DPE-1         26-Jun-13         11.3         27.0         20           DPE-1                                                                                | DPE-1   | 17-Apr-12 | 11.3    | 25.5 | 21.05    |
| DPE-1         14-Jun-12         6.9         37.0         19.4           DPE-1         19-Jul-12         10.9         40.9         18.6           DPE-1         23-Aug-12         13.6         30.9         14.4           DPE-1         26-Sep-12         6.9         30.4         19.11           DPE-1         26-Oct-12         6.2         27.0         13.65           DPE-1         21-Dec-12         66.0         31.0         17           DPE-1         4-Jan-13         42.7         NR         NR           DPE-1         30-Jan-13         43.4         26.0         18           DPE-1         13-Feb-13         64.8         NR         NR           DPE-1         13-Feb-13         64.8         NR         NR           DPE-1         25-Feb-13         10.8         36.0         20.35           DPE-1         21-Mar-13         10.6         37.0         18.2           DPE-1         23-May-13         18.6         30.6         18.8           DPE-1         26-Jun-13         11.3         27.0         20           DPE-1         26-Aug-13         0.3         184.3         16.98           DPE-1                                                                                   |         |           |         |      |          |
| DPE-1         19-Jul-12         10.9         40.9         18.6           DPE-1         23-Aug-12         13.6         30.9         14.4           DPE-1         26-Sep-12         6.9         30.4         19.11           DPE-1         26-Oct-12         6.2         27.0         13.65           DPE-1         21-Dec-12         66.0         31.0         17           DPE-1         21-Dec-12         66.0         31.0         17           DPE-1         4-Jan-13         42.7         NR         NR           DPE-1         30-Jan-13         43.4         26.0         18           DPE-1         13-Feb-13         64.8         NR         NR           DPE-1         13-Feb-13         64.8         NR         NR           DPE-1         25-Feb-13         10.8         36.0         20.35           DPE-1         21-Mar-13         10.6         37.0         18.2           DPE-1         23-May-13         18.6         30.6         18.8           DPE-1         26-Jun-13         11.3         27.0         20           DPE-1         26-Aug-13         0.3         184.3         16.98           DPE-1                                                                                    |         |           |         |      |          |
| DPE-1         23-Aug-12         13.6         30.9         14.4           DPE-1         26-Sep-12         6.9         30.4         19.11           DPE-1         26-Oct-12         6.2         27.0         13.65           DPE-1         21-Dec-12         66.0         31.0         17           DPE-1         4-Jan-13         42.7         NR         NR           DPE-1         30-Jan-13         43.4         26.0         18           DPE-1         13-Feb-13         64.8         NR         NR           DPE-1         25-Feb-13         10.8         36.0         20.35           DPE-1         21-Mar-13         10.6         37.0         18.2           DPE-1         23-May-13         18.6         30.6         18.8           DPE-1         26-Jun-13         11.3         27.0         20           DPE-1         26-Aug-13         0.3         184.3         16.98           DPE-1         13-Oct-15         54.2         35.0         20           DPE-1         14-Dec-15         45.3         55.0         17.91           DPE-1         12-Jan-16         45.6         55.0         18.94           DPE-1                                                                              |         |           |         |      |          |
| DPE-1         26-Sep-12         6.9         30.4         19.11           DPE-1         26-Oct-12         6.2         27.0         13.65           DPE-1         21-Dec-12         66.0         31.0         17           DPE-1         4-Jan-13         42.7         NR         NR           DPE-1         30-Jan-13         43.4         26.0         18           DPE-1         13-Feb-13         64.8         NR         NR           DPE-1         25-Feb-13         10.8         36.0         20.35           DPE-1         25-Feb-13         10.6         37.0         18.2           DPE-1         21-Mar-13         10.6         37.0         18.2           DPE-1         23-May-13         18.6         30.6         18.8           DPE-1         26-Jun-13         11.3         27.0         20           DPE-1         26-Aug-13         0.3         184.3         16.98           DPE-1         13-Oct-15         54.2         35.0         20           DPE-1         14-Dec-15         45.3         55.0         17.91           DPE-1         12-Jan-16         45.6         55.0         18.94           DPE-1                                                                              |         |           |         |      |          |
| DPE-1         26-Oct-12         6.2         27.0         13.65           DPE-1         21-Dec-12         66.0         31.0         17           DPE-1         4-Jan-13         42.7         NR         NR           DPE-1         30-Jan-13         43.4         26.0         18           DPE-1         13-Feb-13         64.8         NR         NR           DPE-1         25-Feb-13         10.8         36.0         20.35           DPE-1         25-Feb-13         10.6         37.0         18.2           DPE-1         21-Mar-13         10.6         37.0         18.2           DPE-1         23-May-13         18.6         30.6         18.8           DPE-1         26-Jun-13         11.3         27.0         20           DPE-1         26-Aug-13         0.3         184.3         16.98           DPE-1         13-Oct-15         54.2         35.0         20           DPE-1         14-Dec-15         45.3         55.0         17.91           DPE-1         12-Jan-16         45.6         55.0         18.94           DPE-1         23-Feb-16         25.0         55.0         19.48           DPE-1                                                                             |         | )         |         |      |          |
| DPE-1         21-Dec-12         66.0         31.0         17           DPE-1         4-Jan-13         42.7         NR         NR           DPE-1         30-Jan-13         43.4         26.0         18           DPE-1         13-Feb-13         64.8         NR         NR           DPE-1         25-Feb-13         10.8         36.0         20.35           DPE-1         21-Mar-13         10.6         37.0         18.2           DPE-1         23-May-13         18.6         30.6         18.8           DPE-1         26-Jun-13         11.3         27.0         20           DPE-1         26-Aug-13         0.3         184.3         16.98           DPE-1         13-Oct-15         54.2         35.0         20           DPE-1         13-Oct-15         54.2         35.0         20           DPE-1         14-Dec-15         45.3         55.0         17.91           DPE-1         12-Jan-16         45.6         55.0         18.94           DPE-1         23-Feb-16         25.0         55.0         19.48           DPE-1         30-Mar-16         31.5         55.0         19.64           DPE-1                                                                              |         |           |         |      |          |
| DPE-1         4-Jan-13         42.7         NR         NR           DPE-1         30-Jan-13         43.4         26.0         18           DPE-1         13-Feb-13         64.8         NR         NR           DPE-1         25-Feb-13         10.8         36.0         20.35           DPE-1         21-Mar-13         10.6         37.0         18.2           DPE-1         23-May-13         18.6         30.6         18.8           DPE-1         26-Jun-13         11.3         27.0         20           DPE-1         26-Aug-13         0.3         184.3         16.98           DPE-1         13-Oct-15         54.2         35.0         20           DPE-1         13-Oct-15         54.2         35.0         20           DPE-1         14-Dec-15         45.3         55.0         17.91           DPE-1         12-Jan-16         45.6         55.0         18.94           DPE-1         23-Feb-16         25.0         55.0         19.48           DPE-1         30-Mar-16         31.5         55.0         19.64           DPE-1         20-Apr-16         21.8         50.0         20                                                                                              |         |           |         |      |          |
| DPE-1         30-Jan-13         43.4         26.0         18           DPE-1         13-Feb-13         64.8         NR         NR           DPE-1         25-Feb-13         10.8         36.0         20.35           DPE-1         25-Feb-13         10.6         37.0         18.2           DPE-1         23-May-13         18.6         30.6         18.8           DPE-1         26-Jun-13         11.3         27.0         20           DPE-1         26-Aug-13         0.3         184.3         16.98           DPE-1         13-Oct-15         54.2         35.0         20           DPE-1         14-Dec-15         45.3         55.0         17.91           DPE-1         12-Jan-16         45.6         55.0         18.94           DPE-1         23-Feb-16         25.0         55.0         19.48           DPE-1         30-Mar-16         31.5         55.0         19.64           DPE-1         20-Apr-16         21.8         50.0         20                                                                                                                                                                                                                                         |         |           |         |      |          |
| DPE-1         13-Feb-13         64.8         NR         NR           DPE-1         25-Feb-13         10.8         36.0         20.35           DPE-1         21-Mar-13         10.6         37.0         18.2           DPE-1         23-May-13         18.6         30.6         18.8           DPE-1         26-Jun-13         11.3         27.0         20           DPE-1         26-Aug-13         0.3         184.3         16.98           DPE-1         13-Oct-15         54.2         35.0         20           DPE-1         14-Dec-15         45.3         55.0         17.91           DPE-1         12-Jan-16         45.6         55.0         18.94           DPE-1         23-Feb-16         25.0         55.0         19.48           DPE-1         30-Mar-16         31.5         55.0         19.64           DPE-1         20-Apr-16         21.8         50.0         20                                                                                                                                                                                                                                                                                                                |         |           |         |      |          |
| DPE-1         25-Feb-13         10.8         36.0         20.35           DPE-1         21-Mar-13         10.6         37.0         18.2           DPE-1         23-May-13         18.6         30.6         18.8           DPE-1         26-Jun-13         11.3         27.0         20           DPE-1         26-Aug-13         0.3         184.3         16.98           DPE-1         13-Oct-15         54.2         35.0         20           DPE-1         14-Dec-15         45.3         55.0         17.91           DPE-1         12-Jan-16         45.6         55.0         18.94           DPE-1         23-Feb-16         25.0         55.0         19.48           DPE-1         30-Mar-16         31.5         55.0         19.64           DPE-1         20-Apr-16         21.8         50.0         20                                                                                                                                                                                                                                                                                                                                                                                     |         |           |         |      |          |
| DPE-1         21-Mar-13         10.6         37.0         18.2           DPE-1         23-May-13         18.6         30.6         18.8           DPE-1         26-Jun-13         11.3         27.0         20           DPE-1         26-Aug-13         0.3         184.3         16.98           DPE-1         13-Oct-15         54.2         35.0         20           DPE-1         14-Dec-15         45.3         55.0         17.91           DPE-1         12-Jan-16         45.6         55.0         18.94           DPE-1         23-Feb-16         25.0         55.0         19.48           DPE-1         30-Mar-16         31.5         55.0         19.64           DPE-1         20-Apr-16         21.8         50.0         20                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |           |         |      |          |
| DPE-1         23-May-13         18.6         30.6         18.8           DPE-1         26-Jun-13         11.3         27.0         20           DPE-1         26-Aug-13         0.3         184.3         16.98           DPE-1         13-Oct-15         54.2         35.0         20           DPE-1         14-Dec-15         45.3         55.0         17.91           DPE-1         12-Jan-16         45.6         55.0         18.94           DPE-1         23-Feb-16         25.0         55.0         19.48           DPE-1         30-Mar-16         31.5         55.0         19.64           DPE-1         20-Apr-16         21.8         50.0         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |           |         |      |          |
| DPE-1         26-Jun-13         11.3         27.0         20           DPE-1         26-Aug-13         0.3         184.3         16.98           DPE-1         13-Oct-15         54.2         35.0         20           DPE-1         14-Dec-15         45.3         55.0         17.91           DPE-1         12-Jan-16         45.6         55.0         18.94           DPE-1         23-Feb-16         25.0         55.0         19.48           DPE-1         30-Mar-16         31.5         55.0         19.64           DPE-1         20-Apr-16         21.8         50.0         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |           |         |      |          |
| DPE-1         26-Aug-13         0.3         184.3         16.98           DPE-1         13-Oct-15         54.2         35.0         20           DPE-1         14-Dec-15         45.3         55.0         17.91           DPE-1         12-Jan-16         45.6         55.0         18.94           DPE-1         23-Feb-16         25.0         55.0         19.48           DPE-1         30-Mar-16         31.5         55.0         19.64           DPE-1         20-Apr-16         21.8         50.0         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |           |         |      |          |
| DPE-1         13-Oct-15         54.2         35.0         20           DPE-1         14-Dec-15         45.3         55.0         17.91           DPE-1         12-Jan-16         45.6         55.0         18.94           DPE-1         23-Feb-16         25.0         55.0         19.48           DPE-1         30-Mar-16         31.5         55.0         19.64           DPE-1         20-Apr-16         21.8         50.0         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |           |         |      |          |
| DPE-1         14-Dec-15         45.3         55.0         17.91           DPE-1         12-Jan-16         45.6         55.0         18.94           DPE-1         23-Feb-16         25.0         55.0         19.48           DPE-1         30-Mar-16         31.5         55.0         19.64           DPE-1         20-Apr-16         21.8         50.0         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         | 0         |         |      |          |
| DPE-1     12-Jan-16     45.6     55.0     18.94       DPE-1     23-Feb-16     25.0     55.0     19.48       DPE-1     30-Mar-16     31.5     55.0     19.64       DPE-1     20-Apr-16     21.8     50.0     20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |           |         |      |          |
| DPE-1         23-Feb-16         25.0         55.0         19.48           DPE-1         30-Mar-16         31.5         55.0         19.64           DPE-1         20-Apr-16         21.8         50.0         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |           |         |      |          |
| DPE-1         30-Mar-16         31.5         55.0         19.64           DPE-1         20-Apr-16         21.8         50.0         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DPE-1   | 23-Feb-16 | 25.0    | 55.0 | 19.48    |
| DPE-1 20-Apr-16 21.8 50.0 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |           |         |      |          |
| DPE-1 18-May-16 8.3 50.0 20.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DPE-1   |           | 21.8    | 50.0 | 20       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DPE-1   | 18-May-16 | 8.3     | 50.0 | 20.45    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |           |         |      |          |

|                |                        |             | DPE          | DPE Pump     |
|----------------|------------------------|-------------|--------------|--------------|
|                |                        |             | Exhaust      | Inlet        |
|                |                        | PID         | Flow Rate    | Vacuum (in.  |
| Well ID        | Date                   | (ppm)       | (scfm)       | Hg)          |
| DPE-2          | 27-Oct-09              | 50.6        | 40.0         | 19.00        |
| DPE-2          | 16-Nov-09              | 0.0         | 39.0         | 22.13        |
| DPE-2          | 17-Dec-09              | 11.8        | NR           | NR           |
| DPE-2          | 28-Dec-09              | 720.0       | NR           | NR           |
| DPE-2          | 14-Jan-10              | NR          | NR           | NR           |
| DPE-2          | 22-Feb-10              | 27.1        | 45.0         | 21.5         |
| DPE-2          | 25-Mar-10              | 10.5        | 50.0         | 22           |
| DPE-2          | 16-Apr-10              | 6.0         | 50.0         | 21           |
| DPE-2          | 12-May-10              | 10.1        | 55.0         | 22           |
| DPE-2          | 17-Jun-10              | 8.5         | 35.0         | 20           |
| DPE-2          | 26-Jul-10              | 0.6         | 40.0         | 22           |
| DPE-2          | 27-Sep-10              | >4000       | 52.4         | 20.98        |
| DPE-2          | 18-Oct-10              | 15.7        | 55.0         | 19           |
| DPE-2          | 22-Dec-10              | 2.8         | 70.0         | 22.14        |
| DPE-2          | 6-Jan-11               | 23.6        | 76.0         | 20.2         |
| DPE-2          | 20-Jan-11              | 2.6         | 55.0         | 21.5         |
| DPE-2          | 27-Feb-11              | 15.1        | 64.0         | 20.8         |
| DPE-2          | 7-Mar-11               | 19.8        | 50.0         | 21.34        |
| DPE-2          | 18-Mar-11              | 2.1<br>1.2  | 55.0         | 21.2         |
| DPE-2          | 23-Mar-11<br>22-Apr-11 |             | 40.0         | 21           |
| DPE-2          | 19-May-11              | 2.0<br>7.1  | 39.0         | 21.3         |
| DPE-2          | 19-May-11<br>16-Jun-11 | 21.0        | 45.0<br>38.1 | 21<br>22.5   |
| DPE-2          | 25-Jul-11              | 13.5        | 38.1         | 21.43        |
| DPE-2          | 28-Aug-11              | 10.2        | 45.0         | 21.43        |
| DPE-2          | 29-Sep-11              | 11.8        | 46.0         | 22.63        |
| DPE-2          | 27-Oct-11              | 177.0       | 38.0         | 22           |
| DPE-2          | 21-Nov-11              | 365.0       | 39.0         | 22.4         |
| DPE-2          | 20-Jan-12              | 7.2         | 46.3         | 16.76        |
| DPE-2          | 27-Jan-12              | 6.4         | 29.2         | 20.19        |
| DPE-2          | 16-Feb-12              | 6.0         | 26.7         | 21.6         |
| DPE-2          | 16-Mar-12              | NA          | 30.0         | 21.5         |
| DPE-2          | 27-Mar-12              | 14.5        | 25.5         | 21.5         |
| DPE-2          | 17-Apr-12              | 6.4         | 21.6         | 21.69        |
| DPE-2          | 17-May-12              | 12.1        | 20.4         | 20.87        |
| DPE-2          | 31-May-12              | 21.2        | 20.0         | 20           |
| DPE-2          | 14-Jun-12              | 5.0         | 29.0         | 19.7         |
| DPE-2          | 19-Jul-12              | 5.4         | 31.5         | 18.7         |
| DPE-2          | 23-Aug-12              | 3.6         | 36.0         | 10.8         |
| DPE-2          | 26-Sep-12              | 4.3         | 31.3         | 19.18        |
| DPE-2          | 26-Oct-12              | 4.6         | 29.0         | 16.8         |
| DPE-2          | 21-Dec-12              | 56.0        | 32.0         | 17<br>ND     |
| DPE-2          | 4-Jan-13               | 48.1        | NR<br>25.0   | NR<br>10.5   |
| DPE-2          | 30-Jan-13              | 9.4         | 25.0         | 19.5         |
| DPE-2<br>DPE-2 | 13-Feb-13              | 25.7<br>5.8 | NR<br>29.0   | NR<br>20.5   |
| DPE-2<br>DPE-2 | 25-Feb-13<br>21-Mar-13 | 8.2         | 26.0         | 20.5<br>19.7 |
| DPE-2          | 23-May-13              | 12.7        | 24.7         | 19.7         |
| DPE-2          | 26-Jun-13              | 3.0         | 34.0         | 20.7         |
| DPE-2          | 26-Aug-13              | 0.4         | 186.1        | 15.12        |
| DPE-2          | 13-Oct-15              | 20.6        | 35.0         | 20           |
| DPE-2          | 14-Dec-15              | 21.6        | 55.0         | 17.75        |
| DPE-2          | 12-Jan-16              | 20.1        | 55.0         | 18.77        |
| DPE-2          | 23-Feb-16              | 17.3        | 55.0         | 19.2         |
| DPE-2          | 30-Mar-16              | 16.6        | 60.0         | 19.34        |
| DPE-2          | 20-Apr-16              | 6.2         | 55.0         | 19.7         |
| DPE-2          | 18-May-16              | 2.9         | 55.0         | 20.11        |
|                | _                      |             |              |              |
| _              |                        | _           |              |              |

| PID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |           |         | DPE       | DPE Pump    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|---------|-----------|-------------|
| Well ID         Date         (ppm)         (scfm)         Hg)           DPE-3         27-Oct-09         15.7         73.0         15.00           DPE-3         16-Nov-09         1,600.0         65.0         18.94           DPE-3         17-Dec-09         57.5         NR         NR           DPE-3         28-Dec-09         22.8         NR         NR           DPE-3         14-Jan-10         NR         NR         NR           DPE-3         22-Feb-10         43.4         70.0         19           DPE-3         22-Feb-10         43.4         70.0         19           DPE-3         12-May-10         17.5         75.0         18           DPE-3         12-May-10         23.7         80.0         20           DPE-3         17-Jun-10         18.1         55.0         18           DPE-3         17-Jun-10         18.1         55.0         18           DPE-3         12-Sep-10         >3260         68.6         19.5           DPE-3         18-Oct-10         36.4         85.0         17.5           DPE-3         18-Mar-11         23.3         38.0         21.75           DPE-3                                                                              |         |           |         |           | •           |
| DPE-3         27-Oct-09         15.7         73.0         15.00           DPE-3         16-Nov-09         1,600.0         65.0         18.94           DPE-3         17-Dec-09         57.5         NR         NR           DPE-3         28-Dec-09         22.8         NR         NR           DPE-3         28-Dec-09         22.8         NR         NR           DPE-3         14-Jan-10         NR         NR         NR           DPE-3         12-May-10         NR         NR         NR           DPE-3         12-May-10         17.5         75.0         18           DPE-3         16-Apr-10         17.5         75.0         18           DPE-3         12-May-10         23.7         80.0         20           DPE-3         12-May-10         0.0         65.0         17.5           DPE-3         12-Jun-10         0.0         65.0         17.5           DPE-3         12-Jun-10         36.4         85.0         17.5           DPE-3         12-Jun-11         4.5         77.0         18.6           DPE-3         12-Dec-10         28.2         78.0         18.5           DPE-3         27-                                                                          |         |           | PID     | Flow Rate | Vacuum (in. |
| DPE-3         16-Nov-09         1,600.0         65.0         18.94           DPE-3         17-Dec-09         57.5         NR         NR           DPE-3         14-Dec-09         22.8         NR         NR           DPE-3         14-Jan-10         NR         NR         NR           DPE-3         14-Jan-10         NR         NR         NR           DPE-3         12-May-10         31.4         70.0         19.5           DPE-3         16-Apr-10         17.5         75.0         18           DPE-3         16-Apr-10         17.5         75.0         18           DPE-3         17-Jun-10         18.1         55.0         18           DPE-3         27-Sep-10         93260         68.6         19.5           DPE-3         27-Sep-10         33260         68.6         19.5           DPE-3         18-Oct-10         36.4         85.0         17.5           DPE-3         18-Oct-10         36.4         85.0         17.5           DPE-3         18-Mar-11         23.9         109.0         18.5           DPE-3         22-Dec-10         28.2         78.0         21.75           DPE-3                                                                            | Well ID | Date      | (ppm)   | (scfm)    | Hg)         |
| DPE-3         17-Dec-09         57.5         NR         NR           DPE-3         28-Dec-09         22.8         NR         NR           DPE-3         14-Jan-10         NR         NR         NR           DPE-3         22-Feb-10         43.4         70.0         19.5           DPE-3         25-Mar-10         31.4         70.0         19.5           DPE-3         16-Apr-10         17.5         75.0         18           DPE-3         16-Apr-10         17.5         75.0         18           DPE-3         17-Jun-10         18.1         55.0         18           DPE-3         17-Jun-10         18.1         55.0         18           DPE-3         26-Jul-10         0.0         65.0         17.5           DPE-3         26-Jul-10         36.4         85.0         17.5           DPE-3         18-Oct-10         36.4         85.0         17.5           DPE-3         22-Dec-10         28.2         78.0         21.75           DPE-3         22-Jan-11         23.3         82.0         21.75           DPE-3         27-Mar-11         23.3         82.0         18.5           DPE-3                                                                               | DPE-3   | 27-Oct-09 | 15.7    | 73.0      | 15.00       |
| DPE-3         28-Dec-09         22.8         NR         NR           DPE-3         14-Jan-10         NR         NR         NR           DPE-3         22-Feb-10         43.4         70.0         19.5           DPE-3         22-Feb-10         43.4         70.0         19           DPE-3         12-May-10         17.5         75.0         18           DPE-3         12-May-10         23.7         80.0         20           DPE-3         12-Jun-10         18.1         55.0         18           DPE-3         26-Jul-10         0.0         65.0         17.5           DPE-3         27-Sep-10         >3260         68.6         19.5           DPE-3         27-Sep-10         326.0         68.6         19.5           DPE-3         18-Oct-10         36.4         85.0         21.75           DPE-3         22-Dec-10         28.2         78.0         21.75           DPE-3         22-Dec-10         28.2         78.0         21.75           DPE-3         29-Jan-11         4.5         77.0         18.6           DPE-3         27-Feb-11         23.3         82.0         18.8           DPE-3                                                                         | DPE-3   | 16-Nov-09 | 1,600.0 | 65.0      | 18.94       |
| DPE-3         14-Jan-10         NR         NR         NR           DPE-3         22-Feb-10         43.4         70.0         19.5           DPE-3         25-Mar-10         31.4         70.0         19           DPE-3         16-Apr-10         17.5         75.0         18           DPE-3         12-May-10         23.7         80.0         20           DPE-3         12-May-10         0.0         65.0         17.5           DPE-3         26-Jul-10         0.0         65.0         17.5           DPE-3         22-Dec-10         0.0         65.0         17.5           DPE-3         27-Sep-10         32.60         68.6         19.5           DPE-3         18-Oct-10         36.4         85.0         17.5           DPE-3         22-Dec-10         28.2         78.0         21.75           DPE-3         22-Dec-10         28.2         78.0         21.75           DPE-3         20-Jan-11         4.5         77.0         18.6           DPE-3         27-Feb-11         23.3         82.0         18.8           DPE-3         18-Mar-11         25.6         55.0         20.1           DPE-3                                                                       | DPE-3   | 17-Dec-09 | 57.5    | NR        | NR          |
| DPE-3         22-Feb-10         43.4         70.0         19           DPE-3         25-Mar-10         31.4         70.0         19           DPE-3         16-Apr-10         17.5         75.0         18           DPE-3         12-May-10         23.7         80.0         20           DPE-3         17-Jun-10         18.1         55.0         18           DPE-3         17-Jun-10         18.1         55.0         18           DPE-3         26-Jul-10         0.0         65.0         17.5           DPE-3         26-Jul-10         0.0         65.0         17.5           DPE-3         18-Oct-10         36.4         85.0         17.5           DPE-3         18-Oct-10         36.4         85.0         17.5           DPE-3         18-Oct-10         36.4         85.0         17.5           DPE-3         22-Dec-10         28.2         78.0         21.75           DPE-3         22-Jan-11         23.9         109.0         18.5           DPE-3         20-Jan-11         23.3         82.0         18.8           DPE-3         18-Mar-11         25.6         55.0         20.1           DPE-3                                                                      | DPE-3   | 28-Dec-09 | 22.8    | NR        | NR          |
| DPE-3         25-Mar-10         31.4         70.0         19           DPE-3         16-Apr-10         17.5         75.0         18           DPE-3         12-May-10         23.7         80.0         20           DPE-3         17-Jun-10         18.1         55.0         18           DPE-3         26-Jul-10         0.0         65.0         17.5           DPE-3         26-Jul-10         36.4         85.0         17.5           DPE-3         18-Oct-10         36.4         85.0         17.5           DPE-3         18-G-De-11         23.9         109.0         18.5           DPE-3         20-Jan-11         4.5         77.0         18.6           DPE-3         27-Mar-11         23.3         82.0         18.8           DPE-3         27-Mar-11         25.6         55.0         20.1           DPE-3         18-Mar-11         8.4         65.0         18.5           DPE-3 </td <td>DPE-3</td> <td></td> <td>NR</td> <td>NR</td> <td>NR</td> | DPE-3   |           | NR      | NR        | NR          |
| DPE-3         16-Apr-10         17.5         75.0         18           DPE-3         12-May-10         23.7         80.0         20           DPE-3         17-Jun-10         18.1         55.0         18           DPE-3         26-Jul-10         0.0         65.0         17.5           DPE-3         26-Jul-10         0.0         65.0         17.5           DPE-3         27-Sep-10         >3260         68.6         19.5           DPE-3         18-Oct-10         36.4         85.0         17.5           DPE-3         18-Oct-10         36.4         85.0         17.5           DPE-3         22-Dec-10         28.2         78.0         21.75           DPE-3         22-Jan-11         4.5         77.0         18.6           DPE-3         20-Jan-11         4.5         77.0         18.6           DPE-3         27-Mar-11         23.3         82.0         18.8           DPE-3         27-Mar-11         25.6         55.0         20.1           DPE-3         18-Mar-11         8.4         65.0         18.7           DPE-3         19-May-11         8.0         65.0         18.7           DPE-3 <td>DPE-3</td> <td></td> <td></td> <td>70.0</td> <td>19.5</td>     | DPE-3   |           |         | 70.0      | 19.5        |
| DPE-3         12-May-10         23.7         80.0         20           DPE-3         17-Jun-10         18.1         55.0         18           DPE-3         26-Jul-10         0.0         65.0         17.5           DPE-3         27-Sep-10         >3260         68.6         19.5           DPE-3         18-Oct-10         36.4         85.0         17.5           DPE-3         18-Oct-10         28.2         78.0         21.75           DPE-3         22-Dec-10         28.2         78.0         21.75           DPE-3         22-Dec-11         23.9         109.0         18.5           DPE-3         20-Jan-11         4.5         77.0         18.6           DPE-3         27-Feb-11         23.3         82.0         18.8           DPE-3         7-Mar-11         25.6         55.0         20.1           DPE-3         18-Mar-11         8.4         65.0         18.7           DPE-3         18-Mar-11         8.4         65.0         18.5           DPE-3         19-May-11         8.0         65.0         18.5           DPE-3         19-May-11         34.0         66.0         18.5           DPE-                                                                 |         |           |         |           |             |
| DPE-3         17-Jun-10         18.1         55.0         18           DPE-3         26-Jul-10         0.0         65.0         17.5           DPE-3         27-Sep-10         >3260         68.6         19.5           DPE-3         18-Oct-10         36.4         85.0         17.5           DPE-3         18-Oct-10         36.4         85.0         17.5           DPE-3         22-Dec-10         28.2         78.0         21.75           DPE-3         22-Dec-10         28.2         78.0         21.75           DPE-3         6-Jan-11         23.9         109.0         18.5           DPE-3         20-Jan-11         4.5         77.0         18.6           DPE-3         27-Mar-11         25.6         55.0         20.1           DPE-3         18-Mar-11         5.8         65.0         18.7           DPE-3         18-Mar-11         5.8         65.0         18.5           DPE-3         19-May-11         30.0         65.0         19.0           DPE-3         16-Jun-11         34.0         60.1         20           DPE-3         16-Jun-11         34.0         60.1         20           DPE-3                                                                 |         |           |         | 75.0      |             |
| DPE-3         26-Jul-10         0.0         65.0         17.5           DPE-3         27-Sep-10         >3260         68.6         19.5           DPE-3         18-Oct-10         36.4         85.0         17.5           DPE-3         22-Dec-10         28.2         78.0         21.75           DPE-3         22-Dec-10         28.2         78.0         21.75           DPE-3         22-Jan-11         23.9         109.0         18.5           DPE-3         20-Jan-11         4.5         77.0         18.6           DPE-3         22-Apr-11         23.3         82.0         18.8           DPE-3         18-Mar-11         25.6         55.0         20.1           DPE-3         18-Mar-11         5.8         65.0         18.7           DPE-3         18-Mar-11         31.3         66.0         18.5           DPE-3         22-Apr-11         31.3         66.0         18.5           DPE-3         19-May-11         8.0         65.0         19           DPE-3         19-May-11         8.0         66.0         19           DPE-3         16-Jun-11         34.0         60.1         20           DPE-3                                                                 |         |           |         |           |             |
| DPE-3         27-Sep-10         >3260         68.6         19.5           DPE-3         18-Oct-10         36.4         85.0         17.5           DPE-3         22-Dec-10         28.2         78.0         21.75           DPE-3         6-Jan-11         23.9         109.0         18.5           DPE-3         20-Jan-11         4.5         77.0         18.6           DPE-3         27-Feb-11         23.3         82.0         18.8           DPE-3         27-Feb-11         23.3         82.0         18.8           DPE-3         7-Mar-11         25.6         55.0         20.1           DPE-3         18-Mar-11         8.4         65.0         18.7           DPE-3         23-Mar-11         5.8         65.0         18.5           DPE-3         22-Apr-11         31.3         66.0         18.5           DPE-3         19-May-11         8.0         65.0         19           DPE-3         19-May-11         8.0         65.0         19           DPE-3         16-Jun-11         34.0         60.1         20           DPE-3         25-Jul-11         23.2         63.2         18.24           DPE-3 </td <td></td> <td></td> <td></td> <td></td> <td></td>            |         |           |         |           |             |
| DPE-3         18-Oct-10         36.4         85.0         17.5           DPE-3         22-Dec-10         28.2         78.0         21.75           DPE-3         6-Jan-11         23.9         109.0         18.5           DPE-3         20-Jan-11         4.5         77.0         18.6           DPE-3         27-Feb-11         23.3         82.0         18.8           DPE-3         7-Mar-11         25.6         55.0         20.1           DPE-3         18-Mar-11         8.4         65.0         18.7           DPE-3         18-Mar-11         5.8         65.0         18.5           DPE-3         22-Apr-11         31.3         66.0         18.5           DPE-3         19-May-11         8.0         65.0         19           DPE-3         19-May-11         8.0         65.0         19           DPE-3         19-May-11         30.0         65.0         19           DPE-3         25-Jul-11         23.2         63.2         18.24           DPE-3         25-Jul-11         23.2         63.2         18.24           DPE-3         29-Sep-11         18.7         73.6         19.53           DPE-3<                                                                 |         |           |         |           |             |
| DPE-3         22-Dec-10         28.2         78.0         21.75           DPE-3         6-Jan-11         23.9         109.0         18.5           DPE-3         20-Jan-11         4.5         77.0         18.6           DPE-3         27-Feb-11         23.3         82.0         18.8           DPE-3         7-Mar-11         25.6         55.0         20.1           DPE-3         18-Mar-11         8.4         65.0         18.7           DPE-3         23-Mar-11         5.8         65.0         18.5           DPE-3         22-Apr-11         31.3         66.0         18.5           DPE-3         19-May-11         8.0         65.0         19           DPE-3         19-May-11         8.0         65.0         19           DPE-3         19-May-11         8.0         65.0         19           DPE-3         19-May-11         20.0         60.1         20           DPE-3         19-May-11         20.2         63.2         18.24           DPE-3         25-Jul-11         23.2         63.2         18.24           DPE-3         29-Sep-11         18.7         73.6         19.53           DPE-3 <td></td> <td></td> <td></td> <td></td> <td></td>                   |         |           |         |           |             |
| DPE-3         6-Jan-11         23.9         109.0         18.5           DPE-3         20-Jan-11         4.5         77.0         18.6           DPE-3         27-Feb-11         23.3         82.0         18.8           DPE-3         7-Mar-11         25.6         55.0         20.1           DPE-3         7-Mar-11         8.4         65.0         18.7           DPE-3         23-Mar-11         5.8         65.0         18.5           DPE-3         22-Apr-11         31.3         66.0         18.5           DPE-3         19-May-11         8.0         65.0         19           DPE-3         16-Jun-11         34.0         60.1         20           DPE-3         25-Jul-11         23.2         63.2         18.24           DPE-3         27-Oct-11         201.0         70.6         19.2           DPE-3                                                                              |         |           |         |           |             |
| DPE-3         20-Jan-11         4.5         77.0         18.6           DPE-3         27-Feb-11         23.3         82.0         18.8           DPE-3         7-Mar-11         25.6         55.0         20.1           DPE-3         18-Mar-11         8.4         65.0         18.7           DPE-3         23-Mar-11         5.8         65.0         18.5           DPE-3         22-Apr-11         31.3         66.0         18.5           DPE-3         19-May-11         8.0         65.0         19           DPE-3         19-May-11         8.0         65.0         19           DPE-3         16-Jun-11         34.0         60.1         20           DPE-3         25-Jul-11         23.2         63.2         18.24           DPE-3         28-Aug-11         62.8         71.0         19.4           DPE-3         27-Oct-11         201.0         70.6         19.2           DPE-3                                                                          |         |           |         |           |             |
| DPE-3         27-Feb-11         23.3         82.0         18.8           DPE-3         7-Mar-11         25.6         55.0         20.1           DPE-3         18-Mar-11         8.4         65.0         18.7           DPE-3         23-Mar-11         5.8         65.0         18.5           DPE-3         22-Apr-11         31.3         66.0         18.5           DPE-3         19-May-11         8.0         65.0         19           DPE-3         19-May-11         8.0         65.0         19           DPE-3         19-May-11         8.0         65.0         19           DPE-3         16-Jun-11         34.0         60.1         20           DPE-3         25-Jul-11         23.2         63.2         18.24           DPE-3         28-Aug-11         62.8         71.0         19.4           DPE-3         29-Sep-11         18.7         73.6         19.53           DPE-3         29-Sep-11         18.7         73.6         19.2           DPE-3         27-Oct-11         201.0         70.6         19.2           DPE-3         21-Nov-11         429.0         68.0         19.6           DPE-3 <td></td> <td></td> <td></td> <td></td> <td></td>                  |         |           |         |           |             |
| DPE-3         7-Mar-11         25.6         55.0         20.1           DPE-3         18-Mar-11         8.4         65.0         18.7           DPE-3         23-Mar-11         5.8         65.0         18.5           DPE-3         22-Apr-11         31.3         66.0         18.5           DPE-3         19-May-11         8.0         65.0         19           DPE-3         19-May-11         34.0         60.1         20           DPE-3         19-May-11         34.0         60.1         20           DPE-3         19-Jun-11         34.0         60.1         20           DPE-3         25-Jul-11         23.2         63.2         18.24           DPE-3         28-Aug-11         62.8         71.0         19.4           DPE-3         28-Aug-11         62.8         71.0         19.4           DPE-3         27-Oct-11         201.0         70.6         19.2           DPE-3         27-Oct-11         201.0         70.6         19.2           DPE-3         27-Jan-12         4.2         50.6         17.8           DPE-3         16-Feb-12         16.8         43.0         18.09           DPE-3 </td <td></td> <td></td> <td></td> <td></td> <td></td>            |         |           |         |           |             |
| DPE-3         18-Mar-11         8.4         65.0         18.7           DPE-3         23-Mar-11         5.8         65.0         18.5           DPE-3         22-Apr-11         31.3         66.0         18.5           DPE-3         19-May-11         8.0         65.0         19           DPE-3         19-Jul-11         34.0         60.1         20           DPE-3         28-Jul-11         62.8         71.0         19.4           DPE-3         28-Sep-11         18.7         73.6         19.53           DPE-3         29-Sep-11         18.7         73.6         19.53           DPE-3         27-Oct-11         201.0         70.6         19.2           DPE-3         27-Jan-12         4.2         50.6         17.8           DPE-3         27-Jan-12         4.2         50.6         17.8           DPE-3         16-Feb-12         16.8         43.0         18.09           DPE-3                                                                        |         |           |         |           |             |
| DPE-3         23-Mar-11         5.8         65.0         18.5           DPE-3         22-Apr-11         31.3         66.0         18.5           DPE-3         19-May-11         8.0         65.0         19           DPE-3         16-Jun-11         34.0         60.1         20           DPE-3         25-Jul-11         23.2         63.2         18.24           DPE-3         25-Jul-11         23.2         63.2         18.24           DPE-3         25-Jul-11         23.2         63.2         18.24           DPE-3         28-Aug-11         62.8         71.0         19.4           DPE-3         29-Sep-11         18.7         73.6         19.53           DPE-3         27-Oct-11         201.0         70.6         19.2           DPE-3         27-Mor-11         429.0         68.0         19.6           DPE-3         27-Jan-12         4.2         50.6         17.8           DPE-3         27-Jan-12         4.2         50.6         17.8           DPE-3         16-Feb-12         16.8         43.0         18.09           DPE-3         16-Mar-12         NA         44.0         18.2           D                                                                 |         |           |         |           |             |
| DPE-3         22-Apr-11         31.3         66.0         18.5           DPE-3         19-May-11         8.0         65.0         19           DPE-3         16-Jun-11         34.0         60.1         20           DPE-3         25-Jul-11         23.2         63.2         18.24           DPE-3         25-Jul-11         23.2         63.2         18.24           DPE-3         25-Jul-11         62.8         71.0         19.4           DPE-3         29-Sep-11         18.7         73.6         19.53           DPE-3         27-Oct-11         201.0         70.6         19.2           DPE-3         27-Nov-11         429.0         68.0         19.6           DPE-3         20-Jan-12         16.2         52.3         16.03           DPE-3         20-Jan-12         16.2         52.3         16.03           DPE-3         27-Jan-12         4.2         50.6         17.8           DPE-3         16-Feb-12         16.8         43.0         18.09           DPE-3         16-Mar-12         NA         44.0         18.5           DPE-3         17-Apr-12         22.5         35.2         18.74           <                                                             |         |           |         |           |             |
| DPE-3         19-May-11         8.0         65.0         19           DPE-3         16-Jun-11         34.0         60.1         20           DPE-3         25-Jul-11         23.2         63.2         18.24           DPE-3         28-Aug-11         62.8         71.0         19.4           DPE-3         29-Sep-11         18.7         73.6         19.53           DPE-3         27-Oct-11         201.0         70.6         19.2           DPE-3         27-Oct-11         201.0         70.6         19.2           DPE-3         27-Oct-11         201.0         70.6         19.2           DPE-3         21-Nov-11         429.0         68.0         19.6           DPE-3         20-Jan-12         16.2         52.3         16.03           DPE-3         20-Jan-12         4.2         50.6         17.8           DPE-3         16-Feb-12         16.8         43.0         18.09           DPE-3         16-Feb-12         16.8         43.0         18.5           DPE-3         16-Mar-12         NA         44.0         18.5           DPE-3         17-Apr-12         22.5         35.2         18.74           <                                                             |         |           |         |           |             |
| DPE-3         16-Jun-11         34.0         60.1         20           DPE-3         25-Jul-11         23.2         63.2         18.24           DPE-3         28-Aug-11         62.8         71.0         19.4           DPE-3         29-Sep-11         18.7         73.6         19.53           DPE-3         27-Oct-11         201.0         70.6         19.2           DPE-3         27-Oct-11         201.0         70.6         19.2           DPE-3         27-Oct-11         201.0         70.6         19.2           DPE-3         21-Nov-11         429.0         68.0         19.6           DPE-3         20-Jan-12         16.2         52.3         16.03           DPE-3         20-Jan-12         4.2         50.6         17.8           DPE-3         16-Feb-12         16.8         43.0         18.09           DPE-3         16-Mar-12         NA         44.0         18.5           DPE-3         16-Mar-12         NA         44.0         18.2           DPE-3         17-Apr-12         22.5         35.2         18.74           DPE-3         17-Apr-12         22.5         35.2         18.74                                                                       |         |           |         |           |             |
| DPE-3         25-Jul-11         23.2         63.2         18.24           DPE-3         28-Aug-11         62.8         71.0         19.4           DPE-3         29-Sep-11         18.7         73.6         19.53           DPE-3         27-Oct-11         201.0         70.6         19.2           DPE-3         21-Nov-11         429.0         68.0         19.6           DPE-3         20-Jan-12         16.2         52.3         16.03           DPE-3         20-Jan-12         4.2         50.6         17.8           DPE-3         27-Jan-12         4.2         50.6         17.8           DPE-3         16-Feb-12         16.8         43.0         18.09           DPE-3         16-Mar-12         NA         44.0         18.5           DPE-3         17-Mar-12         20.4         41.0         18.2           DPE-3         17-Apr-12         22.5         35.2         18.74           DPE-3         17-Apr-12         22.5         35.2         18.74           DPE-3         17-May-12         16.4         31.3         17.2           DPE-3         17-May-12         16.4         31.0         18.8                                                                      |         |           |         |           |             |
| DPE-3         28-Aug-11         62.8         71.0         19.4           DPE-3         29-Sep-11         18.7         73.6         19.53           DPE-3         27-Oct-11         201.0         70.6         19.2           DPE-3         21-Nov-11         429.0         68.0         19.6           DPE-3         20-Jan-12         16.2         52.3         16.03           DPE-3         27-Jan-12         4.2         50.6         17.8           DPE-3         16-Feb-12         16.8         43.0         18.09           DPE-3         16-Mar-12         NA         44.0         18.5           DPE-3         17-Mar-12         20.4         41.0         18.2           DPE-3         17-Apr-12         22.5         35.2         18.74           DPE-3         17-Apr-12         25.5         31.0         18.8           DPE-3         14-Jun-12         15.6         49.2         18.3                                                                    |         |           |         |           |             |
| DPE-3         29-Sep-11         18.7         73.6         19.53           DPE-3         27-Oct-11         201.0         70.6         19.2           DPE-3         21-Nov-11         429.0         68.0         19.6           DPE-3         20-Jan-12         16.2         52.3         16.03           DPE-3         27-Jan-12         4.2         50.6         17.8           DPE-3         16-Feb-12         16.8         43.0         18.09           DPE-3         16-Feb-12         NA         44.0         18.5           DPE-3         16-Mar-12         NA         44.0         18.5           DPE-3         17-Apr-12         20.4         41.0         18.2           DPE-3         17-Apr-12         20.5         35.2         18.74           DPE-3         17-Apr-12         22.5         35.2         18.74           DPE-3         17-Apr-12         20.5         35.2         18.74           DPE-3         17-Apr-12         21.5         35.2         18.74           DPE-3         17-Apr-12         25.5         35.2         18.74           DPE-3         14-Jun-12         15.8         46.0         19                                                                       |         |           |         |           |             |
| DPE-3         27-Oct-11         201.0         70.6         19.2           DPE-3         21-Nov-11         429.0         68.0         19.6           DPE-3         20-Jan-12         16.2         52.3         16.03           DPE-3         27-Jan-12         4.2         50.6         17.8           DPE-3         16-Feb-12         16.8         43.0         18.09           DPE-3         16-Feb-12         NA         44.0         18.5           DPE-3         16-Mar-12         NA         44.0         18.5           DPE-3         27-Mar-12         20.4         41.0         18.2           DPE-3         17-Apr-12         22.5         35.2         18.74           DPE-3         17-May-12         16.4         31.3         17.2           DPE-3         17-May-12         16.4         31.3         17.2           DPE-3         14-Jun-12         15.8         46.0         19           DPE-3         14-Jun-12         15.8         46.0         19           DPE-3         19-Jul-12         15.6         49.2         18.3           DPE-3         26-Sep-12         11.6         45.8         19.3           DP                                                                 |         |           |         |           |             |
| DPE-3         21-Nov-11         429.0         68.0         19.6           DPE-3         20-Jan-12         16.2         52.3         16.03           DPE-3         27-Jan-12         4.2         50.6         17.8           DPE-3         16-Feb-12         16.8         43.0         18.09           DPE-3         16-Mar-12         NA         44.0         18.5           DPE-3         27-Mar-12         20.4         41.0         18.2           DPE-3         17-Apr-12         22.5         35.2         18.74           DPE-3         17-May-12         16.4         31.3         17.2           DPE-3         17-May-12         16.4         31.3         17.2           DPE-3         17-May-12         54.5         31.0         18.8           DPE-3         14-Jun-12         15.8         46.0         19           DPE-3         14-Jun-12         15.6         49.2         18.3           DPE-3         19-Jul-12         15.6         49.2         18.3           DPE-3         19-Jul-12         15.6         49.2         18.3           DPE-3         26-Sep-12         11.6         45.8         19.3 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>            |         |           |         |           |             |
| DPE-3         20-Jan-12         16.2         52.3         16.03           DPE-3         27-Jan-12         4.2         50.6         17.8           DPE-3         16-Feb-12         16.8         43.0         18.09           DPE-3         16-Mar-12         NA         44.0         18.5           DPE-3         27-Mar-12         20.4         41.0         18.2           DPE-3         17-Apr-12         22.5         35.2         18.74           DPE-3         17-May-12         16.4         31.3         17.2           DPE-3         17-May-12         54.5         31.0         18.8           DPE-3         31-May-12         54.5         31.0         18.8           DPE-3         14-Jun-12         15.8         46.0         19           DPE-3         19-Jul-12         15.6         49.2         18.3           DPE-3         19-Jul-12         15.6         49.2         18.3           DPE-3         29-May-12         11.4         33.0         10.8           DPE-3         29-May-12         11.4         33.0         10.8           DPE-3         26-Oct-12         12.2         40.9         14.2                                                                            |         |           |         |           |             |
| DPE-3         27-Jan-12         4.2         50.6         17.8           DPE-3         16-Feb-12         16.8         43.0         18.09           DPE-3         16-Mar-12         NA         44.0         18.5           DPE-3         27-Mar-12         20.4         41.0         18.2           DPE-3         17-Apr-12         22.5         35.2         18.74           DPE-3         17-May-12         16.4         31.3         17.2           DPE-3         17-May-12         54.5         31.0         18.8           DPE-3         31-May-12         54.5         31.0         18.8           DPE-3         14-Jun-12         15.8         46.0         19           DPE-3         19-Jul-12         15.6         49.2         18.3           DPE-3         19-Jul-12         15.6         49.2         18.3           DPE-3         19-Jul-12         15.6         49.2         18.3           DPE-3         26-Sep-12         11.4         33.0         10.8           DPE-3         26-Sep-12         11.6         45.8         19.3           DPE-3         26-Oct-12         12.2         40.9         14.2           D                                                                 |         | _         |         |           |             |
| DPE-3         16-Feb-12         16.8         43.0         18.09           DPE-3         16-Mar-12         NA         44.0         18.5           DPE-3         27-Mar-12         20.4         41.0         18.2           DPE-3         17-Apr-12         22.5         35.2         18.74           DPE-3         17-Apr-12         22.5         35.2         18.74           DPE-3         17-May-12         16.4         31.3         17.2           DPE-3         31-May-12         54.5         31.0         18.8           DPE-3         14-Jun-12         15.8         46.0         19           DPE-3         19-Jul-12         15.6         49.2         18.3           DPE-3         19-Jul-12         15.6         49.2         18.3           DPE-3         29-May-12         11.4         33.0         10.8           DPE-3         26-Sep-12         11.6         45.8         19.3           DPE-3         26-Oct-12         12.2         40.9         14.2           DPE-3         26-Oct-12         97.0         48.0         18           DPE-3         1-Apr-13         21.7         NR         NR           DPE-3<                                                                 |         |           |         |           |             |
| DPE-3         16-Mar-12         NA         44.0         18.5           DPE-3         27-Mar-12         20.4         41.0         18.2           DPE-3         17-Apr-12         22.5         35.2         18.74           DPE-3         17-Apr-12         16.4         31.3         17.2           DPE-3         17-May-12         16.4         31.3         17.2           DPE-3         31-May-12         54.5         31.0         18.8           DPE-3         14-Jun-12         15.8         46.0         19           DPE-3         19-Jul-12         15.6         49.2         18.3           DPE-3         19-Jul-12         15.6         49.2         18.3           DPE-3         23-Aug-12         11.4         33.0         10.8           DPE-3         26-Sep-12         11.6         45.8         19.3           DPE-3         26-Oct-12         12.2         40.9         14.2           DPE-3         21-Dec-12         97.0         48.0         18           DPE-3         21-Dec-12         97.0         48.0         18           DPE-3         1-Apr-13         21.7         NR         NR           DPE-3                                                                      |         |           |         |           |             |
| DPE-3         27-Mar-12         20.4         41.0         18.2           DPE-3         17-Apr-12         22.5         35.2         18.74           DPE-3         17-Apr-12         16.4         31.3         17.2           DPE-3         31-May-12         54.5         31.0         18.8           DPE-3         14-Jun-12         15.8         46.0         19           DPE-3         19-Jul-12         15.6         49.2         18.3           DPE-3         23-Aug-12         11.4         33.0         10.8           DPE-3         26-Sep-12         11.6         45.8         19.3           DPE-3         26-Oct-12         12.2         40.9         14.2           DPE-3         21-Dec-12         97.0         48.0         18           DPE-3         1-Apr-13         21.7         NR         NR           DPE-3         1-Apr-13         21.7         NR         NR           DPE-3         13-Feb-13         50.4         NR         NR           DPE-3         13-Feb-13         27.4         44.0         20.2           DPE-3         25-Feb-13         27.4         44.0         20.2           DPE-3                                                                           |         |           |         |           |             |
| DPE-3         17-Apr-12         22.5         35.2         18.74           DPE-3         17-May-12         16.4         31.3         17.2           DPE-3         31-May-12         54.5         31.0         18.8           DPE-3         14-Jun-12         15.8         46.0         19           DPE-3         19-Jul-12         15.6         49.2         18.3           DPE-3         23-Aug-12         11.4         33.0         10.8           DPE-3         26-Sep-12         11.6         45.8         19.3           DPE-3         26-Oct-12         12.2         40.9         14.2           DPE-3         21-Dec-12         97.0         48.0         18           DPE-3         1-Apr-13         21.7         NR         NR           DPE-3         1-Apr-13         21.7         NR         NR           DPE-3         30-Jan-13         29.0         38.0         19.5           DPE-3         13-Feb-13         50.4         NR         NR           DPE-3         25-Feb-13         27.4         44.0         20.2           DPE-3         21-Mar-13         6.9         39.0         19.3           DPE-3                                                                            |         |           |         |           |             |
| DPE-3         17-May-12         16.4         31.3         17.2           DPE-3         31-May-12         54.5         31.0         18.8           DPE-3         14-Jun-12         15.8         46.0         19           DPE-3         19-Jul-12         15.6         49.2         18.3           DPE-3         23-Aug-12         11.4         33.0         10.8           DPE-3         26-Sep-12         11.6         45.8         19.3           DPE-3         26-Oct-12         12.2         40.9         14.2           DPE-3         21-Dec-12         97.0         48.0         18           DPE-3         21-Dec-12         97.0         48.0         18           DPE-3         1-Apr-13         21.7         NR         NR           DPE-3         30-Jan-13         29.0         38.0         19.5           DPE-3         13-Feb-13         50.4         NR         NR           DPE-3         25-Feb-13         27.4         44.0         20.2           DPE-3         21-Mar-13         6.9         39.0         19.3           DPE-3         22-May-13         123.0         37.0         19.4           DPE-3                                                                         |         |           |         |           |             |
| DPE-3         31-May-12         54.5         31.0         18.8           DPE-3         14-Jun-12         15.8         46.0         19           DPE-3         19-Jul-12         15.6         49.2         18.3           DPE-3         23-Aug-12         11.4         33.0         10.8           DPE-3         26-Sep-12         11.6         45.8         19.3           DPE-3         26-Oct-12         12.2         40.9         14.2           DPE-3         21-Dec-12         97.0         48.0         18           DPE-3         1-Apr-13         21.7         NR         NR           DPE-3         30-Jan-13         29.0         38.0         19.5           DPE-3         13-Feb-13         50.4         NR         NR           DPE-3         25-Feb-13         27.4         44.0         20.2           DPE-3         21-Mar-13         6.9         39.0         19.3           DPE-3         22-May-13         123.0         37.0         19.4           DPE-3         26-Jun-13         3.1         60.0         19.9           DPE-3         26-Aug-13         2.1         188.1         13.68           DPE-3                                                                       |         |           |         |           |             |
| DPE-3         14-Jun-12         15.8         46.0         19           DPE-3         19-Jul-12         15.6         49.2         18.3           DPE-3         23-Aug-12         11.4         33.0         10.8           DPE-3         26-Sep-12         11.6         45.8         19.3           DPE-3         26-Oct-12         12.2         40.9         14.2           DPE-3         21-Dec-12         97.0         48.0         18           DPE-3         21-Dec-12         97.0         48.0         18           DPE-3         1-Apr-13         21.7         NR         NR           DPE-3         30-Jan-13         29.0         38.0         19.5           DPE-3         13-Feb-13         50.4         NR         NR           DPE-3         25-Feb-13         27.4         44.0         20.2           DPE-3         21-Mar-13         6.9         39.0         19.3           DPE-3         21-Mar-13         6.9         39.0         19.3           DPE-3         26-Jun-13         3.1         60.0         19.9           DPE-3         26-Aug-13         2.1         188.1         13.68           DPE-3                                                                           |         |           |         |           |             |
| DPE-3         19-Jul-12         15.6         49.2         18.3           DPE-3         23-Aug-12         11.4         33.0         10.8           DPE-3         26-Sep-12         11.6         45.8         19.3           DPE-3         26-Oct-12         12.2         40.9         14.2           DPE-3         21-Dec-12         97.0         48.0         18           DPE-3         1-Apr-13         21.7         NR         NR           DPE-3         30-Jan-13         29.0         38.0         19.5           DPE-3         13-Feb-13         50.4         NR         NR           DPE-3         25-Feb-13         27.4         44.0         20.2           DPE-3         21-Mar-13         6.9         39.0         19.3           DPE-3         21-Mar-13         6.9         39.0         19.3           DPE-3         26-Jun-13         3.1         60.0         19.9           DPE-3         26-Aug-13         2.1         188.1         13.68           DPE-3         13-Oct-15         85.1         35.0         20           DPE-3         14-Dec-15         128.3         50.0         18.37           DPE-3                                                                       |         | •         |         |           |             |
| DPE-3         23-Aug-12         11.4         33.0         10.8           DPE-3         26-Sep-12         11.6         45.8         19.3           DPE-3         26-Oct-12         12.2         40.9         14.2           DPE-3         21-Dec-12         97.0         48.0         18           DPE-3         1-Apr-13         21.7         NR         NR           DPE-3         30-Jan-13         29.0         38.0         19.5           DPE-3         13-Feb-13         50.4         NR         NR           DPE-3         25-Feb-13         27.4         44.0         20.2           DPE-3         21-Mar-13         6.9         39.0         19.3           DPE-3         23-May-13         123.0         37.0         19.4           DPE-3         26-Jun-13         3.1         60.0         19.9           DPE-3         26-Aug-13         2.1         188.1         13.68           DPE-3         13-Oct-15         85.1         35.0         20           DPE-3         14-Dec-15         128.3         50.0         18.37           DPE-3         12-Jan-16         60.5         50.0         19.44           DPE-3 <td></td> <td></td> <td></td> <td></td> <td></td>                  |         |           |         |           |             |
| DPE-3         26-Sep-12         11.6         45.8         19.3           DPE-3         26-Oct-12         12.2         40.9         14.2           DPE-3         21-Dec-12         97.0         48.0         18           DPE-3         1-Apr-13         21.7         NR         NR           DPE-3         30-Jan-13         29.0         38.0         19.5           DPE-3         13-Feb-13         50.4         NR         NR           DPE-3         25-Feb-13         27.4         44.0         20.2           DPE-3         21-Mar-13         6.9         39.0         19.3           DPE-3         23-May-13         123.0         37.0         19.4           DPE-3         26-Jun-13         3.1         60.0         19.9           DPE-3         26-Aug-13         2.1         188.1         13.68           DPE-3         13-Oct-15         85.1         35.0         20           DPE-3         14-Dec-15         128.3         50.0         18.37           DPE-3         12-Jan-16         60.5         50.0         19.44           DPE-3         23-Feb-16         71.3         55.0         19.67           DPE-3 </td <td></td> <td></td> <td></td> <td></td> <td></td>            |         |           |         |           |             |
| DPE-3         26-Oct-12         12.2         40.9         14.2           DPE-3         21-Dec-12         97.0         48.0         18           DPE-3         1-Apr-13         21.7         NR         NR           DPE-3         30-Jan-13         29.0         38.0         19.5           DPE-3         13-Feb-13         50.4         NR         NR           DPE-3         25-Feb-13         27.4         44.0         20.2           DPE-3         21-Mar-13         6.9         39.0         19.3           DPE-3         23-May-13         123.0         37.0         19.4           DPE-3         26-Jun-13         3.1         60.0         19.9           DPE-3         26-Aug-13         2.1         188.1         13.68           DPE-3         13-Oct-15         85.1         35.0         20           DPE-3         14-Dec-15         128.3         50.0         18.37           DPE-3         12-Jan-16         60.5         50.0         19.44           DPE-3         23-Feb-16         71.3         55.0         19.67           DPE-3         20-Apr-16         37.4         55.0         20.2                                                                                   |         |           |         |           |             |
| DPE-3         21-Dec-12         97.0         48.0         18           DPE-3         1-Apr-13         21.7         NR         NR           DPE-3         30-Jan-13         29.0         38.0         19.5           DPE-3         13-Feb-13         50.4         NR         NR           DPE-3         25-Feb-13         27.4         44.0         20.2           DPE-3         21-Mar-13         6.9         39.0         19.3           DPE-3         23-May-13         123.0         37.0         19.4           DPE-3         26-Jun-13         3.1         60.0         19.9           DPE-3         26-Aug-13         2.1         188.1         13.68           DPE-3         13-Oct-15         85.1         35.0         20           DPE-3         14-Dec-15         128.3         50.0         18.37           DPE-3         12-Jan-16         60.5         50.0         19.44           DPE-3         23-Feb-16         71.3         55.0         19.89           DPE-3         20-Apr-16         37.4         55.0         20.2                                                                                                                                                            |         |           |         |           |             |
| DPE-3         1-Apr-13         21.7         NR         NR           DPE-3         30-Jan-13         29.0         38.0         19.5           DPE-3         13-Feb-13         50.4         NR         NR           DPE-3         25-Feb-13         27.4         44.0         20.2           DPE-3         21-Mar-13         6.9         39.0         19.3           DPE-3         23-May-13         123.0         37.0         19.4           DPE-3         26-Jun-13         3.1         60.0         19.9           DPE-3         26-Aug-13         2.1         188.1         13.68           DPE-3         13-Oct-15         85.1         35.0         20           DPE-3         14-Dec-15         128.3         50.0         18.37           DPE-3         12-Jan-16         60.5         50.0         19.44           DPE-3         23-Feb-16         71.3         55.0         19.67           DPE-3         20-Apr-16         37.4         55.0         20.2                                                                                                                                                                                                                                   | - DDE A | 04.5.40   |         | 10.0      | 4.0         |
| DPE-3         30-Jan-13         29.0         38.0         19.5           DPE-3         13-Feb-13         50.4         NR         NR           DPE-3         25-Feb-13         27.4         44.0         20.2           DPE-3         21-Mar-13         6.9         39.0         19.3           DPE-3         23-May-13         123.0         37.0         19.4           DPE-3         26-Jun-13         3.1         60.0         19.9           DPE-3         26-Aug-13         2.1         188.1         13.68           DPE-3         13-Oct-15         85.1         35.0         20           DPE-3         14-Dec-15         128.3         50.0         18.37           DPE-3         12-Jan-16         60.5         50.0         19.44           DPE-3         23-Feb-16         71.3         55.0         19.67           DPE-3         30-Mar-16         19.0         55.0         19.89           DPE-3         20-Apr-16         37.4         55.0         20.2                                                                                                                                                                                                                             |         |           |         |           |             |
| DPE-3         13-Feb-13         50.4         NR         NR           DPE-3         25-Feb-13         27.4         44.0         20.2           DPE-3         21-Mar-13         6.9         39.0         19.3           DPE-3         23-May-13         123.0         37.0         19.4           DPE-3         26-Jun-13         3.1         60.0         19.9           DPE-3         26-Aug-13         2.1         188.1         13.68           DPE-3         13-Oct-15         85.1         35.0         20           DPE-3         14-Dec-15         128.3         50.0         18.37           DPE-3         12-Jan-16         60.5         50.0         19.44           DPE-3         23-Feb-16         71.3         55.0         19.67           DPE-3         30-Mar-16         19.0         55.0         19.89           DPE-3         20-Apr-16         37.4         55.0         20.2                                                                                                                                                                                                                                                                                                      |         |           |         |           |             |
| DPE-3         25-Feb-13         27.4         44.0         20.2           DPE-3         21-Mar-13         6.9         39.0         19.3           DPE-3         23-May-13         123.0         37.0         19.4           DPE-3         26-Jun-13         3.1         60.0         19.9           DPE-3         26-Aug-13         2.1         188.1         13.68           DPE-3         13-Oct-15         85.1         35.0         20           DPE-3         14-Dec-15         128.3         50.0         18.37           DPE-3         12-Jan-16         60.5         50.0         19.44           DPE-3         23-Feb-16         71.3         55.0         19.67           DPE-3         30-Mar-16         19.0         55.0         19.89           DPE-3         20-Apr-16         37.4         55.0         20.2                                                                                                                                                                                                                                                                                                                                                                           |         |           |         |           |             |
| DPE-3         21-Mar-13         6.9         39.0         19.3           DPE-3         23-May-13         123.0         37.0         19.4           DPE-3         26-Jun-13         3.1         60.0         19.9           DPE-3         26-Aug-13         2.1         188.1         13.68           DPE-3         13-Oct-15         85.1         35.0         20           DPE-3         14-Dec-15         128.3         50.0         18.37           DPE-3         12-Jan-16         60.5         50.0         19.44           DPE-3         23-Feb-16         71.3         55.0         19.67           DPE-3         30-Mar-16         19.0         55.0         19.89           DPE-3         20-Apr-16         37.4         55.0         20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -       |           |         |           |             |
| DPE-3         23-May-13         123.0         37.0         19.4           DPE-3         26-Jun-13         3.1         60.0         19.9           DPE-3         26-Aug-13         2.1         188.1         13.68           DPE-3         13-Oct-15         85.1         35.0         20           DPE-3         14-Dec-15         128.3         50.0         18.37           DPE-3         12-Jan-16         60.5         50.0         19.44           DPE-3         23-Feb-16         71.3         55.0         19.67           DPE-3         30-Mar-16         19.0         55.0         19.89           DPE-3         20-Apr-16         37.4         55.0         20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |           |         |           |             |
| DPE-3         26-Jun-13         3.1         60.0         19.9           DPE-3         26-Aug-13         2.1         188.1         13.68           DPE-3         13-Oct-15         85.1         35.0         20           DPE-3         14-Dec-15         128.3         50.0         18.37           DPE-3         12-Jan-16         60.5         50.0         19.44           DPE-3         23-Feb-16         71.3         55.0         19.67           DPE-3         30-Mar-16         19.0         55.0         19.89           DPE-3         20-Apr-16         37.4         55.0         20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |           |         |           |             |
| DPE-3         26-Aug-13         2.1         188.1         13.68           DPE-3         13-Oct-15         85.1         35.0         20           DPE-3         14-Dec-15         128.3         50.0         18.37           DPE-3         12-Jan-16         60.5         50.0         19.44           DPE-3         23-Feb-16         71.3         55.0         19.67           DPE-3         30-Mar-16         19.0         55.0         19.89           DPE-3         20-Apr-16         37.4         55.0         20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DPE-3   | 26-Jun-13 |         |           | 19.9        |
| DPE-3     13-Oct-15     85.1     35.0     20       DPE-3     14-Dec-15     128.3     50.0     18.37       DPE-3     12-Jan-16     60.5     50.0     19.44       DPE-3     23-Feb-16     71.3     55.0     19.67       DPE-3     30-Mar-16     19.0     55.0     19.89       DPE-3     20-Apr-16     37.4     55.0     20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |           |         |           |             |
| DPE-3     14-Dec-15     128.3     50.0     18.37       DPE-3     12-Jan-16     60.5     50.0     19.44       DPE-3     23-Feb-16     71.3     55.0     19.67       DPE-3     30-Mar-16     19.0     55.0     19.89       DPE-3     20-Apr-16     37.4     55.0     20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DPE-3   | 13-Oct-15 | 85.1    |           | 20          |
| DPE-3     12-Jan-16     60.5     50.0     19.44       DPE-3     23-Feb-16     71.3     55.0     19.67       DPE-3     30-Mar-16     19.0     55.0     19.89       DPE-3     20-Apr-16     37.4     55.0     20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DPE-3   | 14-Dec-15 | 128.3   | 50.0      |             |
| DPE-3         30-Mar-16         19.0         55.0         19.89           DPE-3         20-Apr-16         37.4         55.0         20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DPE-3   |           |         | 50.0      |             |
| DPE-3 20-Apr-16 37.4 55.0 20.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DPE-3   | 23-Feb-16 | 71.3    | 55.0      | 19.67       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         | 30-Mar-16 |         | 55.0      | 19.89       |
| DPE-3 18-May-16 14.5 50.0 20.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DPE-3   |           | 37.4    | 55.0      | 20.2        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DPE-3   | 18-May-16 | 14.5    | 50.0      | 20.69       |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |           |         |           |             |

|                |                        |              | DDE            | DDE Dumm          |
|----------------|------------------------|--------------|----------------|-------------------|
|                |                        |              | DPE<br>Exhaust | DPE Pump<br>Inlet |
|                |                        | PID          | Flow Rate      | Vacuum (in.       |
| Well ID        | Date                   | (ppm)        | (scfm)         | Hg)               |
| DPE-4          |                        |              | ` '            | O,                |
| DPE-4          | 27-Oct-09<br>16-Nov-09 | 23.9<br>3.7  | 35.0<br>28.6   | 22.00<br>23.94    |
| DPE-4          | 17-Dec-09              | 4,000.0      | NR             | 23.94<br>NR       |
| DPE-4          | 28-Dec-09              | 3.4          | NR             | NR                |
| DPE-4          | 14-Jan-10              | NR           | NR             | NR                |
| DPE-4          | 22-Feb-10              | 13.5         | 60.0           | 20.5              |
| DPE-4          | 25-Mar-10              | 55.3         | 55.0           | 22                |
| DPE-4          | 16-Apr-10              | 4,000.0      | 70.0           | 18                |
| DPE-4          | 12-May-10              | 7.0          | 70.0           | 21                |
| DPE-4          | 17-Jun-10              | 0.0          | 45.0           | 21                |
| DPE-4          | 26-Jul-10              | 19.0         | 60.0           | 20                |
| DPE-4          | 27-Sep-10              | >2300        | 58.3           | 20.28             |
| DPE-4          | 18-Oct-10              | ND           | 64.0           | 17.5              |
| DPE-4          | 22-Dec-10              | 23.1         | 80.0           | 21.25             |
| DPE-4          | 6-Jan-11               | 13.8         | 102.0          | 19                |
| DPE-4          | 20-Jan-11              | 3.2          | 72.0           | 19                |
| DPE-4          | 27-Feb-11              | 11.5         | 67.0           | 20.2              |
| DPE-4          | 7-Mar-11               | 27.9         | 60.0           | 20.45<br>19       |
| DPE-4          | 18-Mar-11<br>23-Mar-11 | 5.9<br>6.2   | 62.0           |                   |
| DPE-4          | 22-Apr-11              | 3.5          | 60.0<br>60.0   | 19.5<br>19.5      |
| DPE-4          | 19-May-11              | 15.6         | 60.0           | 19.5              |
| DPE-4          | 16-Jun-11              | 49.2         | 52.4           | 21                |
| DPE-4          | 25-Jul-11              | 3.1          | 56.3           | 19.04             |
| DPE-4          | 28-Aug-11              | 14.0         | 63.0           | 20.4              |
| DPE-4          | 29-Sep-11              | 2.8          | 66.0           | 20.36             |
| DPE-4          | 27-Oct-11              | 156.0        | 64.0           | 20.5              |
| DPE-4          | 21-Nov-11              | 120.0        | 65.0           | 20                |
| DPE-4          | 20-Jan-12              | 8.0          | 51.3           | 16.41             |
| DPE-4          | 27-Jan-12              | 0.0          | 40.9           | 19.7              |
| DPE-4          | 16-Feb-12              | 8.6          | 37.0           | 19.17             |
| DPE-4          | 16-Mar-12              | NA           | 35.0           | 19.6              |
| DPE-4          | 27-Mar-12              | 14.6         | 35.0           | 19.4              |
| DPE-4          | 17-Apr-12              | 13.0         | 31.5           | 19.48             |
| DPE-4          | 17-May-12              | 0.5          | 60.1           | 14.2              |
| DPE-4          | 31-May-12              | 6.8          | 27.0           | 19.34             |
| DPE-4          | 14-Jun-12              | 8.5          | 38.0           | 19                |
| DPE-4          | 19-Jul-12              | 8.5          | 40.9           | 18.04             |
| DPE-4          | 23-Aug-12              | 3.3          | 34.0           | 12.6              |
| DPE-4          | 26-Sep-12              | 5.0          | 42.0           | 12.45             |
| DPE-4          | 26-Oct-12              | 0.8          | 30.9           | 17.3              |
| DPE-4<br>DPE-4 | 21-Dec-12<br>4-Jan-13  | 51.0<br>30.4 | 43.0<br>NR     | 20<br>NR          |
| DPE-4          | 30-Jan-13              | 25.0         | 35.0           | 19.7              |
| DPE-4          | 13-Feb-13              | 46.7         | NR             | NR                |
| DPE-4          | 25-Feb-13              | 12.6         | 40.0           | 20.1              |
| DPE-4          | 21-Mar-13              | 3.2          | 36.0           | 20.1              |
| DPE-4          | 23-May-13              | 64.3         | 39.0           | 17.2              |
| DPE-4          | 26-Jun-13              | 1.2          | 56.0           | 20.3              |
| DPE-4          | 26-Aug-13              | 1.4          | 141.6          | 18.82             |
| DPE-4          | 13-Oct-15              | 45.3         | 30.0           | 21                |
| DPE-4          | 14-Dec-15              | 31.8         | 50.0           | 19.04             |
| DPE-4          | 12-Jan-16              | 152.5        | 50.0           | 19.85             |
| DPE-4          | 23-Feb-16              | 38.8         | 50.0           | 20.2              |
| DPE-4          | 30-Mar-16              | 23.7         | 50.0           | 20.41             |
| DPE-4          | 20-Apr-16              | 19.6         | 50.0           | 20.76             |
| DPE-4          | 18-May-16              | 12.1         | 50.0           | 20.95             |
|                |                        |              |                |                   |

|                |                        |             | DPE            | DPE Pump    |
|----------------|------------------------|-------------|----------------|-------------|
|                |                        |             | Exhaust        | Inlet       |
|                |                        | PID         | Flow Rate      | Vacuum (in. |
| Well ID        | Date                   | (ppm)       | (scfm)         | Hg)         |
| DPE-5          | 27-Oct-09              | 3.8         | 40.0           | 22.00       |
| DPE-5          | 16-Nov-09              | 4,000.0     | 30.4           | 23.88       |
| DPE-5          | 17-Dec-09              | 850.0       | NR             | NR          |
| DPE-5          | 28-Dec-09              | 4,000.0     | NR             | NR          |
| DPE-5          | 14-Jan-10              | NR          | NR             | NR          |
| DPE-5          | 22-Feb-10              | ND          | 100.0          | 16          |
| DPE-5          | 25-Mar-10              | 5.7         | 75.0           | 18          |
| DPE-5          | 16-Apr-10              | 4,000.0     | 120.0          | 14.5        |
| DPE-5          | 12-May-10              | 0.8         | 115.0          | 18          |
| DPE-5          | 17-Jun-10              | 0.0         | 75.0           | 16          |
| DPE-5          | 26-Jul-10<br>27-Sep-10 | 5.7         | 100.0          | 15<br>15 79 |
| DPE-5          | 18-Oct-10              | >4000<br>ND | 119.0<br>125.0 | 15.78<br>15 |
| DPE-5          | 22-Dec-10              |             |                | 15.8        |
| DPE-5          | 6-Jan-11               | 17.7<br>1.5 | 150.0          | 17          |
| DPE-5          | 20-Jan-11              | 12.8        | 130.0<br>109.0 | 15.5        |
| DPE-5          | 27-Feb-11              | 0.0         | 109.0          | 16.9        |
| DPE-5          | 7-Mar-11               | 22.7        | 117.0          | 16.15       |
| DPE-5          | 18-Mar-11              | 3.3         | 95.0           | 15.8        |
| DPE-5          | 23-Mar-11              | 4.1         | 90.0           | 16.5        |
| DPE-5          | 22-Apr-11              | 3.8         | 96.0           | 15.9        |
| DPE-5          | 19-May-11              | 11.2        | 85.0           | 16.5        |
| DPE-5          | 16-Jun-11              | 50.8        | 72.7           | 18          |
| DPE-5          | 25-Jul-11              | 0.2         | 79.3           | 15.86       |
| DPE-5          | 28-Aug-11              | 0.7         | 93.0           | 17.2        |
| DPE-5          | 29-Sep-11              | 6.4         | 104.6          | 16.87       |
| DPE-5          | 27-Oct-11              | 197.0       | 90.0           | 17.8        |
| DPE-5          | 21-Nov-11              | 270.0       | 97.6           | 16.9        |
| DPE-5          | 20-Jan-12              | 0.0         | 70.7           | 15.29       |
| DPE-5          | 27-Jan-12              | 0.0         | 67.8           | 15.48       |
| DPE-5          | 16-Feb-12              | 2.2         | 59.0           | 15.5        |
| DPE-5          | 16-Mar-12              | NA          | 52.0           | 17.6        |
| DPE-5          | 27-Mar-12              | 3.6         | 58.0           | 15.9        |
| DPE-5          | 17-Apr-12              | 4.2         | 46.9           | 16.6        |
| DPE-5          | 17-May-12              | 1.2         | 46.0           | 16.12       |
| DPE-5          | 31-May-12              | 2.1         | 36.0           | 18.5        |
| DPE-5          | 14-Jun-12              | 2.4         | 60.0           | 15          |
| DPE-5          | 19-Jul-12              | 3.5         | 60.4           | 16.5        |
| DPE-5          | 23-Aug-12              | 1.1         | 42.0           | 11.6        |
| DPE-5          | 26-Sep-12              | 1.4         | 59.0           | 17.2        |
| DPE-5          | 26-Oct-12              | 0.0         | 51.0           | 14.2        |
| DPE-5          | 21-Dec-12              | 14.7        | 65.0           | 19          |
| DPE-5          | 4-Jan-13               | 9.1         | NR             | NR          |
| DPE-5          | 30-Jan-13              | 4.6         | 50.0           | 19          |
| DPE-5          | 13-Feb-13              | 5.8         | NR<br>50.0     | NR<br>40.0  |
| DPE-5          | 25-Feb-13              | 2.1         | 59.0           | 18.8        |
| DPE-5          | 21-Mar-13<br>23-May-13 | 0.6         | 46.0           | 19.8        |
| DPE-5          | ,                      | 16.1        | 52.0           | 19<br>18.1  |
| DPE-5<br>DPE-5 | 26-Jun-13              | 0.0         | 76.0<br>165.3  | 14.49       |
| DPE-5          | 26-Aug-13<br>13-Oct-15 | 24.1        | 60.0           | 17.5        |
| DPE-5          | 14-Dec-15              | 16.9        | 70.0           | 17.5        |
| DPE-5          | 12-Jan-16              | 21.5        | 75.0           | 15.08       |
| DPE-5          | 23-Feb-16              | 10.0        | 75.0           | 16          |
| DPE-5          | 30-Mar-16              | 10.0        | 75.0           | 16.72       |
| DPE-5          | 20-Apr-16              | 0.1         | 75.0           | 16.67       |
| DPE-5          | 18-May-16              | 5.2         | 80.0           | 16.91       |
| 5. 20          | 10 1114                | U.L         | 00.0           | 10.01       |
|                |                        |             |                | l           |

|          |                        |            | DPE          | DPE Pump       |  |  |  |  |
|----------|------------------------|------------|--------------|----------------|--|--|--|--|
|          |                        |            | Exhaust      | Inlet          |  |  |  |  |
|          |                        | PID        | Flow Rate    | Vacuum (in.    |  |  |  |  |
| Well ID  | Date                   | (ppm)      | (scfm)       | Hg) `          |  |  |  |  |
| DPE-6    | 27-Oct-09              | ND         | 55.0         | 17.00          |  |  |  |  |
| DPE-6    | 16-Nov-09              | 4,000.0    | 66.9         | 18.78          |  |  |  |  |
| DPE-6    | 17-Dec-09              | 1,680.0    | NR           | NR             |  |  |  |  |
| DPE-6    | 28-Dec-09              | 901.0      | NR           | NR             |  |  |  |  |
| DPE-6    | 14-Jan-10              | NR         | NR           | NR             |  |  |  |  |
| DPE-6    | 22-Feb-10              | 7.1        | 65.0         | 19             |  |  |  |  |
| DPE-6    | 25-Mar-10              | 0.0        | 70.0         | 20             |  |  |  |  |
| DPE-6    | 16-Apr-10              | 4,000.0    | 75.0         | 18.1           |  |  |  |  |
| DPE-6    | 12-May-10              | 0.0        | 90.0         | 19             |  |  |  |  |
| DPE-6    | 17-Jun-10              | 0.0<br>4.4 | 50.0         | 19<br>18       |  |  |  |  |
| DPE-6    | 26-Jul-10<br>27-Sep-10 | >4000      | 60.0<br>92.0 | 18.08          |  |  |  |  |
| DPE-6    | 18-Oct-10              | 10.2       | 80.0         | 18.5           |  |  |  |  |
| DPE-6    | 22-Dec-10              | 11.4       | 105.0        | 19.8           |  |  |  |  |
| DPE-6    | 6-Jan-11               | 2.8        | 110.0        | 19             |  |  |  |  |
| DPE-6    | 20-Jan-11              | 6.3        | 108.0        | 18             |  |  |  |  |
| DPE-6    | 27-Feb-11              | 6.2        | 100.0        | 18.1           |  |  |  |  |
| DPE-6    | 7-Mar-11               | 16.5       | 75.0         | 19.29          |  |  |  |  |
| DPE-6    | 18-Mar-11              | 2.8        | 65.0         | 19             |  |  |  |  |
| DPE-6    | 23-Mar-11              | 6.7        | 63.0         | NR             |  |  |  |  |
| DPE-6    | 22-Apr-11              | 5.6        | 57.0         | 19.6           |  |  |  |  |
| DPE-6    | 19-May-11              | 7.6        | 60.0         | 19.5           |  |  |  |  |
| DPE-6    | 16-Jun-11              | 48.2       | 53.5         | 19             |  |  |  |  |
| DPE-6    | 25-Jul-11              | 2.5        | 56.3         | 19.21          |  |  |  |  |
| DPE-6    | 28-Aug-11              | 4.8        | 62.0         | 20.6           |  |  |  |  |
| DPE-6    | 29-Sep-11              | 6.6        | 69.8         | 20.26          |  |  |  |  |
| DPE-6    | 27-Oct-11              | 127.0      | 65.0         | 20.1           |  |  |  |  |
| DPE-6    | 21-Nov-11              | 40.0       | 62.0         | 20.4           |  |  |  |  |
| DPE-6    | 20-Jan-12              | 0.0        | 57.8         | 16.12          |  |  |  |  |
| DPE-6    | 27-Jan-12              | 0.0        | 46.7         | 18.49          |  |  |  |  |
| DPE-6    | 16-Feb-12              | 0.9        | 37.8         | 18.68          |  |  |  |  |
| DPE-6    | 16-Mar-12              | NA<br>2.4  | 40.0         | 18.9           |  |  |  |  |
| DPE-6    | 27-Mar-12              | 2.1        | 36.0         | 19.1           |  |  |  |  |
| DPE-6    | 17-Apr-12<br>17-May-12 | 1.7<br>0.8 | 32.3<br>29.6 | 19.3<br>18.1   |  |  |  |  |
| DPE-6    | 31-May-12              | 1.0        | 28.0         | 18.3           |  |  |  |  |
| DPE-6    | 14-Jun-12              | 1.4        | 45.0         | 16.5           |  |  |  |  |
| DPE-6    | 19-Jul-12              | 3.7        | 49.6         | 15.7           |  |  |  |  |
| DPE-6    | 23-Aug-12              | 4.8        | 34.0         | 10.5           |  |  |  |  |
| DPE-6    | 26-Sep-12              | 1.8        | 46.0         | 17.2           |  |  |  |  |
| DPE-6    | 26-Oct-12              | 0.0        | 47.0         | 13.3           |  |  |  |  |
| DPE-6    | 21-Dec-12              | 13.7       | 49.0         | 18             |  |  |  |  |
| DPE-6    | 4-Jan-13               | 9.7        | NR           | NR             |  |  |  |  |
| DPE-6    | 30-Jan-13              | 2.3        | 37.0         | 18.8           |  |  |  |  |
| DPE-6    | 13-Feb-13              | 2.7        | NR           | NR             |  |  |  |  |
| DPE-6    | 25-Feb-13              | 1.0        | 45.0         | 18.2           |  |  |  |  |
| DPE-6    | 21-Mar-13              | 0.0        | 39.0         | 19.4           |  |  |  |  |
| DPE-6    | 23-May-13              | 11.9       | 37.0         | 19.6           |  |  |  |  |
| DPE-6    | 26-Jun-13              | 0.0        | 54.0         | 19             |  |  |  |  |
| DPE-6    | 26-Aug-13              | 0.0        | 139.3        | 18.39          |  |  |  |  |
| DPE-6    | 13-Oct-15              | 21.6       | 70.0         | 15             |  |  |  |  |
| DPE-6    | 14-Dec-15              | 12.7       | 80.0         | 12.89          |  |  |  |  |
| DPE-6    | 12-Jan-16              | 66.7       | 70.0         | 16.29          |  |  |  |  |
| DPE-6    | 23-Feb-16              | 7.3        | 80.0         | 16.84          |  |  |  |  |
| DPE-6    | 30-Mar-16              | 5.3        | 70.0         | 17.43          |  |  |  |  |
| DPE-6    | 20-Apr-16<br>18-May-16 | 0.5        | 70.0         | 17.61<br>17.91 |  |  |  |  |
| DPE-6    | 10-Way-10              | 3.9        | 70.0         | 17.31          |  |  |  |  |
| <u> </u> |                        | l          |              |                |  |  |  |  |

|         |                        |            | DPE          | DPE Pump     |
|---------|------------------------|------------|--------------|--------------|
|         |                        |            | Exhaust      | Inlet        |
|         |                        | PID        | Flow Rate    | Vacuum (in.  |
| Well ID | Date                   | (ppm)      | (scfm)       | Hg) `        |
| DPE-7   | 27-Oct-09              | ND         | 60.0         | 16.00        |
| DPE-7   | 16-Nov-09              | 4,000.0    | 75.5         | 17.70        |
| DPE-7   | 17-Dec-09              | 490.0      | NR           | NR           |
| DPE-7   | 28-Dec-09              | 905.0      | NR           | NR           |
| DPE-7   | 14-Jan-10              | NR         | NR           | NR           |
| DPE-7   | 22-Feb-10              | ND         | 80.0         | 17.5         |
| DPE-7   | 25-Mar-10              | 0.0        | 90.0         | 17           |
| DPE-7   | 16-Apr-10              | 4,000.0    | 115.0        | 11           |
| DPE-7   | 12-May-10              | 0.0        | 110.0        | 18           |
| DPE-7   | 17-Jun-10              | 0.0        | 70.0         | 18           |
| DPE-7   | 26-Jul-10              | 0.1        | 75.0         | 17           |
| DPE-7   | 27-Sep-10              | >4000      | 96.7         | 17.18        |
| DPE-7   | 18-Oct-10              | ND         | 105.0        | 15.5         |
| DPE-7   | 22-Dec-10              | 10.7       | 65.0         | 22           |
| DPE-7   | 6-Jan-11               | 2.4        | 130.0        | 17.5         |
| DPE-7   | 20-Jan-11              | 0.4        | 100.0        | 18.21        |
| DPE-7   | 27-Feb-11              | 0.0        | 90.0         | 17.9<br>16.2 |
| DPE-7   | 7-Mar-11               | 29.1       | 95.0<br>75.0 |              |
| DPE-7   | 18-Mar-11<br>23-Mar-11 | 3.1<br>8.6 | 75.0<br>70.0 | 17<br>17.5   |
| DPE-7   | 22-Apr-11              | 5.4        | 70.0         | 17.5         |
| DPE-7   | 19-May-11              | 6.1        | 70.0         | 18           |
| DPE-7   | 16-Jun-11              | 47.4       | 56.3         | 20           |
| DPE-7   | 25-Jul-11              | 0.1        | 60.4         | 18.95        |
| DPE-7   | 28-Aug-11              | 0.0        | 67.0         | 19.8         |
| DPE-7   | 29-Sep-11              | 6.0        | 82.0         | 18.5         |
| DPE-7   | 27-Oct-11              | 88.0       | 66.0         | 19.7         |
| DPE-7   | 21-Nov-11              | 10.0       | 66.0         | 19.7         |
| DPE-7   | 20-Jan-12              | 0.0        | 57.8         | 15.9         |
| DPE-7   | 27-Jan-12              | 0.0        | 52.4         | 17.66        |
| DPE-7   | 16-Feb-12              | 0.3        | 42.1         | 18.2         |
| DPE-7   | 16-Mar-12              | NA         | 46.0         | 17.9         |
| DPE-7   | 27-Mar-12              | 0.2        | 48.0         | 17.4         |
| DPE-7   | 17-Apr-12              | 0.7        | 34.3         | 18.8         |
| DPE-7   | 17-May-12              | 0.6        | 32.3         | 17.16        |
| DPE-7   | 31-May-12              | 0.5        | 30.0         | 18.4         |
| DPE-7   | 14-Jun-12              | 0.8        | 49.0         | 17           |
| DPE-7   | 19-Jul-12              | 2.2        | 53.5         | 15.72        |
| DPE-7   | 23-Aug-12              | 1.1        | 30.0         | 11.3         |
| DPE-7   | 26-Sep-12              | 0.2        | 50.0         | 17.3         |
| DPE-7   | 26-Oct-12              | 0.0        | 47.0         | 13.6         |
| DPE-7   | 21-Dec-12              | 8.7        | 53.0         | 18<br>ND     |
| DPE-7   | 4-Jan-13               | 5.6        | NR<br>40.0   | NR<br>40.0   |
| DPE-7   | 30-Jan-13              | 0.8        | 40.0         | 18.8         |
| DPE-7   | 13-Feb-13<br>25-Feb-13 | 0.5        | NR<br>46.0   | NR<br>10.6   |
| DPE-7   |                        | 0.3        | 46.0         | 18.6         |
| DPE-7   | 21-Mar-13<br>23-May-13 | 0.3<br>7.9 | 39.0<br>40.0 | 19.3<br>19.7 |
| DPE-7   | 26-Jun-13              | 0.0        | 56.0         | 20           |
| DPE-7   | 26-Aug-13              | 0.0        | 142.3        | 18.53        |
| DPE-7   | 13-Oct-15              | 17.6       | 45.0         | 17.5         |
| DPE-7   | 14-Dec-15              | 13.7       | 75.0         | 14.65        |
| DPE-7   | 12-Jan-16              | 44.5       | 75.0         | 15.55        |
| DPE-7   | 23-Feb-16              | 4.7        | 65.0         | 16.21        |
| DPE-7   | 30-Mar-16              | 3.5        | 70.0         | 16.62        |
| DPE-7   | 20-Apr-16              | 0.0        | 75.0         | 16.69        |
| DPE-7   | 18-May-16              | 2.6        | 80.0         | 17.07        |
|         | , ,                    |            |              |              |
|         | •                      |            | •            | •            |

|          |           |         | DPE        | DPE Pump    |
|----------|-----------|---------|------------|-------------|
|          |           |         | Exhaust    | Inlet       |
|          |           | PID     | Flow Rate  | Vacuum (in. |
| Well ID  | Date      | (ppm)   | (scfm)     | Hg)         |
| DPE-8    | 27-Oct-09 | ND      | 45.0       | 22.00       |
| DPE-8    | 16-Nov-09 | 4,000.0 | 29.3       | 23.87       |
| DPE-8    | 17-Dec-09 | 559.0   | NR         | NR          |
| DPE-8    | 28-Dec-09 | 595.0   | NR         | NR          |
| DPE-8    | 14-Jan-10 | NR      | NR         | NR          |
| DPE-8    | 22-Feb-10 | ND      | 100.0      | 16          |
| DPE-8    | 25-Mar-10 | 4,000.0 | 105.0      | 16          |
| DPE-8    | 16-Apr-10 | 4,000.0 | NA         | NA          |
| DPE-8    | 12-May-10 | 0.0     | 130.0      | 16.5        |
| DPE-8    | 17-Jun-10 | 0.0     | 85.0       | 14          |
| DPE-8    | 26-Jul-10 | 3.8     | 105.0      | 14.5        |
| DPE-8    | 27-Sep-10 | >4000   | 125.5      | 15.91       |
| DPE-8    | 18-Oct-10 | ND      | 65.0       | 19.5        |
| DPE-8    | 22-Dec-10 | 11.4    | 150.0      | 15.08       |
| DPE-8    | 6-Jan-11  | 10.2    | 140.0      | 16          |
| DPE-8    | 20-Jan-11 | 3.1     | 128.0      | 15.92       |
| DPE-8    | 27-Feb-11 | 0.8     | 97.0       | 17.8        |
| DPE-8    | 7-Mar-11  | 44.6    | 95.0       | 17.5        |
| DPE-8    | 18-Mar-11 | 3.1     | 80.0       | 16          |
| DPE-8    | 23-Mar-11 | 7.4     | 90.0       | 15.5        |
| DPE-8    | 22-Apr-11 | 5.1     | 97.0       | 15.1        |
| DPE-8    | 19-May-11 | 4.9     | 75.0       | 17          |
| DPE-8    | 16-Jun-11 | 52.3    | 81.3       | 17          |
| DPE-8    | 25-Jul-11 | 0.5     | 87.0       | 15.4        |
| DPE-8    | 28-Aug-11 | 0.0     | 104.0      | 15.38       |
| DPE-8    | 29-Sep-11 | 0.3     | 108.0      | 16.7        |
| DPE-8    | 27-Oct-11 | 79.8    | 102.0      | 16.9        |
| DPE-8    | 21-Nov-11 | 0.6     | 94.0       | 17.3        |
| DPE-8    | 20-Jan-12 | 0.6     | 72.7       | 15.22       |
| DPE-8    | 27-Jan-12 | 0.0     | 71.0       | 15.06       |
| DPE-8    | 16-Feb-12 | 0.9     | 63.6       | 15.2        |
| DPE-8    | 16-Mar-12 | NA      | 66.0       | 15.13       |
| DPE-8    | 27-Mar-12 | 0.9     | 64.0       | 15.3        |
| DPE-8    | 17-Apr-12 | 1.1     | 55.3       | 15.62       |
| DPE-8    | 17-May-12 | 1.0     | 44.7       | 16.45       |
| DPE-8    | 31-May-12 | 1.2     | 34.0       | 18.4        |
| DPE-8    | 14-Jun-12 | 1.1     | 65.0       | 14          |
| DPE-8    | 19-Jul-12 | 1.8     | 65.5       | 13.4        |
| DPE-8    | 23-Aug-12 | 0.7     | 44.0       | 10.8        |
| DPE-8    | 26-Sep-12 | 0.0     | 66.0       | 16.8        |
| DPE-8    | 26-Oct-12 | 0.0     | 56.0       | 12.3        |
| DPE-8    | 21-Dec-12 | 7.2     | 67.0       | 18<br>ND    |
| DPE-8    | 4-Jan-13  | 7.5     | NR<br>57.0 | NR<br>47    |
| DPE-8    | 30-Jan-13 | 2.6     | 57.0       | 17<br>ND    |
| DPE-8    | 13-Feb-13 | 3.3     | NR<br>64.0 | NR<br>47.6  |
| DPE-8    | 25-Feb-13 | 1.4     | 61.0       | 17.6        |
| DPE-8    | 21-Mar-13 | 0.0     | 56.0       | 18.5        |
| DPE-8    | 23-May-13 | 13.9    | 50.6       | 19.2        |
| DPE-8    | 26-Jun-13 | 1.0     | 69.0       | 19.8        |
| DPE-8    | 26-Aug-13 | 0.0     | 167.8      | 18.08       |
| DPE-8    | 13-Oct-15 | 18.9    | 80.0       | 14.5        |
| DPE-8    | 14-Dec-15 | 12.5    | 95.0       | 12.28       |
| DPE-8    | 12-Jan-16 | 36.7    | 85.0       | 14.25       |
| DPE-8    | 23-Feb-16 | 5.0     | 80.0       | 13.56       |
| DPE-8    | 30-Mar-16 | 2.7     | 90.0       | 15.07       |
| DPE-8    | 20-Apr-16 | 0.4     | 85.0       | 15.42       |
| DPE-8    | 18-May-16 | 1.5     | 95.0       | 15.69       |
| <u> </u> | <u> </u>  |         |            |             |

<sup>\* -</sup> temporarily operating with DPE-8 because of vacuum issues

### Attachment D



# Petroleum Remediation Program Air Emissions Screening Spreadsheet Soil Vapor Extraction (SVE) and/or Air Stripper (AS) Data Input Worksheet

Doc Type: Corrective Action Design

| MPCA Leak ID: MN BIO BUSINESS CENTER                                   |            | Enter SVE Standard Parameters                |             |                        | Enter AS Standard Parameters                          |                                                       |                                           |                                 |
|------------------------------------------------------------------------|------------|----------------------------------------------|-------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|---------------------------------|
| Sample Date: 1/12/2016                                                 |            | Distance to Nearest Receptor (               | 33          | Distance to Nea        | 33                                                    |                                                       |                                           |                                 |
| Person Completing Worksheet: ADK                                       |            | SVE Stack Height (feet):                     |             | 26.2                   | Air Stripper Stack Height (feet):                     |                                                       |                                           | 26.2                            |
| Notes: Use this area to provide comments regarding the sampling event, |            | SVE Stack Flow Rate (SCFM1)                  | 64          | Air Stripper Influ     | 0.017                                                 |                                                       |                                           |                                 |
| input parameters, etc.                                                 |            | Enter SVE Modeling F                         |             |                        | Enter AS Modeling Parameters (if ap                   |                                                       |                                           |                                 |
|                                                                        |            | SVE Stack Diameter (inches):                 | •           | ,                      | AS Stack Diame                                        |                                                       | ` .                                       | ,                               |
|                                                                        |            | SVE Stack Exit Velocity <sup>2</sup> (feet p | er second): |                        |                                                       | elocity <sup>2</sup> (feet per se                     | cond).                                    |                                 |
|                                                                        |            | SVE Stack Exit Temperature (°                |             |                        |                                                       | emperature (°F):                                      | cond).                                    |                                 |
|                                                                        |            | SVE Annual Dispersion Factor                 | ,           | Contact MPCA           |                                                       | ersion Factor ((µg/ı                                  | 3\/a/a\                                   | Contact MPCA                    |
|                                                                        |            |                                              |             |                        |                                                       |                                                       |                                           |                                 |
|                                                                        | 1          | SVE 1-hr Dispersion Factor ((µ               | g/m²)/g/s)  | Contact MPCA           | AS 1-nr Dispers                                       | ion Factor ((µg/m³)                                   | /g/s)                                     | Contact MPCA                    |
| Chemical Name                                                          | CAS#       | SVE Emission Concentration (µg/m³)           |             | nission Rate<br>g/sec) | AS Influent<br>Groundwater<br>Concentration<br>(µg/L) | AS Effluent<br>Groundwater<br>Concentration<br>(µg/L) | Removal<br>Factor<br>(dimension-<br>less) | AS Emission<br>Rate<br>(μg/sec) |
| Acetone                                                                | 67-64-1    | 46                                           |             | 1                      |                                                       | 56                                                    |                                           |                                 |
| Benzene                                                                | 71-43-2    |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| Benzyl chloride                                                        | 100-44-7   |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| Bromodichloromethane                                                   | 75-27-4    |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| Bromoform                                                              | 75-25-2    |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| Bromomethane (Methyl bromide)                                          | 74-83-9    |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| 1,3-Butadiene                                                          | 106-99-0   |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| 2-Butanone (Methyl ethyl ketone, MEK)                                  | 78-93-3    | 17                                           |             | 1                      |                                                       |                                                       |                                           |                                 |
| Carbon disulfide                                                       | 75-15-0    |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| Carbon tetrachloride                                                   | 56-23-5    |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| Chlorobenzene                                                          | 108-90-7   |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| Chloroethane (Ethyl chloride)                                          | 75-00-3    |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| Chloroform                                                             | 67-66-3    |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| Chloromethane (Methyl chloride)                                        | 74-87-3    |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| Cyclohexane                                                            | 110-82-7   |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| Dibromochloromethane                                                   | 124-48-1   |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| 1,2-Dibromoethane (Ethylene dibromide, EDB)                            | 106-93-4   |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| 1,2-Dichlorobenzene                                                    | 95-50-1    |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| 1,3-Dichlorobenzene                                                    | 541-73-1   |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| 1,4-Dichlorobenzene                                                    | 106-46-7   |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| 1,1-Dichloroethane                                                     | 75-34-3    |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| 1,2-Dichloroethane (DCA)                                               | 107-06-2   |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| 1,1-Dichloroethene (DCE)                                               | 75-35-4    |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| cis-1,2-Dichloroethene                                                 | 156-59-2   | 10                                           |             | 0                      |                                                       |                                                       |                                           |                                 |
| trans-1,2-Dichloroethene                                               | 156-60-5   |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| Dichlorodifluoromethane (Freon 12)                                     | 75-71-8    |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| 1,2-Dichloropropane                                                    | 78-87-5    |                                              |             | <u> </u>               |                                                       |                                                       | · · · · · · · · · · · · · · · · · · ·     | -                               |
| cis-1,3-Dichloropropene                                                | 10061-01-5 |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| trans-1,3-Dichloropropene                                              | 10061-02-6 |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| Dichlorotetrafluoroethane (Freon 114)                                  | 76-14-2    |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| Ethanol                                                                | 64-17-5    | 1,400                                        |             | 43                     |                                                       |                                                       |                                           |                                 |
| Ethyl acetate                                                          | 141-78-6   |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| Ethylbenzene                                                           | 100-41-4   |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| 4-Ethyltoluene                                                         | 622-96-8   |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| n-Heptane                                                              | 142-82-5   |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| Hexachloro-1,3-butadiene                                               | 87-68-3    |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| n-Hexane                                                               | 110-54-3   |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| 2-Hexanone (Methyl butyl ketone)                                       | 591-78-6   |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| 4-Methyl-2-pentanone (Methyl isobutyl ketone, MIBK)                    | 108-10-1   |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| Methylene chloride (Dichloromethane)                                   | 75-09-2    |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| Methyl-tert-butyl ether (MTBE)                                         | 1634-04-4  |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| Naphthalene                                                            | 91-20-3    |                                              |             |                        |                                                       |                                                       |                                           |                                 |
| 2-Propanol (Isopropyl alcohol)                                         | 67-63-0    | 380                                          |             | 12                     |                                                       |                                                       |                                           |                                 |



# Petroleum Remediation Program Air Emissions Screening Spreadsheet Soil Vapor Extraction (SVE) and/or Air Stripper (AS) Data Input Worksheet

Doc Type: Corrective Action Design

| MPCA Leak ID: MN BIO BUSINESS CENTER                        | Enter SVE Standard Parameters |                                                                               |                               | Enter AS Standard Parameters |                                                       |                                                       |                                           |                                 |
|-------------------------------------------------------------|-------------------------------|-------------------------------------------------------------------------------|-------------------------------|------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|---------------------------------|
| Sample Date: 1/12/2016                                      |                               | Distance to Nearest Receptor (feet): 33                                       |                               | 33                           | Distance to Nea                                       | 33                                                    |                                           |                                 |
| Person Completing Worksheet: ADK                            |                               | SVE Stack Height (feet):                                                      |                               | 26.2                         | Air Stripper Sta                                      | ck Height (feet):                                     | •                                         | 26.2                            |
| Notes: Use this area to provide comments regarding the same | npling event.                 | SVE Stack Flow Rate (SCFM <sup>1</sup> ):                                     |                               | 64                           | Air Stripper Influ                                    | ent Flow Rate (L/s                                    | ):                                        | 0.017                           |
| input parameters, etc.                                      | 1 3                           | Enter SVE Modeling P                                                          |                               |                              |                                                       | AS Modeling Para                                      | ,                                         |                                 |
|                                                             |                               | SVE Stack Diameter (inches):                                                  | urumotoro (ir c               | ррпоавіс                     | AS Stack Diame                                        |                                                       | ametere (ii ap                            | Jiloubie)                       |
|                                                             |                               | \ /                                                                           |                               |                              |                                                       |                                                       |                                           |                                 |
|                                                             |                               | SVE Stack Exit Velocity <sup>2</sup> (feet p<br>SVE Stack Exit Temperature (° |                               |                              |                                                       | elocity (feet per se emperature (°F):                 | econa):                                   |                                 |
|                                                             |                               | ' '                                                                           | ,                             |                              |                                                       | . ,                                                   | 2                                         |                                 |
|                                                             |                               | SVE Annual Dispersion Factor (                                                | ((10 )0 )                     | Contact MPCA                 |                                                       | ersion Factor ((µg/                                   | , 0                                       | Contact MPCA                    |
|                                                             |                               | SVE 1-hr Dispersion Factor ((µg                                               | g/m <sup>3</sup> )/g/s)       | Contact MPCA                 | AS 1-hr Dispers                                       | ion Factor ((µg/m³                                    | )/g/s)                                    | Contact MPCA                    |
| Chemical Name                                               | CAS#                          | SVE Emission Concentration (µg/m³)                                            | SVE Emission Rate<br>(µg/sec) |                              | AS Influent<br>Groundwater<br>Concentration<br>(µg/L) | AS Effluent<br>Groundwater<br>Concentration<br>(µg/L) | Removal<br>Factor<br>(dimension-<br>less) | AS Emission<br>Rate<br>(μg/sec) |
| Propylene (methylethylene or propene)                       | 115-07-1                      |                                                                               |                               |                              |                                                       |                                                       |                                           |                                 |
| Styrene                                                     | 100-42-5                      |                                                                               |                               |                              |                                                       |                                                       |                                           |                                 |
| 1,1,2,2-Tetrachloroethane                                   | 79-34-5                       |                                                                               |                               |                              |                                                       |                                                       |                                           |                                 |
| Tetrachloroethylene (PCE)                                   | 127-18-4                      | 7,200                                                                         |                               | 219                          | 21                                                    | 0                                                     | 1.00                                      | 0                               |
| Tetrahydrofuran                                             | 109-99-9                      |                                                                               |                               |                              |                                                       |                                                       |                                           |                                 |
| Toluene (Methylbenzene)                                     | 108-88-3                      | 3                                                                             |                               | 0                            |                                                       |                                                       |                                           |                                 |
| 1,2,4-Trichlorobenzene                                      | 120-82-1                      |                                                                               |                               |                              |                                                       |                                                       |                                           |                                 |
| 1,1,1-Trichloroethane (Methyl chloroform)                   | 71-55-6                       |                                                                               |                               |                              |                                                       |                                                       |                                           |                                 |
| 1,1,2-Trichloroethane                                       | 79-00-5                       |                                                                               |                               |                              |                                                       |                                                       |                                           |                                 |
| Trichloroethylene (TCE)                                     | 79-01-6                       | 6                                                                             |                               | 0                            |                                                       |                                                       |                                           | ı                               |
| Trichlorofluoromethane (Freon 11)                           | 75-69-4                       |                                                                               |                               |                              |                                                       |                                                       |                                           |                                 |
| Trichlorotrifluoroethane (Freon 113)                        | 76-13-1                       | 4,500                                                                         |                               | 137                          |                                                       |                                                       |                                           | ı                               |
| 1,2,4-Trimethylbenzene                                      | 95-63-6                       |                                                                               |                               |                              |                                                       |                                                       |                                           |                                 |
| 1,3,5-Trimethylbenzene                                      | 108-67-8                      |                                                                               |                               |                              |                                                       |                                                       |                                           |                                 |
| Vinyl acetate                                               | 108-05-4                      |                                                                               |                               |                              |                                                       |                                                       |                                           |                                 |
| Vinyl chloride                                              | 75-01-4                       |                                                                               |                               |                              |                                                       |                                                       |                                           |                                 |
| m&p-Xylene                                                  | 108-38-3                      | 6                                                                             |                               | 0                            |                                                       |                                                       |                                           |                                 |
| o-Xylene                                                    | 95-47-6                       |                                                                               |                               |                              |                                                       |                                                       |                                           | 1                               |

<sup>&</sup>lt;sup>1</sup>SCFM = standard cubic feet per minute based on a standard temperature of 77° F (25° C, 298.15 K) and a standard pressure of 1 atmosphere (14.7 pounds per square inch, 29.92 inches of mercury, 760 millimeters of mercury).

<sup>&</sup>lt;sup>2</sup>Provide stack exit velocity for actual exit conditions (i.e., at the actual temperature and pressure of the air being discharged).



## Petroleum Remediation Program Air Emissions Screening Spreadsheet

Soil Vapor Extraction and/or Air Stripper Risk Evaluation Worksheet

Doc Type: Corrective Action Design

MPCA Leak ID: MN BIO BUSINESS CENTER Sample Date: 1/12/2016

Person Completing Worksheet: ADK

|                                                     |            | Acute Mixtures Evaluation   |     |       | Chronic Noncancer Mixtures Evaluation |                                            |     |        |          |      |          | Excess |      |               |                                               |
|-----------------------------------------------------|------------|-----------------------------|-----|-------|---------------------------------------|--------------------------------------------|-----|--------|----------|------|----------|--------|------|---------------|-----------------------------------------------|
| Chemical Name                                       | CAS#       | Acute<br>Hazard<br>Quotient | CNS | IRRIT | REPRO                                 | Chronic<br>Noncancer<br>Hazard<br>Quotient | CNS | CV/BLD | IMMUN    | KIDN | LIVER/GI | REPRO  | RESP | WHOLE<br>BODY | Lifetime Cancer Risk (guideline value = 1E-5) |
| Acetone                                             | 67-64-1    | 0.0                         | 0.0 |       |                                       | 0.0                                        | 0.0 |        |          |      |          |        |      |               |                                               |
| Benzene                                             | 71-43-2    |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| Benzyl chloride                                     | 100-44-7   |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| Bromodichloromethane                                | 75-27-4    |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| Bromoform                                           | 75-25-2    |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| Bromomethane (Methyl bromide)                       | 74-83-9    |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| 1,3-Butadiene                                       | 106-99-0   |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| 2-Butanone (Methyl ethyl ketone, MEK)               | 78-93-3    | 0.0                         |     | 0.0   |                                       | 0.0                                        |     |        |          |      |          | 0.0    |      |               |                                               |
| Carbon disulfide                                    | 75-15-0    |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| Carbon tetrachloride                                | 56-23-5    |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| Chlorobenzene                                       | 108-90-7   |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| Chloroethane (Ethyl chloride)                       | 75-00-3    |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| Chloroform                                          | 67-66-3    |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| Chloromethane (Methyl chloride)                     | 74-87-3    |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| Cyclohexane                                         | 110-82-7   |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| Dibromochloromethane                                | 124-48-1   |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| 1,2-Dibromoethane (Ethylene dibromide, EDB)         | 106-93-4   |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| 1,2-Dichlorobenzene                                 | 95-50-1    |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| 1,3-Dichlorobenzene                                 | 541-73-1   |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| 1,4-Dichlorobenzene                                 | 106-46-7   |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| 1,1-Dichloroethane                                  | 75-34-3    |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| 1,2-Dichloroethane (DCA)                            | 107-06-2   |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| 1,1-Dichloroethene (DCE)                            | 75-35-4    |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| cis-1,2-Dichloroethene                              | 156-59-2   |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| trans-1,2-Dichloroethene                            | 156-60-5   |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| Dichlorodifluoromethane (Freon 12)                  | 75-71-8    |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| 1,2-Dichloropropane                                 | 78-87-5    |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| cis-1,3-Dichloropropene*                            | 10061-01-5 |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| trans-1,3-Dichloropropene*                          | 10061-02-6 |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| Dichlorotetrafluoroethane (Freon 114)               | 76-14-2    |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| Ethanol                                             | 64-17-5    | 0.0                         |     | 0.0   |                                       | 0.0                                        |     |        |          |      |          |        | 0.0  |               |                                               |
| Ethyl acetate                                       | 141-78-6   |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| Ethylbenzene                                        | 100-41-4   |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| 4-Ethyltoluene                                      | 622-96-8   |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| n-Heptane                                           | 142-82-5   |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| Hexachloro-1,3-butadiene                            | 87-68-3    |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| n-Hexane                                            | 110-54-3   |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| 2-Hexanone (Methyl butyl ketone)                    | 591-78-6   |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| 4-Methyl-2-pentanone (Methyl isobutyl ketone, MIBK) | 108-10-1   |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| Methylene chloride (Dichloromethane)                | 75-09-2    |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| Methyl-tert-butyl ether (MTBE)                      | 1634-04-4  |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| Naphthalene                                         | 91-20-3    |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| 2-Propanol (Isopropyl alcohol)                      | 67-63-0    | 0.0                         |     | 0.0   |                                       | 0.0                                        |     |        |          | 0.0  |          | 0.0    |      |               |                                               |
| Propylene (methylethylene or propene)               | 115-07-1   |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| Styrene                                             | 100-42-5   |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| 1,1,2,2-Tetrachloroethane                           | 79-34-5    |                             |     |       |                                       |                                            |     |        |          |      |          |        |      |               |                                               |
| Tetrachloroethylene (PCE)                           | 127-18-4   | 0.0                         | 0.0 | 0.0   |                                       | 0.0                                        | 0.0 |        |          |      |          |        |      |               | 2E-07                                         |
|                                                     |            |                             |     |       |                                       |                                            |     |        | <u>I</u> | l .  |          | l .    | 1    |               |                                               |



Soil Vapor Extraction and/or Air Stripper Risk Evaluation Worksheet

Doc Type: Corrective Action Design

MPCA Leak ID: MN BIO BUSINESS CENTER

Sample Date: 1/12/2016

Person Completing Worksheet: ADK

|                                           |          |                             | Acute Mixtur | es Evaluatior | 1     |
|-------------------------------------------|----------|-----------------------------|--------------|---------------|-------|
| Chemical Name                             | CAS#     | Acute<br>Hazard<br>Quotient | CNS          | IRRIT         | REPRO |
| Tetrahydrofuran                           | 109-99-9 |                             |              |               |       |
| Toluene (Methylbenzene)                   | 108-88-3 | 0.0                         | 0.0          | 0.0           |       |
| 1,2,4-Trichlorobenzene                    | 120-82-1 |                             |              |               |       |
| 1,1,1-Trichloroethane (Methyl chloroform) | 71-55-6  |                             |              |               |       |
| 1,1,2-Trichloroethane                     | 79-00-5  |                             |              |               |       |
| Trichloroethylene (TCE)                   | 79-01-6  | 0.0                         |              |               | 0.0   |
| Trichlorofluoromethane (Freon 11)         | 75-69-4  |                             |              |               |       |
| Trichlorotrifluoroethane (Freon 113)      | 76-13-1  |                             |              |               |       |
| 1,2,4-Trimethylbenzene                    | 95-63-6  |                             |              |               |       |
| 1,3,5-Trimethylbenzene                    | 108-67-8 |                             |              |               |       |
| Vinyl acetate                             | 108-05-4 |                             |              |               |       |
| Vinyl chloride                            | 75-01-4  |                             |              |               |       |
| m&p-Xylene**                              | 108-38-3 | 0.0                         | 0.0          | 0.0           |       |
| o-Xylene**                                | 95-47-6  |                             |              |               |       |
| Hazard Index:                             |          |                             | 0.0          | 0.0           | 0.0   |

|                                            |     | (      | Chronic None | ancer Mixtur | es Evaluation | n     |      |               | Excess                                                 |
|--------------------------------------------|-----|--------|--------------|--------------|---------------|-------|------|---------------|--------------------------------------------------------|
| Chronic<br>Noncancer<br>Hazard<br>Quotient | CNS | CV/BLD | IMMUN        | KIDN         | LIVER/GI      | REPRO | RESP | WHOLE<br>BODY | Lifetime<br>Cancer Risk<br>(guideline<br>value = 1E-5) |
|                                            |     |        |              |              |               |       |      |               |                                                        |
| 0.0                                        | 0.0 |        |              |              |               |       |      |               |                                                        |
|                                            |     |        |              |              |               |       |      |               |                                                        |
|                                            |     |        |              |              |               |       |      |               |                                                        |
|                                            |     |        |              |              |               |       |      |               |                                                        |
| 0.0                                        | 0.0 |        |              |              |               |       |      |               | 9E-10                                                  |
|                                            |     |        |              |              |               |       |      |               |                                                        |
| 0.0                                        |     |        |              |              |               |       |      | 0.0           |                                                        |
|                                            |     |        |              |              |               |       |      |               |                                                        |
|                                            |     |        |              |              |               |       |      |               |                                                        |
|                                            |     |        |              |              |               |       |      |               |                                                        |
|                                            |     |        |              |              |               |       |      |               |                                                        |
| 0.0                                        | 0.0 |        |              |              |               |       |      |               |                                                        |
|                                            |     |        |              |              |               |       |      |               |                                                        |
|                                            | 0.0 | 0.0    | 0.0          | 0.0          | 0.0           | 0.0   | 0.0  | 0.0           | 1.8E-07                                                |

| SP | BODY | (guideline<br>value = 1E-5) |
|----|------|-----------------------------|
|    |      |                             |
|    |      |                             |
|    |      |                             |
|    |      |                             |
|    |      |                             |
|    |      | 9E-10                       |
|    |      |                             |
|    | 0.0  |                             |
|    |      |                             |
|    |      |                             |
|    |      |                             |
|    |      |                             |
|    |      |                             |
| )  | 0.0  | 1.8E-07                     |

#### NOTES:

In general, total excess lifetime cancer risk is not to exceed 1E-5 and a hazard index (or chemical-specific hazard quotient) is not to exceed 1. The additive results are shown with one decimal point, which is intended to show transparency with the addition of risk but not to imply a level of precision greater than one significant figure. Risk managers may want to round to one significant figure when comparing to a cancer risk of 1E-5 or a hazard index of 1. Exceedance of these levels, which are bolded in text when met or exceeded, may require air emission controls.

CNS = Central Nervous System CV/BLD = Cardiovascular or Blood System IMMUN = Immune System IRRIT = Irritant (nasal, eye, throat irritation) KIDN = Kidney

LIVER/GI = Liver/Gastrointestinal

REPRO = Reproductive System, including developmental effects

<sup>\*</sup> based on 1,3-Dichloropropene (CAS # 542-75-6)

<sup>\*\*</sup> based on total Xylenes (CAS # 1330-20-7)



| MPCA Leak ID: MN BIO BUSINESS CENTER                                                 |                      | Enter SVE Sta                                | ndard Paramet   | ers                    |                                             | Enter AS Standa                             |                                  | s                               |
|--------------------------------------------------------------------------------------|----------------------|----------------------------------------------|-----------------|------------------------|---------------------------------------------|---------------------------------------------|----------------------------------|---------------------------------|
| Sample Date: 2/24/2016                                                               |                      | Distance to Nearest Receptor (               |                 |                        | Distance to Nea                             | rest Receptor (feet                         | i):                              | 33                              |
| Person Completing Worksheet: ADK                                                     |                      | SVE Stack Height (feet):                     |                 |                        | Air Stripper Sta                            |                                             | ,                                | 26.2                            |
| Notes: Use this area to provide comments regarding the sar                           | mpling event         | SVE Stack Flow Rate (SCFM <sup>1</sup> )     |                 |                        |                                             | ent Flow Rate (L/s                          | ١٠                               | 0.244                           |
| input parameters, etc.                                                               | p.ii.ig ovo.ii.,     | Enter SVE Modeling F                         |                 |                        |                                             | AS Modeling Para                            |                                  |                                 |
| 1                                                                                    |                      | SVE Stack Diameter (inches):                 | arameters (ii e | ppiicabie)             | AS Stack Diame                              |                                             | ameters (ii ap                   | oncable)                        |
|                                                                                      |                      | \ /                                          |                 |                        |                                             | , ,                                         |                                  |                                 |
|                                                                                      |                      | SVE Stack Exit Velocity <sup>2</sup> (feet p |                 |                        |                                             | elocity <sup>2</sup> (feet per se           | econd):                          |                                 |
|                                                                                      |                      | SVE Stack Exit Temperature (°                | ,               |                        |                                             | emperature (°F):                            | 2                                |                                 |
|                                                                                      |                      | SVE Annual Dispersion Factor                 |                 | Contact MPCA           |                                             | ersion Factor ((µg/                         | , , ,                            | Contact MPCA                    |
|                                                                                      |                      | SVE 1-hr Dispersion Factor ((µ               | g/m³)/g/s)      | Contact MPCA           | AS 1-hr Dispers                             | ion Factor ((µg/m³                          | /g/s)                            | Contact MPCA                    |
| Chemical Name                                                                        | CAS#                 | SVE Emission Concentration (µg/m³)           |                 | nission Rate<br>g/sec) | AS Influent<br>Groundwater<br>Concentration | AS Effluent<br>Groundwater<br>Concentration | Removal<br>Factor<br>(dimension- | AS Emission<br>Rate<br>(µg/sec) |
|                                                                                      |                      |                                              |                 |                        | (µg/L)                                      | (µg/L)                                      | less)                            |                                 |
| Acetone                                                                              | 67-64-1              | 94                                           |                 | 3                      | 112                                         | 342                                         | -2.05                            | -56                             |
| Benzene                                                                              | 71-43-2              | 1                                            |                 | 0                      |                                             |                                             |                                  |                                 |
| Benzyl chloride                                                                      | 100-44-7             |                                              |                 |                        |                                             |                                             |                                  |                                 |
| Bromodichloromethane                                                                 | 75-27-4              |                                              |                 |                        |                                             |                                             |                                  |                                 |
| Bromoform                                                                            | 75-25-2              |                                              |                 |                        |                                             |                                             |                                  |                                 |
| Bromomethane (Methyl bromide)                                                        | 74-83-9              |                                              |                 |                        |                                             |                                             |                                  |                                 |
| 1,3-Butadiene                                                                        | 106-99-0             |                                              |                 |                        |                                             |                                             |                                  |                                 |
| 2-Butanone (Methyl ethyl ketone, MEK)                                                | 78-93-3              | 10                                           |                 | 0                      |                                             |                                             |                                  |                                 |
| Carbon disulfide                                                                     | 75-15-0              |                                              |                 |                        |                                             |                                             |                                  |                                 |
| Carbon tetrachloride                                                                 | 56-23-5              |                                              |                 |                        |                                             |                                             |                                  |                                 |
| Chlorobenzene                                                                        | 108-90-7             |                                              |                 |                        |                                             |                                             |                                  |                                 |
| Chloroethane (Ethyl chloride)                                                        | 75-00-3              |                                              |                 |                        |                                             |                                             |                                  |                                 |
| Chloroform                                                                           | 67-66-3              |                                              |                 |                        |                                             |                                             |                                  |                                 |
| Chloromethane (Methyl chloride)                                                      | 74-87-3              | 2                                            |                 | 0                      |                                             |                                             |                                  |                                 |
| Cyclohexane                                                                          | 110-82-7             |                                              |                 |                        |                                             |                                             |                                  |                                 |
| Dibromochloromethane                                                                 | 124-48-1             |                                              |                 |                        |                                             |                                             |                                  |                                 |
| 1,2-Dibromoethane (Ethylene dibromide, EDB)                                          | 106-93-4             |                                              |                 |                        |                                             |                                             |                                  |                                 |
| 1,2-Dichlorobenzene                                                                  | 95-50-1              |                                              |                 |                        |                                             |                                             |                                  |                                 |
| 1,3-Dichlorobenzene                                                                  | 541-73-1             |                                              |                 |                        |                                             |                                             |                                  |                                 |
| 1,4-Dichlorobenzene                                                                  | 106-46-7             |                                              |                 |                        |                                             |                                             |                                  |                                 |
| 1,1-Dichloroethane                                                                   | 75-34-3              |                                              |                 |                        |                                             |                                             |                                  |                                 |
| 1,2-Dichloroethane (DCA)                                                             | 107-06-2             |                                              |                 |                        |                                             |                                             |                                  |                                 |
| 1,1-Dichloroethene (DCE)                                                             | 75-35-4              | 3                                            |                 | 0                      |                                             |                                             |                                  |                                 |
| cis-1,2-Dichloroethene                                                               | 156-59-2             | 6                                            |                 | 0                      |                                             |                                             |                                  |                                 |
| trans-1,2-Dichloroethene                                                             | 156-60-5             |                                              |                 |                        |                                             |                                             |                                  |                                 |
| Dichlorodifluoromethane (Freon 12)                                                   | 75-71-8              | 3                                            |                 | 0                      |                                             |                                             |                                  |                                 |
| 1,2-Dichloropropane                                                                  | 78-87-5              |                                              |                 |                        |                                             |                                             |                                  |                                 |
| cis-1,3-Dichloropropene                                                              | 10061-01-5           |                                              |                 |                        |                                             |                                             |                                  |                                 |
| trans-1,3-Dichloropropene                                                            | 10061-02-6           |                                              |                 |                        |                                             |                                             |                                  |                                 |
| Dichlorotetrafluoroethane (Freon 114)                                                | 76-14-2              | 690                                          |                 | 21                     |                                             |                                             |                                  |                                 |
| Ethanol                                                                              | 64-17-5<br>141-78-6  | 690                                          |                 | 21                     |                                             |                                             |                                  |                                 |
| Ethyl acetate                                                                        | 100-41-4             | 7                                            |                 | 0                      |                                             |                                             |                                  |                                 |
| Ethylbenzene                                                                         | 100-41-4<br>622-96-8 | /                                            |                 | 0                      |                                             |                                             |                                  |                                 |
| 4-Ethyltoluene<br>n-Heptane                                                          | 142-82-5             |                                              |                 |                        |                                             |                                             |                                  |                                 |
|                                                                                      | 87-68-3              |                                              |                 |                        |                                             |                                             |                                  |                                 |
| Hexachloro-1,3-butadiene                                                             |                      | 2                                            |                 | 0                      |                                             |                                             |                                  |                                 |
| n-Hexane                                                                             | 110-54-3<br>591-78-6 | 2                                            |                 | U                      |                                             |                                             |                                  |                                 |
| 2-Hexanone (Methyl butyl ketone) 4-Methyl-2-pentanone (Methyl isobutyl ketone, MIBK) | 108-10-1             |                                              |                 |                        |                                             |                                             |                                  |                                 |
| Methylene chloride (Dichloromethane)                                                 | 75-09-2              | 3                                            |                 | 0                      |                                             |                                             |                                  |                                 |
| Methyl-tert-butyl ether (MTBE)                                                       | 1634-04-4            | 3                                            |                 | 0                      |                                             |                                             |                                  |                                 |
| Naphthalene                                                                          | 91-20-3              |                                              |                 |                        |                                             |                                             |                                  |                                 |
| 2-Propanol (Isopropyl alcohol)                                                       | 67-63-0              | 790                                          |                 | 24                     |                                             |                                             |                                  |                                 |
| Z-1 Topanor (190propy) alconory                                                      | 01-00-0              | 790                                          |                 | 24                     |                                             |                                             |                                  |                                 |



| MPCA Leak ID: MN BIO BUSINESS CENTER                       |               | Enter SVE Sta                                | ndard Paramet | ers                    |                                                       | Enter AS Standa                                       | ard Parameter                             | s                               |
|------------------------------------------------------------|---------------|----------------------------------------------|---------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|---------------------------------|
| Sample Date: 2/24/2016                                     |               | Distance to Nearest Receptor (               | feet):        | 33                     | Distance to Nea                                       | arest Receptor (fee                                   | t):                                       | 33                              |
| Person Completing Worksheet: ADK                           |               | SVE Stack Height (feet):                     | •             | 26.2                   | Air Stripper Stack Height (feet):                     |                                                       |                                           | 26.2                            |
| Notes: Use this area to provide comments regarding the sar | npling event, | SVE Stack Flow Rate (SCFM <sup>1</sup> )     |               | 64                     | Air Stripper Influ                                    | uent Flow Rate (L/s                                   | ):                                        | 0.244                           |
| input parameters, etc.                                     |               | Enter SVE Modeling F                         |               | applicable)            | Enter                                                 | AS Modeling Par                                       | ameters (if ap                            | olicable)                       |
|                                                            |               | SVE Stack Diameter (inches):                 | u. u          |                        | AS Stack Diame                                        |                                                       | шотого ( цр                               |                                 |
|                                                            |               | SVE Stack Exit Velocity <sup>2</sup> (feet p | or occord).   |                        |                                                       | 'elocity <sup>2</sup> (feet per se                    | 20004).                                   |                                 |
|                                                            |               | SVE Stack Exit Velocity (leet p              |               |                        |                                                       | emperature (°F):                                      | econu).                                   |                                 |
|                                                            |               | ' '                                          | ,             | 0                      |                                                       | 1 ( )                                                 | 3,7,7,5                                   | 0                               |
|                                                            |               | SVE Annual Dispersion Factor                 |               | Contact MPCA           |                                                       | ersion Factor ((µg/                                   | , , ,                                     | Contact MPCA                    |
|                                                            |               | SVE 1-hr Dispersion Factor ((µ               | g/m³)/g/s)    | Contact MPCA           | AS 1-hr Dispers                                       | sion Factor ((µg/m³                                   | )/g/s)                                    | Contact MPCA                    |
| Chemical Name                                              | CAS#          | SVE Emission Concentration (µg/m³)           |               | nission Rate<br>g/sec) | AS Influent<br>Groundwater<br>Concentration<br>(µg/L) | AS Effluent<br>Groundwater<br>Concentration<br>(µg/L) | Removal<br>Factor<br>(dimension-<br>less) | AS Emission<br>Rate<br>(μg/sec) |
| Propylene (methylethylene or propene)                      | 115-07-1      |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| Styrene                                                    | 100-42-5      |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| 1,1,2,2-Tetrachloroethane                                  | 79-34-5       |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| Tetrachloroethylene (PCE)                                  | 127-18-4      | 8,400                                        |               | 255                    | 32                                                    | 2                                                     | 0.94                                      | 7                               |
| Tetrahydrofuran                                            | 109-99-9      | 7                                            |               | 0                      |                                                       |                                                       |                                           |                                 |
| Toluene (Methylbenzene)                                    | 108-88-3      | 21                                           |               | 1                      |                                                       |                                                       |                                           |                                 |
| 1,2,4-Trichlorobenzene                                     | 120-82-1      |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| 1,1,1-Trichloroethane (Methyl chloroform)                  | 71-55-6       | 5                                            |               | 0                      |                                                       |                                                       |                                           |                                 |
| 1,1,2-Trichloroethane                                      | 79-00-5       |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| Trichloroethylene (TCE)                                    | 79-01-6       | 5                                            |               | 0                      |                                                       |                                                       |                                           |                                 |
| Trichlorofluoromethane (Freon 11)                          | 75-69-4       |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| Trichlorotrifluoroethane (Freon 113)                       | 76-13-1       | 5,600                                        |               | 170                    |                                                       |                                                       |                                           |                                 |
| 1,2,4-Trimethylbenzene                                     | 95-63-6       |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| 1,3,5-Trimethylbenzene                                     | 108-67-8      |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| Vinyl acetate                                              | 108-05-4      |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| Vinyl chloride                                             | 75-01-4       |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| m&p-Xylene                                                 | 108-38-3      | 28                                           |               | 1                      |                                                       |                                                       |                                           |                                 |
| o-Xylene                                                   | 95-47-6       | 8                                            |               | 0                      |                                                       |                                                       |                                           |                                 |

<sup>&</sup>lt;sup>1</sup>SCFM = standard cubic feet per minute based on a standard temperature of 77° F (25° C, 298.15 K) and a standard pressure of 1 atmosphere (14.7 pounds per square inch, 29.92 inches of mercury, 760 millimeters of mercury).

<sup>&</sup>lt;sup>2</sup>Provide stack exit velocity for actual exit conditions (i.e., at the actual temperature and pressure of the air being discharged).



Soil Vapor Extraction and/or Air Stripper Risk Evaluation Worksheet

Doc Type: Corrective Action Design

MPCA Leak ID: MN BIO BUSINESS CENTER Sample Date: 2/24/2016 Person Completing Worksheet: ADK

|                                                     |            | ļ                                                | Acute Mixtur | es Evaluatio | n     |                                            |     | (      | Chronic Nonc | ancer Mixtu | res Evaluatior                                   | 1     |      |               | Excess                                                 |
|-----------------------------------------------------|------------|--------------------------------------------------|--------------|--------------|-------|--------------------------------------------|-----|--------|--------------|-------------|--------------------------------------------------|-------|------|---------------|--------------------------------------------------------|
| Chemical Name                                       | CAS#       | Acute<br>Hazard<br>Quotient                      | CNS          | IRRIT        | REPRO | Chronic<br>Noncancer<br>Hazard<br>Quotient | CNS | CV/BLD | IMMUN        | KIDN        | LIVER/GI                                         | REPRO | RESP | WHOLE<br>BODY | Lifetime<br>Cancer Risk<br>(guideline<br>value = 1E-5) |
| Acetone                                             | 67-64-1    | 0.0                                              | 0.0          |              |       | 0.0                                        | 0.0 |        |              |             |                                                  |       |      |               | 10.00                                                  |
| Benzene                                             | 71-43-2    | 0.0                                              | 0.0          |              | 0.0   | 0.0                                        | 0.0 | 0.0    | 0.0          |             |                                                  |       |      |               | 1E-10                                                  |
| Benzyl chloride                                     | 100-44-7   | 0.0                                              |              |              | 0.0   | 0.0                                        |     | 0.0    | 0.0          |             |                                                  |       |      |               | 12.10                                                  |
| Bromodichloromethane                                | 75-27-4    |                                                  |              |              |       |                                            |     |        |              |             |                                                  |       |      |               |                                                        |
| Bromoform                                           | 75-25-2    | 1                                                |              |              |       | 1                                          |     |        |              |             | 1                                                |       |      |               |                                                        |
| Bromomethane (Methyl bromide)                       | 74-83-9    | 1                                                |              |              |       | 1                                          |     |        |              |             | 1                                                |       |      |               |                                                        |
| 1,3-Butadiene                                       | 106-99-0   | 1                                                |              |              |       | 1                                          |     |        |              |             | 1                                                |       |      |               |                                                        |
| 2-Butanone (Methyl ethyl ketone, MEK)               | 78-93-3    | 0.0                                              |              | 0.0          |       | 0.0                                        |     |        |              |             | 1                                                | 0.0   |      |               |                                                        |
| Carbon disulfide                                    | 75-15-0    | 0.0                                              |              | 0.0          |       | 0.0                                        |     |        |              |             | 1                                                | 0.0   |      |               |                                                        |
| Carbon tetrachloride                                | 56-23-5    | 1                                                |              |              |       | 1                                          |     |        |              |             | 1                                                |       |      |               |                                                        |
| Chlorobenzene                                       | 108-90-7   | 1                                                |              |              |       | 1                                          |     |        |              |             | 1                                                |       |      |               |                                                        |
| Chloroethane (Ethyl chloride)                       | 75-00-3    |                                                  |              |              |       |                                            |     |        |              |             |                                                  |       |      |               |                                                        |
| Chloroform                                          | 67-66-3    | 1                                                |              |              |       | 1                                          |     |        |              |             | †                                                |       |      |               |                                                        |
| Chloromethane (Methyl chloride)                     | 74-87-3    | 0.0                                              | 0.0          |              |       | 0.0                                        | 0.0 |        |              |             | 1                                                |       |      |               |                                                        |
| Cyclohexane                                         | 110-82-7   | 0.0                                              | 0.0          |              |       | 0.0                                        | 0.0 |        |              |             |                                                  |       |      |               |                                                        |
| Dibromochloromethane                                | 124-48-1   | 1                                                |              |              |       | 1                                          |     |        |              |             | 1                                                |       |      |               |                                                        |
| 1,2-Dibromoethane (Ethylene dibromide, EDB)         | 106-93-4   | 1                                                |              |              |       | 1                                          |     |        |              |             | 1                                                |       |      |               |                                                        |
| 1,2-Dichlorobenzene                                 | 95-50-1    |                                                  |              |              |       |                                            |     |        |              |             |                                                  |       |      |               |                                                        |
| 1,3-Dichlorobenzene                                 | 541-73-1   |                                                  |              |              |       |                                            |     |        |              |             |                                                  |       |      |               |                                                        |
| 1,4-Dichlorobenzene                                 | 106-46-7   | 1                                                |              |              |       | 1                                          |     |        |              |             | 1                                                |       |      |               |                                                        |
| 1,1-Dichloroethane                                  | 75-34-3    |                                                  |              |              |       |                                            |     |        |              |             |                                                  |       |      |               |                                                        |
| 1,2-Dichloroethane (DCA)                            | 107-06-2   |                                                  |              |              |       |                                            |     |        |              |             |                                                  |       |      |               |                                                        |
| 1,1-Dichloroethene (DCE)                            | 75-35-4    |                                                  |              |              |       | 0.0                                        |     |        |              |             | 0.0                                              |       |      |               |                                                        |
| cis-1,2-Dichloroethene                              | 156-59-2   |                                                  |              |              |       | 0.0                                        |     |        |              |             | 0.0                                              |       |      |               |                                                        |
| trans-1,2-Dichloroethene                            | 156-60-5   |                                                  |              |              |       |                                            |     |        |              |             |                                                  |       |      |               |                                                        |
| Dichlorodifluoromethane (Freon 12)                  | 75-71-8    |                                                  |              |              |       | 0.0                                        |     |        |              |             | 0.0                                              |       |      |               |                                                        |
| 1,2-Dichloropropane                                 | 78-87-5    |                                                  |              |              |       | 0.0                                        |     |        |              |             | 0.0                                              |       |      |               |                                                        |
| cis-1,3-Dichloropropene*                            | 10061-01-5 |                                                  |              |              |       |                                            |     |        |              |             |                                                  |       |      |               |                                                        |
| trans-1,3-Dichloropropene*                          | 10061-02-6 |                                                  |              |              |       |                                            |     |        |              |             |                                                  |       |      |               |                                                        |
| Dichlorotetrafluoroethane (Freon 114)               | 76-14-2    |                                                  |              |              |       |                                            |     |        |              |             |                                                  |       |      |               |                                                        |
| Ethanol                                             | 64-17-5    | 0.0                                              |              | 0.0          |       | 0.0                                        |     |        |              |             |                                                  |       | 0.0  |               |                                                        |
| Ethyl acetate                                       | 141-78-6   | 0.0                                              |              | 0.0          |       | 0.0                                        |     |        |              |             |                                                  |       | 0.0  |               |                                                        |
| Ethylbenzene                                        | 100-41-4   | 0.0                                              |              |              | 0.0   | 0.0                                        |     |        |              | 0.0         |                                                  |       |      |               | 9E-10                                                  |
| 4-Ethyltoluene                                      | 622-96-8   | 0.0                                              |              |              | 0.0   | 0.0                                        |     |        |              | 0.0         |                                                  |       |      |               | 02.10                                                  |
| n-Heptane                                           | 142-82-5   |                                                  |              |              |       |                                            |     |        |              |             |                                                  |       |      |               |                                                        |
| Hexachloro-1,3-butadiene                            | 87-68-3    | 1                                                |              |              |       |                                            |     |        |              |             |                                                  |       |      |               |                                                        |
| n-Hexane                                            | 110-54-3   | <del>                                     </del> |              |              |       | 0.0                                        | 0.0 |        |              |             | <del>                                     </del> |       | 0.0  |               |                                                        |
| 2-Hexanone (Methyl butyl ketone)                    | 591-78-6   |                                                  |              |              |       | 0.0                                        | 0.0 |        |              |             |                                                  |       | 0.0  |               | -                                                      |
| 4-Methyl-2-pentanone (Methyl isobutyl ketone, MIBK) | 108-10-1   | <del>                                     </del> |              |              |       | 1                                          |     |        |              |             |                                                  |       |      |               |                                                        |
| Methylene chloride (Dichloromethane)                | 75-09-2    | 0.0                                              | 0.0          |              |       | 0.0                                        | 0.0 | 0.0    |              |             | <del>                                     </del> |       |      |               | 7E-11                                                  |
| Methyl-tert-butyl ether (MTBE)                      | 1634-04-4  | 0.0                                              | 0.0          |              |       |                                            | 0.0 | 0.0    |              |             | <del>                                     </del> |       |      |               | <u> </u>                                               |
| Naphthalene                                         | 91-20-3    | <del>                                     </del> |              |              |       | 1                                          |     |        |              |             |                                                  |       |      |               |                                                        |
| 2-Propanol (Isopropyl alcohol)                      | 67-63-0    | 0.0                                              |              | 0.0          |       | 0.0                                        |     |        |              | 0.0         | <del>                                     </del> | 0.0   |      |               |                                                        |
| Propylene (methylethylene or propene)               | 115-07-1   | 0.0                                              |              | 0.0          |       | 0.0                                        |     |        |              | 0.0         | <del>                                     </del> | 0.0   |      |               |                                                        |
| Styrene                                             | 100-42-5   | <del>                                     </del> |              |              |       | 1                                          |     |        |              |             |                                                  |       |      |               |                                                        |
| 1,1,2,2-Tetrachloroethane                           | 79-34-5    | <del>                                     </del> |              |              |       | 1                                          |     |        |              |             | <del>                                     </del> |       |      |               |                                                        |
| Tetrachloroethylene (PCE)                           | 127-18-4   | 0.0                                              | 0.0          | 0.0          |       | 0.0                                        | 0.0 |        |              |             |                                                  |       |      |               | 2E-07                                                  |
| rondomorodinyiono (i OL)                            | 127 10 7   | 0.0                                              | 0.0          | 0.0          | ı     | 0.0                                        | 0.0 | l .    | 1            |             | ı                                                |       |      |               | ZL 01                                                  |



Soil Vapor Extraction and/or Air Stripper Risk Evaluation Worksheet

Doc Type: Corrective Action Design

MPCA Leak ID: MN BIO BUSINESS CENTER Sample Date: 2/24/2016 Person Completing Worksheet: ADK

|                                           | ı        | ī                           | A 1 - B 451  | an Frankricke |       |
|-------------------------------------------|----------|-----------------------------|--------------|---------------|-------|
|                                           |          |                             | Acute Mixtur | es Evaluatior | 1     |
| Chemical Name                             | CAS#     | Acute<br>Hazard<br>Quotient | CNS          | IRRIT         | REPRO |
| Tetrahydrofuran                           | 109-99-9 |                             |              |               |       |
| Toluene (Methylbenzene)                   | 108-88-3 | 0.0                         | 0.0          | 0.0           |       |
| 1,2,4-Trichlorobenzene                    | 120-82-1 |                             |              |               |       |
| 1,1,1-Trichloroethane (Methyl chloroform) | 71-55-6  | 0.0                         | 0.0          |               |       |
| 1,1,2-Trichloroethane                     | 79-00-5  |                             |              |               |       |
| Trichloroethylene (TCE)                   | 79-01-6  | 0.0                         |              |               | 0.0   |
| Trichlorofluoromethane (Freon 11)         | 75-69-4  |                             |              |               |       |
| Trichlorotrifluoroethane (Freon 113)      | 76-13-1  |                             |              |               |       |
| 1,2,4-Trimethylbenzene                    | 95-63-6  |                             |              |               |       |
| 1,3,5-Trimethylbenzene                    | 108-67-8 |                             |              |               |       |
| Vinyl acetate                             | 108-05-4 |                             |              |               |       |
| Vinyl chloride                            | 75-01-4  |                             |              |               |       |
| m&p-Xylene**                              | 108-38-3 | 0.0                         | 0.0          | 0.0           |       |
| o-Xylene**                                | 95-47-6  | 0.0                         | 0.0          | 0.0           |       |
| Hazard Index:                             |          |                             | 0.0          | 0.0           | 0.0   |

|                                            |     |        | Shuania Nana | aaaa Mistor  | aa Frakaka   | _     |      |               |                                                     |
|--------------------------------------------|-----|--------|--------------|--------------|--------------|-------|------|---------------|-----------------------------------------------------|
|                                            | 1   |        | nronic inonc | ancer Mixtui | es Evaluatio | n     | 1    |               | Excess                                              |
| Chronic<br>Noncancer<br>Hazard<br>Quotient | CNS | CV/BLD | IMMUN        | KIDN         | LIVER/GI     | REPRO | RESP | WHOLE<br>BODY | Lifetime<br>Cancer Ris<br>(guideline<br>value = 1E- |
|                                            |     |        |              |              |              |       |      |               |                                                     |
| 0.0                                        | 0.0 |        |              |              |              |       |      |               |                                                     |
|                                            |     |        |              |              |              |       |      |               |                                                     |
| 0.0                                        | 0.0 |        |              |              |              |       |      |               |                                                     |
|                                            |     |        |              |              |              |       |      |               |                                                     |
| 0.0                                        | 0.0 |        |              |              |              |       |      |               | 8E-10                                               |
|                                            |     |        |              |              |              |       |      |               |                                                     |
| 0.0                                        |     |        |              |              |              |       |      | 0.0           |                                                     |
|                                            |     |        |              |              |              |       |      |               |                                                     |
|                                            |     |        |              |              |              |       |      |               |                                                     |
|                                            |     |        |              |              |              |       |      |               |                                                     |
|                                            |     |        |              |              |              |       |      |               |                                                     |
| 0.0                                        | 0.0 |        |              |              |              |       |      |               |                                                     |
| 0.0                                        | 0.0 |        |              |              |              |       |      |               |                                                     |
|                                            | 0.0 | 0.0    | 0.0          | 0.0          | 0.0          | 0.0   | 0.0  | 0.0           | 2.1E-07                                             |
|                                            |     |        |              |              |              |       |      |               |                                                     |

| NO | TES: |  |
|----|------|--|

<sup>\*</sup> based on 1,3-Dichloropropene (CAS # 542-75-6)

In general, total excess lifetime cancer risk is not to exceed 1E-5 and a hazard index (or chemical-specific hazard quotient) is not to exceed 1. The additive results are shown with one decimal point, which is intended to show transparency with the addition of risk but not to imply a level of precision greater than one significant figure. Risk managers may want to round to one significant figure when comparing to a cancer risk of 1E-5 or a hazard index of 1. Exceedance of these levels, which are bolded in text when met or exceeded, may require air emission controls.

CNS = Central Nervous System
CV/BLD = Cardiovascular or Blood System
IMMUN = Immune System
IRRIT = Irritant (nasal, eye, throat irritation)
KIDN = Kidney
LIVER/GI = Liver/Gastrointestinal

REPRO = Reproductive System, including developmental effects

<sup>\*\*</sup> based on total Xylenes (CAS # 1330-20-7)



| MPCA Leak ID: MN BIO BUSINESS CENTER                      |              | Enter SVE Star                               | ndard Paramet                         | ers                    |                                                       | Enter AS Standa                                       |                                           | s                               |
|-----------------------------------------------------------|--------------|----------------------------------------------|---------------------------------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|---------------------------------|
| Sample Date: 3/30/2016                                    |              | Distance to Nearest Receptor (               |                                       |                        | Distance to Nea                                       | rest Receptor (fee                                    | i):                                       | 33                              |
| Person Completing Worksheet: ADK                          |              | SVE Stack Height (feet):                     |                                       |                        | Air Stripper Stad                                     |                                                       | ,                                         | 26.2                            |
| Notes: Use this area to provide comments regarding the sa | mpling event | SVE Stack Flow Rate (SCFM <sup>1</sup> ):    |                                       |                        |                                                       | ent Flow Rate (L/s                                    | ١٠                                        | 0.244                           |
| input parameters, etc.                                    |              | Enter SVE Modeling P                         |                                       |                        |                                                       | AS Modeling Para                                      |                                           |                                 |
| ,,                                                        |              | SVE Stack Diameter (inches):                 | arameters (ii a                       | applicable)            | AS Stack Diame                                        |                                                       | ameters (ii ap                            | oncable)                        |
|                                                           |              | \ /                                          |                                       |                        |                                                       | , ,                                                   |                                           |                                 |
|                                                           |              | SVE Stack Exit Velocity <sup>2</sup> (feet p |                                       |                        |                                                       | elocity <sup>2</sup> (feet per se                     | econd):                                   |                                 |
|                                                           |              | SVE Stack Exit Temperature (°                | ,                                     |                        |                                                       | emperature (°F):                                      | 2                                         |                                 |
|                                                           |              | SVE Annual Dispersion Factor                 |                                       | Contact MPCA           |                                                       | ersion Factor ((µg/                                   | , , ,                                     | Contact MPCA                    |
|                                                           |              | SVE 1-hr Dispersion Factor ((µ               | g/m³)/g/s)                            | Contact MPCA           | AS 1-hr Dispers                                       | ion Factor ((µg/m³                                    | /g/s)                                     | Contact MPCA                    |
| Chemical Name                                             | CAS#         | SVE Emission Concentration (µg/m³)           |                                       | nission Rate<br>g/sec) | AS Influent<br>Groundwater<br>Concentration<br>(µg/L) | AS Effluent<br>Groundwater<br>Concentration<br>(µg/L) | Removal<br>Factor<br>(dimension-<br>less) | AS Emission<br>Rate<br>(µg/sec) |
| Acetone                                                   | 67-64-1      | 75                                           |                                       | 2                      | 39                                                    | 71                                                    | -0.83                                     | -8                              |
| Benzene                                                   | 71-43-2      | 1                                            |                                       | 0                      | 30                                                    |                                                       | 5.50                                      |                                 |
| Benzyl chloride                                           | 100-44-7     | '                                            |                                       |                        |                                                       |                                                       |                                           |                                 |
| Bromodichloromethane                                      | 75-27-4      |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| Bromoform                                                 | 75-27-4      |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| Bromomethane (Methyl bromide)                             | 74-83-9      |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| 1,3-Butadiene                                             | 106-99-0     |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| 2-Butanone (Methyl ethyl ketone, MEK)                     | 78-93-3      | 7                                            |                                       | 0                      |                                                       |                                                       |                                           |                                 |
| Carbon disulfide                                          | 75-15-0      | ,                                            |                                       |                        |                                                       |                                                       |                                           |                                 |
| Carbon tetrachloride                                      | 56-23-5      |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| Chlorobenzene                                             | 108-90-7     |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| Chloroethane (Ethyl chloride)                             | 75-00-3      |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| Chloroform                                                | 67-66-3      | 3                                            |                                       | 0                      |                                                       |                                                       |                                           |                                 |
| Chloromethane (Methyl chloride)                           | 74-87-3      | 1                                            |                                       | 0                      |                                                       |                                                       |                                           |                                 |
| Cyclohexane                                               | 110-82-7     |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| Dibromochloromethane                                      | 124-48-1     |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| 1,2-Dibromoethane (Ethylene dibromide, EDB)               | 106-93-4     |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| 1,2-Dichlorobenzene                                       | 95-50-1      |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| 1,3-Dichlorobenzene                                       | 541-73-1     |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| 1,4-Dichlorobenzene                                       | 106-46-7     |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| 1,1-Dichloroethane                                        | 75-34-3      |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| 1,2-Dichloroethane (DCA)                                  | 107-06-2     |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| 1,1-Dichloroethene (DCE)                                  | 75-35-4      |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| cis-1,2-Dichloroethene                                    | 156-59-2     | 20                                           |                                       | 1                      |                                                       |                                                       |                                           |                                 |
| trans-1,2-Dichloroethene                                  | 156-60-5     |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| Dichlorodifluoromethane (Freon 12)                        | 75-71-8      |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| 1,2-Dichloropropane                                       | 78-87-5      |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| cis-1,3-Dichloropropene                                   | 10061-01-5   |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| trans-1,3-Dichloropropene                                 | 10061-02-6   |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| Dichlorotetrafluoroethane (Freon 114)                     | 76-14-2      |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| Ethanol                                                   | 64-17-5      | 670                                          | · · · · · · · · · · · · · · · · · · · | 20                     |                                                       | <u> </u>                                              |                                           | ·                               |
| Ethyl acetate                                             | 141-78-6     |                                              |                                       | -                      |                                                       |                                                       |                                           |                                 |
| Ethylbenzene                                              | 100-41-4     | 1                                            |                                       | 0                      |                                                       |                                                       |                                           |                                 |
| 4-Ethyltoluene                                            | 622-96-8     |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| n-Heptane                                                 | 142-82-5     |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| Hexachloro-1,3-butadiene                                  | 87-68-3      |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| n-Hexane                                                  | 110-54-3     |                                              |                                       |                        |                                                       |                                                       |                                           | ·                               |
| 2-Hexanone (Methyl butyl ketone)                          | 591-78-6     |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| 4-Methyl-2-pentanone (Methyl isobutyl ketone, MIBK)       | 108-10-1     |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| Methylene chloride (Dichloromethane)                      | 75-09-2      | 4                                            |                                       | 0                      |                                                       |                                                       |                                           |                                 |
| Methyl-tert-butyl ether (MTBE)                            | 1634-04-4    |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| Naphthalene                                               | 91-20-3      |                                              |                                       |                        |                                                       |                                                       |                                           |                                 |
| 2-Propanol (Isopropyl alcohol)                            | 67-63-0      | 920                                          |                                       | 28                     |                                                       |                                                       |                                           |                                 |



| MPCA Leak ID: MN BIO BUSINESS CENTER                       |               | Enter SVE Sta                                | ndard Paramet | ers                    |                                                       | Enter AS Standa                                       | ard Parameter                             | s                               |
|------------------------------------------------------------|---------------|----------------------------------------------|---------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|---------------------------------|
| Sample Date: 3/30/2016                                     |               | Distance to Nearest Receptor (               | feet):        | 33                     | Distance to Nea                                       | rest Receptor (fee                                    | t):                                       | 33                              |
| Person Completing Worksheet: ADK                           |               | SVE Stack Height (feet):                     |               | 26.2                   | Air Stripper Stad                                     | ck Height (feet):                                     |                                           | 26.2                            |
| Notes: Use this area to provide comments regarding the sar | npling event, | SVE Stack Flow Rate (SCFM1)                  | :             | 64                     | Air Stripper Influ                                    | ent Flow Rate (L/s                                    | ):                                        | 0.244                           |
| input parameters, etc.                                     |               | Enter SVE Modeling F                         |               | applicable)            | Enter                                                 | AS Modeling Par                                       | ameters (if ap                            | plicable)                       |
|                                                            |               | SVE Stack Diameter (inches):                 |               | , pp. 10 a.u. 10 y     | AS Stack Diame                                        |                                                       |                                           | ,,                              |
|                                                            |               | SVE Stack Exit Velocity <sup>2</sup> (feet p | or cocond):   |                        |                                                       | elocity <sup>2</sup> (feet per se                     | noond):                                   |                                 |
|                                                            |               | SVE Stack Exit Velocity (leet p              |               |                        |                                                       | emperature (°F):                                      | cond).                                    |                                 |
|                                                            |               | ' '                                          | ,             | Contact MPCA           |                                                       | . ,                                                   | 3\ / /- \                                 | Contact MPCA                    |
|                                                            |               | SVE Annual Dispersion Factor                 |               |                        |                                                       | ersion Factor ((µg/                                   | ,                                         |                                 |
|                                                            |               | SVE 1-hr Dispersion Factor ((µ               | g/m³)/g/s)    | Contact MPCA           | AS 1-hr Dispers                                       | ion Factor ((µg/m³                                    | )/g/s)                                    | Contact MPCA                    |
| Chemical Name                                              | CAS#          | SVE Emission Concentration (µg/m³)           |               | nission Rate<br>g/sec) | AS Influent<br>Groundwater<br>Concentration<br>(µg/L) | AS Effluent<br>Groundwater<br>Concentration<br>(µg/L) | Removal<br>Factor<br>(dimension-<br>less) | AS Emission<br>Rate<br>(µg/sec) |
| Propylene (methylethylene or propene)                      | 115-07-1      |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| Styrene                                                    | 100-42-5      |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| 1,1,2,2-Tetrachloroethane                                  | 79-34-5       |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| Tetrachloroethylene (PCE)                                  | 127-18-4      | 19,000                                       |               | 577                    | 60                                                    | 0                                                     | 1.00                                      | 15                              |
| Tetrahydrofuran                                            | 109-99-9      | 2                                            |               | 0                      |                                                       |                                                       |                                           |                                 |
| Toluene (Methylbenzene)                                    | 108-88-3      | 40                                           |               | 1                      |                                                       |                                                       |                                           |                                 |
| 1,2,4-Trichlorobenzene                                     | 120-82-1      |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| 1,1,1-Trichloroethane (Methyl chloroform)                  | 71-55-6       | 10                                           |               | 0                      |                                                       |                                                       |                                           |                                 |
| 1,1,2-Trichloroethane                                      | 79-00-5       |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| Trichloroethylene (TCE)                                    | 79-01-6       | 13                                           |               | 0                      |                                                       |                                                       |                                           |                                 |
| Trichlorofluoromethane (Freon 11)                          | 75-69-4       |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| Trichlorotrifluoroethane (Freon 113)                       | 76-13-1       | 5,300                                        |               | 161                    |                                                       |                                                       |                                           |                                 |
| 1,2,4-Trimethylbenzene                                     | 95-63-6       |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| 1,3,5-Trimethylbenzene                                     | 108-67-8      |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| Vinyl acetate                                              | 108-05-4      |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| Vinyl chloride                                             | 75-01-4       |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| m&p-Xylene                                                 | 108-38-3      | 4                                            |               | 0                      |                                                       |                                                       |                                           |                                 |
| o-Xylene                                                   | 95-47-6       | 2                                            |               | 0                      |                                                       |                                                       |                                           | İ                               |

<sup>&</sup>lt;sup>1</sup>SCFM = standard cubic feet per minute based on a standard temperature of 77° F (25° C, 298.15 K) and a standard pressure of 1 atmosphere (14.7 pounds per square inch, 29.92 inches of mercury, 760 millimeters of mercury).

<sup>&</sup>lt;sup>2</sup>Provide stack exit velocity for actual exit conditions (i.e., at the actual temperature and pressure of the air being discharged).



Soil Vapor Extraction and/or Air Stripper Risk Evaluation Worksheet

Doc Type: Corrective Action Design

MPCA Leak ID: MN BIO BUSINESS CENTER Sample Date: 3/30/2016 Person Completing Worksheet: ADK

|                                                   | Acute Mixtures Evaluation |                                                  |     |          | Chronic Noncancer Mixtures Evaluation |                                                |     |              |       |      |                                                  |       |          |               |
|---------------------------------------------------|---------------------------|--------------------------------------------------|-----|----------|---------------------------------------|------------------------------------------------|-----|--------------|-------|------|--------------------------------------------------|-------|----------|---------------|
|                                                   |                           |                                                  |     |          | 1                                     | Chronic                                        |     |              |       |      |                                                  |       |          |               |
| Chemical Name                                     | CAS#                      | Acute<br>Hazard<br>Quotient                      | CNS | IRRIT    | REPRO                                 | Noncancer<br>Hazard<br>Quotient                | CNS | CV/BLD       | IMMUN | KIDN | LIVER/GI                                         | REPRO | RESP     | WHOLE<br>BODY |
| Acetone                                           | 67-64-1                   | 0.0                                              | 0.0 |          |                                       | 0.0                                            | 0.0 |              |       |      |                                                  |       |          |               |
| Benzene                                           | 71-43-2                   | 0.0                                              |     |          | 0.0                                   | 0.0                                            |     | 0.0          | 0.0   |      |                                                  |       |          |               |
| enzyl chloride                                    | 100-44-7                  |                                                  |     |          |                                       |                                                |     |              |       |      |                                                  |       |          |               |
| romodichloromethane                               | 75-27-4                   |                                                  |     |          |                                       |                                                |     |              |       |      |                                                  |       |          |               |
| romoform                                          | 75-25-2                   |                                                  |     |          |                                       |                                                |     |              |       |      |                                                  |       |          |               |
| romomethane (Methyl bromide)                      | 74-83-9                   |                                                  |     |          |                                       |                                                |     |              |       |      |                                                  |       |          |               |
| 3-Butadiene                                       | 106-99-0                  |                                                  |     |          |                                       |                                                |     |              |       |      |                                                  |       |          |               |
| -Butanone (Methyl ethyl ketone, MEK)              | 78-93-3                   | 0.0                                              |     | 0.0      |                                       | 0.0                                            |     |              |       |      |                                                  | 0.0   |          |               |
| arbon disulfide                                   | 75-15-0                   |                                                  |     |          |                                       |                                                |     |              |       |      |                                                  |       |          |               |
| arbon tetrachloride                               | 56-23-5                   |                                                  |     |          |                                       |                                                |     |              |       |      |                                                  |       |          |               |
| Chlorobenzene                                     | 108-90-7                  |                                                  |     |          |                                       |                                                |     |              |       |      |                                                  |       |          | İ             |
| hloroethane (Ethyl chloride)                      | 75-00-3                   |                                                  |     |          |                                       |                                                |     | İ            |       |      | 1                                                |       |          |               |
| Chloroform                                        | 67-66-3                   | 0.0                                              |     |          | 0.0                                   | 0.0                                            |     |              |       |      | 0.0                                              | 0.0   |          |               |
| Chloromethane (Methyl chloride)                   | 74-87-3                   | 0.0                                              | 0.0 |          | <u> </u>                              | 0.0                                            | 0.0 | İ            |       |      |                                                  |       |          |               |
| Cyclohexane                                       | 110-82-7                  |                                                  |     |          |                                       |                                                |     | İ            |       |      | 1                                                |       |          |               |
| bibromochloromethane                              | 124-48-1                  |                                                  |     |          |                                       |                                                |     |              |       |      |                                                  |       |          |               |
| 2-Dibromoethane (Ethylene dibromide, EDB)         | 106-93-4                  |                                                  |     |          |                                       |                                                |     | İ            |       |      | 1                                                |       |          |               |
| 2-Dichlorobenzene                                 | 95-50-1                   |                                                  |     | 1        |                                       |                                                |     |              |       |      |                                                  |       |          |               |
| 3-Dichlorobenzene                                 | 541-73-1                  |                                                  |     |          |                                       |                                                |     |              |       |      | 1                                                |       |          |               |
| .4-Dichlorobenzene                                | 106-46-7                  |                                                  |     |          |                                       |                                                |     |              |       |      | 1                                                |       |          |               |
| .1-Dichloroethane                                 | 75-34-3                   |                                                  |     |          |                                       |                                                |     |              |       |      | 1                                                |       |          |               |
| 2-Dichloroethane (DCA)                            | 107-06-2                  |                                                  |     |          |                                       |                                                |     |              |       |      |                                                  |       |          |               |
| 1-Dichloroethene (DCE)                            | 75-35-4                   | 1                                                |     |          |                                       |                                                |     |              |       |      |                                                  |       |          |               |
| s-1,2-Dichloroethene                              | 156-59-2                  |                                                  |     |          |                                       |                                                |     |              |       |      |                                                  |       |          |               |
| ans-1,2-Dichloroethene                            | 156-60-5                  |                                                  |     |          |                                       |                                                |     |              |       |      |                                                  |       |          |               |
| pichlorodifluoromethane (Freon 12)                | 75-71-8                   |                                                  |     |          |                                       |                                                |     |              |       |      |                                                  |       |          |               |
| ,2-Dichloropropane                                | 78-87-5                   |                                                  |     |          |                                       |                                                |     |              |       |      |                                                  |       |          |               |
| is-1,3-Dichloropropene*                           | 10061-01-5                |                                                  |     |          |                                       |                                                |     |              |       |      |                                                  |       |          |               |
| ans-1,3-Dichloropropene*                          | 10061-02-6                |                                                  |     |          |                                       |                                                |     |              |       |      | 1                                                |       |          |               |
| ichlorotetrafluoroethane (Freon 114)              | 76-14-2                   |                                                  |     |          |                                       |                                                |     |              |       |      | 1                                                |       |          |               |
| thanol                                            | 64-17-5                   | 0.0                                              |     | 0.0      |                                       | 0.0                                            |     | 1            |       |      | 1                                                |       | 0.0      |               |
| thyl acetate                                      | 141-78-6                  | 0.0                                              |     | 0.0      |                                       | 0.0                                            |     |              |       |      | 1                                                |       | 0.0      |               |
| thylbenzene                                       | 100-41-4                  | 0.0                                              |     |          | 0.0                                   | 0.0                                            |     | 1            |       | 0.0  | 1                                                |       |          |               |
| Ethyltoluene                                      | 622-96-8                  |                                                  |     | <b>†</b> | 3.0                                   | J                                              |     | 1            |       | 3.0  | <del>                                     </del> |       | <b> </b> | 1             |
| Heptane                                           | 142-82-5                  |                                                  |     |          |                                       |                                                |     |              |       |      | 1                                                |       |          |               |
| exachloro-1,3-butadiene                           | 87-68-3                   |                                                  |     |          |                                       |                                                |     |              |       |      | 1                                                |       |          |               |
| Hexane                                            | 110-54-3                  | 1                                                |     |          |                                       |                                                |     | 1            |       |      | +                                                |       |          |               |
| Hexanone (Methyl butyl ketone)                    | 591-78-6                  | 1                                                |     |          |                                       |                                                |     | 1            |       |      | +                                                |       |          |               |
| Methyl-2-pentanone (Methyl isobutyl ketone, MIBK) | 108-10-1                  |                                                  |     | <b>-</b> |                                       |                                                |     | <del> </del> |       |      | +                                                |       |          | <b> </b>      |
| ethylene chloride (Dichloromethane)               | 75-09-2                   | 0.0                                              | 0.0 |          |                                       | 0.0                                            | 0.0 | 0.0          |       |      | +                                                |       |          |               |
| ethyl-tert-butyl ether (MTBE)                     | 1634-04-4                 | 0.0                                              | 0.0 |          |                                       | 0.0                                            | 0.0 | 0.0          |       |      | +                                                |       |          |               |
| aphthalene                                        | 91-20-3                   |                                                  |     |          |                                       | <del>                                   </del> |     | 1            |       |      | +                                                |       |          |               |
|                                                   | 67-63-0                   | 0.0                                              |     | 0.0      |                                       | 0.0                                            |     | 1            |       | 0.0  | +                                                | 0.0   |          |               |
| -Propanol (Isopropyl alcohol)                     |                           | 0.0                                              |     | 0.0      |                                       | 0.0                                            |     | <del> </del> |       | 0.0  | <del>                                     </del> | 0.0   |          |               |
| ropylene (methylethylene or propene)<br>styrene   | 115-07-1<br>100-42-5      | <del>                                     </del> |     | <u> </u> |                                       |                                                |     | <del> </del> |       |      | <del>                                     </del> |       |          |               |
|                                                   |                           |                                                  |     | -        | 1                                     | l                                              |     | 1            |       |      | <del>                                     </del> |       |          | <b> </b>      |
| ,1,2,2-Tetrachloroethane                          | 79-34-5                   |                                                  | 0.0 | 0.0      | 1                                     | ı L                                            | 0.0 | 1            |       |      | 1                                                |       | l        | <u> </u>      |



Soil Vapor Extraction and/or Air Stripper Risk Evaluation Worksheet

Doc Type: Corrective Action Design

MPCA Leak ID: MN BIO BUSINESS CENTER

Sample Date: 3/30/2016

Person Completing Worksheet: ADK

|                                           |          |                             | Acute Mixtur | es Evaluatior | 1     |
|-------------------------------------------|----------|-----------------------------|--------------|---------------|-------|
| Chemical Name                             | CAS#     | Acute<br>Hazard<br>Quotient | CNS          | IRRIT         | REPRO |
| Tetrahydrofuran                           | 109-99-9 |                             |              |               |       |
| Toluene (Methylbenzene)                   | 108-88-3 | 0.0                         | 0.0          | 0.0           |       |
| 1,2,4-Trichlorobenzene                    | 120-82-1 |                             |              |               |       |
| 1,1,1-Trichloroethane (Methyl chloroform) | 71-55-6  | 0.0                         | 0.0          |               |       |
| 1,1,2-Trichloroethane                     | 79-00-5  |                             |              |               |       |
| Trichloroethylene (TCE)                   | 79-01-6  | 0.0                         |              |               | 0.0   |
| Trichlorofluoromethane (Freon 11)         | 75-69-4  |                             |              |               |       |
| Trichlorotrifluoroethane (Freon 113)      | 76-13-1  |                             |              |               |       |
| 1,2,4-Trimethylbenzene                    | 95-63-6  |                             |              |               |       |
| 1,3,5-Trimethylbenzene                    | 108-67-8 |                             |              |               |       |
| Vinyl acetate                             | 108-05-4 |                             |              |               |       |
| Vinyl chloride                            | 75-01-4  |                             |              |               |       |
| m&p-Xylene**                              | 108-38-3 | 0.0                         | 0.0          | 0.0           |       |
| o-Xylene**                                | 95-47-6  | 0.0                         | 0.0          | 0.0           |       |
| Hazard Index:                             |          | 0.0                         | 0.0          | 0.0           |       |

|                                            |     | (      | Chronic Nonc | ancer Mixtui | res Evaluatio | n     |      |               | Excess                                                 |
|--------------------------------------------|-----|--------|--------------|--------------|---------------|-------|------|---------------|--------------------------------------------------------|
| Chronic<br>Noncancer<br>Hazard<br>Quotient | CNS | CV/BLD | IMMUN        | KIDN         | LIVER/GI      | REPRO | RESP | WHOLE<br>BODY | Lifetime<br>Cancer Risk<br>(guideline<br>value = 1E-5) |
|                                            |     |        |              |              |               |       |      |               |                                                        |
| 0.0                                        | 0.0 |        |              |              |               |       |      |               |                                                        |
|                                            |     |        |              |              |               |       |      |               |                                                        |
| 0.0                                        | 0.0 |        |              |              |               |       |      |               |                                                        |
|                                            |     |        |              |              |               |       |      |               |                                                        |
| 0.0                                        | 0.0 |        |              |              |               |       |      |               | 2E-09                                                  |
|                                            |     |        |              |              |               |       |      |               |                                                        |
| 0.0                                        |     |        |              |              |               |       |      | 0.0           |                                                        |
|                                            |     |        |              |              |               |       |      |               |                                                        |
|                                            |     |        |              |              |               |       |      |               |                                                        |
|                                            |     |        |              |              |               |       |      |               |                                                        |
|                                            |     |        |              |              |               |       |      |               |                                                        |
| 0.0                                        | 0.0 |        |              |              |               |       |      |               |                                                        |
| 0.0                                        | 0.0 |        |              |              |               |       |      |               |                                                        |
|                                            | 0.0 | 0.0    | 0.0          | 0.0          | 0.0           | 0.0   | 0.0  | 0.0           | 4.8E-07                                                |

|       | Excess        |
|-------|---------------|
|       | Lifetime      |
| VHOLE | Cancer Risk   |
| BODY  | (guideline    |
|       | value = 1E-5) |
|       |               |
|       |               |
|       |               |
|       |               |
|       | 2E-09         |
|       |               |
| 0.0   |               |
|       |               |
|       |               |
|       |               |
|       |               |
|       |               |
| 0.0   | 4.8E-07       |
| 0.0   | 52 07         |
|       |               |

#### NOTES:

In general, total excess lifetime cancer risk is not to exceed 1E-5 and a hazard index (or chemical-specific hazard quotient) is not to exceed 1. The additive results are shown with one decimal point, which is intended to show transparency with the addition of risk but not to imply a level of precision greater than one significant figure. Risk managers may want to round to one significant figure when comparing to a cancer risk of 1E-5 or a hazard index of 1. Exceedance of these levels, which are bolded in text when met or exceeded, may require air emission controls.

CNS = Central Nervous System CV/BLD = Cardiovascular or Blood System IMMUN = Immune System IRRIT = Irritant (nasal, eye, throat irritation) KIDN = Kidney

LIVER/GI = Liver/Gastrointestinal

REPRO = Reproductive System, including developmental effects

<sup>\*</sup> based on 1,3-Dichloropropene (CAS # 542-75-6)

<sup>\*\*</sup> based on total Xylenes (CAS # 1330-20-7)



| MPCA Leak ID: MN BIO BUSINESS CENTER                       |               | Enter SVE Sta                                | ndard Paramet     | ers                                                    | Enter AS Standard Parameters |                                   |                       |               |  |
|------------------------------------------------------------|---------------|----------------------------------------------|-------------------|--------------------------------------------------------|------------------------------|-----------------------------------|-----------------------|---------------|--|
| Sample Date:4/20/2016                                      |               | Distance to Nearest Receptor (               | feet):            | 33                                                     | Distance to Nea              | rest Receptor (feet               | t):                   | 33            |  |
| Person Completing Worksheet: ADK                           |               | SVE Stack Height (feet):                     |                   | 26.2                                                   | Air Stripper Star            | ck Height (feet):                 |                       | 26.2          |  |
| Notes: Use this area to provide comments regarding the sar | npling event, | SVE Stack Flow Rate (SCFM1)                  |                   | 64                                                     | Air Stripper Influ           | ent Flow Rate (L/s                | ):                    | 0.022         |  |
| input parameters, etc.                                     |               | Enter SVE Modeling F                         |                   |                                                        |                              | AS Modeling Para                  |                       |               |  |
|                                                            |               | SVE Stack Diameter (inches):                 | `                 | ,                                                      | AS Stack Diame               |                                   | ` .                   | ,             |  |
|                                                            |               | SVE Stack Exit Velocity <sup>2</sup> (feet p | er second).       |                                                        |                              | elocity <sup>2</sup> (feet per se | econd).               |               |  |
|                                                            |               | SVE Stack Exit Temperature (°F):             |                   |                                                        |                              | emperature (°F):                  | oona).                |               |  |
|                                                            |               | SVE Annual Dispersion Factor ((µg/m³)/g/s)   |                   | Contact MPCA AS Annual Dispersion Factor ((µg/m³)/g/s) |                              |                                   | m <sup>3</sup> )/a/e) | Contact MPCA  |  |
|                                                            |               | SVE 1-hr Dispersion Factor ((µ               | Contact MPCA      |                                                        | ion Factor ((µg/m³)          |                                   | Contact MPCA          |               |  |
|                                                            | 1             | SVE 1-III Dispersion Factor ((µ              | g/m <i>)/g/s)</i> | CONTROL IVIE CA                                        | AS 1-III Dispers             | ion ractor ((µg/m                 | )/g/s)                | CONTROL WIFCA |  |
|                                                            |               |                                              |                   |                                                        | AS Influent                  | AS Effluent                       | Removal               | AS Emission   |  |
| Chemical Name                                              | CAS#          | SVE Emission Concentration                   | SVE En            | nission Rate                                           | Groundwater                  | Groundwater                       | Factor                | Rate          |  |
| Chomical Name                                              | 0,10 "        | (µg/m³)                                      | (μ                | g/sec)                                                 | Concentration                | Concentration                     | (dimension-           | (µg/sec)      |  |
|                                                            |               |                                              |                   |                                                        | (µg/L)                       | (µg/L)                            | less)                 | (µg/000)      |  |
| Acetone                                                    | 67-64-1       | 58                                           |                   | 2                                                      | 54                           | 121                               | -1.24                 | -1            |  |
| Benzene                                                    | 71-43-2       | 55                                           |                   |                                                        | 54                           | 121                               | 1.27                  | -             |  |
| Benzyl chloride                                            | 100-44-7      |                                              |                   |                                                        |                              |                                   |                       |               |  |
| Bromodichloromethane                                       | 75-27-4       |                                              |                   |                                                        |                              |                                   |                       |               |  |
| Bromoform                                                  | 75-27-4       |                                              |                   |                                                        |                              |                                   |                       |               |  |
| Bromomethane (Methyl bromide)                              | 74-83-9       |                                              |                   |                                                        |                              |                                   |                       |               |  |
| 1,3-Butadiene                                              | 106-99-0      |                                              |                   |                                                        |                              |                                   |                       |               |  |
| 2-Butanone (Methyl ethyl ketone, MEK)                      | 78-93-3       | 16                                           |                   | n                                                      |                              |                                   |                       |               |  |
| Carbon disulfide                                           | 75-15-0       | 10                                           |                   |                                                        |                              |                                   |                       |               |  |
| Carbon tetrachloride                                       | 56-23-5       |                                              |                   |                                                        |                              |                                   |                       |               |  |
| Chlorobenzene                                              | 108-90-7      |                                              |                   |                                                        |                              |                                   |                       |               |  |
| Chloroethane (Ethyl chloride)                              | 75-00-3       |                                              |                   |                                                        |                              |                                   |                       |               |  |
| Chloroform                                                 | 67-66-3       |                                              |                   |                                                        |                              |                                   |                       |               |  |
| Chloromethane (Methyl chloride)                            | 74-87-3       | 1                                            |                   | 0                                                      |                              |                                   |                       |               |  |
| Cyclohexane                                                | 110-82-7      |                                              |                   |                                                        |                              |                                   |                       |               |  |
| Dibromochloromethane                                       | 124-48-1      |                                              |                   |                                                        |                              |                                   |                       |               |  |
| 1,2-Dibromoethane (Ethylene dibromide, EDB)                | 106-93-4      |                                              |                   |                                                        |                              |                                   |                       |               |  |
| 1,2-Dichlorobenzene                                        | 95-50-1       |                                              |                   |                                                        |                              |                                   |                       |               |  |
| 1,3-Dichlorobenzene                                        | 541-73-1      |                                              |                   |                                                        |                              |                                   |                       |               |  |
| 1,4-Dichlorobenzene                                        | 106-46-7      |                                              |                   |                                                        |                              |                                   |                       |               |  |
| 1,1-Dichloroethane                                         | 75-34-3       |                                              |                   |                                                        |                              |                                   |                       |               |  |
| 1,2-Dichloroethane (DCA)                                   | 107-06-2      |                                              |                   |                                                        |                              |                                   |                       |               |  |
| 1,1-Dichloroethene (DCE)                                   | 75-35-4       |                                              |                   |                                                        |                              |                                   |                       |               |  |
| cis-1,2-Dichloroethene                                     | 156-59-2      |                                              |                   |                                                        |                              |                                   |                       |               |  |
| trans-1,2-Dichloroethene                                   | 156-60-5      |                                              |                   |                                                        |                              |                                   |                       |               |  |
| Dichlorodifluoromethane (Freon 12)                         | 75-71-8       | 12                                           |                   | 0                                                      |                              |                                   |                       |               |  |
| 1,2-Dichloropropane                                        | 78-87-5       |                                              |                   |                                                        |                              |                                   |                       |               |  |
| cis-1,3-Dichloropropene                                    | 10061-01-5    |                                              |                   |                                                        |                              |                                   |                       |               |  |
| trans-1,3-Dichloropropene                                  | 10061-02-6    |                                              |                   |                                                        |                              |                                   |                       |               |  |
| Dichlorotetrafluoroethane (Freon 114)                      | 76-14-2       |                                              |                   |                                                        |                              |                                   |                       |               |  |
| Ethanol                                                    | 64-17-5       | 420                                          |                   | 13                                                     |                              |                                   |                       |               |  |
| Ethyl acetate                                              | 141-78-6      |                                              |                   |                                                        |                              |                                   |                       |               |  |
| Ethylbenzene                                               | 100-41-4      |                                              |                   |                                                        |                              |                                   |                       |               |  |
| 4-Ethyltoluene                                             | 622-96-8      |                                              |                   |                                                        |                              |                                   |                       |               |  |
| n-Heptane                                                  | 142-82-5      |                                              |                   |                                                        |                              |                                   |                       |               |  |
| Hexachloro-1,3-butadiene                                   | 87-68-3       |                                              |                   |                                                        |                              |                                   |                       |               |  |
| n-Hexane                                                   | 110-54-3      | 2                                            |                   | 0                                                      |                              |                                   |                       |               |  |
| 2-Hexanone (Methyl butyl ketone)                           | 591-78-6      |                                              |                   |                                                        |                              |                                   |                       |               |  |
| 4-Methyl-2-pentanone (Methyl isobutyl ketone, MIBK)        | 108-10-1      |                                              |                   |                                                        |                              |                                   |                       |               |  |
| Methylene chloride (Dichloromethane)                       | 75-09-2       | 5                                            |                   | 0                                                      |                              |                                   |                       |               |  |
| Methyl-tert-butyl ether (MTBE)                             | 1634-04-4     |                                              |                   |                                                        |                              |                                   |                       |               |  |
| Naphthalene                                                | 91-20-3       |                                              |                   |                                                        |                              |                                   |                       |               |  |
| 2-Propanol (Isopropyl alcohol)                             | 67-63-0       | 710                                          |                   | 22                                                     |                              |                                   |                       |               |  |



| MPCA Leak ID: MN BIO BUSINESS CENTER                       |               | Enter SVE Star                               | ndard Paramet | ers                    |                                                       | Enter AS Standa                                       |                                           | s                               |
|------------------------------------------------------------|---------------|----------------------------------------------|---------------|------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|---------------------------------|
| Sample Date:4/20/2016                                      |               | Distance to Nearest Receptor (               | feet):        | 33                     | Distance to Nea                                       | arest Receptor (fee                                   | t):                                       | 33                              |
| Person Completing Worksheet: ADK                           |               | SVE Stack Height (feet):                     |               | 26.2                   | Air Stripper Sta                                      | Air Stripper Stack Height (feet):                     |                                           | 26.2                            |
| Notes: Use this area to provide comments regarding the san | npling event, | SVE Stack Flow Rate (SCFM <sup>1</sup> ):    |               | 64                     | Air Stripper Influent Flow Rate (L/s):                |                                                       | ):                                        | 0.022                           |
| input parameters, etc.                                     | , ,           | Enter SVE Modeling P                         | pplicable)    | Enter                  | plicable)                                             |                                                       |                                           |                                 |
|                                                            |               | SVE Stack Diameter (inches):                 | ррпошью,      | AS Stack Diame         |                                                       | ametere (ii ap                                        |                                           |                                 |
|                                                            |               | SVE Stack Exit Velocity <sup>2</sup> (feet p | or cocond):   |                        |                                                       | 'elocity <sup>2</sup> (feet per se                    | noond):                                   |                                 |
|                                                            |               | SVE Stack Exit Velocity (leet p              |               |                        | emperature (°F):                                      | econa).                                               |                                           |                                 |
|                                                            |               | ' '                                          | ,             | Control MDCA           |                                                       | 1 ( )                                                 | 3\ ( ( . )                                | O                               |
|                                                            |               | SVE Annual Dispersion Factor                 | ,,,,,         | Contact MPCA           |                                                       | ersion Factor ((µg/                                   | , ,                                       | Contact MPCA                    |
|                                                            |               | SVE 1-hr Dispersion Factor ((µ               | g/m³)/g/s)    | Contact MPCA           | AS 1-hr Dispers                                       | ion Factor ((µg/m³                                    | )/g/s)                                    | Contact MPCA                    |
| Chemical Name                                              | CAS#          | SVE Emission Concentration (µg/m³)           |               | nission Rate<br>g/sec) | AS Influent<br>Groundwater<br>Concentration<br>(µg/L) | AS Effluent<br>Groundwater<br>Concentration<br>(µg/L) | Removal<br>Factor<br>(dimension-<br>less) | AS Emission<br>Rate<br>(μg/sec) |
| Propylene (methylethylene or propene)                      | 115-07-1      |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| Styrene                                                    | 100-42-5      |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| 1,1,2,2-Tetrachloroethane                                  | 79-34-5       |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| Tetrachloroethylene (PCE)                                  | 127-18-4      | 6                                            |               | 0                      | 106                                                   | 0                                                     | 1.00                                      | 2                               |
| Tetrahydrofuran                                            | 109-99-9      | 2                                            |               | 0                      |                                                       |                                                       |                                           |                                 |
| Toluene (Methylbenzene)                                    | 108-88-3      | 4                                            |               | 0                      |                                                       |                                                       |                                           |                                 |
| 1,2,4-Trichlorobenzene                                     | 120-82-1      |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| 1,1,1-Trichloroethane (Methyl chloroform)                  | 71-55-6       |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| 1,1,2-Trichloroethane                                      | 79-00-5       |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| Trichloroethylene (TCE)                                    | 79-01-6       |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| Trichlorofluoromethane (Freon 11)                          | 75-69-4       |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| Trichlorotrifluoroethane (Freon 113)                       | 76-13-1       | 1,900                                        |               | 58                     |                                                       |                                                       |                                           |                                 |
| 1,2,4-Trimethylbenzene                                     | 95-63-6       |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| 1,3,5-Trimethylbenzene                                     | 108-67-8      |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| Vinyl acetate                                              | 108-05-4      |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| Vinyl chloride                                             | 75-01-4       |                                              |               |                        |                                                       |                                                       |                                           |                                 |
| m&p-Xylene                                                 | 108-38-3      | 2                                            |               | 0                      |                                                       |                                                       |                                           |                                 |
| o-Xylene                                                   | 95-47-6       | 1                                            |               | 0                      |                                                       |                                                       |                                           |                                 |

<sup>&</sup>lt;sup>1</sup>SCFM = standard cubic feet per minute based on a standard temperature of 77° F (25° C, 298.15 K) and a standard pressure of 1 atmosphere (14.7 pounds per square inch, 29.92 inches of mercury, 760 millimeters of mercury).

<sup>&</sup>lt;sup>2</sup>Provide stack exit velocity for actual exit conditions (i.e., at the actual temperature and pressure of the air being discharged).



Soil Vapor Extraction and/or Air Stripper Risk Evaluation Worksheet

Doc Type: Corrective Action Design

MPCA Leak ID: MN BIO BUSINESS CENTER Sample Date:4/20/2016 Person Completing Worksheet: ADK

|                                                   | 1          |                             | Acute Mixtur   | es Evaluatio | n     | i i                             |                                               | (      | Chronic None | ancer Mixtu | res Evaluation | n     |      |       |
|---------------------------------------------------|------------|-----------------------------|----------------|--------------|-------|---------------------------------|-----------------------------------------------|--------|--------------|-------------|----------------|-------|------|-------|
|                                                   |            |                             | TOUTO IVIIATUI | - Lvaidallo  |       | Chronic                         | Chronic Noncancer Mixtures Evaluation Chronic |        |              |             |                |       |      |       |
| Chemical Name                                     | CAS#       | Acute<br>Hazard<br>Quotient | CNS            | IRRIT        | REPRO | Noncancer<br>Hazard<br>Quotient | CNS                                           | CV/BLD | IMMUN        | KIDN        | LIVER/GI       | REPRO | RESP | WHOLE |
| Acetone                                           | 67-64-1    | 0.0                         | 0.0            |              |       | 0.0                             | 0.0                                           |        |              |             |                |       |      |       |
| enzene                                            | 71-43-2    |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| enzyl chloride                                    | 100-44-7   |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| romodichloromethane                               | 75-27-4    |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| romoform                                          | 75-25-2    |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| romomethane (Methyl bromide)                      | 74-83-9    |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| 3-Butadiene                                       | 106-99-0   |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| -Butanone (Methyl ethyl ketone, MEK)              | 78-93-3    | 0.0                         |                | 0.0          |       | 0.0                             |                                               |        |              |             |                | 0.0   |      |       |
| Carbon disulfide                                  | 75-15-0    |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| arbon tetrachloride                               | 56-23-5    |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| Chlorobenzene                                     | 108-90-7   |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| hloroethane (Ethyl chloride)                      | 75-00-3    |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| Chloroform                                        | 67-66-3    |                             |                |              |       | 1                               |                                               |        |              |             |                |       |      |       |
| Chloromethane (Methyl chloride)                   | 74-87-3    | 0.0                         | 0.0            |              |       | 0.0                             | 0.0                                           |        |              |             |                |       |      |       |
| Cyclohexane                                       | 110-82-7   |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| Dibromochloromethane                              | 124-48-1   |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| ,2-Dibromoethane (Ethylene dibromide, EDB)        | 106-93-4   |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| ,2-Dichlorobenzene                                | 95-50-1    |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| ,3-Dichlorobenzene                                | 541-73-1   |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| ,4-Dichlorobenzene                                | 106-46-7   |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| ,1-Dichloroethane                                 | 75-34-3    |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| ,2-Dichloroethane (DCA)                           | 107-06-2   |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| ,1-Dichloroethene (DCE)                           | 75-35-4    |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| is-1,2-Dichloroethene                             | 156-59-2   |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| ans-1,2-Dichloroethene                            | 156-60-5   |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| richlorodifluoromethane (Freon 12)                | 75-71-8    |                             |                |              |       | 0.0                             |                                               |        |              |             | 0.0            |       |      |       |
| ,2-Dichloropropane                                | 78-87-5    |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| is-1,3-Dichloropropene*                           | 10061-01-5 |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| ans-1,3-Dichloropropene*                          | 10061-02-6 |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| ichlorotetrafluoroethane (Freon 114)              | 76-14-2    |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| thanol                                            | 64-17-5    | 0.0                         |                | 0.0          |       | 0.0                             |                                               |        |              |             |                |       | 0.0  |       |
| thyl acetate                                      | 141-78-6   |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| thylbenzene                                       | 100-41-4   |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| -Ethyltoluene                                     | 622-96-8   |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| -Heptane                                          | 142-82-5   |                             |                |              |       |                                 |                                               |        |              |             |                |       |      | 1     |
| lexachloro-1,3-butadiene                          | 87-68-3    |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| -Hexane                                           | 110-54-3   |                             |                |              |       | 0.0                             | 0.0                                           |        |              |             |                |       | 0.0  |       |
| -Hexanone (Methyl butyl ketone)                   | 591-78-6   |                             |                |              |       |                                 |                                               |        |              |             |                |       |      | 1     |
| Methyl-2-pentanone (Methyl isobutyl ketone, MIBK) | 108-10-1   |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| ethylene chloride (Dichloromethane)               | 75-09-2    | 0.0                         | 0.0            |              |       | 0.0                             | 0.0                                           | 0.0    |              |             |                |       |      |       |
| ethyl-tert-butyl ether (MTBE)                     | 1634-04-4  |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| aphthalene                                        | 91-20-3    |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| -Propanol (Isopropyl alcohol)                     | 67-63-0    | 0.0                         |                | 0.0          |       | 0.0                             |                                               |        |              | 0.0         |                | 0.0   |      |       |
| ropylene (methylethylene or propene)              | 115-07-1   |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| Styrene                                           | 100-42-5   |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| ,1,2,2-Tetrachloroethane                          | 79-34-5    |                             |                |              |       |                                 |                                               |        |              |             |                |       |      |       |
| Tetrachloroethylene (PCE)                         | 127-18-4   | 0.0                         | 0.0            | 0.0          |       | 0.0                             | 0.0                                           |        |              | <u> </u>    |                |       |      |       |



Soil Vapor Extraction and/or Air Stripper Risk Evaluation Worksheet

Doc Type: Corrective Action Design

MPCA Leak ID: MN BIO BUSINESS CENTER Sample Date:4/20/2016 Person Completing Worksheet: ADK

|                                           |          | ,                           | Acute Mixtur | es Evaluatior | 1     |
|-------------------------------------------|----------|-----------------------------|--------------|---------------|-------|
| Chemical Name                             | CAS#     | Acute<br>Hazard<br>Quotient | CNS          | IRRIT         | REPRO |
| Tetrahydrofuran                           | 109-99-9 |                             |              |               |       |
| Toluene (Methylbenzene)                   | 108-88-3 | 0.0                         | 0.0          | 0.0           |       |
| 1,2,4-Trichlorobenzene                    | 120-82-1 |                             |              |               |       |
| 1,1,1-Trichloroethane (Methyl chloroform) | 71-55-6  |                             |              |               |       |
| 1,1,2-Trichloroethane                     | 79-00-5  |                             |              |               |       |
| Trichloroethylene (TCE)                   | 79-01-6  |                             |              |               |       |
| Trichlorofluoromethane (Freon 11)         | 75-69-4  |                             |              |               |       |
| Trichlorotrifluoroethane (Freon 113)      | 76-13-1  |                             |              |               |       |
| 1,2,4-Trimethylbenzene                    | 95-63-6  |                             |              |               |       |
| 1,3,5-Trimethylbenzene                    | 108-67-8 |                             |              |               |       |
| Vinyl acetate                             | 108-05-4 |                             |              |               |       |
| Vinyl chloride                            | 75-01-4  |                             |              |               |       |
| m&p-Xylene**                              | 108-38-3 | 0.0                         | 0.0          | 0.0           |       |
| o-Xylene**                                | 95-47-6  | 0.0                         | 0.0          | 0.0           |       |
| Hazard Index:                             |          | 0.0                         | 0.0          | 0.0           |       |

|                                            |     | (      | Chronic Nonc | ancer Mixtu | res Evaluatio | n     |      |               | Excess                                                 |
|--------------------------------------------|-----|--------|--------------|-------------|---------------|-------|------|---------------|--------------------------------------------------------|
| Chronic<br>Noncancer<br>Hazard<br>Quotient | CNS | CV/BLD | IMMUN        | KIDN        | LIVER/GI      | REPRO | RESP | WHOLE<br>BODY | Lifetime<br>Cancer Risk<br>(guideline<br>value = 1E-5) |
|                                            |     |        |              |             |               |       |      |               |                                                        |
| 0.0                                        | 0.0 |        |              |             |               |       |      |               |                                                        |
|                                            |     |        |              |             |               |       |      |               |                                                        |
|                                            |     |        |              |             |               |       |      |               |                                                        |
|                                            |     | 1      |              |             |               |       |      |               |                                                        |
|                                            |     |        |              |             |               |       |      |               |                                                        |
| 0.0                                        |     |        |              |             |               |       |      | 0.0           |                                                        |
|                                            |     |        |              |             |               |       |      |               |                                                        |
|                                            |     |        |              |             |               |       |      |               |                                                        |
|                                            |     |        |              |             |               |       |      |               |                                                        |
|                                            |     |        |              |             |               |       |      |               |                                                        |
| 0.0                                        | 0.0 |        |              |             |               |       |      |               |                                                        |
| 0.0                                        | 0.0 |        |              |             |               |       |      |               |                                                        |
|                                            | 0.0 | 0.0    | 0.0          | 0.0         | 0.0           | 0.0   | 0.0  | 0.0           | 2.1E-09                                                |

#### NOTES:

In general, total excess lifetime cancer risk is not to exceed 1E-5 and a hazard index (or chemical-specific hazard quotient) is not to exceed 1. The additive results are shown with one decimal point, which is intended to show transparency with the addition of risk but not to imply a level of precision greater than one significant figure. Risk managers may want to round to one significant figure when comparing to a cancer risk of 1E-5 or a hazard index of 1. Exceedance of these levels, which are bolded in text when met or exceeded, may require air emission controls.

CNS = Central Nervous System
CV/BLD = Cardiovascular or Blood System
IMMUN = Immune System
IRRIT = Irritant (nasal, eye, throat irritation)
KIDN = Kidney

LIVER/GI = Liver/Gastrointestinal

REPRO = Reproductive System, including developmental effects

<sup>\*</sup> based on 1,3-Dichloropropene (CAS # 542-75-6)

<sup>\*\*</sup> based on total Xylenes (CAS # 1330-20-7)



| MPCA Leak ID:                                              |              | Enter SVE Sta                                | ndard Paramet   | ers                    | Enter AS Standard Parameters                                                        |                                                       |                                           |                                 |  |
|------------------------------------------------------------|--------------|----------------------------------------------|-----------------|------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|---------------------------------|--|
| Sample Date: 5/18/2016                                     |              | Distance to Nearest Receptor (               |                 |                        | Distance to Nea                                                                     | rest Receptor (feet                                   | ):                                        | 33                              |  |
| Person Completing Worksheet: ADK                           |              | SVE Stack Height (feet):                     |                 |                        | Air Stripper Stad                                                                   |                                                       | ,                                         | 26.2                            |  |
| Notes: Use this area to provide comments regarding the sal | mpling event | SVE Stack Flow Rate (SCFM <sup>1</sup> )     |                 |                        |                                                                                     | ent Flow Rate (L/s)                                   | ١٠                                        | 0.017                           |  |
| input parameters, etc.                                     |              | Enter SVE Modeling F                         |                 |                        |                                                                                     | AS Modeling Para                                      |                                           |                                 |  |
| ,,                                                         |              | SVE Stack Diameter (inches):                 | arameters (ii a | ipplicable)            |                                                                                     |                                                       | anieters (ii ap                           | Jilcabie)                       |  |
|                                                            |              | \ /                                          |                 |                        | AS Stack Diameter (inches):  AS Stack Exit Velocity <sup>2</sup> (feet per second): |                                                       |                                           |                                 |  |
|                                                            |              | SVE Stack Exit Velocity <sup>2</sup> (feet p |                 |                        |                                                                                     |                                                       | econd):                                   |                                 |  |
|                                                            |              | SVE Stack Exit Temperature (°                |                 |                        | emperature (°F):                                                                    | 2                                                     |                                           |                                 |  |
|                                                            |              | SVE Annual Dispersion Factor                 | Contact MPCA    |                        | ersion Factor ((µg/r                                                                | , , ,                                                 | Contact MPCA                              |                                 |  |
|                                                            |              | SVE 1-hr Dispersion Factor ((μ               | g/m³)/g/s)      | Contact MPCA           | AS 1-hr Dispers                                                                     | ion Factor ((µg/m³)                                   | /g/s)                                     | Contact MPCA                    |  |
| Chemical Name                                              | CAS#         | SVE Emission Concentration (µg/m³)           |                 | nission Rate<br>g/sec) | AS Influent<br>Groundwater<br>Concentration<br>(µg/L)                               | AS Effluent<br>Groundwater<br>Concentration<br>(µg/L) | Removal<br>Factor<br>(dimension-<br>less) | AS Emission<br>Rate<br>(μg/sec) |  |
| Acetone                                                    | 67-64-1      | 29                                           |                 | 1                      | 25                                                                                  | 45                                                    | -0.77                                     | 0                               |  |
| Benzene                                                    | 71-43-2      | 1                                            |                 | 0                      | 20                                                                                  | -10                                                   | 5.77                                      |                                 |  |
| Benzyl chloride                                            | 100-44-7     |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| Bromodichloromethane                                       | 75-27-4      |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| Bromoform                                                  | 75-27-4      |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| Bromomethane (Methyl bromide)                              | 74-83-9      |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| 1,3-Butadiene                                              | 106-99-0     |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| 2-Butanone (Methyl ethyl ketone, MEK)                      | 78-93-3      | 2                                            |                 | 0                      |                                                                                     |                                                       |                                           |                                 |  |
| Carbon disulfide                                           | 75-15-0      | 2                                            |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| Carbon tetrachloride                                       | 56-23-5      |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| Chlorobenzene                                              | 108-90-7     |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| Chloroethane (Ethyl chloride)                              | 75-00-3      |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| Chloroform                                                 | 67-66-3      |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| Chloromethane (Methyl chloride)                            | 74-87-3      | 1                                            |                 | 0                      |                                                                                     |                                                       |                                           |                                 |  |
| Cyclohexane                                                | 110-82-7     |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| Dibromochloromethane                                       | 124-48-1     |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| 1,2-Dibromoethane (Ethylene dibromide, EDB)                | 106-93-4     |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| 1,2-Dichlorobenzene                                        | 95-50-1      |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| 1,3-Dichlorobenzene                                        | 541-73-1     |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| 1,4-Dichlorobenzene                                        | 106-46-7     |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| 1,1-Dichloroethane                                         | 75-34-3      |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| 1,2-Dichloroethane (DCA)                                   | 107-06-2     |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| 1,1-Dichloroethene (DCE)                                   | 75-35-4      |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| cis-1,2-Dichloroethene                                     | 156-59-2     |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| trans-1,2-Dichloroethene                                   | 156-60-5     |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| Dichlorodifluoromethane (Freon 12)                         | 75-71-8      |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| 1,2-Dichloropropane                                        | 78-87-5      |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| cis-1,3-Dichloropropene                                    | 10061-01-5   |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| trans-1,3-Dichloropropene                                  | 10061-02-6   |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| Dichlorotetrafluoroethane (Freon 114)                      | 76-14-2      |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| Ethanol                                                    | 64-17-5      | 340                                          |                 | 11                     |                                                                                     |                                                       |                                           |                                 |  |
| Ethyl acetate                                              | 141-78-6     |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| Ethylbenzene                                               | 100-41-4     |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| 4-Ethyltoluene                                             | 622-96-8     |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| n-Heptane                                                  | 142-82-5     |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| Hexachloro-1,3-butadiene                                   | 87-68-3      |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| n-Hexane                                                   | 110-54-3     |                                              |                 | <u> </u>               |                                                                                     |                                                       | · · · · · · · · · · · · · · · · · · ·     |                                 |  |
| 2-Hexanone (Methyl butyl ketone)                           | 591-78-6     |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| 4-Methyl-2-pentanone (Methyl isobutyl ketone, MIBK)        | 108-10-1     |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| Methylene chloride (Dichloromethane)                       | 75-09-2      | 3                                            |                 | 0                      |                                                                                     |                                                       |                                           |                                 |  |
| Methyl-tert-butyl ether (MTBE)                             | 1634-04-4    |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| Naphthalene                                                | 91-20-3      |                                              |                 |                        |                                                                                     |                                                       |                                           |                                 |  |
| 2-Propanol (Isopropyl alcohol)                             | 67-63-0      | 540                                          |                 | 17                     |                                                                                     |                                                       |                                           |                                 |  |



| MPCA Leak ID:                                              |                              | Enter SVE Sta                                | ndard Paramet     | ers          |                                                       | Enter AS Standa                                       | ard Parameter                             | s                                       |
|------------------------------------------------------------|------------------------------|----------------------------------------------|-------------------|--------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|-----------------------------------------|
| Sample Date: 5/18/2016                                     |                              | Distance to Nearest Receptor (               | feet):            | 33           | Distance to Nea                                       | rest Receptor (fee                                    | t):                                       | 33                                      |
| Person Completing Worksheet: ADK                           |                              | SVE Stack Height (feet):                     |                   | 26.2         | Air Stripper Stad                                     | ck Height (feet):                                     |                                           | 26.2                                    |
| Notes: Use this area to provide comments regarding the san | npling event,                | SVE Stack Flow Rate (SCFM <sup>1</sup> )     | •                 | 66           | 66 Air Stripper Influent Flow Rate (L/s):             |                                                       |                                           | 0.017                                   |
| input parameters, etc.                                     | , ,                          | Enter SVE Modeling F                         |                   | pplicable)   | Enter                                                 | AS Modeling Par                                       | ameters (if an                            |                                         |
|                                                            |                              | SVE Stack Diameter (inches):                 |                   | ppcas.c,     | AS Stack Diame                                        |                                                       | шотого ( цр                               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|                                                            |                              | SVE Stack Exit Velocity <sup>2</sup> (feet p |                   |              | elocity <sup>2</sup> (feet per se                     | 20004).                                               |                                           |                                         |
|                                                            |                              | SVE Stack Exit Velocity (leet p              |                   |              |                                                       | emperature (°F):                                      | econa).                                   |                                         |
|                                                            |                              |                                              | ,                 | 0 1 11001    |                                                       | . ,                                                   | 3                                         | 0 1 11001                               |
|                                                            | SVE Annual Dispersion Factor | 1110 / 0 /                                   | Contact MPCA      |              | ersion Factor ((µg/                                   | , , ,                                                 | Contact MPCA                              |                                         |
|                                                            |                              | SVE 1-hr Dispersion Factor ((µ               | g/m³)/g/s)        | Contact MPCA | AS 1-hr Dispers                                       | ion Factor ((µg/m³                                    | )/g/s)                                    | Contact MPCA                            |
| Chemical Name                                              | CAS#                         | SVE Emission Concentration (µg/m³)           | SVE Emission Rate |              | AS Influent<br>Groundwater<br>Concentration<br>(µg/L) | AS Effluent<br>Groundwater<br>Concentration<br>(µg/L) | Removal<br>Factor<br>(dimension-<br>less) | AS Emission<br>Rate<br>(μg/sec)         |
| Propylene (methylethylene or propene)                      | 115-07-1                     |                                              |                   |              |                                                       |                                                       |                                           |                                         |
| Styrene                                                    | 100-42-5                     |                                              |                   |              |                                                       |                                                       |                                           |                                         |
| 1,1,2,2-Tetrachloroethane                                  | 79-34-5                      |                                              |                   |              |                                                       |                                                       |                                           |                                         |
| Tetrachloroethylene (PCE)                                  | 127-18-4                     | 18                                           |                   | 1            | 3                                                     | 0                                                     | 1.00                                      | 0                                       |
| Tetrahydrofuran                                            | 109-99-9                     | 2                                            |                   | 0            |                                                       |                                                       |                                           |                                         |
| Toluene (Methylbenzene)                                    | 108-88-3                     | 3                                            |                   | 0            |                                                       |                                                       |                                           |                                         |
| 1,2,4-Trichlorobenzene                                     | 120-82-1                     |                                              |                   |              |                                                       |                                                       |                                           |                                         |
| 1,1,1-Trichloroethane (Methyl chloroform)                  | 71-55-6                      |                                              |                   |              |                                                       |                                                       |                                           |                                         |
| 1,1,2-Trichloroethane                                      | 79-00-5                      |                                              |                   |              |                                                       |                                                       |                                           |                                         |
| Trichloroethylene (TCE)                                    | 79-01-6                      |                                              |                   |              |                                                       |                                                       |                                           |                                         |
| Trichlorofluoromethane (Freon 11)                          | 75-69-4                      |                                              |                   |              |                                                       |                                                       |                                           |                                         |
| Trichlorotrifluoroethane (Freon 113)                       | 76-13-1                      | 2,100                                        |                   | 66           |                                                       |                                                       |                                           |                                         |
| 1,2,4-Trimethylbenzene                                     | 95-63-6                      |                                              |                   |              |                                                       |                                                       |                                           |                                         |
| 1,3,5-Trimethylbenzene                                     | 108-67-8                     |                                              |                   |              |                                                       |                                                       |                                           |                                         |
| Vinyl acetate                                              | 108-05-4                     |                                              |                   |              |                                                       |                                                       |                                           |                                         |
| Vinyl chloride                                             | 75-01-4                      |                                              |                   |              |                                                       |                                                       |                                           |                                         |
| m&p-Xylene                                                 | 108-38-3                     | 2                                            |                   | 0            |                                                       |                                                       |                                           |                                         |
| o-Xylene                                                   | 95-47-6                      |                                              |                   |              |                                                       |                                                       |                                           |                                         |

<sup>&</sup>lt;sup>1</sup>SCFM = standard cubic feet per minute based on a standard temperature of 77° F (25° C, 298.15 K) and a standard pressure of 1 atmosphere (14.7 pounds per square inch, 29.92 inches of mercury, 760 millimeters of mercury).

<sup>&</sup>lt;sup>2</sup>Provide stack exit velocity for actual exit conditions (i.e., at the actual temperature and pressure of the air being discharged).



Soil Vapor Extraction and/or Air Stripper Risk Evaluation Worksheet

Doc Type: Corrective Action Design

MPCA Leak ID: Sample Date: 5/18/2016 Person Completing Worksheet: ADK

|                                                   | 1          | Acute Mixtures Evaluation   |                |              |       | Chronic Noncancer Mixtures Evaluation |     |        |                |            |                |       |      |       |
|---------------------------------------------------|------------|-----------------------------|----------------|--------------|-------|---------------------------------------|-----|--------|----------------|------------|----------------|-------|------|-------|
|                                                   |            |                             | NOUTE IVIIXIUI | US ⊑valuall0 |       | Chronic                               |     | 1      | JITOHIC INOHIC | ance wixtu | ios ∟valuati0i | 1     |      |       |
| Chemical Name                                     | CAS#       | Acute<br>Hazard<br>Quotient | CNS            | IRRIT        | REPRO | Noncancer<br>Hazard<br>Quotient       | CNS | CV/BLD | IMMUN          | KIDN       | LIVER/GI       | REPRO | RESP | WHOLE |
| cetone                                            | 67-64-1    | 0.0                         | 0.0            |              |       | 0.0                                   | 0.0 |        |                |            |                |       |      |       |
| enzene                                            | 71-43-2    | 0.0                         |                |              | 0.0   | 0.0                                   |     | 0.0    | 0.0            |            |                |       |      |       |
| enzyl chloride                                    | 100-44-7   |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| romodichloromethane                               | 75-27-4    |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| romoform                                          | 75-25-2    |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| romomethane (Methyl bromide)                      | 74-83-9    |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| 3-Butadiene                                       | 106-99-0   |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| -Butanone (Methyl ethyl ketone, MEK)              | 78-93-3    | 0.0                         |                | 0.0          |       | 0.0                                   |     |        |                |            |                | 0.0   |      |       |
| Carbon disulfide                                  | 75-15-0    |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| arbon tetrachloride                               | 56-23-5    |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| hlorobenzene                                      | 108-90-7   |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| hloroethane (Ethyl chloride)                      | 75-00-3    |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| Chloroform                                        | 67-66-3    |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| chloromethane (Methyl chloride)                   | 74-87-3    | 0.0                         | 0.0            |              |       | 0.0                                   | 0.0 |        |                |            |                |       |      |       |
| Cyclohexane                                       | 110-82-7   |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| ibromochloromethane                               | 124-48-1   |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| ,2-Dibromoethane (Ethylene dibromide, EDB)        | 106-93-4   |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| 2-Dichlorobenzene                                 | 95-50-1    |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| 3-Dichlorobenzene                                 | 541-73-1   |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| 4-Dichlorobenzene                                 | 106-46-7   |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| 1-Dichloroethane                                  | 75-34-3    |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| 2-Dichloroethane (DCA)                            | 107-06-2   |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| 1-Dichloroethene (DCE)                            | 75-35-4    |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| s-1,2-Dichloroethene                              | 156-59-2   |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| ans-1,2-Dichloroethene                            | 156-60-5   |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| ichlorodifluoromethane (Freon 12)                 | 75-71-8    |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| 2-Dichloropropane                                 | 78-87-5    |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| s-1,3-Dichloropropene*                            | 10061-01-5 |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| ans-1,3-Dichloropropene*                          | 10061-02-6 |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| ichlorotetrafluoroethane (Freon 114)              | 76-14-2    |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| thanol                                            | 64-17-5    | 0.0                         |                | 0.0          |       | 0.0                                   |     |        |                |            |                |       | 0.0  |       |
| thyl acetate                                      | 141-78-6   |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| thylbenzene                                       | 100-41-4   |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| Ethyltoluene                                      | 622-96-8   |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| Heptane                                           | 142-82-5   |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| exachloro-1,3-butadiene                           | 87-68-3    |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| Hexane                                            | 110-54-3   |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| Hexanone (Methyl butyl ketone)                    | 591-78-6   |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| Methyl-2-pentanone (Methyl isobutyl ketone, MIBK) | 108-10-1   |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| thylene chloride (Dichloromethane)                | 75-09-2    | 0.0                         | 0.0            |              |       | 0.0                                   | 0.0 | 0.0    |                |            |                |       |      |       |
| thyl-tert-butyl ether (MTBE)                      | 1634-04-4  | _                           |                |              |       |                                       |     |        |                |            |                |       |      |       |
| phthalene                                         | 91-20-3    |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| Propanol (Isopropyl alcohol)                      | 67-63-0    | 0.0                         |                | 0.0          |       | 0.0                                   |     |        |                | 0.0        |                | 0.0   |      |       |
| opylene (methylethylene or propene)               | 115-07-1   | _                           |                |              |       |                                       |     |        |                |            |                |       |      |       |
| tyrene                                            | 100-42-5   |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| ,1,2,2-Tetrachloroethane                          | 79-34-5    |                             |                |              |       |                                       |     |        |                |            |                |       |      |       |
| etrachloroethylene (PCE)                          | 127-18-4   | 0.0                         | 0.0            | 0.0          |       | 0.0                                   | 0.0 |        |                |            |                |       |      |       |



Soil Vapor Extraction and/or Air Stripper Risk Evaluation Worksheet

Doc Type: Corrective Action Design

MPCA Leak ID: Sample Date: 5/18/2016 Person Completing Worksheet: ADK

|                                           |          |                             | Acute Mixtur | es Evaluation | n     |
|-------------------------------------------|----------|-----------------------------|--------------|---------------|-------|
| Chemical Name                             | CAS#     | Acute<br>Hazard<br>Quotient | CNS          | IRRIT         | REPRO |
| Tetrahydrofuran                           | 109-99-9 |                             |              |               |       |
| Toluene (Methylbenzene)                   | 108-88-3 | 0.0                         | 0.0          | 0.0           |       |
| 1,2,4-Trichlorobenzene                    | 120-82-1 |                             |              |               |       |
| 1,1,1-Trichloroethane (Methyl chloroform) | 71-55-6  |                             |              |               |       |
| 1,1,2-Trichloroethane                     | 79-00-5  |                             |              |               |       |
| Trichloroethylene (TCE)                   | 79-01-6  |                             |              |               |       |
| Trichlorofluoromethane (Freon 11)         | 75-69-4  |                             |              |               |       |
| Trichlorotrifluoroethane (Freon 113)      | 76-13-1  |                             |              |               |       |
| 1,2,4-Trimethylbenzene                    | 95-63-6  |                             |              |               |       |
| 1,3,5-Trimethylbenzene                    | 108-67-8 |                             |              |               |       |
| Vinyl acetate                             | 108-05-4 |                             |              |               |       |
| Vinyl chloride                            | 75-01-4  |                             |              |               |       |
| m&p-Xylene**                              | 108-38-3 | 0.0                         | 0.0          | 0.0           |       |
| o-Xylene**                                | 95-47-6  |                             |              |               |       |
| Hazard Index:                             |          | 0.0                         | 0.0          | 0.0           |       |

|                                            |     | (      | Chronic Nonc | ancer Mixtu | res Evaluatio | n     |      |               | Excess                                                |
|--------------------------------------------|-----|--------|--------------|-------------|---------------|-------|------|---------------|-------------------------------------------------------|
| Chronic<br>Noncancer<br>Hazard<br>Quotient | CNS | CV/BLD | IMMUN        | KIDN        | LIVER/GI      | REPRO | RESP | WHOLE<br>BODY | Lifetime<br>Cancer Risk<br>(guideline<br>value = 1E-5 |
| 0.0                                        | 0.0 |        |              |             |               |       |      |               |                                                       |
|                                            |     |        |              |             |               |       |      |               |                                                       |
|                                            |     |        |              |             |               |       |      |               |                                                       |
|                                            |     |        |              |             |               |       |      |               |                                                       |
|                                            |     |        |              |             |               |       |      |               |                                                       |
| 0.0                                        |     |        |              |             |               |       |      | 0.0           | -                                                     |
|                                            |     |        |              |             |               |       |      |               |                                                       |
|                                            |     |        |              |             |               |       |      |               |                                                       |
| 0.0                                        | 0.0 |        |              |             |               |       |      |               |                                                       |
|                                            | -   |        |              |             |               |       |      |               |                                                       |
|                                            | 0.0 | 0.0    | 0.0          | 0.0         | 0.0           | 0.0   | 0.0  | 0.0           | 6.5E-10                                               |

| ard<br>ent | CNS | CV/BLD | IMMUN | KIDN | LIVER/GI | REPRO | KESP | BODY | (guideline<br>value = 1E-5) |
|------------|-----|--------|-------|------|----------|-------|------|------|-----------------------------|
|            |     |        |       |      |          |       |      |      |                             |
| )          | 0.0 |        |       |      |          |       |      |      |                             |
|            |     |        |       |      |          |       |      |      |                             |
|            |     |        |       |      |          |       |      |      |                             |
|            |     |        |       |      |          |       |      |      |                             |
|            |     |        |       |      |          |       |      |      |                             |
|            |     |        |       |      |          |       |      |      |                             |
| )          |     |        |       |      |          |       |      | 0.0  |                             |
|            |     |        |       |      |          |       |      |      |                             |
|            |     |        |       |      |          |       |      |      |                             |
|            |     |        |       |      |          |       |      |      |                             |
|            |     |        |       |      |          |       |      |      |                             |
| )          | 0.0 |        |       |      |          |       |      |      |                             |
|            |     |        |       |      |          |       |      |      |                             |
|            | 0.0 | 0.0    | 0.0   | 0.0  | 0.0      | 0.0   | 0.0  | 0.0  | 6.5E-10                     |

#### NOTES:

In general, total excess lifetime cancer risk is not to exceed 1E-5 and a hazard index (or chemical-specific hazard quotient) is not to exceed 1. The additive results are shown with one decimal point, which is intended to show transparency with the addition of risk but not to imply a level of precision greater than one significant figure. Risk managers may want to round to one significant figure when comparing to a cancer risk of 1E-5 or a hazard index of 1. Exceedance of these levels, which are bolded in text when met or exceeded, may require air emission controls.

CNS = Central Nervous System CV/BLD = Cardiovascular or Blood System IMMUN = Immune System IRRIT = Irritant (nasal, eye, throat irritation) KIDN = Kidney

LIVER/GI = Liver/Gastrointestinal

REPRO = Reproductive System, including developmental effects

<sup>\*</sup> based on 1,3-Dichloropropene (CAS # 542-75-6)

<sup>\*\*</sup> based on total Xylenes (CAS # 1330-20-7)



| MPCA Leak ID:                                              | Enter SVE Sta | ndard Paramet                                 | ers         | Enter AS Standard Parameters      |                                                       |                                                       |                                           |                                 |  |
|------------------------------------------------------------|---------------|-----------------------------------------------|-------------|-----------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|---------------------------------|--|
| Sample Date: 5/18/2016                                     |               | Distance to Nearest Receptor (                | feet):      | 33                                | Distance to Nea                                       | arest Receptor (fee                                   | t):                                       | 33                              |  |
| Person Completing Worksheet: ADK                           |               | SVE Stack Height (feet):                      | 26.2        | Air Stripper Stack Height (feet): |                                                       |                                                       | 26.2                                      |                                 |  |
| Notes: Use this area to provide comments regarding the sar | npling event, | SVE Stack Flow Rate (SCFM1)                   |             | 66                                | Air Stripper Influ                                    | 0.017                                                 |                                           |                                 |  |
| input parameters, etc.                                     |               | Enter SVE Modeling Parameters (if applicable) |             |                                   |                                                       | plicable)                                             |                                           |                                 |  |
|                                                            |               | SVE Stack Diameter (inches):                  | •           | ,                                 | AS Stack Diame                                        |                                                       | <u> </u>                                  | ,                               |  |
|                                                            |               | SVE Stack Exit Velocity <sup>2</sup> (feet p  | er second): |                                   |                                                       | 'elocity <sup>2</sup> (feet per se                    | econd).                                   |                                 |  |
|                                                            |               | SVE Stack Exit Temperature (°                 |             |                                   |                                                       | emperature (°F):                                      | conu).                                    |                                 |  |
|                                                            |               | SVE Annual Dispersion Factor                  | ,           | Contact MPCA                      |                                                       | ersion Factor ((µg/                                   | m <sup>3</sup> \/m/a\                     | Contact MPCA                    |  |
|                                                            |               |                                               |             | Contact MPCA                      |                                                       |                                                       |                                           |                                 |  |
|                                                            | 1             | SVE 1-hr Dispersion Factor ((µ                | g/m²)/g/s)  | Contact MPCA                      | AS 1-nr Dispers                                       | sion Factor ((µg/m³                                   | )/g/s)                                    | Contact MPCA                    |  |
| Chemical Name                                              | CAS#          | SVE Emission Concentration (µg/m³)            |             | nission Rate<br>g/sec)            | AS Influent<br>Groundwater<br>Concentration<br>(µg/L) | AS Effluent<br>Groundwater<br>Concentration<br>(µg/L) | Removal<br>Factor<br>(dimension-<br>less) | AS Emission<br>Rate<br>(μg/sec) |  |
| Acetone                                                    | 67-64-1       | 43                                            |             | 1                                 |                                                       |                                                       |                                           |                                 |  |
| Benzene                                                    | 71-43-2       |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| Benzyl chloride                                            | 100-44-7      |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| Bromodichloromethane                                       | 75-27-4       |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| Bromoform                                                  | 75-25-2       |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| Bromomethane (Methyl bromide)                              | 74-83-9       |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| 1,3-Butadiene                                              | 106-99-0      |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| 2-Butanone (Methyl ethyl ketone, MEK)                      | 78-93-3       | 2                                             |             | 0                                 |                                                       |                                                       |                                           |                                 |  |
| Carbon disulfide                                           | 75-15-0       |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| Carbon tetrachloride                                       | 56-23-5       |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| Chlorobenzene                                              | 108-90-7      |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| Chloroethane (Ethyl chloride)                              | 75-00-3       |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| Chloroform                                                 | 67-66-3       |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| Chloromethane (Methyl chloride)                            | 74-87-3       | 1                                             |             | 0                                 |                                                       |                                                       |                                           |                                 |  |
| Cyclohexane                                                | 110-82-7      |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| Dibromochloromethane                                       | 124-48-1      |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| 1,2-Dibromoethane (Ethylene dibromide, EDB)                | 106-93-4      |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| 1,2-Dichlorobenzene                                        | 95-50-1       |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| 1,3-Dichlorobenzene                                        | 541-73-1      |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| 1,4-Dichlorobenzene                                        | 106-46-7      |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| 1,1-Dichloroethane                                         | 75-34-3       |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| 1,2-Dichloroethane (DCA)                                   | 107-06-2      |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| 1,1-Dichloroethene (DCE)                                   | 75-35-4       |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| cis-1,2-Dichloroethene                                     | 156-59-2      |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| trans-1,2-Dichloroethene                                   | 156-60-5      |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| Dichlorodifluoromethane (Freon 12)                         | 75-71-8       |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| 1,2-Dichloropropane                                        | 78-87-5       |                                               |             | <u> </u>                          |                                                       |                                                       |                                           |                                 |  |
| cis-1,3-Dichloropropene                                    | 10061-01-5    |                                               |             | -                                 |                                                       |                                                       |                                           |                                 |  |
| trans-1,3-Dichloropropene                                  | 10061-02-6    |                                               |             | -                                 |                                                       |                                                       |                                           |                                 |  |
| Dichlorotetrafluoroethane (Freon 114)                      | 76-14-2       |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| Ethanol                                                    | 64-17-5       | 450                                           |             | 14                                |                                                       |                                                       |                                           |                                 |  |
| Ethyl acetate                                              | 141-78-6      |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| Ethylbenzene                                               | 100-41-4      |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| 4-Ethyltoluene                                             | 622-96-8      |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| n-Heptane                                                  | 142-82-5      |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| Hexachloro-1,3-butadiene                                   | 87-68-3       |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| n-Hexane                                                   | 110-54-3      |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| 2-Hexanone (Methyl butyl ketone)                           | 591-78-6      |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| 4-Methyl-2-pentanone (Methyl isobutyl ketone, MIBK)        | 108-10-1      |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| Methylene chloride (Dichloromethane)                       | 75-09-2       | 6                                             |             | 0                                 |                                                       |                                                       |                                           |                                 |  |
| Methyl-tert-butyl ether (MTBE)                             | 1634-04-4     |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| Naphthalene                                                | 91-20-3       |                                               |             |                                   |                                                       |                                                       |                                           |                                 |  |
| 2-Propanol (Isopropyl alcohol)                             | 67-63-0       | 460                                           |             | 14                                |                                                       |                                                       |                                           |                                 |  |



| MPCA Leak ID:                                              |               | Enter SVE Star                               |                               | Enter AS Standa                   | •                                                     | 'S                                                    |                                           |                                 |
|------------------------------------------------------------|---------------|----------------------------------------------|-------------------------------|-----------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|---------------------------------|
| Sample Date: 5/18/2016                                     |               | Distance to Nearest Receptor (               | 33                            | Distance to Nea                   | rest Receptor (fee                                    | t):                                                   | 33                                        |                                 |
| Person Completing Worksheet: ADK                           |               | SVE Stack Height (feet):                     | 26.2                          | Air Stripper Stack Height (feet): |                                                       |                                                       | 26.2                                      |                                 |
| Notes: Use this area to provide comments regarding the san | npling event. | SVE Stack Flow Rate (SCFM <sup>1</sup> ):    |                               | 66                                | Air Stripper Influ                                    | uent Flow Rate (L/s                                   | ):                                        | 0.017                           |
| input parameters, etc.                                     |               | Enter SVE Modeling P                         |                               |                                   |                                                       | AS Modeling Par                                       | ,                                         |                                 |
|                                                            |               | SVE Stack Diameter (inches):                 |                               |                                   | AS Stack Diame                                        |                                                       | шотого ( цр                               | J. Cabio,                       |
|                                                            |               | SVE Stack Exit Velocity <sup>2</sup> (feet p | or occord).                   |                                   |                                                       | 'elocity <sup>2</sup> (feet per se                    | 00004).                                   |                                 |
|                                                            |               | SVE Stack Exit Velocity (leet p              |                               |                                   |                                                       | emperature (°F):                                      | econa).                                   |                                 |
|                                                            |               | , ,                                          | ,                             | 0 1 11001                         |                                                       | 1 ,                                                   | 3,7,7                                     | 0 1 11001                       |
|                                                            |               | SVE Annual Dispersion Factor                 | , . ,                         | Contact MPCA                      |                                                       | ersion Factor ((µg/                                   | , ,                                       | Contact MPCA                    |
|                                                            |               | SVE 1-hr Dispersion Factor ((µ               | g/m³)/g/s)                    | Contact MPCA                      | AS 1-hr Dispers                                       | sion Factor ((µg/m³                                   | )/g/s)                                    | Contact MPCA                    |
| Chemical Name                                              | CAS#          | SVE Emission Concentration (µg/m³)           | SVE Emission Rate<br>(µg/sec) |                                   | AS Influent<br>Groundwater<br>Concentration<br>(µg/L) | AS Effluent<br>Groundwater<br>Concentration<br>(µg/L) | Removal<br>Factor<br>(dimension-<br>less) | AS Emission<br>Rate<br>(µg/sec) |
| Propylene (methylethylene or propene)                      | 115-07-1      |                                              |                               |                                   |                                                       |                                                       |                                           |                                 |
| Styrene                                                    | 100-42-5      |                                              |                               |                                   |                                                       |                                                       |                                           |                                 |
| 1,1,2,2-Tetrachloroethane                                  | 79-34-5       |                                              |                               |                                   |                                                       |                                                       |                                           |                                 |
| Tetrachloroethylene (PCE)                                  | 127-18-4      | 230                                          |                               | 7                                 |                                                       |                                                       |                                           |                                 |
| Tetrahydrofuran                                            | 109-99-9      | 2                                            |                               | 0                                 |                                                       |                                                       |                                           |                                 |
| Toluene (Methylbenzene)                                    | 108-88-3      | 3                                            |                               | 0                                 |                                                       |                                                       |                                           |                                 |
| 1,2,4-Trichlorobenzene                                     | 120-82-1      |                                              |                               |                                   |                                                       |                                                       |                                           |                                 |
| 1,1,1-Trichloroethane (Methyl chloroform)                  | 71-55-6       |                                              |                               |                                   |                                                       |                                                       |                                           |                                 |
| 1,1,2-Trichloroethane                                      | 79-00-5       |                                              |                               |                                   |                                                       |                                                       |                                           |                                 |
| Trichloroethylene (TCE)                                    | 79-01-6       |                                              |                               |                                   |                                                       |                                                       |                                           |                                 |
| Trichlorofluoromethane (Freon 11)                          | 75-69-4       |                                              |                               |                                   |                                                       |                                                       |                                           |                                 |
| Trichlorotrifluoroethane (Freon 113)                       | 76-13-1       | 1,500                                        |                               | 47                                |                                                       |                                                       |                                           |                                 |
| 1,2,4-Trimethylbenzene                                     | 95-63-6       |                                              |                               |                                   |                                                       |                                                       |                                           |                                 |
| 1,3,5-Trimethylbenzene                                     | 108-67-8      |                                              |                               |                                   |                                                       |                                                       |                                           |                                 |
| Vinyl acetate                                              | 108-05-4      |                                              |                               |                                   |                                                       |                                                       |                                           |                                 |
| Vinyl chloride                                             | 75-01-4       |                                              |                               |                                   |                                                       |                                                       |                                           |                                 |
| m&p-Xylene                                                 | 108-38-3      | 2                                            |                               | 0                                 |                                                       |                                                       |                                           |                                 |
| o-Xylene                                                   | 95-47-6       |                                              |                               |                                   |                                                       |                                                       |                                           |                                 |

<sup>&</sup>lt;sup>1</sup>SCFM = standard cubic feet per minute based on a standard temperature of 77° F (25° C, 298.15 K) and a standard pressure of 1 atmosphere (14.7 pounds per square inch, 29.92 inches of mercury, 760 millimeters of mercury).

<sup>&</sup>lt;sup>2</sup>Provide stack exit velocity for actual exit conditions (i.e., at the actual temperature and pressure of the air being discharged).



Soil Vapor Extraction and/or Air Stripper Risk Evaluation Worksheet

Doc Type: Corrective Action Design

MPCA Leak ID: Sample Date: 5/18/2016 Person Completing Worksheet: ADK

|                                                    | T          | Acute Mixtures Evaluation   |                  |            |       | Chronic Noncancer Mixtures Evaluation |     |        |       |               |          |       |      |               |
|----------------------------------------------------|------------|-----------------------------|------------------|------------|-------|---------------------------------------|-----|--------|-------|---------------|----------|-------|------|---------------|
|                                                    |            |                             | . Julio IVIIALUI | - Valuatio | 1     | Chronic                               |     | 1      |       | Janoor WiiAlu |          | <br>  |      | 1             |
| Chemical Name                                      | CAS#       | Acute<br>Hazard<br>Quotient | CNS              | IRRIT      | REPRO | Noncancer<br>Hazard<br>Quotient       | CNS | CV/BLD | IMMUN | KIDN          | LIVER/GI | REPRO | RESP | WHOLE<br>BODY |
| Acetone                                            | 67-64-1    | 0.0                         | 0.0              |            |       | 0.0                                   | 0.0 |        |       |               |          |       |      |               |
| Benzene                                            | 71-43-2    |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| Benzyl chloride                                    | 100-44-7   |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| Bromodichloromethane                               | 75-27-4    |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| Bromoform                                          | 75-25-2    |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| Bromomethane (Methyl bromide)                      | 74-83-9    |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| I,3-Butadiene                                      | 106-99-0   |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| 2-Butanone (Methyl ethyl ketone, MEK)              | 78-93-3    | 0.0                         |                  | 0.0        |       | 0.0                                   |     |        |       |               |          | 0.0   |      |               |
| Carbon disulfide                                   | 75-15-0    |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| Carbon tetrachloride                               | 56-23-5    |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| Chlorobenzene                                      | 108-90-7   |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| Chloroethane (Ethyl chloride)                      | 75-00-3    |                             |                  |            |       | 1                                     |     |        |       |               |          |       |      |               |
| Chloroform                                         | 67-66-3    |                             |                  |            |       | ]                                     |     |        |       |               |          |       |      |               |
| Chloromethane (Methyl chloride)                    | 74-87-3    | 0.0                         | 0.0              |            |       | 0.0                                   | 0.0 |        |       |               |          |       |      |               |
| Cyclohexane                                        | 110-82-7   |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| Dibromochloromethane                               | 124-48-1   |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| ,2-Dibromoethane (Ethylene dibromide, EDB)         | 106-93-4   |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| ,2-Dichlorobenzene                                 | 95-50-1    |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| ,3-Dichlorobenzene                                 | 541-73-1   |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| ,4-Dichlorobenzene                                 | 106-46-7   |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| ,1-Dichloroethane                                  | 75-34-3    |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| ,2-Dichloroethane (DCA)                            | 107-06-2   |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| ,1-Dichloroethene (DCE)                            | 75-35-4    |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| is-1,2-Dichloroethene                              | 156-59-2   |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| rans-1,2-Dichloroethene                            | 156-60-5   |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| Dichlorodifluoromethane (Freon 12)                 | 75-71-8    |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| ,2-Dichloropropane                                 | 78-87-5    |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| is-1,3-Dichloropropene*                            | 10061-01-5 |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| rans-1,3-Dichloropropene*                          | 10061-02-6 |                             |                  |            |       |                                       |     |        |       |               |          |       |      |               |
| Dichlorotetrafluoroethane (Freon 114)              | 76-14-2    |                             |                  |            | ļ     | l                                     |     |        |       |               |          |       |      |               |
| Ethanol                                            | 64-17-5    | 0.0                         |                  | 0.0        | ļ     | 0.0                                   |     |        |       |               |          |       | 0.0  |               |
| thyl acetate                                       | 141-78-6   |                             |                  |            | ļ     | l                                     |     |        |       |               |          |       |      |               |
| thylbenzene                                        | 100-41-4   |                             |                  |            |       | l [l                                  |     |        |       |               | 1        |       |      | 1             |
| -Ethyltoluene                                      | 622-96-8   |                             |                  |            |       | l                                     |     |        |       |               | ļ        |       |      |               |
| -Heptane                                           | 142-82-5   |                             |                  |            |       | l                                     |     |        |       |               |          |       |      |               |
| Hexachloro-1,3-butadiene                           | 87-68-3    |                             |                  |            |       | l [l                                  |     |        |       |               | 1        |       |      | 1             |
| -Hexane                                            | 110-54-3   |                             |                  |            |       | l                                     |     | ļ      |       |               | ļ        |       |      |               |
| -Hexanone (Methyl butyl ketone)                    | 591-78-6   |                             |                  |            |       | l                                     |     |        |       |               |          |       |      |               |
| -Methyl-2-pentanone (Methyl isobutyl ketone, MIBK) | 108-10-1   |                             |                  |            |       | l                                     |     |        |       |               |          |       |      |               |
| ethylene chloride (Dichloromethane)                | 75-09-2    | 0.0                         | 0.0              |            |       | 0.0                                   | 0.0 | 0.0    |       |               | 1        |       |      | 1             |
| lethyl-tert-butyl ether (MTBE)                     | 1634-04-4  |                             |                  |            |       | l                                     |     |        |       |               | ļ        |       |      |               |
| laphthalene                                        | 91-20-3    |                             |                  |            |       | l                                     |     | ļ      |       |               | ļ        |       |      |               |
| -Propanol (Isopropyl alcohol)                      | 67-63-0    | 0.0                         |                  | 0.0        |       | 0.0                                   |     |        |       | 0.0           | ļ        | 0.0   |      |               |
| Propylene (methylethylene or propene)              | 115-07-1   |                             |                  |            | ļ     | l                                     |     | ļ      |       |               | 1        |       |      |               |
| Styrene                                            | 100-42-5   |                             |                  |            |       | l                                     |     |        |       |               | ļ        |       |      |               |
| 1,1,2,2-Tetrachloroethane                          | 79-34-5    |                             |                  |            | ļ     |                                       |     |        |       |               |          |       |      | 1             |
| Tetrachloroethylene (PCE)                          | 127-18-4   | 0.0                         | 0.0              | 0.0        |       | 0.0                                   | 0.0 |        |       |               |          |       |      |               |



Soil Vapor Extraction and/or Air Stripper Risk Evaluation Worksheet

Doc Type: Corrective Action Design

MPCA Leak ID: Sample Date: 5/18/2016 Person Completing Worksheet: ADK

| Hazard Index:                             |          |                             | 0.0 | 0.0   | 0.0   |  |  |  |
|-------------------------------------------|----------|-----------------------------|-----|-------|-------|--|--|--|
| o-Xylene**                                | 95-47-6  |                             |     |       |       |  |  |  |
| m&p-Xylene**                              | 108-38-3 | 0.0                         | 0.0 | 0.0   |       |  |  |  |
| Vinyl chloride                            | 75-01-4  |                             |     |       |       |  |  |  |
| Vinyl acetate                             | 108-05-4 |                             |     |       |       |  |  |  |
| 1,3,5-Trimethylbenzene                    | 108-67-8 |                             |     |       |       |  |  |  |
| 1,2,4-Trimethylbenzene                    | 95-63-6  |                             |     |       |       |  |  |  |
| Trichlorotrifluoroethane (Freon 113)      | 76-13-1  |                             |     |       |       |  |  |  |
| Trichlorofluoromethane (Freon 11)         | 75-69-4  |                             |     |       |       |  |  |  |
| Trichloroethylene (TCE)                   | 79-01-6  |                             |     |       |       |  |  |  |
| 1,1,2-Trichloroethane                     | 79-00-5  |                             |     |       |       |  |  |  |
| 1,1,1-Trichloroethane (Methyl chloroform) | 71-55-6  |                             |     |       |       |  |  |  |
| 1,2,4-Trichlorobenzene                    | 120-82-1 |                             |     |       |       |  |  |  |
| Toluene (Methylbenzene)                   | 108-88-3 | 0.0                         | 0.0 | 0.0   |       |  |  |  |
| Tetrahydrofuran                           | 109-99-9 |                             |     |       |       |  |  |  |
| Chemical Name                             | CAS#     | Acute<br>Hazard<br>Quotient | CNS | IRRIT | REPRO |  |  |  |
|                                           |          | Acute Mixtures Evaluation   |     |       |       |  |  |  |
|                                           |          |                             |     |       |       |  |  |  |

|                                            |     | (      | Chronic Nonc | ancer Mixtu | res Evaluatio | n     |      |               | Excess                                                 |
|--------------------------------------------|-----|--------|--------------|-------------|---------------|-------|------|---------------|--------------------------------------------------------|
| Chronic<br>Noncancer<br>Hazard<br>Quotient | CNS | CV/BLD | IMMUN        | KIDN        | LIVER/GI      | REPRO | RESP | WHOLE<br>BODY | Lifetime<br>Cancer Risk<br>(guideline<br>value = 1E-5) |
| 0.0                                        | 0.0 |        |              |             |               |       |      |               |                                                        |
| 0.0                                        | 0.0 |        |              |             |               |       |      |               |                                                        |
|                                            |     |        |              |             |               |       |      |               |                                                        |
|                                            |     |        |              |             |               |       |      |               |                                                        |
|                                            |     |        |              |             |               |       |      |               |                                                        |
| 0.0                                        |     |        |              |             |               |       |      | 0.0           |                                                        |
| 0.0                                        |     |        |              |             |               |       |      | 0.0           |                                                        |
|                                            |     |        |              |             |               |       |      |               |                                                        |
|                                            |     |        |              |             |               |       |      |               |                                                        |
|                                            |     |        |              |             |               |       |      |               |                                                        |
| 0.0                                        | 0.0 |        |              |             |               |       |      |               | l <del> </del>                                         |
|                                            | 0.0 | 0.0    | 0.0          | 0.0         | 0.0           | 0.0   | 0.0  | 0.0           | 5.9E-09                                                |

| ,            | Hazard Index: |          |     | 0.0 | 0.0 | 0.0 |
|--------------|---------------|----------|-----|-----|-----|-----|
| o-Xylene**   |               | 95-47-6  |     |     |     |     |
| m&p-Xylene** |               | 108-38-3 | 0.0 | 0.0 | 0.0 |     |
|              |               |          |     |     |     |     |

#### NOTES:

In general, total excess lifetime cancer risk is not to exceed 1E-5 and a hazard index (or chemical-specific hazard quotient) is not to exceed 1. The additive results are shown with one decimal point, which is intended to show transparency with the addition of risk but not to imply a level of precision greater than one significant figure. Risk managers may want to round to one significant figure when comparing to a cancer risk of 1E-5 or a hazard index of 1. Exceedance of these levels, which are bolded in text when met or exceeded, may require air emission controls.

CNS = Central Nervous System CV/BLD = Cardiovascular or Blood System IMMUN = Immune System IRRIT = Irritant (nasal, eye, throat irritation) KIDN = Kidney

LIVER/GI = Liver/Gastrointestinal

REPRO = Reproductive System, including developmental effects

<sup>\*</sup> based on 1,3-Dichloropropene (CAS # 542-75-6)

<sup>\*\*</sup> based on total Xylenes (CAS # 1330-20-7)