

NPDES/SDS Permit Application

Volume II – Mine Site

Prepared for Poly Met Mining, Inc.

July 2016 (initial submittal)

October 2017 (updated)

4300 MarketPointe Drive, Suite 200 Minneapolis, MN 55435 952.832.2600 www.barr.com

NPDES/SDS Permit Application Volume II – Mine Site

July 2016 (initial submittal)

October 2017 (updated)

Contents

Applica	ntio	n Forms	1
Perm	nit A	Application Checklist for Industrial Wastewater	1
Mun	icip	al and Industrial Pond Attachment	4
Indu	stri	al Chemical Additives Attachment	9
1.0	In	troduction	11
2.0	Μ	ine Site Water Management and Infrastructure	19
2.1		Existing Conditions	19
2.2		Mine Water Management and Infrastructure	20
2.2	2.1	Pit Dewatering	21
2.2	2.2	Stockpile Drainage	22
2.2	2.3	Mine Water Ponds for Other Infrastructure	24
2.2	2.4	Equalization Basin Area and Mine to Plant Pipelines	24
2.3		Sewage Management and Infrastructure	25
2.4		Stormwater Management and Infrastructure	
2.4	4.1	Significant Materials	27
2.4	4.2	Perimeter and Exclusion Dikes	27
2.4	4.3	Stormwater Ditches	28
2.4	4.4	Sedimentation Ponds and Outlets	28
2.5		Adaptive Management	29
2.6		Chemical Additives	29
2.7		Progressive Reclamation, and an Overview of the Reclamation, Closure, and Postclosure Maintenance Phases	30
3.0	Μ	ine Site Monitoring	32
3.1		Existing Baseline Monitoring	32
3.2	1.1	Surface Water	32
3.2	1.2	Groundwater	35
3.2		Proposed Monitoring Plan	38

ting\NPDES\P

4.0 G	Groundwater Nondegradation	40
4.1	Regulatory Context	40
4.2	Alternatives Analysis	40
4.3	Description of Engineering Controls to Protect Groundwater	41
4.3.1	Permanent Category 1 Waste Rock Stockpile	42
4.3.2	2 Temporary Waste Rock and Ore Stockpiles	43
4.3.3	3 Overburden Storage and Laydown Area	44
4.3.4	4 Equalization Basins	45
4.3.5	5 Mine Pits	46
4.3.6	5 Mine Water Sumps and Overflow Ponds	46
4.4	Anticipated Performance of Engineering Controls	47
5.0 R	References	48

List of Tables

12
15
17
33
34
35
37
38
47

List of Large Tables

Large Table 1	Design Criteria for Mine Water Infrastructure
Large Table 2	Design Criteria for Mine Site Stormwater Infrastructure
Large Table 3	Mine Site Chemical Additives
Large Table 4	Mine Site Baseline Surface Water Quality Monitoring Summary
Large Table 5	Mine Site Groundwater Monitoring Stations

Large Table 6 Mine Site Baseline Groundwater Quality Monitoring Summary

List of Large Figures

- Large Figure 1 Site Location
- Large Figure 2 Mine Site Existing Land Use
- Large Figure 3 Mine Site Existing Conditions
- Large Figure 4 Mine Site Layout Mine Year 1
- Large Figure 5 Mine Site Layout Mine Year 2
- Large Figure 6 Mine Site Layout Mine Year 11
- Large Figure 7 Existing Baseline Surface Water Conditions

List of Appendices

- Appendix A Waste Water Treatment System Terminology Changes
- Appendix B Permit Application Support Drawings
- Appendix C Chemical Additives Safety Data Sheets

List of Acronyms and Abbreviations

Acronym or Abbreviation	Description
Application	NPDES/SDS Permit Application
BMP	Best Management Practice
CPS	Central Pumping Station
FEIS	Final Environmental Impact Statement
FTB	Flotation Tailings Basin
MCL	Maximum Concentration Limit
MDNR	Minnesota Department of Natural Resources
MEPA	Minnesota Environmental Policy Act
MPCA	Minnesota Pollution Control Agency
MPP	Mine to Plant Pipelines
NEPA	National Environmental Policy Act
NPDES	National Pollutant Discharge Elimination System
OSLA	Overburden Storage and Laydown Area
OSP	Ore Surge Pile
PolyMet	Poly Met Mining, Inc.
Project	NorthMet Project
RTH	Rail Transfer Hopper
SDS	State Disposal System
sMCL	Secondary Maximum Concentration Limit
SWPPP	Stormwater Pollution Prevention Plan
TSS	Total Suspended Solids
USEPA	U.S. Environmental Protection Agency
USGS	U.S. Geological Survey
WWTS	Waste Water Treatment System

Permit Application Checklist for Industrial Wastewater

NPDES/SDS Permit Program

National Pollutant Discharge Elimination System (NPDES)/ State Disposal System (SDS)

Doc Type: Permit Application

	MPCA use only			
	Permit Number			
а				
the				
	Date Received			
	(MM/DD/YYYY)			

processing, comes into direct contact with, or is left over from production of a raw material, intermediate product, finished product, byproduct or waste product. This checklist is intended to help permit applicants determine the correct forms to submit as part of

Industrial Process Wastewater is wastewater which, during the manufacturing or

This checklist is intended to help permit applicants determine the correct forms to submit as part of a complete permit application package. The Minnesota Pollution Control Agency (MPCA) will review the application materials for completeness and notify the applicant within 30 business days of receipt whether the application is incomplete or complete enough for processing.

Print or type application: Before submitting an application, make a photocopy of this form and all other application materials for your records. The MPCA will review the application for completeness and provide an official response to the permittees within 30 days of receipt of all necessary application materials.

Permit application assembly: To expedite the processing and review of your application, put this form and any other applicable permit application checklists for other waste types at the beginning of your submittal package. Please place all other application forms in order as listed on the back of this form. Do not place forms and checklists in an appendix as this makes it difficult and time consuming for staff to locate them.

Completeness instructions: The MPCA will not process an application without properly completed forms. *All sections of required forms must be completed.* If portions do not apply to this facility, please indicate using "n/a" or explain why it doesn't apply. For permit reissuance, all forms information must also be completed in full even if the information requested is not changing from the existing permit. This allows the MPCA to quickly verify that the existing information is correct.

Facility name: NorthMet I	Vine Site			Permit No.: MN TBD	
Reason for Application (cl	heck all that apply): 🛛 Ne	w permit	Permit Modification	Permit Reissuance	
	—		application determined f all returned forms with		
Does this action include c	construction activities:	Construction	n is proposed as part of	the permit action.	
	[No construc	ction is proposed as part	of this permit action.	

Form Submittal

Submit two (2) complete copies of the permit application package. At least one (1) copy must be a hard copy. The other may be an electronic copy. The completed form is to be returned to:

Attn: Fiscal Services – 6th floor Minnesota Pollution Control Agency 520 Lafayette Road North St. Paul, MN 55155-4194

Assistance

If you have any questions regarding the selection of the proper forms or how to complete the required information, contact the MPCA staff assigned to your facility. Staff is assigned by regions and a director of regional staff can be located at: <u>http://www.pca.state.mn.us/index.php/about-mpca/mpca-overview/agency-structure/mpca-offices/mpca-offices.html</u>

You may also contact the MPCA at:

- In Metro Area 651-296-6300
- Outside Metro Area: 800-657-3864
- E-mail to: <u>askpca@state.mn.us</u>.

NorthMet Project NPDES/SDS Permit Application Update - October 2017

Application Forms Selection (Check all boxes that apply and include the completed form with the submittal.)

Listed below are application forms and required submittals that may be required for a typical industrial wastewater treatment facility application. All required forms must be completed in-full and included with the			For MPCA use only		
submittal. The MPCA cannot process an application that does not include all of the required application forms. All forms, instructions, and additional information can be found on the MPCA website at <u>http://www.pca.state.mn.us/enzq915.</u>			Complete		
Check all boxes that apply. Include a copy of all completed application forms with the submittal.	Received	Incomplete	Ŭ		
Required for all water quality permits Transmittal Form (wq-wwprm7-03) For Transmittal Form: Refer to Volume I of this Permit Application.					
 <u>http://www.pca.state.mn.us/index.php/view-document.html?gid=6275</u> Application Fee as specified on the Transmittal Form Certification Signature as specified on Transmittal Form 					
Required for all new permits and modifications with a change in design flow MPCA Design Flow and Loading Determination Guidelines for Wastewater Treatment Facilities, Table 2, Worksheet (wq-wwtp#5.20) <u>http://www.pca.state.mn.us/index.php/view-document.html?gid=13505</u>					
Major NPDES facilities and/or Categorical NPDES facilities					
U.S. Environmental Protection Agency (EPA) Application Form 1 (10 pages of instructions, 16 pages total) <u>http://www.pca.state.mn.us/index.php/view-document.html?gid=7024</u>					
EPA Application Form 2C (5 pages of instructions, 25 pages total) http://www.pca.state.mn.us/index.php/view-document.html?gid=7025					
Discharge to surface water (for major and minor facilities) Industrial Surface Water Discharge of Process Wastewater Application (wq-wwprm7-20) <u>http://www.pca.state.mn.us/index.php/view-document.html?gid=7027</u>					
Non-contact cooling water Industrial Non-Contact Cooling Water Application (wq-wwprm7-28) <u>http://www.pca.state.mn.us/index.php/view-document.html?gid=7043</u>					
Discharge to land Industrial Land Discharge of Process Wastewater (wq-wwprm7-21) <u>http://www.pca.state.mn.us/index.php/view-document.html?gid=7029</u> Industrial Land Application of Industrial By-products Application (wq-wwprm7-27)					
Discharge to municipal wastewater treatment facility					
Industrial Pretreatment Discharge to a Municipal Wastewater Treatment Facility Application (wq-wwprm7-23) <u>http://www.pca.state.mn.us/index.php/view-document.html?gid=7033</u>					
Treatment facilities using stabilization ponds					
Municipal and Industrial Pond Attachment (wq-wwprm7-11) http://www.pca.state.mn.us/index.php/view-document.html?gid=7002					
Stormwater management for wastewater treatment permit holders					
Industrial Stormwater Multi-Sector NPDES/SDS Permit Application (wq-wwprm7-60a) http://www.pca.state.mn.us/index.php/view-document.html?gid=19364					
Instructions for Industrial Stormwater Permit Application Attachment to NPDES/SDS permit (wq-wwprm7-60b) <u>http://www.pca.state.mn.us/index.php/view-document.html?gid=19368</u>					
Additional attachments ☐ Additional Station Location Attachment (wq-wwprm7-49) <u>http://www.pca.state.mn.us/index.php/view-document.html?gid=7049</u> ⊠ Additional Chemical Additives Attachment (wq-wwprm7-48) <u>http://www.pca.state.mn.us/index.php/view-document.html?gid=7051</u>					
 Supplemental information (This information may be information required on one, or more of the forms listed above, such as a map. A single map that provides all the information required from multiple forms may be acceptable. A separate copy of each form is not required.) ☑ Topographic map. ☑ A schematic drawing or treatment process flow diagram showing all treatment components, direction of flow, compliance monitoring station locations, and discharge locations. 					

List any additional documents, reports, plans, or attachments included as part of the application package. (Common types of supplemental information may include maps, process flow diagrams, facility plans, engineering reports, plans and specifications, technical checklists and other reports related to the facility or				
proposed project.)	Refer to Volume II Table of Contents			
Other waste types Some facilities may also include other waste types that are not covered by this checklist. Facilities with multiple types of wastes should review the other permit application checklists to determine if additional forms and attachments may be required.				
 Permit Application Checklist for Municipal/Domestic Wastewater (wq-wwprm7-04a) Permit Application Checklist for Miscellaneous Waste Types (wq-wwprm7-04c) Permit Application Checklist for Water Treatment (wq-wwprm7-04d) 				

Municipal and Industrial Pond Attachment

Doc Type: Permit Application

The National Pollutant Discharge Elimination System (NPDES)/State Disposal System (SDS) Permit Program regulates wastewater discharges to land and surface waters. This attachment applies to municipal and industrial facilities with a pond system (i.e. primary, secondary, polishing, equalization, anaerobic, contaminated runoff, etc.).

Complete the attachment by typing or printing in black ink. Attach additional sheets as necessary. For more information, please contact the Minnesota Pollution Control Agency (MPCA) at: In Metro Area: 651-296-6300 or Outside Metro Area: 800-657-3864.

Permittee name: Poly Met Mining, Inc.

Permit number: MN TBD

Geology/Hydrogeology Information

1. Provide a description of the soil beneath or in the vicinity of the ponds. Use information from soil surveys or from existing soil borings or well logs if available. (Ex.: 8 feet (ft.) of fine sand underlain by 10 ft, of silty clay.)

Refer to question #1 on attached ta	ble
-------------------------------------	-----

Refer to question #2 What is the depth below ground surface of the water table at the pond site? <u>on attached table</u> ft.			
Refer to question ft. #2 on attached How many feet below ground surface is the bottom of the pond?			
What is the depth to be rock at the poind site? $\square < 10$ ft $\square 10-20$ ft $\square 20-50$ ft $\square >50$ ft	o question #3 on ached table		
What is the bedrock type (Ex.: limestone, sandstone, etc.)? Refer to question #4 on attached table			
What is the proximity to the ponds of private water supply wells? $\Box < \frac{1}{4}$ mile $\Box \frac{1}{4} - 1$ mile $\boxtimes > 1$ mile			
Describe the approximate number, type and depth of private water wells in the general vicinity of the ponds (3 mile radius). (Ex.: most (#?) wells generally drilled to greater than 50 ft., however, several shallow (20 ft.) sand point wells also present.)			
There are no other known private water supply wells within a 3-mile radius of the proposed ponds.			
Are the ponds located in a designated Wellhead Protection Area? $\ \square$ Yes $\ oxtimes$ No			
Are monitoring wells present at the pond site? 🛛 Yes 🔲 No			
If yes, please submit a topographic or equivalent map showing well locations with respect to the pond system. Have any wells shown adverse impacts (Ex ; high nitrate or chloride concentrations)? \Box Yes \boxtimes No	Refer to Large Figure		
	6 of Volume I		
IT yes, please describe the adverse impacts: <u>Not applicable; baseline groundwater quality observed in monit</u>	oring wells in		
	What is the depth below ground surface of the water table at the pond site? on attached table ft. Refer to question ft. #2 on attached table What is the depth to bedrock at the pond site? Image: Note that is the bedrock type (Ex.: limestone, sandstone, etc.)? Refer to question #4 on attached table What is the bedrock type (Ex.: limestone, sandstone, etc.)? Refer to question #4 on attached table What is the proximity to the ponds of private water supply wells? Image: Note that is the ponds of the ponds of the provimate water wells in the general vicinity of the ponds (3 (Ex.: most (#?) wells generally drilled to greater than 50 ft., however, several shallow (20 ft.) sand point wells at the Minnesota Well Index includes two wells listed for domestic use within a 3-mile radius of the proposed port Site: Unique Well IDs 23237 and 23239. These two wells were drilled for PolyMet and are listed as temporarily 23237 is 715 ft deep and Well ID 23239 is 498 ft deep. There are no other known private water supply wells within a 3-mile radius of the proposed ponds. Are the ponds located in a designated Wellhead Protection Area? Yes No		

the vicinity of the proposed Mine Site represents natural background levels rather than adverse impacts.

9. What is the proximity to the ponds of any nearby surface waters? (Ex.: Minnesota River located 1/4 mile to the north.).

Refer to question #9 on attached table

Pond Information

Primarv

10. Please indicate the types of ponds that are present at the facility. (Check all that apply)

Secondary Polishing Equalization

www.pca.state.mn.us • 651-296-6300 • 800-657-3864 • TTY 651-282-5332 or 800-657-3864 • Available in alternative formats wq-wwprm7-11 • 2/11/10 Page 1 of 3

Aerated	Anaerobic	Cooling	🛛 Contaminated runoff
Irrigation holding	Ash handling	Other:	Refer to question #10 on attached table for specific descriptions

11. Please complete the following table for each pond at the facility.

Pond type		Max operat depth (ft.		Min operating depth (ft.)		n operating lepth (ft.)		age at mean rating depth	deter	ays of htion time ign flow)		ich pond Instructed	
Refer to question #11 on attached table													
12.				acreage i	information in a	questior	11 above?	' (Ex: as	s built plans a	and spec	s, engineer	ing surve	y, etc.)
40			design		· .	1 10		1.5.1			N 1/A		
13.		-	-		paired or upgra grade includeo			NO	lf yes, wh	hat year?	<u>N/A</u>		
14.	Has t	he pon	d system eve	r been dr	edged? 🗌 Ye	es 🖂	No		lf yes, wh	hat year?	N/A		
		-	-		-			A	2	2			
	If yes, please describe the method of dredge material disposal: <u>N/A</u>												
15.	What	type o	f pond liner is	present?	P 🗌 Clay 🛛	Synthe	etic/Vinyl] Bento	nite 🛛 Oth		er to questi ched table	on #15 or	I
16.	Is the	pond	system ever c	perated a	at a depth so th	nat the f	freeboard is	less tha	an 3 feet? 🛛	🛛 Yes 🏼] No		
	If yes	, pleas	e describe the	e situatior	n and identify h	now ofte	n it occurs:	Refer	to question	#16 on a	ttached tab	le	
17.	What	is the	relationshin h	etween ci	urrent wastewa	ater flow	s and pond	design	ed hydraulic	canacity	2		
17.			-		apacity				cable; no cur			ws	
18.					or pre-existing	•		• •					No
10.				•	or equivalent			-		•	•		
	and c in rela	descrip ation to	tion should in	clude but field [<i>if a</i>	not be limited <i>pplicable</i>]; eac	to: the o	drain tile loc	ation in	relation to th	e pond s	ystem; the	drain tile	
19.	Pleas	se list tl		nonth tota	l influent and e	effluent	flow in millio	on gallor	ns for each o	f the pas	t 12 month	S	
		Jan.	Feb.	Mar.	Apr.	Мау	Jun.	Jul.	Aug.	Sept.	Oct.	Nov.	Dec.
Influ	ent	N/A		N/A		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Efflu	ent	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
~~				1. 0					4				
20.			•		t CBOD₅? <u>N</u>				_ mg/L				
21.					es of toxic pollo yl tert-butyl eth						JCs] such a	as,	
	If yes	, pleas	e describe:	Potentia	al toxic pollutar	nts (with	n modeled n	ninimum	to maximun	n 90 th pe	rcentile cor	ncentration	าร):
	mg/l (7.38	_), Cad 8E-3 to	lmium (7.73E- 12.8 mg/L), I	-5 to 0.28 Nickel (3.0	uminum (1.41E 3 mg/L), Coba 64E-3 to 72.9 i), Thallium (5.1	lt (8.05 mg/L), L	E-4 to 25.8 Lead (1.07E	mg/L), C -4 to 0.5	Chromium (7. 548 mg/L), A	15E-4 to ntimony	0.108 mg/ (6.89E-4 to	L), Coppe	er

The presence of such pollutants is one of the reasons why water from these ponds will be treated at the WWTS mine water treatment trains and routed to the FTB for reuse, rather than discharged.

22. Is the pond system located in karst topography? Yes No

If yes and if your facility is listed in the 1993 Administrative Order requiring the preparation of a contingency plan, please ensure your facility has an updated contingency plan on file.

Review the attachment and ensure all requested items are submitted with this attachment. Please make a copy for your records. Refer to the *Transmittal Form* for mailing instructions. Attachment to Municipal and Industrial Pond Attachment form

				Mine Site Mir	ne Water Pond			
Municipal and Industrial Pond Attachment Question	S23-1	MW-S23-1	S23-2	S23-3	MW-S23-3	S4	MW-S4	SOSP
Geology / Hydrogeology Information								
1. Provide a description of the soil beneath or in the vicinity of the ponds.	Glacial Till	Glacial Till	Glacial Till; Peat	Glacial Till; Peat	Glacial Till; Peat	Glacial Till; Peat	Glacial Till; Peat	Glacial Till
	Upland Shallow	Upland Shallow	Upland Shallow	Upland Shallow	Upland Shallow	Lowland Organic	Upland Shallow	Upland Shallow
	Loamy Dry ⁽¹⁾	Loamy Dry; Lowland Organic Acid to	Loamy Dry; Lowland Organic Acid to		Loamy Dry; Lowland Organic Acid to	Acid to Neutral	Loamy Dry; Lowland Organic Acid to	Loamy Dry
		Neutral ⁽¹⁾	Neutral ⁽¹⁾		Neutral ⁽¹⁾		Neutral ⁽¹⁾	
		Neutrai	neutiai	Neutrai	neutiai		neutia	
2. What is the depth below ground surface of the water table at the pond site? (feet)	0 to 6.5	0 to 6.5	0 to 9.0	0 to 16.5	0 to 16.5	0 to 7.5	0 to 7.5	0 to 6.5
How many feet below ground surface is the bottom of the pond? (feet)	10.0 to 18.5	10.0 to 18.5	9.0 to 18.5	9.0 to 18.0	9.0 to 18.0	6.0 to 15.0	6.0 to 15.0	21.5 to 29.5
3. What is the depth to bedrock at the pond site? (<10 ft / 10-20 ft / 20-50 ft / >50 ft)	<10 ft or	<10 ft or	<10 ft	<10 ft or	<10 ft or	10-20 ft	10-20 ft	<10 ft or
	10-20 ft	10-20 ft		10-20 ft	10-20 ft			10-20 ft
4. What is the bedrock type?	Duluth Complex	Duluth Complex	Duluth Complex	Duluth Complex	Duluth Complex	Duluth Complex	Duluth Complex	Duluth Complex
9. What is the proximity to the ponds of any nearby surface waters?	approx. 100 ft south	approx. 100 ft south	approx. 330 ft south	approx. 110 ft south	approx. 120 ft south	approx. 40 ft west to	approx. 90 ft south	approx. 390 ft south
	to wetland	to wetland	to wetland	to wetland	to wetland	wetland	to wetland	to wetland
	2.050.6	2 720 (;	2 400 (1.020.6	1.270.6	2.470.6	2 200 (2.000 (
	approx. 2,850 ft south to Partridge	approx. 2,730 ft south to Partridge	approx. 2,400 ft	approx. 1,030 ft	approx. 1,270 ft south to Partridge	approx. 3,470 ft north to Partridge	approx. 3,380 ft north to Partridge	approx. 3,860 ft south to Partridge
	River	River	south to Partridge River	3	River	River	River	River
			inver		inver			
Pond Information								
10. Please indicate the types of ponds that are present at the facility. (Primary / Aerated / Irrigation holding	Stockpile Drainage	Stockpile Drainage -	Stockpile Drainage	Stockpile Drainage	Stockpile Drainage -	Stockpile Drainage	Stockpile Drainage -	Stockpile Drainage
/ Secondary / Anaerobic / Ash handling / Polishing / Cooling / Equalization / Contaminated runoff /		Overflow			Overflow		Overflow	
Other)								
11. Max operating depth in feet	9.5	12.5	8.5	7.5	7.5	7	7	10
Min operating depth in feet	1	1	1	1	1	1	1	1
Mean operating depth in feet	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Acreage at mean operating depth (Acreage given at high water elevation)	2.1	3.0	1.9	0.9	1.1	2.0	1.6	1.1
Days of detention time (design flow)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Year pond will be constructed	Mine Year 1	Mine Year 1	Mine Year 3	Mine Year 6	Mine Year 6	Mine Year 1	Mine Year 1	Mine Year 1
15. What type of pond liner is present? (Clay / Synthetic/Vinyl / Bentonite / Other)	Geomembrane	Geomembrane	Geomembrane	Geomembrane	Geomembrane	Geomembrane	Geomembrane	Geomembrane
16. Is the pond system ever operated at a depth so that the freeboard is less than 3 feet? (Yes / No)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
If yes, please describe the situation and identify how often it occurs:	Extreme event (>100	Extreme event (>100-	Extreme event (>100	-Extreme event (>100-	Extreme event (>100-	Extreme event (>100-	Extreme event (>100	Extreme event (>100
	year storm)	year storm)	year storm)	year storm)	year storm)	year storm)	year storm)	year storm)
	Footnote:	L	1	Į.	1	1		

Footnote:

(1) Based on predominant U.S. Forest Service (USFS) ecological land types and ecological land type phases

Attachment to Municipal and Industrial Pond Attachment form

			Mi	ine Site Mine Water P	ond		
Municipal and Industrial Pond Attachment Question	MW-SOSP	MW-HRC	MW-HRE	MW-HRW	MW-HRN	MW-RTH	MW-OSLA
Geology / Hydrogeology Information							
1. Provide a description of the soil beneath or in the vicinity of the ponds.	Glacial Till	Glacial Till	Glacial Till	Glacial Till	Glacial Till; Peat	Glacial Till	Glacial Till
	Upland Shallow	Upland Shallow	Lowland Loamy Wet;	Upland Shallow	Upland Shallow	Upland Shallow	Lowland Loamy Wet;
	Loamy Dry ⁽¹⁾	Loamy Dry ⁽¹⁾	Upland Shallow	Loamy Dry ⁽¹⁾		Loamy Dry ⁽¹⁾	Upland Shallow
			Loamy Dry ⁽¹⁾		Organic Acid to		Loamy Dry ⁽¹⁾
					Neutral ⁽¹⁾		
 What is the depth below ground surface of the water table at the pond site? (feet) 	0 to 6.5	3.0 to 9.0	0 to 7.0	1.0 to 5.5	0 to 5.5	0 to 3.5	0 to 0.5
How many feet below ground surface is the bottom of the pond? (feet)	21.5 to 29.5	9.0 to 16.5	6.0 to 16.5	0.0 to 6.0	4.0 to 10.5	0.0 to 6.0	4.5 to 7.0
3. What is the depth to bedrock at the pond site? (<10 ft / 10-20 ft / 20-50 ft / >50 ft)	<10 ft or	<10 ft	<10 ft	<10 ft	<10 ft or	10-20 ft	20-50 ft
	10-20 ft				10-20 ft		
4. What is the bedrock type?	Duluth Complex	Duluth Complex	Duluth Complex	Duluth Complex	Duluth Complex	Duluth Complex	Duluth Complex
9. What is the proximity to the ponds of any nearby surface waters?	approx. 380 ft south	approx. 470 ft north	approx. 160 ft north	approx. 1230 ft	approx. 200 ft east	approx. 210 ft south	approx. 230 ft south
	to wetland	to wetland	to wetland	south to wetland	to wetland	to wetland	to wetland
	approx. 3,940 ft	approx. 4,280 ft	approx. 3,370 ft	approx. 2,630 ft	approx. 6,690 ft	approx. 2,840 ft	approx. 1,840 ft
	south to Partridge	south to Partridge	south to Partridge	southwest to	south to Partridge		southwest to
	River	River	River	Unnamed Creek	River	River	Unnamed Creek
Pond Information							
10. Please indicate the types of ponds that are present at the facility. (Primary / Aerated / Irrigation holding	Stockpile Drainage -	Haul Road Drainage	Haul Road Drainage	Haul Road Drainage	Haul Road Drainage	Rail Transfer Hopper	Overburden Storage
/ Secondary / Anaerobic / Ash handling / Polishing / Cooling / Equalization / Contaminated runoff /	Overflow					Drainage	and Laydown Area
Other)							Drainage
Max operating depth in feet	10	12	12	6.5	7	4	9
Min operating depth in feet	1	1	1	1	1	1	1
Mean operating depth in feet	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Acreage at mean operating depth (Acreage given at high water elevation)	0.8	0.9	1.3	0.8	0.9	0.3	6.5
Days of detention time (design flow)	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Year pond will be constructed	Mine Year 1	Mine Year 1	Mine Year 1	Mine Year 2	Mine Year 2	Mine Year 1	Mine Year 1
15. What type of pond liner is present? (Clay / Synthetic/Vinyl / Bentonite / Other)	Geomembrane	Geomembrane	Geomembrane	Geomembrane	Geomembrane	Geomembrane	Geomembrane
16. Is the pond system ever operated at a depth so that the freeboard is less than 3 feet? (Yes / No)	Yes	Yes	Yes	Yes	Yes	Yes	Yes
If yes, please describe the situation and identify how often it occurs:		-		-Extreme event (>100-		5 1	Extreme event (>25-
	year storm)	year storm)	year storm)	year storm)	year storm)	with 1 foot of	year storm)
						freeboard with	
						pump operating	
						during 100-year storm	
						3.0111	
	Footnote:				1		

Footnote:

(1) Based on predominant U.S. Forest Service (USFS) ecological land types and ecological land type phases

Industrial Chemical Additives Attachment

NPDES/SDS Permit Program

Doc Type: Permit Application

The National Pollutant Discharge Elimination System (NPDES)/State Disposal System (SDS) Permit Program regulates wastewater discharges to land and surface waters. This is an attachment to the Industrial Applications for facilities with multiple chemical additives.

Complete the attachment by typing or printing in black ink. Attach additional sheets as necessary. For more information, please contact the Minnesota Pollution Control Agency (MPCA) at: In Metro Area: 651-296-6300 or Outside Metro Area: 800-657-3864.

Permittee name: Poly Met Mining, Inc. Permit number: MN TBD Location of chemical Average Maximum addition in process Amount/duration/frequency of addition rate of use rate of use (i.e., continuous or slug dosing. If slug dosing give (e.g., to raw water supply, (weight or (weight or at greensand filter, before amount/duration and frequency of addition; e.g., slug volume per volume per Chemical Purpose RO unit #2, etc.) dosing 13.5 gal/3hours, once every two weeks) day) day) Magnesium Chloride Aqueous For average use: main roads will be sprayed 104,428 104,428 twice per year and minor roads once per year Solution gallons/day gallons/day (Dustgard) Dust Haul roads and For maximum use: roads will be sprayed 3 (208, 856)(313,284 gallons/year) (Primary) suppressant stockpiles, if needed times per year gallons/year) Aqueous Amorphous Polvmer Solution (BT-For average use: main roads will be sprayed 104,428 104,428 468) twice per year and minor roads once per year gallons/day gallons/day (Potential For maximum use: roads will be sprayed 3 (208, 856)(313,284 Dust Substitute) Haul Roads times per year gallons/year) gallons/year) suppressant Roadsaver® For average use: main roads will be sprayed 94,934 94,934 twice per year and minor roads once per year -C gallons/day gallons/day (Potential Dust For maximum use: roads will be sprayed 3 (189,869 (284,803 Substitute) suppressant Haul roads times per year gallons/year) gallons/year) For average use: main roads will be spraved 104,428 104,428 Roadsaver® twice per year and minor roads once per year gallons/day gallons/day (Potential Dust For maximum use: roads will be sprayed 3 (208,856 (313,284 Substitute) Haul roads gallons/year) suppressant times per vear gallons/year) For average use: main roads will be sprayed 104,428 104,428 Durasoil twice per year and minor roads once per year gallons/day gallons/day (Potential For maximum use: roads will be sprayed 3 (313,284 Dust (208, 856)Substitute) gallons/year) Haul roads gallons/year) suppressant times per year For average use: main roads will be sprayed 104.428 104.428 Gorilla-Snot twice per year and minor roads once per year gallons/day gallons/day (Potential Dust For maximum use: roads will be sprayed 3 (208,856 (313,284 Substitute) gallons/year) suppressant Haul roads times per year gallons/year) For average use: main roads will be sprayed 52,214 52,214 Soiltac twice per year and minor roads once per year gallons/day gallons/day (Potential Dust For maximum use: roads will be sprayed 3 (104, 428)(156,642 Substitute) suppressant Haul roads times per year gallons/year) gallons/year) 104.428 104.428 Coherex For average use: main roads will be sprayed gallons/day gallons/day twice per year and minor roads once per year (Potential Dust (208,856 (313,284 Substitute) suppressant Haul roads For maximum use: roads will be sprayed 3 gallons/year) gallons/year)

www.pca.state.mn.us • 651-296-6300 • 800-657-3864 • TTY 651-282-5332 or 800-657-3864 • Available in alternative formats wq-wwprm7-48 • 2/8/2013 Page 1 of 2

			times per year		
Calcium Chloride (Primary)	De-icer	Walkways, haul roads	No average use planned. For maximum use: used, as needed, based on recommended application rates (if needed, this will be a winter application)	NA	TBD, based on recommend ed application rates

*Remember to attach the *Material Safety Data Sheets*, complete product labels and any other information on chemical composition, aquatic toxicity, human health, and environmental fate for each chemical additive. Please make a copy for your records.

Refer to the Transmittal Form for mailing instructions.

Chemicals listed as potential substitutes are not intended to be used at the average and maximum rates of use unless the primary chemical additive is unavailable.

1.0 Introduction

This volume, Volume II of the National Pollutant Discharge Elimination System (NPDES) / State Disposal System (SDS) Permit Application (Application) for Poly Met Mining, Inc.'s (PolyMet) NorthMet Project (Project), focuses on the Mine Site. Refer to Section 2.0 of Volume I for discussion of the permitting approach for this Application as it applies to the Mine Site.

Table 1-1 provides a high-level overview of the Mine Site.

	Mine Site Summary
Purpose	To provide a steady and reliable supply of ore to the Process Plant; to dispose of mine waste (rock and overburden) in a manner that results in compliance with safety and environmental regulations; and to manage associated water in a manner that results in compliance with applicable water quality standards and applicable stormwater requirements at appropriate compliance points.
Location	The Mine Site is located at the NorthMet copper-nickel-PGE deposit, approximately six miles south of the city of Babbitt and eight miles east of the Project Plant Site (Large Figure 1).
Facility description	 The Mine Site will include the following Project features: three mine pits (the East Pit, West Pit, and Central Pit) ore handling facilities, including an Ore Surge Pile (OSP) and a Rail Transfer Hopper (RTH) Category 1, 2/3, and 4 Waste Rock Stockpiles and the OSP with engineered systems to manage precipitation that will run off of or percolate through the stored waste rock (such as liners, covers, and a groundwater containment system) an Overburden Storage and Laydown Area (OSLA) to provide space to sort and store unsaturated mineral overburden and peat used for construction and reclamation mine water collection systems and an Equalization Basin Area to collect <i>mine water</i> from the mine pits, the stockpiles, the ore handling facilities, OSLA, construction areas, and the driving surface of haul roads a Central Pumping Station (CPS), Construction Mine Water Pumping Station, and Mine to Plant Pipelines (MPP) to transport <i>mine water</i> from the Mine Site to the Plant Site stormwater management systems supporting infrastructure (such as roads, electrical supply, rail connections, and the Mine Site Fueling and Maintenance Facility) Over the life of the mine, three mine pits will be developed: the East Pit, West Pit, and Central Pit. The Central Pit will not exist until Mine Year 11, which is beyond the scope of this initial permit application. During the period of initial permit coverage, ore will be mined from the East Pit beginning in Mine Year 1⁽²⁾ and from the West Pit beginning in Mine Year 1⁽²⁾ and from the West Pit beginning in Mine Year 1⁽²⁾ and from the West Pit beginning in Mine Year 1⁽²⁾ and from the West Pit beginning in Mine Year 2. During this period, the more reactive waste rock will be placed in temporary stockpiles and the less reactive waste rock will be placed in a permanent stockpile. The overall Mine Plan, including the Mine Site's development and mining activities, is described in the NorthMet Project Mine
Mine water management and discharge	No direct discharge to the environment. <i>Mine water</i> (as defined in Table 1-2) will be collected at the Mine Site and routed to the Waste Water Treatment System (WWTS) via the MPP. Construction <i>mine water</i> and OSLA runoff will be collected and routed to the Flotation Tailings Basin (FTB) at the Plant Site via the MPP or, after Mine Year 11, to the East and Central Pits for pit flooding.
Sewage management and infrastructure	No direct discharge to the environment. <i>Sewage</i> (as defined in Table 1-2) from the Mine Site will be collected and transported to the Plant Site for treatment at the Plant Site Sewage Treatment System. Refer to Section 2.2 of Volume IV for discussion of the Plant Site Sewage Treatment System.

Table 1-1Mine Site Summary

	Mine Site Summary
Stormwater management and discharge	 Stormwater (as defined in Table 1-2): will be separated from <i>mine water</i> and controlled through a system of ditches, dikes, and ponds; and will discharge off-site either directly or after being routed through on-site sedimentation ponds to reduce total suspended solids (TSS)
Estimated commission	Initial infrastructure will be constructed during an estimated 18-24 month construction phase and mining will commence in Mine Year $1^{(1)}$.

Italicized terms are defined in Table 1-2.

(1) Mine Year 1 will begin on the first day of production blasting within the open pit at the Mine Site.

This volume is organized in four sections:

Section 1.0	Provides an overview of the Mine Site and provides the water definitions specific to the volume.
Section 2.0	Describes water management and infrastructure at the Mine Site, including existing conditions, <i>mine water</i> , <i>sewage</i> , and <i>stormwater</i> management and infrastructure, adaptive management, chemical additives, progressive reclamation, and an overview of the reclamation, closure, and postclosure maintenance phases.
Section 3.0	Summarizes the proposed monitoring plan for the Mine Site.

Section 4.0 Describes how the Mine Site complies with the groundwater nondegradation rule (Minnesota Rules, part 7060.0500).

In accordance with Minnesota Rules, part 6132.0200, the Mine Site has been designed "to control possible adverse environmental effects of nonferrous metallic mineral mining, to preserve natural resources, and to encourage planning of future land utilization" and mining will be "conducted in a manner that will reduce impacts to the extent practicable, mitigate unavoidable impacts, and ensure that the mining area is left in a condition that protects natural resources and minimizes to the extent practicable the need for maintenance." The design of the Mine Site includes systems for managing water in a manner that results in compliance with applicable water quality standards at appropriate compliance points (Section 1.1 of Reference (2)). The water management systems have been designed to achieve compliance based on modeling of expected water quantity and quality; additionally, plans have been developed for adaptive management (Sections 2.0 and 3.0 of Reference (3)) and Section 6.4 of Reference (2)) and contingency mitigation (Section 6.5 of Reference (2)) as deemed necessary to maintain compliance (refer to Section 2.5 of this volume for further discussion).

Water management includes collection and management of *mine water* and Mine Site *sewage* and separation of *stormwater* from *mine water*. The flow of water associated with the Mine Site is included on Large Figure 4 in Volume I, which depicts the general flow of water throughout the Project. Refer to Sections 2.2 through 2.4 of this volume for further details on the management of *mine water*, *sewage*, and *stormwater*.

Table 1-2 provides definitions for the terms *mine water*, *sewage*, *industrial stormwater*, *construction stormwater*, and *non-contact stormwater*, as well as notes regarding the definitions' application to specific facets at the Mine Site.

Separate applications will be submitted requesting:

- authorization to discharge *stormwater* associated with construction activities at the Mine Site under the Minnesota NPDES/SDS Construction Stormwater General Permit (Construction Stormwater General Permit)
- authorization to discharge *stormwater* associated with industrial activities at the Mine Site under the Minnesota NPDES/SDS Industrial Stormwater General Permit (Industrial Stormwater General Permit)

Refer to Section 2.4 of this volume for further details on the management of *stormwater* during operations.

Project-Specific Term	Project-Wide Definition ⁽¹⁾	Mine Site Specifics
Mine Water	Water collected by the mine water management systems, including precipitation, runoff, groundwater, and other water collected from areas of the Mine Site and routed from the Mine Site to the Waste Water Treatment System (WWTS) or Flotation Tailings Basin (FTB) via the Mine to Plant Pipelines (MPP) and, in later years, routed to the East and Central Pits for pit flooding.	Water that has contacted surfaces disturbed by mining activities, such as drainage collected on stockpile liners, pit dewatering, and runoff contacting ore, waste rock, and Mine Site haul road surfaces. This water is conveyed by pipe to the equalization basins for further conveyance through the MPP to the WWTS. Runoff from construction dewatering of saturated mineral overburden, which is a subset of <i>mine</i> <i>water</i> called construction <i>Mine water</i> , is conveyed by pipe to the Construction Mine Water Basin for further conveyance through the MPP to the FTB. Runoff from the Overburden Storage and Laydown Area (OSLA), which is a subset of <i>mine water</i> collected in the OSLA Pond, is conveyed by pipe to the Construction Mine Water Basin for further conveyance through the MPP to the FTB or, in later years, to aid in East and Central Pit flooding.
Sewage	Water collected from sanitary facilities and sedimentation tank and filter backwash waste collected from the Plant Site Potable Water Treatment Plant.	Water collected from Mine Site sanitary facilities, handled in holding tanks, periodically pumped out by a commercial vendor, and transported via truck to the Plant Site for treatment by the Sewage Treatment System.
Industrial Stormwater	<i>Stormwater</i> associated with industrial activities ⁽²⁾ .	Includes precipitation and runoff from the industrial areas at the Mine Site that is composed entirely of <i>stormwater</i> and not combined with other water types. This definition does not include water defined as <i>mine water</i> .
Construction Stormwater	<i>Stormwater</i> associated with construction activities ⁽³⁾ .	During operations, includes precipitation, runoff, and dewatering water from construction areas with the exception of dewatering water from saturated mineral overburden, which is managed as construction <i>mine water</i> .
Non-Contact Stormwater	Precipitation and runoff that contacts natural, stabilized, or reclaimed surfaces and has not been exposed to mining activities, construction activities ⁽³⁾ , or industrial activities ⁽²⁾ .	Includes runoff from natural areas, from on-site features constructed of overburden (unsaturated overburden or peat) once stabilized with permanent cover, and from the reclaimed Category 1 Waste Rock Stockpile.

Table 1-2 Project Water Definitions

(1) If two types of waters mix, the mixture is handled as the more actively managed type of water (e.g., a mixture of *non-contact stormwater* and *mine water* is managed as *mine water*). Management of water mixtures will be governed by regulatory requirements.

(2) As defined in Minnesota Rules, part 7090.0080, subpart 6

(3) As defined in Minnesota Rules, part 7090.0080, subpart 4

During environmental review, PolyMet developed numerous Management Plans to provide details of the design, construction, operations, reclamation, closure, and postclosure maintenance phases of the Project. The Management Plans rely on and incorporate the results of Data Packages, which are compilations of technical data and related supporting information.

Information from the above-referenced documents, as well as from this and other permit applications and issued permits, will be incorporated into an operations plan for use during the operations, reclamation, closure, and postclosure maintenance phases of the Project. Refer to Section 1.7 of Volume I for a description of the Project phases.

To help the reviewer navigate the supporting material for Volume II of this Application, Table 1-3 crossreferences key Mine Site-related topics, PolyMet Management Plans and Data Packages, sections of this narrative, and permit application requirements.

Note that some terminology associated with the Waste Water Treatment System (WWTS) has changed since the environmental review process was completed and the NPDES/SDS Permit Application was submitted in July 2016. Changes are associated with the relocation of the mine water treatment trains that were previously planned for the Mine Site Waste Water Treatment Facility, which will now be in the Plant Site WWTS, and the relocation of the Mine Site equalization basins, Central Pumping Station (CPS), and Construction Mine Water Basin south of Dunka Road. There is no change to the level of treatment planned for the Project as a result of these relocations. To facilitate the review of documents prepared for the NorthMet Mining Project and Land Exchange Final Environmental Impact Statement (FEIS) (Reference (4)) which are also referenced in this Application, Appendix A explains the WWTS terminology changes.

Table 1-3 Volume II of PolyMet's NPDES/SDS Permit Application Cross-Reference

		Location of Relevant Details:				Application
	Facility Topic	Management Plan / Data Package		NPDES/SDS Volume II	Permit Application Form	Question
Existing Conditions		NorthMet Project: Water Management Plan – Mine Site (Reference (2))	Section 1.4	Section 2.1		
Mine Site		NorthMet Project: Project Description (Reference (5))	Section 4.1			
	Facility Description	NorthMet Project: Mine Plan (Reference (1))	Section 2.0	Table 1-1		
		Proposed Waste Water Treatment System (WWTS) Relocations Technical Memorandum (Reference (6))				
	Product Produced	NorthMet Project: Project Description (Reference (5))	Section 4.1.2			
		NorthMet Project: Mine Plan (Reference (1))	Section 4.0			
	Operation Initiated			Table 1-1		
	Water Balance	NorthMet Project: Water Modeling Data Package Volume 1 – Mine Site (Reference (7))	Section 6.1			
	Overall	NorthMet Project: Water Management Plan – Mine Site (Reference (2))	Sections 2.1, 4.1, and 4.4.1	Section 2.2		
	Pit Dewatering	NorthMet Project: Water Management Plan – Mine Site (Reference (2))	Section 2.1.3	Section 2.2.1		
	Stockpile Drainage	NorthMet Project: Water Management Plan – Mine Site (Reference (2))	Sections 2.1.4 and 2.1.5	- Section 2.2.2		
		NorthMet Project: Rock and Overburden Management Plan (Reference (8))	Sections 2.1, 2.2, and 6.2			
	Mine Water Ponds for Other Infrastructure	NorthMet Project: Water Management Plan – Mine Site (Reference (2))	Sections 2.1.5 and 4.1.6	Section 2.2.3	Municipal and Industrial Pond Attachment (wq-wwprm7-11)	1 through 22
Mine Water Management and Infrastructure	Equalization Basin Area and Mine to Plant Pipelines (MPP)	NorthMet Project: Water Management Plan – Mine Site (Reference (2))	Sections 2.1.6- 2.1.8 and 4.1.1- 4.1.3	Section 2.2.4		
	Mechanical Infrastructure Permit Application Support Drawings	NorthMet Project: Water Management Plan – Mine Site (Reference (2))	Attachment B	Appendix A		
	Categories 1, 2/3, and 4 Stockpiles and Ore Surge Pile Design Permit Application Support Drawings	NorthMet Project: Rock and Overburden Management Plan (Reference (8)	Attachment B	Appendix A		
	Category 1 Stockpile Groundwater Containment System Permit Application Support Drawings	NorthMet Project: Rock and Overburden Management Plan (Reference (8))	Attachment C	Appendix A		
	Mine Site and Dunka Road Earthwork Permit Application Support Drawings			Appendix A		
Sewage Manageme	nt and Infrastructure			Section 2.3		

		Location of Relevant Details:				Application
	Facility Topic	Management Plan / Data Package		NPDES/SDS Volume II	Permit Application Form	Question
	Overall	NorthMet Project: Water Management Plan – Mine Site (Reference (2))	Sections 2.2, 4.2, and 4.4.2	Section 2.4		
	Significant Materials			Section 2.4.1		
	Exclusion Dikes	NorthMet Project: Water Management Plan – Mine Site (Reference (2))	Section 2.2.2	Section 2.4.2		
Stormwater Management and	Fullity Topic Management Plan / Data Package NPDES/SDS Volume II Permitive Overall NorthMet Project: Water Management Plan - Mine Site (Reference (2)) Section 2.2, 4.2 and 4.4.2 Section 2.4.1 Section 2.4.1 Significant Materials Exclusion Diles NorthMet Project: Water Management Plan - Mine Site (Reference (2)) Section 2.2.2 Section 2.4.1 Section 2.4.1 Sumwater Ditches NorthMet Project: Water Management Plan - Mine Site (Reference (2)) Section 2.2.3 Section 2.4.3 Section 2.4.3 Section Support Ditches NorthMet Project: Water Management Plan - Mine Site (Reference (2)) Section 2.4.4 Section 2.4.4 Section 2.4.4 Mine Site Stormwater Permit Application Support Drawings NorthMet Project: Water Management Plan - Mine Site (Reference (2)) Sections 2.0.4 Appendix A e Management and Contingency Mitigation NorthMet Project: Water Management Plan - Mine Site (Reference (2)) Sections 2.0 And 4.5.2 al Additives MorthMet Project: Water Management Plan - Mine Site (Reference (2)) Section 2.5.1 Appendix A section Support Drawings NorthMet Project: Water Management Plan - Mine Site (Reference (2)) Section 2.6.1 Appendix A al Additives Mort					
Infrastructure	Sedimentation Ponds and Outlets			Section 2.4.4		
Stormwater Management and Infrastructure Si Adaptive Management Chemical Additives Progressive Reclamatio Reclamation, Closure, a		NorthMet Project: Water Management Plan – Mine Site (Reference (2)	Attachment C	Appendix A		
	Receiving Waters					
Adaptive Management and Contingency Mitigation				Castion 2.5		
		NorthMet Project: Adaptive Water Management Plan (Reference (3))		Section 2.5		
Chemical Additives				Section 2.6	Industrial Chemical Additives Attachment (wq-wwprm7-48)	All
		· · ·	Section 7.0			
		NorthMet Project: Mine Plan (Reference (1))	Section 6.0	Section 2.7		
Reclamation, Closu	re, and Postclosure Maintenance Phases	NorthMet Project: Adaptive Water Management Plan (Reference (3))	2.2.2, 3.5, 6.2,			
	Paceline Surface Water Manitorian			Castion 211		
			Section 1.3.1	Section 3.1.1		
Monitoring	Baseline Groundwater Monitoring			Section 3.1.2	Municipal and Industrial Pond Attachment (wq-wwprm7-11)	8
		NorthMet Project: Water Management Plan – Mine (Reference (2))	Section 1.3.2			
	Proposed Monitoring Plan			Section 3.2		
Groundwater Nond	egradation			Section 4.0		

Gray shading indicates no corresponding reference material

2.0 Mine Site Water Management and Infrastructure

This section focuses on water management associated with the Mine Site during operations, specifically during the period covered by this Application (approximately Mine Years 1 through 5). The following subsections describe:

- the existing site conditions (Section 2.1)
- the water management systems related to *mine water* (Section 2.2) and *sewage* (Section 2.3)
- the stormwater management systems (Section 2.4)
- the adaptive management approach that can be used to modify Mine Site water management systems in response to site-specific conditions encountered during operations (Section 2.5)
- chemical additives proposed for use at the Mine Site (Section 2.6)
- an overview of plans for progressive reclamation and the reclamation, closure, and postclosure maintenance phases (Section 2.7)

Permit application support drawings for Mine Site water management systems are included in Appendix B.

2.1 Existing Conditions

The Mine Site is currently located on federal lands within an area of the Superior National Forest that has not previously been mined (Section 1.1.1 of Reference (4)). It is part of a large parcel included in the proposed land exchange between PolyMet and the U.S. Forest Service. Under terms of the proposed land exchange, PolyMet will own the Mine Site (Section 3.3.2 of Reference (4)). Portions of the Mine Site are within the municipal limits of the City of Babbitt: they are classified by the City's zoning ordinance as a Mineral Mining district. The Mine Site and existing land use designations are shown on Large Figure 2.

Runoff in the vicinity of the Mine Site drains toward the Partridge River, a tributary of the Upper St. Louis River. Specifically, runoff from most of the Mine Site naturally drains to the south through culverts under Dunka Road and the adjacent mainline railroad, then into the Partridge River downstream of Dunka Road. Runoff from the northernmost portion of the Mine Site generally drains north into One Hundred Mile Swamp and Yelp Creek. These waterbodies form the headwaters of the Partridge River, which meanders around the eastern end of the Mine Site before turning southwest (Section 1.4 of Reference (2)). The existing subwatersheds and associated waterbodies at or near the Mine Site are shown on Large Figure 3. The Mine Site is currently a mixture of forested upland and wetland areas, with the most common wetland types consisting of coniferous bog, shrub swamp, and coniferous swamp (Section 3.1.5 of Reference (9)).

Refer to Sections 3.1.1 and 3.1.2 of this volume for discussion of baseline surface water quality and groundwater quality, respectively.

2.2 Mine Water Management and Infrastructure

This section describes the design and operation of the infrastructure that will be used to manage *mine water* at the Mine Site in accordance with applicable regulations. The initial phases of mine water infrastructure will be constructed prior to Mine Year 1 (which will begin on the first day of production blasting within the open pit at the Mine Site).

As defined in Table 1-2 of this volume, *mine water* includes:

- water that has contacted surfaces disturbed by mining activities, such as drainage collected on stockpile liners, pit dewatering, and runoff contacting ore, waste rock, and Mine Site haul road surfaces; this water will be conveyed by pipe to the equalization basins for further conveyance through the Mine to Plant Pipelines (MPP) to the WWTS
- runoff from construction dewatering of saturated mineral overburden, which is a subset of *mine water* called construction *mine water*, will be conveyed by pipe to the Construction Mine Water Basin for further conveyance through the MPP to the Flotation Tailings Basin (FTB)
- runoff from the Overburden Storage and Laydown Area (OSLA), which is a subset of *mine water* collected in the OSLA Pond, will be conveyed by pipe to the Construction Mine Water Basin for further conveyance through the MPP to the FTB or, in later years, to aid in East and Central Pit flooding

Mine water will be intercepted throughout the Mine Site by ditches, dikes, stockpile foundation liners, and the stockpile groundwater containment system to keep it separate from *stormwater*. *Mine water* will be managed through a system of ditches, sumps, ponds, and pipes. The mine water management system at the end of Mine Years 1, 2, and 11 is conceptually depicted on Large Figure 4, Large Figure 5, and Large Figure 6, respectively. The mine water management system is shown on the Mechanical Infrastructure Permit Application Support Drawings in Appendix B.

Mine water system components at the Mine Site have been designed to route *mine water* by gravity flow to sumps or ponds. With the exception of underdrain sumps, the sumps and ponds have been designed to contain water from a component-specific "design event". Mine Site mine water infrastructure is designed to handle storm events in excess of those required under the Industrial Stormwater General Permit, which requires industrial stormwater ponds be designed to store and treat a 5-year storm event and eliminate scour and re-suspension for up to the 10-year storm event. In general, the Mine Site mine water system is designed to routinely handle flows associated with the 100-year, 24-hour storm event, with the exception of the OSLA Pond, which is designed to handle flows from the 25-year storm. The system also includes additional protection by incorporating contingency measures (which include both design features and operational plans) to mitigate hazards associated with flows in excess of the 100-year, 24-hour storm.

The design storm events were chosen using best engineering judgment, in consultation with the regulatory agencies, based on the level of risk associated with an overflow and the capital costs and

environmental impacts associated with larger facilities (e.g., larger or deeper ponds) that could handle additional capacity. Risk was evaluated qualitatively based on the likelihood of flows larger than the design storm event over the life of the infrastructure and the level of hazard represented by the potential quantity and water quality of the runoff associated with a storm larger than the design storm event.

Large Table 1 summarizes the objectives, design criteria, and rationale used to design the Mine Site mine water infrastructure. The design criteria for the mine water system components are also summarized in Table 2-1 of Reference (2). In order to prevent and mitigate the effects of possible overflows from the mine water systems, an operational plan has been established in the event of an overflow, as summarized in Large Table 1 and further described in Section 4.4.1 of Reference (2).

Refer to the following sources for additional detail on the design and operation of Mine Site mine water infrastructure:

- Section 2.1 of Reference (2) for further discussion of *mine water* management at the Mine Site, including design criteria for the mine water infrastructure
- Section 4.1 of Reference (2) for the operations plan for mine water infrastructure
- Section 4.4.1 of Reference (2) for discussion of the prevention and management of mine water overflows
- Section 6.1 of Reference (7) for the details of the Mine Site water balances

The following sections describe the design and operation of the major components of the mine water management system, which include the components associated with pit dewatering (Section 2.2.1), stockpile drainage (Section 2.2.2), mine water ponds for other infrastructure (Section 2.2.3), and the Equalization Basin Area and MPP (Section 2.2.4).

2.2.1 Pit Dewatering

During mining operations, the water table will be at or near the ground surface within the pit perimeter; therefore, groundwater will flow into the mine pits making it necessary to dewater. Pit inflows will consist of groundwater and runoff from areas within the pits. This water will be directed to sumps within the pits where it will be collected and pumped to the equalization basins for further conveyance to the WWTS at the Plant Site via the MPP. There will be no discharge to groundwater from the mine pits.

Dewatering sumps will be developed as part of mine operations. The pit floors will be sloped toward water collection sumps fitted with pumps and pipelines. The mine water pipelines will convey the water to the equalization basins. The sumps and piping system are conceptually located as shown on Large Figure 4 (Mine Year 1), Large Figure 5 (Mine Year 2), and Large Figure 6 (Mine Year 11).

The size and location of the sumps, pumps, and pipes will change as the pits expand in size and depth, requiring periodic evaluation of the pumping systems. The mine pit pump capacities are designed to remove within 3 days the water resulting from a peak annual snowmelt runoff event (approximately

equivalent to the runoff volume expected during a 5-year, 24-hour storm event), and the associated sumps are designed with capacity to hold the remaining volume from the snowmelt runoff event that the pumps have not removed. In the event that a storm exceeds the sump and pump capacity, the lowest level of the pit will be used to store the excess water, with mining operations relocated to higher levels or delayed until water levels are pumped down (Section 2.1.3 of Reference (2)). Refer to Section 2.1.3 of Reference (2) for further discussion of pit dewatering, including discussion of estimated average annual and peak inflow rates and pump and sump capacities.

2.2.2 Stockpile Drainage

Overburden, waste rock, and ore will be stored in stockpiles at the Mine Site. Stockpiles containing Category 1, 2, 3, and 4 waste rock (as defined in Section 4.1.1 of Reference (10)), ore, and saturated mineral overburden will have engineered systems to collect drainage. Unsaturated mineral overburden and peat will generally be stored in stockpiles in the OSLA or used for construction or reclamation. Runoff from the OSLA will be collected in the OSLA Pond. Refer to Sections 2.1 and 6.2 of Reference (8) for estimated quantities of stockpiled materials.

There will be three temporary stockpiles: the Category 2/3 Waste Rock Stockpile, the Category 4 Waste Rock Stockpile, and the Ore Surge Pile (OSP), all with engineered liner systems to collect drainage. Category 2, 3, and 4 waste rock will be placed within the Category 2/3 Waste Rock Stockpile and the Category 4 Waste Rock Stockpile during Mine Years 1 through 11. The layout and liner design of the temporary stockpiles are included with the Categories 1, 2/3, and 4 Stockpiles and Ore Surge Pile Design Permit Application Support Drawings in Appendix B. Saturated overburden may be used in construction applications where it will be placed in a permanently saturated zone, above a geomembrane liner, or as the temporary stockpile soil liner immediately below the geomembrane liner (Section 2.2.3.1 of Reference (8)). Saturated overburden not used for construction will be comingled with the Category 2, 3, and 4 waste rock (Section 2.2.4.1 of Reference (8)). Ore may be temporarily placed in the OSP, with ore moving in and out as needed to meet mine and plant conditions. Although the OSP does not store waste rock, the design of the stockpile liner system is the same as the design of the temporary waste rock stockpiles.

The temporary stockpiles have been designed to comply with Minnesota Rules, part 6132.2200 to provide for the collection of substantially all water, and Minnesota Rules, part 6132.2400 to minimize hydrologic impacts, be structurally sound, and control erosion on the stockpile surface. The temporary stockpiles will include an engineered system comprised of, from the bottom up, a foundation; an underdrain system with sumps, if required; an impermeable composite liner barrier; and an overliner drainage layer with mine water sumps (Section 2.1.3.2 of Reference (8)). Overflow ponds will be located adjacent to the sumps to provide storage by gravity flow of mine water volumes in excess of the sump design volumes (Section 2.1.4.1 of Reference (2)). Each paired sump and overflow pond will be surrounded by dikes and will have a combined capacity for the 100-year, 24-hour mine water yield plus a safety factor in the form of freeboard (Section 2.1.4.1.1 of Reference (2)). For further discussion of design volumes and design criteria, refer to Large Table 1 and Sections 2.1.4.1.1 and 2.1.4.1.2 of Reference (2).

The need for and extent of the temporary stockpile underdrain systems will depend on the elevation of the groundwater below the stockpiles and will be assessed in further geotechnical analysis prior to final

design and construction. The underdrain system will be developed, if necessary, to capture and convey shallow foundation groundwater to facilitate construction of the liner system and prevent the development of excess foundation pore pressures below the liner during stockpile loading.

Stockpile drainage collected in the mine water sumps and overflow ponds will be managed as *mine water* and will be pumped to the equalization basins for further conveyance to the WWTS via the MPP. If underdrain sumps are necessary, collected water will be directed to the mine water sumps for conveyance to the equalization basins. It is anticipated that water quality associated with the underdrain sumps will be the same as groundwater quality. Monitoring of these underdrains will be conducted on an ongoing basis as part of the performance monitoring program.

Although outside this permit cycle, it should be noted that, beginning in approximately Mine Year 11, the temporary Category 2/3 and Category 4 Waste Rock Stockpiles and commingled saturated mineral overburden will be relocated for ultimate disposal within the East and Central Pits after mining is completed in each pit. Category 2, 3, and 4 waste rock will also be placed directly in the East and Central Pits after mining is completed in each pit. The temporary OSP will be depleted in Mine Year 20, with the remaining material transported to the Process Plant or disposed of in the East Pit.

The Category 1 Waste Rock Stockpile, the only permanent waste rock stockpile on-site, will contain the majority of the Category 1 waste rock, although some Category 1 waste rock will be used to backfill the Central Pit or East Pit in Mine Years 11 through 20. The Category 1 Waste Rock Stockpile has been designed to comply with Minnesota Rules, parts 6132.2200 and 6132.2400. Minnesota Rules, part 6132.2200 provides for the prevention of substantially all water from moving through or over the mine waste and the collection and disposal of any remaining residual waters. Minnesota Rules, part 6132.2400 requires permanent waste rock stockpiles to minimize hydrologic impacts, be structurally sound, control erosion, promote progressive reclamation, and enhance the survival and propagation of vegetation (Section 2.1.2.1 of Reference (8)). The Category 1 waste rock is not expected to generate acid rock drainage, but may leach heavy metals. Drainage from the Category 1 Waste Rock Stockpile will be collected by a groundwater containment system and conveyed to the equalization basins for further conveyance to the WWTS via the MPP for treatment (Section 2.1.4.2 of Reference (2)). This groundwater containment system will be developed in lieu of a liner system under the stockpile. Section 2.1.2.2 of Reference (8) and the Category 1 Stockpile Groundwater Containment System Permit Application Support Drawings in Appendix B include further information on design of the Category 1 Stockpile Groundwater Containment System.

The OSLA is a temporary storage area for unsaturated overburden and peat that will be used in construction or reclamation. The OSLA will be graded and compacted to direct surface runoff to a pond at the southwestern corner of the area (the OSLA Pond). The grading plan for the OSLA is included with the Mine Site and Dunka Road Earthwork Permit Application Support Drawings in Appendix B. PolyMet has agreed to collect and manage runoff from the OSLA due to concerns about the potential release of mercury from the stored peat (Section 2.1.5.1 of Reference (2)). Specifically, runoff collected in the OSLA Pond will be pumped to the Construction Mine Water Basin for further conveyance to the FTB via the

MPP, or, during East and Central Pit backfilling, used to flood the East and Central Pits. The OSLA Pond is designed to handle the 25-year, 24-hour storm (Large Table 1 and Section 2.1.5 of Reference (2)).

2.2.3 Mine Water Ponds for Other Infrastructure

Lined mine water ponds will provide storage by gravity flow of *mine water* during heavy precipitation or short power outages. In addition to the temporary stockpile sumps and overflow ponds and the OSLA Pond, at least five other mine water ponds will be constructed at the Mine Site, as conceptually shown in Large Figure 4, Large Figure 5, and Large Figure 6 for Mine Years 1, 2, and 11, respectively. These mine water ponds will be as follows:

- the Haul Road East, Haul Road West, Haul Road North, and Haul Road Central Ponds, which will collect runoff from the haul roads
- the Rail Transfer Hopper (RTH) Pond, which will collect runoff from the RTH

The mine water ponds for the haul roads and RTH are designed to contain runoff volumes from the 100year, 24-hour storm (Large Table 1 and Section 2.1.5 of Reference (2)). For more information regarding the sizing and liner systems of the mine water ponds, refer to Large Table 1 and Section 2.1.5 of Reference (2).

A pump and piping system will convey *mine water* from the haul road ponds and the RTH Pond to the equalization basins for further conveyance to the WWTS via the MPP (Section 2.1.5 of Reference (2)).

2.2.4 Equalization Basin Area and Mine to Plant Pipelines

The Equalization Basin Area is the pond area at the Mine Site (south of Dunka Road) that will contain the High Concentration Equalization Basin, the Low Concentration Equalization Basins 1 and 2, the Construction Mine Water Basin, the CPS, and the Construction Mine Water Pumping Station. The MPP will consist of three pipelines that will convey water between the Mine Site and Plant Site: the Low Concentration Mine Water Pipeline, High Concentration Mine Water Pipeline, and Construction Mine Water Pipeline.

Mine water requiring treatment will be pumped to the Equalization Basin Area where it will be pumped through either the High Concentration Mine Water Pipeline or the Low Concentration Mine Water Pipeline to the WWTS (Section 2.1 of Reference (2)). *Mine water* that does not require treatment besides settling for total suspended solids (TSS) (construction *mine water* and OSLA runoff) will be pumped to the Construction Mine Water Basin at the Equalization Basin Area where settling will occur, then it will be pumped through the Construction Mine Water Pipeline to the FTB (with the exception of any water needed during East and Central Pit flooding operations, starting in approximately Mine Year 11 and thus not covered under this Application) (Section 2.1 of Reference (2)). The Equalization Basin Area, MPP, and WWTS are covered by Volume III of this Application. The design of the MPP is provided in the Mechanical Infrastructure Permit Application Support Drawings in Appendix B.

2.3 Sewage Management and Infrastructure

Sewage at the Mine Site will be handled in holding tanks, periodically pumped out by a commercial vendor, and transported via truck to the Plant Site for treatment at the Plant Site Sewage Treatment System. Refer to Section 2.2 of Volume IV for discussion of the Plant Site Sewage Treatment System.

2.4 Stormwater Management and Infrastructure

This section describes the management of *stormwater* at the Mine Site, including best management practices (BMPs) and the design and operation of the infrastructure that will be used to manage *stormwater* in accordance with applicable regulations.

Consistent with the overall Project approach (Table 1-2 of this volume), *stormwater* at the Mine Site is defined in three categories:

- construction stormwater, which consists of stormwater associated with construction activities
- industrial stormwater, which consists of stormwater associated with industrial activities
- non-contact stormwater, which consists of precipitation and runoff that contacts natural, stabilized, or reclaimed surfaces and has not been exposed to mining activities, construction activities, or industrial activities

These three categories of *stormwater* will be separated from *mine water* through a system of ditches, dikes, and ponds, as depicted in the Mine Site Stormwater Permit Application Support Drawings in Appendix B. Precipitation and runoff that contact surfaces disturbed by mining activities (such as drainage collected on stockpile liners, pit dewatering, and runoff contacting ore, waste rock, and haul road surfaces), runoff from construction dewatering of saturated mineral overburden, and runoff from the OSLA will be managed as *mine water* rather than *stormwater*, as described in Section 2.2 of this volume.

The initial phases of stormwater infrastructure will be constructed prior to commencement of Project operations. As discussed in Section 1.0 of this volume, a separate application is being submitted requesting authorization to discharge *stormwater* associated with construction activities at the Mine Site under the Construction Stormwater General Permit. While these activities will be associated with the separate Construction Stormwater General Permit program, an overview of PolyMet's plan for management of *construction stormwater* is included here as additional background. *Stormwater* associated with construction activities will be managed with controls and BMPs, including erosion and sediment control measures, construction water management control measures, dust control measures, and construction site restoration practices. Prior to the start of each phase of construction activities, these management measures will be incorporated into a Construction Stormwater Pollution Prevention Plan (SWPPP) based on detailed construction plans and in accordance with Construction Stormwater General Permit requirements. In order to meet the permanent stormwater management requirements of the Construction Stormwater General Permit, additional stormwater features beyond those discussed herein may be included in final engineering designs and subsequently added to the Construction SWPPP.

Also, as discussed in Section 1.0 of this volume, a separate application will be submitted requesting authorization to discharge *stormwater* associated with industrial activities at the Mine Site under the Industrial Stormwater General Permit. While these activities will be associated with the separate Industrial Stormwater General Permit program, an overview of PolyMet's plan for management of *industrial stormwater* is included here as additional background. PolyMet will develop and implement an Industrial SWPPP in accordance with Industrial Stormwater General Permit requirements, which will incorporate and expand upon the discussions in this section.

During operations, *stormwater* (including *construction stormwater*, *industrial stormwater*, and *non-contact stormwater*) on and around the Mine Site will be managed in a manner that reduces potential impacts to mining activities, protects the environment, and maintains existing flow patterns to the extent practicable. *Stormwater* is expected to meet water quality standards either without treatment or after being routed through on-site sedimentation ponds to remove TSS.

As described in the following subsections, *stormwater* flowing on and off the Mine Site will be controlled by natural watershed divides, Mine Site features, and a series of dikes and ditches constructed around the perimeter of the Mine Site, along the mine pit overburden excavation limits, and around the interior of the Mine Site. As shown on Large Figure 4 through Large Figure 6, sedimentation ponds constructed along the perimeter of the Mine Site will reduce TSS from *stormwater* before it is discharged off-site. Receiving waterbodies include the Partridge River and its tributaries.

Mine Site stormwater infrastructure is designed to handle storm events in excess of those required under the Industrial Stormwater General Permit, which requires stormwater ponds be designed to store and treat a 5-year storm event and eliminate scour and re-suspension for up to the 10-year storm event. In general, the Mine Site stormwater system is designed to routinely handle flows associated with the 10year, 24-hour storm event with many features upsized to avoid impacts up to the 100-year, 24-hour storm. The system also includes additional protection by incorporating contingency measures (which include both design features and operational plans) to mitigate impacts associated with flows in excess of the 100-year, 24-hour storm.

The design storm events were chosen using best engineering judgment, in consultation with the regulatory agencies, based on the level of risk associated with an overflow and the capital costs and environmental impacts associated with larger facilities (e.g., larger or deeper ponds) that could handle additional capacity. Risk was evaluated qualitatively based on the likelihood of flows larger than the design storm event over the life of the infrastructure and the level of impact represented by the potential quantity and water quality of the runoff associated with a storm larger than the design storm event.

Large Table 2 summarizes the objectives, design criteria, and rationale used to design the Mine Site stormwater infrastructure. The overall system capacity will be based on the Mine Site configuration, and the individual segments will be installed when needed, as conceptually shown on Large Figure 4, Large Figure 5, and Large Figure 6, for Mine Years 1, 2, and 11, respectively. In order to prevent and mitigate the effects of possible overflows from the stormwater system, an operational plan has been

established in the event of an overflow, as summarized in Large Table 2 and further described in Section 4.4.2 of Reference (2).

2.4.1 Significant Materials

Significant materials are defined by 40 CFR § 122.26(b)(12) as including, but not limited to:

"raw materials; fuels; materials such as solvents, detergents, and plastic pellets; finished materials such as metallic products; raw materials used in food processing or production; hazardous substances designated under Section 101(14) of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); any chemical the facility is required to report pursuant to Section 313 of the Emergency Planning and Community Right-to-Know Act (EPCRA); fertilizers; pesticides; and waste products such as ashes, slag, and sludge that have the potential to be released with stormwater discharges."

Stormwater may come into contact with significant materials at the Mine Site and will be managed throughout the life of the Project using appropriate BMPs, including engineered controls and spill prevention and response procedures, to reduce or eliminate contact or exposure of pollutants to *stormwater* or remove pollutants from *stormwater*.

2.4.2 Perimeter and Exclusion Dikes

Perimeter dikes will be placed at strategic locations around the perimeter of the Mine Site and around the pit rims. Perimeter dikes will be constructed of silty sand or glacial till excavated during construction of ditches and removal of overburden. The purpose of constructing dikes and ditches near the perimeter of the Mine Site is to minimize the amount of surface water flowing on to the Mine Site, minimize Project impacts to wetlands outside the perimeter of the Mine Site, eliminate *mine water* flowing uncontrolled off the Mine Site, and manage the rate and location of *stormwater* flowing off the Mine Site.

PolyMet will construct ditches along the interior of most of the perimeter dike system to convey *stormwater* adjacent to the dikes, prevent surface runoff from entering the mine pits, intercept *stormwater* prior to reaching mine water areas, and prevent water from pooling in areas where the dikes cut across low areas. The existing ground along some of the site perimeter is already relatively high, which will allow a ditch to capture the surface runoff without a dike. *Stormwater* captured by the ditches will be directed to sedimentation ponds and then routed into a natural drainage system off the Mine Site. The conceptual alignments of the perimeter dikes for Mine Years 1, 2, and 11 are shown on Large Figure 4, Large Figure 5, and Large Figure 6, respectively. For further information regarding the criteria used in selecting perimeter dike alignments and the seepage control measures, refer to Section 2.2.2.1 of Reference (2).

Pit exclusion dikes will be constructed in areas where surface water might otherwise drain into the mine pits. The pit exclusion dikes will be temporary, in place only as long as the mine pit overburden excavation limit is at a specific location. Reconstruction of the dikes will be necessary as the mine pit expands. Dikes will be constructed by pushing up a ridge of soil where needed around the limits of overburden excavation at the pit rim during overburden stripping operations. The intention of the pit exclusion dikes

is to intercept and direct surface runoff, not to impede movement of groundwater flow. Section 2.2.2.2 of Reference (2) includes more details regarding the construction of pit exclusion dikes.

2.4.3 Stormwater Ditches

Stormwater ditches will be constructed throughout the Mine Site to route *stormwater* away from areas of mining activity. The stormwater ditches will route *stormwater* off-site, minimizing the amount of *mine water* by separating *stormwater* from mine water areas.

Interior ditches will convey collected *stormwater* to perimeter ditches and sedimentation ponds prior to controlled discharge. The layout of the proposed stormwater system mimics the existing drainage patterns at the Mine Site to the extent practical while meeting the objectives of the system. For further information, refer to Section 2.2.3 of Reference (2).

2.4.4 Sedimentation Ponds and Outlets

Sedimentation ponds around the perimeter of the Mine Site will be used to reduce TSS and to control *stormwater* discharge from the Mine Site. Five stormwater sedimentation ponds are planned for the Mine Site, as conceptually shown on Large Figure 4, Large Figure 5, and Large Figure 6 for Mine Years 1, 2, and 11, respectively. The pond locations were selected to match existing flow patterns to the extent practical and minimize the overall hydrologic impacts to the Partridge River:

- Pond A will be located near the northeastern corner of the Category 1 Waste Rock Stockpile and will direct *stormwater* off-site from the northern and western sides of the stockpile. Pond A will discharge to a wetland complex/drainageway that is tributary to the Partridge River.
- Pond B will be located between the East Pit and northern border of the property, routing *stormwater* to a wetland complex/drainageway that drains to the Partridge River.
- Pond C West will be located west of the West Pit and will be designed to provide additional flood storage upstream of Pond C – East. This pond is part of the interior stormwater system and does not discharge off-site.
- Pond C East will be located west of the OSLA and south of the West Pit. This pond discharges under Dunka Road and the railroad through a series of culverts to an unnamed creek that drains to the Partridge River.
- Pond D will be located west of the Category 2/3 Waste Rock Stockpile, east of the OSP, on the northern side of Dunka Road. This pond discharges under Dunka Road and the mainline railroad through a series of culverts to a ditch that drains to the Partridge River.

Ponds A, B, C – East, and D will be constructed prior to the end of Mine Year 1, and Pond C – West will be constructed during Mine Year 2 (Section 2.2.4 of Reference (2)). The sedimentation ponds are designed to reduce sediment in runoff from storms up to the 100-year, 24-hour storm event (Large Table 2 and Section 2.2.4.2 of Reference (2)) and achieve the applicable industrial stormwater benchmark values (Section 2.2.4.1 of Reference (2)). Sedimentation ponds will be inspected annually to determine the depth

of sedimentation in the pond and dredged if sediment accumulation reduces the available pond volume below the required design storage capacity (Section 4.2 of Reference (2)).

Primary outlets and emergency outlets for each of the four exterior stormwater sedimentation ponds (Ponds A, B, C – East, and D) will be evaluated and designed on a site-specific basis. Primary outlets will be designed to provide flood attenuation capacity, and the emergency outlets will be designed to pass flows larger than the design values used to size the sedimentation pond. Stormwater sedimentation Ponds A and B will have their outlets fitted with controls to temporarily shut off discharge from the Mine Site or onto the Mine Site under Partridge River flooding conditions (Section 4.4.2 of Reference (2)).

Sections 2.2.4, 4.2, and 4.4.2 of Reference (2) contain more detailed information regarding sedimentation ponds and outlets.

2.5 Adaptive Management

The Mine Site water management systems have been designed to achieve compliance based on modeling of expected water quantity and quality. As described in Section 1.6 of Volume I, if water quality objectives are not met by these engineering controls, PolyMet will use an adaptive management approach, as necessary, to improve performance. As part of the adaptive management approach at the Mine Site, studies will first be undertaken to determine the root cause of the problem. Second, the design or operation of existing (or planned) Project engineering controls will be modified to remedy the root cause. Third, if modifying the design or operation of Project engineering controls is not sufficient, then contingency mitigation actions will be taken. Fourth, outcomes will be monitored and may be evaluated with water modeling. This process is meant to be iterative and will be repeated as necessary. The process for implementing adaptive management at the Mine Site is described in Section 6.4 of Reference (2) and Sections 2.0 and 3.0 of Reference (3).

Section 6.5 of Reference (2) presents feasible contingency mitigation actions available to address the following situations at the Mine Site:

- a pattern of overflows from mine water sumps or ponds;
- compliance issues in groundwater downgradient of lined infrastructure or the mine pits; and
- West Pit water quality is worse than expected.

2.6 Chemical Additives

Chemical additives, specifically chemical dust suppressants, will be used to control fugitive dust emissions from haul roads within the Mine Site and to prevent sedimentation and entrainment of dust in *stormwater* and nearby water bodies. Chemical dust suppression will be used to bind the dust to the haul roads. Dust suppressants are typically applied approximately one time per year and watered as necessary to reactivate the binding agents in the dust suppressant chemicals.

At the Mine Site, haul road runoff will be captured in mine water ditches and ponds and pumped to the equalization basins for further conveyance to the WWTS via the MPP, as described in Section 2.2 of this volume. Therefore, there is very little potential for excess dust suppressants to be transported off-site via surface water from the Mine Site. In order to mitigate potential environmental transport of the applied suppressants, BMPs will be implemented when calculating usage rates and applying products. The U.S. Environmental Protection Agency (USEPA) (Reference (11)) and Minnesota Pollution Control Agency (MPCA) (Reference (12)) provide guidance on the BMPs associated with the usage of chemical dust suppressants. Adherence to usage BMPs will limit the off-site transport of chemical additives. For example, information from vendors and/or field trials and usage will allow for optimization of application rates, application frequency, and the water dilution to product ratio, so that only the minimum amount of treatment needed to achieve successful dust suppression will be applied to surfaces. Optimizing treatment will result in minimization of pooling, runoff, and costs. Chemical dust suppressants will not be applied immediately adjacent to water bodies or when it is raining or when rain is imminent. Other BMPs for application and usage of chemical dust suppressants will be used when applicable.

Additional information regarding each proposed dust suppressant is included in Large Table 3. Additionally, Safety Data Sheets and product information labels for each proposed dust suppressant are included in Appendix C. Based on Project economics and the availability of specific products, dust suppressants may be acquired from multiple manufacturers provided that the chemical additive is commensurate with the use proposed within this application. Several different dust suppressant products are listed, and the decision on which product to use will be determined and reevaluated throughout the Project.

2.7 Progressive Reclamation, and an Overview of the Reclamation, Closure, and Postclosure Maintenance Phases

While the activities described in this section are beyond the scope of the first NPDES/SDS permit term, an overview of progressive reclamation activities that will occur during the operations phase and activities associated with the reclamation, closure, and postclosure maintenance phases, which are estimated to begin in Mine Years 21, 25, and 55, respectively, are provided here as additional background.

Reclamation activities that affect water management features at the Mine Site will begin during operations. Beginning in Mine Year 11, the contents of the Category 2/3 Waste Rock Stockpile and the Category 4 Waste Rock Stockpile will be relocated to the East and Central Pits, after mining is completed in each pit, and additional waste rock mined from the West and Central Pits will be placed directly in the East Pit (Section 2.3.1 of Reference (8)). Once mining is completed in the Central Pit, the waste rock mined from the West Pit will also be placed in the Central Pit. Once mining ceases in the West Pit, the combined East/Central Pit (now referred to as the East Pit) will be flooded.

Once the waste rock has been removed from the Category 2/3 and the Category 4 Waste Rock Stockpiles, the stockpiles will be reclaimed. The piping, pump systems, liner systems, stockpile foundations, stockpile sumps, and ponds will be removed, and the footprints will be reclaimed into a mixture of upland and wetland areas (Section 7.3.2 of Reference (8)). Water from the East Pit will continue to be pumped to the

WWTS for treatment, then returned to the pit, to reduce the constituent load in the East Pit water (Section 2.1.1 of Reference (3)). The East Pit will not be allowed to overflow to the environment. An outlet structure will be constructed to direct any overflow from the East Pit into the West Pit (Section 6.2.5 of Reference (1)).

The Category 1 Waste Rock Stockpile will also be incrementally reclaimed, with a geomembrane cover system installed progressively starting in Mine Year 14 and completed by the end of Mine Year 21 (Section 3.1 of Reference (3)). As the cover system is constructed, the Category 1 Stockpile Groundwater Containment System will also be covered, as described in Section 7.2 of Reference (8). As the stockpile and groundwater containment system are covered, surface runoff will be directed to the stormwater system and the containment system will continue to collect stockpile drainage via groundwater and route it to the equalization basins for further conveyance to the WWTS via the MPP for treatment until it transitions to non-mechanical treatment (Section 6.2 of Reference (3)).

Reclamation of other Mine Site water management features will take place after mining ceases in approximately Mine Year 20. Pit dewatering infrastructure will be removed from the West Pit, and the pit will be flooded as described in Section 2.1.1 of Reference (3). Stormwater features may be reclaimed or reconfigured for the postclosure maintenance phase. The footprint of the former Ore Surge Pile, sump, and pond will be reclaimed into a mixture of upland and wetland areas after the piping, pump system, and liner systems are removed. The OSLA will also be re-graded, if necessary, and revegetated.

The postclosure maintenance phase will begin at the Mine Site once the West Pit is flooded, which is estimated to occur in Mine Year 55. The ultimate goal for water treatment is to transition from the mechanical treatment provided by the WWTS to non-mechanical treatment systems for the Category 1 Stockpile Groundwater Containment System drainage and the West Pit overflow as soon as possible (Section 2.2.2.3 of Reference (6)).

Monitoring, reporting, and water treatment will continue during the reclamation, closure, and postclosure maintenance phases, until release from these activities is granted via the applicable permit(s).

3.0 Mine Site Monitoring

Monitoring of baseline water quality and quantity has been ongoing in the vicinity of the Mine Site. As the Project commences, monitoring will continue at specific locations for a variety of purposes, including compliance with this permit. Baseline monitoring data from monitoring stations presented in the FEIS (Reference (4)) (which includes stations proposed in the NPDES/SDS monitoring plan) is described in Section 3.1; Section 3.2 provides information on the proposed monitoring plan.

3.1 Existing Baseline Monitoring

This section summarizes the surface water and groundwater monitoring previously conducted at the Mine Site.

3.1.1 Surface Water

The Mine Site is located in the Partridge River watershed, approximately 17 river miles upstream of Colby Lake. Above Colby Lake, the Partridge River watershed covers approximately 103 square miles. The Partridge River flows just east of the site. Partridge River tributaries immediately downstream of the Mine Site include Yelp Creek, located north of the Mine Site, and Unnamed Creek, located south of the Mine Site and downstream of the future West Pit overflow. Other tributaries located between the Mine Site and Colby Lake that could potentially be affected along the Transportation and Utility Corridors (refer to Volume VII) include Wetlegs Creek, Longnose Creek, and Wyman Creek. Other tributaries to the Partridge River upstream of Colby Lake, including Stubble Creek, the south branch of the Partridge River, and Colvin Creek, will not be directly or indirectly impacted by the Project (Section 1.3.1 of Reference (2)). Surface water features in existing conditions are shown on Large Figure 7.

Daily flow data is available for the Partridge River from the U.S. Geological Survey (USGS) gaging station 04015475 (Partridge River above Colby Lake at Hoyt Lakes, Minnesota) from water years 1978 through 1987. During this period, hydrology was affected by the periodic and variable dewatering of Northshore Mining's Peter Mitchell Mine located at the headwaters of the Partridge River. The hydrology data has been validated and adjusted for use on this Project, as described in Section 4.4.1 of Reference (7).

Recent (2011-present) daily flow data near the Mine Site is available from Minnesota Department of Natural Resources (MDNR) gage H03155002, located on the Partridge River at the Dunka Road crossing (existing surface water monitoring station PM-3/SW003). This data is not directly comparable to the USGS gage 04015475 data due to the large difference in tributary watershed size and location. Based on its location, the MDNR gage H03155002 is more heavily influenced by Peter Mitchell Mine dewatering than the USGS gage 04015475.

Several locations within the Partridge River watershed have been monitored for water quality and quantity since 2004, as summarized in Table 3-1; existing surface water monitoring stations are shown on Large Figure 7.

Table 3-1	Summary of Baseline Surface Water Monitoring Stations (2004, 2006 through 2008,
	2010 through 2015)

Current Monitoring Station ID	Water Body	Water Quality Monitoring Years	Average Instantaneous Flow (cfs)	Number of Flow Measurements	Flow Measurement Monitoring Years
PM-1/SW001(1)		2004, 2006, 2008	0 ⁽²⁾	2	2004
PM-2/SW002 ⁽¹⁾		2004, 2006, 2012-2015	7.7	7	2004-2006
PM-3/SW003		2004, 2006- 2008, 2010, 2012-2015	21.1	21	2004-2007
PM-16/SW004	Partridge River	2004, 2006- 2008, 2010- 2015	16.5	19	2004-2007
SW004a		2010, 2012- 2015	N/A	N/A	N/A
SW004b		2010, 2012- 2014	N/A	N/A	N/A
PM-4/SW005		2004, 2006- 2008, 2010- 2015	56.7	21	2004-2007
WP-1	Partridge River Tributary: Unnamed Creek downstream of the future West Pit Overflow	2011-2015	0.9 ⁽³⁾	10	2011

(1) This station represents existing conditions upstream of the potential influence of the Mine Site.

(2) Flow was not observed at this station on the two occasions evaluated.

(3) Flow was observed 2 of 10 occasions evaluated.

Refer to Large Table 4 for a summary of the baseline surface water quality monitoring results and Section 4.4.4 of Reference (7) and Reference (13) for detailed baseline surface water quality results. The frequency and extent (i.e., number of constituents) of monitoring varied by location. Monitoring conducted from 2004 through 2008 generally included a wider list of constituents to characterize the baseline conditions within the watershed. Monitoring from 2008 through 2011 generally focused on a smaller list of constituents and locations to resolve specific issues with the data. More comprehensive baseline monitoring at select locations along the Partridge River and its tributaries was resumed in 2012 with a wider list of constituents (Section 1.3.1 of Reference (2)). Colby Lake and the Whitewater Reservoir were also monitored in 2010 and 2013 through 2015; the related water quality data is available in Section 4.4.4.3 of Reference (7).

Under Minnesota Rules, part 7050.0430, Partridge River and the unnamed creek downstream of the future West Pit overflow are unlisted waters with the default classification of Class 2B, 3C, 4A, 5, and 6. For

several parameters, one or more baseline monitoring results recorded a concentration higher than applicable surface water quality standards, as summarized in Table 3-2 for the monitoring stations on the Partridge River and in Table 3-3 for the monitoring station on the unnamed creek downstream of the future West Pit overflow. The baseline water quality of the unnamed creek downstream of the future West Pit overflow represents natural background levels. The baseline water quality of the Partridge River represents a mixture of natural background levels and the possible influence of past and present upstream industrial operations.

	Number	V	/ater Q	uality Star	dard	and Num	ber o	f Exceedan	ces ⁽¹⁾)	
Parameter	of Samples	2B ⁽²⁾		3C		4A		4B		5	
Aluminum (dissolved)	260	125 µg/L	32	N/A	-	N/A	-	N/A	-	N/A	-
Aluminum (total)	319	125 µg/L	73	N/A	-	N/A	-	N/A	-	N/A	-
Cobalt (total)	337	5 µg/L	1	N/A	-	N/A	-	N/A	-	N/A	-
Copper (total)	345	2.04- 18.87µg/L ^(2, 3)	1	N/A	-	N/A	-	N/A	-	N/A	-
Lead (total)	306	0.33-9.08 µg/L	3	N/A	-	N/A	-	N/A	-	N/A	-
Mercury	186	0.0013 µg/L ⁽²⁾	115	N/A	-	N/A	-	N/A	-	N/A	-
pH (SU) ⁽⁴⁾	360	6.5-9.0	15	6.0-9.0	2	6.0-8.5	4	6.0-9.0	2	6.0-9.0	2
Thallium (total)	234	0.56 µg/L	1	N/A	-	N/A	-	N/A	-	N/A	-

Table 3-2Baseline Exceedances of Applicable Surface Water Standards at Partridge River
Monitoring Stations Identified in Table 3-1 (2004, 2006 through 2008, 2010 through
2015)

Note: This assessment includes all stations located on the Partridge River identified in Table 3-1 (PM-1/SW001, PM-2/SW002, PM-3/SW003, PM-16/SW004, SW004a, SW004b, and PM-4/SW005). Some of the stations monitored for baseline conditions are not proposed to be monitored as part of this permit.

(1) These columns show applicable water quality standards for the stations and the number of exceedances for each standard.

(2) Minnesota Rules, chapter 7052 establishes additional surface water quality standards for Class 2 water bodies within the Lake Superior Basin. The Lake Superior Basin water quality standards in this table include copper (total) and mercury.

(3) Copper (total) is a hardness-dependent water quality standard. The copper (total) standard was calculated on an event-byevent basis for each monitoring event. The range listed here is the minimum and maximum standard calculated for all monitoring stations on the Partridge River identified in Table 3-1.

(4) pH exceedances are due to the samples being either acidic (less than 6.0 or 6.5 SU) or basic (greater than 8.5 or 9.0 SU), as noted.

Table 3-3Baseline Exceedances of Applicable Surface Water Standards at Monitoring
Station WP-1 (2011 through 2015)

	Number	w	ater (Quality Sta	ndaro	d and Num	nber o	of Exceeda	edances ⁽¹⁾							
Parameter	of Samples	2B ⁽²⁾	2B ⁽²⁾			4A		4B		5						
Aluminum (dissolved)	28	125 µg/L	26	N/A	-	N/A	-	N/A	-	N/A	-					
Aluminum (total)	28	125 µg/L	27	N/A	-	N/A	-	N/A	-	N/A	-					
Cobalt (dissolved)	19	5 μg/L	1	N/A	-	N/A	-	N/A	-	N/A	-					
Cobalt (total)	28	5 µg/L	1	N/A	-	N/A	-	N/A	-	N/A	-					
Copper (dissolved)	19	1.44-7.86 µg/L ^(2, 3)	12	N/A	-	N/A	-	N/A	-	N/A	-					
Copper (total)	28	1.50-8.18 μg/L ^(2, 4)	23	N/A	-	N/A	-	N/A	-	N/A	-					
Lead (total)	26	0.21-1.13 μg/L ⁽⁵⁾	19	N/A	-	N/A	-	N/A	-	N/A	-					
Mercury	11	0.0013 µg/L ⁽²⁾	11	N/A	-	N/A	-	N/A	-	N/A	-					
pH ⁽⁶⁾	30	6.5-9.0	23	6.0-9.0	18	6.0-8.5	18	6.0-9.0	18	6.0-9.0	18					

Note: This assessment includes station WP-1. This station is not proposed to be monitored as part of this permit.

(1) These columns show applicable water quality standards for the stations and the number of exceedances for each standard.

(2) Minnesota Rules, chapter 7052 establishes additional surface water quality standards for Class 2 water bodies within the Lake Superior Basin. The Lake Superior Basin water quality standards in this table include copper (dissolved), copper (total), and mercury.

(3) Copper (dissolved) is a hardness-dependent water quality standard. The copper (dissolved) standard was calculated on an event-by-event basis for each monitoring event using the conversion factor from copper (total). The range listed here is the minimum and maximum standard calculated for all monitoring events at station WP-1.

- (4) Copper (total) is a hardness-dependent water quality standard. The copper (total) standard was calculated on an eventby-event basis for each monitoring event. The range listed here is the minimum and maximum standard calculated for all monitoring events at station WP-1.
- (5) Lead (total) is a hardness-dependent water quality standard. The lead (total) standard was calculated on an event-byevent basis for each monitoring event. The range listed here is the minimum and maximum standard calculated for all monitoring events at station WP-1.

(6) pH exceedances are due to the samples being either acidic (less than 6.0 or 6.5 SU) or basic (greater than 8.5 or 9.0 SU), as noted.

3.1.2 Groundwater

Mine Site groundwater includes flows in two hydrogeologic units: the unconsolidated deposits (known as the "surficial aquifer") and bedrock. The Mine Site is covered with 0 to 60 feet of peat and glacigenic sediments, including outwash and bouldery till. Saturated conditions exist within the surficial aquifer at the Mine Site, and the depth to groundwater is typically less than 10 feet with recharge occurring primarily via direct infiltration of precipitation (Section 4.3.3.1 of Reference (7)). Groundwater flow in the surficial aquifer is generally southerly toward the Partridge River and its tributaries (Section 4.3.3.1 of

Reference (7)). The thinness of the surficial aquifer, heterogeneous glacial sediments, including Rainy Lobe till, ultimately controls its ability to transmit water. Groundwater flow paths are likely short because of the thin and discontinuous nature of the surficial aquifer. Shallow groundwater flow can also be interrupted by bedrock outcrops, which force local deviations in the flow field (Section 4.3.3.1 of Reference (7)).

The water table is generally a subdued replica of the land surface, with upland areas generally associated with groundwater divides. Groundwater in the upper portions of the bedrock is hydraulically connected, to some degree, with the overlying surficial aquifer. Groundwater in the upper bedrock also flows generally toward the south (Section 4.3.3.2 of Reference (7)). Recharge to bedrock is by infiltration of precipitation in outcrop areas and seepage from the overlying surficial aquifer (Reference (14)). The bedrock units have low primary hydraulic conductivity, and groundwater flow is primarily through fractures (i.e., secondary porosity features).

Baseline groundwater quality monitoring has been and continues to be assessed via a network of monitoring wells in the unconsolidated surficial aquifer and bedrock. A summary of these existing wells is available in Large Table 5, and their locations are shown on Large Figure 3.

Three monitoring wells were installed in the surficial aquifer at the Mine Site in 2005 (Reference (15)) and have been sampled intermittently since installation. Twenty-one additional wells were installed in the surficial aquifer between October 2011 and February 2012. A monthly groundwater sampling program for these surficial monitoring wells was initiated in November 2011 and continued through August 2012, at which time monitoring switched to quarterly excluding the winter (first) quarter. Nine monitoring wells have been installed in bedrock at the Mine Site. Four of these wells are larger diameter bedrock wells: they were installed in 2006 to depths from 485 to 610 feet below grade and were sampled during aquifer testing in 2006 and 2007. Five bedrock wells are observation wells: they were installed in 2006 in the upper 100 feet of the bedrock and each has been sampled nine or ten times since installation. Two additional bedrock wells were installed for the purpose of aquifer testing, but are not sampled for water quality. In addition, a water supply well used for exploration drilling was installed in bedrock; this well was only sampled in 2005. The surficial and bedrock wells are currently and will continue to be sampled quarterly, with the exception of the winter (first) quarter (Section 4.3 of Reference (7)).

For a complete tabulation of baseline groundwater quality data collected from 2005 through 2015 at the Mine Site, refer to Section 4.3.4 of Reference (7) and Reference (13). Refer also to Large Table 6, which provides a summary of these results. Baseline condition exceedances of groundwater quality standards, specifically USEPA Maximum Concentration Limits (MCLs) and Secondary Maximum Concentration Limits (sMCLs), are summarized in Table 3-4 for wells in the surficial aquifer and Table 3-5 for wells in bedrock. The baseline groundwater quality at the proposed Mine Site represents natural background levels. In accordance with Minnesota Rules, part 7060.0600, subpart 8, "where the background level of natural origin is reasonably definable and higher than the accepted standard for potable water and the hydrology and extent of the aquifer are known, the natural level may be used as the standard".

Table 3-4Baseline Exceedances of Groundwater Standards at Surficial Aquifer Wells
Identified in Large Table 5 (2005 through 2015)

		Water Quality	v Standard and	Number of Exceedances ⁽¹⁾			
Parameter	Number of Samples	USEPA MCL ⁽²⁾		USEPA s	MCL ⁽³⁾		
Aluminum (dissolved)	466	N/A	-	50 µg/L	128		
Aluminum (total)	27	N/A	-	50 µg/L	26		
Arsenic (total)	33	10 µg/L	6	N/A	-		
Iron (dissolved)	454	N/A	-	300 µg/L	132		
Iron (total)	22	N/A	-	300 µg/L	33		
Lead (total)	323	15 µg/L	1	N/A	-		
Manganese (dissolved)	457	N/A	-	50 µg/L	268		
Manganese (total)	27	N/A	-	50 µg/L	22		
рН	464	N/A	-	6.5-8.5 SU	134		
TDS	457	N/A	-	500 mg/L	1		
Turbidity	443	5 NTU	137	N/A	-		

Note: This assessment includes all stations in the surficial aquifer identified in Large Table 5. Some of the stations monitored for baseline conditions are not proposed to be monitored as part of this permit.

⁽¹⁾ The standards in this column (USEPA Maximum Concentration Limits (MCLs) and Secondary Maximum Concentration Limits (sMCLs)) have been incorporated as Minnesota Class I water quality standards in Minnesota Rules, part 7050.0221. However, it remains to be determined whether these standards are applicable to the groundwater at the Mine Site for compliance purposes, and, even if they are, how they should be applied. Under Minnesota Rules, part 7060.0600, subpart 8, where groundwater in its natural state exceeds the standards for potable water, the natural level may be used as the standard. For certain parameters, the natural background level in groundwater at the NorthMet site exceeds potable standards; accordingly, in these situations the background level should be the standard for compliance purposes, not the MCLs. In addition, even if the Class I standards (i.e., the MCLs) do apply for certain parameters, it is not clear whether Class I A, B, or C should apply (see Minnesota Rules, part 7050.0221, subparts 2 to 4). If Class B or C apply, the "applicable standard" will require groundwater being able to meet the standard after varying levels of treatment.

⁽²⁾ USEPA Maximum Contaminant Levels. These USEPA groundwater quality standards are incorporated by reference into Minnesota Rules, part 7050.0220, subpart 2.A.

⁽³⁾ USEPA Secondary Maximum Contaminant Levels. These USEPA groundwater quality standards are incorporated by reference into Minnesota Rules, part 7050.0220, subpart 2.A.

Table 3-5Baseline Exceedances of Groundwater Standards at Bedrock Wells Identified in
Large Figure 5 (2005 through 2015)

		Water Quality	y Standard and Number of Exceedances ⁽¹⁾					
Parameter	Number of Samples	USEPA MCL ⁽²⁾		USEPA sMCL ⁽³⁾				
Aluminum (dissolved)	59	N/A	-	50 µg/L	5			
Aluminum (total)	51	N/A	-	50 µg/L	30			
Arsenic (total)	49	10 µg/L	3	N/A	-			
Cadmium (total)	49	5 µg/L	1	N/A	-			
Iron (dissolved)	35	N/A	-	300 µg/L	12			
Iron (total)	49	N/A	-	300 µg/L	36			
Manganese (dissolved)	40	N/A	-	50 µg/L	16			
Manganese (total)	49	N/A	-	50 µg/L	26			
рН	59	N/A	-	6.5-8.5 SU	20			
Turbidity	37	5 NTU	26	N/A	-			

Note: This assessment includes all stations in bedrock identified in Large Table 5. Some of the stations monitored for baseline conditions are not proposed to be monitored as part of this permit.

- (1) The standards in this column (USEPA Maximum Concentration Limits (MCLs) and Secondary Maximum Concentration Limits (sMCLs)) have been incorporated as Minnesota Class I water quality standards in Minnesota Rules, part 7050.0221. However, it remains to be determined whether these standards are applicable to the groundwater at the Mine Site for compliance purposes, and, even if they are, how they should be applied. Under Minnesota Rules, part 7060.0600, subpart 8, where groundwater in its natural state exceeds the standards for potable water, the natural level may be used as the standard. For certain parameters, the natural background level in groundwater at the NorthMet site exceeds potable standards; accordingly, in these situations the background level should be the standard for compliance purposes, not the MCLs. In addition, even if the Class I standards (i.e., the MCLs) do apply for certain parameters, it is not clear whether Class I A, B, or C should apply (see Minnesota Rules, part 7050.0221, subparts 2 to 4). If Class B or C apply, the "applicable standard" will require groundwater being able to meet the standard after varying levels of treatment.
- (2) USEPA Maximum Contaminant Levels. These USEPA groundwater quality standards are incorporated by reference into Minnesota Rules, part 7050.0220, subpart 2.A.
- (3) USEPA Secondary Maximum Contaminant Levels. These USEPA groundwater quality standards are incorporated by reference into Minnesota Rules, part 7050.0220, subpart 2.A.

Natural background concentrations are above the standards for aluminum, iron, and manganese in the surficial deposits and iron and manganese in bedrock. These background levels were discussed during the environmental review process (Section 4.3.4.2 of Reference (7)).

3.2 Proposed Monitoring Plan

Monitoring proposed as part of permit requirements for the Mine Site is included in the integrated Mine Site monitoring plan presented in Section 3.0 of Volume I. The proposed Mine Site monitoring plan includes associated groundwater monitoring stations, surface water monitoring stations, and internal waste stream monitoring stations; these proposed monitoring stations are shown on Large Figure 4, Large Figure 5, and Large Figure 6. Additionally, stormwater inspections and monitoring will occur in accordance with the Construction Stormwater General Permit and the Industrial Stormwater General Permit; the details associated with stormwater inspection and monitoring will be specified in the respective SWPPPs.

4.0 Groundwater Nondegradation

PolyMet evaluated the anticipated effects of Mine Site features on groundwater quality.

- Section 4.1 describes how Minnesota's rules governing protection of underground waters apply to groundwater at the Mine Site.
- Section 4.2 summarizes how PolyMet and the Co-Lead Agencies, as part of the FEIS, analyzed alternative engineering controls for the Mine Site so that the Project design will control waste materials to the maximum practicable extent to protect groundwater.
- Section 4.3 describes the engineering controls that will be constructed to maintain groundwater in its natural quality and to meet maximum practicable extent standards as required by the applicable Minnesota groundwater nondegradation policy.

These engineering controls, in concert with the Mine Site Water Management Plan (Reference (2)), are expected to result in groundwater quality that meets applicable standards at the property boundary (Section 6.3.2 of Reference (7)). Existing groundwater quality at the Mine Site is described in Section 3.1.2 of this volume, and PolyMet's plan for ongoing groundwater monitoring is presented in Section 3.2 of this volume.

4.1 Regulatory Context

The State of Minnesota has policies to protect groundwater, including a groundwater nondegradation policy that states that certain waste "shall be controlled as may be necessary to ensure that to the maximum practicable extent the underground waters of the state are maintained at their natural quality" unless MPCA determines that a change is justifiable on certain specified grounds (Minnesota Rules, part 7060.0500). The MPCA rules contemplate that this maximum practicable extent standard can be satisfied through various control technologies or other measures, including "treatment, safeguards or other control measures" (Minnesota Rules, part 7060.0600, subpart 3).

The available sampling results, as summarized in Section 3.1.2 of this volume, establish that the groundwater at the Mine Site remains in its natural quality. There are no known existing or previous discharges from human activities in the immediate vicinity of the Mine Site, and Mine Site water quality is similar to regional data (Section 4.3.4.1.4 of Reference (7)). Because the Mine Site groundwater remains at its natural quality, PolyMet has designed the Project to comply with the State's groundwater nondegradation policy, including the "maximum practicable extent" requirements of Minnesota Rules, parts 7060.0500 and .0600.

4.2 Alternatives Analysis

The Project, as evaluated in the FEIS, will maintain natural groundwater quality to the maximum practicable extent. During the environmental review process, PolyMet and the Co-Lead Agencies identified and assessed available control-technology alternatives and mitigation measures to protect groundwater. The Project design incorporated the control technology, and the FEIS analysis establishes

that the engineering controls included in the design for the Mine Site will meet the maximum practicable extent requirements of Minnesota Rules, chapter 7060 and maintain groundwater in its natural quality in accordance with the State's nondegradation policy.

The following paragraphs briefly summarize the analysis of alternatives that was conducted during environmental review to ensure that groundwater quality is maintained. Full details on the process of developing and evaluating Project alternatives is documented in Section 3.0 of the FEIS (Reference (4)). Section 3.2.3 of Reference (4) details the many alternatives to minimize water quality impacts that were identified and evaluated, and documents the results of the evaluation.

During preparation of the FEIS, along with the preceding environmental review documents, PolyMet and the agencies identified a broad range of reasonable alternatives for protecting groundwater and screened the alternatives against the following factors:

- Project purpose and need
- technical feasibility
- economic feasibility
- availability
- environmental and socioeconomic benefits

Each Project alternative assembled various operating techniques and technologies that, when combined into a single alternative, represented a consistent and unified approach for completing the proposed activity while minimizing impacts to all areas of the environment – air, soil, water, wetlands, etc. The components or technologies of a Project alternative used for protection of a specific media (in this case, groundwater) were selected based on their overall compatibility with the other components of the Project. For example, water treatment technologies that had a negative impact on air quality were avoided. Alternatives that did not meet the screening criteria were not considered reasonable and were eliminated from detailed analysis in accordance with the environmental review requirements of National Environmental Policy Act (NEPA) / Minnesota Environmental Policy Act (MEPA).

The Project design and water management plans were developed based on the NEPA/MEPA alternatives analysis, with additional mitigation measures incorporated during the environmental review process to further minimize groundwater quality impacts. The Mine Site design, as reviewed in the FEIS alternatives analysis, incorporates a combination of design, management, and treatment measures to protect groundwater quality to the maximum practicable extent.

4.3 Description of Engineering Controls to Protect Groundwater

The FEIS identified the following potential sources of groundwater impacts at the Mine Site (Section 5.2.2.3.2 of Reference (4)):

• temporary and permanent waste rock stockpiles

- temporary OSP
- OSLA
- equalization basins
- mine pits

For each of these potential sources of groundwater impacts, the Project incorporates engineering controls designed to maintain natural groundwater quality to the maximum practicable extent, as described in the following subsections.

4.3.1 Permanent Category 1 Waste Rock Stockpile

Potential groundwater impacts due to the Category 1 Waste Rock Stockpile, the only permanent stockpile, will be controlled by a groundwater containment system consisting of a cutoff wall (a low permeability compacted soil hydraulic barrier) combined with a drainage collection system around the perimeter of the stockpile near the stockpile toe, as detailed in Section 2.1.2 of Reference (8). The containment system will surround the stockpile, collecting stockpile drainage and drawing down the water table on the stockpile side of the cutoff wall, thereby maintaining an inward gradient along the cutoff wall and eliminating the potential for stockpile drainage passing through the cutoff wall (hydraulic barrier) (i.e., any leakage through the cutoff wall will be inward into the containment system). Groundwater modeling of the Category 1 Stockpile Groundwater Containment System (Attachment A of Reference (8)) indicates that the containment system and mine pits are expected to capture the total stockpile drainage. Groundwater containment systems, consisting of a cutoff wall and a groundwater collection system, are commonly used at facilities where there is a need to manage groundwater flow, such as landfills, tailings basins, and paper sludge disposal facilities. Academic, governmental, and industry authorities acknowledge that such groundwater containment systems are a successful control technology for potential groundwater impacts (Attachment D of Reference (8)). Therefore, the construction of a groundwater containment system around the Category 1 Waste Rock Stockpile will maintain natural groundwater quality to the maximum practicable extent.

PolyMet will further control potential groundwater impacts from the Category 1 Waste Rock Stockpile by applying a geomembrane cover system incrementally during Project operations (Section 3.0 of Reference (3)). The cover system will reduce pollutant load by reducing infiltration of precipitation through the reclaimed Category 1 Waste Rock Stockpile, thereby reducing the load that reports to the equalization basins. Geomembrane cover systems are widely used throughout the world in mining, landfills, and other industries that have to address long-term containment of wastes that have potential to impact groundwater (Section 3.2.3 of Reference (3)); therefore, progressive reclamation of the Category 1 Waste Rock Stockpile with a geomembrane cover system will maintain natural groundwater quality to the maximum practicable extent.

4.3.2 Temporary Waste Rock and Ore Stockpiles

Potential groundwater impacts from the temporary waste rock stockpiles will be controlled by installation of engineered liner systems and by the fact that the operational life of the stockpiles is limited.

PolyMet will construct an engineered liner system under each temporary waste rock stockpile to control potential groundwater impacts from stockpile drainage. The liner system will consist of, from the top down, an overliner drainage layer, an impermeable composite liner barrier, and a foundation underdrain system, as detailed in Section 2.1.3 of Reference (8). The impermeable composite liner barrier, comprised of a compacted soil liner overlain by a geomembrane layer, will prevent stockpile drainage from infiltrating downward. Stockpile drainage will be collected above the liner in the high permeability overliner drainage layer, then pumped to the equalization basins for further conveyance to the WWTS via the MPP. The overliner drainage layer will minimize the development of hydraulic head on the impermeable liner, thus minimizing the potential for groundwater impacts due to any liner defects. The liners' integrity will also be protected by foundation underdrain systems, which may be installed in areas where high groundwater is encountered to minimize the potential for excess pore pressures adversely affecting the performance of the liner system as the stockpile is loaded. These three liner design components (underdrains, impermeable barrier, and overliner drainage layer) function as a system to enhance liner integrity and stockpile stability. PolyMet will implement a Construction Quality Assurance Plan to assure that the liner system meets design specifications (Section 2.1.3.3 of Reference (8)). Calculations based on typical liner defect size and frequency, expected hydraulic head, and measured hydraulic conductivity of system components indicate that stockpile drainage will be effectively controlled, as shown in Table 4-1 of this volume and discussed in Section 6.1.1 of Reference (7).

Composite liner systems are commonly used and required by regulatory agencies at facilities where there is a need to protect groundwater, such as landfills and waste water treatment ponds. Composite liner systems, consisting of an upper geomembrane hydraulic barrier overlying a low permeability compacted soil layer, when both are properly specified and constructed, are a successful control technology for potential groundwater impacts. Therefore, composite liner use for the temporary stockpiles will protect natural groundwater quality to the maximum practicable extent.

The temporary nature of these stockpiles will also limit their potential impacts to groundwater. The Category 2/3 Waste Rock Stockpile, the Category 4 Waste Rock Stockpile, and the OSP will have operating lives of 11 to 21 years. At the end of their operating lives, PolyMet will remove these temporary waste rock stockpiles and reclaim their footprints. Because these stockpiles are temporary, rather than permanent, there is less potential for degradation of the liners over time, and limited duration of potential groundwater effects from these features.

Overall, these stockpiles are designed to maintain natural groundwater quality at the Mine Site to the maximum practicable extent while the stockpiles are in place, and the temporary nature of these stockpiles minimizes the potential for any long-term or on-going impact to natural groundwater quality.

4.3.3 Overburden Storage and Laydown Area

PolyMet will use the OSLA to screen, sort, and temporarily store peat and unsaturated overburden for future use. Potential groundwater impacts from the OSLA will be controlled by collecting runoff and drainage from the site and pumping it to the FTB. The OSLA will be unlined; it will be graded and compacted to provide a well-drained site. The compacted base will result in most of the precipitation falling on the OSLA to become runoff. However, the compacted base is assumed to allow some water to infiltrate; therefore, the compacted base layer is characterized as a low-permeability base layer. Runoff and drainage will be collected in an unlined mine water pond, then pumped to the Construction Mine Water Basin for further conveyance to the FTB via the MPP (Section 2.1.5.1 of Reference (2)). These proposed management practices are consistent with industry standards, and analyses indicate that they will limit mobilization of constituents, including mercury, to the environment (Section 2.1.5.1 of Reference (2)).

Peat can release mercury when it decomposes. PolyMet has analyzed the potential for groundwater impacts from peat stored in the OSLA, and determined that water leaving the peat stockpile is not expected to result in a measurable change in mercury concentrations in the groundwater. This screening analysis is summarized below.

Most of the peat that will be placed in the OSLA will have already undergone decomposition, and conditions in the stockpile will limit further decomposition. The peat stockpiled in the OSLA will be a mixture of surficial peat (0 to 25 centimeter [cm] depth) and well-decomposed deep peat (25 cm to bottom of the peat profile), placed in a moist to wet condition. Because the largest volume of peat will be obtained from the subsurface of wetlands (deep peat), the stockpiled peat is expected to reflect a well-decomposed material at the time of placement. While surficial peat can decompose quickly, this surficial peat will be a small component of the stockpiled material, and it will be mixed into the pile where low oxygen and moist conditions will limit its decomposition. Overall, because the stockpiled peat is expected to reflect a well decomposed peat and retain most of its original moisture, decomposition is estimated to be slow (Reference (16), Reference (17)), with estimates of potential decomposition ranging from about 3 to 4 millimeter (mm) per year (Reference (18)) up to 20 mm per year, with 10 mm considered to be a reasonable estimate of potential decomposition over the life of the stockpile (Reference (19)). Therefore, potential decomposition of stored peat will occur in only a thin layer at the surface of the stockpile.

Based on available research, almost all of the mercury potentially released due to decomposition of peat at the surface of the stockpile is estimated to volatilize or adsorb to organic material in the peat stockpile (Reference (18), Reference (20)). The peat placed in the OSLA stockpile will contain a large amount of organic matter, which has a high affinity for mercury (Reference (21)). Decomposition of peat at the surface of the stockpile will create additional organic matter. There are two major loss mechanisms for mercury potentially released as the peat decomposes: 1) volatilization, where about 50% to 80% of the mercury input to an ecosystem is estimated to be volatilized into the atmosphere (Reference (20), Reference (21)); and 2) adsorption to organic carbon, and soils in general, with studies indicating a high affinity of mercury to organic carbon and soil organic matter (Reference (22)) and peat (Reference (23)),

with about 50% of added mercury being adsorbed by organic matter (Reference (24)). Overall, more than 95% of added mercury was found to be sequestered with organic matter and soil matter (Reference (24)).

If it is assumed that approximately 50% of mercury potentially released from the decomposition of peat is volatilized and that approximately 50% of potentially released mercury is adsorbed to organic matter in the stockpile, then very little mercury would be available to be carried downward through the stockpile with percolating water to the compacted base layer of the OSLA. GoldSim modeling completed for the FEIS estimated that there would be no adsorption of water by the peat, and further estimated that about 22% of precipitation (approximately 6.3 inches per year) would infiltrate and move downward through the peat stockpile (Section 6.1.1.4 of Reference (7)), which results in an overestimate of water moving downward through the stockpile because it does not account for the likely absorbance of water by organic material and it also results in an overestimate of mercury moving downward through the stockpile. This overestimate for water flowing through the peat stockpile was made to provide a conservative estimate of potential impacts to groundwater for the environmental review process. However, a number of studies indicate that very little of the mercury sequestered in soils leaches downward to groundwater (Reference (25), Reference (21), Reference (23), Reference (26)). Based on two known loss mechanisms for mercury (volatilization and adsorbance to organic matter) and assuming that 22% of annual precipitation would move downward through the peat stockpile (with no loss of water or mercury at depth in the stockpile), screening calculations developed for this analysis estimate a potential mercury concentration in the water percolating through the stockpile ranges from less than 2 ng/L to about 10 ng/L and is consistent with the discussion in Section 5.2.2.3.4 of the FEIS (Reference (4)) and Section 2.1.5.1 of Reference (2). The current calculations do not account for the potential loss of mercury as water infiltrates through the compacted base layer of the OSLA and through mineral soil overlying the shallow groundwater aquifer. Therefore, the estimated potential mercury concentration of the water infiltrating from the OSLA to the shallow groundwater is considered a conservative overestimate.

Water reaching the compacted base layer of the OSLA would have the potential to move laterally and become runoff water or to infiltrate through the low-permeability compacted base layer to groundwater. Whether water from the peat stockpile moves laterally as runoff to the OSLA Pond or moves vertically into the low-permeability compacted base and eventually to groundwater, the estimated concentration of mercury in a relatively small volume of water leaving the peat stockpile is not expected to result in any measurable change in existing conditions groundwater or wetland mercury concentrations. Therefore, the design of the OSLA is estimated to maintain groundwater in its natural quality to the maximum practicable extent.

4.3.4 Equalization Basins

Potential groundwater impacts from the equalization basins in the Equalization Basin Area will be controlled by installation of single-liner systems overlying a one-foot thick soil liner (Section 5.2.2.9 of Reference (7)). Calculations based on typical liner characteristics, expected hydraulic head, and measured hydraulic conductivity of system components indicate that leakage from the basins will be controlled to the maximum practicable extent, as shown in Table 4-1 of this volume and discussed in Section 5.2.2.9 of Reference (7).

4.3.5 Mine Pits

PolyMet has designed the East Pit, Central Pit, and the West Pit such that waste rock and *mine water* will be controlled to the maximum practicable extent. During operations, the mine pits will be dewatered and groundwater flow will be inward to the pits; there will be no outward flow from the pits and thus no impact to groundwater quality during operations.

After mining is completed, a sequence of actions is planned for each mine pit that will, in combination, limit the potential impacts of the Project on groundwater quality. The depleted East/Central Pit will be backfilled with waste rock from the temporary waste rock stockpiles and from on-going mining in the West Pit. As the East/Central Pit is backfilled, it will be flooded, to reduce further oxidation in the waste rock and mine pit walls, and thus reduce the potential for surface or groundwater quality impacts. As the East/Central Pit is flooded and for approximately 14 years after flooding is complete, PolyMet will recirculate *mine water* from the pit to the WWTS for treatment to remove the flushing load associated with inundation of the waste rock and the pit walls (Section 2.0 of Reference (3)).

When mining is completed in the West Pit, PolyMet will accelerate the natural flooding of the pit using treated effluent from the WWTS and untreated water from the Plant Site (Section 2.0 of Reference (3)). This accelerated flooding will control water quality in the West Pit by reducing the oxidation time for the pit wall rock; it will bring the initial constituent concentration in the pit water close to the long-term steady state concentration (Section 6.2.3.3.2 of Reference (7)).

Once the pits are flooded (expected during the postclosure maintenance phase, estimated to occur in Mine Year 55) and the water level is above the bedrock rim of each pit, some of the pit water will flow within the surficial aquifer and bedrock to the south towards the Partridge River. The actions described above will control the constituent concentrations in the pit water, thus limiting the potential impacts of mine pit water on groundwater quality. Groundwater flow models for the surficial aquifer and bedrock indicate that these measures will control potential impacts to groundwater from the mine pits to the maximum practicable extent requirements (Section 6.3.2 of Reference (7)).

4.3.6 Mine Water Sumps and Overflow Ponds

Potential groundwater impacts from the mine water sumps will be controlled by the installation of double liners and a Leak Collection and Recovery System, as detailed in Section 2.1.4.1.1 of Reference (2). The Leak Collection and Recovery System will return any leakage through the upper layer of the liner system to the sump. Overflow ponds, which will only receive stockpile runoff during precipitation events larger than the 10-year, 24-hour event and will completely contain runoff up to the 100-year, 24-hour event, will be constructed with a single-liner system overlying a one-foot-thick soil liner. Other mine water ponds will be constructed with liner systems based on the quality of the collected water (Section 2.1.5 of Reference (2)): a double liner (RTH drainage), a single liner (haul road drainage), or no liner (OSLA drainage). Calculations based on typical liner characteristics, expected hydraulic head, and measured hydraulic conductivity of system components indicate that leakage from the sumps and ponds will be controlled to the maximum practicable extent (Sections 5.2.2.4 and 5.2.2.9 of Reference (7)).

4.4 Anticipated Performance of Engineering Controls

Each of the Mine Site features with the potential to affect groundwater will be constructed and managed to maintain natural groundwater quality to the maximum practicable extent. The FEIS (Reference (4)) evaluated the potential impact of each of these sources to groundwater. Table 5.2.2-27 of Reference (4) lists the estimated pit outflow and leakage into groundwater flow paths, based on modeling completed for the Project. This table, shown as Table 4-1, documents the anticipated performance of the planned engineering controls.

PolyMet will monitor the performance of the Mine Site engineering controls and the groundwater quality downgradient of Mine Site features (Section 3.2.1 of Volume I) to meet the maximum practicable extent requirements of Minnesota Rules, chapter 7060, and if the engineering controls are not achieving the desired outcomes, will implement adaptive management actions or contingency mitigation (Sections 6.4 and 6.5 of Reference (2)), as necessary to comply with all permit conditions.

Contaminant Source	Flow Rate (gpm)	Duration of Source (Mine Years)	Mine Year when Solute Plume First Arrives at Partridge River
East/Central Pit	3.75 ⁽¹⁾	20+	100
West Pit	6.09(1)	55+	105
Category 2/3 Waste Rock Stockpile (Temporary)	0.0193	0-20	35
Ore Surge Pile (Temporary)	0.00116	0-21	90
Equalization Basins	0.0138	0-33	85
Overburden Storage and Laydown Area	14.0	0-20	30 ⁽²⁾

Table 4-1 Estimated Flow from Potential Sources of Groundwater Impacts

Information from Table 5.2.2-27 of Reference (4), based on GoldSim deterministic run with 50th percentile inputs. See Section 3.0 of Reference (7) for a description of the GoldSim modeling.

(1) Pit water into groundwater flow path

(2) Concentration decrease

5.0 References

1. Poly Met Mining Inc. NorthMet Project Mine Plan (v5). July 2016.

2. Poly Met Mining, Inc. NorthMet Project Water Management Plan - Mine Site (v6). August 2017.

3. —. NorthMet Project Adaptive Water Management Plan (v11). August 2017.

Minnesota Department of Natural Resources, U.S. Army Corps of Engineers and U.S. Forest
 Service. Final Environmental Impact Statement: NorthMet Mining Project and Land Exchange. November 2015.

5. Poly Met Mining Inc. NorthMet Project Project Description (v9). February 2015.

6. **Barr Engineering Co.** Memo to Ann Foss (MPCA), Jess Richards (MDNR), Kenton Spading, (USACE) re: Proposed Waste Water Treatment System (WWTS) Relocations v3. April 11, 2017.

7. **Poly Met Mining Inc.** NorthMet Project Water Modeling Data Package Volume 1 - Mine Site (v14). February 2015.

8. —. NorthMet Project Rock and Overburden Management Plan (v9). August 2017.

9. —. NorthMet Project Wetland Data Package (v11). April 2015.

10. —. NorthMet Project Waste Characterization Data Package (v12). February 2015.

11. **U.S. Environmental Protection Agency.** Dust Control. *Water: Best Management Practices.* [Online] July 1, 2014. http://water.epa.gov/polwaste/npdes/swbmp/Dust-Control.cfm.

12. **Minnesota Pollution Control Agency.** Dust Control Treatments for Roads and Surfaces (aq1-15). April 2013.

13. **Barr Engineering Co.** 2014-2015 Surface water and groundwater quality data collected for the NorthMet Project Technical Memorandum to Jennifer Saran, PolyMet Mining Inc. May 27, 2016.

14. **Siegel, D.I. and Ericson, D.W., U.S. Geological Survey.** Hydrology and Water Quality of the Copper-Nickel Study Region, Mortheastern Minnesota. Water-Resources Investigations Open-File Report 80-739. 1980.

15. **Barr Engineering Co.** Hydrogeologic Investigation - Phase I, PolyMet NorthMet Mine Site, RS-02 Draft-02. November 2006.

16. *Water Storage Characteristics of Several Peats in situ.* **Boelter, D. H.** 1964. Soil Science Society Proceedings. pp. 433-435.

17. *Important Physical Properties of Peat Materials*. **Boelter, D. H.** Quebec, Canada : s.n., 1968. Proceedings of the Third International Peat Congress. pp. 150-154.

18. **Franzén, L. G.** Increased decomposition of subsurface peat in Swedish raised bogs: are temperate peatlands still net sinks of carbon? *Mires and Peat.* 2006, Vol. 1, Article 3.

19. **Barr Engineering Co.** Greenhouse Gas and Climate Change Evaluation - NorthMet Project. Prepared for PolyMet Mining Inc. June 2012.

20. **Psarska, Sona, Nater, Edward A. and Kolka, Randall K.** Impacts of Invasive Earthworms on Soil Mercury Cycling: Two Mass Balance Approaches to an Earthworm Invasion in a Northern Minnesota Forest. *Water, Air, & Soil Pollution.* 2016, Vol. 227, 6, pp. 1-12.

21. **Grigal, D. F.** Inputs and Outputs of Mercury from Terrestrial Watersheds: A Review. *Environmental Reviews*. 2002, Vol. 10, pp. 1-39.

22. —. Mercury sequestration in forests and peatlands: A review. *Journal of Environmental Quality*. March-April 2003, Vol. 32, 2, pp. 393-405.

23. *The role of organic carbon in facilitating mercury sorption and retention in the soil: Some field evidence from Oak Ridge, Tennessee- 10391.* **Pant, Prabhakar, Allen, Marshall and Tansel, Berrin.** Phoenix, AZ : s.n., 2010. WM2010 Conference. pp. 1-7.

24. Liu, Jia, et al. Adsorption/Desorption and Fate of Mercury (II) by Typical Black Soil and Red Soil in China. *Soil and Sediment Contamination: An International Journal.* 2010, Vol. 19, 5, pp. 587-601.

25. **Grigal, D. F., et al.** Mercury budget of an upland-peatland watershed. *Biogeochemistry*. 2000, Vol. 50, pp. 95-109.

26. **Oswald, Claire J., Heyes, Andrew and Branfireun, Brian A.** Fate and Transport of Ambient Mercury and Applied Mercury Isotope in Terrestrial Upland Soils: Insights from the METAALICUS Watershed. *Environmental Science & Technology*. 2014, Vol. 48, 2, pp. 1023-1031.

27. International Commission on Large Dams. Manual on Tailings Dams and Dumps (Bulletin 45). 1982.

Large Tables

Large Table 1 Design Criteria for Mine Water Infrastructure

Structure	Objectives	Design Criteria and Assumptions	
Mine Water Ponds: Overburden Storage and Laydown Area (OSLA) Runoff	Provide flood storage and reduce total suspended solids (TSS). Pond is temporary in nature; active during the life of mine.	 Pond to contain runoff by gravity from 25-year, 24-hour event. Pump capacities based on average annual 30-day spring snowmelt flows (average annual peak runoff volume). Pump location chosen to allow for TSS reduction. 	OSLA drainage water quality v runoff, where the only constit downstream infrastructure da required by the Minnesota NF design of temporary construc 40 CFR 258.26 for runoff from affected infrastructure.
Mine Water Ponds/Ditches: Haul Road Runoff	Provide conveyance by gravity, flood storage, and TSS reduction. These are temporary in nature; active during the life of mine.	 Ditches are sized to convey and ponds are sized to contain runoff by gravity from the 100-year, 24-hour event. Pump capacities based on average annual 30-day spring snowmelt flows (average annual peak runoff volume). Pump location chosen to allow for TSS reduction. 	Haul road drainage water qua runoff, or Category 1 to Category event is standard for small im considered low hazard (no do in excess of the 100-year stor through overflow contingenci
Mine Water Ponds: Rail Transfer Hopper (RTH) Runoff	Provide flood storage and reduce TSS. Pond is temporary in nature; active during the life of mine.	 Pond to contain runoff from 100-year, 24-hour event with pumped outflow. Pump capacity set to contain 100-year, 24-hour storm event within pond without overflow. Sediment trap designed prior to pond inlet and pump location chosen to allow for reduction in TSS reduction. 	RTH drainage water quality w rock runoff, which is how ore event is standard for small im considered low hazard (no do in excess of the 100-year stor through overflow contingenci
Sumps (Manholes): Category 1 Stockpile Groundwater Containment System	Provide collection and conveyance of Category 1 Waste Rock Stockpile drainage. Sumps are permanent in nature; long-term use.	 Manhole to provide collection for pump and piping system. Conveyance along the groundwater containment system and overflow pipes to the East and West Pit are based on gravity flow of the 100-year, 24-hour event plus groundwater. Pump capacity and pipe capacity from sump to equalization basins based on 1.5- inch, 24-hour storm event. Overflow pipes to East and West Pit for flows in excess of pump capacity up to the 100-year, 24-hour event. 	Drainage water quality from t Category 1 waste rock runoff. for an acknowledged but sma determined that the 1.5-inch of this storm event was chosen b associated with pit pumping, will be routed to the pits and
Sump/Overflow Pond: Category 2/3 and 4 Waste Rock Stockpiles and Ore Surge Pile (OSP)	Provide storage for collection and conveyance of stockpile drainage. Sumps and ponds are temporary in nature; active during the life of mine.	 Sumps to contain yield from 10-year, 24-hour event by gravity. Overflow ponds to provide excess capacity up to the 100-year, 24-hour event by gravity. Sumps and ponds to have 3-foot of freeboard between maximum water level (water level based on associated design storm) and top of dike. Pump capacities based on average annual 30-day spring snowmelt flows (average annual peak runoff volume). 	Drainage from the stockpile w waste rock runoff. The 10-yea on an industrial stormwater p event was chosen as standard potential, but considered low 1982).
Sumps: Mine Pit	Provide storage of runoff and groundwater inflows for collection and conveyance. Sumps are temporary in nature; active during the life of mine.	 Pit pump capacities are based on groundwater inflows plus peak flows from the annual snowmelt event, assuming a rapid spring snowmelt (40% of the snowmelt occurring within one day). This design results in removing the groundwater inflows and 40% of the annual snowmelt runoff (1.28 inches) within 3 days; the volume from this snowmelt event is approximately equivalent to the runoff volume expected from a 5-year, 24-hour storm event. The sumps are designed with capacity to hold the remaining volume from this snowmelt runoff event assuming pumps are operating. Lowest pit level to act as sump overflow Temporary in nature and continually moved with mine progression 	Mine pit drainage water quali Category 4 waste rock. Draina the lowest level of the pit. Pit operations and economics as
Mine Water Pipes	Convey <i>mine water</i> to the Equalization Basin Area.	Pipes are designed to maintain velocities less than 5 feet per second.	

Design Rationale

ty will be commensurate with unsaturated overburden and peat stituent of concern is mercury. Low risk of adjacent or damages; typical designs are between the 2-year storm (as NPDES/SDS Construction Stormwater General Permit for ruction stormwater ponds) and 25-year storm (as required by om solid waste landfills), depending on the nature of the

uality could be commensurate with drainage from overburden regory 4 waste rock with limited flow path. The 100-year storm mpoundments with an acknowledged hazard potential, but downstream residents or development) (ICOLD 1982). Runoff orm event, which will be significantly diluted, will be managed ncies (see last row of table).

will be commensurate with drainage from Category 4 waste re is categorized, with a limited flow path. The 100-year storm impoundments with an acknowledged hazard potential, but downstream residents or development) (ICOLD 1982). Runoff form event, which will be significantly diluted, will be managed ncies (see last row of table).

the stockpile will be commensurate with drainage from ff. The 100-year storm event was chosen for pipes as standard nall hazard potential. An analysis of 30 years of local rainfall h event is exceeded, on average, one time per year. Therefore, n based on optimization of operations and economics g, treatment, and storage capacity. Overflow from this system id captured.

e will be commensurate with drainage from the associated ear storm event was chosen to handle the direct runoff based r pond design requirement. Overflow up to the 100-year storm and for small impoundments with an acknowledged hazard ow hazard (no downstream residents or development) (ICOLD

ality could be commensurate with drainage from Category 1 to nage within the pits will be fully contained within the sump or Pit sump and pump sizing was based on optimization of associated with pit pumping, treatment, and storage.

Structure	Objectives	Design Criteria and Assumptions	
Overflow Contingencies for Storm Events in Excess of the Design Storm	 Minimize uncontrolled overflows of <i>mine</i> <i>water</i> from sumps and ponds. Direct <i>mine water</i> away from stormwater features during events greater than design storm, if possible. 	 With the exception of the RTH pond, the sumps and ponds include three feet of freeboard as a factor of safety. The RTH pond includes one foot of freeboard and a larger pump to accommodate larger flows. An emergency operational contingency plan includes use of temporary diesel pumps to operate during events greater than the design volume or under circumstances of extended power outages associated with heavy rainfall. This plan will maintain water levels below the total capacity of the sumps and ponds, pumping to the pits until mine water volumes are down to manageable levels. If necessary, pumping priorities will be given based on the reactivity of the material drained, following these priorities in descending order: OSP sump SOSP and overflow pond MW-SOSP; Category 4 Waste Rock Stockpile sump S4 and overflow pond MW-S4; Category 2/3 Waste Rock Stockpile sumps and overflow ponds; RTH runoff pond MW-RTH; haul road runoff ponds MW-HRC, MW-HRE, MW-HRW, and MW-HRN; and OSLA runoff pond MW-OSLA. During this time, pit dewatering may cease, with water contained in the lower portions of the pits. 	Additional contingency measu the 100-year, 24-hour storm

ICOLD. 1982. Manual on Tailings Dams and Dumps. Bulletin 45. Published by the International Commission on Large Dams, Paris. (Reference (27))

Design Rationale

asures to mitigate hazards associated with flows in excess of n

Large Table 2 Design Criteria for Mine Site Stormwater Infrastructure

Structure	Objectives	Design Criteria			
	Convey runoff from reclaimed and natural areas within Mine Site to stormwater ponds	Contain and convey peak flows associated with 10-year, 24-hour storm event	Manage storm		
Ditches	Intercept <i>stormwater</i> prior to reaching mine water areas (pits, unreclaimed stockpiles, haul roads, etc.)	Size ditches and dikes to manage <i>stormwater</i> up to the 100-year, 24-hour storm event	Avoid <i>stormwo</i> disturbed by r		
	Limit erosion	Install riprap, drop structures, or other best management practices (BMPs) in ditch sections where flow velocities are greater than 4 feet per second during the 100-year, 24-hour storm	Protect infrast		
	Control the conveyance of <i>stormwater</i> to the Partridge River to avoid significant localized increases in peak flows to the Partridge River or its tributaries	Provide storage and conveyance of peak flows and volumes associated with 10-year, 24-hour storm event through the primary pond outlet	Manage storm		
	Reduce TSS concentration in <i>stormwater</i> discharged from the Mine Site to the Partridge River	Size ponds to provide residence time needed to meet 100 mg/L TSS storm event benchmark limit for up to the 100-year, 24-hour storm event			
Ponds	Manage <i>stormwater</i> runoff to avoid overflows into mine water areas	Size ponds to manage, control, and convey <i>stormwater</i> runoff up to the 100-year, 24-hour storm event, with an overflow weir in the northern ponds (Ponds A and B) to pass flows in excess of this design storm	Avoid <i>stormwo</i> disturbed by r		
	In the event of a flood on the Partridge River, divert Partridge River floodwaters from flowing onto the Mine Site	Size exterior dikes and pond components (i.e., culverts and weirs) to convey the 100-year, 24-hour storm flows from Mine Site to the Partridge River when the Partridge River is at its 100-year flood level. Include check valves on the outlet culverts from the northern ponds (Ponds A and B) to block inflows from Partridge River flooding.	Mitigate poter onto the Mine disturbed by r		
	Manage <i>stormwater</i> from the Mine Site in an event in excess of the design storm	During events in excess of the 100-year flood in the Partridge River, excess <i>stormwater</i> from the northern ponds (Ponds A and B) could be pumped to the stormwater ditch that flows south to Pond C or off-site using temporary portable pumps. If necessary, pumping priorities will be given to the stormwater pond with potential to overflow into the mine water systems.	Additional cor in excess of th		

Rationale

ormwater runoff

nwater mixing with mine water or contacting surfaces by mining activities

astructure and reduce total suspended solids (TSS) in runoff

ormwater runoff

th expected individual permit requirements; 100 mg/L TSS c limit as defined by the Minnesota NPDES/SDS Industrial r General Permit

nwater mixing with *mine water* or contacting surfaces by mining activities

otential hazards associated with Partridge River water flowing line Site and mixing with *mine water* or contacting surfaces by mining activities

contingency measure to mitigate hazards associated with flows f the 100-year, 24-hour storm

Large Table 3 Mine Site Chemical Additives

Chemical	Purpose	Location of chemical addition in process	Amount/ duration/ frequency of addition	Average rate of use	Maximum rate of use	Storage Location	Storage Capacity	Tank Descriptior	Secondary Containment	
Magnesium Chloride Aqueous Solution (Dustgard) (Primary)	Dust suppressant (one type to be applied; others are alternatives)	Haul roads and stockpiles, if needed	For average use: main roads will be sprayed twice per year and minor roads once per year For maximum use: roads will be sprayed 3 times per year	104,428 gallons/day (208,856 gallons/year)	104,428 gallons/day (313,284 gallons/year)	None - to vendor.	o be broug	nt on-site and	d applied by a	This product bir also become en practices will lin of application ra product ratio wi achieve success the mine water
Aqueous Amorphous Polymer Solution (BT-468) (Potential Substitute)	Dust suppressant (one type to be applied; others are alternatives)	Haul roads	For average use: main roads will be sprayed twice per year and minor roads once per year For maximum use: roads will be sprayed 3 times per year	104,428 gallons/day (208,856 gallons/year)	104,428 gallons/day (313,284 gallons/year)	None - to vendor.	None - to be brought on-site and applied by a vendor.			This product is o over time, while Adherence to b chemical additio and the water d of treatment ne runoff is capture
Roadsaver®-C (Potential Substitute)	Dust suppressant (one type to be applied; others are alternatives)	Haul roads	For average use: main roads will be sprayed twice per year and minor roads once per year For maximum use: roads will be sprayed 3 times per year	94,934 gallons/day (189,869 gallons/year)	94,934 gallons/day (284,803 gallons/year)	None - to be brought on-site and applied by a vendor.			This product bir also become en practices will lin of application ra product ratio wi achieve success the mine water	
Roadsaver® (Potential Substitute)	Dust suppressant (one type to be applied; others are alternatives)	Haul roads	For average use: main roads will be sprayed twice per year and minor roads once per year For maximum use: roads will be sprayed 3 times per year	104,428 gallons per day (208,856 gallons per year)	104,428 gallons per day (313,284 gallons per year)	None - to be brought on-site and applied by a vendor.			This product bir also become en practices will lin of application ra product ratio w achieve success the mine water	
Durasoil (Potential Substitute)	Dust suppressant (one type to be applied; others are alternatives)	Haul roads	For average use: main roads will be sprayed twice per year and minor roads once per year For maximum use: roads will be sprayed 3 times per year	104,428 gallons/day (208,856 gallons/year)	104,428 gallons/day (313,284 gallon/year)	None - to be brought on-site and applied by a vendor.			This product bir also become en practices will lin of application ra product ratio w achieve success the mine water	
Gorilla-Snot (Potential Substitute)	Dust suppressant (one type to be applied; others are alternatives)	Haul roads	For average use: main roads will be sprayed twice per year and minor roads once per year For maximum use: roads will be sprayed 3 times per year	104,428 gallons/day (208,856 gallons/year)	104,428 gallons/day (313,284 gallons/year)	None - to vendor.) be broug	nt on-site and	d applied by a	This product is a over time, while Adherence to b chemical additiv and the water d of treatment ne runoff is capture

Fate and Transport

binds to soils and because it is composed of, soluble salts may entrained in *stormwater*. Adherence to best management limit the off-site transport of chemical additives. Optimization or rates, application frequency, and the water dilution to will allow for the minimum amount of treatment needed to essful dust suppression. Haul road runoff is captured as part of er system.

is comprised of organic components, and thus will biodegrade ile bound to soils or if it becomes entrained in *stormwater*. best management practices will limit the off-site transport of itives. Optimization of application rates, application frequency, r dilution to product ratio will allow for the minimum amount needed to achieve successful dust suppression. Haul road ured as part of the mine water system.

binds to soils and because it is composed of, soluble salts may entrained in *stormwater*. Adherence to best management limit the off-site transport of chemical additives. Optimization rates, application frequency, and the water dilution to will allow for the minimum amount of treatment needed to essful dust suppression. Haul road runoff is captured as part of er system.

binds to soils and because it is composed of, soluble salts may entrained in *stormwater*. Adherence to best management limit the off-site transport of chemical additives. Optimization rates, application frequency, and the water dilution to will allow for the minimum amount of treatment needed to essful dust suppression. Haul road runoff is captured as part of er system.

binds to soils and because it is composed of, soluble salts may entrained in *stormwater*. Adherence to best management limit the off-site transport of chemical additives. Optimization mates, application frequency, and the water dilution to will allow for the minimum amount of treatment needed to essful dust suppression. Haul road runoff is captured as part of er system.

is comprised of organic components, and thus will biodegrade ile bound to soils or if it becomes entrained in *stormwater*. best management practices will limit the off-site transport of itives. Optimization of application rates, application frequency, r dilution to product ratio will allow for the minimum amount needed to achieve successful dust suppression. Haul road ured as part of the mine water system.

Chemical	Purpose	Location of chemical addition in process	Amount/ duration/ frequency of addition	Average rate of use	Maximum rate of use	Storage Location		Tank Description	Secondary Containment	
Soiltac (Potential Substitute)	Dust suppressant (one type to be applied; others are alternatives)	Haul roads	For average use: main roads will be sprayed twice per year and minor roads once per year For maximum use: roads will be sprayed 3 times per year	52,214 gallons/day (104,428 gallons/year)	52,214 gallons/day (156,642 gallons/year)	None - to vendor.	o be broug	ht on-site and	applied by a	This product is over time, while Adherence to b chemical additi and the water o of treatment ne runoff is captur
Coherex (Potential Substitute)	Dust suppressant (one type to be applied; others are alternatives)	Haul roads	For average use: main roads will be sprayed twice per year and minor roads once per year For maximum use: roads will be sprayed 3 times per year	104,428 gallons/day (208,856 gallons/year)	104,428 gallons/day (313,284 gallons/year)	None - to be brought on-site and applied by a vendor.			This product is over time, while Adherence to b chemical additi and the water c of treatment ne runoff is captur	
Calcium Chloride (Primary)	De-icer	Walkways, haul roads	No average use planned For maximum use: used, as needed, based on recommended application rates (if needed, this will be a winter application)	NA	TBD based on recommended application rates	None pla needed.	nned - to t	be brought on	-site as	This product is application, wh management p Optimization o the minimum a the roads. Appl etc.) runoff is c

Fate and Transport

is comprised of organic components, and thus will biodegrade hile bound to soils or if it becomes entrained in *stormwater*. b best management practices will limit the off-site transport of ditives. Optimization of application rates, application frequency, er dilution to product ratio will allow for the minimum amount needed to achieve successful dust suppression. Haul road tured as part of the mine water system.

is comprised of organic components, and thus will biodegrade nile bound to soils or if it becomes entrained in *stormwater*. best management practices will limit the off-site transport of itives. Optimization of application rates, application frequency, r dilution to product ratio will allow for the minimum amount needed to achieve successful dust suppression. Haul road ured as part of the mine water system.

is a soluble substance and melts ice. It will be used in winter when *stormwater* is not moving. Adherence to best practices will limit the off-site transport of chemical additives. of application rates and application frequency will allow for a amount of treatment needed to achieve successful de-icing of pplication areas (haul roads, Fueling and Maintenance Facility, captured as part of the mine water system.

Large Table 4	Mine Site Baseline Su	rface Water Quality	Monitoring Summary
---------------	-----------------------	---------------------	--------------------

	Water Q	· · · · · · · · · · · · · · · · · · ·	or PM-1 / SW 99-2015	001 / SD009			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	1	Parameters NA	NA	NA	NA	NA
Alkalinity, bicarbonate, as CaCO3	NA	mg/l mg/l	21	83.4	126	97.7	92.2
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	10	84.3	106	94.6	93.2
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA	NA
Carbon, total organic	NA	mg/l	8	1.80	2.40	2.13	2.15
Chemical Oxygen Demand	NA	mg/l	7	< 1	24	8.39	9.00
Chloride	NA	mg/l	31	0.9	21.05	6.73	6.41
Cyanide	NA	mg/l	4	< 0.02	< 0.02	NA	< 0.02
Dissolved oxygen	NA	mg/l	3	9.3 0.11	15.2 0.17	11.4	9.6
Fluoride Hardness, as CaCO3	NA NA	mg/l	31	77.5	164.5	0.14	0.14 124
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l mg/l	7	< 0.1	0.2	0.12	0.14
Nitrogen, ammonia, as N	NA	mg/l	80	0.025	0.2	0.05	< 0.14
Nitrogen, unionized ammonia, as N	NA	mg/l	76	0.0001	0.022	0.003	0.004
pH	NA	pH units	132	7.2	8.73	8	8
Phosphorus, total, as P	Dissolved	mg/l	1	< 0.02	NA	NA	< 0.02
Phosphorus, total, as P	NA	mg/l	8	< 0.004	0.14	0.063	< 0.1
Redox (oxidation potential)	NA	mV	NA	NA	NA	NA	NA
Solids, total dissolved	NA	mg/l	31	93	236	159	154
Solids, total suspended	NA	mg/l	44	< 1	3	1.07	< 1
Specific Conductance @ 25 °C	NA	µmhos/cm	31	209	393	282	296
Sulfate, as SO4	NA	mg/l	70	9.1	41.35	25.0	25.4
Temperature	NA	deg C	100	0.3	23.9	12.6	14.9
Turbidity	NA	NTU	130	0	3.1	0.92	0.90
	1	1	letals	T			
Aluminum	Dissolved	µg/l	NA	NA	NA	NA	NA
Aluminum	Total	µg/l	10	< 10	33.9	18.1	< 25
Antimony	Total	µg/l	4	< 3	< 3	NA	< 3
Arsenic	Dissolved	µg/l	NA	NA	NA	NA	NA C 70
Arsenic	Total	µg/l	4	< 2 < 10	11.7	6.53	6.70
Barium Beryllium	Total Total	μg/l μg/l	4	< 0.2	< 10	NA NA	< 10 < 0.2
Boron	Total	μg/l	9	80.9	116	96.0	93.5
Cadmium	Total	μg/l	5	< 0.2	< 0.2	NA	< 0.2
Calcium	Total	mg/l	10	23.1	25.9	24.6	24.7
Chromium	Total	µg/l	5	< 0.5	< 1	NA	< 1
Cobalt	Dissolved	µg/l	NA	NA	NA	NA	NA
Cobalt	Total	µg/l	8	0.1	< 1	0.45	< 1
Copper	Dissolved	µg/l	NA	NA	NA	NA	NA
Copper	Total	µg/l	10	< 0.66	< 5	1.72	1.65
Iron	Dissolved	µg/l	70	< 30	76	30.9	< 50
Iron	Total	µg/l	7	0.06	50	27	< 30
Lead	Total	µg/l	10	0.054	< 1	0.32	0.45
Magnesium	Total	mg/l	10	9.58	11	10.4	10.5
Manganese	Dissolved	µg/l	NA	NA	NA	NA	NA
Manganese	Total	µg/l	8	3.4	10	7.93	10.0
Mercury	Total	ng/l	33	< 0.5	< 10	1.11 NA	0.70
Methyl Mercury Molybdenum	Total Dissolved	ng/l	1 NA	< 0.1 NA	NA NA	NA NA	< 0.1 NA
Molybdenum	Total	μg/l μg/l	5 NA	2	< 5	2.80	< 5
Nickel	Dissolved	μg/l	NA	NA	< 5 NA	2.80 NA	< 5 NA
Nickel	Total	μg/l	10	< 0.6	< 5	1.59	1.20
Palladium	Total	μg/l	5	< 0.3	< 25	NA	< 25
Platinum	Total	μg/l	5	< 0.25	< 25	NA	< 25
Potassium	Total	mg/l	7	2.38	3	2.65	2.70
Selenium	Total	µg/l	9	< 1	< 10	NA	< 3.6
Silver	Total	µg/l	9	< 0.2	< 1	NA	< 0.24
Sodium	Total	mg/l	9	4.1	5.7	4.78	4.8
Strontium	Total	µg/l	4	148	161	157	159
Thallium	Total	µg/l	9	< 0.4	< 2	0.60	0.63
Tin	Total	µg/l	NA	NA	NA	NA	NA
Titanium	Total	µg/l	1	< 10	NA	NA	< 10
Vanadium	Total	µg/l	NA	NA	NA	NA	NA
				·			
Zinc Zinc	Dissolved Total	μg/l μg/l	NA 10	NA 0.94	NA 29	NA 8.85	NA < 10

Field duplicates not included in count of samples.
 Minimum and maximum determined with non-detect samples at the detection limit.
 Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.
 Median calculated with non-detect samples at the detection limit. Median values that are non-detects are shown with <.

	Wat		ata for PM-2 /)4-2015	/ SW002			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	General mg/l	Parameters 28	43.2	192	122	119
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	25	35.7	192	108	111
Biochemical Oxygen Demand (5-day)	NA	mg/l	1	< 3	NA	NA	< 3
Carbon, dissolved organic	NA	mg/l	1	NA	NA	6.9	6.9
Carbon, total organic	NA	mg/l	51	4	25.9	9.83	8.70
Chemical Oxygen Demand	NA	mg/l	15	< 10	65.5	31.0	25.7
Chloride	NA	mg/l	53	0.7	55.2	27.3	33.8
Cyanide	NA	mg/l	4	< 0.02	< 0.02	NA	< 0.02
Dissolved oxygen Fluoride	NA NA	mg/l mg/l	58 9	< 0.1 < 0.1	13.37 0.17	7.39 0.11	7.22 0.12
Hardness, as CaCO3	NA	mg/l	53	38.5	228	145	163
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	15	< 0.1	220	0.22	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	12	< 0.1	2.5	0.44	< 0.1
pH	NA	pH units	66	6.12	8.09	7.16	7.20
Phosphorus, total, as P	Dissolved	mg/l	1	< 0.02	NA	NA	< 0.02
Phosphorus, total, as P	NA	mg/l	15	< 0.004	0.2	0.049	0.083
Redox (oxidation potential)	NA	mV	13	381	809	513	496
Solids, total dissolved	NA	mg/l	53	78	422	250	288
Solids, total suspended	NA	mg/l	9	< 1	15	3.35	< 1
Specific Conductance @ 25 °C	NA	µmhos/cm	66	0	555.1	362	411
Sulfate, as SO4	NA	mg/l	65	0.13	108	38.3	38.6
Temperature	NA NA	deg C	65 52	0.19	22.67 31.1	9.53 3.24	7.17
Turbidity	INA	NTU	J2 Jetals		31.1	3.24	0.60
Aluminum	Dissolved	µg/l	43	< 10	53.1	19.5	21.3
Aluminum	Total	μg/l	52	< 10	188	31.0	26.3
Antimony	Total	μg/l	26	< 0.5	< 3	NA	< 0.5
Arsenic	Dissolved	µg/l	18	< 0.22	1.4	0.51	< 0.5
Arsenic	Total	µg/l	48	0.41	2	0.57	< 0.5
Barium	Total	µg/l	18	< 10	36	17.3	16.6
Beryllium	Total	µg/l	18	< 0.2	< 0.2	NA	< 0.2
Boron	Total	µg/l	23	< 35	438	178	158
Cadmium	Total	µg/l	18	< 0.2	< 0.2	NA	< 0.2
Calcium	Total	mg/l	53	11.9	45.9	29.4	31.4
Chromium	Total	µg/l	18	< 1	1.5	0.56	< 1
Cobalt	Dissolved	µg/l	29	< 0.2	0.78	0.25	0.22
Cobalt Copper	Total Dissolved	μg/l μg/l	50 29	< 0.2 < 0.5	< 1 1.3	0.26	0.21
Copper	Total	μg/l	52	< 0.5	5.9	0.79	0.63
Iron	Dissolved	μg/l	30	128	26900	3165	587
Iron	Total	μg/l	51	1.27	30700	2718	789
Lead	Total	µg/l	52	< 0.3	< 1	0.28	< 0.5
Magnesium	Total	mg/l	53	4.7	29.1	17.7	20.3
Manganese	Dissolved	µg/l	29	13.4	1130	320	103
Manganese	Total	µg/l	50	5.7	1100	275	98
Mercury	Total	ng/l	24	0.522	< 10	2.46	2.30
Methyl Mercury	Total	ng/l	NA	NA	NA	NA	NA
Molybdenum Molybdenum	Dissolved	µg/l	NA 11	NA	NA	NA 2.42	NA 2.05
Molybdenum Nickol	Total	µg/l	11 29	< 0.3	< 5 1.5	2.42	3.95
Nickel Nickel	Dissolved Total	μg/l μg/l	<u> </u>	< 0.5 < 0.5	1.5 < 5	0.31	< 0.5 < 0.5
Palladium	Total	μg/l	5	< 0.3	< 25	NA	< 25
Platinum	Total	μg/l	5	< 0.25	< 25	NA	< 25
Potassium	Total	mg/l	22	1.72	5.2	3.39	3.80
Selenium	Total	µg/l	38	< 1	< 10	NA	< 1
Silver	Total	µg/l	16	< 0.2	< 1	NA	< 0.2
Sodium	Total	mg/l	24	2.2	40.5	18.3	13.1
Strontium	Total	µg/l	4	67.2	156	111	111
Thallium	Total	µg/l	38	< 0.0004	< 2	0.14	0.01
Tin	Total	µg/l	NA	NA	NA	NA	NA
Titanium	Total	µg/l	1	< 10	NA	NA	< 10
Vanadium Zinc	Total	µg/l	7	< 3	< 3	NA	< 3
	Dissolved	µg/l	29	< 6	7.2	3.34	< 6

(1) Field duplicates not included in count of samples.

(1) Field duplicates not included in count of samples.
(2) Minimum and maximum determined with non-detect samples at the detection limit.
(3) Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.
(4) Median calculated with non-detect samples at the detection limit. Median values that are non-detects are shown with <.

	Wat		ata for PM-3	/ SW003			
Parameter	Fraction	Units	04-2015 # of Samples ⁽¹⁾ Parameters	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	27	29.4	125	89.7	97.2
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3 Biochemical Oxygen Demand (5-day)	NA NA	mg/l	40 NA	36.6 NA	151 NA	84.3 NA	88.8 NA
Carbon, dissolved organic	NA	mg/l mg/l	NA	NA	NA	NA	NA
Carbon, total organic	NA	mg/l	66	3.1	40.8	12.3	10.1
Chemical Oxygen Demand	NA	mg/l	14	< 10	82.4	38.2	35.8
Chloride	NA	mg/l	68	2.4	28.3	9.74	9.20
Cyanide	NA	mg/l	4	< 0.02	< 0.02	NA	< 0.02
Dissolved oxygen Fluoride	NA NA	mg/l mg/l	64 21	< 0.1 < 0.1	13.86 0.17	9.59 0.09	10.2 0.10
Hardness, as CaCO3	NA	mg/l	68	35.7	140	100	109
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	14	< 0.1	0.88	0.20	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	11	< 0.1	0.45	0.13	< 0.1
рН	NA	pH units	72	5.98	8.15	7.40	7.48
Phosphorus, total, as P	Dissolved	mg/l	1	< 0.02	NA	NA	< 0.02
Phosphorus, total, as P	NA	mg/l	30	< 0.004	0.18	0.041	< 0.1
Redox (oxidation potential)	NA NA	mV	NA 68	NA 75	NA 267	NA 168	NA 175
Solids, total dissolved Solids, total suspended	NA	mg/l mg/l	68 10	< 1	6	2.80	2.80
Specific Conductance @ 25 °C	NA	µmhos/cm	72	80.6	368	226	233
Sulfate, as SO4	NA	mg/l	68	0.41	49.3	16.3	15.9
Temperature	NA	deg C	71	0.2	24.2	10.1	9.2
Turbidity	NA	NTU	53	0	50.8	3.63	1.60
		[/letals	Τ	Γ		
Aluminum	Dissolved	µg/l	48	10.1	150	39.4	25.8
Aluminum	Total	µg/l	60 26	< 20 < 0.5	188	56.2	< 40
Antimony Arsenic	Total Dissolved	μg/l μg/l	17	< 0.5	< 3	NA 0.83	< 0.5 0.86
Arsenic	Total	μg/l	47	< 0.5	2.4	0.95	0.80
Barium	Total	µg/l	18	< 10	17.2	11.4	12.5
Beryllium	Total	µg/l	18	< 0.2	< 0.2	NA	< 0.2
Boron	Total	µg/l	23	< 35	239	103	< 100
Cadmium	Total	µg/l	21	0.054	< 0.2	0.10	< 0.2
Calcium Chromium	Total Total	mg/l	68 21	9.4 0.24	33.1 1.4	23.1	25.2
Cobalt	Dissolved	μg/l μg/l	21	< 0.24	0.41	0.57 0.13	< 1
Cobalt	Total	μg/l	68	0.14	< 1	0.26	< 0.2
Copper	Dissolved	µg/l	29	< 0.5	1.5	0.70	0.63
Copper	Total	µg/l	70	0.45	< 5	0.98	< 0.8
Iron	Dissolved	µg/l	29	215	3080	972	796
Iron	Total	µg/l	50	1.45	3840	1458	1265
Lead	Total Total	µg/l	55 68	0.14 4.3	< 1 15.1	0.27 10.5	< 0.5
Magnesium Manganese	Dissolved	mg/l µg/l	29	24.8	413	136	11.5 74
Manganese	Total	μg/l	53	30	430	144	95
Mercury	Total	ng/l	39	< 0.5	< 10	2.69	2.46
Methyl Mercury	Total	ng/l	9	0.061	0.492	0.26	0.28
Molybdenum	Dissolved	µg/l	NA	NA	NA	NA	NA
Molybdenum	Total	µg/l	14	0.8	< 5	1.98	1.75
Nickel Nickel	Dissolved Total	µg/l	29 70	< 0.5 0.24	1.4 < 5	0.49	< 0.5 0.68
Palladium	Total	μg/l μg/l	5	< 0.3	< 25	0.93 NA	< 25
Platinum	Total	μg/l	5	< 0.25	< 25	NA	< 25
Potassium	Total	mg/l	21	1.7	3.7	2.61	2.70
Selenium	Total	µg/l	38	< 1	< 10	NA	< 1
Silver	Total	µg/l	16	< 0.2	< 1	NA	< 0.2
Sodium	Total	mg/l	23	2.3	25.2	8.04	7.02
Strontium	Total	µg/l	4	59.6	137	94.5	90.8
Thallium Tin	Total Total	μg/l μg/l	38 NA	< 0.0004 NA	< 2 NA	0.14 NA	< 0.005 NA
Titanium	Total	μg/l	1 1	< 10	NA	NA	< 10
Vanadium	Total	μg/l	7	< 3	< 3	NA	< 3
Zinc	Dissolved	µg/l	29	< 6	16.3	4.01	< 6
Zinc	Total	µg/l	70	2.1	52.7	7.11	< 6

(1) Field duplicates not included in count of samples.

(1) Field duplicates not included in count of samples.
 (2) Minimum and maximum determined with non-detect samples at the detection limit.
 (3) Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.
 (4) Median calculated with non-detect samples at the detection limit. Median values that are non-detects are shown with <.

	Wate		ta for PM-16 04-2015	/ SW004			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	Genera mg/l	Parameters 30	20.8	123	80.5	87.9
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	41	27.3	853	95.3	81.5
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA
Carbon, dissolved organic Carbon, total organic	NA NA	mg/l mg/l	NA 68	NA 3.6	NA 36.2	NA 14.9	NA 13.0
Chemical Oxygen Demand	NA	mg/l	16	< 10	93.7	41.9	35.5
Chloride	NA	mg/l	71	1.8	27.6	8.67	7.09
Cyanide	NA	mg/l	4	< 0.02	< 0.02	NA	< 0.02
Dissolved oxygen	NA	mg/l	63	< 0.1	14.81	8.94	9.49
Fluoride	NA	mg/l	24	< 0.1	0.17	0.10	< 0.1
Hardness, as CaCO3	NA	mg/l	74	30.2	149	93.4	105
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	16	< 0.1	0.82	0.17	0.11
Nitrogen, ammonia, as N pH	NA NA	mg/l pH units	13 71	< 0.05 5.6	0.38	0.12	< 0.1 7.45
Phosphorus, total, as P	Dissolved	mg/l	1	< 0.02	NA	NA	< 0.02
Phosphorus, total, as P	NA	mg/l	32	< 0.02	0.1	0.041	< 0.02
Redox (oxidation potential)	NA	mV	3	211	446	324	315
Solids, total dissolved	NA	mg/l	70	66	314	162	164
Solids, total suspended	NA	mg/l	12	< 1	11	3.82	3.60
Specific Conductance @ 25 °C	NA	µmhos/cm	70	71.8	354	213	231
Sulfate, as SO4	NA	mg/l	74	< 1	34	14.5	13.2
Temperature	NA	deg C	70	0.04	26.27	10.8	9.70
Turbidity	NA	NTU	52 Vietals	0	131	6.06	2.35
Aluminum	Dissolved	µg/l	48	15.8	159	49.0	36.5
Aluminum	Total	μg/l	61	17.7	4600	150	60.4
Antimony	Total	µg/l	26	< 0.5	< 3	NA	< 0.5
Arsenic	Dissolved	µg/l	18	< 0.5	1.8	0.78	0.69
Arsenic	Total	µg/l	52	0.46	6.4	1.03	0.94
Barium	Total	µg/l	20	< 10	16.3	9.93	10.9
Beryllium	Total	µg/l	20	< 0.2	< 0.2	NA	< 0.2
Boron	Total	µg/l	25	< 35	223	100	< 100
Cadmium Calcium	Total	µg/l	23	< 0.02 7	< 0.2	0.09	< 0.2
Chromium	Total Total	mg/l μg/l	74 23	0.19	35.8 2.5	0.73	23.7 < 1
Cobalt	Dissolved	μg/l	31	< 0.2	0.91	0.21	< 0.2
Cobalt	Total	µg/l	70	0.13	8.5	0.43	0.24
Copper	Dissolved	µg/l	31	< 0.5	2	0.97	0.79
Copper	Total	µg/l	72	0.43	7.8	1.42	1.10
Iron	Dissolved	µg/l	30	521	3310	1186	1003
Iron	Total	µg/l	52	1.41	29100	2083	1350
Lead	Total	µg/l	57	< 0.03	2.4	0.29	< 0.5
Magnesium Manganese	Total Dissolved	mg/l	74 30	3.5 33.8	15.6 2150	9.92 190	11.05 120
Manganese	Total	μg/l μg/l	55	11.3	6480	244	120
Mercury	Total	ng/l	41	< 0.5	< 10	3.15	3.00
Methyl Mercury	Total	ng/l	11	< 0.056	0.89	0.39	0.36
Molybdenum	Dissolved	µg/l	NA	NA	NA	NA	NA
Molybdenum	Total	µg/l	16	0.64	< 5	1.72	1.60
Nickel	Dissolved	µg/l	31	< 0.5	2	0.66	< 0.5
Nickel	Total	µg/l	72	0.3	7.3	1.26	1.05
Palladium	Total	µg/l	5	< 0.3	< 25	NA	< 25
Platinum Potassium	Total Total	μg/l mg/l	23	< 0.25 1.4	< 25 4.02	NA 2.37	< 25 2.42
Selenium	Total	µg/l	41	0.29	< 3.6	0.67	< 1
Silver	Total	μg/l	18	< 0.2	< 1	NA	< 0.2
Sodium	Total	mg/l	25	1.9	20.2	7.75	6.90
Strontium	Total	µg/l	6	45.2	224	110	109
Thallium	Total	µg/l	44	< 0.0004	< 2	0.13	< 0.005
Tin	Total	µg/l	2	< 0.5	< 0.5	NA	< 0.5
Titanium	Total	µg/l	1	< 10	NA	NA	< 10
Vanadium Zinc	Total	µg/l	7	< 3	< 3	NA 2.61	< 3
7. m m	Dissolved	µg/l	31	< 6	8.7	3.61	< 6

Field duplicates not included in count of samples.
 Minimum and maximum determined with non-detect samples at the detection limit.
 Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.
 Median calculated with non-detect samples at the detection limit. Median values that are non-detects are shown with <.

	١		/ Data for SW L0-2015	004a			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
			Parameters			menuge	
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	31	15.9	118	70.4	76.1
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	20	24.3	114	72.2	77.1
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA	NA
Carbon, total organic	NA	mg/l	48	4.3	48.3	17.5	14.9
Chemical Oxygen Demand	NA	mg/l	12	< 10	131	55.9	46.9
Chloride	NA	mg/l	48	1.6	24.2	7.72	6.45
Cyanide Dissolved oxygen	NA NA	mg/l mg/l	NA 47	NA 4.49	NA 13.86	NA 9.52	NA 9.84
Fluoride	NA	mg/l	5	< 0.1	0.17	0.11	0.12
Hardness, as CaCO3	NA	mg/l	48	27.5	130	90.0	100
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	12	< 0.1	0.83	0.24	0.15
Nitrogen, ammonia, as N	NA	mg/l	12	< 0.05	0.41	0.14	0.11
рН	NA	pH units	47	6.41	8.18	7.30	7.30
Phosphorus, total, as P	NA	mg/l	12	< 0.004	0.098	0.029	0.024
Redox (oxidation potential)	NA	mV	3	170	405	292	300
Solids, total dissolved	NA	mg/l	48	75	222	168	174
Solids, total suspended	NA	mg/l	5	1.6	3.2	2.24	2.0
Specific Conductance @ 25 °C	NA	µmhos/cm	47	46.8	371	198	213
Sulfate, as SO4	NA	mg/l	48	4.8	30.8	14.1	12.3
Temperature	NA	deg C	47	0.13	27.24	11.1	9.7
Turbidity	NA	NTU	47 47	0	131.2	7.51	3.20
Aluminum	Discolved	I	Aletals 47	< 20	208	70.7	51.8
Aluminum Aluminum	Dissolved Total	µg/l	47	< 20 < 20	570	117	90.2
Antimony	Total	μg/l μg/l	22	< 0.5	< 0.5	NA	90.2 < 0.5
Arsenic	Dissolved	μg/l	18	< 0.5	2.3	0.85	0.78
Arsenic	Total	μg/l	48	< 0.5	2.9	0.95	0.85
Barium	Total	µg/l	19	< 10	18.7	10.8	11.1
Beryllium	Total	µg/l	19	< 0.2	< 0.2	NA	< 0.2
Boron	Total	µg/l	19	58.2	206	102	103
Cadmium	Total	µg/l	19	< 0.02	< 0.2	0.09	< 0.2
Calcium	Total	mg/l	48	5.4	29.6	19.9	22.1
Chromium	Total	µg/l	19	< 1	< 1	NA	< 1
Cobalt	Dissolved	µg/l	34	< 0.2	1.8	0.34	0.25
Cobalt	Total	µg/l	48	< 0.2	2.2	0.38	0.27
Copper	Dissolved	µg/l	34	< 0.5	4.3	1.15	1.03
Copper	Total	µg/l	48	< 0.5	9.1	1.53	1.20
Iron	Dissolved	µg/l	30 48	526 479	5180	1416 1919	1065
Iron Lead	Total Total	μg/l μg/l	48	< 0.03	6820 < 0.5	0.24	1595 < 0.5
Magnesium	Total	mg/l	48	3.4	14.3	9.79	10.70
Manganese	Dissolved	µg/l	30	< 0.5	525	149	10.70
Manganese	Total	µg/l	48	13.2	687	152	112
Mercury	Total	ng/l	19	0.79	12.5	3.82	2.90
Methyl Mercury	Total	ng/l	5	0.26	0.78	0.58	0.62
Molybdenum	Dissolved	µg/l	NA	NA	NA	NA	NA
Molybdenum	Total	µg/l	12	0.5	1.74	1.11	1.15
Nickel	Dissolved	µg/l	34	< 0.5	3.4	1.00	0.79
Nickel	Total	µg/l	48	< 0.5	3.8	1.18	1.20
Palladium	Total	µg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	NA	NA	NA	NA	NA
Potassium	Total	mg/l	19	1.48	3.95	2.40	2.30
Selenium Cilver	Total	µg/l	35	< 0.2	< 1	0.46	< 1
Silver	Total	µg/l	12	< 0.2 2.2	< 0.2	NA 0.12	< 0.2
Sodium Strontium	Total Total	mg/l	19 5	83.5	19.8 218	9.12 143	8.70 155
Thallium	Total	µg/l	35	< 0.0004	< 0.2	0.02	0.01
Tin	Total	μg/l μg/l	5	< 0.0004	< 0.2	0.02 NA	< 0.5
Titanium	Total	μg/l	NA	NA	NA	NA	NA
THANUUN				1 1 1 1	1 1 1 1		

Vanadium	Total	µg/l	7	< 3	< 3	NA	< 3
Zinc	Dissolved	µg/l	34	< 6	16.3	4.34	< 6
Zinc	Total	µg/l	48	< 6	19.7	4.41	< 6

Field duplicates not included in count of samples.
 Minimum and maximum determined with non-detect samples at the detection limit.

(3) Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.

(4) Median calculated with non-detect samples at the detection limit. Median values that are non-detects are shown with <.

	۷		7 Data for SW 2012-2014	004b			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
		General	Parameters		•	·	•
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	12	27.7	104	61.9	65.9
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	12	27.7	104	61.9	65.9
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA	NA
Carbon, total organic	NA	mg/l	27 12	6.4	66.2	21.3	17.4
Chemical Oxygen Demand Chloride	NA NA	mg/l	27	20.7 1.6	172 17.4	76.4 5.38	72.5 4.10
Cyanide	NA	mg/l mg/l	NA	NA	NA	5.56 NA	4.10 NA
Dissolved oxygen	NA	mg/l	26	5.04	13.67	9.52	9.66
Fluoride	NA	mg/l	5	< 0.1	0.15	0.10	0.11
Hardness, as CaCO3	NA	mg/l	27	24.0	139	82.2	88.2
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	12	< 0.1	0.48	0.13	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	12	< 0.05	0.32	0.13	< 0.1
рН	NA	pH units	26	6.20	7.93	7.20	7.26
Phosphorus, total, as P	NA	mg/l	12	< 0.004	0.047	0.024	0.024
Redox (oxidation potential)	NA	mV	1	NA	NA	441	441
Solids, total dissolved	NA	mg/l	27	74	217	154	155
Solids, total suspended	NA	mg/l	5	1.2	3.6	2.44	3.0
Specific Conductance @ 25 °C	NA	µmhos/cm	26	39.9	326.5	157	159
Sulfate, as SO4	NA	mg/l	27 26	4.2	25.1 25.01	11.2	10.6
Temperature Turbidity	NA NA	deg C	26	0.92	45.1	10.9 6.15	7.1 2.80
Turbidity	INA	NTU	20 Ietals	0	45.1	0.15	2.60
Aluminum	Dissolved	µg/l	26	22.0	328	84.6	55.2
Aluminum	Total	μg/l	20	39.4	442	121	83
Antimony	Total	µg/l	15	< 0.5	< 0.5	NA	< 0.5
Arsenic	Dissolved	µg/l	10	< 0.5	2.0	0.75	0.67
Arsenic	Total	µg/l	27	< 0.5	3.2	0.91	0.83
Barium	Total	µg/l	12	7.37	14.6	8.53	< 10
Beryllium	Total	µg/l	12	< 0.2	< 0.2	NA	< 0.2
Boron	Total	µg/l	12	< 50	160	74.5	88.1
Cadmium	Total	µg/l	12	< 0.02	< 0.2	0.07	< 0.2
Calcium	Total	mg/l	27	4.6	30.6	17.7	18.7
Chromium	Total	µg/l	12	< 1	1.2	0.56	< 1
Cobalt	Dissolved	µg/l	26	< 0.2	1.9	0.35	0.26
Cobalt	Total	µg/l	27	< 0.2	2.1	0.42	0.29
Copper	Dissolved Total	µg/l	26 27	0.54	7.0 2.8	1.59 1.39	1.40 1.22
Copper Iron	Dissolved	μg/l μg/l	27	603	4190	1652	1.22
Iron	Total	μg/l	27	1040	6580	2442	1990
Lead	Total	μg/l	27	0.13	0.51	0.26	< 0.5
Magnesium	Total	mg/l	27	3	15.2	9.24	9.90
Manganese	Dissolved	µg/l	22	18.6	512	135	109
Manganese	Total	µg/l	27	44.3	544	145	117
Mercury	Total	ng/l	12	0.82	18.5	5.10	3.90
Methyl Mercury	Total	ng/l	5	0.28	0.67	0.51	0.51
Molybdenum	Dissolved	µg/l	NA	NA	NA	NA	NA
Molybdenum	Total	µg/l	12	0.30	1.5	0.72	0.65
Nickel	Dissolved	µg/l	26	< 0.5	4.2	1.37	1.05
Nickel	Total	µg/l	27	< 0.5	4.4	1.49	1.20
Palladium	Total	µg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	NA 12	NA	NA	NA	NA 1.92
Potassium Solonium	Total	mg/l	12	0.69	3.12	1.73	1.83
Selenium Silver	Total	µg/l	27	< 0.2	5.0	0.62	< 1
Silver Sodium	Total Total	µg/l	12 12	< 0.2 2.7	< 0.2 14.9	NA 6.55	< 0.2 5.35
Strontium	Total	mg/l μg/l	5	40.8	14.9	94.5	113.0
Thallium	Total	μg/l	28	< 0.0004	0.030	0.01	0.01
Tin	Total	μg/l	5	< 0.0004	< 0.5	NA	< 0.5
Titanium	Total	μg/l	NA	NA	NA	NA	NA
Vanadium	Total	µg/l	7	< 3	< 3	NA	< 3

Vanadium	Total	µg/l	7	< 3	< 3	NA	< 3
Zinc	Dissolved	µg/l	26	< 6	22.3	5.06	< 6
Zinc	Total	µg/l	27	< 6	23.6	4.59	< 6

Field duplicates not included in count of samples.
 Minimum and maximum determined with non-detect samples at the detection limit.

(3) Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.

(4) Median calculated with non-detect samples at the detection limit. Median values that are non-detects are shown with <.

	Wat		ata for PM-4	/ SW005			
Parameter	Fraction	Units	04-2015 # of Samples ⁽¹⁾ Parameters	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	30	5.8	137	57.0	58.2
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	42	< 0	137	56.0	48.65
Biochemical Oxygen Demand (5-day) Carbon, dissolved organic	NA NA	mg/l	NA NA	NA NA	NA NA	NA NA	NA NA
Carbon, total organic	NA	mg/l mg/l	68	6.3	72.7	21.9	20.7
Chemical Oxygen Demand	NA	mg/l	16	20.9	185	68.7	54.2
Chloride	NA	mg/l	71	0.83	20.3	5.07	4.1
Cyanide	NA	mg/l	4	< 0.02	< 0.02	NA	< 0.02
Dissolved oxygen	NA	mg/l	64	< 0.1	13.32	8.37	9.12
Fluoride	NA	mg/l	24	< 0.1	< 5	0.32	0.11
Hardness, as CaCO3 Nitrogen, Nitrate + Nitrite, as N	NA NA	mg/l mg/l	74 16	16.9 < 0.1	118 0.44	69.4 0.14	72.5 0.11
Nitrogen, ammonia, as N	NA	mg/l	13	< 0.1	0.44	0.14	0.11
pH	NA	pH units	72	6	8.45	7.49	7.59
Phosphorus, total, as P	Dissolved	mg/l	1	< 0.02	NA	NA	< 0.02
Phosphorus, total, as P	NA	mg/l	32	< 0	< 10	0.28	< 0.1
Redox (oxidation potential)	NA	mV	2	453	457	455	455
Solids, total dissolved	NA	mg/l	70	49	340	147	149
Solids, total suspended	NA	mg/l	12 72	< 1	10	4.01	2.0
Specific Conductance @ 25 °C Sulfate, as SO4	NA NA	µmhos/cm mg/l	72	15.6 0.78	258 20	143 9.66	140 9.7
Temperature	NA	deg C	74	0.14	26.6	11.1	10.3
Turbidity	NA	NTU	53	0	58.3	6.51	4.5
		N	/letals				
Aluminum	Dissolved	µg/l	48	20.4	355	94.1	68.3
Aluminum	Total	µg/l	61	29	1550	164	120
Antimony	Total	µg/l	26	< 0.5	< 3	NA	< 0.5
Arsenic	Dissolved	µg/l	17	0.49	2.2	0.83	0.63
Arsenic Barium	Total Total	μg/l μg/l	52 20	< 0.5	3 20.1	1.02 7.49	1 < 10
Beryllium	Total	μg/l	20	< 0.2	< 0.2	NA	< 0.2
Boron	Total	µg/l	25	< 35	157	53.6	67.7
Cadmium	Total	µg/l	23	< 0.02	< 0.2	0.09	< 0.2
Calcium	Total	mg/l	74	3.9	25.5	14.8	15.0
Chromium	Total	µg/l	23	0.37	2.6	0.64	< 1
Cobalt	Dissolved	µg/l	30	< 0.2	2.4	0.35	0.22
Cobalt Copper	Total Dissolved	μg/l μg/l	70 30	< 0.2 0.61	< 25 2.9	0.87	0.38 1.3
Copper	Total	μg/l	72	0.63	< 5	1.62	1.5
Iron	Dissolved	μg/l	29	548	5380	1808	1425
Iron	Total	µg/l	52	2.03	6200	2125	1880
Lead	Total	µg/l	57	0.14	12.3	0.68	< 0.5
Magnesium	Total	mg/l	74	2.7	13.4	7.96	8.34
Manganese	Dissolved	µg/l	29	24.5	577	107	75.2
Manganese	Total	µg/l	55	17.9	780	121	81.6
Mercury Methyl Mercury	Total Total	ng/l ng/l	41	< 0.5 < 0.056	18.4 0.676	4.31 0.416	< 4 0.44
Molybdenum	Dissolved	µg/l	NA	< 0.050 NA	NA	NA	0.44 NA
Molybdenum	Total	μg/l	16	0.17	< 5	1.22	0.71
Nickel	Dissolved	µg/l	30	< 0.5	4.5	1.38	1
Nickel	Total	µg/l	72	0.46	< 5	1.68	1.5
Palladium	Total	µg/l	5	< 0.3	< 25	NA	< 25
Platinum	Total	µg/l	5	< 0.25	< 25	NA	< 25
Potassium	Total Total	mg/l	23 40	0.6	3.07	1.43 0.70	1.15
Selenium Silver	Total Total	μg/l μg/l	40	0.36	< 3.6 < 1	0.70 NA	< 1
Sodium	Total	mg/l	25	1.2	14.3	4.66	3.90
Strontium	Total	µg/l	6	17.3	149	58.5	47.2
Thallium	Total	µg/l	44	< 0.0004	< 2	0.125	0.0065
Tin	Total	µg/l	2	< 0.5	< 0.5	NA	< 0.5
Titanium	Total	µg/l	1	< 10	NA	NA	< 10
Vanadium	Total	µg/l	7	< 3	< 3	NA	< 3
Zinc	Dissolved	µg/l	30 72	< 6 < 0	24.2 82.9	5.67 8.51	< 6 < 6

(1) Field duplicates not included in count of samples.

(1) Field duplicates not included in control samples.
(2) Minimum and maximum determined with non-detect samples at the detection limit.
(3) Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.
(4) Median calculated with non-detect samples at the detection limit. Median values that are non-detects are shown with <.

			ty Data for W 1-2015	'P-1			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	general mg/l	Parameters 23	< 5	87.5	8.55	8.40
Alkalinity, carbonate, as CaCO3	NA	mg/l	1	< 10	NA	NA	< 10
Alkalinity, total, as CaCO3	NA	mg/l	13	< 5	87.5	12.2	< 10
Biochemical Oxygen Demand (5-day)	NA	mg/l	1	< 4	NA	NA	< 4
Carbon, dissolved organic	NA	mg/l	1	NA	NA	28.4	28.4
Carbon, total organic	NA	mg/l	32	16.3	125	44.0	41.2
Chemical Oxygen Demand	NA	mg/l	7	80.9	355	179	147
Chloride	NA	mg/l	32	< 0.5	1.39	0.56	< 1
Cyanide Dissolved oxygen	NA NA	mg/l	NA 32	NA < 0.1	NA 12.85	NA 5.95	NA 6.07
Fluoride	NA	mg/l mg/l	1	< 0.1	NA	NA	< 0.1
Hardness, as CaCO3	NA	mg/l	31	11.8	85.8	22.6	20.3
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	7	< 0.1	0.25	0.12	0.11
Nitrogen, ammonia, as N	NA	mg/l	6	< 0.1	2.11	0.50	0.22
рН	NA	pH units	33	4.95	7.82	6.07	5.78
Phosphorus, total, as P	NA	mg/l	6	0.034	< 0.1	0.051	0.054
Redox (oxidation potential)	NA	mV	1	NA	NA	472	472
Solids, total dissolved	NA	mg/l	32	79	312	139	125
Solids, total suspended	NA	mg/l	1	NA	NA	6	6
Specific Conductance @ 25 °C	NA	µmhos/cm	33	0	72.3	30.7	29.0
Sulfate, as SO4	NA	mg/l	32	< 1	12.6	2.08	< 2
Temperature	NA	deg C	33 33	0.02	22.64	9.71	7.65
Turbidity	NA	NTU	o Ietals	0	22.3	3.35	0.90
Aluminum	Dissolved	µg/l	31	78.4	1170	371	325
Aluminum	Total	µg/l	31	94.4	1200	390	354
Antimony	Total	μg/l	16	< 0.5	< 0.5	NA	< 0.5
Arsenic	Dissolved	µg/l	13	0.53	5.8	1.61	1.30
Arsenic	Total	µg/l	32	0.46	6	1.54	1.20
Barium	Total	µg/l	10	< 10	20.4	7.18	< 10
Beryllium	Total	µg/l	10	< 0.2	< 0.2	NA	< 0.2
Boron	Total	µg/l	10	< 50	< 100	NA	< 100
Cadmium	Total	µg/l	10	0.03	< 0.2	0.09	< 0.2
Calcium	Total	mg/l	32	2.1	18.2	4.42	3.80
Chromium	Total	µg/l	10	< 1	2	0.81	< 1
Cobalt Cobalt	Dissolved Total	μg/l μg/l	20 31	0.51 0.31	6.92 6.6	1.51 1.27	0.91 0.80
Copper	Dissolved	μg/l	20	0.9	5.4	3.36	3.4
Copper	Total	μg/l	31	0.86	5.9	3.55	3.6
Iron	Dissolved	μg/l	21	1240	33900	5335	2900
Iron	Total	µg/l	32	908	35000	4901	2440
Lead	Total	µg/l	29	< 0.5	3.1	0.84	0.68
Magnesium	Total	mg/l	32	1.5	9.8	2.75	2.50
Manganese	Dissolved	µg/l	18	81.5	427	169	127
Manganese	Total	µg/l	32	40.6	2590	235	115
Mercury	Total	ng/l	12	5.1	28.1	12.4	10.5
Methyl Mercury	Total	ng/l	1	NA	NA	0.82	0.82
Molybdenum Molybdenum	Dissolved	µg/l	1 7	< 0.2	NA 0.24	NA	< 0.2
Molybdenum Nickel	Total Dissolved	µg/l	20	< 0.2 2.4	0.34 22.1	0.17 6.72	< 0.2 5.07
Nickel	Total	μg/l μg/l	20 31	1.8	22.1	6.72	5.07
Palladium	Total	μg/l	NA	I.0 NA	NA	NA	NA
Platinum	Total	μg/l	NA	NA	NA	NA	NA
Potassium	Total	mg/l	13	0.116	1.8	0.52	0.46
Selenium	Total	μg/l	18	0.22	< 1	0.49	< 1
Silver	Total	µg/l	4	< 0.2	< 0.2	NA	< 0.2
Sodium	Total	mg/l	13	0.9	2.74	1.20	1.25
Strontium	Total	µg/l	1	NA	NA	20.3	20.3
Thallium	Total	µg/l	20	0.0022	< 0.2	0.026	0.006
Tin	Total	µg/l	NA	NA	NA	NA	NA
Titanium	Total	µg/l	1	< 10	NA	NA	< 10
Vanadium	Total Dissolved	μg/l μg/l	4 20	< 3 < 6	< 10 16.1	4.33 8.50	9.3 9.0
Zinc			. // 1	. < h	161	× 511	90

Field duplicates not included in count of samples.
 Minimum and maximum determined with non-detect samples at the detection limit.
 Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.
 Median calculated with non-detect samples at the detection limit. Median values that are non-detects are shown with <.

	V		/ Data for SW L4-2015	001b			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	General mg/l	Parameters 21	6	118	33.1	25.6
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	7	13.8	53	25.9	22.6
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA	NA
Carbon, total organic	NA	mg/l	21	2.9	52.4	21.8	19.3
Chemical Oxygen Demand	NA	mg/l	NA	NA	NA	NA	NA
Chloride	NA	mg/l	21	< 1	1.9	0.70	< 1
Cyanide	NA	mg/l	NA	NA	NA	NA	NA
Dissolved oxygen	NA	mg/l	21	4.67	12.31	8.86	9.29
Fluoride	NA	mg/l	NA	NA	NA	NA	NA
Hardness, as CaCO3	NA	mg/l	21	15.4	123	38.5	27.8
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	NA	NA	NA	NA	NA
Nitrogen, ammonia, as N	NA	mg/l	NA	NA	NA 0.40	NA	NA
pH Phosphorus total as P	NA	pH units	21 NA	6.29	8.48 NA	7.27	7.24
Phosphorus, total, as P Phosphorus, total, as P	Dissolved NA	mg/l mg/l	NA	NA NA	NA	NA NA	NA NA
Redox (oxidation potential)	NA	mV	NA	NA	NA	NA	NA
Solids, total dissolved	NA	mg/l	21	66	194	124	111
Solids, total suspended	NA	mg/l	NA	NA	NA	NA	NA
Specific Conductance @ 25 °C	NA	µmhos/cm	21	28	243.2	78.4	58.5
Sulfate, as SO4	NA	mg/l	21	< 2	17	1.89	< 2
Temperature	NA	deg C	21	1.74	22.91	10.2	7.3
Turbidity	NA	NTU	21	0	38.3	6.52	2.60
		Ν	/letals				
Aluminum	Dissolved	µg/l	21	14.3	190	62.3	< 50
Aluminum	Total	µg/l	21	13.3	274	81.4	68.2
Antimony	Total	µg/l	7	< 0.5	< 0.5	NA	< 0.5
Arsenic	Dissolved	µg/l	7	< 0.5	2	0.97	0.78
Arsenic	Total	µg/l	21	0.44	4	1.44	0.92
Barium	Total	µg/l	7	< 10	14.9	8.04	< 10
Beryllium	Total	µg/l	7	< 0.2 < 100	< 0.2	NA	< 0.2
Boron Cadmium	Total Total	μg/l μg/l	7	< 0.2	< 100 < 0.2	NA NA	< 100 < 0.2
Calcium	Total	mg/l	21	3.4	30.7	9.04	6.30
Chromium	Total	µg/l	7	< 1	1.3	0.61	< 1
Cobalt	Dissolved	μg/l	7	< 0.2	0.54	0.01	< 0.2
Cobalt	Total	µg/l	21	< 0.2	0.74	0.29	< 0.2
Copper	Dissolved	µg/l	7	< 0.5	< 0.5	NA	< 0.5
Copper	Total	µg/l	21	< 0.5	4	0.50	< 0.5
Iron	Dissolved	µg/l	7	627	4500	1875	1380
Iron	Total	µg/l	21	339	11400	2601	1600
Lead	Total	µg/l	21	< 0.5	1.4	0.44	< 0.5
Magnesium	Total	mg/l	21	1.6	11.4	3.87	2.90
Manganese	Dissolved	µg/l	7	7.3	536	202	108
Manganese	Total	µg/l	21	5.2	667	196	102
Mercury	Total	ng/l	7	1.3	4.67	2.99	3.33
Methyl Mercury	Total	ng/l	NA	NA	NA	NA	NA
Molybdenum	Dissolved	µg/l	NA	NA	NA	NA	NA
Molybdenum Nickol	Total	µg/l	NA 7	NA COE	NA 0.70	NA	NA
Nickel Nickel	Dissolved Total	μg/l μg/l	21	< 0.5 < 0.5	0.79	0.38	< 0.5 < 0.5
Palladium	Total	μg/i μg/l	NA	< 0.5 NA	NA	NA	< 0.5 NA
Platinum	Total	μg/i μg/l	NA	NA	NA	NA	NA
Potassium	Total	mg/l	7	0.258	1.9	0.90	0.85
Selenium	Total	µg/l	7	< 1	< 1	NA	< 1
Silver	Total	μg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	7	0.89	1.9	1.26	1.2
Strontium	Total	µg/l	NA	NA	NA	NA	NA
Thallium	Total	µg/l	8	< 0.005	< 0.2	0.04	0.01
Tin	Total	µg/l	NA	NA	NA	NA	NA
Titanium	Total	µg/l	NA	NA	NA	NA	NA
Vanadium	Total	µg/l	NA	NA	NA	NA	NA
Zinc	Dissolved	µg/l	7	< 6	9	5.41	6.0
Zinc	Total	µg/l	21	< 6	11.4	3.93	< 6

(1) Field duplicates not included in count of samples.

(1) Field duplicates not included in control samples.
(2) Minimum and maximum determined with non-detect samples at the detection limit.
(3) Average calculated with non-detect samples at half the detection limit. An average was not calculated if all samples were non-detects.
(4) Median calculated with non-detect samples at the detection limit. Median values that are non-detects are shown with <.

Large Table 5 Mine Site Groundwater Monitoring Stations

Current Monitoring						We	ell Locatior	า			Upgradient/Downgradient?	Average depth to	
Station ID (Local Name)	Proposed NPDES/SDS Station ID	Unique Well Number	Bedrock or Surficial	Water Quality Monitoring	g UTM Easting	UTM	Taurahin	Dommo	Continu	Forth	Current ⁽¹⁾	water table (feet)	Installation Date
MW-1		00786714	Aquifer Surficial Aquifer	Years 2011-2015	578783.97	Northing 5274724.09	Township 59	13	2	Forty NESE	Not applicable	4.20	October 2011
MW-2	GW402	00786713	Surficial Aquifer	2011-2015	576322.91	5272799.38	59	13	10	SWSW	Not applicable	7.79	October 2011
MW-3	GW403	00786717	Surficial Aquifer	2011-2015	579699.06	5273721.07	59	13	12	NENW	Not applicable	6.67	October 2011
MW-4		00786718	Surficial Aquifer	2011-2015	580179.60	5273586.12	59	13	12	SWNE	Not applicable	4.22	October 2011
MW-5	GW405	00786708	Surficial Aquifer	2011-2015	577505.09	5273223.38	59	13	10	NESE	Not applicable	11.21	October 2011
MW-6S		00786709	Surficial Aquifer	2011-2015	577496.82	5272901.76	59	13	10	SESE	Not applicable	8.20	October 2011
MW-6D		00786711	Surficial Aquifer	2011-2015	577496.94	5272903.04	59	13	10	NESE	Not applicable	7.71	October 2011
MW-7	GW407	00786726	Surficial Aquifer	2011-2015	578651.31	5273142.60	59	13	11	NWSE	Not applicable	4.72	October 2011
MW-8S	GW408	00786712	Surficial Aquifer	2011-2015	574655.20	5272483.25	59	13	9	SWSW	Not applicable	5.80	October 2011
MW-8D		00786728	Surficial Aquifer	2011-2015	574656.76	5272484.69	59	13	9	SWSW	Not applicable	6.02	December 2011
MW-9		00786715	Surficial Aquifer	2011-2015	579294.32	5275210.58	59	13	1	SWNW	Not applicable	5.21	December 2011
MW-10S	GW409	00786724	Surficial Aquifer	2011-2015	577735.75	5272548.82	59	13	11	SWSW	Not applicable	12.05	December 2011
MW-10D		00786725	Surficial Aquifer	2011-2015	577735.37	5272547.19	59	13	11	SWSW	Not applicable	15.36	December 2011
MW-11	GW411	00786710	Surficial Aquifer	2011-2015	577186.45	5272902.66	59	13	10	NESE	Not applicable	4.40	December 2011
MW-12	GW412	00786732	Surficial Aquifer	2012-2015	577352.77	5275230.72	59	13	3	SENE	Not applicable	3.72	February 2012
MW-13		00786720	Surficial Aquifer	2012-2015	580109.24	5275611.70	59	13	1	NWNE	Not applicable	5.22	February 2012
MW-14	GW414	00786730	Surficial Aquifer	2012-2015	574492.18	5273769.82	59	13	9	NWNW	Not applicable	2.08	February 2012
MW-15	GW415	00786731	Surficial Aquifer	2012-2015	575826.33	5274678.08	59	13	4	NESE	Not applicable	2.53	February 2012
MW-16	GW416	00786727	Surficial Aquifer	2012-2015	576583.73	5272121.62	59	13	15	NENW	Not applicable	3.78	February 2012
MW-17	GW417	00786719	Surficial Aquifer	2012-2015	580327.09	5274506.46	59	13	1	SESE	Not applicable	2.74	February 2012
MW-18	GW418	00786729	Surficial Aquifer	2012-2015	574994.18	5272958.45	59	13	9	NESW	Not applicable	5.03	February 2012
MW-05-02		0	Surficial Aquifer	2005, 2006, 2009-2015	578260.12	5273824.20	59	13	11	NENW	Not applicable	5.15	
MW-05-08		0	Surficial Aquifer	2005, 2006, 2009-2015	575722.00	5272923.00	59	13	9	NESE	Not applicable	4.39	
MW-05-09		0	Surficial Aquifer	2005, 2006, 2009-2015	575849.40	5274234.70	59	13	4	SESE	Not applicable	10.16	
OB-1	GW507	00736121	Bedrock	2006, 2009-2015	576938.25	5274551.25	59	13	3	NWSE	Not applicable	12.09	December 2005
OB-2		00736120	Bedrock	2006, 2009-2015	578216.05	5275039.93	59	13	2	SENW	Not applicable	8.45	December 2005
OB-3		00736123	Bedrock	2006, 2007, 2009-2015	578710.35	5275261.27	59	13	2	SWNE	Not applicable	9.28	December 2005
OB-3A ⁽²⁾		00736122	Bedrock		578711.30	5275263.51	59	13	2	SWNE	Not applicable		December 2005
OB-4	GW504	00736118	Bedrock	2006, 2009-2015	578892.80	5275408.75	59	13	2	NENE	Not applicable	14.47	December 2005
OB-5	GW505	00736119	Bedrock	2006, 2009-2015	579291.92	5275529.52	59	13	1	NWNW	Not applicable	10.86	December 2005

Current Monitoring						We	Il Location				Upgradient/Downgradient?	Average depth to	
Station ID (Local Name)	Proposed NPDES/SDS Station ID	Unique Well Number	Bedrock or Surficial Aquifer	Water Quality Monitoring Years	UTM Easting	UTM Northing	Township	Range	Section	Forty	Current ⁽¹⁾	water table	Installation Date
P-1		00736114	Bedrock	2006	577016.34	5274604.39	59	13	3	NWSE	Not applicable		December 2005
P-2		00736115	Bedrock	2005, 2006	578294.14	5275068.52	59	13	2	SENW	Not applicable		December 2005
P-3		00736116	Bedrock	2006	578731.29	5275289.68	59	13	2	SWNE	Not applicable		December 2005
P-4		00736117	Bedrock	2005	579247.19	5275469.67	59	13	1	NWNW	Not applicable		December 2005

Prior to permit issuance, mine features are not present, thus whether wells are upgradient or downgradient of Project features is not applicable. For information regarding well locations following Mine Year 1, refer to Volume I.
 Although this well exists, it is not included in the baseline groundwater monitoring network. This well is redundant with an adjacent groundwater monitoring well.

Large Table 6 Mine Site Baseline Groundwater Quality Monitoring Summary

			y Data for M\ .1-2015	N-1			
Parameter	Fraction	Units	# of Samples ⁽¹⁾ Parameters	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	20	80.5	118	90.0	87.9
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	14	1.9	4.15	2.95	2.80
Carbon, total organic Chemical Oxygen Demand	NA NA	mg/l mg/l	20 14	2 < 10	3.52 24.6	2.59 9.20	2.60 < 10
Chloride	NA	mg/l	20	1.41	3	2.17	2.10
Cyanide	NA	mg/l	NA	NA	NA	NA	NA
Dissolved oxygen	NA	mg/l	20	0.02	8.45	1.46	1.66
Fluoride	NA	mg/l	20	0.14	0.25	0.19	0.19
Hardness, as CaCO3	NA	mg/l	20	76.9	107	85.1	84.4
Nitrogen, Nitrate + Nitrite, as N	NA NA	mg/l	20 20	< 0.1	< 0.1 0.19	NA 0.12	< 0.1
Nitrogen, ammonia, as N pH	NA	mg/l pH units	20	< 0.1 8.2	10.02	8.88	0.12 8.86
Phosphorus, total, as P	NA	mg/l	NA	NA	NA	NA	NA
Redox (oxidation potential)	NA	mV	19	49	507	270	273
Solids, total dissolved	NA	mg/l	20	102	175	148	151
Specific Conductance @ 25 °C	NA	µmhos/cm	20	140	227.6	179	180
Sulfate, as SO4	NA	mg/l	20	5	6.81	6.07	6.30
Temperature	NA	deg C	20	1.25	12.63	7.96	9.04
Turbidity	NA	NTU	20	0	6.1	0.76	0
Aluminum	Discolved	1	letals	< 10	47.2	12.1	< 20
Aluminum	Dissolved Total	μg/l μg/l	20 NA	< 10 NA	47.3 NA	13.1 NA	< 20 NA
Antimony	Dissolved	μg/l	20	< 0.5	< 0.5	NA	< 0.5
Antimony	Total	µg/l	NA	NA	NA	NA	NA
Arsenic	Dissolved	µg/l	20	< 0.5	1.25	0.84	0.92
Arsenic	Total	µg/l	NA	NA	NA	NA	NA
Barium	Dissolved	µg/l	6	4.5	6.3	5.33	5.1
Barium	Total	µg/l	14	7.7	25.3	11.9	10.9
Beryllium	Dissolved	µg/l	6 14	< 0.2	< 0.2	NA	< 0.2
Beryllium Boron	Total Dissolved	μg/l μg/l	6	< 0.2 < 100	< 100	NA NA	< 0.2 < 100
Boron	Total	μg/l	14	58.7	99.4	71.2	67.7
Cadmium	Dissolved	µg/l	20	< 0.2	< 0.2	NA	< 0.2
Cadmium	Total	µg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	20	21	32.9	23.8	23.1
Chromium	Dissolved	µg/l	20	< 1	2	0.61	< 1
Chromium	Total	µg/l	NA	NA	NA	NA	NA
Cobalt Cobalt	Dissolved Total	µg/l	20 NA	< 0.2 NA	< 0.5 NA	NA NA	< 0.2 NA
Copper	Dissolved	μg/l μg/l	20	< 0.5	3.85	0.89	0.76
Copper	Total	μg/l	NA	NA	NA	NA	NA
Iron	Dissolved	µg/l	20	< 50	90.3	31.4	< 50
Iron	Total	µg/l	NA	NA	NA	NA	NA
Lead	Dissolved	µg/l	6	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	14	< 0.5	< 0.5	NA	< 0.5
Magnesium	Total Dissolved	mg/l	20 20	5.6	7.1	6.3	6.3
Manganese Manganese	Total	µg/l	20 NA	25.6 NA	79.4 NA	50.4 NA	52.4 NA
Manganese	Total	µg/l ng/l	20	< 0.5	0.95	0.29	< 0.5
Methyl Mercury	Total	ng/l	NA	NA	NA	NA	NA
Molybdenum	Dissolved	µg/l	20	0.74	4.57	1.33	1.10
Molybdenum	Total	µg/l	NA	NA	NA	NA	NA
Nickel	Dissolved	µg/l	20	< 0.5	2.53	0.61	0.53
Nickel	Total	µg/l	NA	NA	NA	NA	NA
Palladium	Total Total	µg/l	NA NA	NA NA	NA NA	NA NA	NA
Platinum Potassium	Total	µg/l mg/l	20	1.28	3.61	1.89	NA 1.80
Selenium	Dissolved	µg/l	20	< 1	< 1	NA	< 1
Selenium	Total	μg/l	NA	NA	NA	NA	NA
Silver	Dissolved	µg/l	14	< 0.2	< 0.5	NA	< 0.2
Silver	Total	µg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	20	5.9	10.7	7.38	7.30
Strontium	Total	µg/l	NA	NA	NA	NA	NA
Thallium	Dissolved	µg/l	6	< 0.02	< 0.2	NA	< 0.11
Thallium	Total	µg/l	14 NA	< 0.017	< 0.2	NA	< 0.2
Titanium Vanadium	Total Dissolved	μg/l μg/l	NA 14	NA < 5	NA < 10	NA NA	NA < 5
Zinc	Dissolved	µg/l	20	< 6	11.5	3.83	< 6
Zinc	Total	μg/l	NA	NA	NA	NA	NA

NA No data available.

			y Data for M 1-2015	N-2			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	General mg/l	Parameters NA	NA	NA	NA	NA
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	19	50.7	148	105	113
Biochemical Oxygen Demand (5-day) Carbon, dissolved organic	NA NA	mg/l	NA 13	NA 3.8	NA 53.9	NA 12.4	NA 6.0
Carbon, total organic	NA	mg/l mg/l	19	2.1	57.6	8.84	4.85
Chemical Oxygen Demand	NA	mg/l	13	20.4	242	58.4	29.0
Chloride	NA	mg/l	19	< 0.5	1.29	0.62	< 1
Cyanide Dissolved oxygen	NA NA	mg/l mg/l	NA 19	NA 5.56	NA 11.59	NA 8.35	NA 8.05
Fluoride	NA	mg/l	19	< 0.1	0.18	0.08	< 0.1
Hardness, as CaCO3	NA	mg/l	19	34.6	154	98.4	96.5
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	19	< 0.1	0.14	0.07	< 0.1
Nitrogen, ammonia, as N	NA	mg/l pH units	19 25	< 0.05	0.59 8.13	0.09 7.18	< 0.1
pH Phosphorus, total, as P	NA	mg/l	NA	6.51 NA	8.13 NA	7.18 NA	7.1 NA
Redox (oxidation potential)	NA	mV	19	157	567	396	387
Solids, total dissolved	NA	mg/l	19	96	209	158	156
Specific Conductance @ 25 °C	NA	µmhos/cm	19	115.2	306.9	211	220.3
Sulfate, as SO4 Temperature	NA	mg/l deg C	19 19	2.1 3.14	17.5 23.45	6.69 11.7	6.65 11.1
Turbidity	NA	NTU	19	11.4	461	140	88.0
,			letals				
Aluminum	Dissolved	µg/l	19	< 10	6510	367	23.0
Aluminum	Total	µg/l	NA	NA	NA	NA	NA
Antimony	Dissolved Total	µg/l	19 NA	< 0.5 NA	< 0.5 NA	NA NA	< 0.5 NA
Antimony Arsenic	Dissolved	μg/l μg/l	19	< 0.5	3.17	0.62	< 0.5
Arsenic	Total	µg/l	NA	NA	NA	NA	NA
Barium	Dissolved	µg/l	6	18.5	38.3	27.8	26.3
Barium	Total	µg/l	13	27.3	154	81.1	82.3
Beryllium Beryllium	Dissolved Total	μg/l μg/l	6 13	< 0.2 < 0.2	< 0.2 0.35	NA 0.14	< 0.2 < 0.2
Boron	Dissolved	μg/l	6	< 100	< 100	NA	< 100
Boron	Total	µg/l	13	< 50	< 50	NA	< 50
Cadmium	Dissolved	µg/l	19	< 0.2	< 0.2	NA	< 0.2
Cadmium Calcium	Total Total	μg/l mg/l	NA 19	NA 8.6	NA 37.4	NA 25.0	NA 25.3
Chromium	Dissolved	µg/l	19	< 1	19.3	1.83	< 1
Chromium	Total	µg/l	NA	NA	NA	NA	NA
Cobalt	Dissolved	µg/l	19	< 0.2	5.95	0.93	0.55
Cobalt Copper	Total Dissolved	µg/l	NA 19	NA 0.72	NA 21	NA 3.45	NA 2.10
Copper	Total	μg/l μg/l	NA	NA	NA	NA	2.10 NA
Iron	Dissolved	µg/l	19	< 50	11600	695	< 50
Iron	Total	µg/l	NA	NA	NA	NA	NA
Lead	Dissolved	µg/l	6 13	< 0.5 0.57	< 0.5	NA 1.9C	< 0.5
Lead Magnesium	Total Total	μg/l mg/l	13	2.4	4.75 14.8	1.86 8.73	1.33 8.75
Manganese	Dissolved	µg/l	19	9.2	3280	834	770
Manganese	Total	µg/l	NA	NA	NA	NA	NA
Mercury	Total	ng/l	19	1.7	13	5.19	3.96
Methyl Mercury Molybdenum	Total Dissolved	ng/l µg/l	NA 19	NA 0.27	NA 2.6	NA 1.62	NA 1.72
Molybdenum	Total	µg/l	NA	NA	NA	NA	NA
Nickel	Dissolved	µg/l	19	< 0.5	18.5	2.37	1.30
Nickel	Total	µg/l	NA	NA	NA	NA	NA
Palladium Platinum	Total Total	μg/l μg/l	NA NA	NA NA	NA NA	NA NA	NA NA
Potassium	Total	mg/l	19	2.39	8.2	4.02	3.50
Selenium	Dissolved	µg/l	19	< 1	< 1	NA	< 1
Selenium	Total	µg/l	NA	NA	NA	NA	NA
Silver	Dissolved	µg/l	13	< 0.2	< 0.2	NA	< 0.2
Silver Sodium	Total Total	µg/l mg/l	NA 19	NA 5.08	NA 29.8	NA 12.5	NA 12.9
Strontium	Total	μg/l	NA	NA	NA	NA	NA
Thallium	Dissolved	µg/l	6	< 0.02	< 0.2	NA	< 0.11
Thallium	Total	µg/l	13	< 0.017	< 0.2	NA	< 0.2
Titanium Vapadium	Total	µg/l	NA 12	NA	NA 17.2	NA 4 59	NA < 5
Vanadium Zinc	Dissolved Dissolved	μg/l μg/l	13 19	< 5 < 6	17.3 24.4	4.58 4.76	< 5 < 6
Zinc	Total	μg/l	NA	NA	NA	NA	NA

(1) Field duplicates not included in count of samples.

			y Data for M 1-2015	W-3			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	Parameters NA	NA	NA	NA	NA
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	20	27.4	48.1	33.1	34.2
Biochemical Oxygen Demand (5-day) Carbon, dissolved organic	NA NA	mg/l mg/l	NA 14	NA 1.2	NA 2.45	NA 1.80	NA 1.75
Carbon, total organic	NA	mg/l	20	< 1	2.43	1.37	1.75
Chemical Oxygen Demand	NA	mg/l	14	< 10	22	7.54	< 10
Chloride	NA	mg/l	20	< 0.5	< 1	NA	< 0.5
Cyanide Dissolved oxygen	NA NA	mg/l mg/l	NA 20	NA 4.64	NA 7.61	NA 6.16	NA 6.13
Fluoride	NA	mg/l	20	< 0.1	0.1	0.05	< 0.1
Hardness, as CaCO3	NA	mg/l	20	31.2	45.5	37.4	38.5
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	20	0.29	0.75	0.46	0.43
Nitrogen, ammonia, as N	NA	mg/l	20	< 0.05	0.1	0.05	< 0.1
pH Phosphorus, total, as P	NA	pH units mg/l	26 NA	5.96 NA	7.7 NA	6.51 NA	6.36 NA
Redox (oxidation potential)	NA	mV	20	285	591	422	401
Solids, total dissolved	NA	mg/l	20	68	139	101	100
Specific Conductance @ 25 °C	NA	µmhos/cm	20	49.7	113.3	82.8	82.5
Sulfate, as SO4	NA	mg/l	20	7.7	12.9	10.2	10.5
Temperature Turbidity	NA	deg C NTU	20 20	3.29 0	18.16 19.6	10.0 2.49	9.8 1.10
			letals	0	15.0	2.45	1.10
Aluminum	Dissolved	µg/l	20	< 10	< 200	13.1	< 20
Aluminum	Total	µg/l	NA	NA	NA	NA	NA
Antimony	Dissolved	µg/l	20	< 0.5	< 5	NA	< 0.5
Antimony Arsenic	Total Dissolved	μg/l μg/l	NA 20	NA < 0.5	NA < 5	NA NA	NA < 0.5
Arsenic	Total	μg/l	NA	NA	NA	NA	NA
Barium	Dissolved	µg/l	6	12.2	14.2	13.3	13.5
Barium	Total	µg/l	14	14.7	28.3	17.8	16.8
Beryllium	Dissolved	µg/l	6	< 0.2	< 0.2	NA	< 0.2
Beryllium Boron	Total Dissolved	μg/l μg/l	14 6	< 0.2 < 100	< 0.2 < 100	NA NA	< 0.2 < 100
Boron	Total	μg/l	14	< 50	< 50	NA	< 50
Cadmium	Dissolved	µg/l	20	< 0.2	< 2	NA	< 0.2
Cadmium	Total	µg/l	NA	NA	NA	NA	NA
Calcium Chromium	Total Dissolved	mg/l	20 20	6.9 < 1	10.8 < 10	8.69 0.97	9.10 < 1
Chromium	Total	μg/l μg/l	NA	× 1 NA	NA	NA	NA
Cobalt	Dissolved	µg/l	20	< 0.2	< 2	0.26	0.24
Cobalt	Total	µg/l	NA	NA	NA	NA	NA
Copper	Dissolved	µg/l	20	0.8	< 5	1.36	1.10
Copper Iron	Total Dissolved	μg/l μg/l	NA 20	NA < 50	NA < 500	NA 37.6	NA < 50
Iron	Total	μg/l	NA	NA	NA	NA	NA
Lead	Dissolved	µg/l	6	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	14	< 0.5	0.54	0.28	< 0.5
Magnesium	Total	mg/l	20 20	3.3 1.7	4.51 166	3.82 52.5	3.90
Manganese Manganese	Dissolved Total	μg/l μg/l	20 NA	I.7 NA	NA	52.5 NA	51.3 NA
Mercury	Total	ng/l	20	< 0.5	5.3	0.52	< 0.5
Methyl Mercury	Total	ng/l	NA	NA	NA	NA	NA
Molybdenum	Dissolved	µg/l	20	0.35	< 2	0.64	0.61
Molybdenum Nickel	Total Dissolved	μg/l μg/l	NA 20	NA 2.9	NA 6.8	NA 4.16	NA 4.0
Nickel	Total	μg/i μg/l	NA	NA	NA	4.16 NA	4.0 NA
Palladium	Total	µg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	NA	NA	NA	NA	NA
Potassium	Total	mg/l	20 20	0.96	1.8	1.38	1.39
Selenium Selenium	Dissolved Total	μg/l μg/l	20 NA	< 1 NA	< 10 NA	NA NA	< 1 NA
Silver	Dissolved	μg/l	14	< 0.2	< 2	NA	< 0.2
Silver	Total	µg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	20	2.38	10.3	3.02	2.90
Strontium Thallium	Total	µg/l	NA	NA	NA < 0.2	NA	NA
Thallium Thallium	Dissolved Total	μg/l μg/l	6 14	< 0.02 < 0.2	< 0.2 0.21	NA 0.11	< 0.2 < 0.2
Titanium	Total	μg/l	NA	NA NA	NA	NA	NA
Vanadium	Dissolved	µg/l	14	< 5	< 50	NA	< 5
Zinc	Dissolved	µg/l	20	< 6	< 60	4.07	< 6
Zinc	Total	µg/l	NA	NA	NA	NA	NA

(1) Field duplicates not included in count of samples.

			y Data for M\ .1-2015	W-4			
Parameter	Fraction	Units	# of Samples ⁽¹⁾ Parameters	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	20	56.4	90.8	68.4	66.6
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	14	2.9	9.3	5.17	5.35
Carbon, total organic	NA NA	mg/l	20 14	1.8	10.2	5.94	5.5
Chemical Oxygen Demand Chloride	NA	mg/l mg/l	20	< 10 < 0.5	32.3	15.0 0.46	13.5 0.62
Cyanide	NA	mg/l	NA	NA	NA	NA	NA
Dissolved oxygen	NA	mg/l	20	0.06	7.81	2.07	1.97
Fluoride	NA	mg/l	20	< 0.1	0.13	0.06	< 0.1
Hardness, as CaCO3	NA	mg/l	20	46.4	98.1	66.7	65.3
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	20	< 0.1	0.52	0.27	0.27
Nitrogen, ammonia, as N	NA	mg/l	20	0.06	0.28	0.12	< 0.1
pH Phosphorus, total, as P	NA NA	pH units mg/l	26 NA	6.1 NA	7.9 NA	6.65 NA	6.61 NA
Redox (oxidation potential)	NA	mV	20	108	517	324	339
Solids, total dissolved	NA	mg/l	20	96	175	138	138
Specific Conductance @ 25 °C	NA	µmhos/cm	20	106.9	200.9	146	148.5
Sulfate, as SO4	NA	mg/l	20	6.2	11.3	8.26	7.9
Temperature	NA	deg C	20	2.46	19.11	10.1	9.11
Turbidity	NA	NTU	20	0	15.7	5.09	4.35
	D :		letals	<u></u>			
Aluminum	Dissolved	µg/l	20	24.9	316	101	51.2
Aluminum	Total Dissolved	μg/l μg/l	NA 20	NA < 0.5	NA < 0.5	NA NA	NA < 0.5
Antimony Antimony	Total	μg/l	NA	× 0.5	× 0.5	NA	× 0.5
Arsenic	Dissolved	μg/l	20	< 0.5	< 0.65	0.28	< 0.5
Arsenic	Total	µg/l	NA	NA	NA	NA	NA
Barium	Dissolved	µg/l	6	11	20.1	14.4	12.5
Barium	Total	µg/l	14	18.2	34.2	27.0	27.7
Beryllium	Dissolved	µg/l	6	< 0.2	< 0.2	NA	< 0.2
Beryllium	Total	µg/l	14	< 0.2	< 0.2	NA	< 0.2
Boron Boron	Dissolved Total	μg/l μg/l	6 14	< 100 < 50	< 100 < 50	NA NA	< 100 < 50
Cadmium	Dissolved	μg/l	20	< 0.2	< 0.2	NA	< 0.2
Cadmium	Total	µg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	20	10.4	29.7	14.5	13.0
Chromium	Dissolved	µg/l	20	< 1	< 4.5	0.79	< 1
Chromium	Total	µg/l	NA	NA	NA	NA	NA
Cobalt	Dissolved	µg/l	20	0.26	3.2	1.40	1.4
Cobalt	Total Dissolved	µg/l	NA 20	NA 1.05	NA 17.9	NA	NA 6.75
Copper Copper	Total	μg/l μg/l	20 NA	1.95 NA	NA	8.25 NA	6.75 NA
Iron	Dissolved	μg/l	20	55.1	1150	519	447
Iron	Total	µg/l	NA	NA	NA	NA	NA
Lead	Dissolved	µg/l	6	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	14	< 0.5	0.53	0.27	< 0.5
Magnesium	Total	mg/l	20	5	8.75	7.43	7.85
Manganese	Dissolved	µg/l	20 NA	80.2	626	338 NA	350
Manganese Mercury	Total Total	μg/l ng/l	NA 20	NA < 0.5	NA 3.8	NA 1.87	NA 1.85
Methyl Mercury	Total	ng/l	NA	× 0.5	NA	NA	NA
Molybdenum	Dissolved	µg/l	20	0.86	2.8	1.75	1.75
Molybdenum	Total	µg/l	NA	NA	NA	NA	NA
Nickel	Dissolved	µg/l	20	1.74	7.6	4.85	4.75
Nickel	Total	µg/l	NA	NA	NA	NA	NA
Palladium	Total	µg/l	NA	NA	NA	NA	NA
Platinum	Total Total	µg/l	NA 20	NA 1.2	NA 4.9	NA 2.52	NA 2.14
Potassium Selenium	Dissolved	mg/l µg/l	20	< 1	4.9	2.52 NA	< 1
Selenium	Total	μg/l	NA	NA	NA	NA	NA
Silver	Dissolved	μg/l	14	< 0.2	< 0.5	NA	< 0.2
Silver	Total	µg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	20	3.1	10.3	5.71	4.22
Strontium	Total	µg/l	NA	NA	NA	NA	NA
Thallium	Dissolved	µg/l	6	< 0.02	< 0.2	NA	< 0.11
Thallium	Total	µg/l	14	< 0.017	< 0.2	NA	< 0.2
Titanium Vanadium	Total Dissolved	µg/l	NA 14	NA < 5	NA < 10	NA NA	NA < 5
vandululli	Ussoived	µg∕l	14	> >	< T0	NA	 >
Zinc	Dissolved	µg/l	20	< 6	18.6	3.78	< 6

(1) Field duplicates not included in count of samples.

			y Data for M\ .1-2015	N-5			
Parameter	Fraction	Units	# of Samples ⁽¹⁾ Parameters	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	20	14.3	51.4	26.8	28.3
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	14	1.5	3.9	2.58	2.4
Carbon, total organic Chemical Oxygen Demand	NA NA	mg/l mg/l	20 14	1.2 < 10	5.1 104	2.36 26.3	2.2 19.1
Chloride	NA	mg/l	20	< 0.5	1.1	0.46	0.55
Cyanide	NA	mg/l	NA	NA	NA	NA	NA
Dissolved oxygen	NA	mg/l	20	7.56	10.97	9.40	9.16
Fluoride	NA	mg/l	20	< 0.1	< 0.1	NA	< 0.1
Hardness, as CaCO3	NA	mg/l	20	10.9	164	56.3	49.3
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	20	< 0.1	0.16	0.08	< 0.1
Nitrogen, ammonia, as N	NA NA	mg/l	20 26	< 0.05 5.93	0.17 7.89	0.06	< 0.1 6.79
pH Phosphorus, total, as P	NA	pH units mg/l	26 NA	5.93 NA	7.89 NA	NA	0.79 NA
Redox (oxidation potential)	NA	mV	20	184	515	367	392
Solids, total dissolved	NA	mg/l	20	41	136	84.5	83.0
Specific Conductance @ 25 °C	NA	µmhos/cm	20	0	122.6	57.7	53.4
Sulfate, as SO4	NA	mg/l	20	< 2	17.4	6.04	5.60
Temperature	NA	deg C	20	4.26	23.64	11.5	11.0
Turbidity	NA	NTU	20	47.7	2530	373	226
			letals	20	202	47.2	22.5
Aluminum	Dissolved Total	μg/l μg/l	20 NA	< 20 NA	293 NA	47.3 NA	33.5 NA
Antimony	Dissolved	μg/l	20	< 0.5	< 0.5	NA	< 0.5
Antimony	Total	μg/l	NA	NA	NA	NA	NA
Arsenic	Dissolved	µg/l	20	< 0.5	1.5	0.33	< 0.5
Arsenic	Total	µg/l	NA	NA	NA	NA	NA
Barium	Dissolved	µg/l	6	5.2	10.3	8.00	8.6
Barium	Total	µg/l	14	7.5	615	140	58
Beryllium	Dissolved	µg/l	6	< 0.2	< 0.2	NA	< 0.2
Beryllium Boron	Total Dissolved	μg/l μg/l	14 6	< 0.2 < 100	1.6 < 100	0.36 NA	< 0.2 < 100
Boron	Total	μg/l	14	< 50	< 50	NA	< 50
Cadmium	Dissolved	μg/l	20	< 0.2	< 0.2	NA	< 0.2
Cadmium	Total	µg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	20	2.7	35.8	12.9	11.1
Chromium	Dissolved	µg/l	20	< 1	1.6	0.69	< 1
Chromium	Total	µg/l	NA	NA	NA	NA	NA
Cobalt Cobalt	Dissolved Total	µg/l	20 NA	< 0.2 NA	1.9 NA	0.24 NA	< 0.2 NA
Copper	Dissolved	μg/l μg/l	20	0.6	2.8	1.60	1.4
Copper	Total	μg/l	NA	NA	NA	NA	NA
Iron	Dissolved	µg/l	20	< 50	775	97.3	51.2
Iron	Total	µg/l	NA	NA	NA	NA	NA
Lead	Dissolved	µg/l	6	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	14	< 0.5	16.7	3.95	1.70
Magnesium Manganese	Total Dissolved	mg/l µg/l	20 20	1 2.4	18.1 2400	5.82 153	4.50 25
Manganese Manganese	Total	µg/l	20 NA	Z.4 NA	2400 NA	NA	NA 25
Manganese	Total	ng/l	20	1.5	54.5	9.99	6.80
Methyl Mercury	Total	ng/l	NA	NA	NA	NA	NA
Molybdenum	Dissolved	µg/l	20	< 0.3	3.41	0.84	0.43
Molybdenum	Total	µg/l	NA	NA	NA	NA	NA
Nickel	Dissolved	µg/l	20	< 0.5	2.3	0.82	0.74
Nickel Palladium	Total	µg/l	NA NA	NA NA	NA NA	NA NA	NA
Palladium Platinum	Total Total	μg/l μg/l	NA NA	NA	NA	NA	NA NA
Potassium	Total	mg/l	20	1	8.6	2.99	2.5
Selenium	Dissolved	µg/l	20	< 1	< 1	NA	< 1
Selenium	Total	µg/l	NA	NA	NA	NA	NA
Silver	Dissolved	µg/l	14	< 0.2	< 0.5	NA	< 0.2
Silver	Total	µg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	20	2.8	8.6	4.38	4.0
Strontium	Total	µg/l	NA 6	NA < 0.02	NA < 0.2	NA	NA 0.11
Thallium Thallium	Dissolved Total	μg/l μg/l	6 14	< 0.02	< 0.2 0.49	0.17	< 0.2
Titanium	Total	μg/l	NA	< 0.2 NA	0.49 NA	NA	< 0.2 NA
Vanadium	Dissolved	μg/l	14	< 5	< 10	NA	< 5
Zinc	Dissolved	µg/l	20	< 6	44.4	5.51	< 6
Zinc	Total	µg/l	NA	NA	NA	NA	NA

(1) Field duplicates not included in count of samples.

	١		/ Data for MV .1-2015	V-6S			
Parameter	Fraction	Units	# of Samples ⁽¹⁾ Parameters	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	20	64	91.6	79.0	80.7
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	14	1.5	3.4	2.28	2.0
Carbon, total organic	NA NA	mg/l	20	1.2	2.5	1.76	1.7
Chemical Oxygen Demand Chloride	NA	mg/l mg/l	14 20	< 10 < 0.5	17.6 < 1	7.14	< 10 0.62
Cyanide	NA	mg/l	NA	NA	NA	NA	NA
Dissolved oxygen	NA	mg/l	20	0.01	6.33	2.40	1.88
Fluoride	NA	mg/l	20	< 0.1	0.12	0.06	< 0.1
Hardness, as CaCO3	NA	mg/l	20	67.9	98.5	84.7	85.8
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	20	< 0.1	< 0.1	NA	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	20	< 0.05	< 0.1	NA	< 0.1
pH Phosphorus, total, as P	NA NA	pH units mg/l	26 NA	6.81 NA	7.9 NA	7.40 NA	7.43 NA
Redox (oxidation potential)	NA	mV	20	142	526	352	342
Solids, total dissolved	NA	mg/l	20	99	179	137	134
Specific Conductance @ 25 °C	NA	µmhos/cm	20	0.1	195	160	171
Sulfate, as SO4	NA	mg/l	20	9.1	11.5	10.4	10.4
Temperature	NA	deg C	20	2.19	14.18	8.03	8.47
Turbidity	NA	NTU	20	0	12.5	1.87	0.35
	D: 1 1		letals	10	20.0	12.6	20
Aluminum	Dissolved Total	µg/l	20 NA	< 10 NA	30.9 NA	12.6 NA	< 20 NA
Antimony	Dissolved	μg/l μg/l	20	< 0.5	< 0.5	NA	< 0.5
Antimony	Total	μg/l	NA	NA	NA	NA	NA
Arsenic	Dissolved	µg/l	20	< 0.5	0.92	0.52	0.53
Arsenic	Total	µg/l	NA	NA	NA	NA	NA
Barium	Dissolved	µg/l	6	12.9	15.5	14.0	13.9
Barium	Total	µg/l	14	15.4	21.4	18.3	18.7
Beryllium	Dissolved	µg/l	6	< 0.2	< 0.2	NA	< 0.2
Beryllium Boron	Total Dissolved	µg/l	14 6	< 0.2 < 100	< 0.2 < 100	NA NA	< 0.2 < 100
Boron	Total	μg/l μg/l	14	< 50	< 50	NA	< 50
Cadmium	Dissolved	μg/l	20	< 0.2	< 0.2	NA	< 0.2
Cadmium	Total	µg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	20	14.4	20.9	17.6	18.4
Chromium	Dissolved	µg/l	20	< 1	1.7	0.70	< 1
Chromium	Total	µg/l	NA	NA	NA	NA	NA
Cobalt Cobalt	Dissolved	µg/l	20 NA	< 0.2 NA	0.5	0.19	0.20
Copper	Total Dissolved	μg/l μg/l	20	0.66	NA 3	NA 1.07	NA 0.90
Copper	Total	μg/l	NA	NA	NA	NA	NA
Iron	Dissolved	µg/l	20	< 50	79.4	30.5	< 50
Iron	Total	µg/l	NA	NA	NA	NA	NA
Lead	Dissolved	µg/l	6	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	14	< 0.5	0.65	0.29	< 0.5
Magnesium	Total	mg/l	20	7.7	11.4	9.87	9.8 64.5
Manganese Manganese	Dissolved Total	μg/l μg/l	20 NA	3.5 NA	238 NA	81.9 NA	64.5 NA
Manganese	Total	μg/l	20	< 0.5	0.924	0.44	< 0.5
Methyl Mercury	Total	µg/l	NA	NA	NA	NA	NA
Molybdenum	Dissolved	µg/l	20	0.95	4.1	2.33	2.3
Molybdenum	Total	µg/l	NA	NA	NA	NA	NA
Nickel	Dissolved	µg/l	20	< 0.5	1.92	0.62	0.51
Nickel Dalladium	Total	µg/l	NA	NA	NA	NA	NA
Palladium Platinum	Total Total	μg/l μg/l	NA NA	NA NA	NA NA	NA NA	NA NA
Potassium	Total	mg/l	20	1.5	2.2	1.87	1.86
Selenium	Dissolved	µg/l	20	< 1	< 1	NA	< 1
Selenium	Total	µg/l	NA	NA	NA	NA	NA
Silver	Dissolved	µg/l	14	< 0.2	< 0.5	NA	< 0.2
Silver	Total	µg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	20	3.8	11.2	4.57	4.12
Strontium	Total	µg/l	NA	NA	NA (0.2	NA	NA 0.11
Thallium Thallium	Dissolved Total	µg/l	6 14	< 0.02	< 0.2 0.24	0.11	0.11 < 0.2
Titanium	Total	μg/l μg/l	NA	< 0.2 NA	0.24 NA	NA	< 0.2 NA
Vanadium	Dissolved	μg/l	14	< 5	< 10	NA	< 5
Zinc	Dissolved	µg/l	20	< 6	7.2	3.37	< 6
Zinc	Total	µg/l	NA	NA	NA	NA	NA

(1) Field duplicates not included in count of samples.

	V		/ Data for MV .1-2015	V-6D			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	Parameters NA	NA	NA	NA	NA
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	20	77.5	121	90.5	87.8
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA 17	NA	NA	NA
Carbon, dissolved organic Carbon, total organic	NA NA	mg/l mg/l	14 20	1.7 1.4	3.2 3.2	2.32 1.97	2.39 1.9
Chemical Oxygen Demand	NA	mg/l	14	< 10	46.8	9.50	< 10
Chloride	NA	mg/l	20	< 0.5	< 1	0.44	0.58
Cyanide	NA	mg/l	NA	NA	NA	NA	NA
Dissolved oxygen	NA	mg/l	19	0.01	10.54	1.67	1.30
Fluoride Hardness, as CaCO3	NA NA	mg/l mg/l	20 20	< 0.1 88.4	0.13	0.07 94.5	< 0.1 94.0
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	20	< 0.1	0.29	0.06	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	20	< 0.05	0.1	0.05	< 0.1
рН	NA	pH units	25	7.25	8.1	7.79	7.88
Phosphorus, total, as P	NA	mg/l	NA	NA	NA	NA	NA
Redox (oxidation potential)	NA	mV	19	76	517	281	279
Solids, total dissolved Specific Conductance @ 25 °C	NA NA	mg/l µmhos/cm	20 19	129 150.6	212 199.2	149 185	143 189
Sulfate, as SO4	NA	mg/l	20	9.6	199.2	10.2	10.2
Temperature	NA	deg C	19	2.85	10.38	7.24	6.91
Turbidity	NA	NTU	19	0	13.4	1.33	0
			letals	Τ	Т		
Aluminum	Dissolved	µg/l	20	< 10	91.7	12.7	< 20
Aluminum	Total Dissolved	µg/l	NA 20	NA < 0.5	NA < 0.5	NA NA	NA < 0.5
Antimony Antimony	Total	μg/l μg/l	NA	< 0.5 NA	< 0.5 NA	NA	< 0.5 NA
Arsenic	Dissolved	μg/l	20	< 0.5	1	0.72	0.73
Arsenic	Total	µg/l	NA	NA	NA	NA	NA
Barium	Dissolved	µg/l	6	14.9	16.1	15.3	15.2
Barium	Total	µg/l	14	16.4	36.7	22.8	22.1
Beryllium Beryllium	Dissolved Total	µg/l	6 14	< 0.2	< 0.2	NA NA	< 0.2 < 0.2
Boron	Dissolved	μg/l μg/l	6	< 100	< 100	NA	< 100
Boron	Total	µg/l	14	< 50	< 50	NA	< 50
Cadmium	Dissolved	µg/l	20	< 0.2	< 0.2	NA	< 0.2
Cadmium	Total	µg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	20	18.1	22.3	20.0	20.1
Chromium Chromium	Dissolved Total	μg/l μg/l	20 NA	< 1 NA	< 4.5 NA	0.62 NA	< 1 NA
Cobalt	Dissolved	μg/l	20	< 0.2	< 0.5	0.15	< 0.2
Cobalt	Total	µg/l	NA	NA	NA	NA	NA
Copper	Dissolved	µg/l	20	< 0.5	5.03	0.51	< 0.5
Copper	Total	µg/l	NA	NA	NA	NA	NA
Iron	Dissolved	µg/l	20	< 50	127	37.3	< 50
Iron Lead	Total Dissolved	µg/l	NA 6	NA < 0.5	NA < 0.5	NA NA	NA < 0.5
Lead	Total	μg/l μg/l	14	< 0.5	1.43	0.33	< 0.5
Magnesium	Total	mg/l	20	9.26	12.3	10.8	10.6
Manganese	Dissolved	µg/l	20	95.6	180	136	152
Manganese	Total	µg/l	NA	NA	NA	NA	NA
Mercury	Total	ng/l	20	< 0.5	1.1	0.30	< 0.5
Methyl Mercury Molybdenum	Total Dissolved	ng/l µg/l	NA 20	NA 0.63	NA 3.66	NA 1.37	NA 1.40
Molybdenum	Total	μg/l	NA	NA	NA	NA	NA
Nickel	Dissolved	µg/l	20	< 0.5	1.48	0.30	< 0.5
Nickel	Total	µg/l	NA	NA	NA	NA	NA
Palladium	Total	µg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	NA	NA 1.9	NA	NA 1.06	NA 1.00
Potassium Selenium	Total Dissolved	mg/l µg/l	20 20	1.8	2.33	1.96 NA	1.90 < 1
Selenium	Total	μg/l	20 NA	< 1 NA	< 1 NA	NA	< 1 NA
Silver	Dissolved	μg/l	14	< 0.2	< 0.5	NA	< 0.2
Silver	Total	µg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	20	3.5	4.56	3.88	3.88
Strontium	Total	µg/l	NA	NA	NA	NA	NA
Thallium Thallium	Dissolved Total	µg/l	6 14	< 0.02 < 0.2	< 0.2	NA NA	< 0.2 < 0.2
Titanium	Total	μg/l μg/l	NA	< 0.2 NA	< 0.2 NA	NA	< 0.2 NA
Vanadium	Dissolved	μg/l	14	< 5	< 10	NA	< 5
Zinc Zinc	Dissolved	µg/l	20 NA	< 6 NA	6.3 NA	3.08	< 6

(1) Field duplicates not included in count of samples.

			y Data for M 1-2015	W-7			
Parameter	Fraction	Units	# of Samples ⁽¹⁾ Parameters	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	20	31.6	59.6	37.6	35.7
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	14	1.1	3.4	2.05	2.1
Carbon, total organic Chemical Oxygen Demand	NA NA	mg/l mg/l	20 14	< 1 < 10	2.6 16.4	1.57 8.16	1.6 < 10
Chloride	NA	mg/l	20	< 0.5	10.4	0.68	0.86
Cyanide	NA	mg/l	NA	NA	NA	NA	NA
Dissolved oxygen	NA	mg/l	20	0.03	9.64	1.90	1.61
Fluoride	NA	mg/l	20	< 0.1	0.1	0.05	< 0.1
Hardness, as CaCO3	NA	mg/l	20	37.8	65.3	43.3	41.0
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	20	< 0.1	0.17	0.06	< 0.1
Nitrogen, ammonia, as N pH	NA NA	mg/l pH units	20 26	0.08	0.2 7.88	0.07 7.44	< 0.1 7.48
Phosphorus, total, as P	NA	mg/l	NA	NA	NA	NA	NA
Redox (oxidation potential)	NA	mV	20	148	624	332	325
Solids, total dissolved	NA	mg/l	20	< 10	114	81.8	81.5
Specific Conductance @ 25 °C	NA	µmhos/cm	20	48.1	102.2	85.9	85.7
Sulfate, as SO4	NA	mg/l	20	7.7	10.4	9.38	9.70
Temperature	NA	deg C	20	4.03	12.31	8.48	8.22
Turbidity	NA	NTU	20 Ietals	0	16.5	2.43	0.3
Aluminum	Dissolved	µg/l	20	< 10	68.1	19.0	< 20
Aluminum	Total	μg/l	NA	NA	NA	NA	NA
Antimony	Dissolved	µg/l	20	< 0.5	< 0.5	NA	< 0.5
Antimony	Total	µg/l	NA	NA	NA	NA	NA
Arsenic	Dissolved	µg/l	20	< 0.31	1.23	0.69	0.67
Arsenic	Total	µg/l	NA	NA	NA	NA	NA
Barium	Dissolved	µg/l	6	5.2	6.7	5.88	5.5
Barium Beryllium	Total Dissolved	µg/l	14 6	5.2 < 0.2	24.8 < 0.2	10.4 NA	7.9 < 0.2
Beryllium	Total	μg/l μg/l	14	< 0.2	< 0.2	NA	< 0.2
Boron	Dissolved	μg/l	6	< 100	< 100	NA	< 100
Boron	Total	µg/l	14	< 50	< 50	NA	< 50
Cadmium	Dissolved	µg/l	20	< 0.2	< 0.2	NA	< 0.2
Cadmium	Total	µg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	20	7.4	13.5	8.62	8.05
Chromium Chromium	Dissolved Total	μg/l μg/l	20 NA	< 1 NA	1.83 NA	0.73 NA	< 1 NA
Cobalt	Dissolved	μg/l	20	< 0.2	1.02	0.22	0.20
Cobalt	Total	μg/l	NA	NA	NA	NA	NA
Copper	Dissolved	µg/l	20	< 0.5	29.8	3.37	1.66
Copper	Total	µg/l	NA	NA	NA	NA	NA
Iron	Dissolved	µg/l	20	< 50	662	87.0	50.8
Iron	Total	µg/l	NA	NA	NA	NA	NA
Lead	Dissolved	µg/l	6 14	< 0.5 < 0.5	< 0.5 6.21	NA 0.76	< 0.5 < 0.5
Lead Magnesium	Total Total	µg/l mg/l	20	4.7	7.7	5.28	< 0.5
Manganese	Dissolved	µg/l	20	< 0.5	253	77.1	65.8
Manganese	Total	µg/l	NA	NA	NA	NA	NA
Mercury	Total	ng/l	20	< 0.5	7.4	0.93	< 0.5
Methyl Mercury	Total	ng/l	NA	NA	NA	NA	NA
Molybdenum	Dissolved	µg/l	20	0.56	1.83	1.12	1.10
Molybdenum Nickel	Total Dissolved	µg/l	NA 20	NA < 0.5	NA 1.43	NA 0.48	NA < 0.5
Nickel	Total	μg/l μg/l	20 NA	< 0.5 NA	1.43 NA	0.48 NA	< 0.5 NA
Palladium	Total	μg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	NA	NA	NA	NA	NA
Potassium	Total	mg/l	20	0.84	1.6	1.13	1.1
Selenium	Dissolved	µg/l	20	< 1	< 1	NA	< 1
Selenium	Total	µg/l	NA	NA	NA	NA	NA
Silver Silver	Dissolved Total	µg/l	14 NA	< 0.2 NA	< 0.5 NA	NA NA	< 0.2 NA
Sodium	Total	µg/l mg/l	20	1.8	NA 3.3	2.23	2.0
Strontium	Total	µg/l	NA	NA	NA	NA	NA
Thallium	Dissolved	μg/l	6	< 0.02	< 0.2	NA	< 0.2
Thallium	Total	µg/l	14	< 0.017	< 0.2	NA	< 0.2
Titanium	Total	µg/l	NA	NA	NA	NA	NA
Vanadium	Dissolved	µg/l	14	< 5	< 10	NA	< 5
Zinc	Dissolved	µg/l	20	< 6	< 6	NA	< 6
Zinc NA No data available	Total	µg/l	NA	NA	NA	NA	NA

(1) Field duplicates not included in count of samples.

	١		y Data for MV 1-2015	V-8S			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	General mg/l	Parameters NA	NA	NA	NA	NA
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	20	58.8	263	93.9	77.6
Biochemical Oxygen Demand (5-day) Carbon, dissolved organic	NA NA	mg/l	NA 14	NA 1.6	NA 3.9	NA 2.45	NA 2.5
Carbon, total organic	NA	mg/l mg/l	20	1.0	3	1.82	1.72
Chemical Oxygen Demand	NA	mg/l	14	< 10	16.6	8.42	10.3
Chloride	NA	mg/l	20	< 0.5	< 1	0.56	0.78
Cyanide Dissolved oxygen	NA NA	mg/l mg/l	NA 20	NA 0.58	NA 6.48	NA 2.45	NA 2.59
Fluoride	NA	mg/l	20	< 0.1	0.48	0.11	0.11
Hardness, as CaCO3	NA	mg/l	20	38.3	94.8	75.9	79.1
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	20	< 0.1	0.35	0.19	0.22
Nitrogen, ammonia, as N	NA NA	mg/l	20 26	0.06	0.25	0.06	< 0.1
pH Phosphorus, total, as P	NA	pH units mg/l	26 NA	NA	10.41 NA	8.10 NA	7.57 NA
Redox (oxidation potential)	NA	mV	20	82	712	293	272
Solids, total dissolved	NA	mg/l	20	99	179	142	142
Specific Conductance @ 25 °C	NA	µmhos/cm	20	147.9	212.2	179.1	179.4
Sulfate, as SO4 Temperature	NA NA	mg/l deg C	20 20	5.7 3.48	19.6 13.59	8.52 8.62	7.90 8.79
Turbidity	NA	NTU	20	0	21.1	3.17	0.4
	1		letals				
Aluminum	Dissolved	µg/l	20	< 10	128	42.4	< 25
Aluminum	Total	µg/l	NA	NA	NA	NA	NA
Antimony Antimony	Dissolved Total	µg/l	20 NA	< 0.5 NA	< 0.5 NA	NA NA	< 0.5 NA
Arsenic	Dissolved	μg/l μg/l	20	< 0.5	4.1	1.71	1.1
Arsenic	Total	µg/l	NA	NA	NA	NA	NA
Barium	Dissolved	µg/l	6	5.1	9.2	8.03	8.65
Barium	Total	µg/l	14	7	23.6	15.2	15.9
Beryllium Beryllium	Dissolved Total	μg/l μg/l	6 14	< 0.2	< 0.2 < 0.2	NA NA	< 0.2 < 0.2
Boron	Dissolved	μg/l	6	< 100	< 100	NA	< 100
Boron	Total	µg/l	14	< 50	< 50	NA	< 50
Cadmium	Dissolved	µg/l	20	< 0.2	< 0.2	NA	< 0.2
Cadmium Calcium	Total Total	µg/l mg/l	NA 20	NA 12.4	NA 36	NA 22.0	NA 19.5
Chromium	Dissolved	µg/l	20	< 1	4.1	1.12	< 1
Chromium	Total	µg/l	NA	NA	NA	NA	NA
Cobalt	Dissolved	µg/l	20	< 0.2	1.18	0.26	< 0.2
Cobalt Copper	Total Dissolved	μg/l μg/l	NA 20	NA 0.55	NA 23.5	NA 2.60	NA 1.10
Copper	Total	μg/l	NA	NA	NA	NA	NA
Iron	Dissolved	µg/l	20	< 50	137	39.4	< 50
Iron	Total	µg/l	NA	NA	NA	NA	NA
Lead Lead	Dissolved Total	µg/l	6 14	< 0.5 < 0.5	< 0.5 0.56	NA 0.27	< 0.5 < 0.5
Magnesium	Total	µg/l mg/l	20	0.66	9.23	5.12	< 0.5
Manganese	Dissolved	µg/l	20	0.55	1270	237	27
Manganese	Total	µg/l	NA	NA	NA	NA	NA
Mercury Methyl Mercury	Total Total	ng/l	20 NA	< 0.5 NA	4.5 NA	1.84 NA	1.31 NA
Metnyi Mercury Molybdenum	Dissolved	ng/l µg/l	20	0.71	11.1	3.06	1.79
Molybdenum	Total	µg/l	NA	NA	NA	NA	NA
Nickel	Dissolved	µg/l	20	< 0.5	2.58	0.93	0.75
Nickel Dalladium	Total	µg/l	NA	NA	NA	NA	NA
Palladium Platinum	Total Total	μg/l μg/l	NA NA	NA NA	NA NA	NA NA	NA NA
Potassium	Total	mg/l	20	0.86	3.1	1.75	1.6
Selenium	Dissolved	µg/l	20	< 1	< 1	NA	< 1
Selenium	Total	µg/l	NA	NA	NA	NA	NA
Silver	Dissolved	µg/l	14 NA	< 0.2	< 0.5	NA	< 0.2
Silver Sodium	Total Total	µg/l mg/l	NA 20	NA 3.7	NA 23.1	NA 11.1	NA 7.7
Strontium	Total	µg/l	NA	NA	NA	NA	NA
Thallium	Dissolved	µg/l	6	< 0.02	< 0.2	NA	0.11
Thallium	Total	µg/l	14	< 0.017	< 0.2	NA	< 0.2
	Total	µg/l	NA	NA	NA	NA	NA
Titanium Vanadium							
Vanadium Zinc	Dissolved	μg/l μg/l	14 20	< 5	15.5 19.4	7.06	8.90 < 6

(1) Field duplicates not included in count of samples.

	٧		7 Data for MW .1-2015	/-8D			
Parameter	Fraction	Units	# of Samples ⁽¹⁾ Parameters	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA NA	mg/l mg/l	19 NA	108 NA	128 NA	122 NA	122 NA
Biochemical Oxygen Demand (5-day) Carbon, dissolved organic	NA	mg/l	13	3	5.8	4.30	4.4
Carbon, total organic	NA	mg/l	19	3.1	4.6	3.72	3.65
Chemical Oxygen Demand	NA	mg/l	13	< 10	24	12.9	13.8
Chloride	NA	mg/l	19	< 0.5	< 1	0.49	0.58
Cyanide	NA	mg/l	NA	NA	NA	NA	NA
Dissolved oxygen Fluoride	NA NA	mg/l mg/l	19 19	0.01 < 0.1	3.21 0.17	0.82	< 0.1 0.15
Hardness, as CaCO3	NA	mg/l	19	118	137	127	127
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	19	< 0.1	0.16	0.05	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	19	< 0.05	0.28	0.07	< 0.1
рН	NA	pH units	25	7.1	8.2	7.50	7.5
Phosphorus, total, as P	NA	mg/l	NA	NA	NA	NA	NA
Redox (oxidation potential)	NA NA	mV	19 19	-105 150	335 201	98.4 181	123 183
Solids, total dissolved Specific Conductance @ 25 °C	NA	mg/l µmhos/cm	<u> </u>	212.6	201	243	247
Sulfate, as SO4	NA	mg/l	19	4.7	7.26	6.58	6.65
Temperature	NA	deg C	19	4.37	13.55	7.98	7.51
Turbidity	NA	NTU	19	0	4.5	0.75	0
	Τ	1	letals				
Aluminum	Dissolved	µg/l	19	< 10 NA	83.6	12.2	< 20
Aluminum Antimony	Total Dissolved	μg/l μg/l	NA 19	< 0.5	NA < 0.5	NA NA	NA < 0.5
Antimony	Total	μg/l	NA	< 0.5 NA	< 0.5 NA	NA	× 0.5
Arsenic	Dissolved	μg/l	19	1.76	2.7	2.27	2.25
Arsenic	Total	µg/l	NA	NA	NA	NA	NA
Barium	Dissolved	µg/l	6	7.9	10.4	9.20	9.25
Barium	Total	µg/l	13	10.1	25.4	16.0	15.4
Beryllium	Dissolved	µg/l	6	< 0.2	< 0.2	NA	< 0.2
Beryllium Boron	Total Dissolved	μg/l μg/l	13 6	< 0.2 < 100	< 0.2 < 100	NA NA	< 0.2 < 100
Boron	Total	μg/l	13	< 50	< 50	NA	< 50
Cadmium	Dissolved	µg/l	19	< 0.2	0.21	0.10	< 0.2
Cadmium	Total	µg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	19	28.8	33.1	30.9	31.0
Chromium	Dissolved	µg/l	19	< 1	< 1	NA	< 1
Chromium Cobalt	Total Dissolved	µg/l	NA 19	NA < 0.2	NA 0.52	NA 0.18	NA < 0.2
Cobalt	Total	μg/l μg/l	NA	× 0.2	NA	NA	< 0.2 NA
Copper	Dissolved	µg/l	19	< 0.5	0.84	0.34	< 0.5
Copper	Total	µg/l	NA	NA	NA	NA	NA
Iron	Dissolved	µg/l	19	1050	1760	1350	1295
Iron	Total	µg/l	NA	NA	NA	NA	NA
Lead	Dissolved	µg/l	6 13	< 0.5	< 0.5	NA	< 0.5 < 0.5
Lead Magnesium	Total Total	µg/l mg/l	13	< 0.5 11.2	< 0.5 13.1	NA 12.2	< 0.5
Manganese	Dissolved	µg/l	19	529	767	687	700
Manganese	Total	µg/l	NA	NA	NA	NA	NA
Mercury	Total	ng/l	19	< 0.5	< 0.5	NA	< 0.5
Methyl Mercury	Total	ng/l	NA	NA	NA	NA	NA
Molybdenum	Dissolved	µg/l	19	0.71	1.6	1.00	0.94
Molybdenum Nickel	Total Dissolved	μg/l μg/l	NA 19	NA < 0.5	NA 1.09	NA 0.33	NA < 0.5
Nickel	Total	μg/i μg/l	NA	< 0.5 NA	1.09 NA	0.33 NA	< 0.5 NA
Palladium	Total	μg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	NA	NA	NA	NA	NA
Potassium	Total	mg/l	19	1.12	1.41	1.24	1.21
Selenium	Dissolved	µg/l	19	< 1	< 1	NA	< 1
Selenium	Total	µg/l	NA 12	NA	NA	NA	NA
Silver Silver	Dissolved Total	μg/l μg/l	13 NA	< 0.2 NA	< 0.2 NA	NA NA	< 0.2 NA
Sodium	Total	mg/l	19	3.95	4.71	4.48	4.50
Strontium	Total	µg/l	NA	NA	NA	NA	4.50 NA
Thallium	Dissolved	µg/l	6	< 0.02	< 0.2	NA	0.11
Thallium	Total	µg/l	13	< 0.017	< 0.2	NA	< 0.2
Titanium	Total	µg/l	NA	NA	NA	NA	NA
Vanadium	Dissolved	µg/l	13	< 5	< 10	NA 2.17	< 5
Zinc	Dissolved	µg/l	19 NA	< 6	9.5	3.17	< 6
Zinc NA No data available	Total	µg/l	NA	NA	NA	NA	NA

(1) Field duplicates not included in count of samples.

			y Data for M 1-2015	W-9			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	General mg/l	Parameters NA	NA	NA	NA	NA
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	19	24.7	56.7	41.8	43.0
Biochemical Oxygen Demand (5-day) Carbon, dissolved organic	NA NA	mg/l	NA 13	NA 4	NA 26.6	NA 15.6	NA 12.8
Carbon, total organic	NA	mg/l mg/l	19	3.4	26.0	15.6	12.8
Chemical Oxygen Demand	NA	mg/l	13	< 10	84.2	48.5	44.6
Chloride	NA	mg/l	19	< 0.5	< 1	0.50	0.64
Cyanide	NA NA	mg/l	NA 19	NA 0.07	NA 2.58	NA 0.87	NA
Dissolved oxygen Fluoride	NA	mg/l mg/l	18 19	< 0.1	2.58 0.1	0.87	0.59 < 0.1
Hardness, as CaCO3	NA	mg/l	19	25.1	58.4	42.7	41.8
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	19	< 0.1	0.44	0.07	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	19	< 0.1	0.31	0.15	0.16
pH Phosphorus, total, as P	NA NA	pH units mg/l	24 NA	6.24 NA	7.1 NA	6.62 NA	6.63 NA
Redox (oxidation potential)	NA	mV	18	-7	303	148	152
Solids, total dissolved	NA	mg/l	19	60	185	129	132
Specific Conductance @ 25 °C	NA	µmhos/cm	18	67	152	109	109
Sulfate, as SO4	NA	mg/l	19	1.28	7.4	4.88	5.10
Temperature Turbidity	NA NA	deg C NTU	18 18	2.56 0	11.75 31.1	7.39 3.38	7.66 0.25
	INA.		letals	0	51.1	5.50	0.23
Aluminum	Dissolved	µg/l	19	42.9	617	135	115
Aluminum	Total	µg/l	NA	NA	NA	NA	NA
Antimony	Dissolved	µg/l	19	< 0.5	< 0.5	NA	< 0.5
Antimony Arsenic	Total Dissolved	μg/l μg/l	NA 19	NA 2.4	NA 6.7	NA 4.35	NA 4.7
Arsenic	Total	μg/l	NA	NA	NA	NA	NA
Barium	Dissolved	µg/l	6	7.5	15.1	11.7	12.2
Barium	Total	µg/l	13	10.1	70.3	23.8	19.6
Beryllium	Dissolved	µg/l	6	< 0.2	< 0.2	NA 0.11	< 0.2
Beryllium Boron	Total Dissolved	μg/l μg/l	13 6	< 0.2 < 100	0.23 < 100	0.11 NA	< 0.2 < 100
Boron	Total	μg/l	13	< 50	< 50	NA	< 50
Cadmium	Dissolved	µg/l	19	< 0.2	< 0.2	NA	< 0.2
Cadmium	Total	µg/l	NA	NA	NA	NA	NA
Calcium Chromium	Total Dissolved	mg/l	19 19	4.7	13.7 2	8.68 0.72	8.4
Chromium	Total	μg/l μg/l	NA	NA	NA	NA	NA
Cobalt	Dissolved	µg/l	19	1.2	4.5	2.53	2.1
Cobalt	Total	µg/l	NA	NA	NA	NA	NA
Copper	Dissolved	µg/l	19	1.7	16	4.46	3.4
Copper Iron	Total Dissolved	μg/l μg/l	NA 19	NA 4870	NA 17900	NA 11003	NA 10700
Iron	Total	μg/l	NA	NA	NA	NA	NA
Lead	Dissolved	µg/l	6	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	13	< 0.5	3.07	0.50	< 0.5
Magnesium Manganese	Total Dissolved	mg/l µg/l	19 19	3.2 498	6.66 1400	5.10 903	5.10 945
Manganese	Total	μg/l	NA	NA	NA	NA	NA
Mercury	Total	ng/l	19	0.91	13.7	2.58	1.70
Methyl Mercury	Total	ng/l	NA	NA	NA	NA	NA
Molybdenum	Dissolved	µg/l	19	0.69 NA	2.3	1.52	1.5
Molybdenum Nickel	Total Dissolved	μg/l μg/l	NA 19	0.89	NA 4.6	NA 1.72	NA 1.3
Nickel	Total	μg/l	NA	NA	NA	NA	NA
Palladium	Total	µg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	NA 10	NA	NA 1.0C	NA 1.42	NA
Potassium Selenium	Total Dissolved	mg/l µg/l	19 19	0.96	1.96 < 1	1.42 NA	1.40
Selenium	Total	μg/l	NA	NA	NA	NA	NA
Silver	Dissolved	µg/l	13	< 0.2	< 0.2	NA	< 0.2
Silver	Total	µg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	19	1.3	9.3	2.08	1.7
Strontium Thallium	Total Dissolved	μg/l μg/l	NA 6	NA < 0.02	NA < 0.2	NA NA	NA < 0.02
Thallium	Total	μg/l	13	< 0.02	0.64	0.13	< 0.02
Titanium	Total	µg/l	NA	NA	NA	NA	NA
Vanadium	Dissolved	µg/l	13	< 5	< 10	4.34	5.35
Zinc	Dissolved	µg/l	19 NA	< 6	11.8 NA	3.72	< 6
Zinc NA No data available	Total	µg/l	NA	NA	NA	NA	NA

(1) Field duplicates not included in count of samples.

	v		Data for MW 1-2015	/-10S			
Parameter	Fraction	Units	# of Samples ⁽¹⁾ Parameters	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3 Biochemical Oxygen Demand (5-day)	NA NA	mg/l mg/l	15 NA	6.1 NA	69.5 NA	16.3 NA	11.0 NA
Carbon, dissolved organic	NA	mg/l	9 9	2.1	44.6	8.83	4.10
Carbon, total organic	NA	mg/l	15	2	40.2	6.08	3.0
Chemical Oxygen Demand	NA	mg/l	9	< 10	133	29.0	16.5
Chloride	NA	mg/l	15 NA	< 0.5 NA	9.33 NA	1.20	< 1
Cyanide Dissolved oxygen	NA NA	mg/l mg/l	15	5.66	11.3	NA 9.14	NA 9.65
Fluoride	NA	mg/l	15	< 0.1	0.25	0.07	< 0.1
Hardness, as CaCO3	NA	mg/l	15	15.2	136	29.9	18.1
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	15	0.33	2.7	1.19	1.0
Nitrogen, ammonia, as N pH	NA NA	mg/l pH units	15 21	< 0.1 4.95	0.1 8.14	0.05 6.30	0.1 6.00
Phosphorus, total, as P	NA	mg/l	NA	NA	NA	NA	NA
Redox (oxidation potential)	NA	mV	15	159	544	399	412
Solids, total dissolved	NA NA	mg/l	15 15	48 34.3	228 308.1	85.5 72.8	72 46.6
Specific Conductance @ 25 °C Sulfate, as SO4	NA	µmhos/cm mg/l	15	34.3 5	42.9	10.6	46.6
Temperature	NA	deg C	15	7.56	20.19	13.1	11.2
Turbidity	NA	NTU	15	12.1	306.3	68.7	52.6
		l	letals	25.6	06.2	50.0	56.4
Aluminum	Dissolved Total	μg/l μg/l	15 NA	35.6 NA	96.3 NA	59.9 NA	56.4 NA
Antimony	Dissolved	μg/l	15	< 0.5	< 0.5	NA	< 0.5
Antimony	Total	µg/l	NA	NA	NA	NA	NA
Arsenic	Dissolved	µg/l	15	< 0.31	1.05	0.34	< 0.5
Arsenic Barium	Total Dissolved	µg/l	NA 6	NA 6.1	NA 11.8	NA 9.60	NA 10.25
Barium	Total	μg/l μg/l	9	16	85.9	41.7	33.5
Beryllium	Dissolved	µg/l	6	< 0.2	< 0.2	NA	< 0.2
Beryllium	Total	µg/l	9	< 0.2	0.25	0.12	< 0.2
Boron Boron	Dissolved Total	μg/l μg/l	6 9	< 100 < 50	< 100 < 50	NA NA	< 100 < 50
Cadmium	Dissolved	μg/l	15	< 0.2	0.3	0.11	< 0.2
Cadmium	Total	µg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	15	3.7	38.8	7.79	4.45
Chromium Chromium	Dissolved Total	µg/l	15 NA	< 1 NA	3.29 NA	0.99 NA	< 1 NA
Cobalt	Dissolved	μg/l μg/l	15	< 0.2	0.59	0.28	0.24
Cobalt	Total	µg/l	NA	NA	NA	NA	NA
Copper	Dissolved	µg/l	15	1.3	20.3	4.40	2.0
Copper	Total Dissolved	µg/l	NA 15	NA < 50	NA 84.8	NA 47.0	NA 53.0
Iron Iron	Total	μg/l μg/l	NA	< 50 NA	04.0 NA	47.8 NA	53.0 NA
Lead	Dissolved	µg/l	6	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	9	< 0.5	2.9	1.06	0.69
Magnesium	Total	mg/l	15	1.4	9.48	2.54	1.7
Manganese Manganese	Dissolved Total	μg/l μg/l	15 NA	10.9 NA	87.8 NA	37.2 NA	28.3 NA
Mercury	Total	ng/l	15	1.31	14.1	3.41	2.30
Methyl Mercury	Total	ng/l	NA	NA	NA	NA	NA
Molybdenum	Dissolved	µg/l	15	< 0.2	35.9	2.96	< 0.3
Molybdenum Nickel	Total Dissolved	μg/l μg/l	NA 15	NA < 0.5	NA 2.76	NA 1.13	NA 1.10
Nickel	Total	μg/l	NA	NA	NA	NA	NA
Palladium	Total	µg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	NA	NA	NA	NA	NA
Potassium Selenium	Total Dissolved	mg/l µg/l	15 15	< 0.25 < 1	3.68 4.73	0.91 0.85	0.62
Selenium	Total	μg/l	NA	NA	4.75 NA	NA	NA
Silver	Dissolved	µg/l	9	< 0.2	< 0.2	NA	< 0.2
Silver	Total	µg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	15 NA	2.6	9.82	4.26	3.3 NA
Strontium Thallium	Total Dissolved	μg/l μg/l	NA 6	NA < 0.02	NA < 0.2	NA NA	0.11
Thallium	Total	μg/l	9	< 0.2	0.3	0.13	< 0.2
Titanium	Total	µg/l	NA	NA	NA	NA	NA
Vanadium	Dissolved	µg/l	9	< 5	< 10	NA E 02	< 5
Zinc Zinc	Dissolved Total	μg/l μg/l	15 NA	< 6 NA	19 NA	5.02 NA	< 6 NA
ZINC NA No data available	TOTAL	µy/i		N/A	IN/A		INA

(1) Field duplicates not included in count of samples.

	V		Data for MW .1-2015	/-10D			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	General mg/l	Parameters NA	NA	NA	NA	NA
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	19	30.8	49.5	41.2	41.6
Biochemical Oxygen Demand (5-day) Carbon, dissolved organic	NA NA	mg/l	NA 13	NA 1.2	NA 4.1	NA 2.28	NA 2.05
Carbon, total organic	NA	mg/l mg/l	13	< 1	3.9	1.56	2.05
Chemical Oxygen Demand	NA	mg/l	13	< 10	23.2	9.11	< 10
Chloride	NA	mg/l	19	< 0.5	< 1	0.44	0.62
Cyanide Dissolved oxygen	NA NA	mg/l mg/l	NA 19	NA 0.94	NA 6.97	NA 2.09	NA 1.74
Fluoride	NA	mg/l	19	< 0.1	0.11	0.06	0.1
Hardness, as CaCO3	NA	mg/l	19	34.4	60.8	48.5	49.6
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	19	0.91	2.4	1.66	1.6
Nitrogen, ammonia, as N pH	NA NA	mg/l pH units	19 25	< 0.05 6.14	0.19 7.22	0.05	< 0.1 6.71
Phosphorus, total, as P	NA	mg/l	NA	NA	NA	NA	NA
Redox (oxidation potential)	NA	mV	19	-67	521	282	258
Solids, total dissolved	NA	mg/l	19	30	131	106	111
Specific Conductance @ 25 °C	NA	µmhos/cm	19 19	83.8 9.2	145.1 13.4	113 11.1	107
Sulfate, as SO4 Temperature	NA NA	mg/l deg C	19	9.2 6.6	13.4	9.01	11.2 8.51
Turbidity	NA	NTU	19	0.0	7.1	1.01	0
	T	N	letals	T	T	ĩ	
Aluminum	Dissolved	µg/l	19	< 10	< 25	NA	< 20
Aluminum Antimony	Total Dissolved	μg/l μg/l	NA 19	NA < 0.5	NA < 0.5	NA NA	NA < 0.5
Antimony	Total	μg/l	NA	NA	NA	NA	NA
Arsenic	Dissolved	µg/l	19	< 0.31	0.82	0.38	< 0.5
Arsenic	Total	µg/l	NA	NA	NA	NA	NA
Barium Barium	Dissolved Total	µg/l	6 13	9.3 12.5	11.1 22.7	10.1 17.8	10.3 18.5
Beryllium	Dissolved	μg/l μg/l	6	< 0.2	< 0.2	NA	< 0.2
Beryllium	Total	µg/l	13	< 0.2	< 0.2	NA	< 0.2
Boron	Dissolved	µg/l	6	< 100	< 100	NA	< 100
Boron Cadmium	Total Dissolved	μg/l μg/l	13 19	< 50 < 0.2	< 100 < 0.2	NA NA	< 50 < 0.2
Cadmium	Total	μg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	19	8.4	15.5	11.6	11.9
Chromium	Dissolved	µg/l	19	< 1	3.2	0.78	< 1
Chromium Cobalt	Total Dissolved	µg/l	NA 19	NA 0.47	NA 1.5	NA 0.84	NA 0.76
Cobalt	Total	μg/l μg/l	NA	NA	NA	NA	0.76 NA
Copper	Dissolved	µg/l	19	< 0.5	2.2	1.01	0.99
Copper	Total	µg/l	NA	NA	NA	NA	NA
Iron Iron	Dissolved Total	µg/l	19 NA	< 50 NA	874 NA	359 NA	303 NA
Lead	Dissolved	μg/l μg/l	6	< 0.5	< 0.5	NA	< 0.5
Lead	Total	μ <u>g</u> /l	13	< 0.5	< 0.5	NA	< 0.5
Magnesium	Total	mg/l	19	3.3	5.9	4.76	4.8
Manganese	Dissolved	µg/l	19 NA	60.9 NA	362	199 NA	235
Manganese Mercury	Total Total	µg/l ng/l	19	< 0.5	NA 1.1	NA 0.35	NA < 0.5
Methyl Mercury	Total	ng/l	NA	NA	NA	NA	NA
Molybdenum	Dissolved	µg/l	19	1.6	4.99	3.23	3.7
Molybdenum	Total	µg/l	NA 10	NA 0.84	NA 4.2	NA	NA
Nickel Nickel	Dissolved Total	μg/l μg/l	19 NA	0.84 NA	4.3 NA	2.16 NA	1.62 NA
Palladium	Total	μg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	NA	NA	NA	NA	NA
Potassium	Total	mg/l	19	1.1	3.17	1.59	1.5
Selenium Selenium	Dissolved Total	μg/l μg/l	19 NA	< 1 NA	< 1 NA	NA NA	< 1 NA
Silver	Dissolved	μg/l	13	< 0.2	< 0.2	NA	< 0.2
Silver	Total	µg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	19	3.9	5.4	4.34	4.3
Strontium Thallium	Total Dissolved	μg/l μg/l	NA 6	NA < 0.02	NA < 0.2	NA NA	NA < 0.02
Thallium	Total	μg/l	13	< 0.02	< 0.2	NA	< 0.02
Titanium	Total	µg/l	NA	NA	NA	NA	NA
Vanadium	Dissolved	µg/l	13	< 5	< 10	NA	< 5
Zinc	Dissolved Total	µg/l	19 NA	< 6	< 6 NA	NA	< 6
Zinc NA No data available	Total	µg/l	NA	NA	NA	NA	NA

(1) Field duplicates not included in count of samples.

	١		/ Data for MV .1-2015	V-11			
Parameter	Fraction	Units	# of Samples ⁽¹⁾ Parameters	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3 Biochemical Oxygen Demand (5-day)	NA NA	mg/l mg/l	19 NA	32.7 NA	62.9 NA	57.8 NA	59.9 NA
Carbon, dissolved organic	NA	mg/l	13	< 1	3.4	1.68	1.6
Carbon, total organic	NA	mg/l	19	< 1	2	1.10	1.2
Chemical Oxygen Demand	NA	mg/l	13	< 10	16.5	7.25	< 10
Chloride	NA	mg/l	19 NA	< 0.5 NA	1.1 NA	0.70	0.88
Cyanide Dissolved oxygen	NA NA	mg/l mg/l	19	2.68	4.84	NA 3.98	NA 4.06
Fluoride	NA	mg/l	19	< 0.1	< 0.1	NA	< 0.1
Hardness, as CaCO3	NA	mg/l	19	41.1	68.9	63.7	66.2
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	19	< 0.1	0.21	0.15	0.15
Nitrogen, ammonia, as N pH	NA NA	mg/l pH units	19 25	< 0.05 7.79	< 0.1 8.42	0.05 8.17	< 0.1 8.20
Phosphorus, total, as P	NA	mg/l	NA	NA	NA	NA	NA
Redox (oxidation potential)	NA	mV	19	145	481	321	306
Solids, total dissolved	NA NA	mg/l	<u>19</u> 19	76 99.7	133 143.1	111 133	113 136
Specific Conductance @ 25 °C Sulfate, as SO4	NA	µmhos/cm mg/l	19	99.7 7.8	143.1	9.32	9.35
Temperature	NA	deg C	19	4	9.92	6.86	6.83
Turbidity	NA	NTU	19	0	19.6	1.87	0
		1	letals	10	25	NIA	20
Aluminum	Dissolved Total	μg/l μg/l	19 NA	< 10 NA	< 25 NA	NA NA	< 20 NA
Antimony	Dissolved	μg/l	19	< 0.5	< 0.5	NA	< 0.5
Antimony	Total	µg/l	NA	NA	NA	NA	NA
Arsenic	Dissolved	µg/l	19	< 0.5	1.3	0.47	0.52
Arsenic	Total	µg/l	NA	NA 2.4	NA	NA	NA 3.7
Barium Barium	Dissolved Total	μg/l μg/l	6 13	3.4 4.3	4	3.73 7.77	7.5
Beryllium	Dissolved	µg/l	6	< 0.2	< 0.2	NA	< 0.2
Beryllium	Total	µg/l	13	< 0.2	< 0.2	NA	< 0.2
Boron	Dissolved	µg/l	6 13	< 100	< 100	NA	< 100
Boron Cadmium	Total Dissolved	μg/l μg/l	13	< 50 < 0.2	< 50 < 0.2	NA NA	< 50 < 0.2
Cadmium	Total	µg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	19	8.1	14.5	13.3	13.8
Chromium	Dissolved	µg/l	19	< 1	3.4 NA	1.11 NA	1.05
Chromium Cobalt	Total Dissolved	μg/l μg/l	NA 19	NA < 0.2	< 0.2	NA	NA < 0.2
Cobalt	Total	μg/l	NA	NA	NA	NA	NA
Copper	Dissolved	µg/l	19	< 0.5	2.1	0.60	0.67
Copper	Total	µg/l	NA	NA	NA	NA	NA
Iron Iron	Dissolved Total	μg/l μg/l	19 NA	< 50 NA	< 50 NA	NA NA	< 50 NA
Lead	Dissolved	μg/l	6	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	13	< 0.5	< 0.5	NA	< 0.5
Magnesium	Total	mg/l	19	5.1	8	7.41	7.6
Manganese Manganese	Dissolved Total	μg/l μg/l	19 NA	< 0.5 NA	36.8 NA	8.29 NA	3.95 NA
Mercury	Total	ng/l	19	< 0.5	0.97	0.32	< 0.5
Methyl Mercury	Total	ng/l	NA	NA	NA	NA	NA
Molybdenum	Dissolved	µg/l	19	0.42	4.95	1.23	0.97
Molybdenum Nickel	Total	µg/l	NA 19	NA < 0.5	NA 1.4	NA 0.40	NA < 0.5
Nickel	Dissolved Total	μg/l μg/l	NA	< 0.5 NA	I.4 NA	0.40 NA	< 0.5 NA
Palladium	Total	µg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	NA	NA	NA	NA	NA
Potassium Selenium	Total Dissolved	mg/l	19 19	1.1 < 1	1.7 < 1	1.50 NA	1.52 < 1
Selenium	Total	μg/l μg/l	NA	< 1 NA	< 1 NA	NA	< 1 NA
Silver	Dissolved	μg/l	13	< 0.2	< 0.2	NA	< 0.2
Silver	Total	µg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	19	2	10.3	3.60	3.30
Strontium Thallium	Total Dissolved	μg/l μg/l	NA 6	NA < 0.02	NA < 0.2	NA NA	NA < 0.02
Thallium	Total	μg/l	13	< 0.02	< 0.2	NA	< 0.2
Titanium	Total	µg/l	NA	NA	NA	NA	NA
Vanadium	Dissolved	µg/l	13	< 5	< 10	NA	< 5
Zinc Zinc	Dissolved Total	µg/l	19 NA	< 6 NA	< 6 NA	NA NA	< 6 NA
ZINC NA No data available	TOtal	µg/l	NA NA	NA	NA	NA	INA

(1) Field duplicates not included in count of samples.

Parameter Fraction Units Symplesti General Parameters Minimum? Average? Mediat Alkalning, traits as GC03 NA mg/l NA N		١		/ Data for MV .2-2015	V-12				
Akalanity, bicarboneta, as CAC03 NA mg/l NA NA <thna< th=""> NA NA</thna<>	Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾	
Alkalmiy, carbonate, as GG23 NA mg/l NA	Alkalinity, bicarbonate, as CaCO3	NA			NA	NA	NA	NA	
Bitchernical Oxygen Demand (5-day) NA mpd NA NA NA NA NA NA Carbon disolved organic NA mpd 17 <1	,		-						
Carbon, calisobed organic NA mg/l 11 <11 <12 145 145 Carbon, total organic NA mg/l 11 <10			J						
			,						
Chemical Oxygen Demand NA mg/l 11 <10 19.9 7.50 <10 Choinde NA mg/l NA									
Cyanice NA mg/l NA NA NA NA NA NA NA NA mg/l 17 176 6.34 357 364 Fluorides NA mg/l 17 <0.1									
Dissolved oxygen NA mg/l 17 1.76 4.34 1.87 3.66 Huoride NA mg/l 17 <0.1			J :						
Fluoride NA mg/l 17 < 0.1 0.11 0.06 < 0.1 Hardness as CGO3 NA mg/l 17 23 31.1 259 255 Nitrogen, Nitrate + Nitrite, as N NA mg/l 17 < 0.05									
Hardmess as CaCO3 NA mg/l 17 23 31.1 25.9 25.5 Nitrogen, mitrate + Nitrite, as N NA mg/l 17 < 0.13			<u> </u>						
Nitrogen, ammonia, as N NA prig/l 17 < 0.05 0.2 0.06 < 0.1 pH NA pH units 23 6.15 7.1 6.63 6.68 Phosphorus, total, as P NA mg/l NA Ma NA my 17 122 506 308 305 Solids, total dissolved NA mg/l 17 18 108 6.66 7.1 5.7 57.7 Sulfate, as 200 NA mg/l 17 2.9 11.1 7.15 7.36 Turbidry NA NA MA MA NA									
pH NA PH units 23 6.13 7.1 6.63 6.68 Phosphous, total as P NA mg/t NA Solds, total discolved NA mg/t 1.7 1.8 1.08 6.66.7 7.7 Suffac, as SOA NA mg/t 1.7 1.9 9.11.31 7.15.5 7.56.7 Suffac, as SOA NA mg/t 1.7 2.9 1.13.1 7.7.15 7.7.6 Turbidity NA Ma Ma MA NA NA <td< td=""><td>Nitrogen, Nitrate + Nitrite, as N</td><td>NA</td><td>mg/l</td><td>17</td><td>< 0.1</td><td></td><td>0.06</td><td>< 0.1</td></td<>	Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	17	< 0.1		0.06	< 0.1	
Phosphorus total as P NA mg/l NA NA NA NA NA NA Redox (xxidation potential) NA my/l 17 122 566 308 305 Solds total dissolved NA mg/l 17 199 718 566 71 Specific Conductance Q 25 °C NA mg/l 17 29 1131 7.15 7.35 Suffate, as SO4 NA mg/l 17 2.9 11.31 7.15 7.36 Turbidity NA NA NT 17 0 2.01 2.23 0 Aluminum Total µg/l 17 < 0.5									
Reds (xolation potentia) NA mV 17 122 506 308 305 Solds, total dissolved NA µmhos/cm 17 18 108 68.6 71 Specific Conductance @ 25 °C NA µmhos/cm 17 19 9 71.8 56.7 57 Sulfate, as SO4 NA mg/l 17 2.9 11.31 77.15 7.36 Temperature NA Ma C 2.9 1.31 77.15 7.36 Turbidity NA NU 17 <.0									
Selits total dissolved NA mg/l 17 18 108 68.6 71 Specific Conductance @ 25 °C NA mg/l 17 19.9 71.8 56.7 57 Sulfate, as SO4 NA mg/l 17 2.9 11.31 7.15 7.36 Temperature NA Ma NTU 17 0 20.1 2.35 0 Auminum Dissolved µg/l 17 <0	•		<u> </u>						
Suffate as SO4 NA mg/l 17 5.4 8.79 6.10 5.8 Temperature NA deg C 17 2.9 11.31 7.15 7.36 Aluminum Dissolved µg/l 17 <0			mg/l	17	18	108			
Temperature NA deg C 17 2.9 11.31 7.15 7.36 Turbidity NA NTU 17 0 2.01 2.35 0 Aluminum Dissolved µg/l 17 <10			•						
Turbidiy NA NTU 17 0 20.1 2.35 0 Aluminum Dissolved µg/l 17 <10	· · ·		J.						
Metals Metals Vector Auminum Dissolved µg/l 17 < 10 < 25 NA < 20 Aluminum Total µg/l NA									
Aluminum Total µg/l NA NA NA NA NA Antimony Dissolved µg/l 17 < 0.5									
Antimony Dissolved $\mu q/l$ 17 < 0.5 < 0.5 NA < < 0.5 Antimony Total $\mu q/l$ NA <0.2	Aluminum	Dissolved	µg/l		· · · · · · · · · · · · · · · · · · ·	-	NA	< 20	
Antimony Total $\mu g/l$ NA NA NA NA NA Arsenic Dissolved $\mu g/l$ 17 <0.5									
Arsenic Dissolved $\mu g/l$ 17 < 0.5 < 0.63 0.28 < 0.5 Arsenic Total $\mu g/l$ NA NA NA NA NA Barium Dissolved $\mu g/l$ 11 8.3 16.6 9.85 6.68 7.45 Barium Dissolved $\mu g/l$ 11 8.3 16.6 9.85 9.05 Beryllium Dissolved $\mu g/l$ 6 < 0.2 < 0.2 NA < 0.2 Boron Dissolved $\mu g/l$ 11 < 50 < 50 NA < 50 Cadmium Dissolved $\mu g/l$ NA									
ArsenicTotal $\mu g/l$ NANANANANABariumDissolved $\mu g/l$ 6<0.5	· · · · · · · · · · · · · · · · · · ·								
Barium Total µg/l 11 8.3 16.6 9.85 9.05 Beryllium Dissolved µg/l 6 <0.2		-							
BerylliumDissolved $\mu g/l$ 6< 0.2< 0.2NA< 0.2BerylliumTotal $\mu g/l$ 11< 0.2			µg/l					7.45	
Beryllium Total $\mu g/l$ 11 < 0.2 < 0.2 NA < 0.2 Boron Dissolved $\mu g/l$ 6 < 100									
Boron Dissolved µg/l 6 < 100 < 100 NA < 100 Boron Total µg/l 11 < 50									
BoronTotal $\mu g/l$ 11 < 50 < 50 NA < 50 CadmiumDissolved $\mu g/l$ 17 < 0.2 < 0.2 NA < 0.2 CadmiumTotal $\mu g/l$ NANANANANANACalciumTotal $m g/l$ 17 < 1.4 < 0.2 < 6.2 6.2 ChromiumDissolved $\mu g/l$ 17 < 1 < 1.9 0.58 < 1 ChromiumTotal $\mu g/l$ NANANANANACobaltDissolved $\mu g/l$ 17 < 0.2 1.7 1.33 1.4 CobaltTotal $\mu g/l$ NANANANANACopperDissolved $\mu g/l$ 17 < 0.5 16.2 1.46 0.645 CopperTotal $\mu g/l$ NANANANANAIronDissolved $\mu g/l$ 17 < 50 166 75.8 63.0 IronTotal $\mu g/l$ NANANANANANALeadDissolved $\mu g/l$ 17 < 0.5 < 0.5 NA < 0.5 ManganeseTotal $m g/l$ 17 < 0.5 208 12.9 149 ManganeseTotal $m g/l$ 17 < 0.5 208 12.9 149 ManganeseTotal $m g/l$ 17 < 0.5 208 12.9 149 ManganeseTotal $m g/l$ 17 </td <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>< 100</td>					1			< 100	
CadmiumTotal $\mu g/l$ NANANANANACalciumTotal mg/l 175.47.246.226.2ChromiumDissolved $\mu g/l$ 17<1								< 50	
CalciumTotal mq/l 175.47.246.226.2ChromiumDissolved \mug/l 17<1								< 0.2	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1							
ChromiumTotal $\mu g/l$ NANANANANACobaltDissolved $\mu g/l$ 17< 0.2									
CobaltTotal $\mu g/l$ NANANANANACopperDissolved $\mu g/l$ 17< 0.5		1							
CopperDissolved $\mu g/l$ 17< 0.516.21.460.645CopperTotal $\mu g/l$ NANANANANANAIronDissolved $\mu g/l$ 17< 50									
CopperTotal $\mu g/l$ NANANANANAIronDissolved $\mu g/l$ 17< 50									
IronDissolved $\mu g/l$ 17< 5016675.863.0IronTotal $\mu g/l$ NANANANANALeadDissolved $\mu g/l$ 6< 0.5									
IronTotal $\mu g/l$ NANANANANALeadDissolved $\mu g/l$ 6< 0.5	**								
LeadTotal $\mu g/l$ 11< 0.5< 0.5NA< 0.5MagnesiumTotalmg/l172.33.172.542.5ManganeseDissolved $\mu g/l$ 17< 0.5	Iron		µg/l						
MagnesiumTotalmg/l172.3 3.17 2.54 2.5 ManganeseDissolved $\mu g/l$ 17< 0.5		1						< 0.5	
ManganeseDissolved $\mu g/l$ 17< 0.5208129149ManganeseTotal $\mu g/l$ NANANANANANAMercuryTotalng/l17< 0.5									
ManganeseTotal $\mu g/l$ NANANANANAMercuryTotalng/l17< 0.5			ě		1				
Methyl MercuryTotalng/lNANANANANAMolybdenumDissolvedµg/l17< 0.3	<<1	Manganese	1			1			NA
Molybdenum Dissolved μg/l 17 < 0.3 3.38 2.18 2.10 Molybdenum Total μg/l NA NA </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>< 0.5</td>								< 0.5	
MolybdenumTotal $\mu g/l$ NANANANANANickelDissolved $\mu g/l$ 17< 0.5									
Nickel Dissolved µg/l 17 < 0.5 1.04 0.74 0.75 Nickel Total µg/l NA NA NA NA NA NA Palladium Total µg/l NA NA NA NA NA Platinum Total µg/l NA NA NA NA NA Platinum Total µg/l NA NA NA NA NA Potassium Total µg/l 17 1.1 1.5 1.29 1.28 Selenium Dissolved µg/l 17 <1									
Palladium Total μg/l NA NA NA NA NA Platinum Total μg/l NA NA NA NA NA NA Potassium Total mg/l 17 1.1 1.5 1.29 1.28 Selenium Dissolved μg/l 17 <1									
Platinum Total μg/l NA NA NA NA NA NA Potassium Total mg/l 17 1.1 1.5 1.29 1.28 Selenium Dissolved μg/l 17 <1		1							
Potassium Total mg/l 17 1.1 1.5 1.29 1.28 Selenium Dissolved μg/l 17 <1									
Selenium Dissolved µg/l 17 <1 <1 NA <1 Selenium Total µg/l NA NA NA NA NA NA Selenium NA NA NA NA NA Selenium NA NA NA Selenium NA Selenium NA Selenium NA Selenium NA Selenium									
Selenium Total µg/l NA NA NA NA NA Silver Dissolved µg/l 11 < 0.2									
			µg/l						
silver Iotal µg/I NA NA NA NA NA					1			< 0.2	
Sodium Total mg/l 17 1.9 2.5 2.20 2.15									
SodiumTotalIng/11/1.92.52.202.15StrontiumTotalµg/lNANANANA									
Thallium Dissolved µg/l 6 < 0.02 < 0.2 NA 0.11									
								< 0.2	
Titanium Total µg/l NA NA NA NA NA									
Vanadium Dissolved µg/l 11 < 5 < 5 NA < 5 Zinc Dissolved µg/l 17 < 6									
Zinc Total µg/I NA NA NA NA NA							1		

(1) Field duplicates not included in count of samples.

	١		/ Data for MV .2-2015	V-13			
Parameter	Fraction	Units	# of Samples ⁽¹⁾ Parameters	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	17	39.1	74.9	59.0	60.2
Biochemical Oxygen Demand (5-day) Carbon, dissolved organic	NA NA	mg/l mg/l	NA 11	NA 10.9	NA 39.9	NA 24.2	NA 24.0
Carbon, total organic	NA	mg/l	17	10.3	39.2	27.2	27.3
Chemical Oxygen Demand	NA	mg/l	11	34.2	116	71.4	75.0
Chloride	NA	mg/l	17	0.62	52.8	4.45	0.75
Cyanide	NA	mg/l	NA	NA	NA	NA	NA
Dissolved oxygen Fluoride	NA NA	mg/l	17 17	< 0.1	3.07	1.00 0.08	< 0.1
Hardness, as CaCO3	NA	mg/l mg/l	17	< 0.1 48.5	0.52	59.3	< 0.1 57.3
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	17	< 0.1	0.12	0.06	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	17	0.26	1.9	1.34	1.5
pH	NA	pH units	23	5.75	6.9	6.08	6.09
Phosphorus, total, as P	NA	mg/l	NA	NA	NA	NA	NA
Redox (oxidation potential)	NA	mV	17	-38 91	368	150	148
Solids, total dissolved Specific Conductance @ 25 °C	NA NA	mg/l µmhos/cm	17 17	154.5	238 210.4	200 180.3	201 179.3
Sulfate, as SO4	NA	mg/l	17	5.6	104	20.4	16.8
Temperature	NA	deg C	17	3	16.71	7.39	6.76
Turbidity	NA	NTU	17	0	8	1.79	0.3
		l	letals				
Aluminum	Dissolved	µg/l	17	108	477	272	267
Aluminum	Total Dissolved	µg/l	NA 17	NA C O F	NA C O F	NA	NA
Antimony Antimony	Total	μg/l μg/l	NA	< 0.5 NA	< 0.5 NA	NA NA	< 0.5 NA
Arsenic	Dissolved	μg/l	17	0.55	1.5	0.87	0.85
Arsenic	Total	µg/l	NA	NA	NA	NA	NA
Barium	Dissolved	µg/l	6	23	29.6	24.5	23.5
Barium	Total	µg/l	11	30.9	72.8	51.9	52.8
Beryllium	Dissolved	µg/l	6	< 0.2	0.22	0.14	< 0.2
Beryllium Boron	Total Dissolved	μg/l μg/l	11 6	< 0.2 < 100	0.27 < 100	0.13 NA	< 0.2 < 100
Boron	Total	μg/l	11	< 50	< 50	NA	< 50
Cadmium	Dissolved	µg/l	17	< 0.2	< 0.2	NA	< 0.2
Cadmium	Total	µg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	17	10.9	16.9	13.3	12.9
Chromium	Dissolved	µg/l	17	< 1	3.2	1.36	1.35
Chromium Cobalt	Total Dissolved	μg/l μg/l	NA 17	NA 1.2	NA 8.6	NA 4.25	NA 4.17
Cobalt	Total	μg/l	NA	NA	NA	NA	NA
Copper	Dissolved	µg/l	17	0.63	5.29	1.50	0.90
Copper	Total	µg/l	NA	NA	NA	NA	NA
Iron	Dissolved	µg/l	17	5470	23700	15788	17600
Iron	Total	µg/l	NA	NA	NA	NA	NA
Lead Lead	Dissolved Total	µg/l	6 11	< 0.5 < 0.5	< 0.5 0.55	NA 0.28	< 0.5 < 0.5
Magnesium	Total	µg/l mg/l	11	5.1	7.74	6.31	6.20
Manganese	Dissolved	µg/l	17	252	1150	508	485
Manganese	Total	µg/l	NA	NA	NA	NA	NA
Mercury	Total	ng/l	17	< 0.5	1.5	0.95	1.0
Methyl Mercury	Total	ng/l	NA 17	NA	NA	NA 0.25	NA 0.22
Molybdenum Molybdenum	Dissolved Total	μg/l μg/l	17 NA	< 0.3 NA	1.08 NA	0.35 NA	0.33 NA
Nickel	Dissolved	μg/l	17	2.2	20.5	9.38	10.2
Nickel	Total	μg/l	NA NA	NA	NA	NA	NA
Palladium	Total	µg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	NA	NA	NA	NA	NA
Potassium	Total	mg/l	17	1	2.43	1.57	1.48
Selenium Selenium	Dissolved Total	μg/l μg/l	17 NA	< 1 NA	< 1 NA	NA NA	< 1 NA
Silver	Dissolved	μg/l	11	< 0.2	< 0.2	NA	< 0.2
Silver	Total	μg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	17	2.29	9.8	6.44	6.65
	Total	µg/l	NA	NA	NA	NA	NA
Strontium			6	< 0.02	< 0.2	NA	0.11
Strontium Thallium	Dissolved	µg/l	6				
Strontium Thallium Thallium	Dissolved Total	µg/l	11	< 0.017	< 0.2	NA	< 0.2
Strontium Thallium Thallium Titanium	Dissolved Total Total	μg/l μg/l	11 NA	< 0.017 NA	< 0.2 NA	NA NA	< 0.2 NA
Strontium Thallium Thallium	Dissolved Total	µg/l	11	< 0.017	< 0.2	NA	< 0.2

(1) Field duplicates not included in count of samples.

	١		/ Data for MV 2-2015	N-14			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	General mg/l	Parameters NA	NA	NA	NA	NA
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	17	33	62.3	41.8	39.6
Biochemical Oxygen Demand (5-day) Carbon, dissolved organic	NA NA	mg/l	NA 11	NA 1.5	NA 3.57	NA 1.95	NA 1.8
Carbon, total organic	NA	mg/l mg/l	11	< 1	2.03	1.95	1.8
Chemical Oxygen Demand	NA	mg/l	11	< 10	17.3	7.38	< 10
Chloride	NA	mg/l	17	< 0.5	< 1	0.39	< 0.5
Cyanide Dissolved oxygen	NA NA	mg/l mg/l	NA 17	NA 8.8	NA 10.68	NA 9.88	NA 10.16
Fluoride	NA	mg/l	17	< 0.1	< 0.1	NA	< 0.1
Hardness, as CaCO3	NA	mg/l	17	35.6	67	44.6	42.5
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	17	0.31	0.77	0.48	0.45
Nitrogen, ammonia, as N pH	NA NA	mg/l pH units	17 23	< 0.05 6.22	0.15 8.57	0.05 6.75	< 0.1 6.55
Phosphorus, total, as P	NA	mg/l	NA	NA	NA	NA	NA
Redox (oxidation potential)	NA	mV	17	254	623	427	387
Solids, total dissolved	NA	mg/l	17	58	143	99.1	98.5
Specific Conductance @ 25 °C	NA	µmhos/cm	17	57.5	135.3	87.2	85.4
Sulfate, as SO4 Temperature	NA NA	mg/l deg C	17 17	6.3 4.2	7.73 9.42	6.91 6.29	7.0 6.33
Turbidity	NA	NTU	17	0	3.9	0.85	0
	Т	N	letals	T		1	
Aluminum	Dissolved	µg/l	17	< 10	113	20.0	< 20
Aluminum Antimony	Total Dissolved	μg/l μg/l	NA 17	NA < 0.5	NA < 0.5	NA NA	NA < 0.5
Antimony	Total	μg/l	NA	NA	NA	NA	NA
Arsenic	Dissolved	µg/l	17	< 0.31	0.71	0.28	< 0.5
Arsenic	Total	µg/l	NA	NA	NA	NA	NA
Barium Barium	Dissolved Total	μg/l μg/l	6 11	4 5.1	4.8	4.48 7.98	4.55 8.15
Beryllium	Dissolved	μg/l	6	< 0.2	< 0.2	NA	< 0.2
Beryllium	Total	µg/l	11	< 0.2	< 0.2	NA	< 0.2
Boron	Dissolved	µg/l	6	< 100	< 100	NA	< 100
Boron Cadmium	Total Dissolved	μg/l μg/l	11 17	< 50 < 0.2	< 50 < 0.2	NA NA	< 50 < 0.2
Cadmium	Total	μg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	17	8.9	21.1	12.1	11.3
Chromium	Dissolved	µg/l	17	1.7	5.77	2.82	2.45
Chromium Cobalt	Total Dissolved	μg/l μg/l	NA 17	NA < 0.2	NA < 0.2	NA NA	NA < 0.2
Cobalt	Total	μg/l	NA	NA	NA	NA	NA
Copper	Dissolved	µg/l	17	< 0.5	2.7	0.81	0.79
Copper	Total	µg/l	NA	NA	NA	NA	NA
Iron Iron	Dissolved Total	μg/l μg/l	17 NA	< 50 NA	< 50 NA	NA NA	< 50 NA
Lead	Dissolved	μg/l	6	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	11	< 0.5	< 0.5	NA	< 0.5
Magnesium	Total	mg/l	17	3.3	3.7	3.52	3.5
Manganese Manganese	Dissolved Total	μg/l μg/l	17 NA	< 0.5 NA	22.4 NA	4.19 NA	3.60 NA
Manganese	Total	ng/l	17	< 0.5	0.77	0.30	< 0.5
Methyl Mercury	Total	ng/l	NA	NA	NA	NA	NA
Molybdenum	Dissolved	µg/l	17	0.29	2.2	0.49	0.35
Molybdenum Nickel	Total Dissolved	µg/l	NA 17	NA < 0.5	NA 0.85	NA 0.34	NA < 0.5
Nickel	Total	μg/l μg/l	NA	< 0.5	0.85 NA	0.34 NA	< 0.5 NA
Palladium	Total	µg/l	NA	NA	NA	NA	NA
Platinum	Total	µg/l	NA	NA	NA	NA	NA
Potassium Selenium	Total Dissolved	mg/l	17 17	0.651 < 1	0.98	0.81 NA	0.81
Selenium	Total	μg/l μg/l	NA	< 1 NA	< 1 NA	NA	< 1 NA
Silver	Dissolved	µg/l	11	< 0.2	< 0.2	NA	< 0.2
Silver	Total	µg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	17	2.5	3	2.72	2.7
Strontium Thallium	Total Dissolved	μg/l μg/l	NA 6	NA < 0.02	NA < 0.2	NA NA	NA 0.11
Thallium	Total	μg/l	11	< 0.017	< 0.2	NA	< 0.2
Titanium	Total	µg/l	NA	NA	NA	NA	NA
Vanadium	Dissolved	µg/l	11	< 5	< 5	NA 2.29	< 5
Zinc Zinc	Dissolved Total	μg/l μg/l	17 NA	< 6 NA	8.4 NA	3.28 NA	< 6 NA
NA No data available	10101	P3/1					

(1) Field duplicates not included in count of samples.

			/ Data for MV .2-2015	V-15			
Parameter	Fraction	Units	# of Samples ⁽¹⁾ Parameters	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA NA	mg/l	16 NA	55.6 NA	87.9 NA	75.4 NA	76.2
Biochemical Oxygen Demand (5-day) Carbon, dissolved organic	NA	mg/l mg/l	10	3.5	18.7	15.2	NA 16.1
Carbon, total organic	NA	mg/l	16	3.8	21.8	16.6	16.1
Chemical Oxygen Demand	NA	mg/l	10	36.5	70.8	47.5	46.3
Chloride	NA	mg/l	16	< 0.5	< 1	0.42	0.58
Cyanide	NA	mg/l	NA	NA	NA 2.51	NA	NA
Dissolved oxygen Fluoride	NA NA	mg/l mg/l	16 16	0.01 < 0.1	2.51 < 0.1	0.79 NA	0.48 < 0.1
Hardness, as CaCO3	NA	mg/l	16	59	74.8	65.6	64.7
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	16	< 0.1	< 0.1	NA	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	16	< 0.1	3.5	2.91	3.1
рН	NA	pH units	22	5.88	6.7	6.18	6.11
Phosphorus, total, as P	NA	mg/l	NA	NA	NA	NA	NA
Redox (oxidation potential) Solids, total dissolved	NA NA	mV	16 16	32 131	543 215	240 151	229 145
Specific Conductance @ 25 °C	NA	mg/l µmhos/cm	16	127.3	189.3	161	145
Sulfate, as SO4	NA	mg/l	16	< 1	< 2	0.77	< 1
Temperature	NA	deg C	16	4.62	11.08	7.93	7.61
Turbidity	NA	NTU	16	0	7.9	2.07	1.55
	T - · · ·	1	letals				
Aluminum	Dissolved	µg/l	16	< 20	66.1	38.5	39.3
Aluminum Antimony	Total Dissolved	μg/l μg/l	NA 16	NA < 0.5	NA < 0.5	NA NA	NA < 0.5
Antimony	Total	μg/l	NA	NA	NA	NA	NA
Arsenic	Dissolved	µg/l	16	< 0.5	0.97	0.60	0.59
Arsenic	Total	µg/l	NA	NA	NA	NA	NA
Barium	Dissolved	µg/l	6	27.7	33.7	29.7	28.4
Barium	Total	µg/l	10	29.9	58.1	41.2	39.7
Beryllium Beryllium	Dissolved Total	μg/l μg/l	6 10	< 0.2	< 0.2	NA NA	< 0.2 < 0.2
Boron	Dissolved	μg/l	6	< 100	< 100	NA	< 100
Boron	Total	µg/l	10	< 50	< 50	NA	< 50
Cadmium	Dissolved	µg/l	16	< 0.2	< 0.2	NA	< 0.2
Cadmium	Total	µg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	16 16	13.7 < 1	17.9 1.6	15.2	15.0
Chromium Chromium	Dissolved Total	μg/l μg/l	NA	< 1 NA	NA	0.57 NA	< 1 NA
Cobalt	Dissolved	μg/l	16	1.1	3.2	1.87	1.6
Cobalt	Total	µg/l	NA	NA	NA	NA	NA
Copper	Dissolved	µg/l	16	< 0.5	0.87	0.44	< 0.5
Copper	Total	µg/l	NA	NA	NA	NA	NA
Iron	Dissolved	µg/l	16	3360 NA	10700 NA	7201	6660 NA
Iron Lead	Total Dissolved	μg/l μg/l	NA 6	< 0.5	< 0.5	NA NA	< 0.5
Lead	Total	μg/l	10	< 0.5	< 0.5	NA	< 0.5
Magnesium	Total	mg/l	16	6	7.5	6.71	6.65
Manganese	Dissolved	µg/l	16	229	656	358	320
Manganese	Total	µg/l	NA 10	NA 1 0 F	NA 1.22	NA	NA
Mercury Methyl Mercury	Total Total	ng/l	16 NA	< 0.5 NA	1.23 NA	0.39 NA	< 0.5 NA
Methyl Mercury Molybdenum	Dissolved	ng/l µg/l	16	< 0.2	0.35	0.16	< 0.3
Molybdenum	Total	μg/l	NA	NA	NA	NA	NA
Nickel	Dissolved	µg/l	16	0.66	1.9	1.17	1.2
Nickel	Total	µg/l	NA	NA	NA	NA	NA
Palladium	Total	µg/l	NA	NA	NA	NA	NA
Platinum	Total Total	µg/l	NA 16	NA 0.512	NA 1.1	NA 0.71	NA 0.70
Potassium Selenium	Dissolved	mg/l µg/l	16	0.512	< 1	0.71 NA	0.70
Selenium	Total	μg/l	NA	NA	NA	NA	NA
Silver	Dissolved	µg/l	10	< 0.2	< 0.2	NA	< 0.2
Silver	Total	µg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	16	2.7	3.7	3.11	3.05
Strontium	Total	µg/l	NA	NA (0.02	NA	NA	NA
Thallium Thallium	Dissolved	µg/l	6	< 0.02 < 0.017	< 0.2	NA	0.11
Thallium Titanium	Total Total	μg/l μg/l	10 NA	< 0.017 NA	< 0.2 NA	NA NA	< 0.2 NA
Vanadium	Dissolved	μg/l	10	< 5	< 5	NA	< 5
Zinc	Dissolved	µg/l	16	< 6	8.9	4.48	< 6
Zinc	Total	µg/l	NA	NA	NA	NA	NA

(1) Field duplicates not included in count of samples.

	١		/ Data for MV .2-2015	V-16			
Parameter	Fraction	Units	# of Samples ⁽¹⁾ Parameters	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA NA	mg/l mg/l	17 NA	42.5 NA	86.3 NA	50.7 NA	46.3 NA
Biochemical Oxygen Demand (5-day) Carbon, dissolved organic	NA	mg/l	11	1.1	3.6	2.24	2.0
Carbon, total organic	NA	mg/l	17	< 1	3.2	1.74	1.6
Chemical Oxygen Demand	NA	mg/l	11	< 10	15.5	6.66	< 10
Chloride	NA	mg/l	17	< 0.5	1.14	0.52	< 1
Cyanide	NA	mg/l	NA 17	NA 1.61	NA 4.31	NA 2.40	NA 3.52
Dissolved oxygen Fluoride	NA NA	mg/l mg/l	17	< 0.1	< 0.1	3.40 NA	< 0.1
Hardness, as CaCO3	NA	mg/l	17	42.7	68.4	50.2	47.4
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	17	< 0.1	0.22	0.13	0.14
Nitrogen, ammonia, as N	NA	mg/l	17	< 0.05	0.1	0.05	< 0.1
pH Dheamhanna total as D	NA NA	pH units	23 NA	6.46 NA	7.2 NA	6.81 NA	6.81 NA
Phosphorus, total, as P Redox (oxidation potential)	NA	mg/l mV	17	150	562	399	409
Solids, total dissolved	NA	mg/l	17	67	204	96.8	94.0
Specific Conductance @ 25 °C	NA	µmhos/cm	17	67.8	167.3	103	100
Sulfate, as SO4	NA	mg/l	17	6.9	10.7	8.24	8.1
Temperature Turbidity	NA NA	deg C NTU	17 17	4.3 0	10.38 7.9	7.53 2.42	7.46
	NA NA		17 letals	0	7.9	2.42	1.9
Aluminum	Dissolved	µg/l	17	< 10	863	59.3	< 20
Aluminum	Total	µg/l	NA	NA	NA	NA	NA
Antimony	Dissolved	µg/l	17	< 0.5	< 0.5	NA	< 0.5
Antimony	Total	µg/l	NA	NA	NA	NA	NA
Arsenic	Dissolved	µg/l	17 NA	< 0.31 NA	0.59 NA	0.26 NA	< 0.5 NA
Arsenic Barium	Total Dissolved	μg/l μg/l	6	3	3.5	3.28	3.3
Barium	Total	µg/l	11	4.3	18.6	9.12	6.9
Beryllium	Dissolved	µg/l	6	< 0.2	< 0.2	NA	< 0.2
Beryllium	Total	µg/l	11	< 0.2	< 0.2	NA	< 0.2
Boron	Dissolved	µg/l	6 11	< 100 < 50	< 100 < 50	NA NA	< 100 < 50
Boron Cadmium	Total Dissolved	μg/l μg/l	11	< 0.2	< 0.2	NA	< 0.2
Cadmium	Total	µg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	17	8.5	14.3	10.0	9.4
Chromium	Dissolved	µg/l	17	< 1	1.4	0.62	< 1
Chromium Cobalt	Total Dissolved	µg/l	NA 17	NA < 0.2	NA 1.32	NA 0.33	NA < 0.2
Cobalt	Total	μg/l μg/l	NA	< 0.2 NA	NA	NA	< 0.2 NA
Copper	Dissolved	µg/l	17	< 0.5	2.8	1.73	1.8
Copper	Total	µg/l	NA	NA	NA	NA	NA
Iron	Dissolved	µg/l	17	< 50	369	45.5	< 50
Iron	Total Dissolved	µg/l	NA 6	NA < 0.5	NA < 0.5	NA NA	NA < 0.5
Lead Lead	Total	μg/l μg/l	11	< 0.5	< 0.5	NA	< 0.5
Magnesium	Total	mg/l	17	5.2	7.94	6.09	5.8
Manganese	Dissolved	µg/l	17	< 0.5	339	39.1	1.1
Manganese	Total	µg/l	NA 17	NA	NA 1.2	NA 0.40	NA
Mercury Methyl Mercury	Total Total	ng/l ng/l	17 NA	< 0.5 NA	1.3 NA	0.49 NA	< 0.5 NA
Molybdenum	Dissolved	µg/l	17	0.3	15	2.68	0.74
Molybdenum	Total	μg/l	NA	NA	NA	NA	NA
Nickel	Dissolved	µg/l	17	< 0.5	4	1.85	1.8
Nickel	Total	µg/l	NA	NA	NA	NA	NA
Palladium Platinum	Total Total	μg/l μg/l	NA NA	NA NA	NA NA	NA NA	NA NA
Potassium	Total	mg/l	17	0.99	1.6	1.21	1.2
Selenium	Dissolved	µg/l	17	< 1	< 1	NA	< 1
Selenium	Total	µg/l	NA	NA	NA	NA	NA
Silver	Dissolved	µg/l	11	< 0.2	< 0.2	NA	< 0.2
Silver Sodium	Total Total	µg/l	NA 17	NA 3.2	NA 11.9	NA 4.71	NA 3.7
Strontium	Total	mg/l µg/l	NA	3.2 NA	NA	4.71 NA	3.7 NA
Thallium	Dissolved	μg/l	6	< 0.02	< 0.2	NA	0.11
Thallium	Total	µg/l	11	< 0.017	0.22	0.10	< 0.2
Titanium	Total	µg/l	NA	NA	NA	NA	NA
Vanadium	Dissolved	µg/l	11	< 5	< 5	NA	< 5
Zinc Zinc	Dissolved Total	μg/l μg/l	17 NA	< 6 NA	< 6 NA	NA NA	< 6 NA
NA No data available	10101	P3/1					

(1) Field duplicates not included in count of samples.

	١		/ Data for MV	V-17			
Parameter	Fraction	Units	2-2015 # of Samples ⁽¹⁾ Parameters	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA NA	mg/l mg/l	17 NA	118 NA	166 NA	139 NA	142 NA
Biochemical Oxygen Demand (5-day) Carbon, dissolved organic	NA	mg/l	11	13.8	45.8	30.9	30.8
Carbon, total organic	NA	mg/l	17	14.1	42.7	31.1	31.9
Chemical Oxygen Demand	NA	mg/l	11	62.3	433	126	97.8
Chloride	NA	mg/l	17	0.6	1.64	0.76	< 1
Cyanide	NA	mg/l	NA	NA	NA	NA	NA
Dissolved oxygen Fluoride	NA NA	mg/l mg/l	17 17	< 0.1 < 0.1	4.71 0.14	0.98 0.07	< 0.1 < 0.1
Hardness, as CaCO3	NA	mg/l	17	110	141	126	125
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	17	< 0.1	0.12	0.05	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	17	0.56	1.4	1.12	1.14
рН	NA	pH units	23	6.33	8.1	6.65	6.58
Phosphorus, total, as P	NA	mg/l	NA	NA	NA	NA	NA
Redox (oxidation potential)	NA NA	mV	17 17	-56 195	193 350	77.8	74
Solids, total dissolved Specific Conductance @ 25 °C	NA	mg/l µmhos/cm	17	238.9	350	282 319	298 330
Sulfate, as SO4	NA	mg/l	17	< 1	8.86	1.75	< 2
Temperature	NA	deg C	17	3.05	13.71	8.76	7.93
Turbidity	NA	NTU	17	0	24.9	4.64	2.10
	T = · · ·	1	letals				
Aluminum	Dissolved	µg/l	17	45.2	227	108	101
Aluminum Antimony	Total Dissolved	μg/l μg/l	NA 17	NA < 0.5	NA < 0.5	NA NA	NA < 0.5
Antimony	Total	μg/l	NA	NA	NA	NA	< 0.5
Arsenic	Dissolved	µg/l	17	< 0.5	1.1	0.81	0.89
Arsenic	Total	µg/l	NA	NA	NA	NA	NA
Barium	Dissolved	µg/l	6	41.2	47.5	44.0	42.9
Barium	Total	µg/l	11	50.3	67.2	57.1	56.7
Beryllium Beryllium	Dissolved Total	μg/l μg/l	6 11	< 0.2	< 0.2	NA NA	< 0.2 < 0.2
Boron	Dissolved	μg/l	6	< 100	< 100	NA	< 100
Boron	Total	µg/l	11	< 50	55.2	31.3	< 50
Cadmium	Dissolved	µg/l	17	< 0.2	< 0.2	NA	< 0.2
Cadmium	Total	µg/l	NA	NA	NA	NA	NA
Calcium Chromium	Total	mg/l	17 17	20.1 2.8	26 6.1	22.9	22.4 4.7
Chromium	Dissolved Total	μg/l μg/l	NA	Z.8 NA	NA	4.66 NA	4.7 NA
Cobalt	Dissolved	μg/l	17	1.1	5.47	2.66	2.45
Cobalt	Total	µg/l	NA	NA	NA	NA	NA
Copper	Dissolved	µg/l	17	1.4	49	6.93	3.3
Copper	Total	µg/l	NA	NA	NA	NA	NA
Iron	Dissolved Total	µg/l	17 NA	10400 NA	36500 NA	22688 NA	25200 NA
Iron Lead	Dissolved	μg/l μg/l	6 NA	< 0.5	< 0.5	NA	< 0.5
Lead	Total	μg/l	11	< 0.5	3.43	0.66	< 0.5
Magnesium	Total	mg/l	17	13.5	20.1	16.7	17.2
Manganese	Dissolved	µg/l	17	964	1350	1144	1150
Manganese	Total	µg/l	NA 17	NA 105	NA	NA 1.0C	NA
Mercury	Total Total	ng/l	17 NA	< 0.5 NA	2.3 NA	1.06 NA	0.92
Methyl Mercury Molybdenum	Dissolved	ng/l µg/l	17	0.79	3.45	1.81	NA 1.45
Molybdenum	Total	μg/l	NA	NA	NA	NA	NA
Nickel	Dissolved	μg/l	17	1.4	19.4	6.82	6.03
Nickel	Total	µg/l	NA	NA	NA	NA	NA
Palladium	Total	µg/l	NA	NA	NA	NA	NA
Platinum	Total Total	µg/l	NA 17	NA 0.621	NA 1.7	NA 1 11	NA 1.0
Potassium Selenium	Dissolved	mg/l µg/l	17	< 1	< 1	1.11 NA	1.0
Selenium	Total	μg/l	NA	NA	NA	NA	NA
Silver	Dissolved	µg/l	11	< 0.2	< 0.2	NA	< 0.2
Silver	Total	µg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	17	7.21	16.2	10.9	10.3
Strontium Thallium	Total	µg/l	NA	NA	NA	NA	NA
Thallium Thallium	Dissolved Total	μg/l μg/l	6 11	< 0.02	< 0.2 0.25	NA 0.11	< 0.02 < 0.2
Titanium	Total	μg/l	NA	< 0.2 NA	NA	NA	< 0.2 NA
Vanadium	Dissolved	μg/l	11	8	13.1	10.4	10.4
Zinc	Dissolved	µg/l	17	< 6	12.9	4.68	< 6
Zinc	Total	µg/l	NA	NA	NA	NA	NA

(1) Field duplicates not included in count of samples.

	١		/ Data for MV .2-2015	V-18			
Parameter	Fraction	Units	# of Samples ⁽¹⁾ Parameters	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA
Alkalinity, total, as CaCO3	NA	mg/l	17	84.5	142	119	122
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA
Carbon, dissolved organic	NA	mg/l	11	5.3	14	8.12	7.5
Carbon, total organic	NA	mg/l	17	4.1	13.3	6.65	6.8
Chemical Oxygen Demand Chloride	NA NA	mg/l mg/l	11 17	16.6 0.78	82.1 74.9	30.9 7.39	25.4 1.4
Cyanide	NA	mg/l	NA	NA	NA	NA	NA
Dissolved oxygen	NA	mg/l	17	0.75	10.68	7.34	7.44
Fluoride	NA	mg/l	17	< 0.1	0.14	0.10	0.11
Hardness, as CaCO3	NA	mg/l	17	110	223	140	134
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	17	< 0.1	1.19	0.18	0.11
Nitrogen, ammonia, as N	NA	mg/l	17	< 0.05	0.16	0.06	0.10
pH Phosphorus, total, as P	NA NA	pH units mg/l	23 NA	6.6 NA	8.41 NA	7.27 NA	7.21 NA
Redox (oxidation potential)	NA	mV	17	177	603	362	323
Solids, total dissolved	NA	mg/l	17	156	239	190	190
Specific Conductance @ 25 °C	NA	µmhos/cm	17	0	494.2	254	250
Sulfate, as SO4	NA	mg/l	17	8.8	30.2	14.1	13.6
Temperature	NA	deg C	17	3.72	24.55	13.5	11.3
Turbidity	NA	NTU	17	5.1	1111	112	45
	D ¹	1	letals		A= =		
Aluminum	Dissolved	µg/l	17	11.7	45.6	17.1	< 20
Aluminum Antimony	Total Dissolved	μg/l μg/l	NA 17	NA < 0.5	NA 0.54	NA 0.27	NA < 0.5
Antimony	Total	μg/l	NA	NA	NA	NA	NA
Arsenic	Dissolved	μg/l	17	< 0.5	< 0.65	0.28	< 0.5
Arsenic	Total	µg/l	NA	NA	NA	NA	NA
Barium	Dissolved	µg/l	6	20.2	31.9	24.6	23.3
Barium	Total	µg/l	11	38.4	247	69.7	46.8
Beryllium	Dissolved	µg/l	6	< 0.2	< 0.2	NA	< 0.2
Beryllium	Total	µg/l	11	< 0.2	0.57	0.14	< 0.2
Boron Boron	Dissolved Total	μg/l μg/l	6 11	< 100 < 50	< 100 < 50	NA NA	< 100 < 50
Cadmium	Dissolved	μg/l	17	< 0.2	< 0.2	NA	< 0.2
Cadmium	Total	µg/l	NA	NA	NA	NA	NA
Calcium	Total	mg/l	17	25.1	47.1	31.4	30.7
Chromium	Dissolved	µg/l	17	< 1	2.5	0.64	< 1
Chromium	Total	µg/l	NA	NA	NA	NA	NA
Cobalt	Dissolved	µg/l	17	< 0.2	0.79	0.26	< 0.2
Cobalt	Total Dissolved	µg/l	NA 17	NA 1.4	NA 6.5	NA 3.38	NA 3.3
Copper Copper	Total	μg/l μg/l	NA	NA	NA	5.56 NA	NA
Iron	Dissolved	µg/l	17	< 50	112	35.4	< 50
Iron	Total	µg/l	NA	NA	NA	NA	NA
Lead	Dissolved	µg/l	6	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	11	< 0.5	8.09	1.31	0.65
Magnesium	Total	mg/l	17	11.2	25.6	14.9	14.1
Manganese Manganese	Dissolved Total	μg/l μg/l	17 NA	22.6 NA	422 NA	177 NA	137 NA
Manganese	Total	ng/l	17	1.1	18.2	2.93	1.8
Methyl Mercury	Total	ng/l	NA	NA	NA	NA	NA
Molybdenum	Dissolved	µg/l	17	4	9.1	6.34	6.8
Molybdenum	Total	µg/l	NA	NA	NA	NA	NA
Nickel	Dissolved	µg/l	17	< 0.5	3.82	1.60	1.2
Nickel Dalladium	Total	µg/l	NA	NA	NA	NA	NA
Palladium Platinum	Total Total	μg/l μg/l	NA NA	NA NA	NA NA	NA NA	NA NA
Potassium	Total	mg/l	17	1.8	6.35	2.46	2.2
Selenium	Dissolved	µg/l	17	< 1	2.73	0.63	< 1
Selenium	Total	µg/l	NA	NA	NA	NA	NA
Silver	Dissolved	µg/l	11	< 0.2	< 0.2	NA	< 0.2
Silver	Total	µg/l	NA	NA	NA	NA	NA
Sodium	Total	mg/l	17	7.5	45.5	13.7	9.5
Strontium	Total	µg/l	NA	NA	NA (0.2	NA	NA 0.11
Thallium Thallium	Dissolved Total	µg/l	6 11	< 0.02	< 0.2 0.44	0.14	0.11 < 0.2
Titanium	Total	μg/l μg/l	NA	< 0.2 NA	0.44 NA	0.14 NA	< 0.2 NA
Vanadium	Dissolved	μg/l	11	< 5	< 5	NA	< 5
Zinc	Dissolved	µg/l	17	< 6	8.05	3.40	< 6
Zinc	Total	µg/l	NA	NA	NA	NA	NA

(1) Field duplicates not included in count of samples.

	W		Data for MW· 95-2015	-05-02			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	General mg/l	Parameters 5	36	75	48.5	39.8
Alkalinity, carbonate, as CaCO3	NA	mg/l	5	< 10	< 10	NA	< 10
Alkalinity, total, as CaCO3	NA	mg/l	21	27.9	88.3	48.0	37.6
Biochemical Oxygen Demand (5-day)	NA	mg/l	5	< 2.4	< 3	NA	< 2.4
Carbon, dissolved organic	NA	mg/l	13	1.7	5.4	2.59	2.2
Carbon, total organic	NA	mg/l	21 16	1.4	8	2.63	2.2
Chemical Oxygen Demand Chloride	NA NA	mg/l mg/l	21	< 10 < 0.5	43.2 1.3	12.1 0.52	< 10 < 0.5
Cyanide	NA	mg/l	8	< 0.01	< 0.02	NA	< 0.02
Dissolved oxygen	NA	mg/l	20	2.91	12.11	8.94	9.97
Fluoride	NA	mg/l	21	< 0.1	0.21	0.06	< 0.1
Hardness, as CaCO3	NA	mg/l	21	31.1	89.6	53.2	44.0
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	21	0.12	1.42	0.45	0.37
Nitrogen, ammonia, as N	NA	mg/l	21	< 0.05	0.25	0.07	< 0.1
pH Description total as D	NA	pH units	33 8	6.24	10.14 0.84	7.12 0.16	7.0
Phosphorus, total, as P Redox (oxidation potential)	NA NA	mg/l mV	21	< 0.1 11.9	663	392	< 0.1 433
Solids, total dissolved	NA	mg/l	18	52	6080	431	88
Specific Conductance @ 25 °C	NA	µmhos/cm	21	39.5	512	122	76
Sulfate, as SO4	NA	mg/l	21	5.7	23	10.0	7.2
Temperature	NA	deg C	21	2.98	14.64	8.86	10.29
Turbidity	NA	NTU	19	0	570	32.9	1.1
		1	letals	1 10	100		2.2
Aluminum	Dissolved	μg/l	21	< 10	< 100	14.1	< 20
Aluminum Antimony	Total Dissolved	µg/l	8 13	31.6 < 0.5	22400 < 0.5	3033 NA	144 < 0.5
Antimony	Total	μg/l μg/l	8	< 0.5	< 3	NA	< 0.5
Arsenic	Dissolved	µg/l	17	< 0.5	2.1	0.49	< 0.5
Arsenic	Total	µg/l	8	< 0.5	4.41	1.43	< 1
Barium	Dissolved	µg/l	6	2.1	5.1	3.35	3.26
Barium	Total	µg/l	16	2.4	102	12.3	7.4
Beryllium	Dissolved	µg/l	5	< 0.2	< 0.2	NA	< 0.2
Beryllium	Total	µg/l	16	< 0.2	0.48	0.12	< 0.2
Boron Boron	Dissolved Total	µg/l	6 16	< 50 < 35	< 100 < 50	NA NA	< 100 < 50
Cadmium	Dissolved	μg/l μg/l	21	< 0.2	0.2	0.10	< 0.2
Cadmium	Total	μg/l	8	< 0.2	0.56	0.16	< 0.2
Calcium	Total	mg/l	21	6.8	30.1	13.1	10.2
Chromium	Dissolved	µg/l	21	< 1	7	1.05	< 1
Chromium	Total	µg/l	8	< 1	29.2	4.66	1.20
Cobalt	Dissolved	µg/l	14	< 0.2	4.9	0.76	< 0.2
Cobalt	Total	µg/l	8	< 0.2	13.7	2.09	0.71
Copper	Dissolved Total	µg/l	21 8	0.56	8.2 95.1	3.14 16.3	1.87 2.87
Copper Iron	Dissolved	μg/l μg/l	° 17	< 50	638	76.9	< 50
Iron	Total	μ <u>g</u> /l	8	54.3	27400	3685	167
Lead	Dissolved	µg/l	6	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	16	< 0.5	7.24	0.82	< 0.5
Magnesium	Total	mg/l	21	2.3	11.4	4.97	4.4
Manganese	Dissolved	µg/l	18	< 0.5	869	100	1.95
Manganese	Total	µg/l	8	3.95	698	114	< 30
Mercury Methyl Mercury	Total Total	ng/l ng/l	21 8	< 0.5 < 0.025	7 < 0.146	1.12 0.052	0.74 < 0.1
Molybdenum	Dissolved	µg/l	21	< 0.2	13.1	1.02	< 0.1
Molybdenum	Total	μg/l	8	< 0.2	16.1	2.69	0.41
Nickel	Dissolved	µg/l	21	1.1	10.3	2.54	1.87
Nickel	Total	µg/l	8	1.68	47	8.06	2.5
Palladium	Total	µg/l	8	< 0.1	< 25	NA	< 0.5
Platinum	Total	µg/l	8	< 0.01	< 25	NA 1.42	< 0.5
Potassium	Total	mg/l	21	0.85	4.7	1.42	1.1
Selenium Selenium	Dissolved Total	μg/l μg/l	21 8	< 0.2 0.33	< 2 < 2	NA 0.60	< 1 < 1
Silver	Dissolved	μg/l	16	< 0.2	< 1	NA	< 0.2
Silver	Total	µg/l	8	< 0.2	< 2	NA	< 0.2
Sodium	Total	mg/l	21	2.1	11.9	3.68	2.43
Strontium	Total	µg/l	8	27.3	191	80.7	64.2
Thallium	Dissolved	µg/l	5	< 0.02	< 0.2	NA	< 0.02
Thallium	Total	µg/l	16	< 0.017	< 2	NA	< 0.2
Titanium	Total	µg/l	8	< 10	930	129	< 20
Vanadium Zinc	Dissolved Dissolved	µg/l	8 21	< 5 < 6	< 25 < 25	NA 4.39	< 5 < 6
Zinc	Total	μg/l μg/l	8	< 6	60.6	4.39	< 6
NA No data available	iotai	P3/1	U		00.0	±±./	

	W		Data for MW- 05-2015	-05-08			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	General mg/l	Parameters 6	51.7	55.2	53.7	54.1
Alkalinity, carbonate, as CaCO3	NA	mg/l	6	< 10	< 10	NA	< 10
Alkalinity, total, as CaCO3	NA	mg/l	27	51.6	107	57.4	54.3
Biochemical Oxygen Demand (5-day)	NA	mg/l	6	< 2.4	< 3	NA	< 2.4
Carbon, dissolved organic Carbon, total organic	NA NA	mg/l mg/l	18 27	< 1	3.4 3.8	1.61 1.29	1.5 1.2
Chemical Oxygen Demand	NA	mg/l	21	8.8	18	6.83	< 10
Chloride	NA	mg/l	27	< 0.5	1.5	0.67	0.63
Cyanide	NA	mg/l	9	< 0.01	0.037	0.011	< 0.02
Dissolved oxygen	NA	mg/l	26	< 0.1	6.65	1.79	1.02
Fluoride Hardness, as CaCO3	NA NA	mg/l	27 27	< 0.1 54.5	0.19 68.8	0.07 58.3	< 0.1 57.5
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l mg/l	27	0.14	0.9	0.31	0.3
Nitrogen, ammonia, as N	NA	mg/l	27	< 0.05	0.42	0.07	< 0.1
рН	NA	pH units	41	6.6	8.54	7.37	7.3
Phosphorus, total, as P	NA	mg/l	9	< 0.1	0.17	0.08	< 0.1
Redox (oxidation potential)	NA	mV	27	-196.5	521	331	368
Solids, total dissolved Specific Conductance @ 25 °C	NA NA	mg/l µmhos/cm	24 27	85 81.8	142 212	104 125	103 123
Sulfate, as SO4	NA	mg/l	27	8.7	212	9.74	9.2
Temperature	NA	deg C	27	3.01	13.2	7.87	8.21
Turbidity	NA	NTU	25	0	487	27.4	0.6
	T	N	letals	T	T	r	Γ
Aluminum	Dissolved	µg/l	27	< 10	214	25.6	< 20
Aluminum	Total	µg/l	9	136	5140	1488	1040
Antimony Antimony	Dissolved Total	μg/l μg/l	18 9	< 0.5 < 0.5	< 0.5	NA NA	< 0.5 < 0.5
Arsenic	Dissolved	μg/l	23	< 0.31	< 1	0.29	< 0.5
Arsenic	Total	µg/l	9	< 0.5	4.4	1.0	< 1
Barium	Dissolved	µg/l	6	10	11.1	10.7	10.9
Barium	Total	µg/l	21	11.4	44.1	17.6	13.6
Beryllium	Dissolved	µg/l	6 21	< 0.2	< 0.2 < 0.2	NA	< 0.2 < 0.2
Beryllium Boron	Total Dissolved	μg/l μg/l	8	< 0.2	< 100	NA NA	< 100
Boron	Total	μg/l	21	< 35	< 50	27.8	< 50
Cadmium	Dissolved	µg/l	27	< 0.03	< 0.2	NA	< 0.2
Cadmium	Total	µg/l	9	0.08	0.28	0.11	< 0.2
Calcium	Total	mg/l	27	11.2	14.9	12.2	11.9
Chromium Chromium	Dissolved Total	μg/l μg/l	27 9	< 1 < 1	2.5 6.72	0.81	< 1 3.17
Cobalt	Dissolved	μg/l	18	< 0.2	< 0.2	NA	< 0.2
Cobalt	Total	μg/l	9	< 0.2	3.17	0.88	< 1
Copper	Dissolved	µg/l	27	0.49	6.4	0.69	< 0.7
Copper	Total	µg/l	9	0.8	10	3.9	5.2
Iron	Dissolved	µg/l	23	< 50	99.5	33.1	< 50
Iron Lead	Total Dissolved	µg/l	9	113 < 0.5	4450 < 0.5	1313 NA	1600 < 0.5
Lead	Total	μg/l μg/l	21	< 0.5	1.97	0.44	< 0.5
Magnesium	Total	mg/l	27	6.33	8.23	6.79	6.70
Manganese	Dissolved	µg/l	24	26	73.4	43.3	41.1
Manganese	Total	µg/l	9	61.2	227	124	116
Mercury	Total	ng/l	27	< 0.5	5.3	0.69	< 0.5
Methyl Mercury	Total	ng/l	9 27	< 0.025 0.58	0.44 34.4	0.076	< 0.1 0.71
Molybdenum Molybdenum	Dissolved Total	μg/l μg/l	9	0.58	34.4	5.00	1.11
Nickel	Dissolved	µg/l	27	< 0.5	< 2	0.41	< 0.6
Nickel	Total	µg/l	9	0.82	11.8	3.66	3.0
Palladium	Total	µg/l	9	< 0.1	< 25	NA	< 0.5
Platinum	Total	µg/l	9	< 0.02	< 25	NA	< 0.5
Potassium Selenium	Total Dissolved	mg/l	27 27	1.1 0.4	1.82 < 2	1.33 0.54	1.30 < 1
Selenium	Total	μg/l μg/l	9	0.4	< 2	0.62	< 1
Silver	Dissolved	μg/l	21	< 0.2	< 1	NA	< 0.2
Silver	Total	μg/l	9	< 0.2	< 2	NA	< 0.2
Sodium	Total	mg/l	27	3.5	15.7	4.63	4.07
Strontium	Total	µg/l	9	32.6	47.5	36.1	35.9
Thallium Thallium	Dissolved	µg/l	6 21	< 0.02 < 0.017	< 0.2 < 2	NA 0.20	< 0.2 < 0.2
Titanium	Total Total	μg/l μg/l	9	< 0.017	130	45.7	< 0.2 52.0
Vanadium	Dissolved	μg/l	12	< 5	< 10	NA	< 5
Zinc	Dissolved	µg/l	27	< 6	< 25	4.23	< 6
ZIIIC	Dissolveu	µy/i	21	< 0	< 2J	4.23	× 0

(1) Field duplicates not included in count of samples.

	W		Data for MW- 05-2015	05-09			
Parameter	Fraction	Units	# of Samples ⁽¹⁾ Parameters	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	7	15.8	20.7	18.2	18.6
Alkalinity, carbonate, as CaCO3	NA	mg/l	7	< 10	< 10	NA	< 10
Alkalinity, total, as CaCO3	NA	mg/l	30	12.2	47	18.6	16.7
Biochemical Oxygen Demand (5-day) Carbon, dissolved organic	NA NA	mg/l mg/l	7 22	< 2.4 2.8	< 4 18.6	NA 4.72	< 2.4 4.0
Carbon, total organic	NA	mg/l	30	2.47	17.3	4.72	3.70
Chemical Oxygen Demand	NA	mg/l	24	6.9	42.6	20.7	22.0
Chloride	NA	mg/l	30	< 0.5	5.5	0.60	< 0.5
Cyanide	NA	mg/l	9	< 0.01	< 0.02	NA	< 0.02
Dissolved oxygen Fluoride	NA NA	mg/l	29 30	1.8 < 0.1	12.31 0.1	9.55 0.05	10.3 0.1
Hardness, as CaCO3	NA	mg/l mg/l	30	10.3	75.1	25.6	23.0
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	30	< 0.1	0.39	0.16	0.18
Nitrogen, ammonia, as N	NA	mg/l	30	< 0.05	0.15	0.05	< 0.1
рН	NA	pH units	45	6.11	9.2	7.02	6.86
Phosphorus, total, as P	NA	mg/l	10	< 0.1	1.75	0.37	0.18
Redox (oxidation potential) Solids, total dissolved	NA NA	mV	30 27	89 39	505 202	358 85.3	384 78
Specific Conductance @ 25 °C	NA	mg/l µmhos/cm	30	0	139	51.7	51
Sulfate, as SO4	NA	mg/l	30	2.9	19.7	8.55	8.6
Temperature	NA	deg C	30	4.2	25.09	11.5	10.6
Turbidity	NA	NTU	28	0	860	116	53.8
	T· · ·	1	letals				
Aluminum	Dissolved	µg/l	31	36.2	910 32300	273	299
Aluminum Antimony	Total Dissolved	μg/l μg/l	10 21	4200 < 0.5	< 0.5	11816 NA	6550 < 0.5
Antimony	Total	μg/l	10	< 0.5	< 3	0.66	< 0.5
Arsenic	Dissolved	µg/l	27	< 0.31	< 1	NA	< 0.5
Arsenic	Total	µg/l	10	1.82	5.84	2.84	2.38
Barium	Dissolved	µg/l	6	7.5	11.8	10.3	10.7
Barium	Total	µg/l	24	17	301	82.8	65.6
Beryllium Beryllium	Dissolved Total	μg/l μg/l	6 24	< 0.2	< 0.2 0.84	NA 0.24	< 0.2 < 0.2
Boron	Dissolved	μg/l	8	< 50	< 100	NA	< 100
Boron	Total	µg/l	24	40.2	< 50	28.3	< 50
Cadmium	Dissolved	µg/l	31	< 0.03	0.25	0.11	< 0.2
Cadmium	Total	µg/l	10	< 0.2	0.37	0.18	< 0.2
Calcium	Total	mg/l	30 31	2.4	12.6	5.37	4.82
Chromium Chromium	Dissolved Total	μg/l μg/l	10	< <u>1</u> 8.5	2.86 55	1.13 25.9	1.15 20.6
Cobalt	Dissolved	μg/l	21	< 0.2	0.73	0.21	0.22
Cobalt	Total	µg/l	10	2.83	23	6.98	4.88
Copper	Dissolved	µg/l	31	1.3	18.2	4.44	3.3
Copper	Total	µg/l	10	13.9	99.6	42.1	36.0
Iron	Dissolved	µg/l	27 10	< 50 5210	685 44400	291 14768	317 8600
Iron Lead	Total Dissolved	μg/l μg/l	6	< 0.5	< 0.5	14768 NA	< 0.5
Lead	Total	μg/l	24	< 0.5	11.5	3.07	1.9
Magnesium	Total	mg/l	30	0.99	10.6	2.96	2.43
Manganese	Dissolved	µg/l	28	4.8	42.8	15.0	12.7
Manganese	Total	µg/l	10	194	1770	517	330
Mercury Methyl Mercury	Total Total	ng/l	30 9	4.3 0.043	87.6 0.52	14.8 0.134	7.74 < 0.1
Molybdenum	Dissolved	ng/l µg/l	31	0.043	8.8	2.28	1.90
Molybdenum	Total	μg/l	10	1	12.4	5.80	4.81
Nickel	Dissolved	µg/l	31	0.8	3.14	1.48	1.34
Nickel	Total	µg/l	10	8.2	45.2	19.0	11.2
Palladium	Total	µg/l	10	< 0.1	< 25	NA	< 0.5
Platinum	Total	µg/l	10 30	< 0.02 0.64	< 25	NA 1.05	< 0.5
Potassium Selenium	Total Dissolved	μg/l μg/l	30	< 0.2	6.87 < 2	1.95 NA	1.70 < 1
Selenium	Total	μg/l	10	0.59	< 2	0.61	< 1
Silver	Dissolved	µg/l	25	< 0.2	< 1	NA	< 0.2
Silver	Total	µg/l	10	< 0.2	< 1	NA	< 0.2
Sodium	Total	µg/l	30	2.6	12	6.77	6.5
Strontium Thallium	Total	µg/l	10	31.1	98.1	47.1	38.1
Thallium Thallium	Dissolved Total	μg/l μg/l	6 24	< 0.02 < 0.017	< 0.2 < 2	NA 0.18	0.11 < 0.2
Titanium	Total	μg/l	10	175	1300	540	390
Vanadium	Dissolved	μg/l	15	< 5	< 10	NA	< 5
Zinc	Dissolved	µg/l	31	< 6	< 25	6.79	6.26
Zinc	Total	µg/l	10	11.8	64.5	26.9	18.9

(1) Field duplicates not included in count of samples.

			ty Data for O 06-2015	B-1			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	General mg/l	Parameters 6	28.6	98	45.2	36
Alkalinity, carbonate, as CaCO3	NA	mg/l	6	< 10	< 20	NA	< 10
Alkalinity, total, as CaCO3	NA	mg/l	10	28.6	98	44.0	36
Biochemical Oxygen Demand (5-day)	NA	mg/l	7	< 2.4	< 8	NA	3.5
Carbon, dissolved organic Carbon, total organic	NA NA	mg/l mg/l	6 10	1.3 1	2.5 1.8	1.73 1.29	1.5 1.2
Chemical Oxygen Demand	NA	mg/l	8	< 10	54.7	12.4	< 10
Chloride	NA	mg/l	10	1.1	15.7	3.46	2.39
Cyanide	NA	mg/l	8	< 0.01	< 0.02	0.01	0.01
Dissolved oxygen Fluoride	NA NA	mg/l	10 10	0.06	9.59 0.16	2.55 0.11	1.69 0.11
Hardness, as CaCO3	NA	mg/l mg/l	10	43.2	119	71.8	53.8
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	10	< 0.1	< 0.1	NA	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	10	0.06	0.2	0.07	< 0.1
рН	NA	pH units	20	6.78	10.4	9.12	9.10
Phosphorus, total, as P Redox (oxidation potential)	NA NA	mg/l mV	8	< 0.1 -47	< 0.1 409	NA 229	< 0.1 216
Solids, total dissolved	NA	mg/l	8	76	115	97.4	103
Specific Conductance @ 25 °C	NA	µmhos/cm	10	104.7	261	151	148
Sulfate, as SO4	NA	mg/l	10	18.2	37.2	26.4	25.1
Temperature	NA	deg C	10	4.9	10.93	7.49	6.98
Turbidity	NA	NTU	9 Ietals	0	193.4	37.3	19.0
Aluminum	Dissolved	µg/l	10	16.6	127	53.2	45.1
Aluminum	Total	μg/l	8	23.4	4740	1265	443
Antimony	Dissolved	µg/l	2	< 0.5	< 0.5	NA	< 0.5
Antimony	Total	µg/l	8	< 0.5	< 3	0.59	< 0.5
Arsenic	Dissolved	µg/l	7	< 0.5	1.15	0.74	0.795
Arsenic Barium	Total Dissolved	μg/l μg/l	8	0.91	2.43 3.7	1.36 1.53	1.52 0.97
Barium	Total	µg/l	8	0.75	29.9	10.9	< 10
Beryllium	Dissolved	µg/l	2	< 0.2	< 0.2	NA	< 0.2
Beryllium	Total	µg/l	8	< 0.2	0.36	0.13	< 0.2
Boron Boron	Dissolved Total	µg/l	5	< 50 < 50	< 100 < 50	NA NA	< 50 < 50
Cadmium	Dissolved	μg/l μg/l	10	< 0.2	< 0.2	NA	< 0.2
Cadmium	Total	µg/l	8	< 0.2	< 0.2	NA	< 0.2
Calcium	Total	mg/l	10	10.2	32.5	20.3	15.7
Chromium	Dissolved	µg/l	10	< 1	1.1	0.56	< 1
Chromium Cobalt	Total Dissolved	μg/l μg/l	8	< 1	9.29 < 0.2	2.78 NA	1.70 < 0.2
Cobalt	Total	μg/l	8	< 0.2	3.01	0.86	0.91
Copper	Dissolved	µg/l	10	< 0.5	2.2	0.90	0.81
Copper	Total	µg/l	8	0.96	18.8	5.96	2.55
Iron	Dissolved	µg/l	7 8	< 50	< 50	NA (122	< 50
Iron Lead	Total Dissolved	μg/l μg/l	5	< 50 < 0.5	20700 < 0.5	6122 NA	1590 < 0.5
Lead	Total	μg/l	8	< 0.5	< 2	0.42	< 0.5
Magnesium	Total	mg/l	10	2.8	9.14	5.10	4.8
Manganese	Dissolved	µg/l	8	0.83	< 10	4.11	4.9
Manganese Mercury	Total Total	μg/l ng/l	8 10	< 10 < 0.5	247 0.7	67 0.32	20 < 0.5
Methyl Mercury	Total	ng/l	8	< 0.03	< 0.1	0.02	0.08
Molybdenum	Dissolved	µg/l	10	0.62	< 5	1.64	1.74
Molybdenum	Total	µg/l	8	0.62	< 5	2.03	2.13
Nickel	Dissolved	µg/l	10	0.86	2.84	1.60	1.9
Nickel Palladium	Total Total	μg/l μg/l	8	< 2 < 0.1	20.5 < 0.5	6.64 NA	4.22 < 0.5
Platinum	Total	μg/l	8	< 0.1	< 0.5	NA	< 0.5
Potassium	Total	mg/l	10	1.2	2.38	1.67	1.67
Selenium	Dissolved	µg/l	10	< 1	< 2	NA	< 1
Selenium Cilvor	Total	µg/l	8	< 1	< 2	NA	< 1
Silver Silver	Dissolved Total	μg/l μg/l	8	< 0.2 < 0.2	< 1	NA NA	< 0.2 < 0.2
Sodium	Total	mg/l	10	3.7	12.3	8.77	8.74
Strontium	Total	µg/l	8	51.5	112	83.6	87.2
Thallium	Dissolved	µg/l	2	< 0.02	< 0.2	NA	0.11
Thallium	Total	µg/l	8	< 0.2	< 2	NA 70.2	< 0.2
Titanium Vanadium	Total Dissolved	μg/l μg/l	8 NA	< 10 NA	340 NA	79.3 NA	22 NA
Zinc	Dissolved	μg/l	10	< 6	< 25	4.84	< 6
Zinc	Total	µg/l	8	< 6	43.7	12.0	7.6

(1) Field duplicates not included in count of samples.

	Water Quality Data for OB-2 2006-2015											
Parameter	Fraction	Units	# of Samples ⁽¹⁾ Parameters	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾					
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	6	79.5	96.4	92.3	94.2					
Alkalinity, carbonate, as CaCO3	NA	mg/l	6	< 10	< 20	NA	< 10					
Alkalinity, total, as CaCO3	NA	mg/l	10	< 10	98.3	84.4	94.2					
Biochemical Oxygen Demand (5-day) Carbon, dissolved organic	NA NA	mg/l mg/l	6 6	< 2.4 1.6	4.3 3.3	1.95 2.19	< 3 2.1					
Carbon, total organic	NA	mg/l	10	1.5	2.8	1.89	1.8					
Chemical Oxygen Demand	NA	mg/l	8	< 10	22.8	10.5	< 10					
Chloride	NA	mg/l	10	< 0.5	1.1	0.61	0.66					
Cyanide Dissolved oxygen	NA NA	mg/l mg/l	8 10	< 0.01 0.03	< 0.02 2.4	NA 0.92	< 0.02 0.39					
Fluoride	NA	mg/l	10	< 0.1	0.22	0.12	0.14					
Hardness, as CaCO3	NA	mg/l	10	76.4	98.9	91.9	92.6					
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	10	< 0.1	0.18	0.06	< 0.1					
Nitrogen, ammonia, as N	NA	mg/l	10	< 0.05	< 0.1	NA	< 0.1					
pH Phosphorus, total, as P	NA NA	pH units mg/l	20 8	6.79 < 0.1	8.09 < 0.1	7.58 NA	7.60					
Redox (oxidation potential)	NA	mV	10	-148	492	121	59					
Solids, total dissolved	NA	mg/l	8	103	147	125	118					
Specific Conductance @ 25 °C	NA	µmhos/cm	10	180	301	201	187					
Sulfate, as SO4	NA	mg/l	10	4.53	10.9	8.30	8.89					
Temperature Turbidity	NA NA	deg C NTU	10 9	5.3 0	8.6 251.5	6.63 42.2	6.2 19.3					
Turblatty	NA		letals	0	231.3	42.2	19.5					
Aluminum	Dissolved	µg/l	10	< 10	< 25	NA	< 25					
Aluminum	Total	µg/l	8	< 20	132	49.1	60.6					
Antimony	Dissolved	µg/l	2	< 0.5	< 0.5	NA	< 0.5					
Antimony	Total Dissolved	µg/l	8	< 0.5	< 3	NA NA	< 0.5					
Arsenic Arsenic	Total	μg/l μg/l	8	< 0.5 < 0.5	< 2	NA	< 0.5					
Barium	Dissolved	μg/l	4	< 0.5	0.75	0.66	0.71					
Barium	Total	µg/l	8	0.77	< 10	1.76	1.35					
Beryllium	Dissolved	µg/l	2	< 0.2	< 0.2	NA	< 0.2					
Beryllium	Total Dissolved	µg/l	8	< 0.2 < 50	< 0.2 < 100	NA 50.3	< 0.2					
Boron Boron	Total	μg/l μg/l	8	< 50	93.1	40.5	83.0 < 50					
Cadmium	Dissolved	μ <u>g</u> /l	10	< 0.2	< 0.2	NA	< 0.2					
Cadmium	Total	µg/l	8	< 0.2	< 0.2	NA	< 0.2					
Calcium	Total	mg/l	10	10.8	14.9	13.7	14.0					
Chromium Chromium	Dissolved Total	μg/l μg/l	10 8	< 1	< 1 5	NA 1.06	< 1					
Cobalt	Dissolved	μg/l	4	0.25	0.49	0.37	0.36					
Cobalt	Total	μ <u>g</u> /l	8	0.35	3.18	1.22	0.96					
Copper	Dissolved	µg/l	10	< 0.5	3.07	0.68	< 0.7					
Copper	Total	µg/l	8	< 0.5	6.18	2.53	2.30					
Iron Iron	Dissolved Total	µg/l	7 8	142 334	2300 25600	988 7792	876 5870					
Lead	Dissolved	μg/l μg/l	4	< 0.5	< 0.5	NA	< 0.5					
Lead	Total	μg/l	8	< 0.5	< 1	NA	< 0.5					
Magnesium	Total	mg/l	10	12	15.1	14.0	14.2					
Manganese	Dissolved	µg/l	8	85.5	216	167	182					
Manganese Mercury	Total Total	μg/l ng/l	8	41.6 < 0.5	280 1.6	174 0.54	179 0.50					
Methyl Mercury	Total	ng/l	9	< 0.03	< 0.1	NA	< 0.1					
Molybdenum	Dissolved	µg/l	10	1.2	< 5	1.89	1.7					
Molybdenum	Total	µg/l	8	0.76	< 5	1.63	1.5					
Nickel	Dissolved	µg/l	10	0.69	8.31	3.02	2.8					
Nickel Palladium	Total Total	μg/l μg/l	8	1 < 0.1	48.5 < 0.5	13.1 NA	5.67 < 0.5					
Platinum	Total	μg/l	8	< 0.1	< 0.5	NA	< 0.5					
Potassium	Total	mg/l	10	1.2	1.57	1.44	1.46					
Selenium	Dissolved	µg/l	10	< 1	< 2	NA	< 1					
Selenium	Total	µg/l	8	< 1	< 10	NA	< 1					
Silver Silver	Dissolved Total	μg/l μg/l	8 8	< 0.2 < 0.2	< 1	NA NA	< 0.2 < 0.2					
Sodium	Total	mg/l	° 10	3.46	19.7	8.03	5.40					
Strontium	Total	µg/l	8	44.2	66	58.4	60.2					
Thallium	Dissolved	µg/l	2	< 0.02	< 0.2	NA	< 0.2					
Thallium	Total	µg/l	8	< 0.2	< 2	NA	< 0.2					
Titanium Vanadium	Total Dissolved	μg/l μg/l	8 NA	< 10 NA	< 20 NA	NA NA	< 10 NA					
• anadian		μy/1	11/71	11/7	11/74	11/7	11/71					
Zinc	Dissolved	µg/l	10	< 6	< 25	5.34	< 6					

(1) Field duplicates not included in count of samples.

			ty Data for O 06-2015	B-3			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	General mg/l	Parameters 6	80	115	97.7	104
Alkalinity, carbonate, as CaCO3	NA	mg/l	6	< 10	< 20	NA	< 10
Alkalinity, total, as CaCO3	NA	mg/l	10	66.2	115	94.9	104
Biochemical Oxygen Demand (5-day) Carbon, dissolved organic	NA NA	mg/l	6	< 2.4 2.6	< 4 3.9	NA 3.03	< 3 2.9
Carbon, total organic	NA	mg/l mg/l	10	2.0	3.8	2.98	2.9
Chemical Oxygen Demand	NA	mg/l	8	< 10	26.7	12.7	13.5
Chloride	NA	mg/l	10	0.57	93.1	10.0	0.81
Cyanide	NA	mg/l	8	< 0.01	< 0.02	NA	< 0.02
Dissolved oxygen Fluoride	NA NA	mg/l mg/l	10 10	0.05	2 0.97	0.68	0.20
Hardness, as CaCO3	NA	mg/l	10	122	151	136	134
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	10	< 0.1	0.12	0.06	< 0.1
Nitrogen, ammonia, as N	NA	mg/l	10	0.09	0.14	0.07	< 0.1
pH Phosphorus, total, as P	NA NA	pH units mg/l	20 8	6.6 < 0.1	8	7.33 0.65	7.3
Redox (oxidation potential)	NA	mV	10	-63	4.4	140	106
Solids, total dissolved	NA	mg/l	8	146	221	189	174
Specific Conductance @ 25 °C	NA	µmhos/cm	10	198	440	281	275
Sulfate, as SO4	NA	mg/l	10	19.4	68.9	44.9	35.6
Temperature Turbidity	NA NA	deg C NTU	10 9	5.9 0.7	12.09 75.4	8.40 13.5	8.44 7.5
Turblany			letals	0.7	73.4	13.5	1.5
Aluminum	Dissolved	µg/l	11	< 10	< 25	NA	< 25
Aluminum	Total	µg/l	9	20.9	8210	1082	327
Antimony	Dissolved	µg/l	2	< 0.5	< 0.5	NA	< 0.5
Antimony Arsenic	Total Dissolved	μg/l μg/l	9 7	< 0.5 < 0.5	< 3	0.69	< 0.5 0.97
Arsenic	Total	μg/l	9	< 0.5	26.6	5.71	2.83
Barium	Dissolved	µg/l	4	1.3	2.3	1.88	1.95
Barium	Total	µg/l	9	2.2	15.8	4.70	2.96
Beryllium	Dissolved	µg/l	2	< 0.2	< 0.2	NA 0.11	< 0.2
Beryllium Boron	Total Dissolved	μg/l μg/l	9 5	< 0.2 < 50	0.21 < 100	0.11 NA	< 0.2 < 50
Boron	Total	μg/l	9	< 50	< 50	NA	< 50
Cadmium	Dissolved	µg/l	10	< 0.2	0.92	0.18	< 0.2
Cadmium	Total	µg/l	9	< 0.2	48	5.47	< 0.2
Calcium Chromium	Total Dissolved	mg/l µg/l	11 10	20.6	24.9 < 1	22.3 NA	22.2 < 1
Chromium	Total	μg/l	9	< 1	5.53	1.77	1.35
Cobalt	Dissolved	µg/l	4	4.6	5	4.78	4.75
Cobalt	Total	µg/l	9	4.1	23.3	9.06	7.23
Copper	Dissolved	µg/l	11	< 0.5	< 5	1.06	0.85
Copper Iron	Total Dissolved	μg/l μg/l	9 7	0.7 204	67.1 3240	12.8 2138	4.7 2460
Iron	Total	μg/l	9	3600	44300	13027	4380
Lead	Dissolved	µg/l	4	< 0.5	< 0.5	NA	< 0.5
Lead	Total	µg/l	9	< 0.5	4.09	0.87	< 0.5
Magnesium Manganese	Total Dissolved	mg/l µg/l	11 8	17.1 177	21.6 218	19.6 205	19.2 208
Manganese	Total	μg/l	9	207	383	276	233
Mercury	Total	ng/l	11	< 0.5	1.7	0.51	< 0.5
Methyl Mercury	Total	ng/l	9	< 0.03	< 0.1	0.04	< 0.1
Molybdenum Molybdenum	Dissolved Total	μg/l μg/l	11 9	0.74 0.29	< 5 < 5	1.27 1.27	0.91 0.90
Nickel	Dissolved	μg/l	11	91	158	1.27	118
Nickel	Total	µg/l	9	103	445	203	157
Palladium	Total	µg/l	8	< 0.1	< 0.5	NA	< 0.5
Platinum	Total	µg/l	8	< 0.02	< 0.5	NA 2.08	< 0.5
Potassium Selenium	Total Dissolved	mg/l µg/l	11 10	1.64 < 1	3.47	2.08 NA	1.93 < 1
Selenium	Total	μg/l	9	< 1	< 2	NA	< 1
Silver	Dissolved	µg/l	8	< 0.2	< 1	NA	< 0.2
Silver	Total	µg/l	9	< 0.2	< 1	NA	< 0.2
Sodium	Total	mg/l	11	6.33	14.3	8.00	7.60
Strontium Thallium	Total Dissolved	μg/l μg/l	9	74.8	93.8	86.3 NA	85.4 0.11
Thallium	Total	μg/l	9	< 0.2	< 2	0.32	< 0.2
Titanium	Total	µg/l	9	< 10	101	17.9	13.5
Vanadium	Dissolved	µg/l	NA	NA	NA	NA	NA
Zinc	Dissolved Total	µg/l	<u>11</u> 9	< 6 < 6	< 25	6.41 12.2	< 6 7.5
Zinc NA No data available	Total	µg/l	9	< 0	44.6	12.2	1.5

(1) Field duplicates not included in count of samples.

			ty Data for O 06-2015	B-4			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	General mg/l	Parameters 6	14.1	25.9	17.5	17.7
Alkalinity, carbonate, as CaCO3	NA	mg/l	6	< 10	< 20	NA	< 10
Alkalinity, total, as CaCO3	NA	mg/l	10	10.4	26.7	17.3	17.3
Biochemical Oxygen Demand (5-day) Carbon, dissolved organic	NA NA	mg/l mg/l	6	< 2.4 1.3	< 3 2.7	NA 1.72	2.7 1.7
Carbon, total organic	NA	mg/l	10	1.5	2.2	1.51	1.55
Chemical Oxygen Demand	NA	mg/l	8	< 10	30.5	9.35	< 10
Chloride	NA	mg/l	10	< 0.5	1.1	0.59	0.74
Cyanide Dissolved oxygen	NA NA	mg/l mg/l	8 10	< 0.01 1.34	< 0.02 9.23	0.008	0.011 7.82
Fluoride	NA	mg/l	10	< 0.1	< 0.1	NA	< 0.1
Hardness, as CaCO3	NA	mg/l	10	17.8	38.9	28.3	24.0
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	10	< 0.1	0.15	0.06	< 0.1
Nitrogen, ammonia, as N	NA NA	mg/l	10 20	< 0.05 5.6	< 0.1 7.1	NA 6.30	< 0.1 6.3
pH Phosphorus, total, as P	NA	pH units mg/l	20	< 0.1	0.19	0.07	< 0.1
Redox (oxidation potential)	NA	mV	10	119	643	422	428
Solids, total dissolved	NA	mg/l	8	51	99	67.4	62
Specific Conductance @ 25 °C	NA	µmhos/cm	10	39.2	117	62.1	55.4
Sulfate, as SO4 Temperature	NA NA	mg/l deg C	10 10	< 1 5.1	14.7 10	10.6 7.63	8.53 7.48
Turbidity	NA	NTU	9	0	216.9	52.1	5.8
			letals			5212	510
Aluminum	Dissolved	µg/l	10	< 10	< 25	NA	< 25
Aluminum	Total	µg/l	8	< 20	4850	1785	134
Antimony	Dissolved	µg/l	2	< 0.5	< 0.5	NA	< 0.5
Antimony Arsenic	Total Dissolved	μg/l μg/l	8	< 0.5 < 0.5	< 3 2.47	0.55	< 0.5 < 0.5
Arsenic	Total	µg/l	8	< 0.5	11	2.97	< 2
Barium	Dissolved	µg/l	4	0.5	0.77	0.58	0.56
Barium	Total	µg/l	8	0.64	32.4	9.76	< 10
Beryllium Beryllium	Dissolved Total	µg/l	2 8	< 0.2	< 0.2	NA NA	< 0.2 < 0.2
Boron	Dissolved	μg/l μg/l	5	< 50	< 100	NA	< 50
Boron	Total	µg/l	8	< 50	< 50	NA	< 50
Cadmium	Dissolved	µg/l	10	< 0.2	0.24	0.11	< 0.2
Calmium	Total	µg/l	8	< 0.2	0.31	0.12	< 0.2
Calcium Chromium	Total Dissolved	mg/l µg/l	10 10	4 < 1	8.06	6.07 NA	5.44 < 1
Chromium	Total	μg/l	8	< 1	36.2	8.45	< 1
Cobalt	Dissolved	µg/l	4	< 0.2	< 0.2	NA	< 0.2
Cobalt	Total	µg/l	8	< 0.2	3.96	1.16	< 1
Copper Copper	Dissolved Total	μg/l μg/l	10 8	0.51	3.33 33.8	1.42 7.24	1.49 < 2
Iron	Dissolved	μg/l	7	< 50	56.8	31.0	< 50
Iron	Total	µg/l	8	< 50	14400	2908	168
Lead	Dissolved	µg/l	4	< 0.5	< 0.5	NA	< 0.5
Lead	Total Total	µg/l	8 10	< 0.5 1.8	1 4.65	0.45 3.17	0.51 2.51
Magnesium Manganese	Dissolved	mg/l μg/l	8	0.52	4.65	6.18	2.51
Manganese	Total	µg/l	8	0.72	92	28.3	< 10
Mercury	Total	ng/l	11	< 0.5	3.7	0.81	0.68
Methyl Mercury	Total	ng/l	9	< 0.03	0.11	0.05	< 0.1
Molybdenum Molybdenum	Dissolved Total	μg/l μg/l	10 8	< 0.2	< 5 < 5	0.85	< 0.3 0.45
Nickel	Dissolved	μg/l	10	< 0.2	5.1	1.93	1.67
Nickel	Total	µg/l	8	< 0.5	16.8	5.80	2.29
Palladium	Total	µg/l	8	< 0.1	< 0.5	NA	< 0.5
Platinum	Total	µg/l	8 10	< 0.1 0.71	< 0.5	NA	< 0.5
Potassium Selenium	Total Dissolved	mg/l µg/l	10	< 1	3.44	1.40 NA	0.985
Selenium	Total	μg/l	8	< 1	< 10	NA	< 1
Silver	Dissolved	µg/l	8	< 0.2	< 1	NA	< 0.2
Silver	Total	µg/l	8	< 0.2	< 1	NA	< 0.2
Sodium	Total	mg/l	10	1.2	7.7	2.19	< 2
Strontium Thallium	Total Dissolved	μg/l μg/l	8	16.1	23.9	19.9 NA	18.8
Thallium	Total	μg/l	8	< 0.2	< 2	NA	< 0.2
Titanium	Total	µg/l	8	< 10	410	133	< 20
Vanadium	Dissolved	µg/l	NA	NA	NA	NA	NA
Zinc Zinc	Dissolved Total	µg/l	10 8	< 6 < 6	< 25 33.6	7.25 12.2	< 6 15.3
Zinc NA No data available	Total	µg/l	ð	< 0	53.0	12.2	10.5

(1) Field duplicates not included in count of samples.

			ty Data for O 6-2015	B-5			
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾
Alkalinity, bicarbonate, as CaCO3	NA	General mg/l	Parameters 6	18.7	85.1	33.0	25.2
Alkalinity, carbonate, as CaCO3	NA	mg/l	6	< 10	< 20	NA	< 10
Alkalinity, total, as CaCO3	NA	mg/l	10	8.2	85.1	27.2	23.7
Biochemical Oxygen Demand (5-day) Carbon, dissolved organic	NA NA	mg/l mg/l	7	< 2.4 1.5	< 8 2.7	NA 1.95	2.7 1.80
Carbon, total organic	NA	mg/l	10	1.3	2.7	1.88	1.95
Chemical Oxygen Demand	NA	mg/l	8	< 10	32.9	11.7	< 10
Chloride	NA	mg/l	10	< 0.5	1.08	0.49	0.52
Cyanide Dissolved oxygen	NA NA	mg/l mg/l	8	< 0.01 6.82	0.0253 9.6	0.011 8.28	< 0.02 8.49
Fluoride	NA	mg/l	10	< 0.1	< 0.1	NA	< 0.1
Hardness, as CaCO3	NA	mg/l	10	24.3	40.6	31.0	31.3
Nitrogen, Nitrate + Nitrite, as N	NA	mg/l	10	< 0.1	0.18	0.06	< 0.1
Nitrogen, ammonia, as N	NA NA	mg/l	10 21	< 0.05 5.6	< 0.1 7.3	NA 6.56	< 0.1 6.5
pH Phosphorus, total, as P	NA	pH units mg/l	8	< 0.1	0.15	0.06	< 0.1
Redox (oxidation potential)	NA	mV	11	183	598	425	454
Solids, total dissolved	NA	mg/l	8	51	129	82.1	70
Specific Conductance @ 25 °C	NA	µmhos/cm	11	45	92	62.0	56.2
Sulfate, as SO4 Temperature	NA NA	mg/l deg C	10 11	8.24 4.2	15.3 11	9.91 7.97	9.64 8.06
Turbidity	NA	NTU	10	0	1106	140	26.5
			letals			·	
Aluminum	Dissolved	µg/l	10	< 10	< 25	NA	< 25
Aluminum	Total	µg/l	8	< 20	3290	1106	726
Antimony Antimony	Dissolved Total	µg/l	2 8	< 0.5 < 0.5	< 0.5 < 3	NA NA	< 0.5 < 0.5
Arsenic	Dissolved	μg/l μg/l	7	< 0.5	< 1	NA	< 0.5
Arsenic	Total	µg/l	8	< 0.5	2.94	1.11	1.50
Barium	Dissolved	µg/l	4	1.5	1.8	1.68	1.7
Barium	Total	µg/l	8	1.7	20.4	8.02	5.25
Beryllium Beryllium	Dissolved Total	μg/l μg/l	2 8	< 0.2 < 0.2	< 0.2	NA NA	< 0.2 < 0.2
Boron	Dissolved	μg/l	5	< 50	< 100	NA	< 50
Boron	Total	µg/l	8	< 50	< 50	NA	< 50
Cadmium	Dissolved	µg/l	10	< 0.2	< 0.2	NA	< 0.2
Cadmium Calcium	Total Total	µg/l mg/l	8 10	< 0.2 5.6	0.54 9.59	0.16 7.25	< 0.2 7.34
Chromium	Dissolved	µg/l	10	< 1	1.2	0.59	< 1
Chromium	Total	µg/l	8	< 1	9.7	3.38	1.65
Cobalt	Dissolved	µg/l	4	< 0.2	< 0.2	NA	< 0.2
Cobalt Copper	Total Dissolved	µg/l	8 10	< 0.2 1.73	5.49 3.6	1.39 2.89	0.99 3.02
Copper	Total	μg/l μg/l	8	3.3	46.3	15.3	7.0
Iron	Dissolved	µg/l	7	< 50	< 50	NA	< 50
Iron	Total	µg/l	8	140	35500	12057	8978
Lead	Dissolved	µg/l	4 8	< 0.5	< 0.5	NA	< 0.5
Lead Magnesium	Total Total	µg/l mg/l	10	< 0.5 2.4	1.31 4.47	0.60 3.12	0.54 3.15
Manganese	Dissolved	µg/l	8	0.86	47.4	10.3	1.5
Manganese	Total	µg/l	8	1.3	356	62.4	15.3
Mercury	Total	ng/l	10	< 0.5	4.9	1.99	1.12
Methyl Mercury Molybdenum	Total Dissolved	ng/l µg/l	8 10	< 0.03 < 0.2	< 0.1 < 5	0.04	< 0.1 0.23
Molybdenum	Total	µg/l	8	< 0.2	< 5	0.77	0.52
Nickel	Dissolved	µg/l	10	4.38	8.6	5.40	5.41
Nickel	Total	µg/l	8	4.6	38.4	13.1	8.74
Palladium Platinum	Total Total	μg/l μg/l	8	< 0.1 < 0.1	< 0.5 < 0.5	NA NA	< 0.5 < 0.5
Potassium	Total	mg/l	10	0.78	1.76	1.22	1.26
Selenium	Dissolved	µg/l	10	< 1	< 2	NA	< 1
Selenium	Total	µg/l	8	< 1	< 10	NA	< 1
Silver	Dissolved	µg/l	8	< 0.2	< 1	NA	< 0.2
Silver Sodium	Total Total	µg/l mg/l	8 10	< 0.2 1.5	< 1 7.3	NA 1.78	< 0.2 < 2
Strontium	Total	µg/l	8	19.3	41.3	25.8	24.8
Thallium	Dissolved	µg/l	2	< 0.02	< 0.2	NA	0.11
Thallium		. //	8	< 0.2	< 2	NA	< 0.2
	Total	µg/l					
Titanium	Total	µg/l	8	< 10	230	52.6	26.9
							26.9 NA 7.99

(1) Field duplicates not included in count of samples.

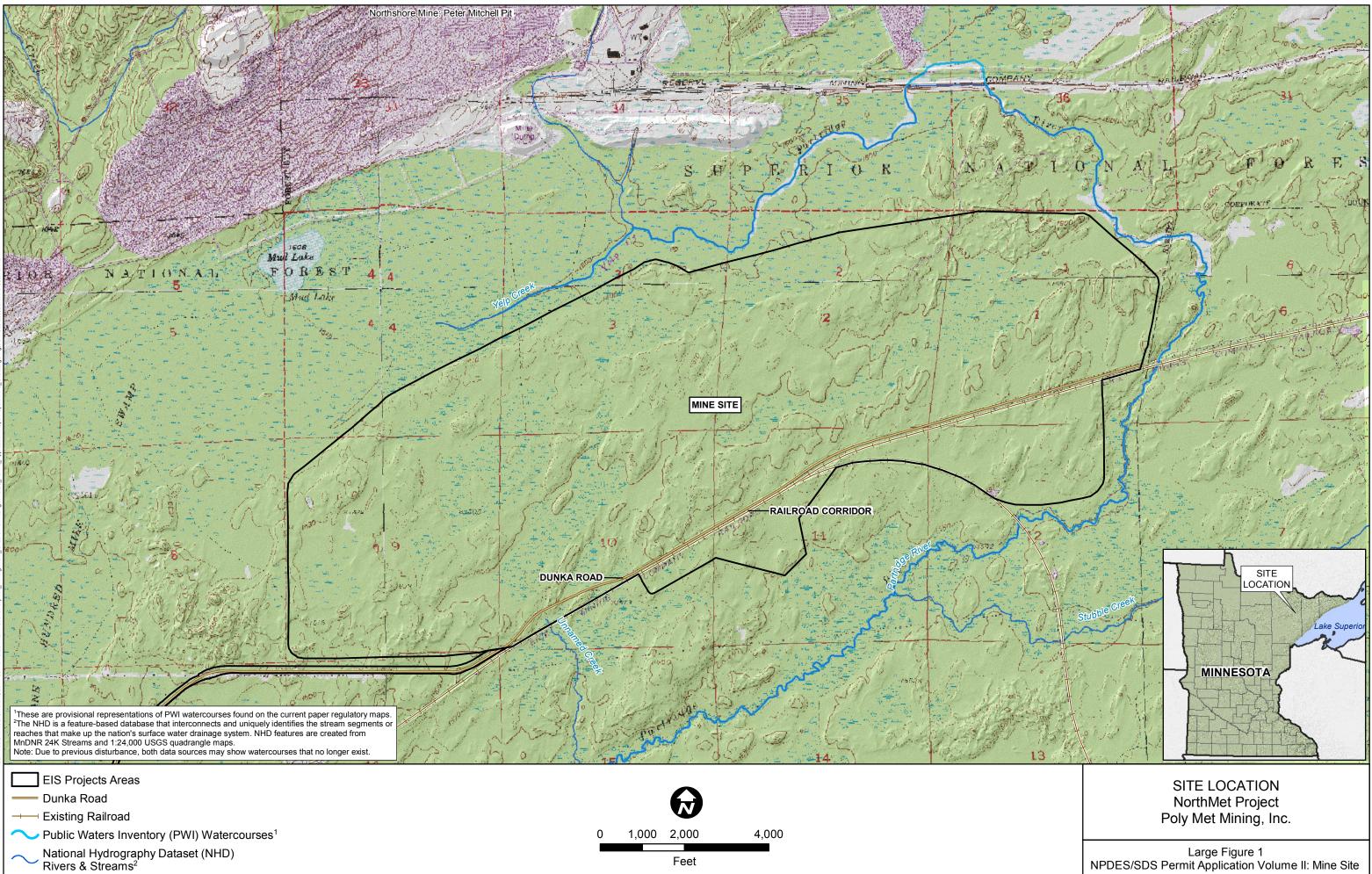
	Water Quality Data for P-1 2006											
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾					
Alkalinity, bicarbonate, as CaCO3	NA	Gener mg/l	ral Parameter NA	s NA	NA	NA	NA					
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA					
Alkalinity, total, as CaCO3	NA	mg/l	1	< 10	NA	NA	< 10					
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA					
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA	NA					
Carbon, total organic	NA	mg/l	1	NA	NA	2.3	2.3					
Chemical Oxygen Demand Chloride	NA NA	mg/l mg/l	1	< 10 NA	NA NA	NA 6.6	< 10 6.6					
Cyanide	NA	mg/l	1	< 0.02	NA	NA	< 0.02					
Dissolved oxygen	NA	mg/l	NA	NA	NA	NA	NA					
Fluoride	NA	mg/l	1	NA	NA	1.1	1.1					
Hardness, as CaCO3	NA	mg/l	1	NA	NA	15	15					
Nitrate + Nitrite, as N	NA	mg/l	1	< 0.1	NA	NA	< 0.1					
Nitrogen, ammonia as N	NA	mg/l	1	< 0.1	NA	NA	< 0.1					
pH Describerus total as D	NA	pH units	1	NA 1 0 1	NA	8.5	8.5					
Phosphorus, total, as P Redox (oxidation potential)	NA NA	mg/l mV	1 NA	< 0.1 NA	NA NA	NA NA	< 0.1 NA					
Solids, total dissolved	NA	mg/l	NA	NA	NA	NA	NA					
Specific Conductance @ 25 °C	NA	µmhos/cm	NA	NA	NA	NA	NA					
Sulfate, as SO4	NA	mg/l	1	NA	NA	1200	1200					
Temperature, °C	NA	deg C	NA	NA	NA	NA	NA					
Turbidity	NA	NTU	NA	NA	NA	NA	NA					
			Metals									
Aluminum	Dissolved	µg/l	1	< 25	NA	NA	< 25					
Aluminum	Total	µg/l	1	NA	NA	59.1	59.1					
Antimony Antimony	Dissolved Total	μg/l μg/l	NA 1	NA < 3	NA NA	NA NA	NA < 3					
Arsenic	Dissolved	μg/l	NA	NA	NA	NA	× 5 NA					
Arsenic	Total	μg/l	1	NA	NA	2.2	2.2					
Barium	Dissolved	μg/l	NA	NA	NA	NA	NA					
Barium	Total	µg/l	1	< 10	NA	NA	< 10					
Beryllium	Dissolved	µg/l	NA	NA	NA	NA	NA					
Beryllium	Total	µg/l	1	< 0.2	NA	NA	< 0.2					
Boron	Dissolved	µg/l	NA	NA	NA	NA	NA					
Boron	Total Dissolved	µg/l	1	NA < 0.2	NA NA	518 NA	518 < 0.2					
Cadmium Cadmium	Total	μg/l μg/l	1	< 0.2	NA	NA	< 0.2					
Calcium	Total	mg/l	1	NA	NA	6.2	6.2					
Chromium	Dissolved	µg/l	1	< 1	NA	NA	< 1					
Chromium	Total	µg/l	1	NA	NA	1.9	1.9					
Cobalt	Dissolved	µg/l	NA	NA	NA	NA	NA					
Cobalt	Total	µg/l	1	< 1	NA	NA	< 1					
Copper	Dissolved	µg/l	1	< 2	NA	NA	< 2					
Copper	Total	µg/l	1	< 2 NA	NA NA	NA NA	< 2 NA					
Iron Iron	Dissolved Total	μg/l μg/l	NA 1	NA	NA	100	100					
Lead	Dissolved	μg/l	NA	NA	NA	NA	NA					
Lead	Total	μg/l	1	< 1	NA	NA	< 1					
Magnesium	Total	mg/l	1	< 2	NA	NA	< 2					
Manganese	Dissolved	µg/l	NA	NA	NA	NA	NA					
Manganese	Total	µg/l	1	NA	NA	10	10					
Mercury	Total	µg/l	1	< 0.0005	NA	NA	< 0.0005					
Methyl Mercury Molybdenum	Total Dissolved	μg/l μg/l	1	< 0.000025 < 5	NA NA	NA NA	< 0.000025 < 5					
Molybdenum	Total	μg/l	1	< 5	NA	NA	< 5					
Nickel	Dissolved	μg/l	1	< 2	NA	NA	< 2					
Nickel	Total	µg/l	1	< 2	NA	NA	< 2					
Palladium	Total	µg/l	1	< 0.1	NA	NA	< 0.1					
Platinum	Total	µg/l	1	< 0.02	NA	NA	< 0.02					
Potassium	Total	mg/l	1	NA	NA	1.2	1.2					
Selenium	Dissolved	µg/l	1	< 2	NA	NA	< 2					
Selenium Silver	Total Dissolved	μg/l μg/l	1	< 2 < 1	NA NA	NA NA	< 2					
Silver	Total	μg/i μg/l	1	< 1	NA	NA	< 1					
Sodium	Total	mg/l	1	NA	NA	43.9	43.9					
Strontium	Total	μg/l	1	NA	NA	33.4	33.4					
Thallium	Dissolved	µg/l	NA	NA	NA	NA	NA					
Thallium	Total	µg/l	1	< 2	NA	NA	< 2					
Titanium	Total	µg/l	1	< 10	NA	NA	< 10					
Vanadium	Dissolved	µg/l	NA	NA	NA	NA	NA					
Zinc	Dissolved	µg/l	1	< 25	NA	NA	< 25					
Zinc NA No data available	Total	µg/l	1	NA	NA	17.9	17.9					

(1) Field duplicates not included in count of samples.

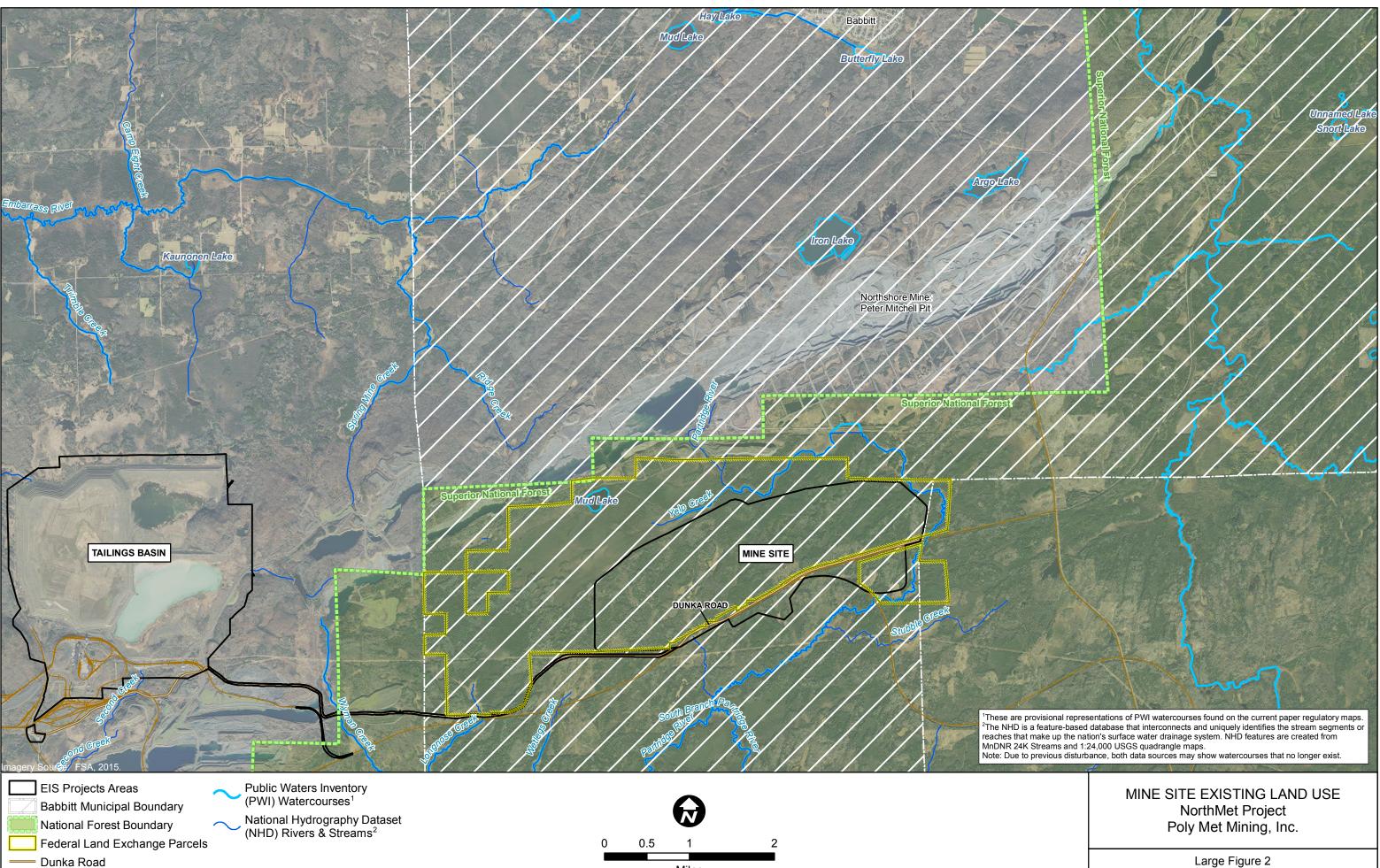
	Water Quality Data for P-2 2005-2006											
Parameter	Fraction	Units	# of Samples ⁽¹⁾ ral Parameter	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾					
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA					
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA					
Alkalinity, total, as CaCO3 Biochemical Oxygen Demand (5-day)	NA NA	mg/l	5 NA	74 NA	108 NA	97.3 NA	101 NA					
Carbon, dissolved organic	NA	mg/l mg/l	NA	NA	NA	NA	NA					
Carbon, total organic	NA	mg/l	5	2.4	5.3	3.9	3.9					
Chemical Oxygen Demand	NA	mg/l	5	< 10	< 10	NA	< 10					
Chloride	NA	mg/l	5	1.29	1.8	1.43	1.35					
Cyanide Dissolved overgon	NA	mg/l	5	< 0.02 NA	< 0.02 NA	NA NA	< 0.02 NA					
Dissolved oxygen Fluoride	NA NA	mg/l mg/l	NA 5	0.13	0.53	0.30	0.31					
Hardness, as CaCO3	NA	mg/l	5	56.5	82.9	69.8	68.6					
Nitrate + Nitrite, as N	NA	mg/l	5	< 0.1	< 0.1	NA	< 0.1					
Nitrogen, ammonia as N	NA	mg/l	5	< 0.1	0.27	0.09	< 0.1					
pH Dhasmharus total as D	NA	pH units	5	7.1 < 0.1	8.4 0.11	7.7 0.06	7.7 < 0.1					
Phosphorus, total, as P Redox (oxidation potential)	NA	mg/l mV	5 NA	< 0.1 NA	NA	0.06 NA	< 0.1 NA					
Solids, total dissolved	NA	mg/l	NA	NA	NA	NA	NA					
Specific Conductance @ 25 °C	NA	µmhos/cm	NA	NA	NA	NA	NA					
Sulfate, as SO4	NA	mg/l	5	5.76	10.5	7.95	7.88					
Temperature, °C Turbidity	NA	deg C NTU	NA NA	NA NA	NA NA	NA NA	NA NA					
	NA NA	NIU	Metals	INA	NA	NA	INA					
Aluminum	Dissolved	µg/l	5	< 25	< 25	NA	< 25					
Aluminum	Total	μg/l	5	< 25	< 25	NA	< 25					
Antimony	Dissolved	µg/l	NA	NA	NA	NA	NA					
Antimony	Total	µg/l	5	< 3	< 3	NA	< 3					
Arsenic Arsenic	Dissolved Total	μg/l μg/l	NA 5	NA < 2	NA < 2	NA NA	NA < 2					
Barium	Dissolved	μg/l	NA	NA	NA	NA	NA					
Barium	Total	µg/l	5	< 10	< 10	NA	< 10					
Beryllium	Dissolved	µg/l	NA	NA	NA	NA	NA					
Beryllium	Total	µg/l	5	< 0.2	0.2	0.14	< 0.2					
Boron Boron	Dissolved Total	μg/l μg/l	NA 5	NA 148	NA 194	NA 167	NA 168					
Cadmium	Dissolved	μg/l	5	< 0.2	0.2	0.12	< 0.2					
Cadmium	Total	µg/l	5	< 0.2	< 0.2	NA	< 0.2					
Calcium	Total	mg/l	5	11.6	16.7	14.0	13.5					
Chromium	Dissolved	µg/l	5	< 1	< 1	NA	< 1					
Chromium Cobalt	Total Dissolved	µg/l	5 NA	< 1 NA	1.1 NA	0.62 NA	< 1 NA					
Cobalt	Total	μg/l μg/l	5	< 1	< 1	NA	< 1					
Copper	Dissolved	µg/l	5	< 2	< 2	NA	< 2					
Copper	Total	µg/l	5	< 2	< 2	NA	< 2					
Iron	Dissolved	µg/l	NA	NA	NA	NA	NA					
Iron	Total Dissolved	µg/l	5 NA	140 NA	351 NA	268 NA	271 NA					
Lead Lead	Total	μg/l μg/l	5	< 1	< 5	NA	< 1					
Magnesium	Total	mg/l	5	6.7	10	8.5	8.5					
Manganese	Dissolved	µg/l	NA	NA	NA	NA	NA					
Manganese	Total	µg/l	5	20	27.3	23.8	23.6					
Mercury Methyl Mercury	Total Total	μg/l μg/l	5	< 0.0005 < 0.000056	0.0005	0.00030	< 0.0005 < 0.000056					
Molybdenum	Dissolved	μg/l	5	< 5	< 5	NA	< 5					
Molybdenum	Total	μg/l	5	< 5	< 5	NA	< 5					
Nickel	Dissolved	µg/l	5	< 2	< 2	NA	< 2					
Nickel	Total	µg/l	5	< 2	< 2	NA	< 2					
Palladium Platinum	Total Total	μg/l μg/l	5	< 0.1 < 0.02	< 0.1 < 0.02	NA NA	< 0.1 < 0.02					
Potassium	Total	mg/l	5	1.03	1.1	1.06	1.04					
Selenium	Dissolved	µg/l	5	< 2	< 2	NA	< 2					
Selenium	Total	µg/l	5	< 2	4	1.8	< 2					
Silver	Dissolved	µg/l	5	< 1	< 1	NA	< 1					
Silver Sodium	Total Total	µg/l	5	< 1 23.2	< 1 24.4	NA 23.8	< 1 23.9					
Strontium	Total	mg/l μg/l	5	37.9	74.9	23.8 59.9	60.7					
Thallium	Dissolved	µg/l	NA	NA	NA	NA	NA					
Thallium	Total	µg/l	5	< 2	< 2	NA	< 2					
Titanium	Total	µg/l	5	< 10	< 20	NA	< 20					
Vanadium	Dissolved	µg/l	NA 5	NA	NA	NA 7 7	NA 68.2					
Zinc Zinc	Dissolved Total	μg/l μg/l	5	< 10 < 10	134 125	77.7 77.0	68.2 67.7					
NA No data available	10101	P9/1	J	× 10	125	77.0	01.1					

(1) Field duplicates not included in count of samples.

Water Quality Data for P-3											
Parameter	Fraction	Units	2006 # of Samples ⁽¹⁾ ral Parameter	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾				
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA				
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA				
Alkalinity, total, as CaCO3	NA	mg/l	1	NA	NA	97.2	97.2				
Biochemical Oxygen Demand (5-day) Carbon, dissolved organic	NA NA	mg/l mg/l	NA NA	NA NA	NA NA	NA NA	NA NA				
Carbon, total organic	NA	mg/l	1	NA	NA	7.6	7.6				
Chemical Oxygen Demand	NA	mg/l	1	NA	NA	485	485				
Chloride	NA	mg/l	1	NA	NA	2.1	2.1				
Cyanide	NA	mg/l	1	< 0.02	NA	NA	< 0.02				
Dissolved oxygen Fluoride	NA NA	mg/l mg/l	NA 1	NA NA	NA NA	NA 0.64	NA 0.64				
Hardness, as CaCO3	NA	mg/l	1	NA	NA	113	113				
Nitrate + Nitrite, as N	NA	mg/l	1	< 0.1	NA	NA	< 0.1				
Nitrogen, ammonia as N	NA	mg/l	1	< 0.1	NA	NA	< 0.1				
pH	NA	pH units	1	NA	NA	6.6	6.6				
Phosphorus, total, as P Redox (oxidation potential)	NA NA	mg/l mV	1 NA	< 0.1 NA	NA NA	NA NA	< 0.1 NA				
Solids, total dissolved	NA	mg/l	NA	NA	NA	NA	NA				
Specific Conductance @ 25 °C	NA	µmhos/cm	NA	NA	NA	NA	NA				
Sulfate, as SO4	NA	mg/l	1	NA	NA	32.9	32.9				
Temperature, °C	NA	deg C	NA	NA	NA	NA	NA				
Turbidity	NA	NTU	NA Metals	NA	NA	NA	NA				
Aluminum	Dissolved	µg/l	livietais	< 25	NA	NA	< 25				
Aluminum	Total	μg/l	1	< 25	NA	NA	< 25				
Antimony	Dissolved	µg/l	NA	NA	NA	NA	NA				
Antimony	Total	µg/l	1	< 3	NA	NA	< 3				
Arsenic	Dissolved	µg/l	NA	NA	NA	NA	NA				
Arsenic	Total	µg/l	1	< 2	NA	NA	< 2				
Barium Barium	Dissolved Total	μg/l μg/l	NA 1	NA < 10	NA NA	NA NA	NA < 10				
Beryllium	Dissolved	μg/l	NA	NA	NA	NA	NA				
Beryllium	Total	µg/l	1	< 0.2	NA	NA	< 0.2				
Boron	Dissolved	µg/l	NA	NA	NA	NA	NA				
Boron	Total	µg/l	1	NA	NA	76.3	76.3				
Cadmium Cadmium	Dissolved Total	μg/l μg/l	1	< 0.2 < 0.2	NA NA	NA NA	< 0.2				
Calcium	Total	mg/l	1	NA	NA	20.4	20.4				
Chromium	Dissolved	µg/l	1	< 1	NA	NA	< 1				
Chromium	Total	µg/l	1	NA	NA	1.2	1.2				
Cobalt	Dissolved	µg/l	NA	NA	NA	NA	NA				
Cobalt Copper	Total Dissolved	μg/l μg/l	1	< 1	NA NA	NA NA	< 1				
Copper	Total	μg/l	1	< 2	NA	NA	< 2				
Iron	Dissolved	µg/l	NA	NA	NA	NA	NA				
Iron	Total	µg/l	1	NA	NA	4370	4370				
Lead	Dissolved	µg/l	NA	NA	NA	NA	NA				
Lead	Total Total	µg/l mg/l	1	< 1 NA	NA NA	NA 15	< 1 15				
Magnesium Manganese	Dissolved	mg/l μg/l	NA	NA	NA	NA	NA				
Manganese	Total	μg/l	1	NA	NA	140	140				
Mercury	Total	µg/l	1	< 0.0005	NA	NA	< 0.0005				
Methyl Mercury	Total	µg/l	1	< 0.000025	NA	NA	< 0.000025				
Molybdenum	Dissolved Total	µg/l	1	< 5	NA NA	NA NA	< 5				
Molybdenum Nickel	Dissolved	μg/l μg/l	1	< 5 < 2	NA	NA NA	< 5 < 2				
Nickel	Total	μg/l	1	< 2	NA	NA	< 2				
Palladium	Total	µg/l	1	NA	NA	0.3	0.3				
Platinum	Total	µg/l	1	< 0.02	NA	NA	< 0.02				
Potassium	Total	mg/l	1	NA	NA	2.1	2.1				
Selenium Selenium	Dissolved Total	μg/l μg/l	1	< 2 < 2	NA NA	NA NA	< 2 < 2				
Silver	Dissolved	μg/l	1	< 1	NA	NA	< 1				
Silver	Total	μg/l	1	< 1	NA	NA	< 1				
Sodium	Total	mg/l	1	NA	NA	7.5	7.5				
Strontium	Total	µg/l	1	NA	NA	75.2	75.2				
Thallium Thallium	Dissolved	µg/l	NA 1	NA < 2	NA	NA	NA				
Thallium Titanium	Total Total	μg/l μg/l	1	< 2 < 10	NA NA	NA NA	< 2 < 10				
Vanadium	Dissolved	μg/l	NA	NA	NA	NA	NA				
Zinc	Dissolved	µg/l	1	< 25	NA	NA	< 25				
Zinc			1	NA	NA	11.3	11.3				

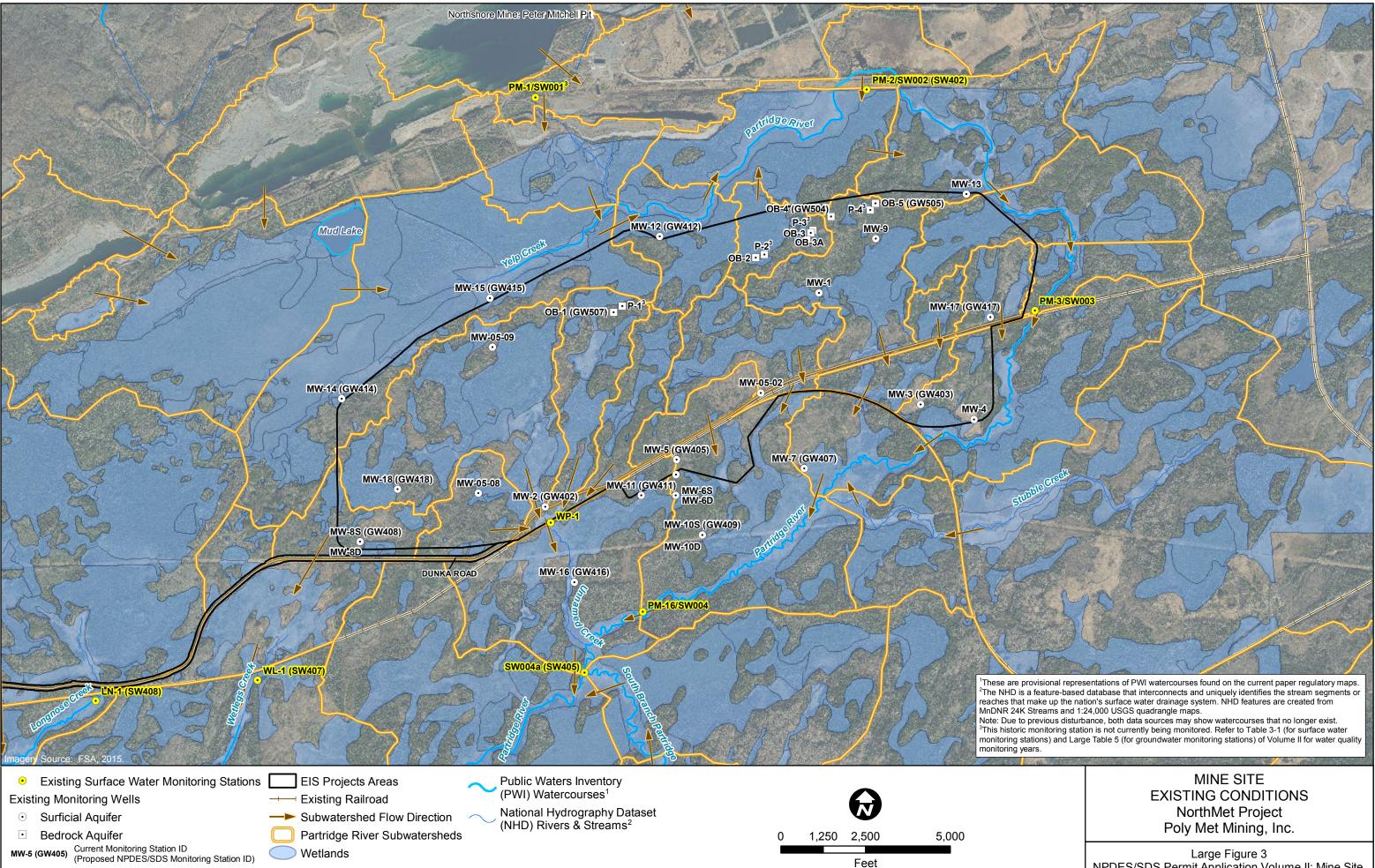

(1) Field duplicates not included in count of samples.

Water Quality Data for P-4 2005											
Parameter	Fraction	Units	# of Samples ⁽¹⁾	Minimum ⁽²⁾	Maximum ⁽²⁾	Average ⁽³⁾	Median ⁽⁴⁾				
Alkalinity, bicarbonate, as CaCO3	NA	mg/l	ral Parameter NA	s NA	NA	NA	NA				
Alkalinity, carbonate, as CaCO3	NA	mg/l	NA	NA	NA	NA	NA				
Alkalinity, total, as CaCO3	NA	mg/l	1	NA	NA	69.2	69.2				
Biochemical Oxygen Demand (5-day)	NA	mg/l	NA	NA	NA	NA	NA				
Carbon, dissolved organic	NA	mg/l	NA	NA	NA	NA	NA				
Carbon, total organic	NA	mg/l	1	NA	NA	2.2	2.2				
Chemical Oxygen Demand Chloride	NA NA	mg/l mg/l	1	NA < 0.5	NA NA	17 NA	17 < 0.5				
Cyanide	NA	mg/l	1	< 0.02	NA	NA	< 0.02				
Dissolved oxygen	NA	mg/l	NA	NA	NA	NA	NA				
Fluoride	NA	mg/l	1	NA	NA	0.35	0.35				
Hardness, as CaCO3	NA	mg/l	1	NA	NA	76.2	76.2				
Nitrate + Nitrite, as N	NA	mg/l	1	< 0.1	NA	NA	NA				
Nitrogen, ammonia as N	NA	mg/l	1	NA	NA	0.11	0.11				
pH Phosphorus, total, as P	NA NA	pH units mg/l	1	NA < 0.1	NA NA	8.1 NA	8.1 < 0.1				
Redox (oxidation potential)	NA	mV	NA	× 0.1 NA	NA	NA	< 0.1 NA				
Solids, total dissolved	NA	mg/l	NA	NA	NA	NA	NA				
Specific Conductance @ 25 °C	NA	µmhos/cm	NA	NA	NA	NA	NA				
Sulfate, as SO4	NA	mg/l	1	NA	NA	14.1	14.1				
Temperature, °C	NA	deg C	NA	NA	NA	NA	NA				
Turbidity	NA	NTU	NA	NA	NA	NA	NA				
		л	Metals	- 25	K L A	N L A					
Aluminum	Dissolved Total	µg/l	1	< 25 NA	NA NA	NA 57.2	< 25 57.2				
Antimony	Dissolved	μg/l μg/l	NA	NA	NA		57.2 NA				
Antimony	Total	μg/l	1	< 3	NA	NA	< 3				
Arsenic	Dissolved	µg/l	NA	NA	NA	NA	NA				
Arsenic	Total	µg/l	1	NA	NA	5.7	5.7				
Barium	Dissolved	µg/l	NA	NA	NA	NA	NA				
Barium	Total	µg/l	1	< 10	NA	NA	< 10				
Beryllium	Dissolved	µg/l	NA	NA	NA	NA	NA				
Beryllium	Total	µg/l	1 NA	< 0.2 NA	NA NA	NA NA	< 0.2 NA				
Boron Boron	Dissolved Total	μg/l μg/l	1	NA	NA	55	55				
Cadmium	Dissolved	μg/l	1	< 0.2	NA	NA	< 0.2				
Cadmium	Total	µg/l	1	< 0.2	NA	NA	< 0.2				
Calcium	Total	mg/l	1	NA	NA	17.7	17.7				
Chromium	Dissolved	µg/l	1	< 1	NA	NA	< 1				
Chromium	Total	µg/l	1	< 1	NA	NA	< 1				
Cobalt	Dissolved	µg/l	NA	NA	NA	NA	NA				
Cobalt Copper	Total Dissolved	μg/l μg/l	1	< 1	NA NA	NA NA	< 1				
Copper	Total	μg/l	1	< 2	NA	NA	< 2				
Iron	Dissolved	µg/l	NA	NA	NA	NA	NA				
Iron	Total	µg/l	1	NA	NA	190	190				
Lead	Dissolved	µg/l	NA	NA	NA	NA	NA				
Lead	Total	µg/l	1	< 1	NA	NA	< 1				
Magnesium	Total	mg/l	1	NA	NA	7.8	7.8				
Manganese	Dissolved Total	µg/l	NA 1	NA NA	NA NA	NA 60	NA 60				
Manganese Mercury	Total	μg/l μg/l	1	NA NA	NA	0.00070	0.00070				
Methyl Mercury	Total	μg/l	1	< 0.000025	NA	NA	< 0.000025				
Molybdenum	Dissolved	μg/l	1	NA	NA	28.9	28.9				
Molybdenum	Total	µg/l	1	NA	NA	34.5	34.5				
Nickel	Dissolved	µg/l	1	< 2	NA	NA	< 2				
Nickel	Total	µg/l	1	< 2	NA	NA	< 2				
Palladium	Total	µg/l	1	< 0.1	NA NA	NA	< 0.1				
Platinum Potassium	Total Total	μg/l mg/l	1	< 0.02 NA	NA NA	NA 1.7	< 0.02 1.7				
Selenium	Dissolved	µg/l	1	< 2	NA	NA	< 2				
Selenium	Total	µg/l	1	< 2	NA	NA	< 2				
Silver	Dissolved	µg/l	1	< 1	NA	NA	< 1				
Silver	Total	µg/l	1	< 1	NA	NA	< 1				
Sodium	Total	mg/l	1	NA	NA	4.4	4.4				
Strontium	Total	µg/l	1	NA	NA	45.5	45.5				
Thallium Thallium	Dissolved	µg/l	NA 1	NA	NA	NA	NA				
Thallium	Total	µg/l	1	< 2	NA	NA	< 2				
Titanium Vanadium	Total Dissolved	μg/l μg/l	1 NA	< 10 NA	NA NA	NA NA	< 10 NA				
Zinc	Dissolved	μg/l	1	< 10	NA	NA	< 10				
Zinc	Total	μ <u>g</u> /l	1	< 10	NA	NA	< 10				

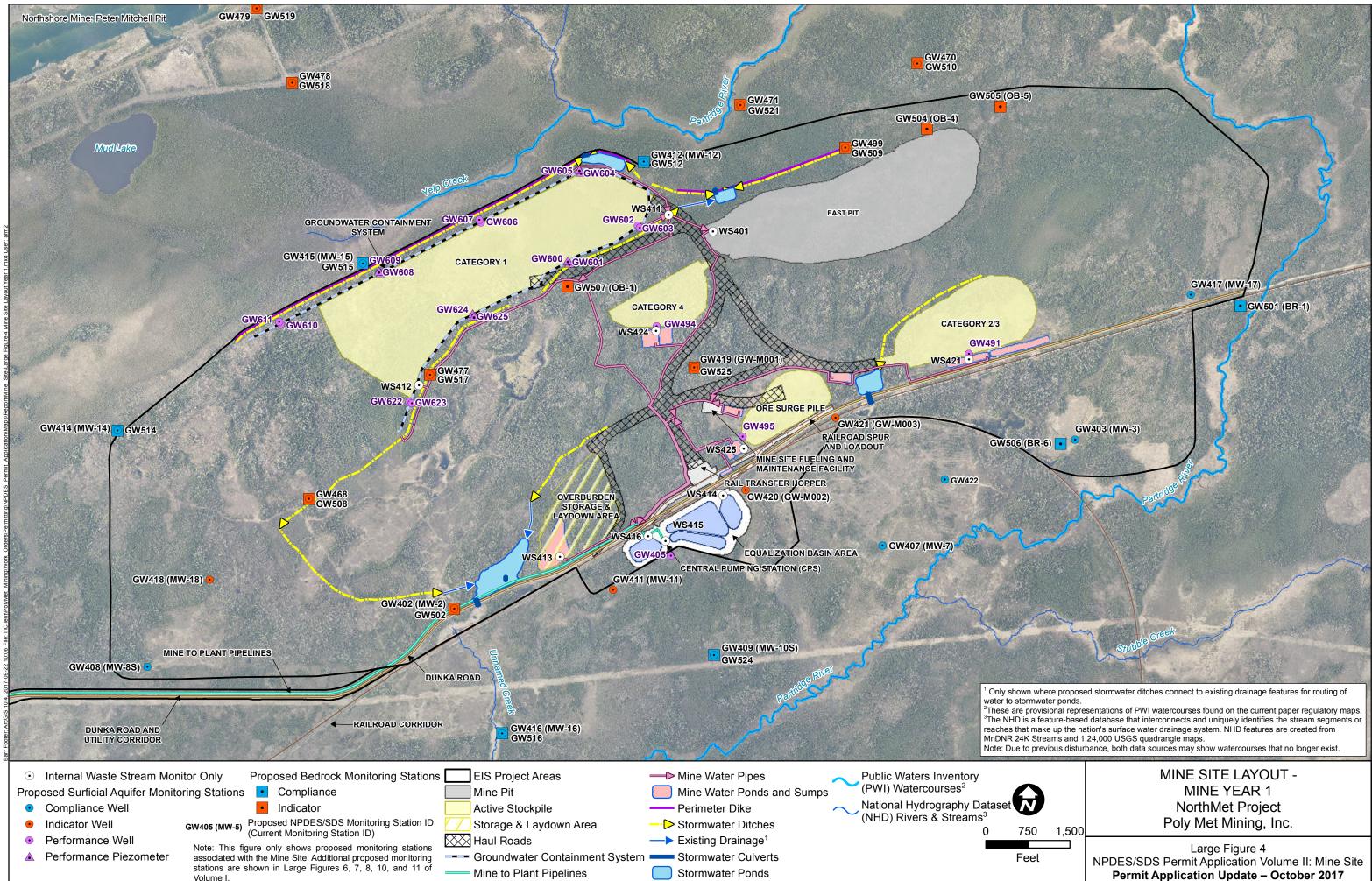

(1) Field duplicates not included in count of samples.

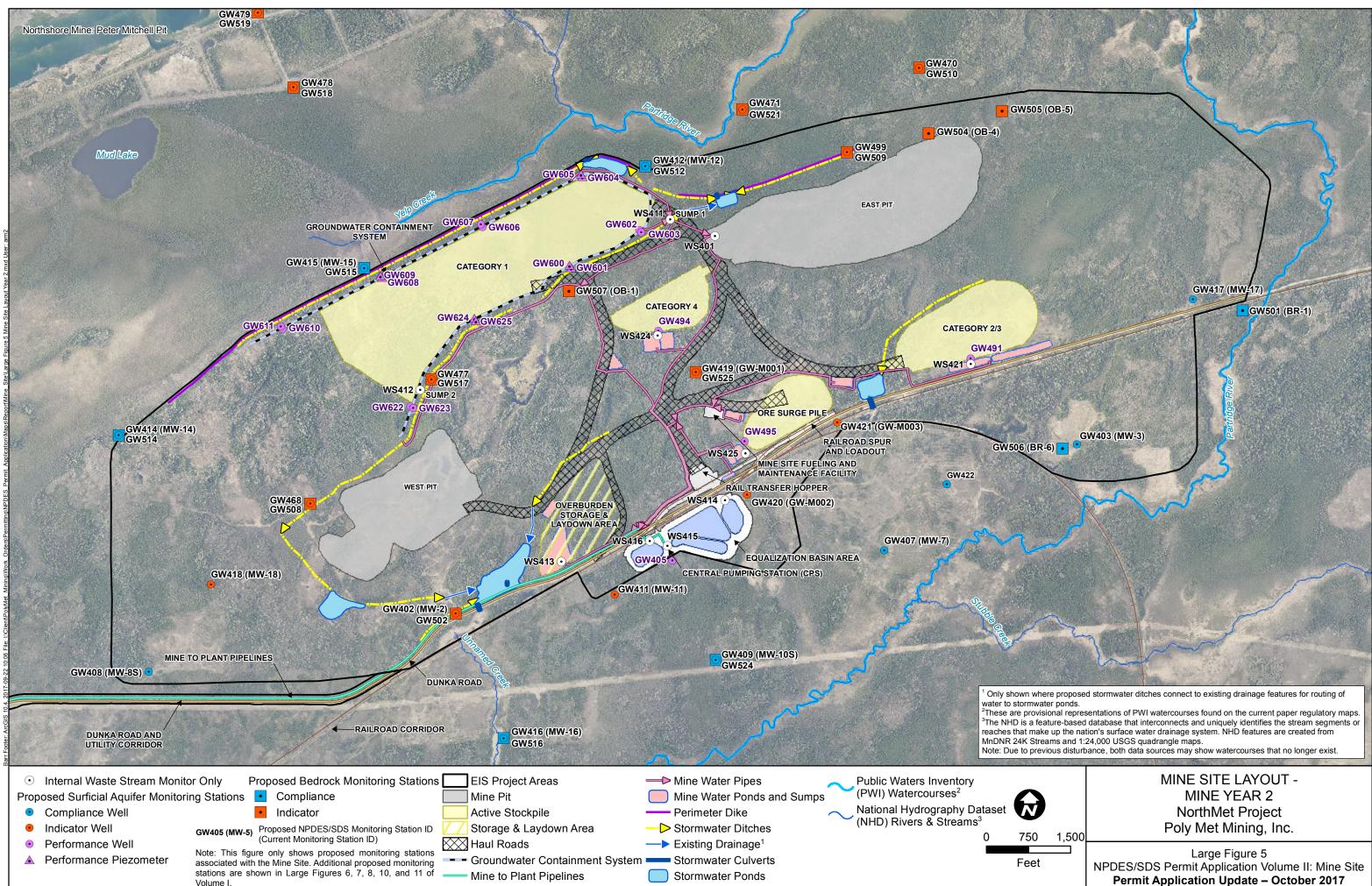
Water quality data is not available for OB-3A because it is redundant with adjacent groundwater monitoring wells and was not included in the baseline groundwater monitoring network.

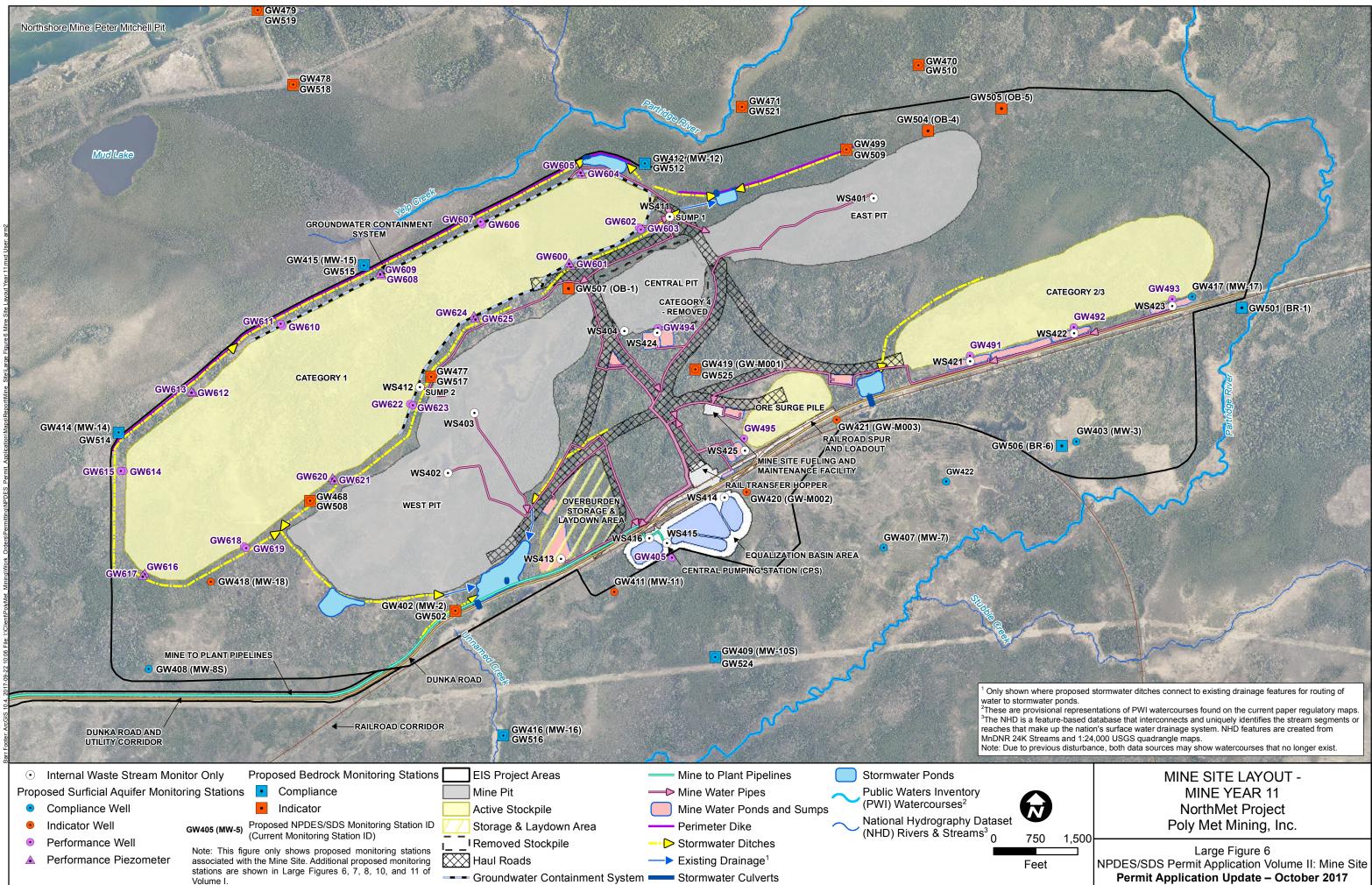
Large Figures


Large Figure 1 NPDES/SDS Permit Application Volume II: Mine Site **Permit Application Update – October 2017**

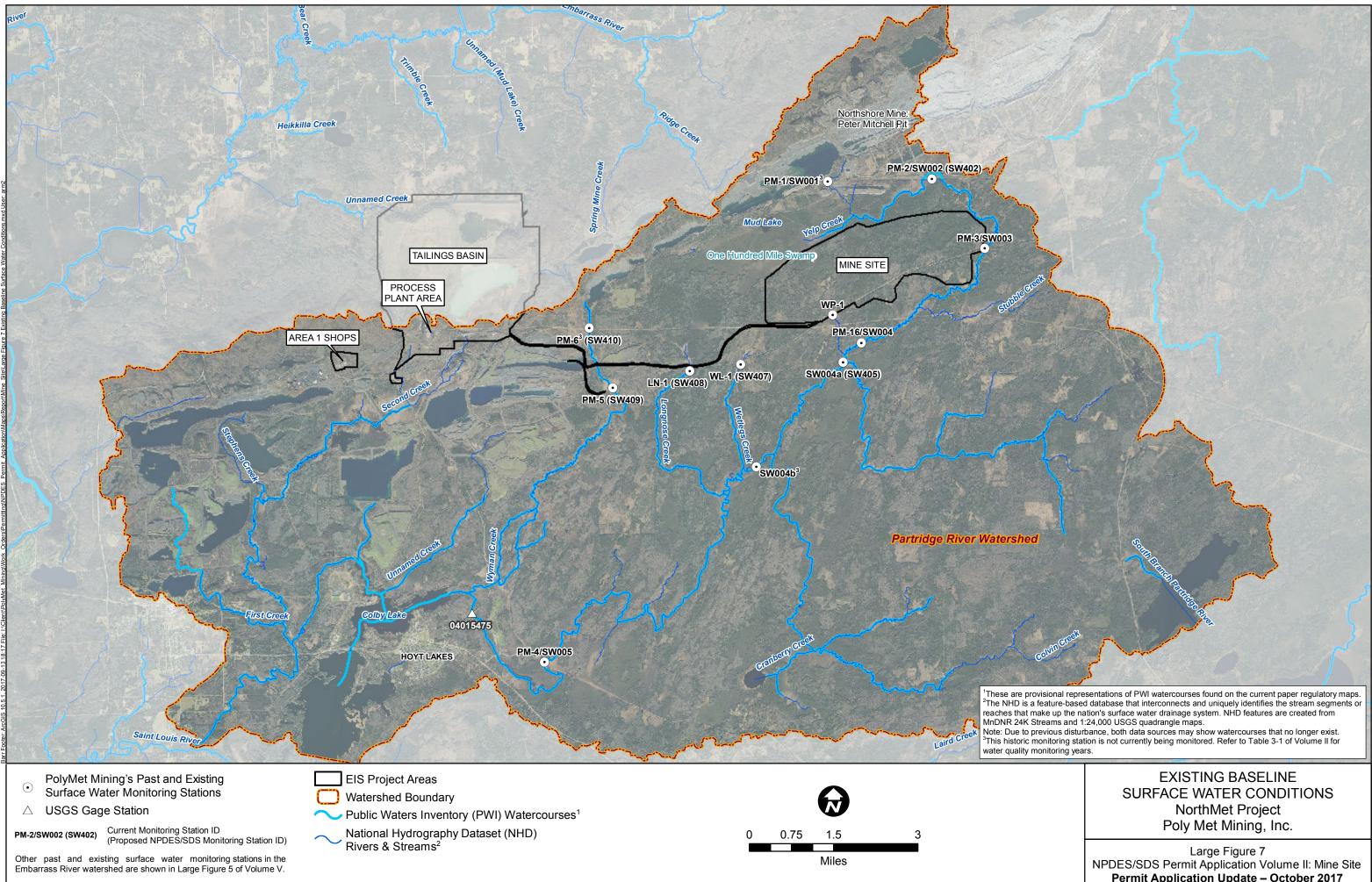
Existing Railroad


Miles


Large Figure 2 NPDES/SDS Permit Application Volume II: Mine Site **Permit Application Update – October 2017**



Note: This figure only shows existing monitoring stations associated with the Mine Site. Additional existing monitoring stations are shown in Large Figure 2 of Volume IV, Large Figure 2 of Volume VI, Large Figure 2 of Volume VII.


NPDES/SDS Permit Application Volume II: Mine Site Permit Application Update – October 2017

Permit Application Update – October 2017

Permit Application Update – October 2017

Appendices

Appendix A

Waste Water Treatment System Terminology Changes

Appendix A Waste Water Treatment System Terminology Changes

Some terminology associated with the Waste Water Treatment System (WWTS) has changed since the environmental review process was completed and the NPDES/SDS Permit Application was submitted in July 2016. Changes are associated with the relocation of the mine water treatment trains that were previously planned for the Mine Site Waste Water Treatment Facility (WWTF), which will now be in the Plant Site WWTS, and the relocation of the Mine Site equalization basins, Central Pumping Station (CPS), and Construction Mine Water Basin south of Dunka Road. There is no change to the level of treatment planned for the Project as a result of these relocations.

To facilitate the review of documents prepared for the NorthMet Mining Project and Land Exchange Final Environmental Impact Statement (FEIS) which are also referenced in this NPDES/SDS Permit Application, the following table explains WWTS terminology changes.

Former Name	New Name
Waste Water Treatment Plant (WWTP) and Waste Water Treatment Facility (WWTF)	Waste Water Treatment System (WWTS) ⁽¹⁾
Treated Water Pipeline	As a whole: Mine to Plant Pipelines (MPP) Three individual pipes: Construction Mine Water Pipeline Low Concentration Mine Water Pipeline High Concentration Mine Water Pipeline
Construction Mine Water Basin	Construction Mine Water Basin
West Equalization Basin	High Concentration Equalization Basin (HCEQ Basin)
East Equalization Basin 1	Low Concentration Equalization Basin 1 (LCEQ Basin 1)
East Equalization Basin 2	Low Concentration Equalization Basin 2 (LCEQ Basin 2)
WWTP effluent (discharged to receiving waters)	WWTS discharge
WWTF effluent (sent to the FTB via the Central Pumping Station)	Treated mine water ⁽³⁾ (WWTS stream pumped to the FTB)
Treated mine water ⁽²⁾	Treated mine water ⁽³⁾
Central Pumping Station	Central Pumping Station
	Equalization Basin Area ⁽⁴⁾
Splitter Structure	This structure will be integrated into the Central Pumping Station.
Central Pumping Station (CPS) Pond	This pond no longer exists.

(1) The two sets of treatment trains that were previously at two locations will now be housed under one roof at the Plant Site.

(2) "Treated mine water" formerly included WWTF effluent, OSLA runoff, and construction mine water and was all sent to the FTB.

(3) "Treated mine water" now consists of effluent from the chemical precipitation and membrane filtration portion of the WWTS that are sent to the FTB.

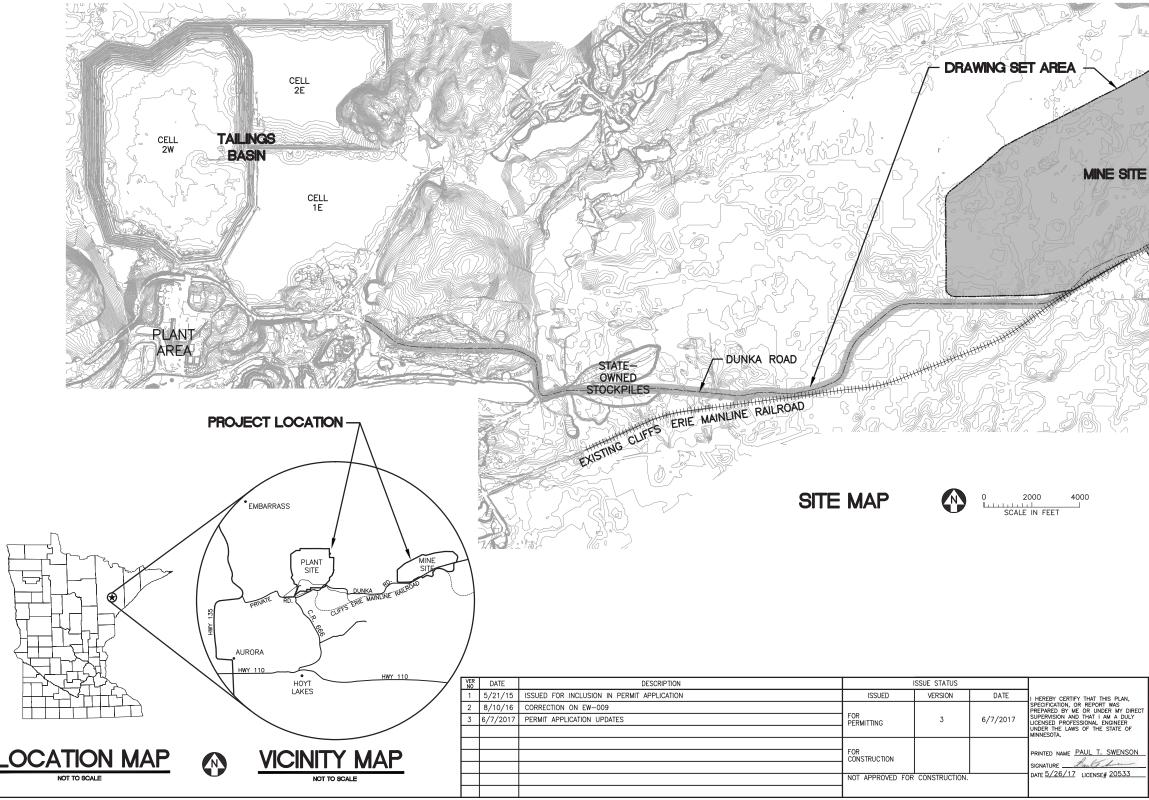
(4) New term describing pond area south of Dunka Road

Appendix B

Permit Application Support Drawings

Mine Site and Dunka Road Earthwork Categories 1, 2/3, and 4 Stockpiles and Ore Surge Pile Design Mine Site Stormwater Mechanical Infrastructure Category 1 Stockpile Groundwater Containment System Mine Site and Dunka Road Earthwork Permit Application Support Drawings

Errata Sheet


Poly Met Mining, Inc. NorthMet Project

Permit Application Support Drawings: Mine Site and Dunka Road Earthwork August 2017 (version 3)

Engineering design is currently in progress. The table below lists changes that have been identified todate and have not yet been incorporated in the attached permit application support drawings within this set. Final design will incorporate these changes along with additional site-specific information (e.g., supplementary geotechnical data); therefore, additional adjustments may be made during final design that will be incorporated into the final design drawing set.

Drawing Sheet(s)	Change
Global change to all sheets, as needed	The terminology "mine drainage" as noted in these drawings will be changed to "mine water".
EW-003	Temporary sedimentation basins or stormwater infiltration basins may be added to meet construction stormwater requirements along Dunka Road. These construction stormwater features require additional site-specific data and will be evaluated in final design.
EW-002, EW-003, EW-005, EW- 009, EW-010, EW-011	The "Mine Site Boundary" will be replaced by the "Mining Area Boundary" as shown on figures included in the Permit to Mine Application.
EW-010, EW-011	Note 3 will be modified to read: "Reclamation of the Haul Roads will consist of removing safety berms through grading, seeding the regraded surface, and establishing a 15-foot-wide access road near the centerline of all haul roads." Note 3 will be modified to read: "All active haul roads to be reclaimed."

POLY MET MINING, INC. NORTHMET PROJECT PERMIT APPLICATION SUPPORT DRAWINGS MINE SITE AND DUNKA ROAD EARTHWORK HOYT LAKES, MINNESOTA

				n i f	
Ş		V			
				ROAD EART	
ECT	DRAWN: KKB	MINE SITE A LOCAT	ION MAP A POLY M NORTH	ND SITE MAI ET MINING, I IMET PROJEC	P INC. CT
ECT			ION MAP A POLY M NORTH HOYT LA	ND SITE MAI	P INC. CT SOTA 3 CO. ITE DRIVE

DUNKA RAIL ROAD

EXISTIN

GENERAL LEGEND

EXISTING

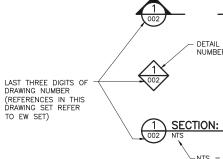
EXISTING CONTOUR - MINOR SEXISTING POWER POLE +++++++++++ EXISTING RAILROAD ------ WATER EDGE/CREEK CENTER LINE EXISTING ROAD ---- EXISTING TRAIL ____ EXISTING UNIMPROVED TRAIL ------ PROPERTY LINE ----- MINE SITE BOUNDARY EXISTING STRUCTURES TREE LINE WETLAND BOUNDARY ----- OE ---- EXISTING OVERHEAD ELECTRIC EXISTING VALVE EXISTING CULVERT PROPOSED MINE WATER CULVERT

PROPOSED				
PROPOSED	CONTOUR	-	MAJOR	

PROPOSED CONTOUR - MINOR PROPOSED ROADS

PROPOSED OTHER FACILITY

OTHER FACILITY PROPOSED CONTOUR - MAJOR OTHER FACILITY PROPOSED CONTOUR - MINOR


ABBREVIATIONS

CATEGORY 1 STOCKPILE -	CATEGORY 1 WASTE ROCK STOCKPILE
CATEGORY 2/3 STOCKPILE -	CATEGORY 2/3 WASTE ROCK STOCKPILE
CL –	CENTERLINE
EW -	EARTHWORK
MPP -	MINE TO PLANT PIPELINES
0E –	OVERHEAD ELECTRIC
STA –	STATION
SWPPP -	STORMWATER POLLUTION PREVENTION PLAN
TYP –	TYPICAL
I, II, III, IV, V –	ROMAN NUMERALS FOR RIPRAP CLASSIFICATION

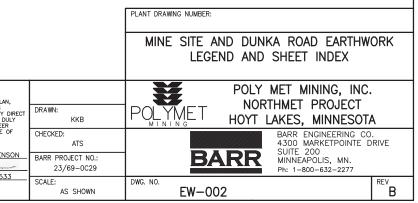
SHEET INDEX

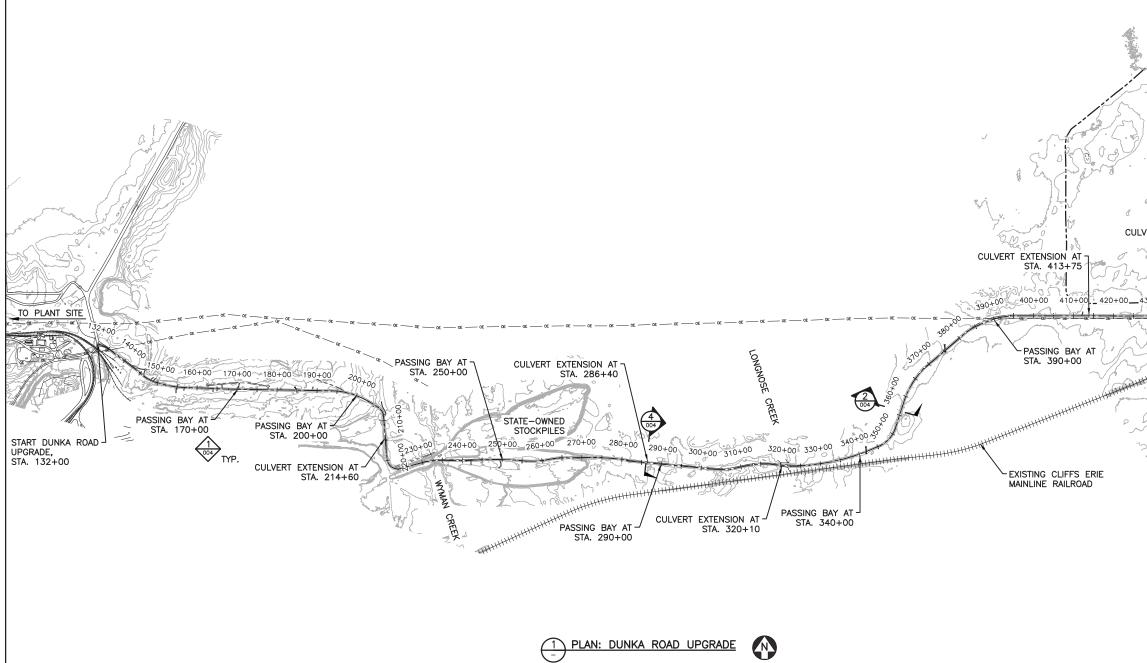
<u>SHEET NO. TITI</u>	<u> </u>
GENERAL DRAWINGS	
EW-001 LOCATION EW-002 LEGEND A1 EW-003 DUNKA RO EW-005 HAUL ROAI EW-006 HAUL ROAI EW-007 HAUL ROAI EW-008 PRE-STRIF EW-009 OVERBURD EW-010 HAUL ROAI EW-010 HAUL ROAI EW-010 BAUL ROAI EW-010 HAUL ROAI EW-010 HAUL ROAI EW-011 HAUL ROAI G-100-B RAIL TRAN: G-101-B RAIL TRAN: G-101-C RAIL TRANS	ND S AD U AD U DS G DS T PING EN S D CL SFER SFER

DRAWING NUMBERING

<u>NOTES</u>	
INOTES	

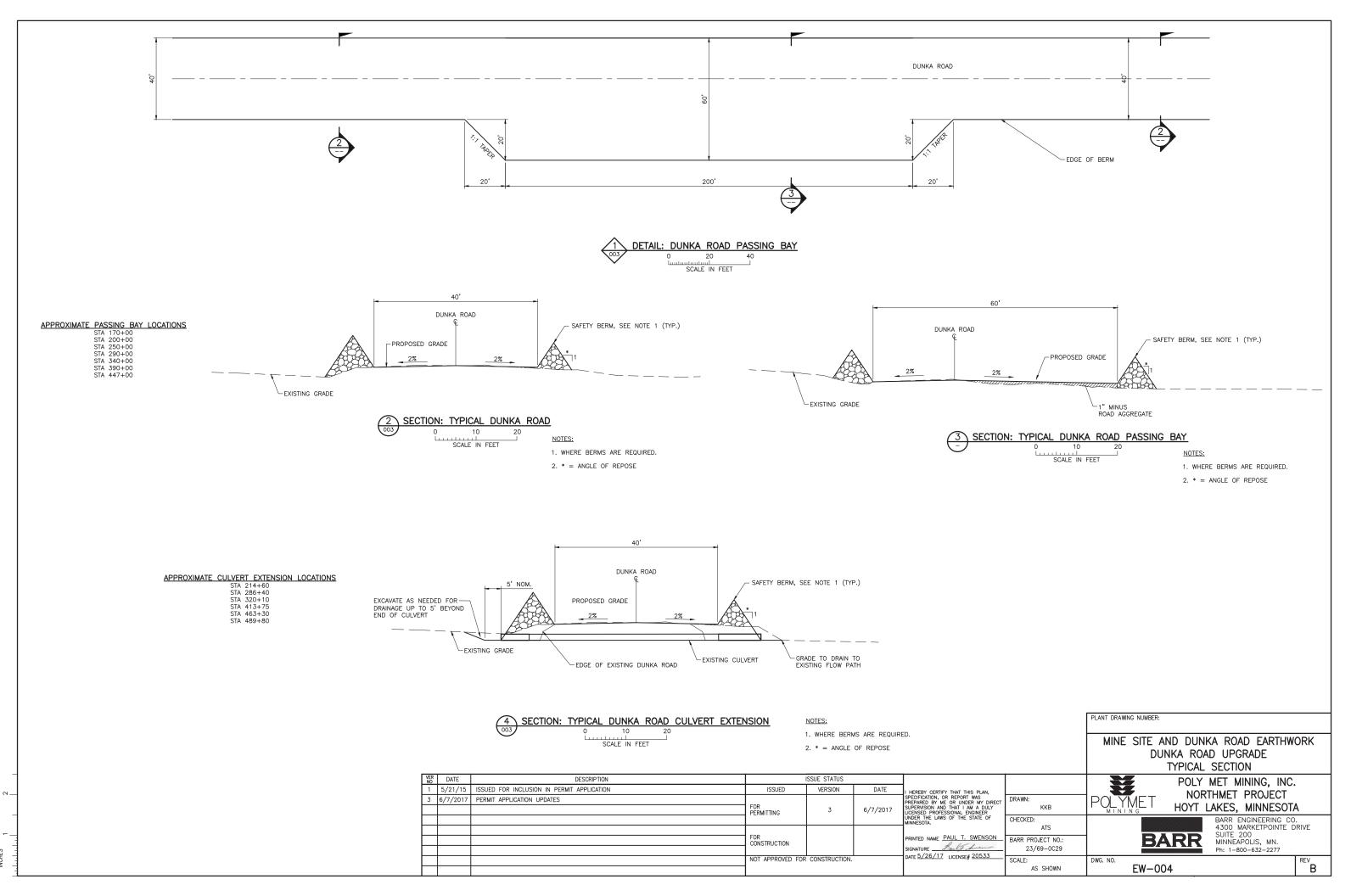
- 1. COORDINATE SYSTEM IS MINNESOTA STATE PLANE NORTH ZONE, NAD83.
- 2. ELEVATIONS ARE BASED ON MEAN SEA LEVEL (MSL), NAVD88.
- 3. EXISTING TOPOGRAPHIC INFORMATION SHOWN ON THE DRAWINGS WAS PREPARED BY AEROMETRIC, INC. FROM LIDAR DATA COLLECTED ON MARCH 17, 2010.

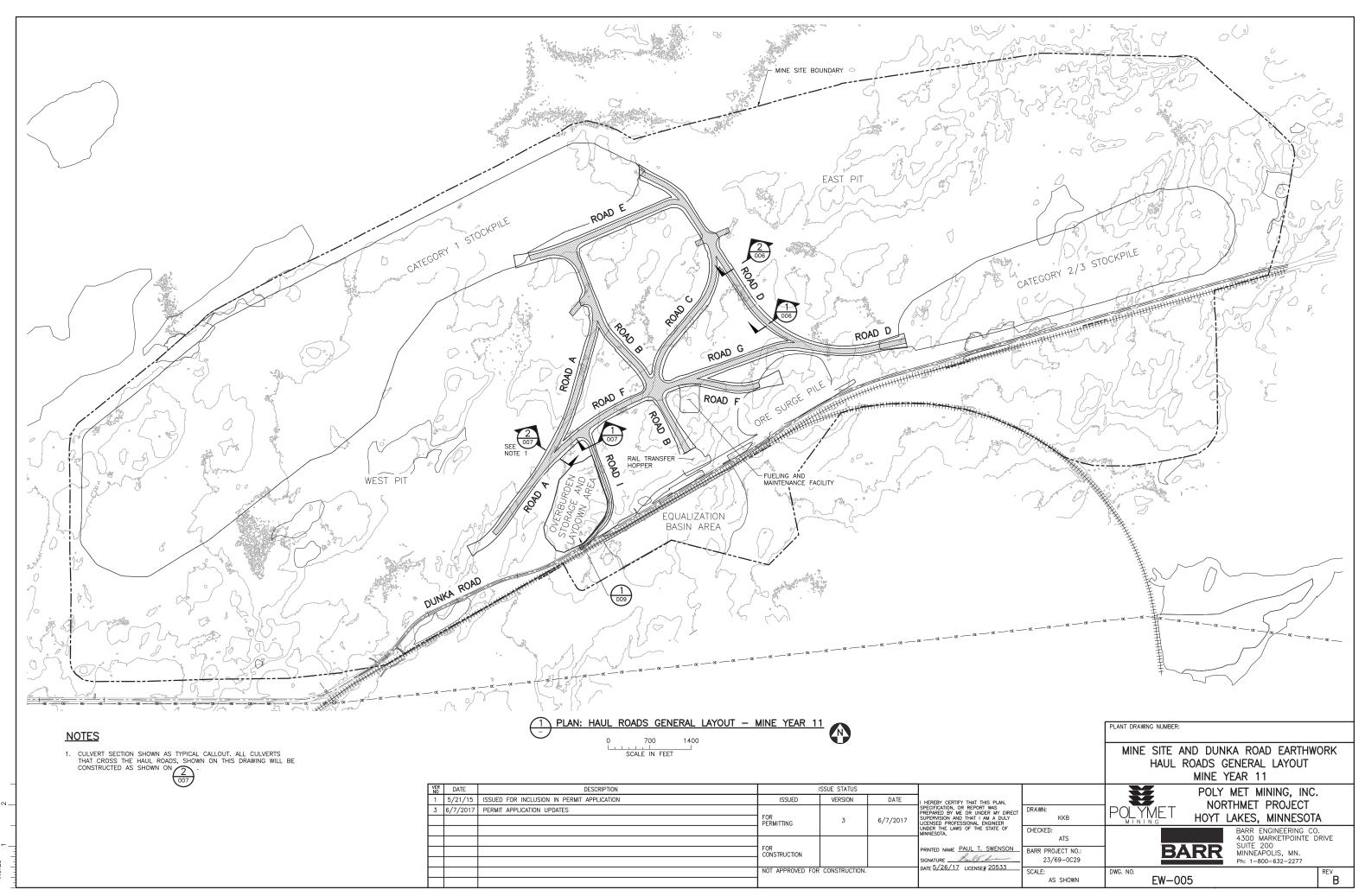

_						
\Box	ER DATE	DESCRIPTION		ISSUE STATUS		
Г	1 5/21/15	ISSUED FOR INCLUSION IN PERMIT APPLICATION	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN
	3 6/7/2017	PERMIT APPLICATION UPDATES				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY I
			FOR PERMITTING	3	6/7/2017	SUPERVISION AND THAT I AM A DU LICENSED PROFESSIONAL ENGINEER
L						UNDER THE LAWS OF THE STATE C MINNESOTA.
L			500			
L			FOR CONSTRUCTION			PRINTED NAME PAUL T. SWENS
L						SIGNATURE
L			NOT APPROVED FOR	CONSTRUCTION.		DATE 0/ 20/ 1/ LIGENSE# 2000

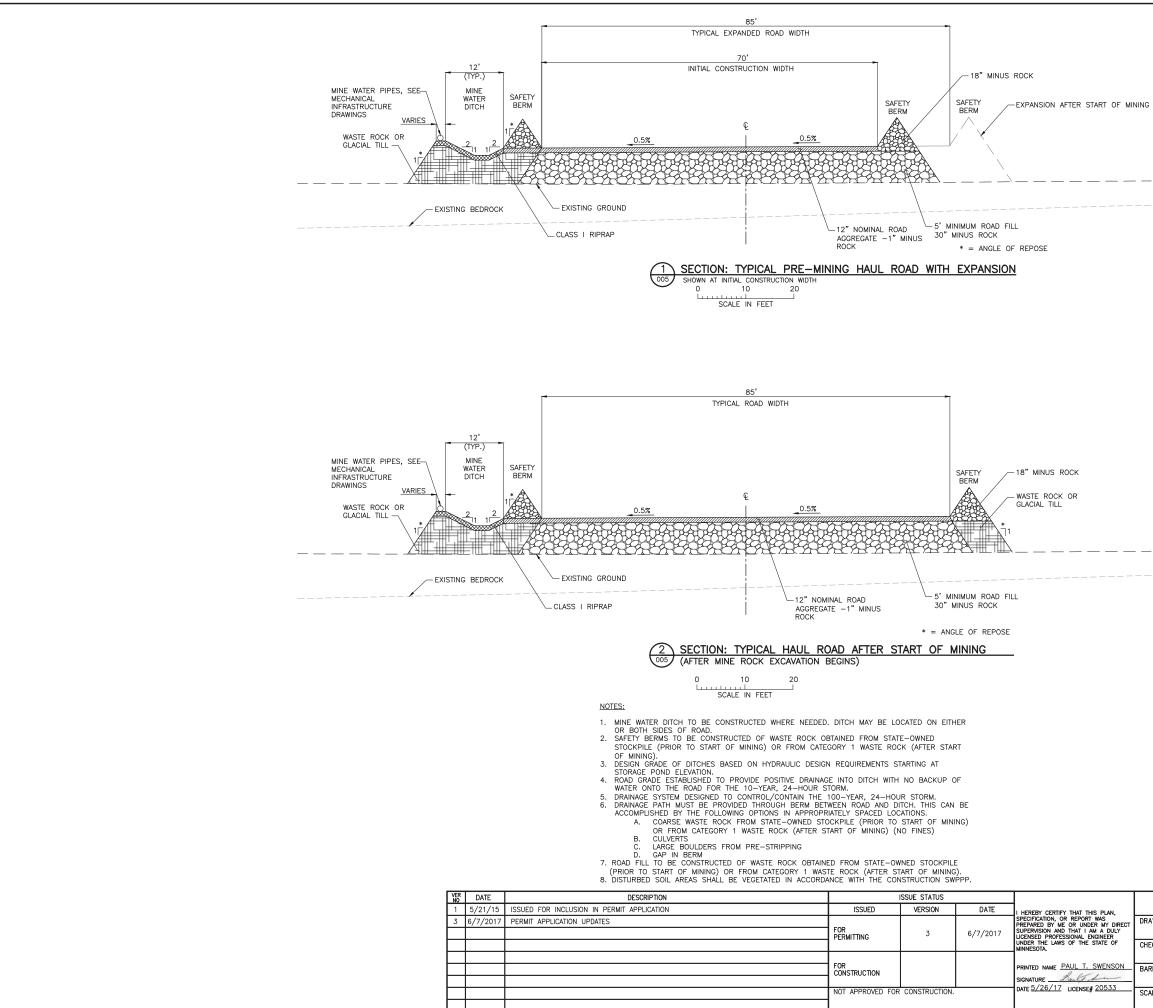

N MAP AND SITE MAP AND SHEET INDEX ROAD UPGRADE GENERAL LAYOUT ROAD UPGRADE GENERAL LAYOUT ADS GENERAL LAYOUT - MINE YEAR 11 ADS TYPICAL SECTIONS AND DETAILS ADS TYPICAL SECTIONS AND DETAILS RIPPING PIT TYPICAL SECTION RDEN STORAGE AND LAYDOWN AREA GRADING PLAN AD CLOSURE PLAN MINE YEARS 1-11 AD CLOSURE PLAN MINE YEARS 11-20 INSFER HOPPER - PLAN VIEW INSFER HOPPER - ELEVATION VIEW INSFER HOPPER - ELEVATION VIEW

- DETAIL OR SECTION NUMBER, TYPICAL

NTS = NOT TO SCALE

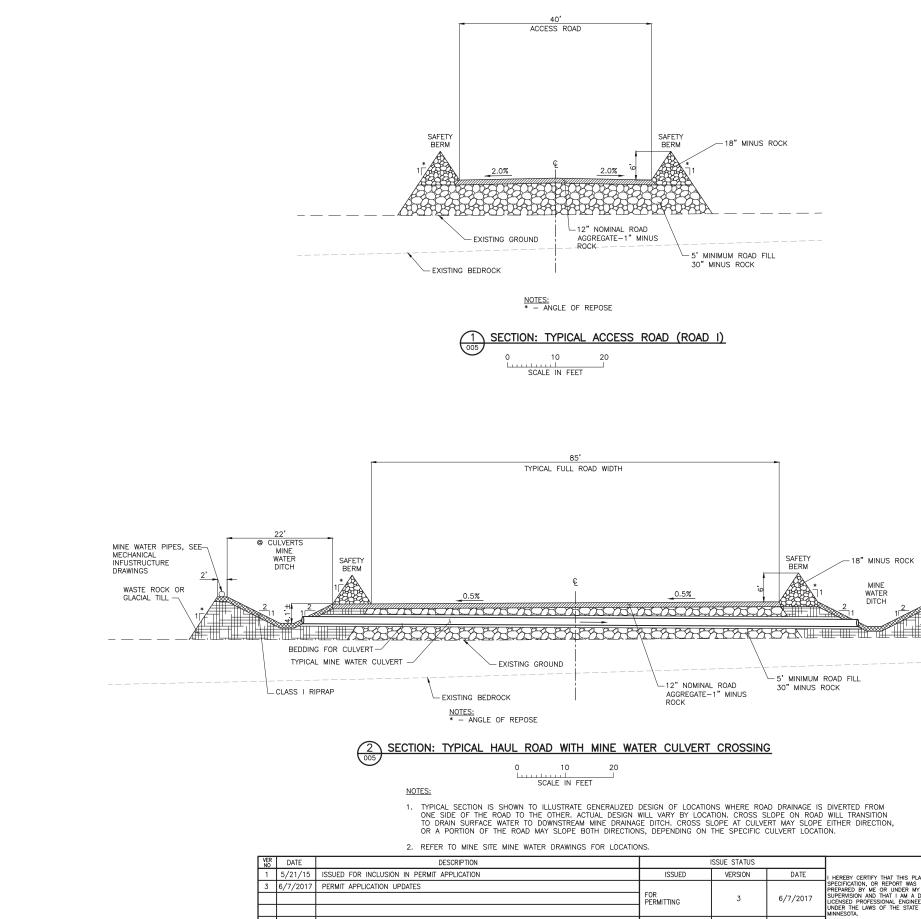





0	1200	2400
	SCALE IN FEET	

E	VER NO	DATE	DESCRIPTION		ISSUE STATUS		
Γ	1	5/21/15	ISSUED FOR INCLUSION IN PERMIT APPLICATION	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
	3	6/7/2017	PERMIT APPLICATION UPDATES	FOR PERMITTING	3	6 /7 /2017	SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIR SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF
				FOR CONSTRUCTION	CONSTRUCTION		MINNESOTA. PRINTED NAME <u>PAUL T. SWENSO</u> SIGNATURE <u>Jacobson</u> DATE 5/26/17 LICENSE# 20533
┢				NOT AFFROVED FOR	CONSTRUCTION.		

		and t
find }	1 A Garage	
		B
· · · · · · · · · · · · · · · · · · ·		and the
\mathbb{N}		242
	VINE SITE	A REAL PROPERTY OF
So o de la compe	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
CULVERT E	KTENSION AT STA. 489+80	n' (D)
M D	ATENSION AT STA. 489+80 A00+000 A00+0000 A00+000 A00+000 A00+000 A00+000 A00+000 A0	/
VERT EXTENSION AT STA. 463+30	TOTO ASOL	, port
		in cu
		- 0E 0E
	- of	
PASS	SING BAY AT	
PASS STA.	447+00 ,	
	The Alter Alter	
i Pandy		
S Loring		
and the second the		
	PLANT DRAWING NUMBER:	
ĺ	MINE SITE AND DUNKA ROAD EARTHW DUNKA ROAD UPGRADE	ORK
	GENERAL LAYOUT	
an,		
DRAWN: DULY KKB ER OF CHECKED	POLYMET NORTHMET PROJECT HOYT LAKES, MINNESOTA	<u>م</u>
ATS	BARR ENGINEERING CO 4300 MARKETPOINTE D SUITE 200	RIVE
BARR PROJECT NO.: 23/69-0C29	BARR MINNEAPOLIS, MN. Ph: 1-800-632-2277	
33 SCALE: AS SHOWN	DWG. NO. EW-003	^{REV} B



Ν-

INCHES

		PLANT DRAWING NUMBER:	
		MINE SITE AND DUNKA ROAD EARTHWO HAUL ROADS TYPICAL SECTIONS AND DETAILS	ORK
AN, ' DIRECT DULY ER OF	DRAWN: KKB	POLY MET MINING, INC. POLYMET HOYT LAKES, MINNESOTA	
NSON	CHECKED: ATS BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING CO 4300 MARKETPOINTE D SUITE 200 MINNEAPOLIS, MN. Ph: 1-800-632-2277	
33	SCALE: AS SHOWN	DWG. NO. EW-006	^{REV} B

FOR CONSTRUCTION

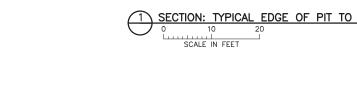
NOT APPROVED FOR CONSTRUCTION.

INCHES

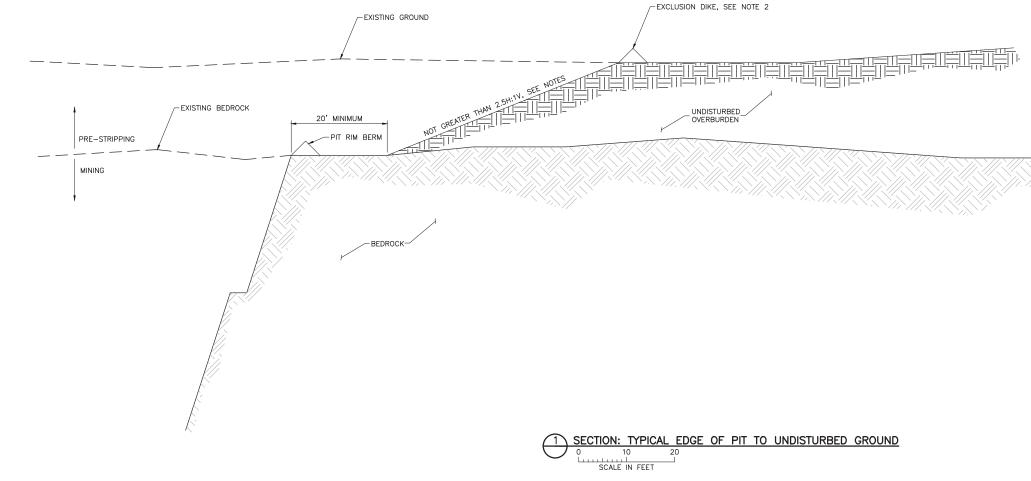
			PLANT DRAWING NUMBER:
)	DIVERTED FROM WILL TRANSITION EITHER DIRECTION, NI.		MINE SITE AND DUNKA ROAD EARTHWORK HAUL ROADS TYPICAL SECTIONS AND DETAILS
	I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER	DRAWN: KKB	POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA
	UNDER THE LAWS OF THE STATE OF MINNESOTA. PRINTED NAME <u>PAUL T. SWENSON</u> SIGNATURE <u>BAUL SOCEA</u>	CHECKED: ATS BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING CO. 4300 MARKETPOINTE DRIVE SUITE 200 MINNEAPOLIS, MN. Ph: 1-800-632-2277
	DATE <u>5/26/17</u> LICENSE# <u>20533</u>	SCALE: AS SHOWN	EW-007

- WASTE ROCK OR GLACIAL TILL

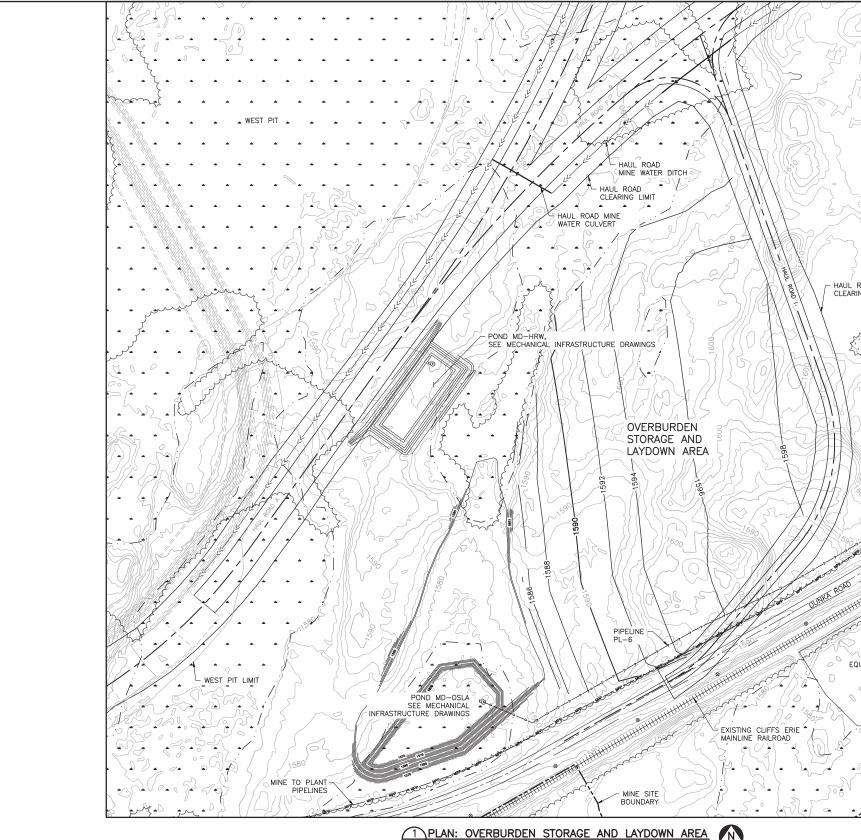
NCHES			CADD	CADD USER: Ka	Å
	-	2			
		_			


- CONTRACTOR SHALL STOCKPILE OVERBURDEN IN LOCATIONS AND AT QUANTITIES TO BE APPROVED BY OWNER.
- CONTRACTOR SHALL LEAVE TEMPORARY HAUL ROADS WITHIN PRE-STRIPPING LIMITS IN PLACE FOR OWNER'S ACCESS.

- 20' BENCH SHALL BE ESTABLISHED FROM THE TOE OF THE OVERBURDEN TO THE FUTURE CREST OF ROCK IN ACCORDANCE WITH MINNESOTA DNR SIDEWALL DESIGN STANDARDS.
- 4. SLOPES IN AREAS WHERE ORGANIC SOILS AND WETLANDS ARE PRESENT MAY BE SLOPED AS NECESSARY TO MAINTAIN A STABLE SLOPE.
- FINAL PIT SLOPES SHALL ADHERE TO CHAPTER 6132.23 OVERBURDEN PORTION OF PITWALLS OF MINNESOTA DNR STANDARDS. AFTER GRADING IS COMPLETED, RECLAIM FINAL PIT SLOPES IN ACCORDANCE WITH MINE RECLAMATION PLAN.
- 2. CONSTRUCT EXCLUSION DIKE AROUND PIT PERIMETER TO DIVERT SURFACE RUNOFF AWAY FROM PIT.
- PROPOSED FINISHED GRADE WITHIN PRE-STRIPPING AREA REFLECTS BEDROCK DATA PROVIDED BY POLYMET. 1.

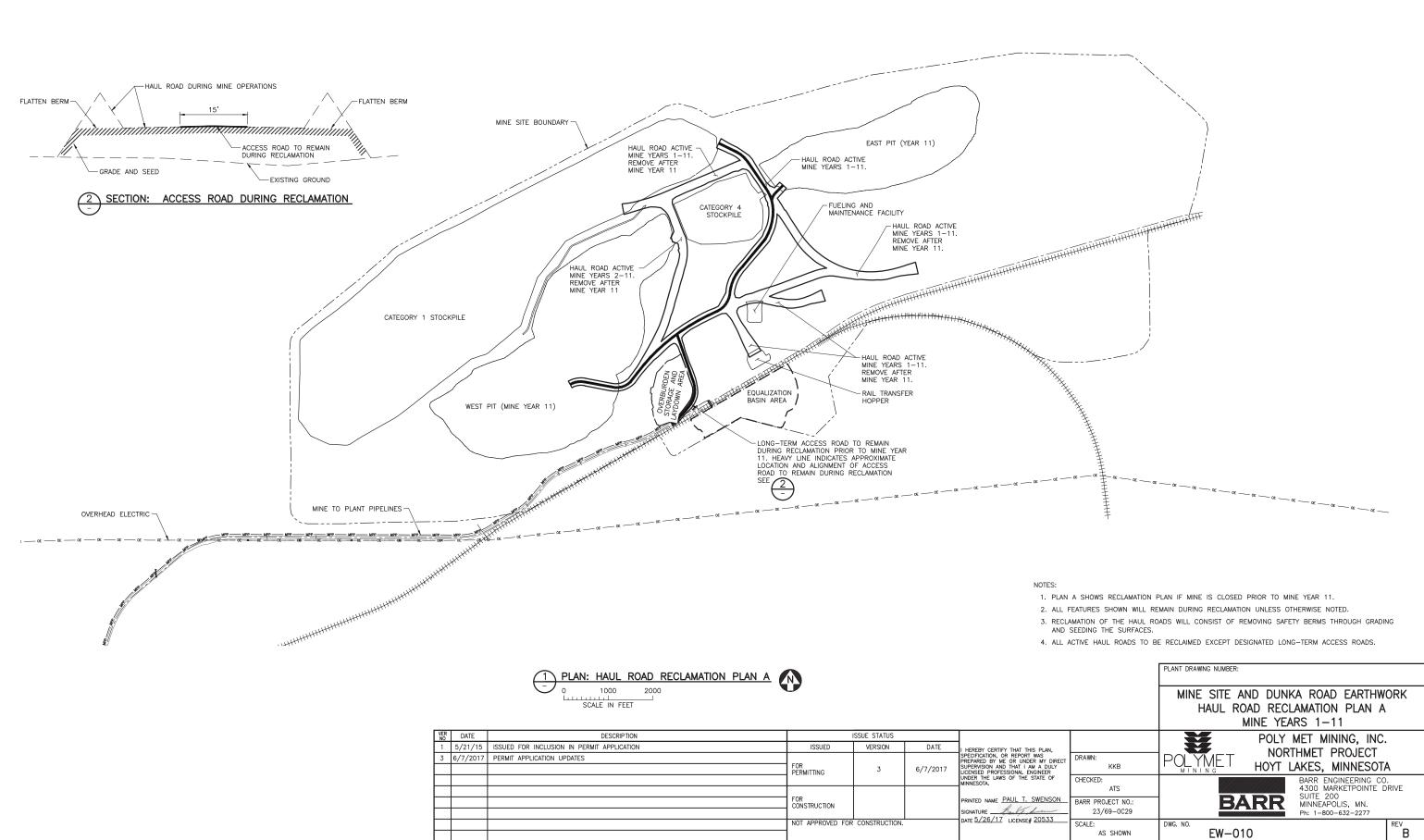


NOTES:

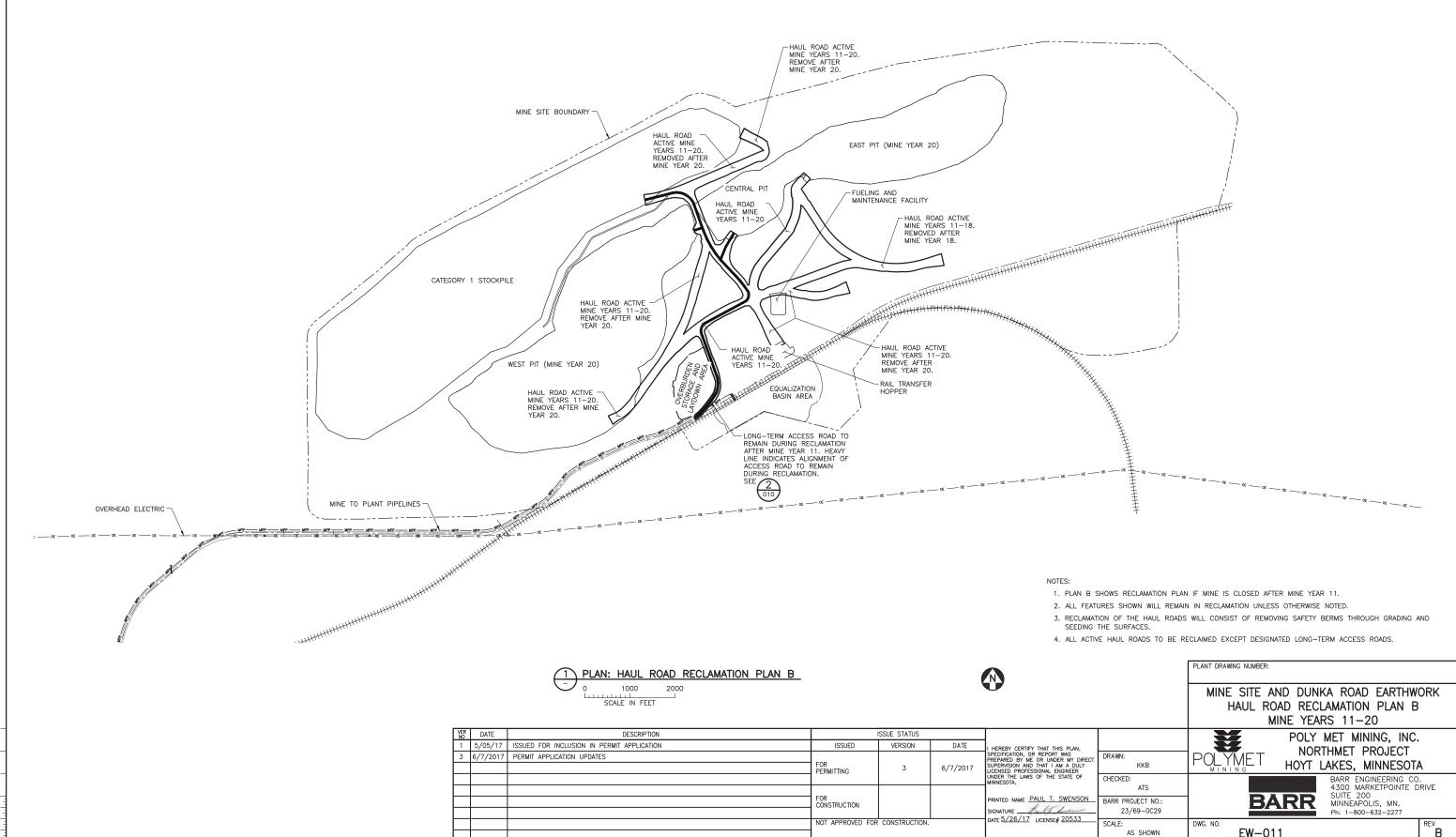


VER NO	DATE	DESCRIPTION		ISSUE STATUS		
1	5/21/15	ISSUED FOR INCLUSION IN PERMIT APPLICATION	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,
3	6/7/2017	PERMIT APPLICATION UPDATES				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT
			FOR PERMITTING	3	0///201/	SUPERVISION AND THAT I AM A DULY
						UNDER THE LAWS OF THE STATE OF MINNESOTA.
			FOR CONSTRUCTION			PRINTED NAME PAUL T. SWENSON
						DATE 5/26/17 LICENSE# 20533
			NOT APPROVED FOR	CONSTRUCTION.		DATE 3720717 LICENSE# 20333

		PLANT DRAWING NUMBER:	
		MINE SITE AND DUNKA ROAD EARTHW PRE-STRIPPING PIT TYPICAL SECTION	ORK
AN, DIRECT DULY ER OF	DRAWN: KKB	POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA	
SON_	CHECKED: ATS BARR PROJECT NO.:	BARR ENGINEERING CO 4300 MARKETPOINTE D SUITE 200 MINNEAPOLIS, MN.	
33	23/69-0C29 SCALE: AS SHOWN	DWG. NO. EW-008	REV B

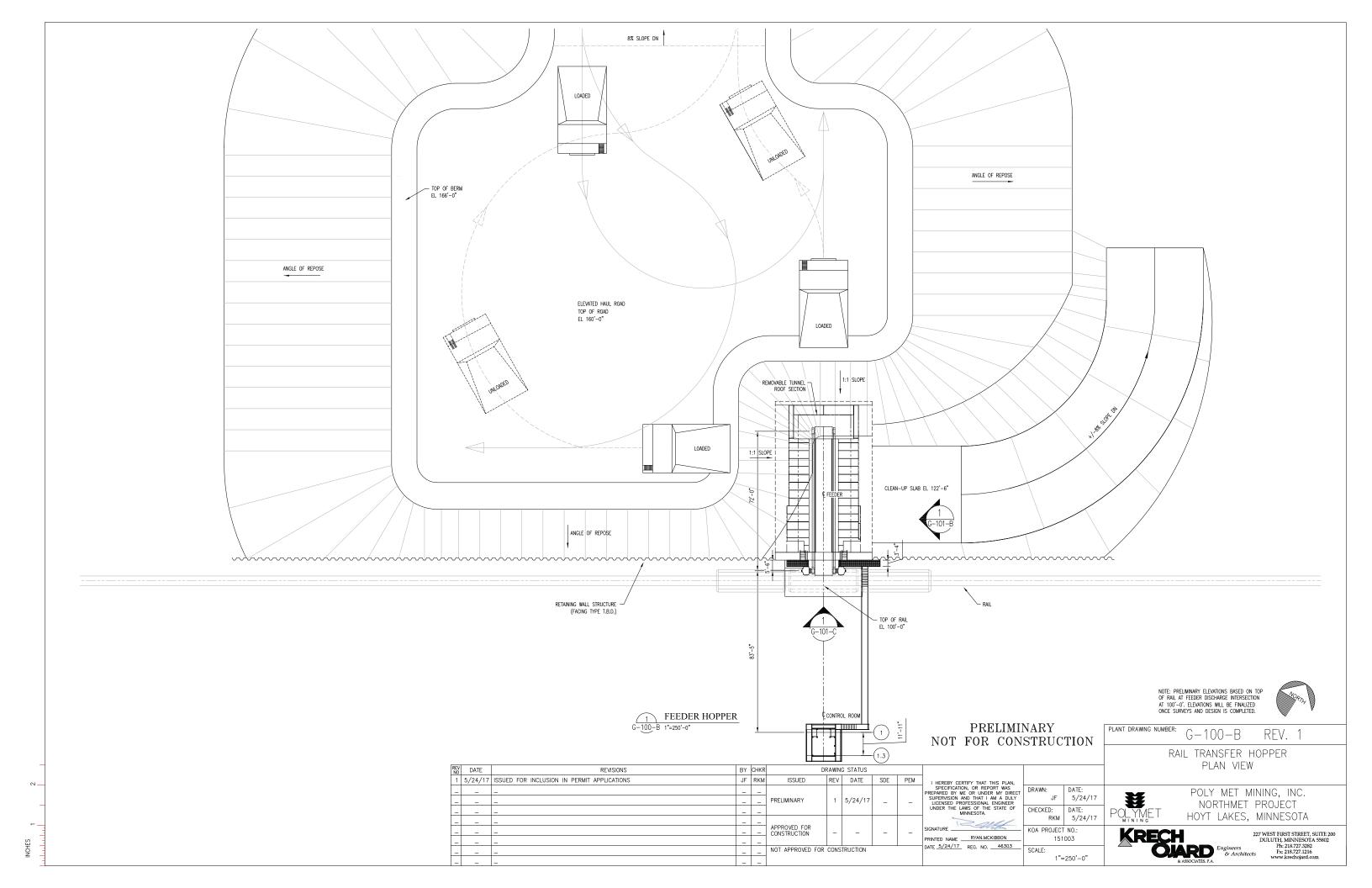


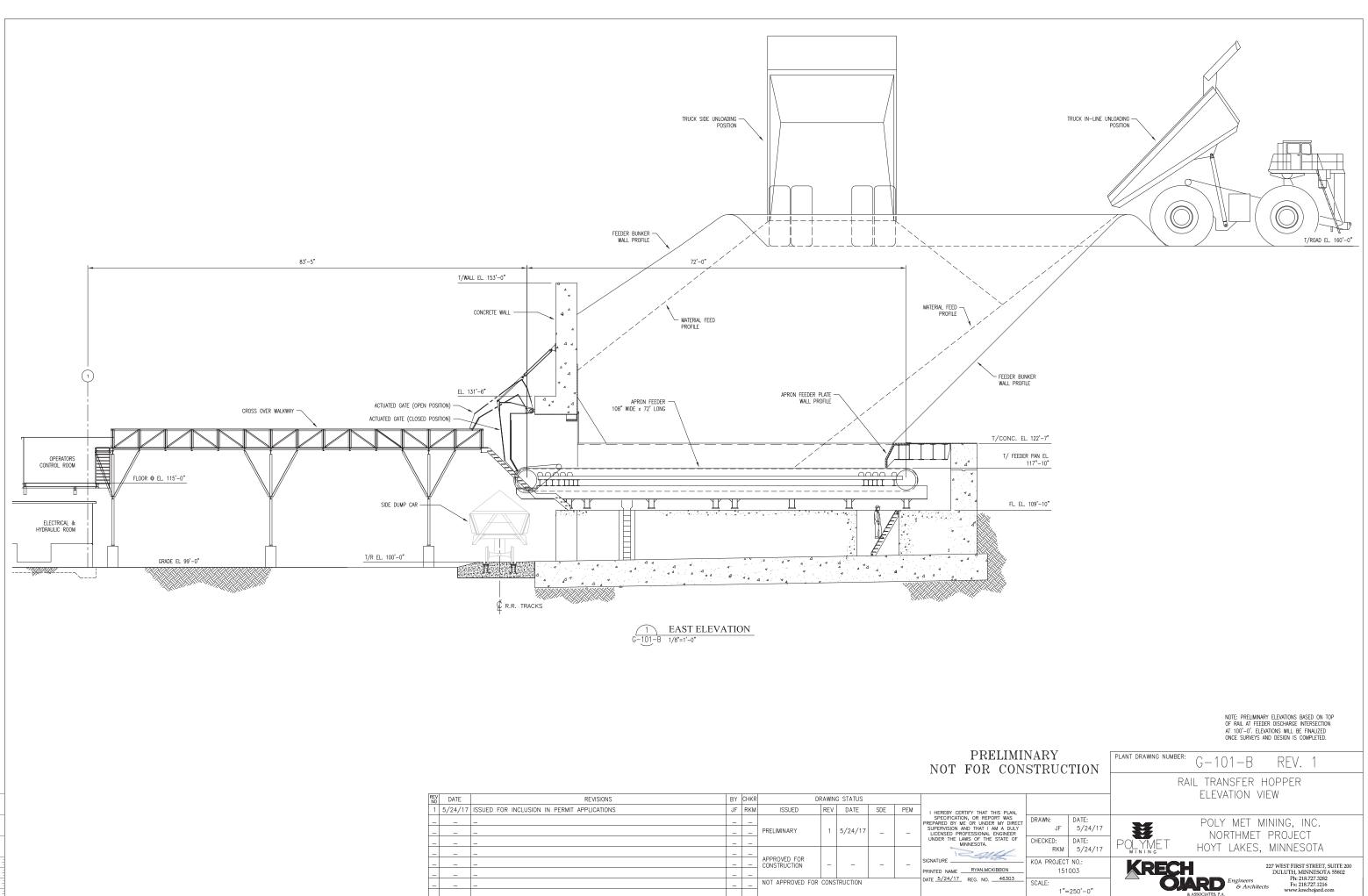
PLAN: OVERBURDEN STORAGE AND LAYDOWN AREA 0 150 0 150 Scale in Feet


VER NO	DATE	DESCRIPTION		ISSUE STATUS		
1	5/21/15	ISSUED FOR INCLUSION IN PERMIT APPLICATION	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
2	8/10/16	OSLA CONTOUR DISPLAY CORRECTED				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DI
3	6/7/2017	PERMIT APPLICATION UPDATES	FOR PERMITTING	3		SUPERVISION AND THAT I AM A DUL' LICENSED PROFESSIONAL ENGINEER
						UNDER THE LAWS OF THE STATE OF MINNESOTA.
			FOR CONSTRUCTION			PRINTED NAME PAUL T. SWENSC
						SIGNATURE
			NOT APPROVED FOR	CONSTRUCTION.		DATE <u>5/26/17</u> LICENSE# 20533

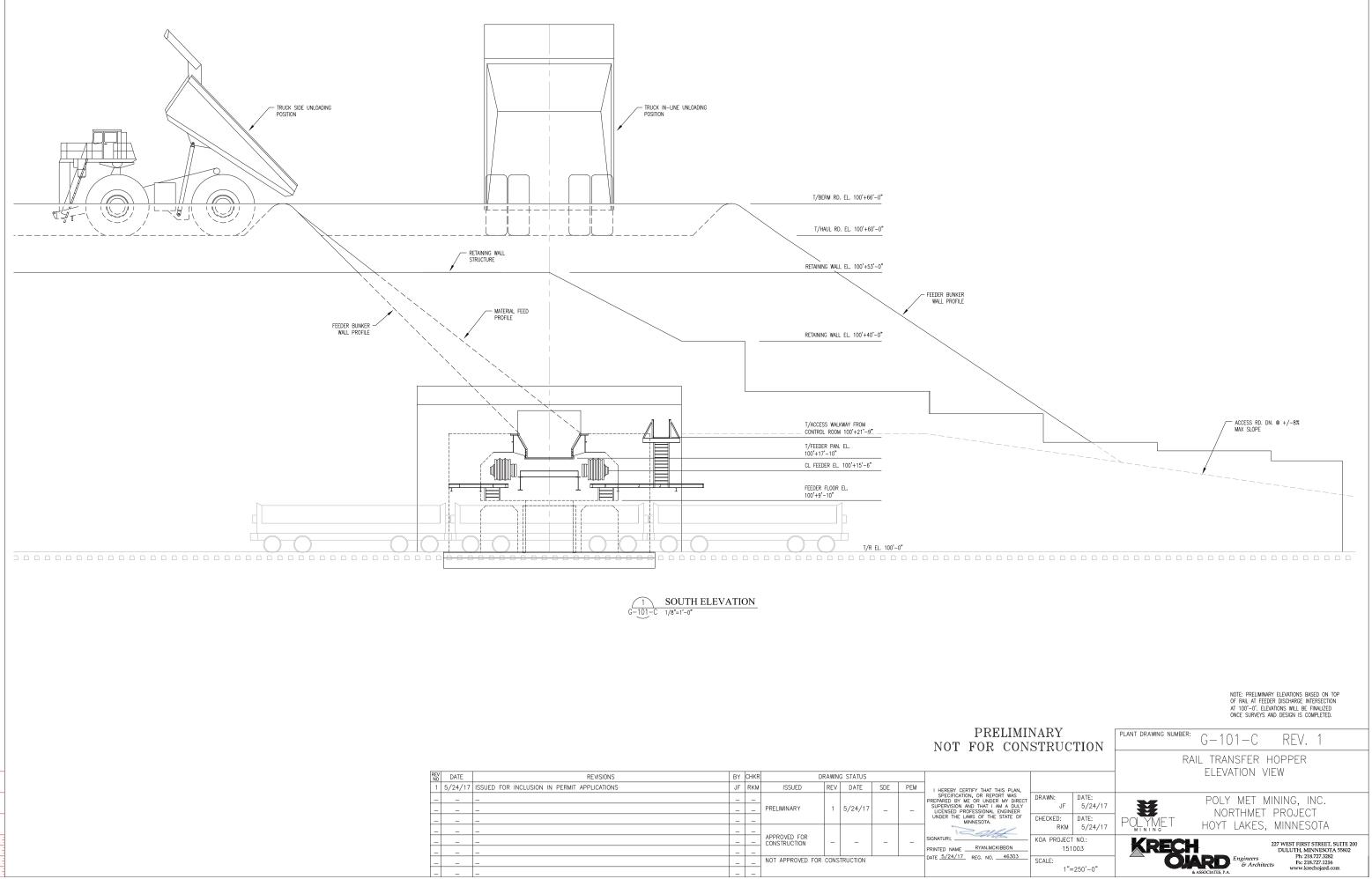
INCHES

R	76:/		
25	2032		
2	$\langle \tilde{a} \rangle$		
4)	(
5/~~	3 3. P		
~			
> 1	<		
:	~1.~.		
1	G_VTL		
2	* * <i>S</i> * ', '		
4	••{/}		
21	• • · <u>·</u> {		
~ 1	/ 9		
2	S- m		
2			
ß	a m		
ROAD NG LIMIT	ار · · · · · · · · · · · · · · · · · · ·		
NG LIMIT	. <i>[]</i>]/£		
	en sing		
Mr.S.	37348 1		
1510	~73i& {		
-7,8	M 318 -		
RH			
°] {	13:201		
	NBE-1		
	- Alter		
)))))))))))))))))))))))))))))))))))))))	SILLES		
/////s/r	-//)))) ((7)		
8]]]]]}		
	The state of the s		
7 ger			
	HHHHHHHHHH		
	HHHHHH CO		
HHHHH			
1 d			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
0 0	25 103		
// S UAI 174TI	ON BASIN AREA		
$\left( \right)$	1 159		
°	/ 7 655		
150	20573		
XK	4604		
	5 52		
_ }}/			
$\langle \gamma \rangle$	Y American		
• 5	ter 1		
/.*	SIX S		
	»	PLANT DRAWING NUMBER:	
		MINE SITE AND DUNKA ROAD EARTHWO OVERBURDEN STORAGE AND LAYDOWN	
		GRADING PLAN	
		POLY MET MINING, INC.	
AN,		NORTHMET PROJECT	
y direct duly Er 5 of	DRAWN: KKB	POLYMET HOYT LAKES, MINNESOTA	۸ I
E OF	CHECKED:	BARR ENGINEERING CO	
NSON	ATS	4300 MARKETPOINTE D SUITE 200	RIVE
	BARR PROJECT NO.: 23/69-0C29	BARR SUITE 200 MINNEAPOLIS, MN. Ph: 1-800-632-2277	
533		BARK MINNEAPOLIS, MN.	REV B





		PLANT DRAWING NUMBER:	
		MINE SITE AND DUNKA ROAD EARTHW	ORK
		HAUL ROAD RECLAMATION PLAN A	
		MINE YEARS 1-11	
LAN.		POLY MET MINING, INC.	
Y DIRECT	DRAWN:	POLYMET NORTHMET PROJECT	
DULY EER E OF	ККВ	$  \Box \bigcirc \square \square$	4
EOF	CHECKED:	BARR ENGINEERING CO	
	ATS	4300 MARKETPOINTE D	RIVE
NSON_	BARR PROJECT NO .:	BARR SUITE 200 MINNEAPOLIS, MN.	
m	23/69-0C29	Ph: 1-800-632-2277	
533	SCALE:	DWG. NO.	REV
	AS SHOWN	EW-010	B




2

		PLANT DRAWING NUMBER:	
		MINE SITE AND DUNKA ROAD EARTHW HAUL ROAD RECLAMATION PLAN B MINE YEARS 11-20	
LAN, Y DIRECT DULY EER E OF	DRAWN: KKB	POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOT/	
NSON	CHECKED: ATS BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING CO 4300 MARKETPOINTE D SUITE 200 MINNEAPOLIS, MN. Ph: 1-800-632-2277	
533	SCALE: AS SHOWN	DWG. NO. <b>EW-011</b>	^{REV} <b>B</b>





NO DATE	REVISIONS	BY	CHKR	Dł	RAWIN	G STATUS			
1 5/24/	17 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	JF	RKM	ISSUED	REV	DATE	SDE	PEM	I HEREBY CERTIFY THAT THIS PLA
	_	_	_						SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DI
	_	_	_	PRELIMINARY	1	5/24/17	-	-	SUPERVISION AND THAT I AM A DU LICENSED PROFESSIONAL ENGINEE
	_	_	_						UNDER THE LAWS OF THE STATE MINNESOTA.
	_	_	_						Ralf
	_	_	_	APPROVED FOR CONSTRUCTION	-	-	-	-	SIGNATURE
	_	_	_						PRINTED NAME
	_	_	_	NOT APPROVED FOR	CONS	TRUCTION			DATE REG. NO4030.
	_	_	_						



[	REV NO	DATE	REVISIONS	BY	CHKR	Df	RAWN	G STATUS	-		
- H	NO	DATE	The visions	01	0111313	Di		0 01/1100			
	1	5/24/17	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	JF	RKM	ISSUED	REV	DATE	SDE	PEM	I HEREBY CERTIFY THAT THIS PLA
	_	-	_	_	-						SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DI
	_	-	_	-	-	PRELIMINARY	1	5/24/17	_	_	SUPERVISION AND THAT I AM A DI LICENSED PROFESSIONAL ENGINE
	_	-	_	-	-						UNDER THE LAWS OF THE STATE MINNESOTA.
	_	-	_	-	-						Rall
	-	_	-	_	_	APPROVED FOR CONSTRUCTION	_	-	_	_	SIGNATURE
	_	_	_	-	-						PRINTED NAME
	_	-	_	-	-	NOT APPROVED FOR	CONS	TRUCTION			DATE <u>5/24/17</u> REG. NO. <u>4630</u>
	_	-	_	_	_						

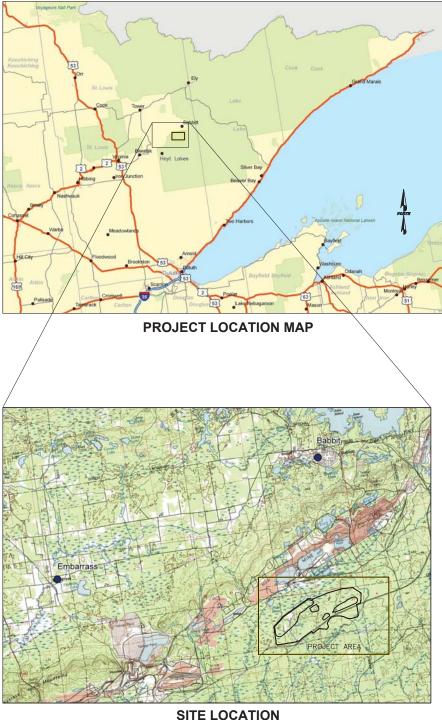
Categories 1, 2/3, and 4 Stockpiles and Ore Surge Pile Design Permit Application Support Drawings

# **Errata Sheet**

## Poly Met Mining, Inc. NorthMet Project

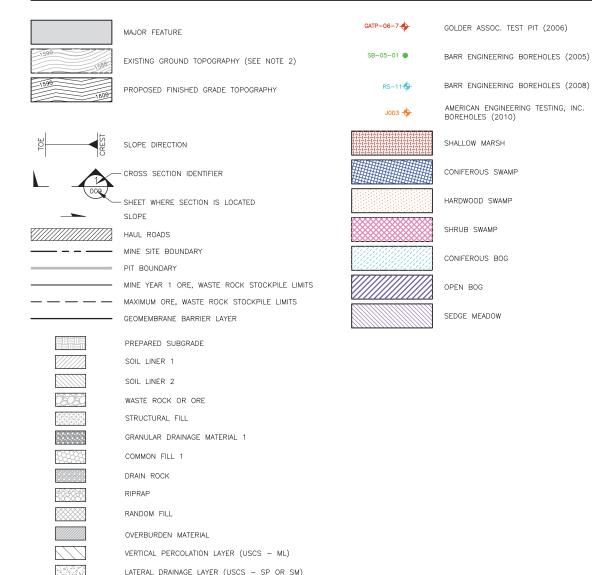
# Permit Application Support Drawings: Categories 1, 2/3, and 4 Stockpiles and Ore Surge Pile Design

## August 2017 (version 3)


Engineering design is currently in progress. The table below lists changes that have been identified todate and have not yet been incorporated in the attached permit application support drawings within this set. Final design will incorporate these changes along with additional site-specific information (e.g., supplementary geotechnical data); therefore, additional adjustments may be made during final design that will be incorporated into the final design drawing set.

Drawing Sheet(s)	Change
Global change to all sheets, as needed	The terminology "mine drainage" as noted in these drawings will be changed to "mine water".
SKP-002, SKP-003, SKP-004, SKP- 005, SKP-006, SKP-007, SKP-008, SKP-009, SKP-010, SKP-011, SKP- 012, SKP-014, SKP-015, SKP-016, SKP-017, SKP-018, SKP-026, SKP- 027, SKP-028, SKP-029, SKP-030	The "Mine Site Boundary" will be replaced by the "Mining Area Boundary" as shown on figures included in the Permit to Mine Application.

# POLY MET MINING, INC. NORTHMET PROJECT PERMIT APPLICATION SUPPORT DRAWINGS CATEGORIES 1, 2/3, AND 4 STOCKPILES AND ORE SURGE PILE DESIGN HOYT LAKES, MINNESOTA


DRAWING LIST		
SHEE	REVISION	SHEET NUMBER
TITLE SHEET AND LOCATION MAP	G	SKP-001
LEGEND, GENERAL NOTES AND SPECIFICATIONS	G	SKP-002
STOCKPILE LAYOUTS - MINE YEAR 1 LIMITS	G	SKP-003
STOCKPILE LAYOUTS - MINE YEAR 2 LIMITS	G	SKP-004
STOCKPILE LAYOUTS - AT PLANNED UTILIZATION LIMITS	G	SKP-005
STOCKPILE LAYOUTS - MINE YEAR 21 LIMITS CLOSURE CO	G	SKP-006
EXISTING SITE CONDITIONS	G	SKP-007
SITE LAYOUT AND LOCATION OF FIELD INVESTIGATIONS	G	SKP-008
DEPTH TO BEDROCK ISOPACH MAP	G	SKP-009
CATEGORY 1 STOCKPILE SUBGRADE EXCAVATION PLAN	G	SKP-010
CATEGORY 1 STOCKPILE MINE YEAR 1 CONTINGENCY CLOS	G	SKP-011
CATEGORY 1 STOCKPILE FINAL GRADES AND SUB-BASIN E	G	SKP-012
CATEGORY 1 STOCKPILE DESIGN SECTIONS	G	SKP-013
CATEGORY 2/3 STOCKPILE SUBGRADE EXCAVATION PLAN	G	SKP-014
CATEGORY 2/3 STOCKPILE FOUNDATION GRADING PLAN -	G	SKP-015
CATEGORY 2/3 STOCKPILE UNDERDRAIN PIPING PLAN - M	G	SKP-016
CATEGORY 2/3 STOCKPILE OVERLINER DRAINAGE PIPING P	G	SKP-017
CATEGORY 2/3 STOCKPILE MAXIMUM CAPACITY CONFIGURA	G	SKP-018
CATEGORY 2/3 STOCKPILE DESIGN SECTIONS	G	SKP-019
CATEGORY 4 STOCKPILE SUBGRADE EXCAVATION PLAN	G	SKP-020
CATEGORY 4 STOCKPILE FOUNDATION GRADING PLAN - M	G	SKP-021
CATEGORY 4 STOCKPILE UNDERDRAIN PIPING PLAN - MIN	G	SKP-022
CATEGORY 4 STOCKPILE OVERLINER DRAINAGE PIPING PLA	G	SKP-023
CATEGORY 4 STOCKPILE MAXIMUM CAPACITY CONFIGURATIO	G	SKP-024
CATEGORY 4 STOCKPILE DESIGN SECTIONS	G	SKP-025
ORE SURGE PILE SUBGRADE EXCAVATION PLAN	G	SKP-026
ORE SURGE PILE FOUNDATION GRADING PLAN	G	SKP-027
ORE SURGE PILE UNDERDRAIN PIPING PLAN	G	SKP-028
ORE SURGE PILE OVERLINER DRAINAGE PIPING PLAN	G	SKP-029
ORE SURGE PILE TYPICAL CONFIGURATION	G	SKP-030
ORE SURGE PILE DESIGN SECTIONS	G	SKP-031
CATEGORY 1 STOCKPILE RECLAMATION AND OPERATIONS S	G	SKP-032
CATEGORY 1 STOCKPILE RECLAMATION AND OPERATIONS S	G	SKP-033
CATEGORY 1 STOCKPILE PHASED COVER DESIGN	G	SKP-034
CONSTRUCTION DETAILS	G	SKP-035

VER DAT	DESCRIPTION	]	SSUE STATUS		
A 12/02	11 ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN
B 2/15,	3 ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY I
C 5/29,	3 ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR PERMITTING	G	8/21/17	SUPERVISION AND THAT I AM A DU
D 1/14,	4 ISSUED FOR AGENCY REVIEW				UNDER THE LAWS OF THE STATE O
E 4/10,	5 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				1 h
F 5/22,	5 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			SIGNATURE
G 8/21/	7 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	000010001100			PRINTED NAME BRENT R. BRONS
		NOT APPROVED FOR	CONSTRUCTION.	-	DATE <u>8/21/17</u> LICENSE # 464
		1			



SHEET TITLE
S
E CONFIGURATION
CLOSURE CONFIGURATION
SIN DELINEATION
AN
N - MINE YEAR 1 AND MAXIMUM
- MINE YEAR 1 AND MAXIMUM
NG PLAN — MINE YEAR 1 AND MAXIMUM
JURATION
- MINE YEAR 1 AND MAXIMUM
MINE YEAR 1 AND MAXIMUM
PLAN - MINE YEAR 1 AND MAXIMUM
RATION
NS SURFACE WATER - MANAGEMENT DETAILS - SHEET 1 OF 2
NS SURFACE WATER - MANAGEMENT DETAILS - SHEET 2 OF 2

		PLANT DRAWING NUMBER:						
		TITLE SHEET AND LOCATION MAP						
N, DIRECT DULY R OF	DRAWN: MTM	POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA						
ISON	CHECKED: GOLDER PROJECT NO.: 113-2209	GOLDER ASSOCIATES INC. GOLDER ASSOCIATES INC. 44 UNION BOULEVARD, SU LAREWOOD, CO USA 80233 Ph: (303) 980–0540 Fox: (303) 985–2080 www.golder.com						
5492	SCALE: AS SHOWN	DWG. NO. SKP-001	REV					



#### TERTIARY COLLECTION PIPING

4-INCH

PRIMARY	AND	SECONDARY	COLLECTION	PIPINO
			4-INCH	
			6-INCH	
			8-INCH	
			10-INCH	
			12-INCH	

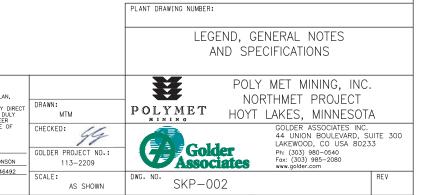
#### LIST OF ABBREVIATIONS

- ABOVE MEAN SEA LEVEL AMSL
- CUBIC YARD DIAMETER ELEVATION DIA.
  - EVAPOTRANSPIRATION
- FEET HIGH DENSITY POLYETHYLENE HDPE
  - INSIDE DIAMETER
  - INCH
- LINEAR LOW DENSITY POLYETHYLENE LEAK COLLECTION AND RECOVERY SYSTEM LLDPE LCRS MAXIMUM
- MINIMUM NOT TO SCALE OUTSIDE DIAMETER MIN. N.T.S
- OD SY TYP. SQUARE YARD

MAX

ROM

- SQUARE YAKU TYPICAL ROCK AND OVERBURDEN MANAGEMENT PLAN UNIFIED SOIL CLASSIFICATION SYSTEM PERFORATED CORRUGATED POLYETHYLENE
- USCS CPEP


#### **GENERAL NOTES:**

- THIS DRAWING SET REPRESENTS THE DESIGN FOR PERMITTING FOR CATEGORY 1 STOCKPILE, CATEGORY 2/3 STOCKPILE, CATEGORY 4 STOCKPILE AND ORE SURGE PILE FOR THE POLYMET NORTHMET PROJECT IN HOYT LAKES, MINNESOTA, PREPARED IN SUPPORT OF A PERMIT TO MINE. THE DRAWING SET ONLY INCLUDES INFRASTRUCTURE ASSOCIATED WITH THE MOVEMENT (STOCKPILES, PITS, HAUL ROADS, AND RAIL TRANSFER HOPPER) AND NOT OTHER SUPPORT FACILITIES.
- 2. BASE TOPOGRAPHY PROVIDED BY BARR ENGINEERING IN AUGUST 2011.
- GOLDER ASSOCIATES INC. (GOLDER) IS RESPONSIBLE FOR STOCKPILE DESIGNS WITH BATTERY LIMITS DEFINED BY THE PERIMETER/LINER BERMS AND THE UNDERDRAIN SUMPS.
- 4. AT THE BASIC ENGINEERING LEVEL, LIMITED GEOTECHNICAL DATA EXISTS, PARTICULARLY IN LOWLAND AREAS. ADDITIONAL DATA WILL BE OBTAINED FROM THESE AREAS AFTER THE PERMIT TO MINE IS APPROVED. SUBGRADE EXCAVATION PLANS WERE DEVELOPED USING AVAILABLE INFORMATION, AND WILL BE UPDATED FOR FINAL DESIGN BASED ON RESULTS OF PHASE II GEOTECHNICAL INVESTIGATION.
- 5. EARTHWORK QUANTITIES BASED ON NEAT LINE (I.E., NET CUT/ FILL SHRINKAGE FACTOR = 1.0).
- PREPARED SUBGRADE, AS DEFINED ON THE DRAWINGS, INCLUDES CLEARING, GRUBBING, TOPSOIL REMOVAL, REMOVAL OF GEOTECHNICALLY-UNSUITABLE MATERIALS, MOISTURE CONDITIONING, AND SUBGRADE COMPACTION AS DEFINED IN THE SPECIFICATIONS. 6.
- FOUNDATION PREPARATION ASSUMES THE FOLLOWING GENERAL CONSTRUCTION SEQUENCE: (I) EXCAVATE TO BEDROCK WITHIN LOWLAND AREAS ASSUMING A MAXIMUM DEPTH OF OVER-EXCAVATION OF 20 FEET, OR UNTIL REACHING GEOTECHNICALLY-SUITABLE FOUNDATION SOILS AS DETERMINED BY THE PHASE II GEOTECHNICAL INVESTIGATION. STOCKPILE ORGANIC SOILS AND MINERAL OVERBURDEN SEPARATELY FOR FUTURE APPROVED USE; (II) PLACE STRUCTURAL FILL AS REQUIRED TO MEET THE FOUNDATION GRADE REQUIREMENTS WITH GRANULAR SOILS, E.G., DULUTH COMPELEX CONSTRUCTION ROCK, BIWABIK IRON FORMATION CONSTRUCTOR BOOK AND LING ATURATED WINERAL OVERBURDEN. (III) SETABLISE FOUNDATION 7. CONSTRUCTION ROCK, AND UNSATURATED MINERAL OVERBURDEN; (III) ESTABLISH FOUNDATION DRAINAGE AS REQUIRED TO PREVENT EXCESS PORE PRESSURES DURING OPERATION; AND (IV) CONSTRUCT LINER SYSTEM DEPENDENT UPON THE REACTIVITY CATEGORY OF THE STOCKPILE MATERIAL
- AREAS WITH UNSUITABLE SOILS (LOWLAND AREAS) ARE ASSUMED TO COINCIDE WITH THE PREVIOUSLY IDENTIFIED WETLAND AREAS. HORIZONTAL AND VERTICAL EXTENTS OF LOWLAND AREAS ARE EXPECTED TO BE REVISED BASED ON RESULTS OF PHASE II GEOTECHNICAL 8. INVESTIGATION.
- POST-CONSOLIDATION STOCKPILE SETTLEMENTS WERE ESTIMATED BASED ON LIMITED INFORMATION ON THE CONSOLIDATION PROPERTIES OF SUBGRADE MATERIALS. HENCE, FOUNDATION EXCAVATION AND GRADING PLANS ARE ANTICIPATED TO UNDERGO MINOR MODIFICATIONS BASED ON THE RESULTS OF THE PHASE II GEOTECHNICAL INVESTIGATION TO ENSURE SUFFICIENT DRAINAGE. 9.
- 10. CATEGORY 1 WASTE ROCK STOCKPILE WILL BE RECLAIMED BY PLACEMENT OF A GEOMEMBRANE COVER AT CLOSURE. PRIOR TO CLOSURE, WASTE ROCK CATEGORY 2, 3 AND 4 WILL BE USED FOR PIT BACKFILL.
- 11. LIMITS OF DISTURBANCE (I.E., CLEARING LIMITS) ASSUMED TO BE 40 FEET FROM THE FACILITY LIMITS.
- 12. INTERIM STOCKPILE FILL SLOPES SHOWN WITH WASTE ROCK SLOPES AT ANGLE OF REPOSE. FINAL/CLOSURE STOCKPILE FILL SLOPES SHOWN WITH WASTE ROCK SLOPES REGRADED TO FINAL SLOPE ANGLES.

#### SPECIFICATIONS:

- 1. FOR EARTHWORKS COMPONENTS OF THE STOCKPILE DESIGN, REFER TO SECTION 2300 OF THE PROJECT SPECIFICATIONS.
- FOR GEOSYNTHETIC AND PIPING COMPONENTS OF THE STOCKPILE DESIGN, REFER TO SECTION 2272 FOR GEOTEXTILE, 2273 FOR POLYETHYLENE GEOMEMBRANE LINERS, AND SECTION 2610 FOR PIPING.
- 3. QUALITY ASSURANCE REQUIREMENTS FOR STOCKPILE CONSTRUCTION ARE DEFINED IN THE CONSTRUCTION QUALITY ASSURANCE PLAN.
- 4. SPECIFICATION SECTION NUMBERING IS PRELIMINARY.

VER NO	DATE	DESCRIPTION	]	SSUE STATUS		
A	12/02/11	ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
В	2/15/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRI
С	5/29/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR	G		SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
D	1/14/14	ISSUED FOR AGENCY REVIEW	1 Ender 1 Into			UNDER THE LAWS OF THE STATE OF MINNESOTA.
E	4/10/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				1 American
F	5/22/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			SIGNATURE
G	8/21/17	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	001011001101			PRINTED NAME BRENT R. BRONSON
			NOT APPROVED FOR	CONSTRUCTION.		DATE <u>8/21/17</u> LICENSE # <u>46492</u>







VEF NC	DATE	DESCRIPTION	]	ISSUE STATUS		
A	12/02/1	I ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,
В	2/15/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRI
С	5/29/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR	G	8/21/17	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
D	1/14/14	ISSUED FOR AGENCY REVIEW				UNDER THE LAWS OF THE STATE OF MINNESOTA.
E	4/10/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				1 Samera
F	5/22/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR			SIGNATURE
G	8/21/17	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				PRINTED NAME BRENT R. BRONSON
			NOT APPROVED F	OR CONSTRUCT	ION.	DATE <u>8/21/17</u> LICENSE # <u>46492</u>
			1			



HAUL ROADS TTT

019

EXISTING GROUND TOPOGRAPHY

PROPOSED STOCKPILE LAYOUTS

MINE SITE BOUNDARY

MINE YEAR 1 PIT BOUNDARY (SEE NOTE 1) MINE YEAR 1 ORE, WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)

- MAXIMUM ORE, WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)

- CROSS SECTION IDENTIFIER

SHEET WHERE SECTION IS LOCATED

#### NOTES


- OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- 3. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.
- CATEGORY 2/3 AND CATEGORY 4 STOCKPILES SHOWN BASED ON WASTE ROCK SCHEDULE ONLY, I.E. WITHOUT OVERBURDEN. SEE DRAWINGS 018 AND 024 SHOWING MAXIMUM CAPACITY LAYOUTS FOR THESE STOCKPILES.

#### REFERENCES

- EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH.
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).

PLANT DRAWING NUMBER:

STOCKPILE LAYOUTS - MINE YEAR 1 LIMITS POLY MET MINING, INC. 至 NORTHMET PROJECT DRAWN: POLYMET HOYT LAKES, MINNESOTA MTM GOLDER ASSOCIATES INC. 44 UNION BOULEVARD, SUITE 300 LAKEWOOD, CO USA 80233 Ph: (303) 980–5080 Fax: (303) 985–2080 www.golder.com CHECKED: 44 Golder GOLDER PROJECT NO.: 7 🍠 ION 113-2209 Associates 492 SCALE: DWG. NO. SKP-003 AS SHOWN





	VER NO	DATE	DESCRIPTION	I	SSUE STATUS		
	А	12/02/11	ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,
	В	2/15/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIF
	С	5/29/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR	G		SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
	D	1/14/14	ISSUED FOR AGENCY REVIEW	- Ender - Frido			UNDER THE LAWS OF THE STATE OF MINNESOTA.
	Е	4/10/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				1 American
	F	5/22/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR			SIGNATURE
	G	8/21/17	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	CONSTRUCTION			PRINTED NAME BRENT R. BRONSON
				NOT APPROVED FOR	CONSTRUCTION.		DATE <u>8/21/17</u> LICENSE # 46493
Ī							



EXISTING GROUND TOPOGRAPHY

PROPOSED GRADING TOPOGRAPHY

HAUL ROADS

A 019

- MINE SITE BOUNDARY

PIT BOUNDARIES AT MINE YEAR 2 (SEE NOTE 1) MINE YEAR 1 AND 2 ORE, WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)

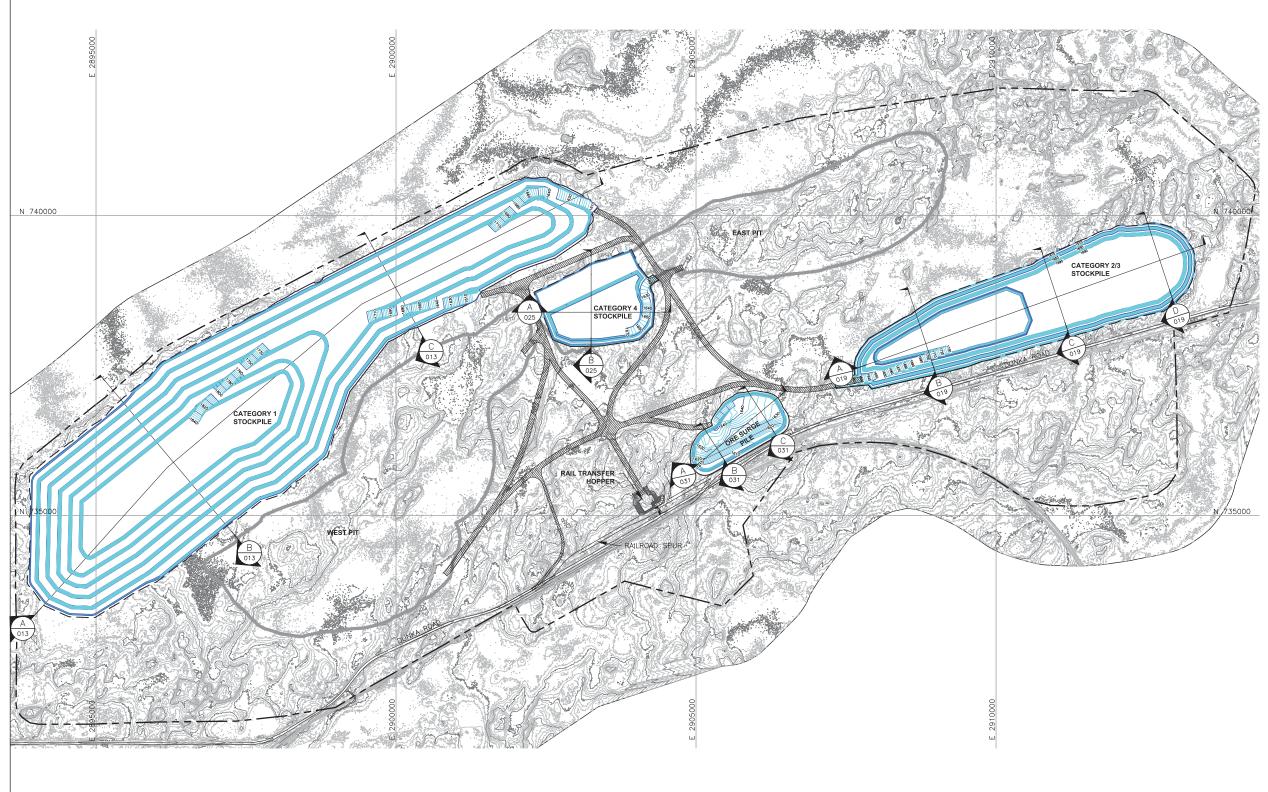
- MAXIMUM ORE, WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)

- CROSS SECTION IDENTIFIER

- SHEET WHERE SECTION IS LOCATED

#### NOTES

735000


- 1. OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- 3. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.
- 4. CATEGORY 2/3 AND CATEGORY 4 STOCKPILES SHOWN BASED ON WASTE ROCK SCHEDULE ONLY, I.E. WITHOUT OVERBURDEN. SEE DRAWINGS 018 AND 024 SHOWING MAXIMUM CAPACITY LAYOUTS FOR THESE STOCKPILES.

#### REFERENCES

- 1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH.
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).

PLANT DRAWING NUMBER:

STOCKPILE LAYOUTS - MINE YEAR 2 LIMITS 至 POLY MET MINING, INC. NORTHMET PROJECT DRAWN: POLYMET DIRECT MTM HOYT LAKES, MINNESOTA GOLDER ASSOCIATES INC. 44 UNION BOULEVARD, SUITE 300 LAKEWOOD, CO USA 80233 Ph: (303) 980–0540 Fax: (303) 985–2080 www.golder.com ÔF CHECKED: 44 Golder GOLDER PROJECT NO.: 1/5 SON 113-2209 Associates 6492 SCALE: DWG. NO. REV SKP-004 AS SHOWN





							OCKPILE LAYOUTS – NNED UTILIZATION LIMITS
VER DATE DESCRIPTION	I	SSUE STATUS					POLY MET MINING, INC.
A 12/02/11 ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.			
B 2/15/13 ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT	DRAWN:	POLYMET	NORTHMET PROJECT
C 5/29/13 ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR PERMITTING	G	8/21/17	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER	MTM		HOYT LAKES, MINNESOTA
D 1/14/14 ISSUED FOR AGENCY REVIEW				UNDER THE LAWS OF THE STATE OF MINNESOTA.	CHECKED:	AR.	GOLDER ASSOCIATES INC.
E 4/10/15 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				11	99	EALON	44 UNION BOULEVARD, SUITE 300 LAKEWOOD. CO USA 80233
F 5/22/15 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			SIGNATURE	GOLDER PROJECT NO.:	Gold	Ph: (303) 980-0540
G 8/21/17 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				PRINTED NAME BRENT R. BRONSON	113-2209	Assoc	Fax: (303) 985-2080 www.golder.com
	NOT APPROVED FOR	CONSTRUCTION.		DATE <u>8/21/17</u> LICENSE <u># 46492</u>	SCALE: AS SHOWN	DWG. NO. SKP-OC	D5

1590 1580 1600

> A 025

EXISTING GROUND TOPOGRAPHY

PROPOSED LAYOUTS

HAUL ROADS

- MINE SITE BOUNDARY

PIT BOUNDARIES AT MINE YEAR 11 (SEE NOTE 1)
 MINE YEAR 1 ORE, WASTE ROCK STOCKPILE
 OUTLINES (SEE NOTE 2)

CROSS SECTION IDENTIFIER

- SHEET WHERE SECTION IS LOCATED

#### NOTES

- 1. OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- 3. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.
- CATEGORY 2/3 AND CATEGORY 4 STOCKPILES SHOWN BASED ON WASTE ROCK SCHEDULE ONLY, I.E. WITHOUT OVERBURDEN. SEE DRAWINGS 018 AND 024 SHOWING MAXIMUM CAPACITY LAYOUTS FOR THESE STOCKPILES.
- PLANNED UTILIZATION LIMITS FOR CATEGORY 1 STOCKPILE REACHED IN MINE YEAR 13, PLANNED UTILIZATION LIMITS FOR CATEGORY 2/3 AND CATEGORY 4 STOCKPILES REACHED IN MINE YEAR 11.

#### REFERENCES

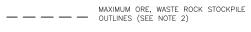
- 1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH.
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).





					1	1	MINI	DCKPILE LAYOUTS E YEAR 21 LIMITS JRE CONFIGURATION	
VER DATE			SSUE STATUS	DATE	-			POLY MET MINING, INC	).
A 12/02/11	ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,			NORTHMET PROJECT	
B 2/15/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT	DRAWN:	POLYMET		
C 5/29/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR PERMITTING	G	8/21/17	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF	MTM		HOYT LAKES, MINNESOT	A
D 1/14/14	ISSUED FOR AGENCY REVIEW				UNDER THE LAWS OF THE STATE OF MINNESOTA.	CHECKED: 64		GOLDER ASSOCIATES INC. 44 UNION BOULEVARD, S	
E 4/10/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				XX.	77		LAKEWOOD, CO USA 802	
F 5/22/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			SIGNATURE	GOLDER PROJECT NO.:	<b>Golde</b>	Ph: (303) 980-0540	
G 8/21/17	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				PRINTED NAME BRENT R. BRONSON	113-2209	Associa	Fax: (303) 985-2080 www.golder.com	
		NOT APPROVED FOR	CONSTRUCTION.		DATE <u>8/21/17</u> LICENSE <u># 46492</u>	SCALE: AS SHOWN	DWG. ND. SKP-006		REV




EXISTING GROUND TOPOGRAPHY

PROPOSED LAYOUT CONTOURS

ULTIMATE PIT BOUNDARIES (SEE NOTE 1) MINE YEAR 1 ORE, WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)

HAUL ROADS

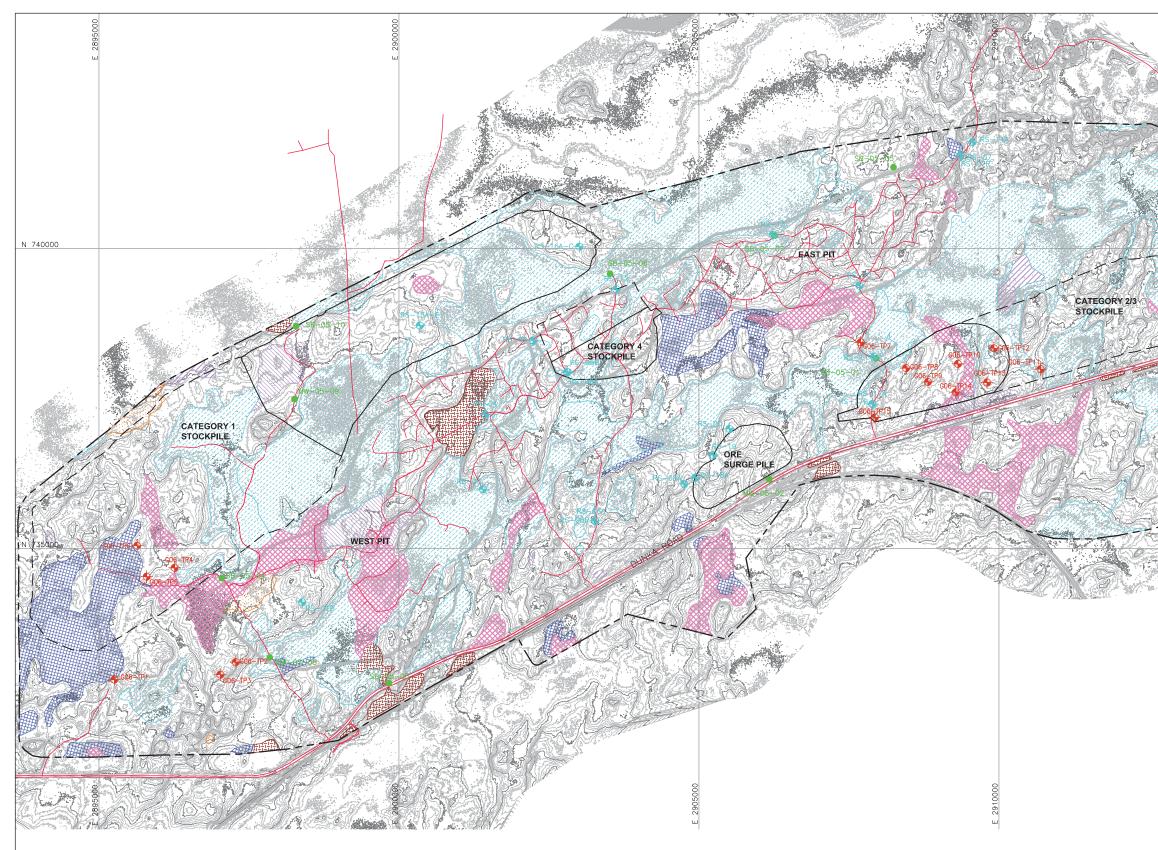
------ MINE SITE BOUNDARY



- CROSS SECTION IDENTIFIER

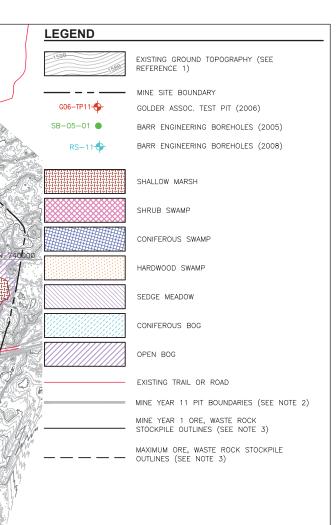


SHEET WHERE SECTION IS LOCATED


#### NOTES

35000

- 1. OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- 3. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.


#### REFERENCES

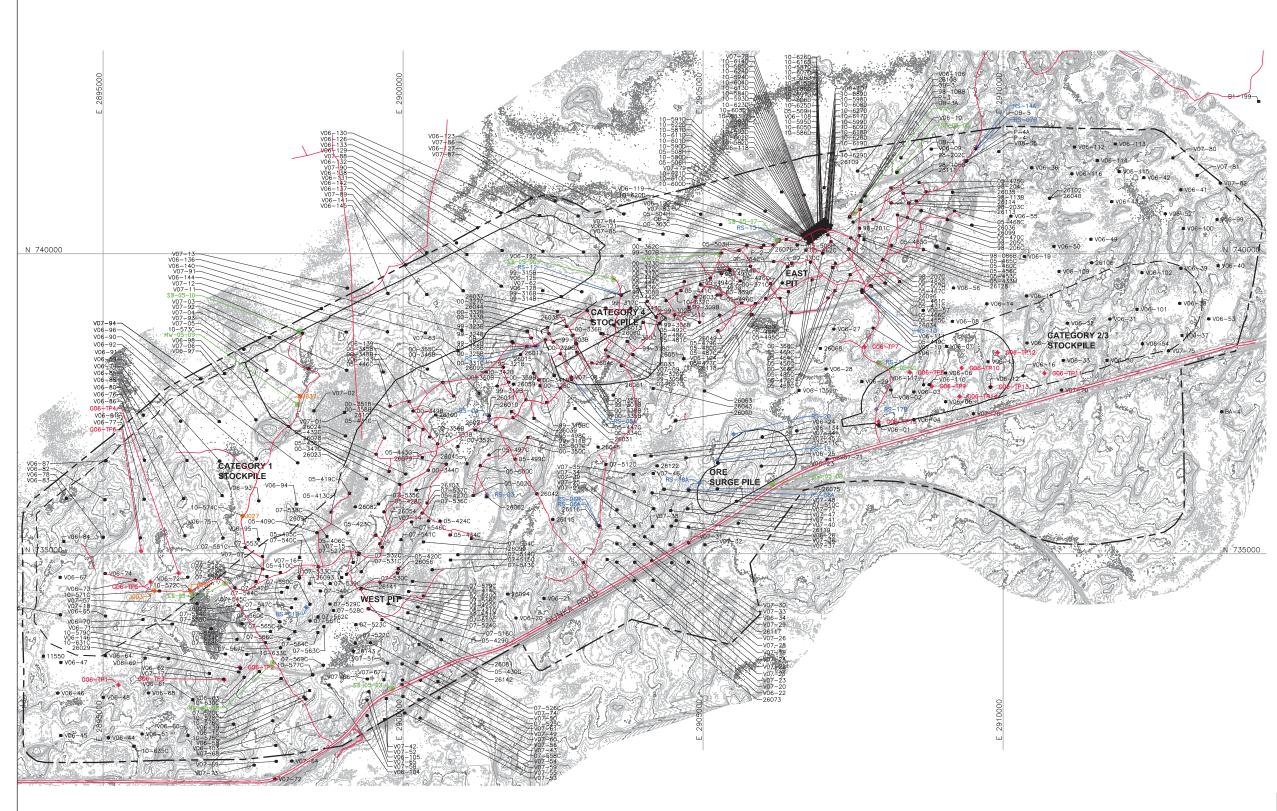
- 1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH.
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).



0 800 1600 SCALE IN FEET

						EXISTI	NG SITE CONDITIONS
VER NO         DATE         DESCRIPTION           A         12/02/11         ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	ISSUE STATUS VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.		¥	POLY MET MINING, INC. NORTHMET PROJECT
B 2/15/13 ISSUED FOR REVIEW FOR INCLUSION IN ROMP C 5/29/13 ISSUED FOR REVIEW FOR INCLUSION IN ROMP D 1/14/14 ISSUED FOR AGENCY REVIEW	FOR PERMITTING	G	8/21/17	SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF	DRAWN: MTM CHECKED:	POLYMET	HOYT LAKES, MINNESOTA
E         4/10/15         ISSUED FOR INCLUSION IN PERMIT APPLICATIONS           F         5/22/15         ISSUED FOR INCLUSION IN PERMIT APPLICATIONS           G         8/21/17         ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			NINNESOTA. SIGNATURE Annaem PRINTED NAME BRENT R. BRONSON	GOLDER PROJECT NO.: 113-2209	Golde	44 UNION BOULEVARD, SUITE 300 LAKEWOOD, CO USA 80233 Ph: (303) 980–0540 Fox: (303) 985–2080 www.golder.com
	NOT APPROVED FOR	CONSTRUCTION.		DATE <u>8/21/17</u> LICENSE <u># 46492</u>	SCALE: AS SHOWN	DWG. NO. SKP-007	, REV




#### NOTES

N 735000

- 1. WETLAND DELINEATION CHARACTERIZATION PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 2. OPEN PIT LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 3. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- 4. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.

#### REFERENCES

- 1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH,
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).





								LAYOUT AND LOCATION FIELD INVESTIGATIONS
NO DATE	DESCRIPTION		ISSUE STATUS				×	POLY MET MINING, INC.
A 12/02/11	ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.		Ħ	NORTHMET PROJECT
B 2/15/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT	DRAWN:	POLYMET	
C 5/29/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR PERMITTING	G	G 8/21/17	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER	MTM		HOYT LAKES, MINNESOTA
D 1/14/14	ISSUED FOR AGENCY REVIEW				UNDER THE LAWS OF THE STATE OF MINNESOTA.	CHECKED:	A	GOLDER ASSOCIATES INC.
E 4/10/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				11	99	EALONI	44 UNION BOULEVARD, SUITE 300 LAKEWOOD. CO USA 80233
F 5/22/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			SIGNATURE	GOLDER PROJECT NO.:	<b>Gold</b>	Ph: (303) 980-0540
G 8/21/17	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				PRINTED NAME BRENT R. BRONSON	113-2209	Associ	ates Fax: (303) 985-2080 www.golder.com
		NOT APPROVED FOR	CONSTRUCTION.		DATE <u>8/21/17</u> LICENSE <u># 46492</u>	SCALE: AS SHOWN	DWG. NO. SKP-00	)8 REV

NCHES

### LEGEND



EXISTING GROUND TOPOGRAPHY

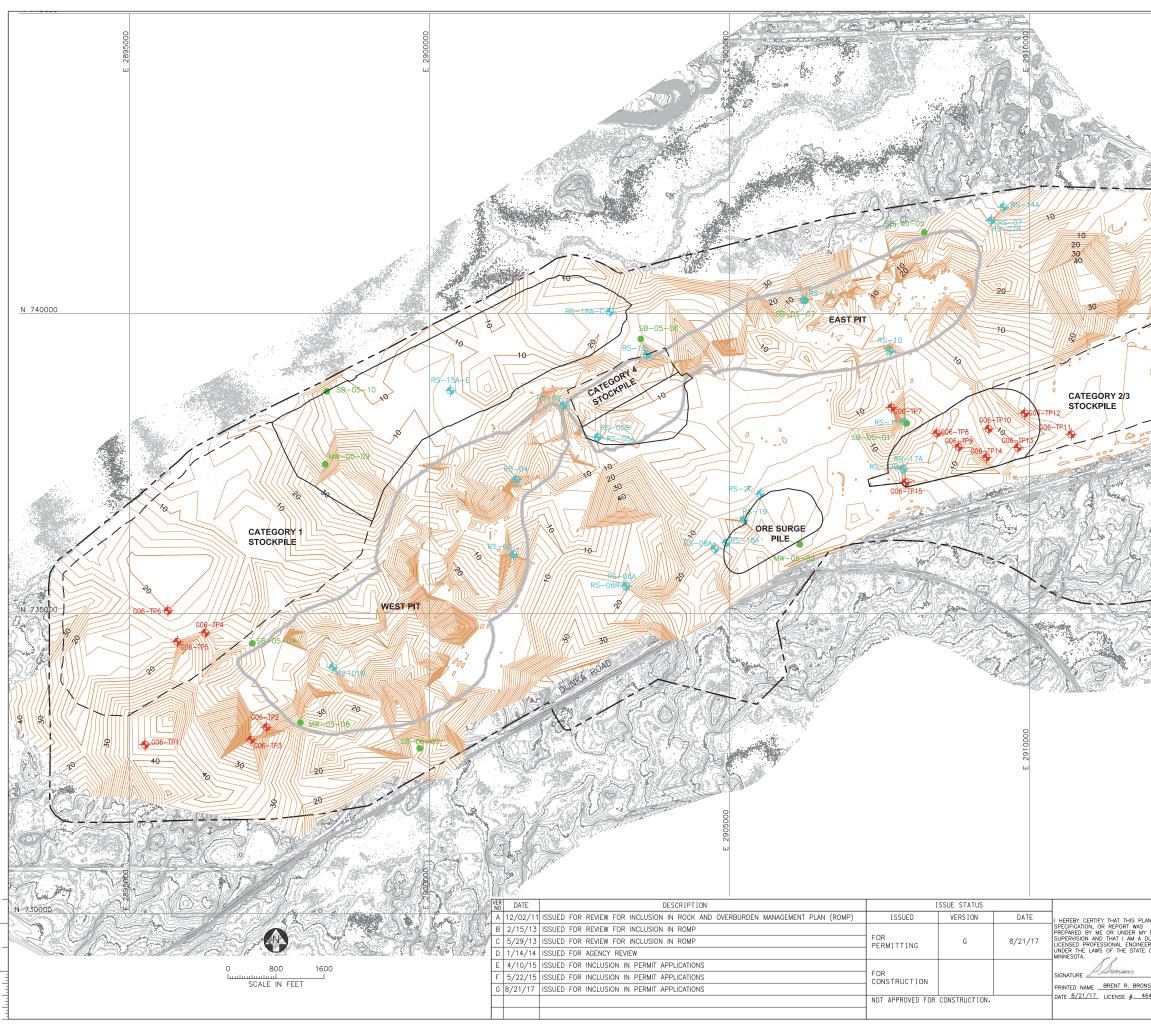
MINE SITE BOUNDARY

MINE YEAR 11 PIT BOUNDARIES (SEE NOTE 1)

MINE YEAR 1 ORE, AND WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)

MAXIMUM ORE, AND WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)

GOLDER ASSOC. TEST PIT (2006) BARR ENGINEERING BOREHOLES (2005) BARR ENGINEERING BOREHOLES (2008) BORING OR GEOPHYSICAL SURVEY LOCATION


AMERICAN ENGINEERING TESTING, INC. BOREHOLES (2010)

### NOTES

- 1. OPEN PIT LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- 3. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.
- 4. SEE GEOTECHNICAL DATA PACKAGE VOLUME 3 FOR DETAILS ON TEST PITS, BOREHOLES AND GEOPHYSICAL SURVEYS.

#### REFERENCES

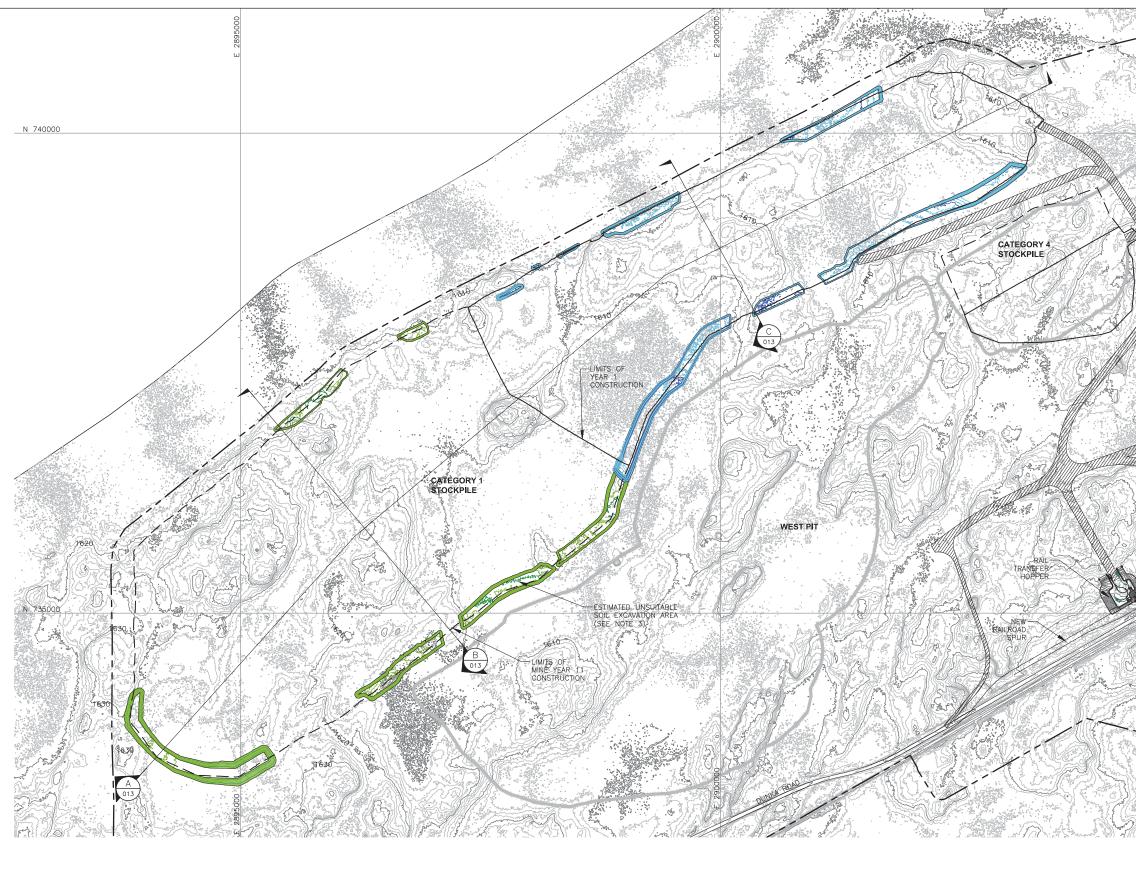
- 1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- 2. COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).



#### LEGEND

40000

1590	EXISTING GROUND TOPOGRAPHY
	MINE SITE BOUNDARY
20	ESTIMATED DEPTH TO BEDROCK CONTOURS
	MINE YEAR 11 PIT BOUNDARIES (SEE NOTE 1)
	MINE YEAR 1 ORE, WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)
	MAXIMUM ORE, WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)
G06-TP11-	GOLDER ASSOC. TEST PIT (2006)
SB-05-01 🌒	BARR ENGINEERING BOREHOLES (2005)
RS-11-	BARR ENGINEERING BOREHOLES (2008)

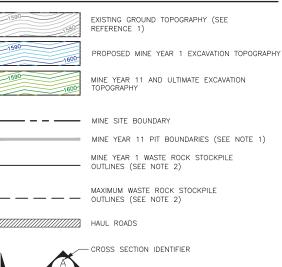

#### NOTES

- 1. OPEN PIT BOUNDARIES PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- 3. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.

#### REFERENCES

- 1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).

		PLANT DRAWING NUMBER:	
		DEPTH TO BEDROCK ISOPACH MAP	)
AN, 7 DIRECT DULY ER 5 OF	DRAWN: MTM	POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA	
NSON	CHECKED: GOLDER PROJECT NO.: 113-2209	GOLDER ASSOCIATES INC. 44 UNION BOULEVARD, SL LAKEWOOD, CO USA 8023 Ph: (303) 985–2080 www.golder.com www.golder.com	
6492	SCALE: AS SHOWN	DWG. ND. SKP-009	REV





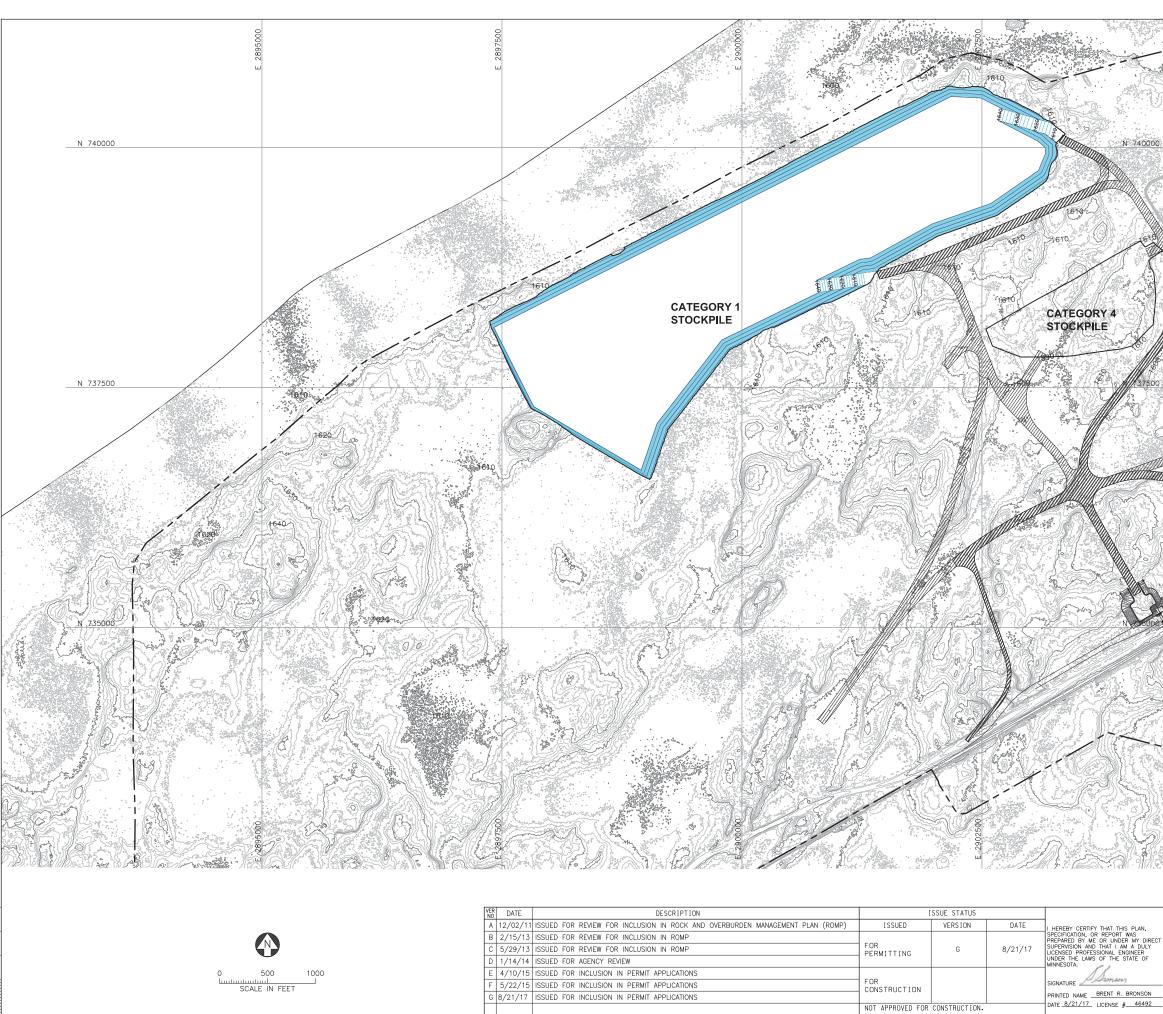

							EGORY 1 STOCKPI RADE EXCAVATION	
VER DATE DESCRIPTION		ISSUE STATUS					POLY MET MININ	IG INC
A 12/02/11 ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROM	P) ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.		Ħ		,
B 2/15/13 ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT	DRAWN:	POLYMET	NORTHMET PRO	
C 5/29/13 ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR PERMITTING	G	G 8/21/17	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER	MTM		HOYT LAKES, MIN	INESOTA
D 1/14/14 ISSUED FOR AGENCY REVIEW				UNDER THE LAWS OF THE STATE OF MINNESOTA.	CHECKED:		GOLDER ASSO	
E 4/10/15 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				11	44	E	LAKEWOOD, CC	JLEVARD, SUITE 300 ) USA 80233
F 5/22/15 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			SIGNATURE	GOLDER PROJECT NO.:	Gold	CT Ph: (303) 980-0	540
G 8/21/17 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				PRINTED NAMEBRENT R. BRONSON	113-2209	Associ	ates Fax: (303) 985-2 www.golder.com	2080
	NOT APPROVED F	OR CONSTRUC	TION.	DATE <u>8/21/17</u> LICENSE # <u>46492</u>	SCALE: AS SHOWN	DWG. NO. SKP-01	0	REV

#### LEGEND

EAST PIT



- SHEET WHERE SECTION IS LOCATED


013

#### NOTES

- 1. OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- UNSUITABLE SOILS TO BE EXCAVATED WITHIN FIRST 100 FEET FROM THE ULTIMATE STOCKPILE BOUNDARIES. GEOTECHNICAL PROPERTIES OF THE FOUNDATION SOILS WILL BE CONFIRMED PRIOR TO FINAL DESIGN.
- 4. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.

#### REFERENCES

- 1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH.
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).



#### LEGEND



EXISTING GROUND TOPOGRAPHY

PROPOSED GRADING TOPOGRAPHY

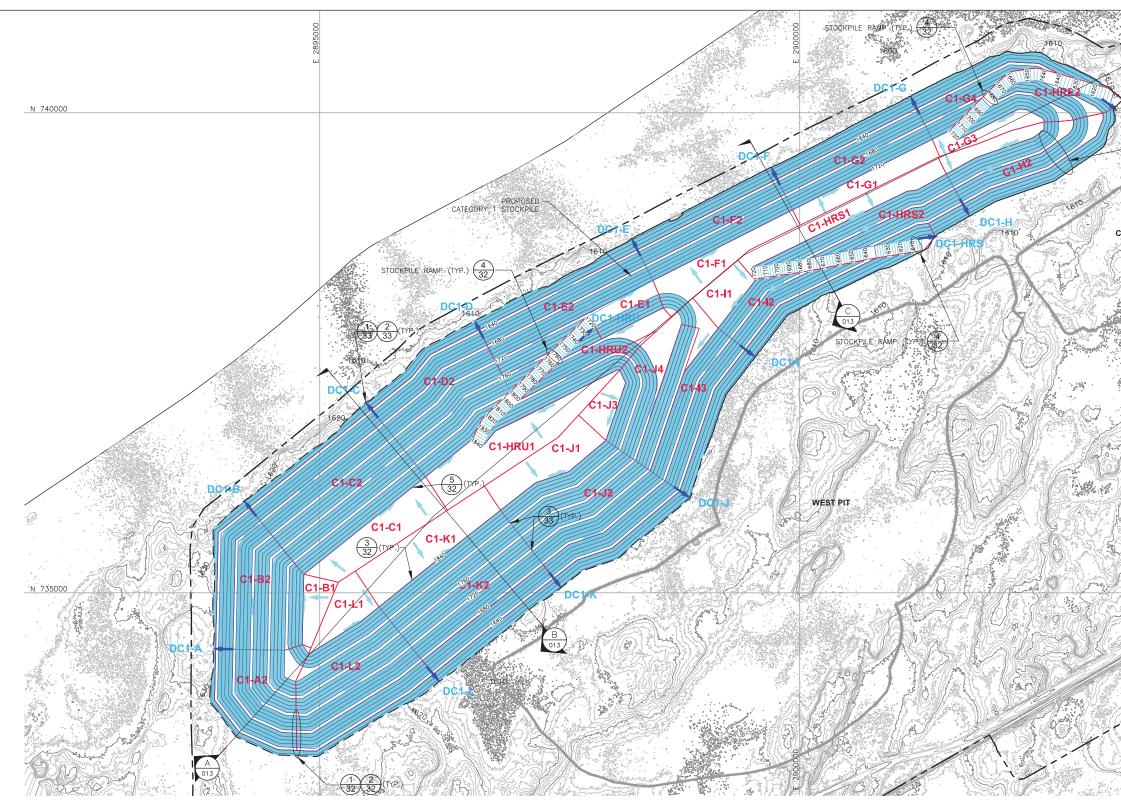
____

EAST PIT

HAUL ROADS

MINE SITE BOUNDARY

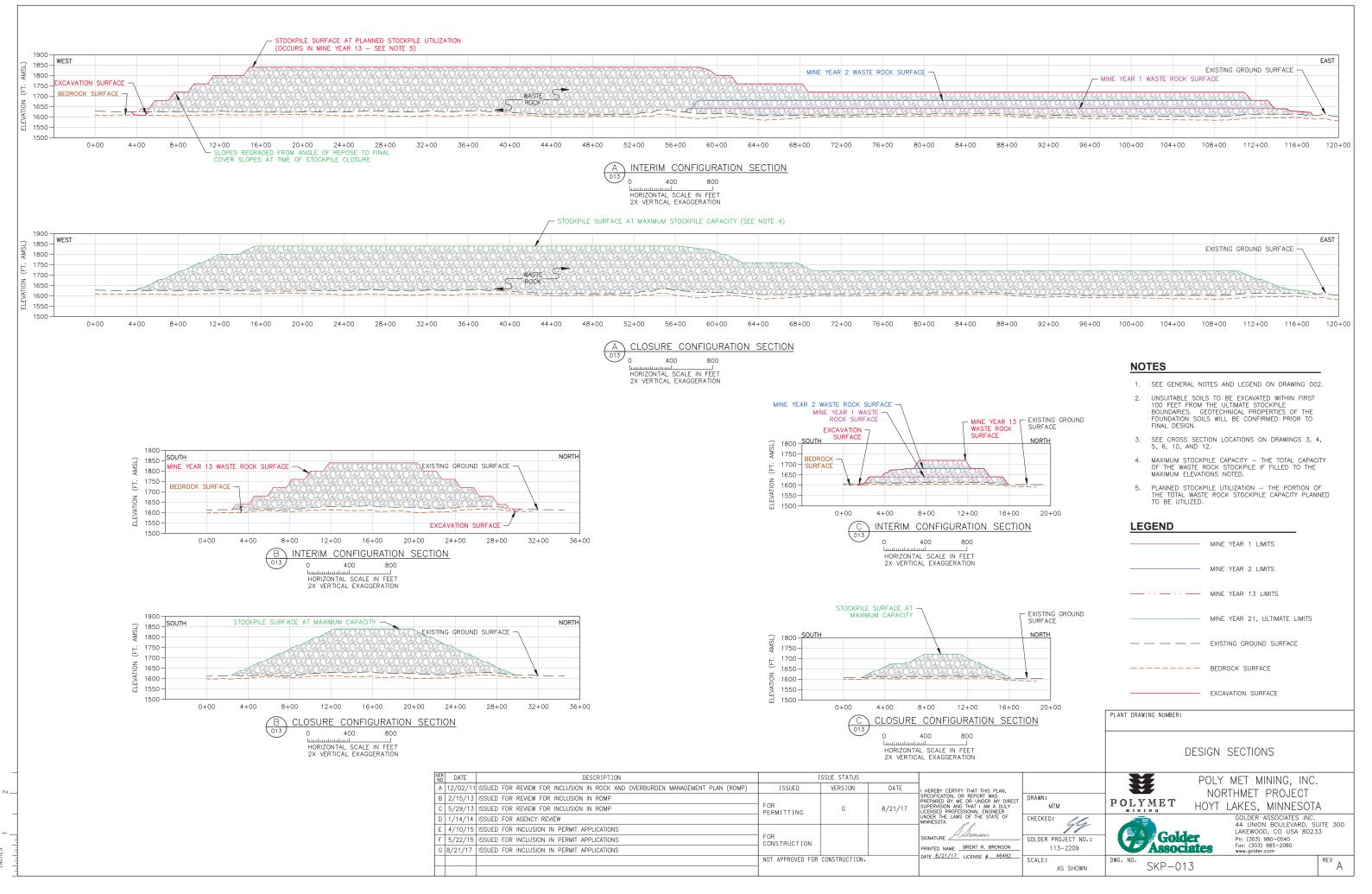
PIT BOUNDARIES AT MINE YEAR 2 (SEE NOTE 1) MINE YEAR 1 AND 2 ORE, WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)

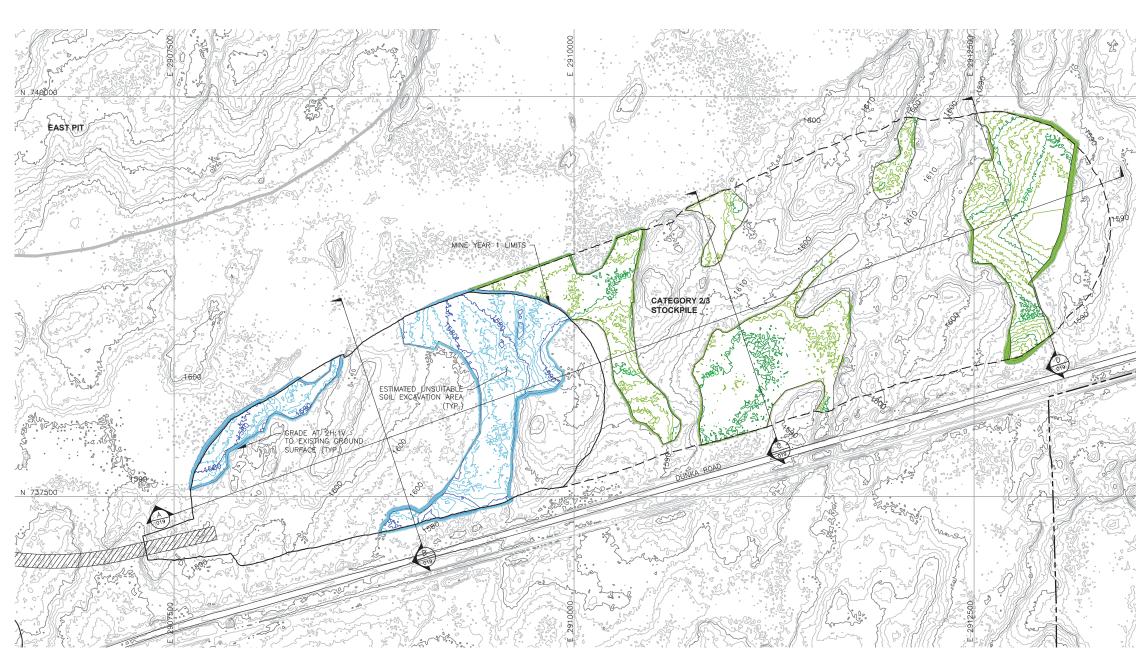

#### NOTES

- OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- 3. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.
- IF CLOSURE OCCURS AFTER 1 YEAR OF MINING, STOCKPILE DRAINAGE WILL BE AS SHOWN ON DRAWING 012 FOR THIS PORTION OF THE STOCKPILE.

#### REFERENCES

- . EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- 2. COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH.
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).


3. 12. 2	1		
AR C		CATEGORY 1 STOCKPILE	
		MINE YEAR 1 CONTINGENCY	
		CLOSURE CONFIGURATION	
		POLY MET MINING, IN	C.
N, DIRECT DULY R OF	DRAWN:		
	MTM	POLYMET HOYT LAKES, MINNESO	TA
	CHECKED: 69	GOLDER ASSOCIATES IN. 44 UNION BOULEVARD, LAKEWOOD, CO USA 80	SUITE 300
ISON	GOLDER PROJECT NO.: 113-2209	Golder Fh: (303) 985-2080 www.golder.com Weight of the second	
J+32	SCALE: AS SHOWN	DWG. NO. SKP-011	REV

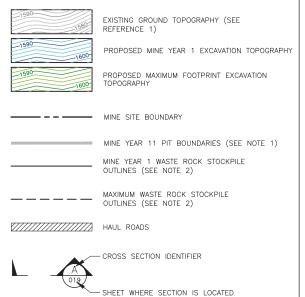





			LEGEND
STOC	CPILE RANGE (TYP.) (32)	640	1590 EXISTING GROUND TOPOGRAPHY
			GRADING TOPOGRAPHY AT
ATEGORY 1 STOCKPILE VP.) 4 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1510 1	CITE RAMP (ETP3)	DCLEIRE N 74000	MAXIMUM STOCKPILE CAPACITY  HAUL ROADS  MINE SITE BOUNDARY  PIT BOUNDARIES AT MINE YEAR 2 (SEE NOTE 1)
			<ul> <li>NOTES</li> <li>1. OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.</li> <li>2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.</li> <li>3. SEE GENERAL NOTES AND LEGEND ON DRAWING 002 AND NOTES ON DRAWING 013.</li> <li>4. FINAL GRADES SHOWN ARE WITH STOCKPILE AT MAXIMUM CAPACITY. SEE CROSS-SECTIONS AND NOTES ON DRAWING 013.</li> <li>5. SEE DRAWINGS 003 THROUGH 005 FOR INTERIM STOCKPILE FILL CONTOURS.</li> <li>REFERENCES</li> <li>1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.</li> <li>2. COORDINATE SYSTEM REFERENCE IS NADB3 MINNESOTA STATE PLANE NORTH.</li> <li>3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).</li> </ul>
VER NO         DATE         DESCRIPTION           A         12/02/11         ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)           B         2/15/13         ISSUED FOR REVIEW FOR INCLUSION IN ROMP           C         5/29/13         ISSUED FOR REVIEW FOR INCLUSION IN ROMP           D         1/14/14         ISSUED FOR AGENCY REVIEW           E         4/10/15         ISSUED FOR INCLUSION IN PERMIT APPLICATIONS           F         5/22/15         ISSUED FOR INCLUSION IN PERMIT APPLICATIONS           G         8/21/17         ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	ISSUE STATUS ISSUED VERSION DATE FOR PERMITTING G 8/21/17 FOR CONSTRUCTION APPROVED FOR CONSTRUCTION.	I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS DIRECT UPERVISION AND THAT I LAM M DULY UCRNED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA. SIGNATURE PRINTED NAME BRENT R. BRONSON DATE <u>B/21/17</u> LICENSE <u>#</u> 46492 SCALE:	CATEGORY 1 STOCKPILE FINAL GRADES AND SUB-BASIN DELINEATION POLYMET POLYMET HOYT LAKES, MINNESOTA GOLDER ASSOCIATES INC. 44 UNION BOULEVARD, SUITE 300 LAKEWOOD, CO USA 80233 Ph: (303) 985-2080 WWW.golder.com

INCHES





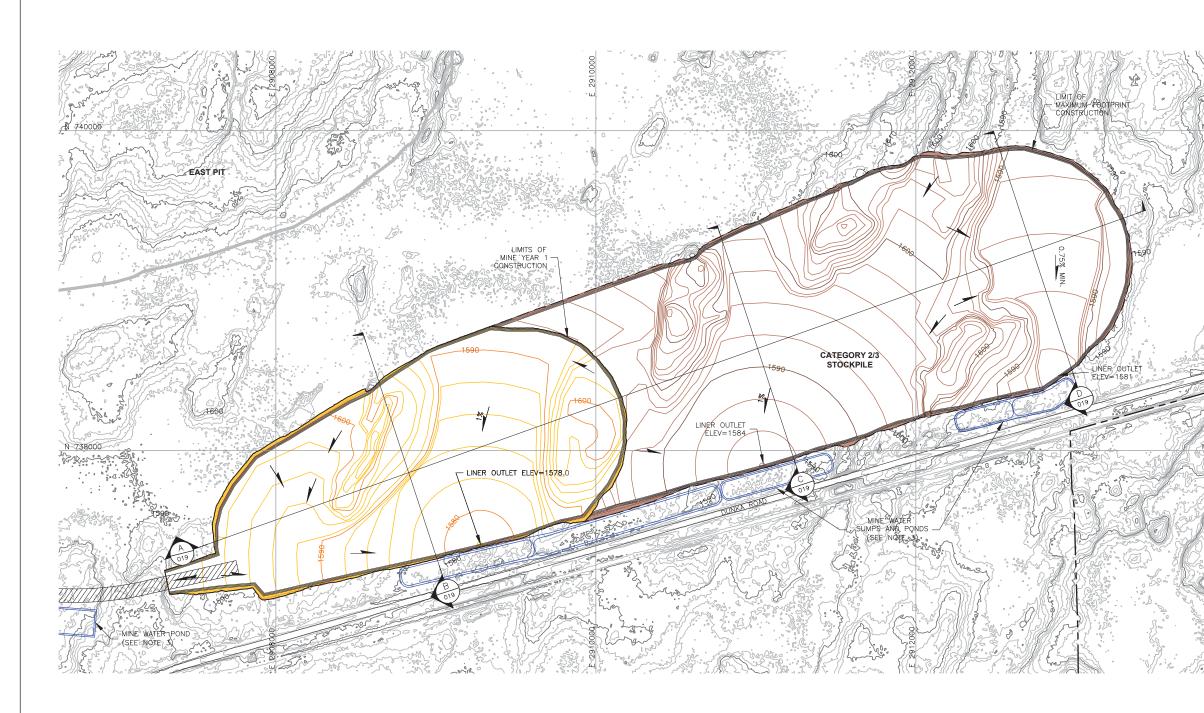



							GORY 2/3 STOCKPILE RADE EXCAVATION PLAN	
VER DATE DESCRIPTION	I	SSUE STATUS				**	POLY MET MINING, IN	C
A 12/02/11 ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.			NORTHMET PROJECT	
B 2/15/13 ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT	DRAWN:	POLYMET		
C 5/29/13 ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR PERMITTING	G	8/21/17	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER	MTM		HOYT LAKES, MINNESC	ATC
D 1/14/14 ISSUED FOR AGENCY REVIEW				UNDER THE LAWS OF THE STATE OF MINNESOTA.	CHECKED: 64	æ	GOLDER ASSOCIATES IN	
E 4/10/15 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				11	99	EAL	44 UNION BOULEVARD, LAKEWOOD. CO USA 80	
F 5/22/15 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			SIGNATURE	GOLDER PROJECT NO.:	Gold	Ph: (303) 980-0540	
G 8/21/17 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				PRINTED NAME BRENT R. BRONSON	113-2209	Associ	Fax: (303) 985-2080 www.golder.com	
	NOT APPROVED FOR	CONSTRUCTION.		DATE <u>8/21/17</u> LICENSE # <u>46492</u>	SCALE: AS SHOWN	DWG. NO. SKP-01	4	REV

NCHES

#### LEGEND

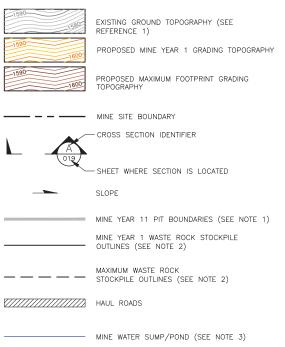





#### NOTES

- OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- 3. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.

#### REFERENCES

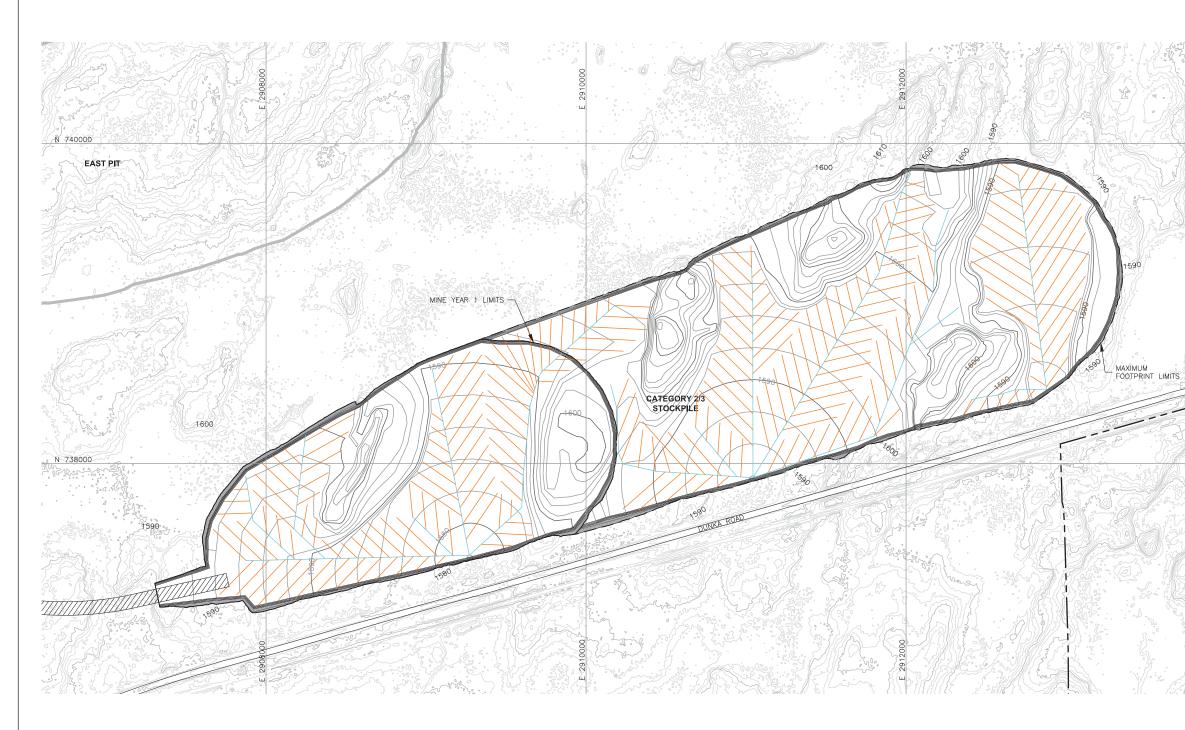

- 1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH.
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).





VER	DATE	DESCRIPTION		SSUE STATUS				FOUNE MINE	GORY 2/3 STOCKPILE DATION GRADING PLAN YEAR 1 AND MAXIMUM POLY MET MINING, INC	
110		ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.		Ħ	NORTHMET PROJECT	·•
В	2/15/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT	DRAWN:	POLYMET		
С	5/29/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR PERMITTING	G	8/21/17	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER	MTM		HOYT LAKES, MINNESOT	A
D	1/14/14	ISSUED FOR AGENCY REVIEW				UNDER THE LAWS OF THE STATE OF MINNESOTA.	CHECKED:	A	GOLDER ASSOCIATES INC.	
E	4/10/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				1 h	77	EALONI	44 UNION BOULEVARD, S LAKEWOOD. CO USA 8023	
F	5/22/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			SIGNATURE	GOLDER PROJECT NO.:	Gold	Ph: (303) 980-0540 Fax: (303) 985-2080	
G	8/21/17	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				PRINTED NAME BRENT R. BRONSON	113-2209	Associ	ates www.golder.com	
			NOT APPROVED FOR	CONSTRUCTION.		DATE <u>8/21/17</u> LICENSE <u># 46492</u>	SCALE: AS SHOWN	DWG. NO. SKP-01	5	REV

## LEGEND



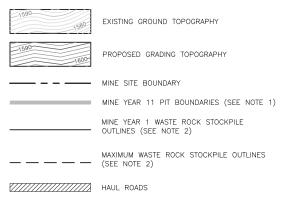

#### NOTES

- 1. OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- 3. SEE MECHANICAL INFRASTRUCTURE PERMIT SUPPORT DRAWINGS.
- 4. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.

#### REFERENCES

- 1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH.
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).






VER NO						
NO	DATE	DESCRIPTION	I	SSUE STATUS		
Α	12/02/11	ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
В	2/15/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIR
С	5/29/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR	G		SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
D	1/14/14	ISSUED FOR AGENCY REVIEW	1 Ender 1 Into			UNDER THE LAWS OF THE STATE OF MINNESOTA.
Е	4/10/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				1 American
F	5/22/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			SIGNATURE
G	8/21/17	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				PRINTED NAME BRENT R. BRONSON
			NOT APPROVED FOR	CONSTRUCTION.		DATE <u>8/21/17</u> LICENSE # 46492

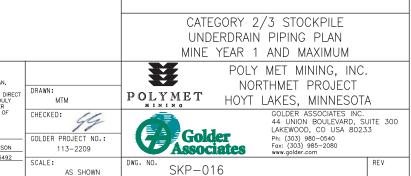
#### LEGEND

740000

N 738000



TERTIARY COLLECTION PIPING (SEE NOTE 3) 4-INCH

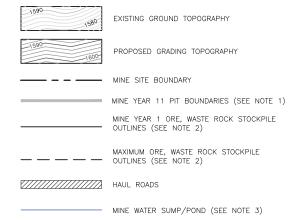

SECONDARY COLLECTION PIPING (SEE NOTE 3) 6-INCH

#### NOTES

- 1. OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- ACTUAL NUMBER AND LOCATION OF UNDERDRAIN PIPES AND SUMPS WILL NEED TO BE DETERMINED DURING CONSTRUCTION BASED ON ENCOUNTERED FIELD CONDITIONS. SEE DETAIL 5 ON DRAWING 035 FOR UNDERDRAIN.
- 4. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.

#### REFERENCES

- 1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH.
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).








VEF	DATE	DESCRIPTION	]	SSUE STATUS		
A	12/02/11	ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
В	2/15/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIR
С	5/29/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR PERMITTING	G		SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
D	1/14/14	ISSUED FOR AGENCY REVIEW				UNDER THE LAWS OF THE STATE OF MINNESOTA.
E	4/10/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				1 America
F	5/22/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			SIGNATURE
G	8/21/17	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				PRINTED NAME BRENT R. BRONSON
			NOT APPROVED FOR	CONSTRUCTION.		DATE <u>8/21/17</u> LICENSE # 46492

#### LEGEND



TERTIARY COLLECTION PIPING

4-INCH

 PRIMARY AND SECONDARY COLLECTION PIPING

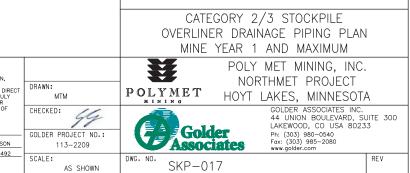
 4-INCH

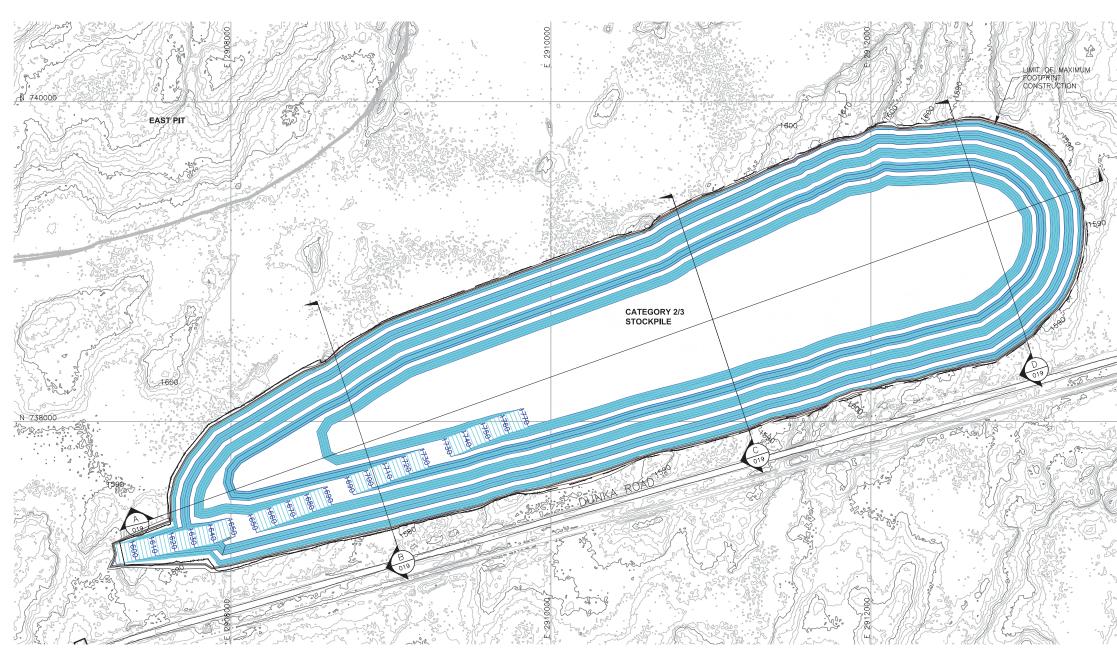
 6-INCH

 8-INCH

 10-INCH

 12-INCH


#### NOTES


N 738000

- 1. OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- 3. SEE MECHANICAL INFRASTRUCTURE PERMIT SUPPORT DRAWINGS.
- 4. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.

#### REFERENCES

- 1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- 2. COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH.
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).







							GORY 2/3 STOCKPILE CAPACITY CONFIGURATION
VER DATE DESCRIPTION	I	SSUE STATUS					POLY MET MINING, INC.
A 12/02/11 ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,			NORTHMET PROJECT
B 2/15/13 ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT	DRAWN:	POLYMET	
C 5/29/13 ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR PERMITTING	G	8/21/17	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER	MTM		HOYT LAKES, MINNESOTA
D 1/14/14 ISSUED FOR AGENCY REVIEW				UNDER THE LAWS OF THE STATE OF MINNESOTA.	CHECKED:		GOLDER ASSOCIATES INC.
E 4/10/15 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				11	99	EAL	44 UNION BOULEVARD, SUITE 300 LAKEWOOD, CO USA 80233
F 5/22/15 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			SIGNATURE	GOLDER PROJECT NO.:	Gold	CT Ph: (303) 980-0540 Fax: (303) 985-2080
G 8/21/17 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				PRINTED NAME BRENT R. BRONSON	113-2209	Assoc	lates Fax: (303) 985-2080 www.golder.com
	NOT APPROVED FOR	CONSTRUCTION.	1		SCALE: AS SHOWN	DWG. NO. SKP-01	8 REV

### LEGEND



EXISTING GROUND TOPOGRAPHY (SEE REFERENCE 1)

GRADING TOPOGRAPHY AT MAXIMUM STOCKPILE CAPACITY



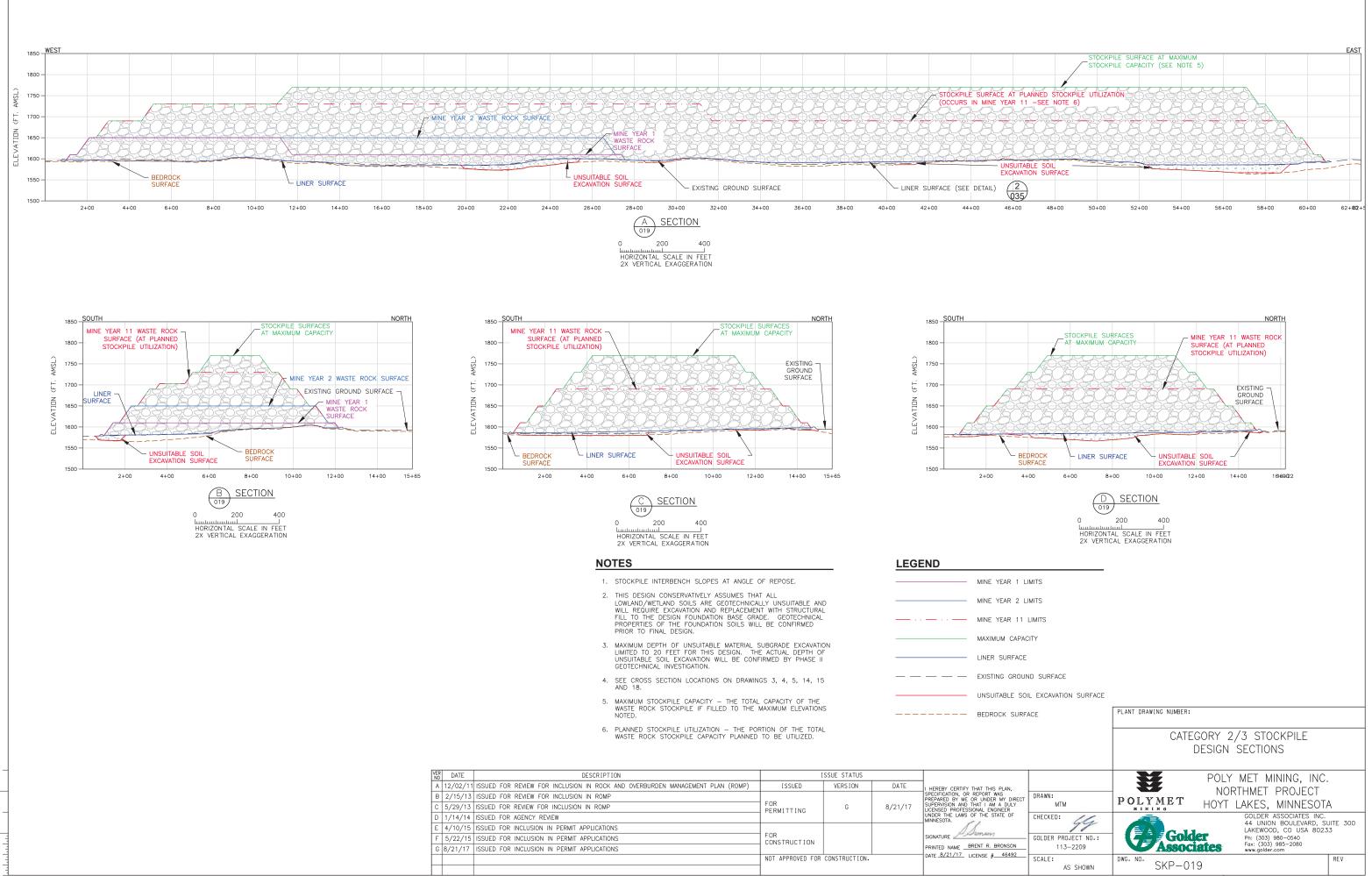
- CROSS SECTION IDENTIFIER

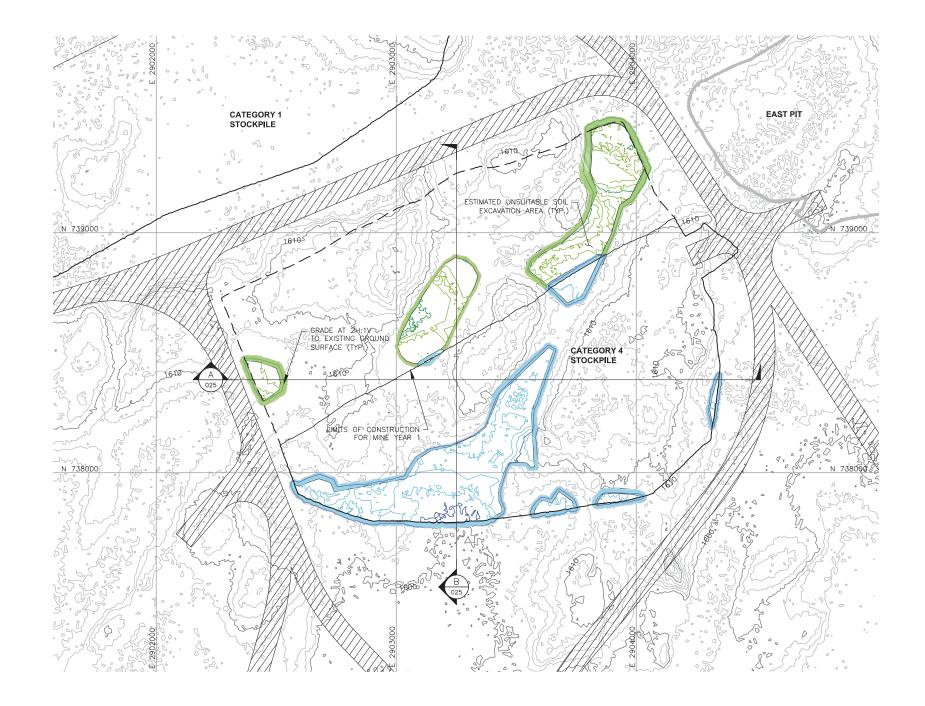
- SHEET WHERE SECTION IS LOCATED MINE YEAR 1 WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)

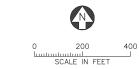
MAXIMUM ORE, WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2) ____

PROPOSED HAUL ROAD

MINE YEAR 11 PIT BOUNDARIES (SEE NOTE 1)


#### NOTES


- 1. OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- SEE GENERAL NOTES AND LEGEND ON DRAWING 002 AND NOTES ON DRAWING 019.


#### REFERENCES

- 1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- 2. COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH.
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).



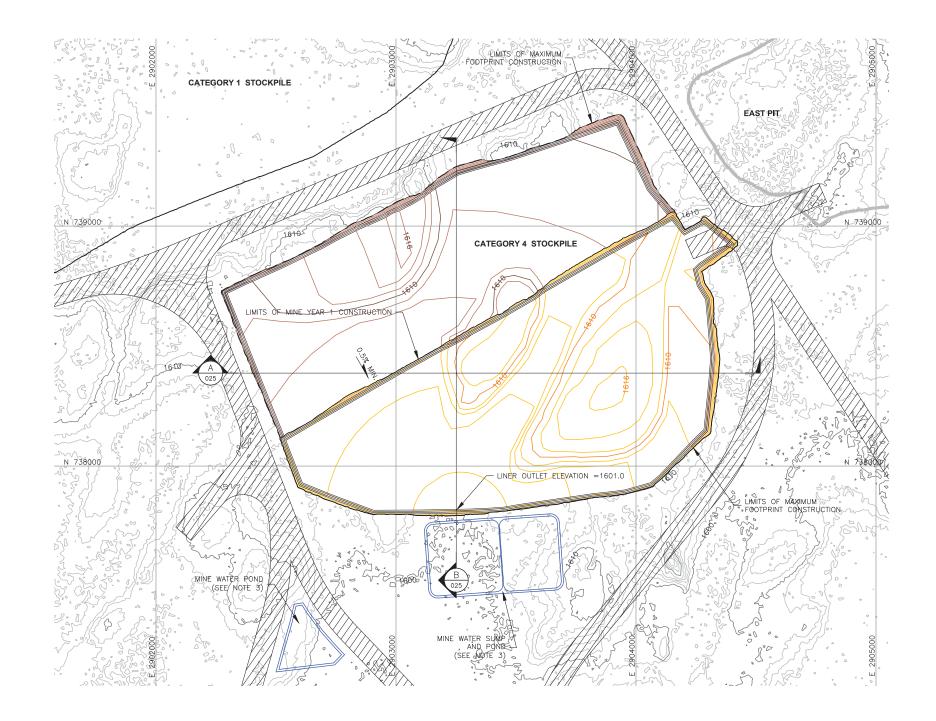






								EGORY 4 STOCKPILE RADE EXCAVATION PLAN	
VER NO	DATE DESCRIPTION	IS	SSUE STATUS					POLY MET MINING, INC.	
Α	2/02/11 ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.			-	·
В	2/15/13 ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT	DRAWN:	POLYMET	NORTHMET PROJECT	. !
С	5/29/13 ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR PERMITTING	G	8/21/17	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER	MTM		HOYT LAKES, MINNESOTA	A I
D	1/14/14 ISSUED FOR AGENCY REVIEW				UNDER THE LAWS OF THE STATE OF MINNESOTA.	CHECKED: 64	Â	GOLDER ASSOCIATES INC.	
Е	4/10/15 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				11	99	EAL	44 UNION BOULEVARD, SU LAKEWOOD, CO USA 8023	
F	5/22/15 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			SIGNATURE	GOLDER PROJECT NO.:	Gold	Ph: (303) 980-0540	-
G	3/21/17 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	000311001100			PRINTED NAME BRENT R. BRONSON	113-2209	Associ	Fax: (303) 985-2080 www.golder.com	
		NOT APPROVED FOR (	CONSTRUCTION.			SCALE: AS SHOWN	DWG. NO. SKP-02	20	REV

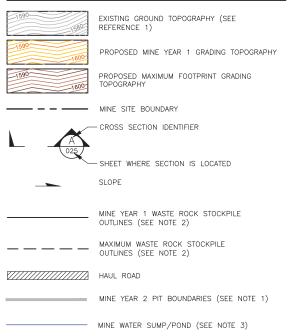
#### LEGEND


1590 1580 1590	EXISTING GROUND TOPOGRAPHY (SEE REFERENCE 1) PROPOSED MINE YEAR 1 EXCAVATION TOPOGRAPHY
1590	PROPOSED MAXIMUM FOOTPRINT EXCAVATION TOPOGRAPHY
	MINE SITE BOUNDARY
	MINE YEAR 1 WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)
	MAXIMUM WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)
{//////////////////////////////////////	HAUL ROADS
	MINE YEAR 2 PIT BOUNDARIES (SEE NOTE 1)
	- CROSS SECTION IDENTIFIER
025	- SHEET WHERE SECTION IS LOCATED

#### NOTES

- OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- 3. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.

#### REFERENCES

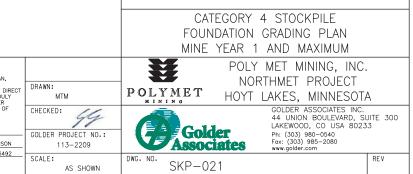

- EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH.
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).

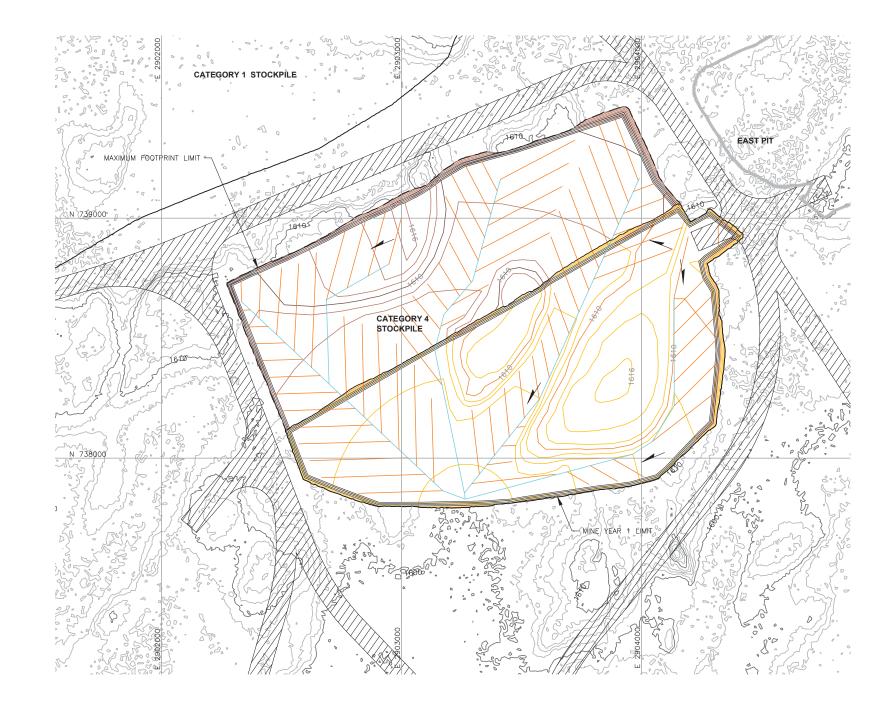




VER NO	DATE	DESCRIPTION				
Α	12/02/11	ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,
В	2/15/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DI
С	5/29/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR PERMITTING	G	8/21/17	SUPERVISION AND THAT I AM A DUL LICENSED PROFESSIONAL ENGINEER
D	1/14/14	ISSUED FOR AGENCY REVIEW				UNDER THE LAWS OF THE STATE OF MINNESOTA.
Ε	4/10/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				1 American
F	5/22/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR			SIGNATURE
G	8/21/17	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				PRINTED NAME BRENT R. BRONSO
			NOT APPROVED FOR CONSTRUCTION.		DATE <u>8/21/17</u> LICENSE # 4649	

#### LEGEND





#### NOTES

- 1. OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- 3. SEE MECHANICAL INFRASTRUCTURE PERMIT SUPPORT DRAWINGS.
- 4. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.

#### REFERENCES

- 1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH.
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).

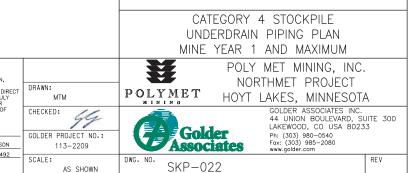






VER DA	ATE	DESCRIPTION	ISSUE STATUS					
A 12/0	02/11	ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,		
B 2/1	15/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRE		
C 5/2	29/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR	G		SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER		
D 1/1-	4/14	ISSUED FOR AGENCY REVIEW			UNDER THE LAWS OF THE STATE OF MINNESOTA.			
E 4/1	10/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				11		
F 5/2	22/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			SIGNATURE		
G 8/21	1/17	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				PRINTED NAME BRENT R. BRONSON		
			NOT APPROVED FOR	CONSTRUCTION.		DATE 8/21/17 LICENSE # 46492		
			1					

#### LEGEND


1590	EXISTING GROUND TOPOGRAPHY					
1590	PROPOSED MINE YEAR 1 GRADING TOPOGRAPHY					
1590	PROPOSED MAXIMUM FOOTPRINT GRADING TOPOGRAPHY					
	MINE SITE BOUNDARY					
	MINE YEAR 2 PIT BOUNDARIES (SEE NOTE 1)					
	SLOPE					
	MINE YEAR 1 WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)					
	MAXIMUM WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)					
	HAUL ROADS					
TERTIARY COLLECTION PIPING (SEE NOTE 3)						
SECONDARY COLLECTIO	N PIPING (SEE NOTE 3) 6-INCH					

#### NOTES

- 1. OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- ACTUAL NUMBER AND LOCATION OF UNDERDRAIN PIPES AND SUMPS WILL NEED TO BE DETERMINED DURING CONSTRUCTION BASED ON ENCOUNTERED FIELD CONDITIONS. SEE DETAIL 5 ON DRAWING 035 FOR UNDERDRAIN.
- 4. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.

#### REFERENCES

- 1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH.
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).



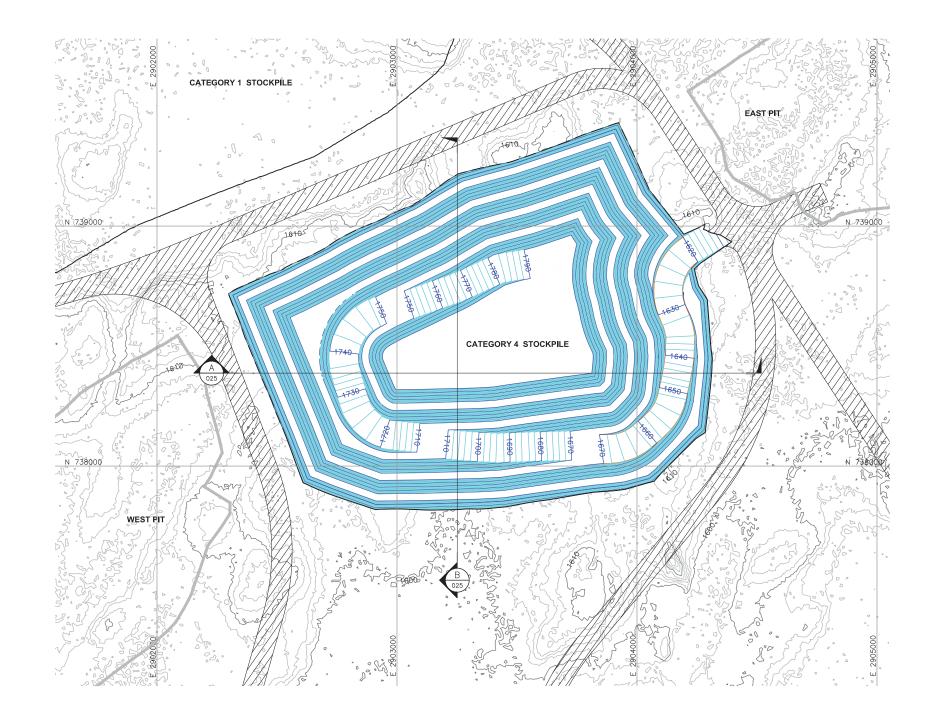




VER NO	DATE	DESCRIPTION	I			
A	12/02/11	ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,
В	2/15/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIR
С	5/29/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR PERMITTING	G	8/21/17	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
D	1/14/14	ISSUED FOR AGENCY REVIEW				UNDER THE LAWS OF THE STATE OF MINNESOTA.
E	4/10/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				1 Annual
F	5/22/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR			SIGNATURE
G	8/21/17	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	CONSTRUCTION			PRINTED NAME BRENT R. BRONSON
			NOT APPROVED FOR			DATE <u>8/21/17</u> LICENSE # 46492
			CONSTRUCTION.			

#### LEGEND

1590	EXISTING GROUND TOPOGRAPHY					
1590	PROPOSED MINE YEAR 1 GRADING TOPOGRAPHY					
1590	PROPOSED MAXIMUM FOOTPRINT GRADING TOPOGRAPHY					
	MINE SITE BOUNDARY					
	MINE YEAR 2 PIT BOUNDARIES (SEE NOTE 1)					
	SLOPE					
	MINE YEAR 1 WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)					
	MAXIMUM WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)					
	HAUL ROADS					
	MINE WATER SUMP/POND (SEE NOTE 3)					
MINE YEAR 1 - TERTIARY COLLECTION PIPING 						
MINE YEAR 1 – PRIMAI	RY AND SECONDARY COLLECTION PIPING — 4—INCH — 6—INCH — 8—INCH					
	— 10—INCH — 12—INCH					


#### NOTES

- 1. OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- 3. SEE MECHANICAL INFRASTRUCTURE PERMIT SUPPORT DRAWINGS.
- 4. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.

#### REFERENCES

- EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH.
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).

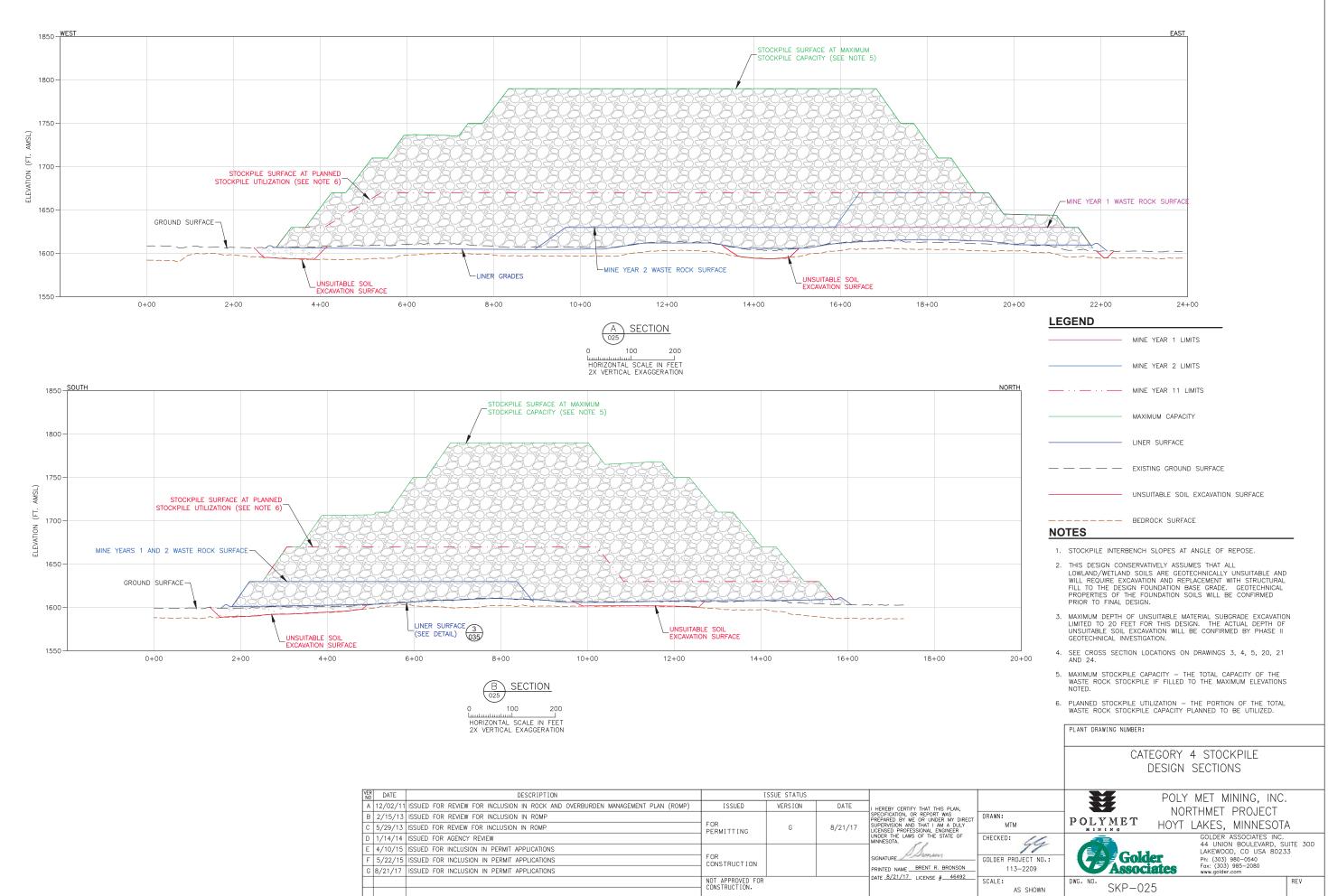




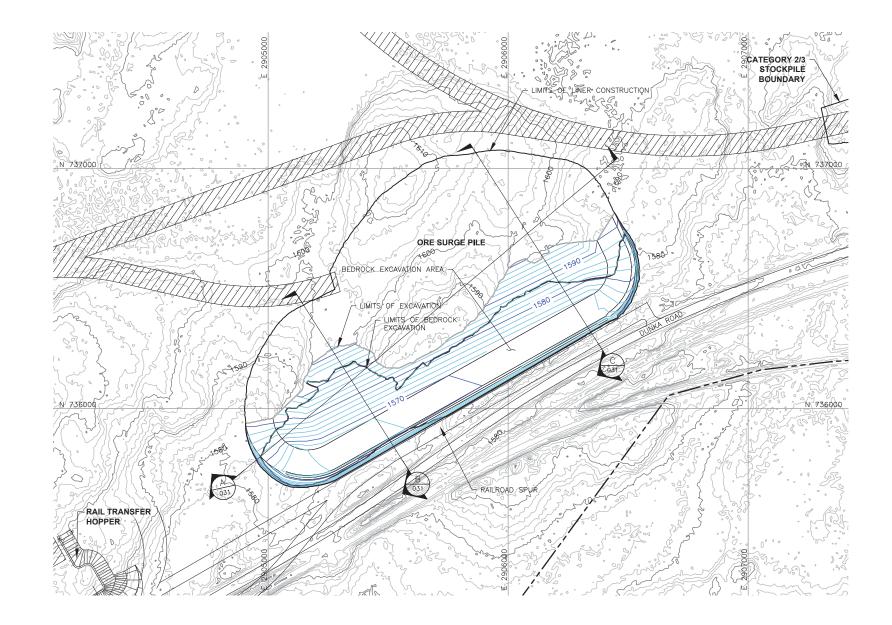


								EGORY 4 STOCKPILE CAPACITY CONFIGURATION	
VER DATE	DESCRIPTION	I	SSUE STATUS				**	POLY MET MINING, INC.	
	ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.		¥		
B 2/15/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP		R 8/21/17 SI	SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT	DRAWN:	POLYMET	NORTHMET PROJECT		
C 5/29/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR PERMITTING		8/21/17 SUPERVISION AND THAT I AM A DU LICENSED PROFESSIONAL ENGINEER	SUPERVISION AND THAT I AM A DULY	MTM		HOYT LAKES, MINNESOTA	
D 1/14/14	ISSUED FOR AGENCY REVIEW				UNDER THE LAWS OF THE STATE OF MINNESOTA.	CHECKED:	Â	GOLDER ASSOCIATES INC.	
E 4/10/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				11	99	EN	44 UNION BOULEVARD, SUITE 3 LAKEWOOD. CO USA 80233	
F 5/22/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			SIGNATURE	GOLDER PROJECT NO.:	Gold	Ph: (303) 980-0540	
G 8/21/17	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				PRINTED NAME BRENT R. BRONSON	113-2209	Associ	Fax: (303) 985-2080 www.golder.com	
		NOT APPROVED FOR CONSTRUCTION.			DATE <u>8/21/17</u> LICENSE <u># 46492</u>	SCALE: AS SHOWN	DWG. NO. SKP-02	24	REV

#### LEGEND


1590 1590 1690 1600	EXISTING GROUND TOPOGRAPHY (SEE REFERENCE 1) GRADING TOPOGRAPHY AT MAXIMUM STOCKPILE CAPACITY
	MINE SITE BOUNDARY
	- CROSS SECTION IDENTIFIER
_	- SHEET WHERE SECTION IS LOCATED
	MINE YEAR 1 WASTE ROCK STOCKPILE LIMIT (SEE NOTE 1)
	MAXIMUM WASTE ROCK STOCKPILE LIMIT
	PROPOSED HAUL ROAD
	MINE YEAR 11 PIT BOUNDARIES (SEE NOTE 1)

#### NOTES


- 1. OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- 3. SEE GENERAL NOTES AND LEGEND ON DRAWING 002 AND NOTES ON DRAWING 025.

#### REFERENCES

- EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH.
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).



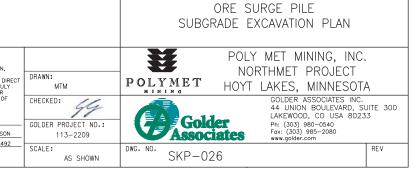
_						
VE NO	DATE	DESCRIPTION	I	SSUE STATUS		
Α	12/02/11	ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,
E	3 2/15/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP		SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIR		
С	5/29/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR	G	8/21/17	SUPERVISION AND THAT I AM A DUL'
D	1/14/14	ISSUED FOR AGENCY REVIEW				UNDER THE LAWS OF THE STATE OF MINNESOTA.
E	4/10/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				18
F	5/22/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			SIGNATURE Delhondon
G	8/21/17	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				PRINTED NAME BRENT R. BRONSON
			NOT APPROVED FOR CONSTRUCTION.			DATE 8/21/17 LICENSE # 4649
			CONSTRUCTION.			

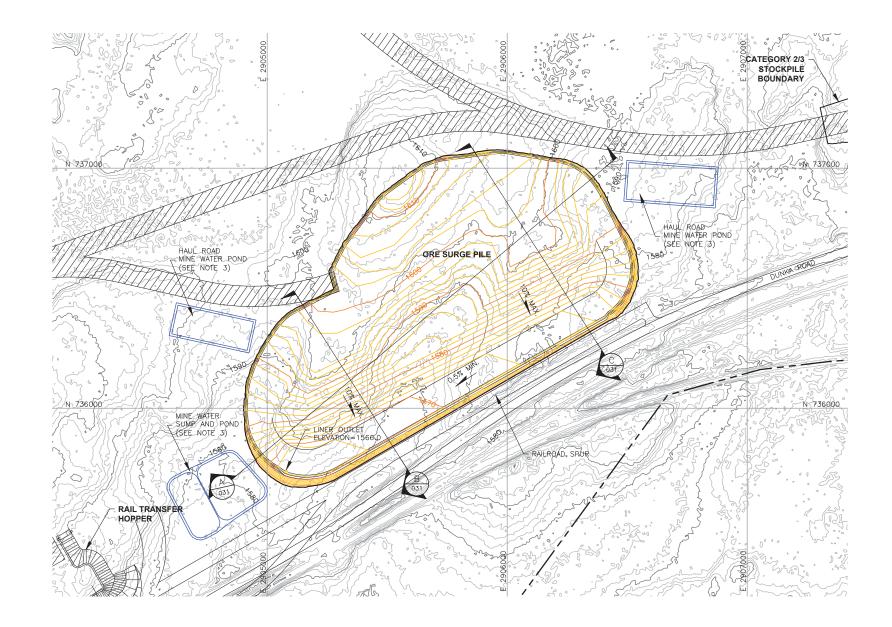




VER NO	DATE	DESCRIPTION	I	SSUE STATUS		
A	12/02/11	ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
В	2/15/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIR
С	5/29/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR PERMITTING	G	8/21/17	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
D	1/14/14	ISSUED FOR AGENCY REVIEW	1 Entire France			UNDER THE LAWS OF THE STATE OF MINNESOTA.
E	4/10/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				1 Aurora
F	5/22/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			SIGNATURE
G	8/21/17	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				PRINTED NAME BRENT R. BRONSON
			NOT APPROVED FOR CONSTRUCTION.			DATE <u>8/21/17</u> LICENSE # 46492

#### LEGEND


1590 1580 1600	EXISTING GROUND TOPOGRAPHY (SEE REFERENCE 1) PROPOSED MINE YEAR 1 EXCAVATION TOPOGRAPHY
	MINE SITE BOUNDARY
	MINE YEAR 1 ORE STOCKPILE OUTLINES (SEE NOTE 2)
	HAUL ROADS
	- CROSS SECTION IDENTIFIER
	- SHEET WHERE SECTION IS LOCATED


#### NOTES

- 1. OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- 3. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.

#### REFERENCES

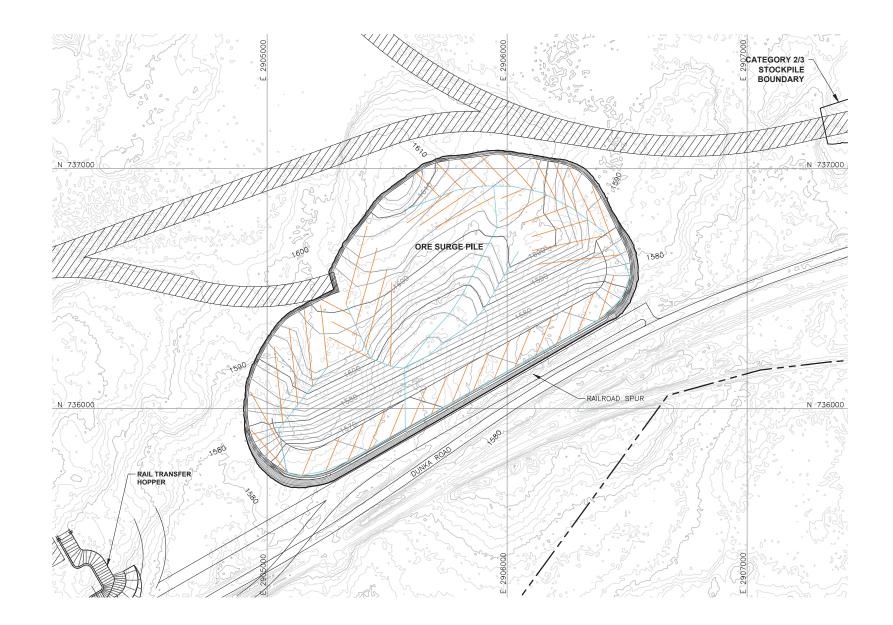
- 1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH.
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).







									ORE SURGE PILE DATION GRADING PLAN						
VER NO	DATE	DESCRIPTION	I	SSUE STATUS				**	POLY MET MINING, INC.	-					
Α	12/02/11	ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.									
В	2/15/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT	DRAWN:	POLYMET	NORTHMET PROJECT						
С	5/29/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR G				FOR G 8/				/17 SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER	MTM		HOYT LAKES, MINNESOTA	
D	1/14/14	ISSUED FOR AGENCY REVIEW		ERMITTING		UNDER THE LAWS OF THE STATE OF MINNESOTA.	CHECKED: 64	Â	GOLDER ASSOCIATES INC.						
Е	4/10/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				11	99	EN	44 UNION BOULEVARD, SUITE 30 LAKEWOOD. CO USA 80233						
F	5/22/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			SIGNATURE	GOLDER PROJECT NO.:	Gold	Ph: (303) 980-0540	-					
G	8/21/17	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				PRINTED NAME BRENT R. BRONSON	113-2209	Associ	Fax: (303) 985-2080 www.golder.com						
			NOT APPROVED FOR CONSTRUCTION.	NUI AFFRUVED FUR		DATE <u>8/21/17</u> LICENSE # <u>46492</u>	SCALE: AS SHOWN	DWG. NO. SKP-02	27	REV					


LEGEND	
1590 1590 1590 1600	EXISTING GROUND TOPOGRAPHY (SEE REFERENCE 1) PROPOSED MINE YEAR 1 GRADING TOPOGRAPHY
	MINE SITE BOUNDARY
	- CROSS SECTION IDENTIFIER - SHEET WHERE SECTION IS LOCATED
_	SLOPE
	MINE YEAR 1 ORE, WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)
	HAUL ROADS
	MINE WATER SUMP/POND (SEE NOTE 3)

#### NOTES

- 1. OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- 3. SEE MECHANICAL INFRASTRUCTURE PERMIT SUPPORT DRAWINGS.
- 4. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.

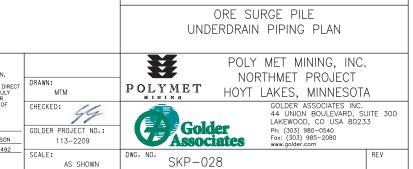
#### REFERENCES

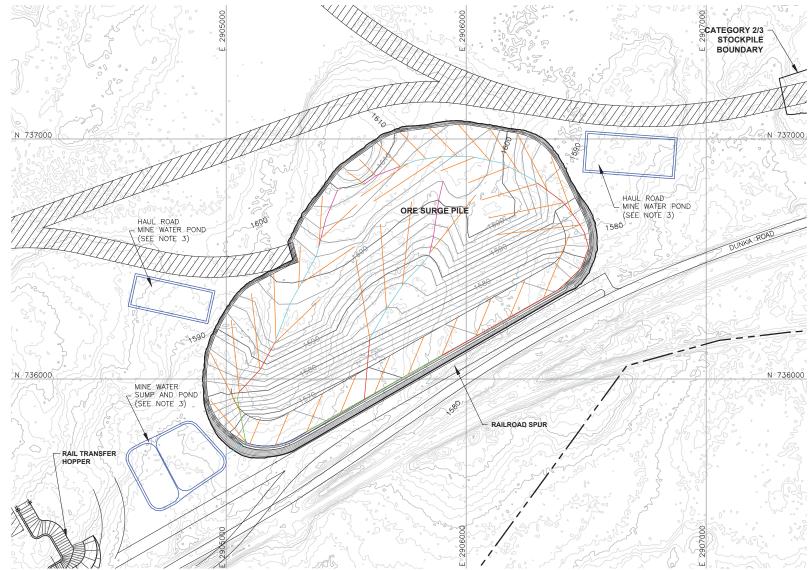
- EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- 2. COORDINATE SYSTEM REFERENCE IS MINNESOTA STATE PLANE.
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).





VI N	R IO	DATE	DESCRIPTION	]	SSUE STATUS		
	A 1	2/02/11	ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,
	B 2	2/15/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIR
	C 5	5/29/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR	G	8/21/17	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
	D 1	1/14/14	ISSUED FOR AGENCY REVIEW				UNDER THE LAWS OF THE STATE OF MINNESOTA.
	E 4	4/10/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				S.S.
	F 5	5/22/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			SIGNATURE
	G 8	3/21/17	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				PRINTED NAME BRENT R. BRONSON
				NOT APPROVED FOR	CONSTRUCTION.		DATE <u>8/21/17</u> LICENSE # 46492
				1			


LEGEND					
1590	EXISTING GROUND TOPOGRAPHY				
1590	PROPOSED GRADING TOPOGRAPHY				
	MINE SITE BOUNDARY				
	MINE YEAR 1 ORE, WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)				
	HAUL ROADS				
TERTIARY COLLECTION F	PIPING (SEE NOTE 3) — 4—INCH				
SECONDARY COLLECTION	N PIPING (SEE NOTE 3) 6-INCH				


#### NOTES

- 1. OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- ACTUAL NUMBER AND LOCATION OF UNDERDRAIN PIPES AND SUMPS WILL NEED TO BE DETERMINED DURING CONSTRUCTION BASED ON ENCOUNTERED FIELD CONDITIONS. SEE DETAIL 5 ON DRAWING 035 FOR UNDERDRAIN.
- 2. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.

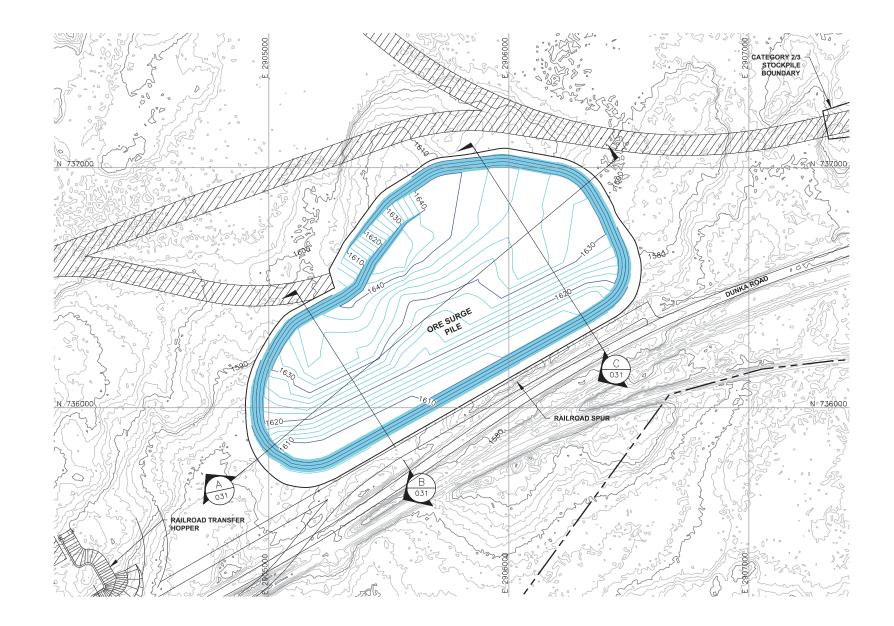
#### REFERENCES

- 1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH.
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).








RAILROAD SPUR						
						NOTES
	A. A.	°°C (	2.5%.			1. OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
						2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
			25			3. SEE MECHANICAL INFRASTRUCTURE PERMIT SUPPORT DRAWINGS.
	2307000	Gig.				4. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.
	50		5			REFERENCES
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
						2. COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH.
						3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).
						PLANT DRAWING NUMBER:
						ORE SURGE PILE OVERLINER DRAINAGE PIPING PLAN
VER DATE DESCRIPTION	I	SSUE STATUS				POLY MET MINING, INC.
A 12/02/11 ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,		NORTHMET PROJECT
B 2/15/13 ISSUED FOR REVIEW FOR INCLUSION IN ROMP C 5/29/13 ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR		0 /04 /47	SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY	DRAWN: MTM	POLYMET HOYT LAKES, MINNESOTA
D 1/14/14 ISSUED FOR AGENCY REVIEW	PERMITTING	G	8/21/17	LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF		GOLDER ASSOCIATES INC.
E 4/10/15 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				MINNESOTA.	CHECKED: 59	44 UNION BOULEVARD, SUITE 300
F 5/22/15 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR			SIGNATURE Denonson	GOLDER PROJECT NO.:	Colder LAKEWOOD, CO USA 80233 Ph: (303) 980-0540
G 8/21/17 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	CONSTRUCTION			PRINTED NAME BRENT R. BRONSON	113-2209	Associates Fax: (303) 985–2080 www.golder.com
	NOT APPROVED FOR	CONSTRUCTION.		DATE <u>8/21/17</u> LICENSE <u># 46492</u>	SCALE: AS SHOWN	DWG. ND. SKP-029

~

INCHES

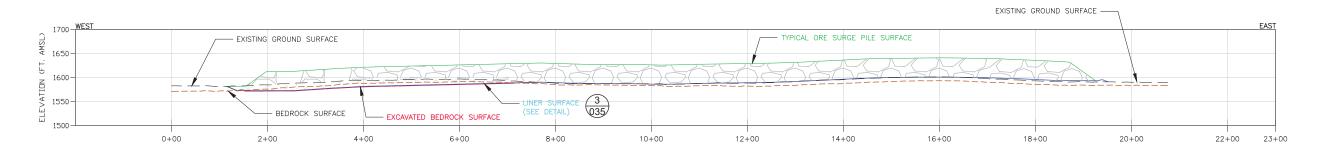
LEGEND

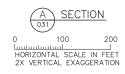
1590	EXISTING GROUND TOPOGRAPHY
1590	PROPOSED GRADING TOPOGRAPHY
	MINE SITE BOUNDARY
	MINE YEAR 1 ORE, WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)
	HAUL ROADS
	MINE WATER SUMP/POND (SEE NOTE 3)
MINE YEAR 1 – TERTIA	RY COLLECTION PIPING - 4-INCH
MINE YEAR 1 - PRIMAF	RY AND SECONDARY COLLECTION PIPING 4-INCH 6-INCH 8-INCH 10-INCH 12-INCH

V	ER IO [DATE	DESCRIPTION]	SSUE STATUS		
	A 12,	2/02/11	ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
	B 2/	/15/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRE
	0 5/	/29/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR PERMITTING	G	8/21/17	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
	0 1/	/14/14	ISSUED FOR AGENCY REVIEW				UNDER THE LAWS OF THE STATE OF MINNESOTA.
Γ	E 4/	/10/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				1 Same
	F 5/	/22/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			SIGNATURE
	G 8/2	′21/17	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				PRINTED NAME BRENT R. BRONSON
				NOT APPROVED FOR	CONSTRUCTION.		DATE <u>8/21/17</u> LICENSE # 46492

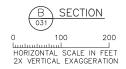
LEGEND

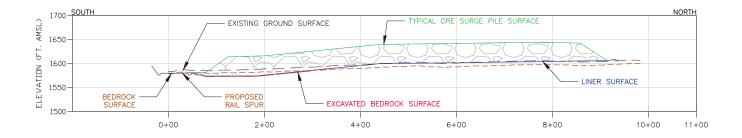
1590	EXISTING GROUND TOPOGRAPHY
1590	PROPOSED STOCKPILE LAYOUTS
(//////////////////////////////////////	HAUL ROADS
	MINE SITE BOUNDARY
	MINE YEAR 1 PIT BOUNDARY (SEE NOTE 1)
	MINE YEAR 1 ORE, WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)
	MAXIMUM ORE, WASTE ROCK STOCKPILE OUTLINES (SEE NOTE 2)
	- CROSS SECTION IDENTIFIER
031	- SHEET WHERE SECTION IS LOCATED

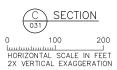

NOTES


- 1. OPEN PIT AND HAUL ROAD LAYOUTS PROVIDED BY BARR ENGINEERING IN OCTOBER 2011.
- 2. STOCKPILE LAYOUTS PROVIDED BY BARR ENGINEERING IN APRIL 2011 AND MODIFIED BY GOLDER.
- 3. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.

REFERENCES


- 1. EXISTING GROUND TOPOGRAPHY PROVIDED BY BARR ENGINEERING, AUGUST 2011.
- COORDINATE SYSTEM REFERENCE IS NAD83 MINNESOTA STATE PLANE NORTH.
- 3. VERTICAL DATUM REFERENCE IS FEET ABOVE MEAN SEA LEVEL (AMSL).



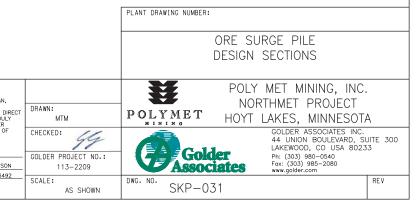


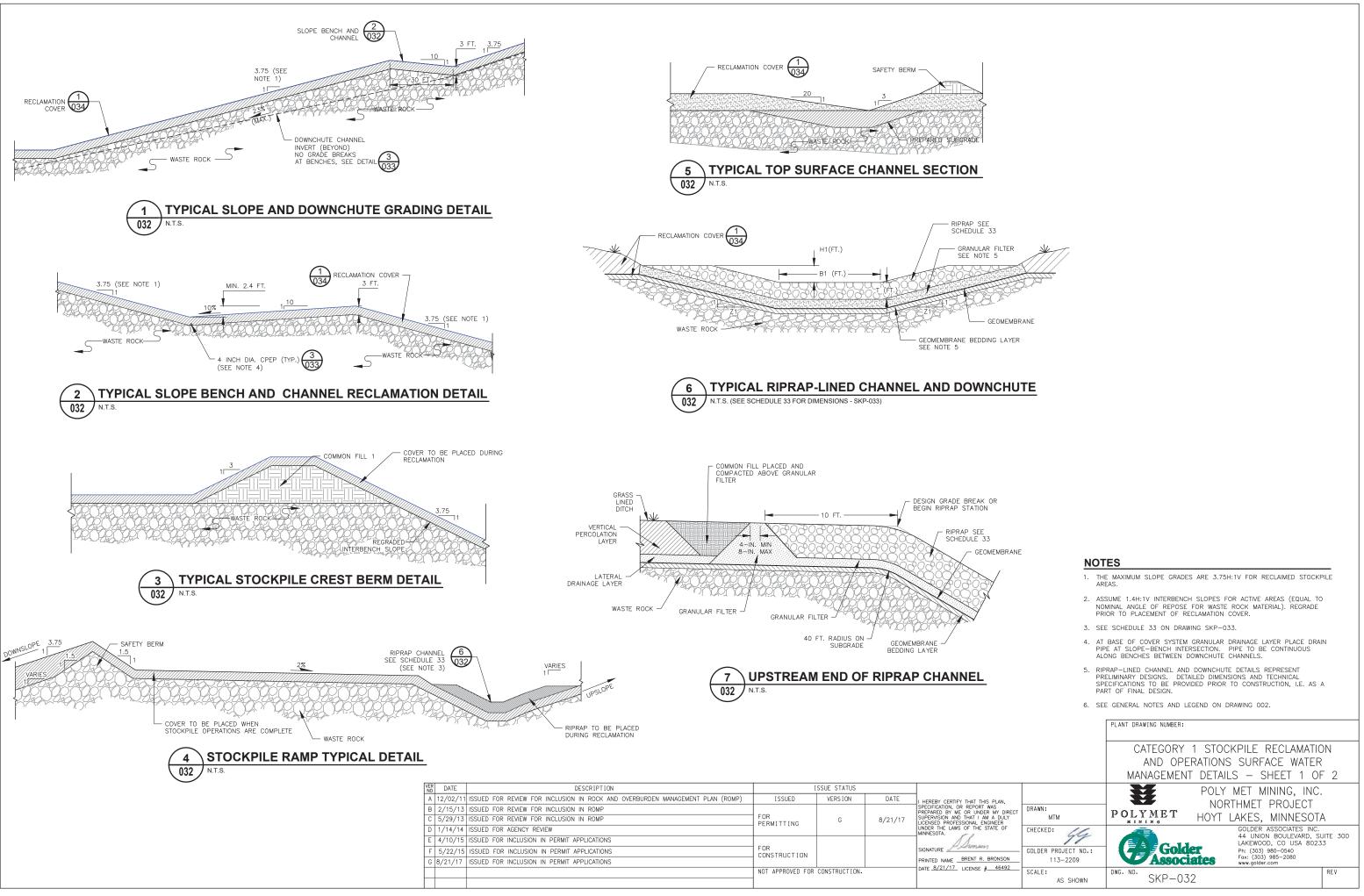
V	ER √0	DATE	DESCRIPTION	I	SSUE STATUS		
	A .	12/02/11	ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
	В	2/15/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRE
-	C	5/29/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR	G		SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
1	D	1/14/14	ISSUED FOR AGENCY REVIEW	1 210111110			UNDER THE LAWS OF THE STATE OF MINNESOTA.
	Εŀ	4/10/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				1 American
	F	5/22/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			SIGNATURE
	G	3/21/17	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				PRINTED NAME BRENT R. BRONSON
				NOT APPROVED FOR	CONSTRUCTION.		DATE <u>8/21/17</u> LICENSE # 46492

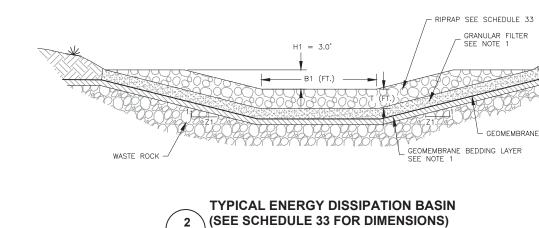
LEGEND

ORE LIMITS AT TYPICAL CAPACITY

LINER SURFACE


— — — — EXISTING GROUND SURFACE


OVERBURDEN SOIL AND BEDROCK EXCAVATION SURFACE


---- BEDROCK SURFACE

NOTES

- 1. STOCKPILE SIDE SLOPES AT ANGLE OF REPOSE.
- 2. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.
- 3. SEE CROSS SECTION LOCATIONS ON DRAWINGS 3, 4, 5, 26, AND 27

033 N.T.S.

SCHEDULE 33: RIPRAP-LINED CHANNEL DIMENSIONS

CHANNEL ID	Bottom Width, B1 (Ft)	SIDE SLOPE, Z1 (H:1V)	MIN. DEPTH, H1 (FT)	RIPRAP SIZE, D50 (IN)	RIPRAP LAYER THICKNESS, T (FT)	MAX SLOPE, (FT/FT)	
DC1-A	20	4	3	12	2	0.23	
DC1-B	20	4	3	12	2	0.23	
DC1-C	25	4	3	12	2	0.23	
DC1-D	20	4	3	12	2	0.23	
DC1-E	25	4	3	12	2	0.23	
DC1-F	20	4	3	9	1.5	0.23	
DC1-G	20	4	3	12	2	0.23	
DC1-HRE	8	4	3	9	1.5	0.06	
DC1-H	20	4	3	9	1.5	0.23	
DC1-HRS	8	4	3	9	1.5	0.06	
DC1-HRU	8	4	3	9	1.5	0.07	
DC1-I	20	4	3	12	2	0.23	
DC1-J	20	4	3	18	3	0.23	
DC1-K	25	4	3	12	2	0.23	
DC1-L	25	4	3	12	2	0.23	

NOTES

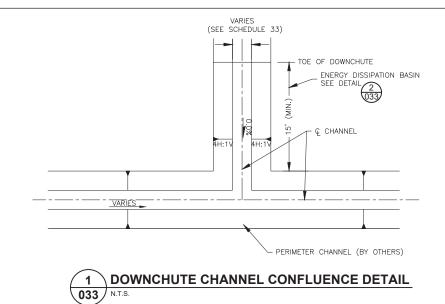
ENERGY DISSIPATION BASIN DETAIL REPRESENTS PRELIMINARY DESIGN. DETAILED DIMENSIONS AND TECHNICAL SPECIFICATIONS TO BE PROVIDED PRIOR TO CONSTRUCTION, I.E. AS A PART OF FINAL DESIGN. 1.

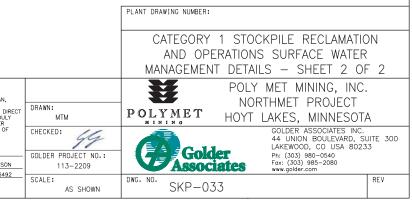
2. SEE GENERAL NOTES AND LEGEND ON DRAWING 002.

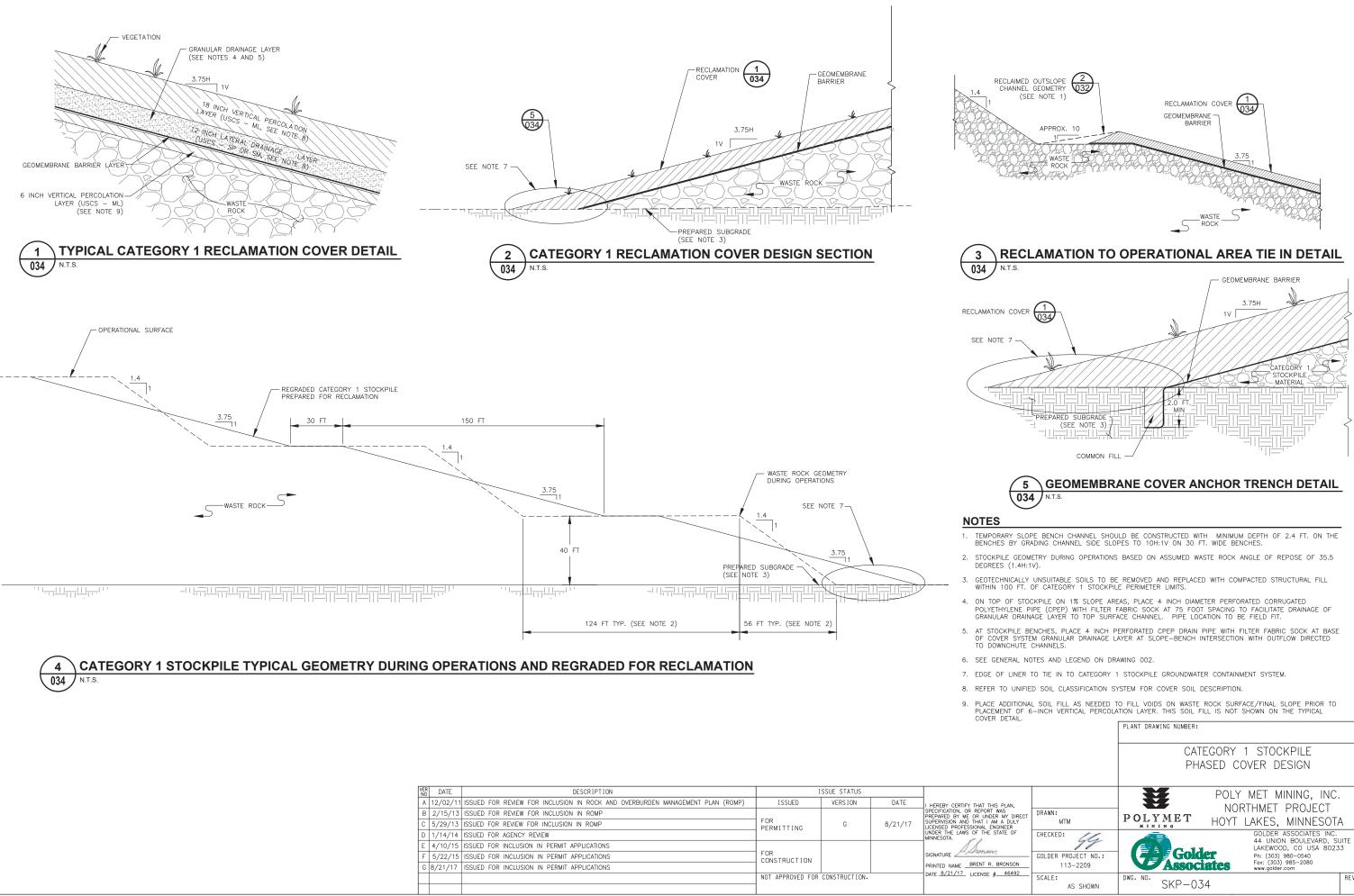
3	SLOPE BENCH AND CHANNEL TO DOWNCHUTE TRANSITION
033	N.T.S.

DOWNCHUTE CHANNEL

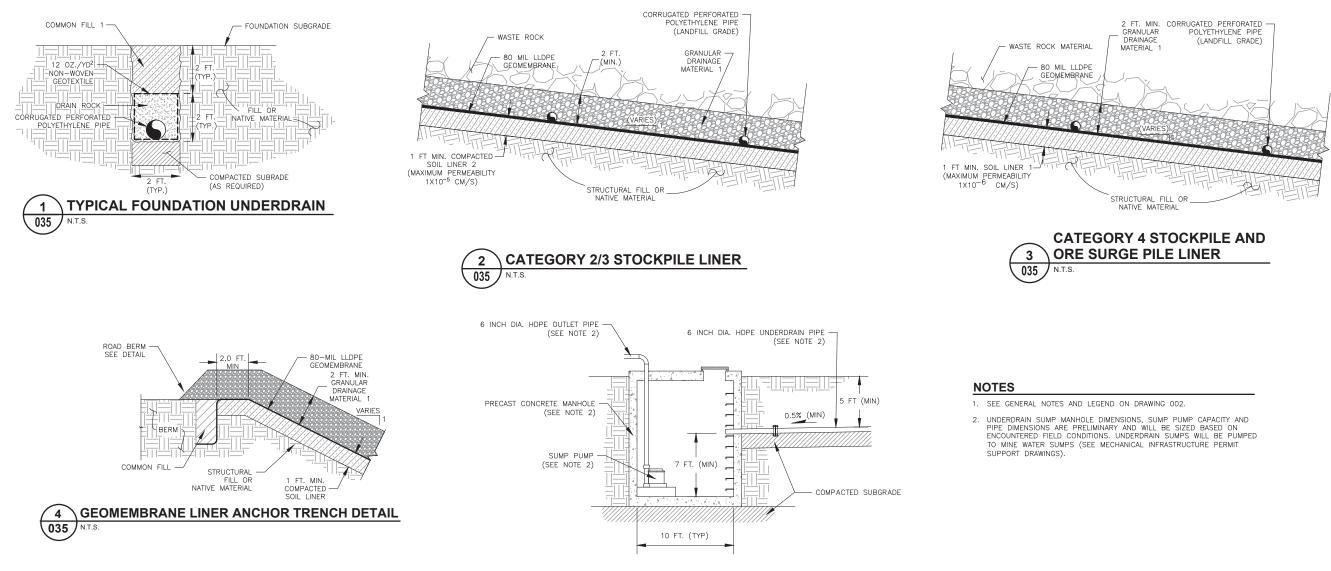
- 4 INCH DIA. CORRUGATED PERFORATED DRAIN PIPE IN


EXTENTS OF RIPRAP

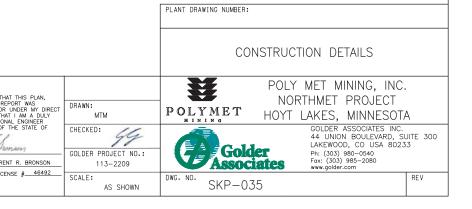

FILTER FABRIC SOCK (TYPICAL AT ALL BENCHES)


SLOPE BENCH AND CHANNEL SEE DETAIL

_						
VE	DATE	DESCRIPTION		SSUE STATUS		
A	12/02/11	ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
E	2/15/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY D
C	5/29/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR PERMITTING	G		SUPERVISION AND THAT I AM A DUL LICENSED PROFESSIONAL ENGINEER
D	1/14/14	ISSUED FOR AGENCY REVIEW				UNDER THE LAWS OF THE STATE OF MINNESOTA.
E	4/10/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				Shonsen
F	5/22/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			SIGNATURE
0	8/21/17	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				PRINTED NAME BRENT R. BRONSO
			NOT APPROVED FOR	CONSTRUCTION.		DATE <u>8/21/17</u> LICENSE # 4649


 \sim

GOLDER ASSOCIATES INC. 44 UNION BOULEVARD, SUITE 300 REV



VER NO	DATE	DESCRIPTION]	SSUE STATUS		
А	12/02/11	ISSUED FOR REVIEW FOR INCLUSION IN ROCK AND OVERBURDEN MANAGEMENT PLAN (ROMP)	ISSUED	VERSION	DATE	I HEREBY CERTIFY
В	2/15/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP				SPECIFICATION, OF PREPARED BY ME
С	5/29/13	ISSUED FOR REVIEW FOR INCLUSION IN ROMP	FOR	G	8/21/17	SUPERVISION AND LICENSED PROFES
D	1/14/14	ISSUED FOR AGENCY REVIEW				UNDER THE LAWS MINNESOTA.
Е	4/10/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				Λ
F	5/22/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	FOR CONSTRUCTION			SIGNATURE
G	8/21/17	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				PRINTED NAME
			NOT APPROVED FOR	CONSTRUCTION.		DATE 8/21/17
			1			

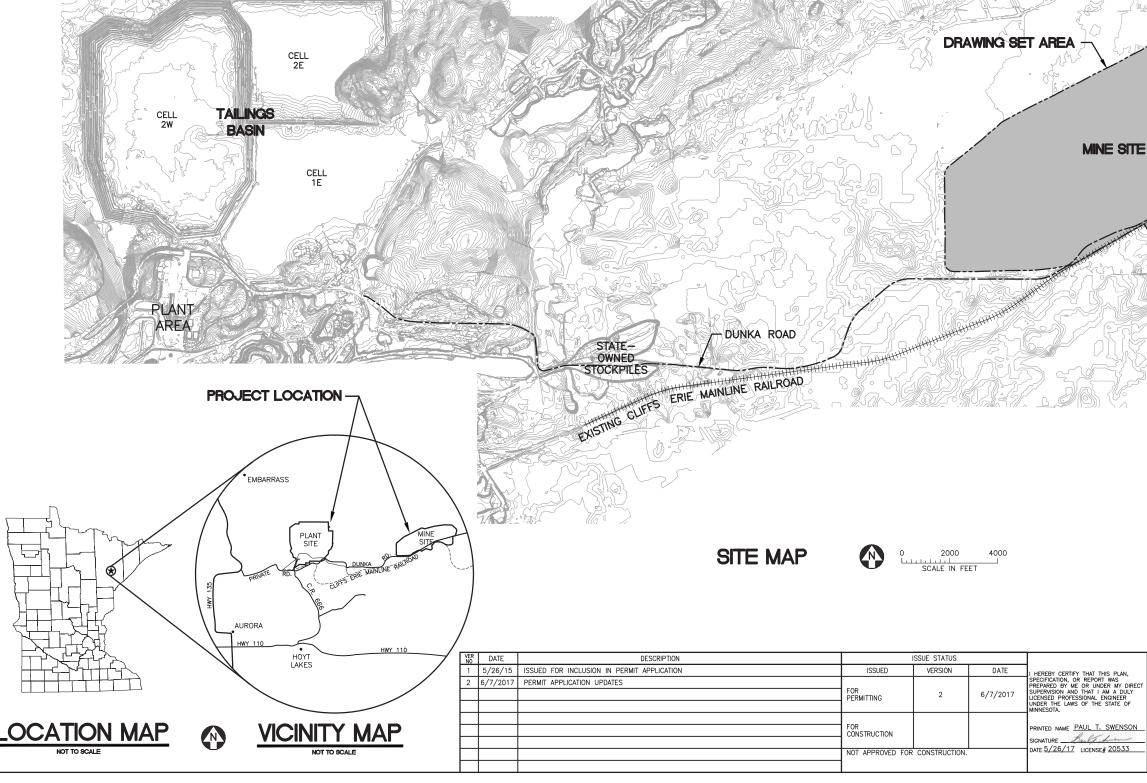
5 UNDERDRAIN SUMP MANHOLE

035 N.T.S.

VE N

Mine Site Stormwater Permit Application Support Drawings

Errata Sheet


Poly Met Mining, Inc. NorthMet Project

Permit Application Support Drawings: Mine Site Stormwater August 2017 (version 3)

Engineering design is currently in progress. The table below lists changes that have been identified todate and have not yet been incorporated in the attached permit application support drawings within this set. Final design will incorporate these changes along with additional site-specific information (e.g., supplementary geotechnical data); therefore, additional adjustments may be made during final design that will be incorporated into the final design drawing set.

Drawing Sheet(s)	Change
Global change to all sheets, as needed	The terminology "mine drainage" as noted in these drawings will be changed to "mine water".
SW-003, SW-004, SW-005, SW-006, SW-031	Temporary sedimentation basins or stormwater infiltration basins may be added to meet construction stormwater requirements. These construction stormwater features require additional site-specific data and will be evaluated in final design.
SW-002, SW-003, SW-004, SW- 005, SW-006, SW-008, SW-009, SW-010, SW-013, SW-014, SW- 015, SW-016, SW-017, SW-018, SW-019, SW-021, SW-031	The "Mine Site Boundary" will be replaced by the "Mining Area Boundary" as shown on figures included in the Permit to Mine Application.

POLY MET MINING, INC. NORTHMET PROJECT PERMIT APPLICATION SUPPORT DRAWINGS MINE SITE STORMWATER HOYT LAKES, MINNESOTA

Direct Duty Drawn: KKB/ATS POLYMET HOYT LAKES, MINNESOTA OF CHECKED: ATS ATS BARR PROJECT NO.: 23/69-0029 BARR PROJECT NO.: 23/69-0029 BARR PROJECT NO.: 23/69-0029 BARR PROJECT NO.: 23/69-0029	, , , , ,			
AN, / OFECT oF AN, / OFECT OF AN, / OFECT AN, / OFECT OF AN, / OFECT OF AN, / OFECT AN, / OFECT OF ATS BARR PROJECT NO.: 23/69-0C29 33 SCALE: DWG. NO. MINE SITE STORMWATER LOCATION MAP AND SITE MAP POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA BARR ENGINEERING CO. 4300 MARKETPOINTE DRIVE SUITE 200 MINNEAPOLIS, MN. Ph: 1-800-632-2277 REV				
AN, / OFECT oF AN, / OFECT OF AN, / OFECT AN, / OFECT OF AN, / OFECT OF AN, / OFECT AN, / OFECT OF ATS BARR PROJECT NO.: 23/69-0C29 33 SCALE: DWG. NO. MINE SITE STORMWATER LOCATION MAP AND SITE MAP POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA BARR ENGINEERING CO. 4300 MARKETPOINTE DRIVE SUITE 200 MINNEAPOLIS, MN. Ph: 1-800-632-2277 REV				
NN. PORECT OF DRAWN: CHECKED: ATS BARR PROJECT NO.: 23/69-0C29 33 SCALE: DRAWS. DRAWN: CHECKED: ATS BARR PROJECT NO.: 23/69-0C29 CHECKED: C				
AN, C ORECT C OF AN, C ORECT AN, C ORECT C ORECT C ORECT C ORECT AN, C ORECT C O			PLANT DRAWING NUMBER:	
AN, TORRECT OF OF OF OF OF OF OF OF OF OF				
ATS NSON BARR PROJECT NO: 23/69-0C29 BARR PROJECT NO: 23/69-0C29 SCALE: DWG. NO. BARR PROJECT NO: 23/69-0C29 CALE: DWG. NO. BARR PROJECT NO: 23/69-0C29 CALE: DWG. NO. CALE: C	AN, / DIRECT DULY FR		NORTHMET PROJECT	
SCALE: DWG. NO. REV	NSON	ATS BARR PROJECT NO.:	4300 MARKETPOINTE DR SUITE 200 MINNEAPOLIS, MN.	NVE
	33			

DUNKA JUNCTION

DUNKA RAILROAD

GENERAL LEGEND

- EXISTING CONTOUR - MAJOR

EXISTING

- \otimes EXISTING POWER POLE
- +++++++++++ EXISTING RAILROAD ----- WATER EDGE/CREEK CENTER LINE
- EXISTING ROAD
- -R/W-RIGHT OF WAY
- PROPERTY LINE

<u>____</u>

- _____ MINE SITE BOUNDARY
- EXISTING STRUCTURES
- WETLAND BOUNDARY - OE - EXISTING OVERHEAD ELECTRIC
- EXISTING CULVERT
- PROPOSED MINE WATER CULVERT

PROPOSED CONTOUR - MINOR PROPOSED ACCESS ROADS ____< PROPOSED STORMWATER DRAIN SURFACE DRAINAGE

PROPOSED

PROPOSED CONTOUR - MAJOR

SHEET INDEX

SHEET NO. TITLE GENERAL DRAWINGS

NOTES

- COORDINATE SYSTEM IS MINNESOTA STATE PLANE NORTH ZONE, NAD83.
- 2. ELEVATIONS ARE BASED ON MEAN SEA LEVEL (MSL), NAVD88.
- 3. EXISTING TOPOGRAPHIC INFORMATION SHOWN ON THE DRAWINGS WAS PREPARED BY AEROMETRIC, INC. FROM LIDAR DATA COLLECTED ON MARCH 17, 2010.
- 4. CULVERT DIMENSIONS ARE PRELIMINARY. FINAL DIMENSIONS SHALL BE DETERMINED DURING FINAL DESIGN.
- 5. THE BEDROCK PROFILES SHOWN ON THESE DRAWINGS REPRESENT THE BEDROCK PROFILES SHOWN ON THESE DRAWINGS REPRESENT THE BEST AVAILABLE INFORMATION FOR PLANNING PURPOSES. THE BEDROCK SURFACE FROM WHICH THE PROFILES ARE EXTRACTED IS A THREE-DIMENSIONAL, MODELED SURFACE THAT RESULTED FROM DEDUCTING THE DEPTH TO BEDROCK IDENTIFIED ON LOGS OF BORINGS CONDUCTED AT THE MINE SITE FROM THE LIDAR TOPOGRAPHIC GROUND SURFACE MODEL. THE RESULTING DATA WAS THEN MODELED IN GIS SOFTWARE TO DEVELOP A THREE-DIMENSIONAL BEDROCK SURFACE. THE PROFILES SHOW SIGNIFICANT DETAIL IN LOCAL ELEVATIONS, WHICH MAY OR MAY NOT ACTUALLY EXIST. THE BEDROCK SURFACE PROFILES SHOULD BE TAKEN AS REPRESENTATIVE, BUT NOT NECESSARILY PRECISE.

ABBREVIATIONS

CATEGORY 1 CATEGORY 2/

CL CPS D50

EL INV

I, I kV LF MP

MP MPP NWL RCP O.C. OSLA

PVI

(E) (W)

SWPPP WWTS

TEGORY 1 STOCKPILE	-	CATEGORY 1 WASTE ROCK STOCKPILE
TEGORY 2/3 STOCKPILE	-	CATEGORY 2/3 WASTE ROCK STOCKPILE
,	-	CENTERLINE
'S	-	CENTRAL PUMPING STATION
0	-	THE MEDIAN PARTICLE DIAMETER OF A PARTICLESIZE
		DISTRIBUTION; THE SIZE AT WHICH 50% OF THE
		PARTICLES IN THE MATERIAL PARTICLE SIZE
		DISTRIBUTION CURVE ARE SMALLER
	-	ELEVATION
/	-	INVERT
I, III, IV, V	-	ROMAN NUMERALS FOR RIPRAP CLASSIFICATION
	-	KILOVOLT
	-	LINEAR FEET
	-	MINNESOTA POWER
P	-	MINE TO PLANT PIPELINES
/L	-	NORMAL WATER LEVEL
P	-	REINFORCED CONCRETE PIPE
C.	-	ON CENTER
SLA	-	OVERBURDEN STORAGE AND LAYDOWN AREA
1	-	POINT OF VERTICAL
/PPP	-	STORMWATER POLLUTION PREVENTION PLAN
VTS	-	WASTE WATER TREATMENT SYSTEM
)	_	FAST

WEST

DRAWING NUMBERING

LAST THREE DIGITS OF DRAWING NUMBER (REFERENCES IN THIS DRAWING SET REFER TO THIS SET)

-						
VER NO	DATE	DESCRIPTION	ISSUE STATUS			
1	5/26/15	ISSUED FOR INCLUSION IN PERMIT APPLICATION	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
2	6/7/2017	PERMIT APPLICATION UPDATES				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DI
			FOR PERMITTING	2	6/7/2017	SUPERVISION AND THAT I AM A DUL' LICENSED PROFESSIONAL ENGINEER
						UNDER THE LAWS OF THE STATE OF MINNESOTA.
			FOR CONSTRUCTION			PRINTED NAME PAUL T. SWENSC
						SIGNATURE DATE 5/26/17 LICENSE# 20533
			NOT APPROVED FOR	CONSTRUCTION.		DATE 37 207 17 LICENSE# 20333

 \sim

 GENERAL
 DRAWINGS

 SW-001
 STORMWATER
 LCGEND AND SHEET INDEX

 SW-002
 STORMWATER
 LEGEND AND SHEET INDEX

 SW-004
 STORMWATER SITE DRAINAGE PLAN MINE YEAR 1

 SW-005
 STORMWATER SITE DRAINAGE PLAN MINE YEAR 1

 SW-005
 STORMWATER SITE DRAINAGE PLAN MINE YEAR 1

 SW-005
 STORMWATER SITE DRAINAGE PLAN MINE YEAR 20

 SW-006
 STORMWATER STIE LOCATION MAP

 SW-007
 STORMWATER SEDIMENTATION POND & GRADING PLAN AND DETAILS

 SW-008
 STORMWATER SEDIMENTATION POND & GRADING PLAN AND DETAILS

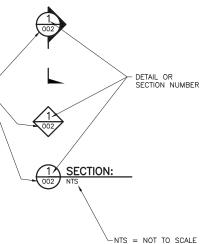
 SW-010
 STORMWATER SEDIMENTATION POND C -REST GRADING PLAN AND DETAILS

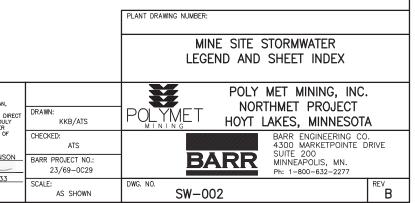
 SW-011
 STORMWATER SEDIMENTATION POND C -REST GRADING PLAN AND DETAILS

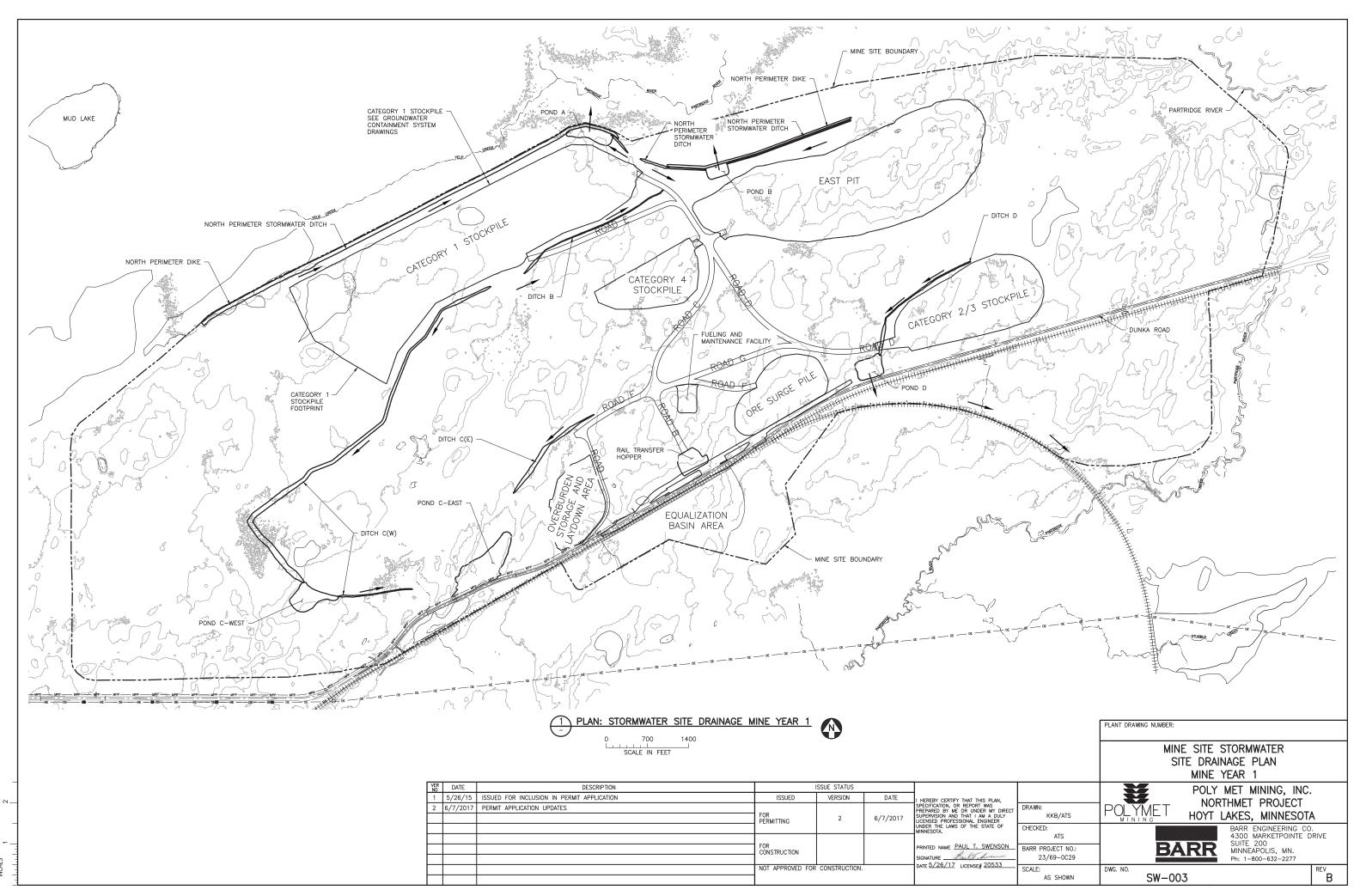
 SW-012
 STORMWATER NORTH DIKE AND DITCH PLAN AND PROFILE STATION 10+00N - 38+50N

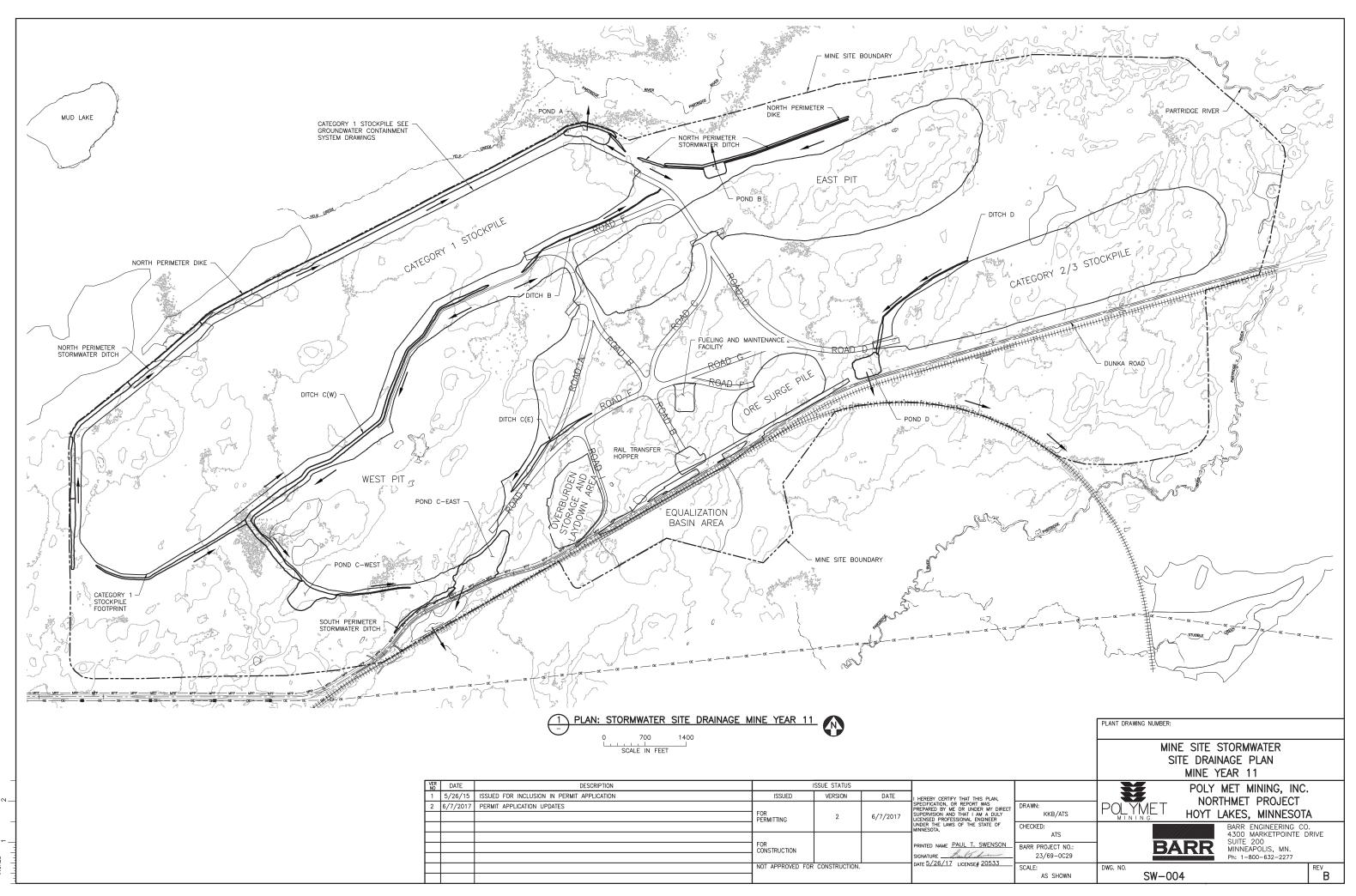
 SW-013
 STORMWATER NORTH DIKE AND DITCH PLAN AND PROFILE STATION 10+00N - 122+00N

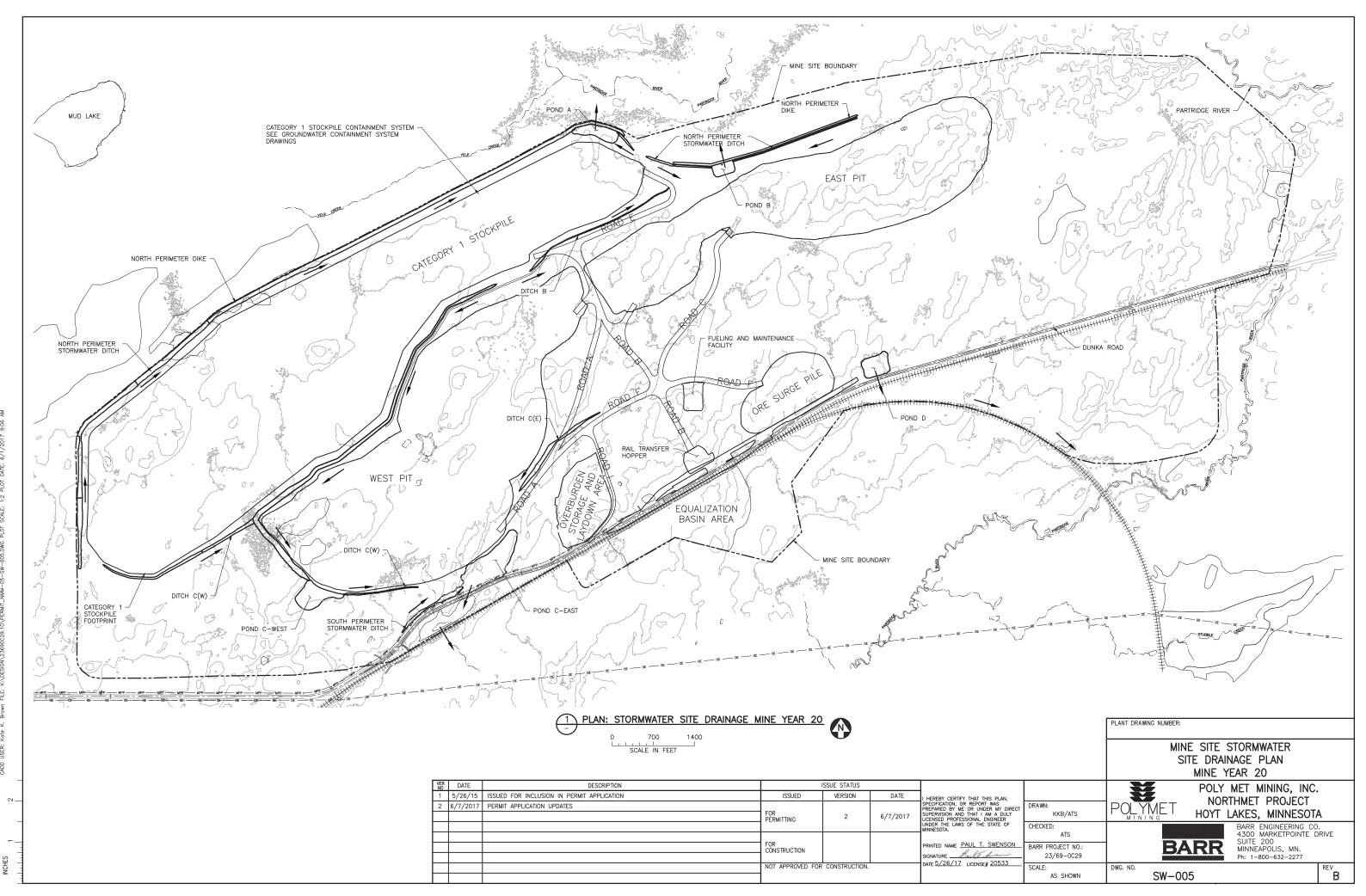
 SW-014
 STORMWATER NORTH DIKE AND DITCH PLAN AND PROFILE STATION 124+00N - 122+00N

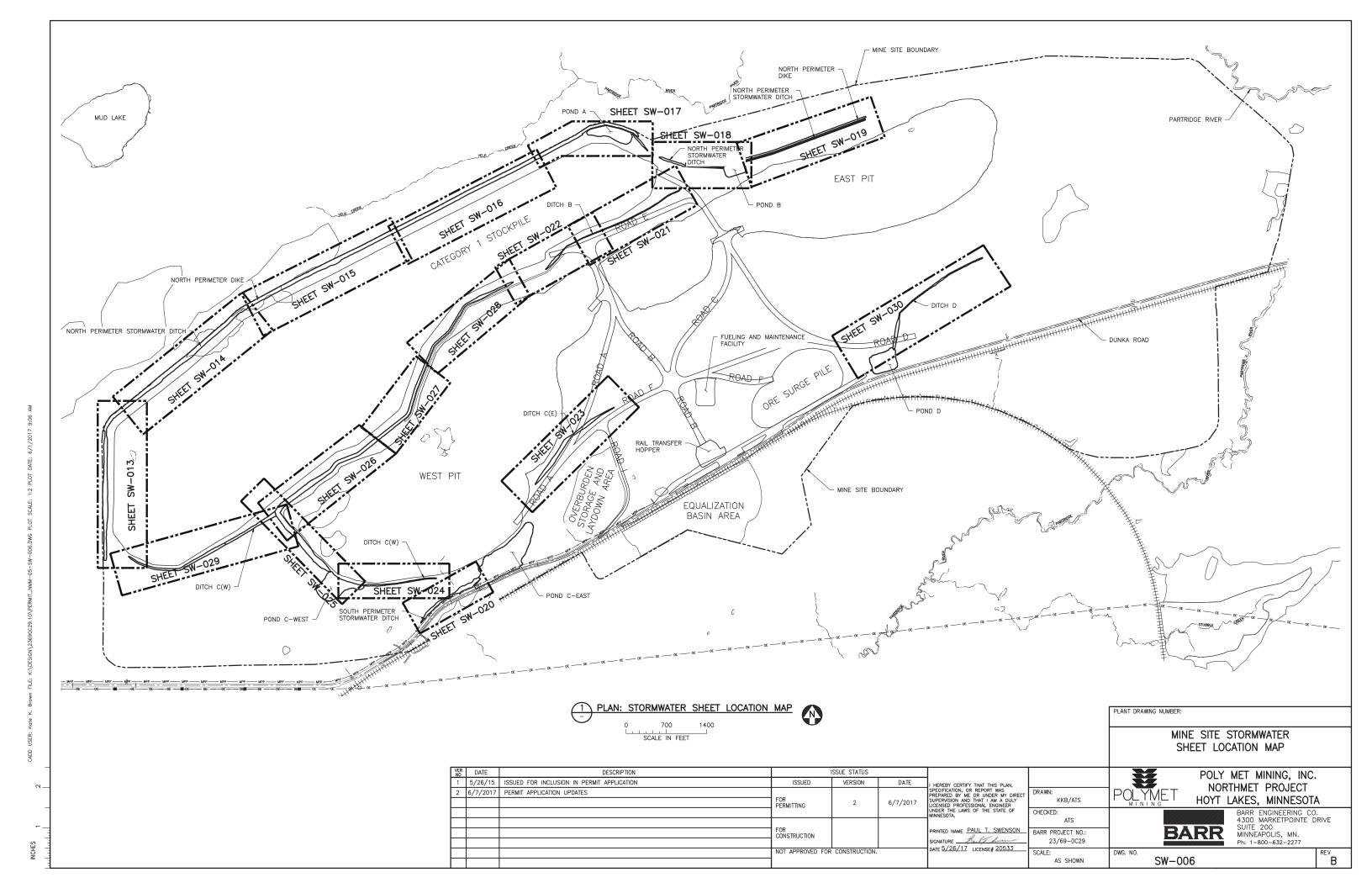

 SW-015
 STORMWATER NORTH DIKE AND DITCH PLAN AND PROFILE STATION 124+00N - 122+00N

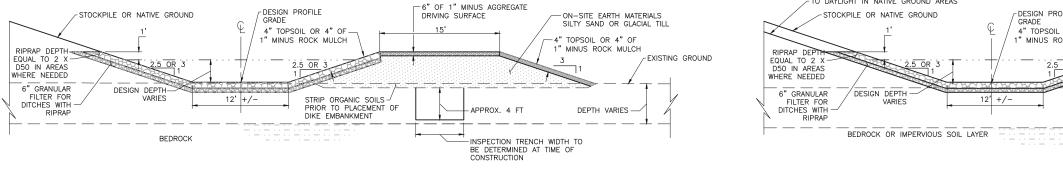

 SW-016
 STORMWATER NORTH DIKE AND DITCH PLAN AND PROFILE STATION 146+00N - 122+00N

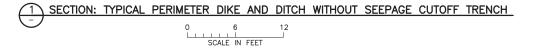

 SW-017
 STORMWATER NORTH DIKE AND DITCH PLAN AND PROFILE STATION 146+00N - 142+00N

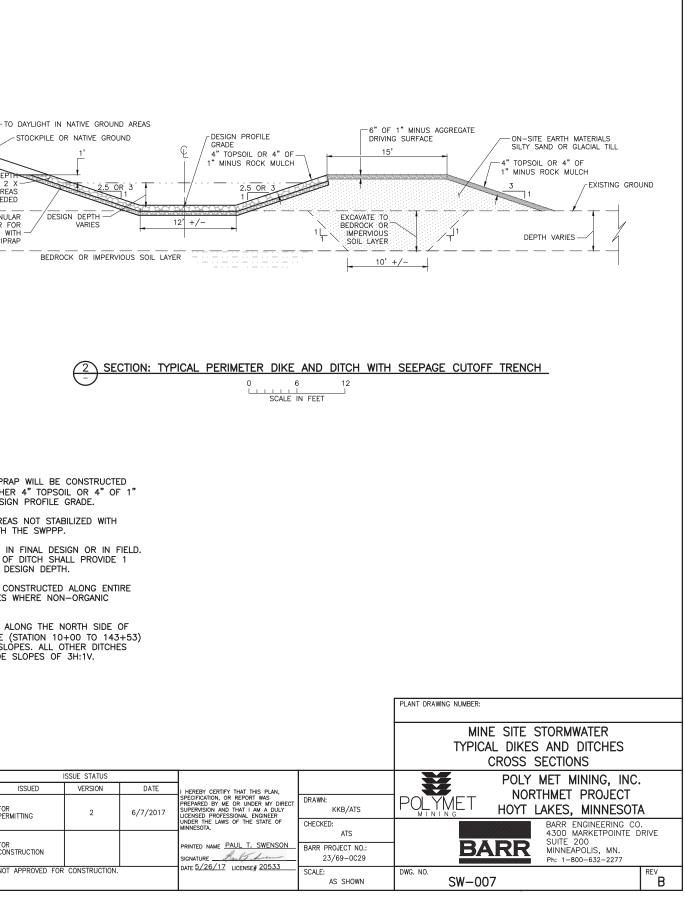

 SW-018
 SW-022 STORMWATER DITCH C(W) PLAN AND PROFILE STATION 75+00C(W) - 94+60C(W) SW-029 STORMWATER DITCH C(W) PLAN AND PROFILE STATION 75+00C(W) - 94+60C(W) SW-030 STORMWATER DITCH C(W) PLAN AND PROFILE STATION 0+00D - 27+00D SW-031 STORMWATER DIKES, DITCHES, AND PONDS CLOSURE PLAN

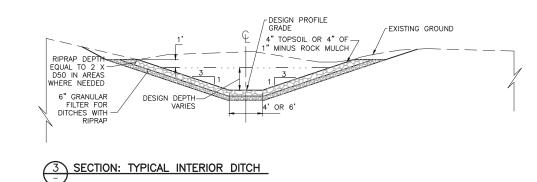




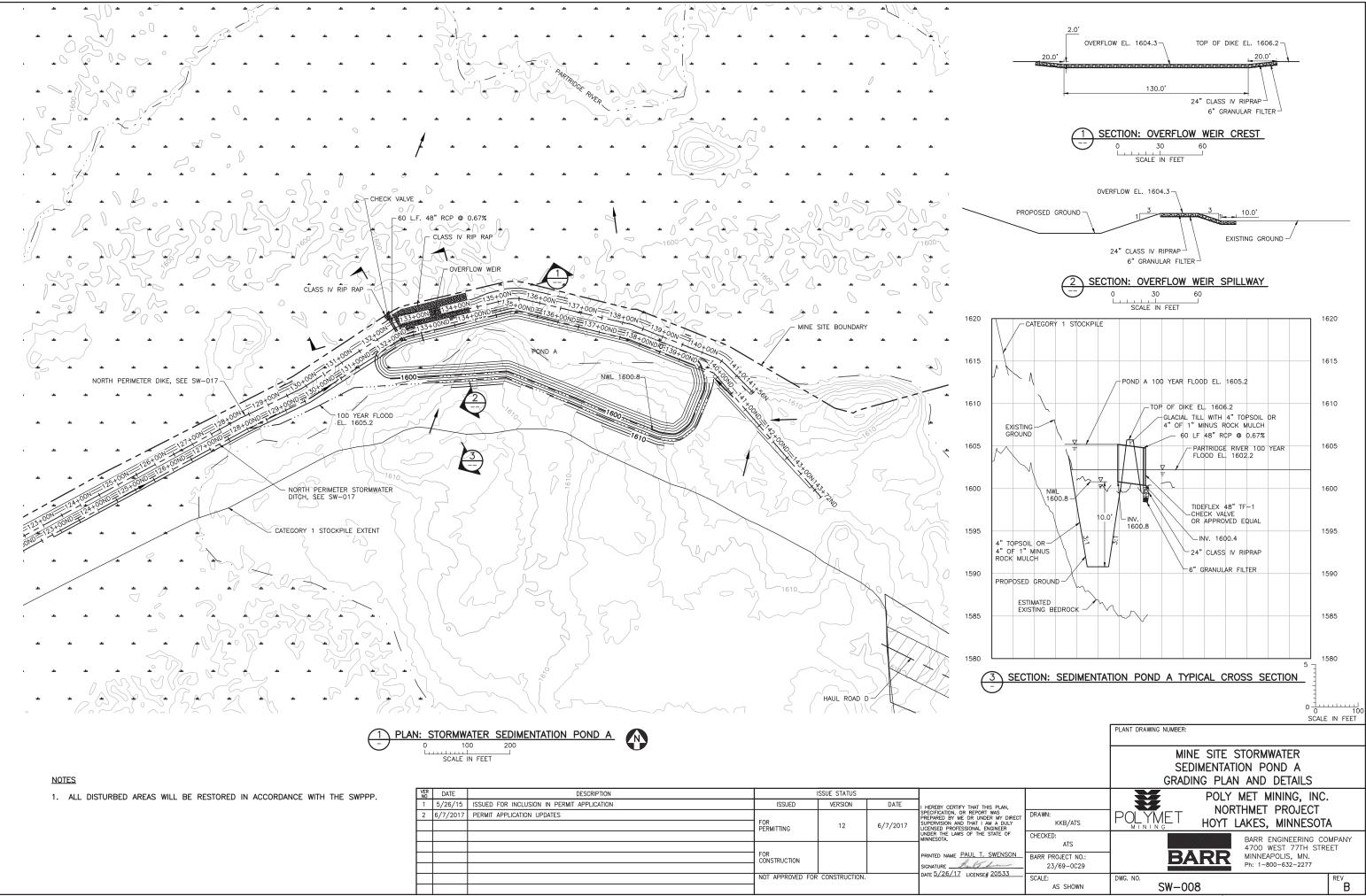






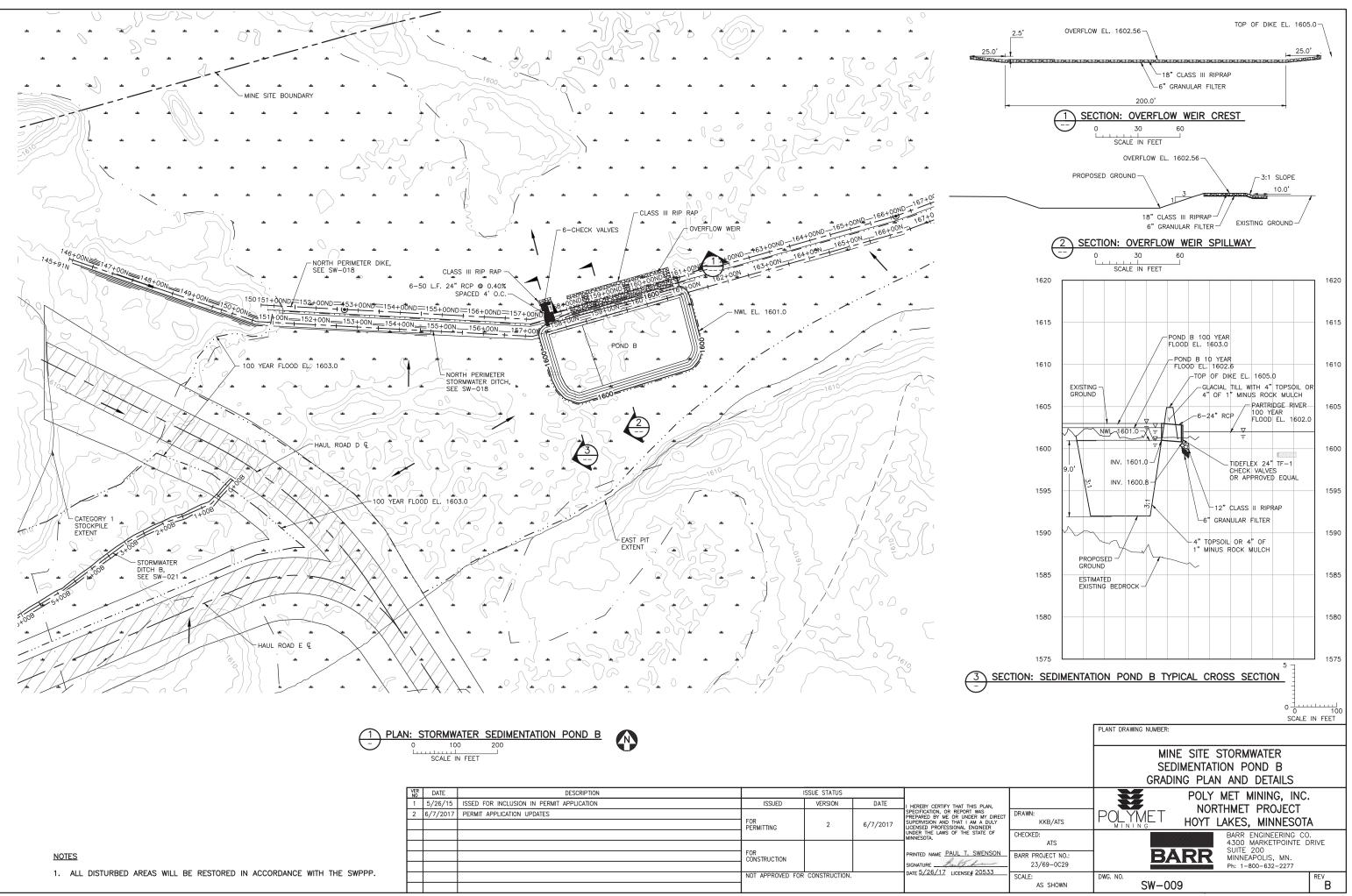

LES CADD USER: Kate K. Brown FILE: K:\DESIGN\23690C29.10\PERMIT_NMM-05-SW-005.DWG PLOT SCALE: 1:2 PLOT DATE: 6/1/2017 9:

6

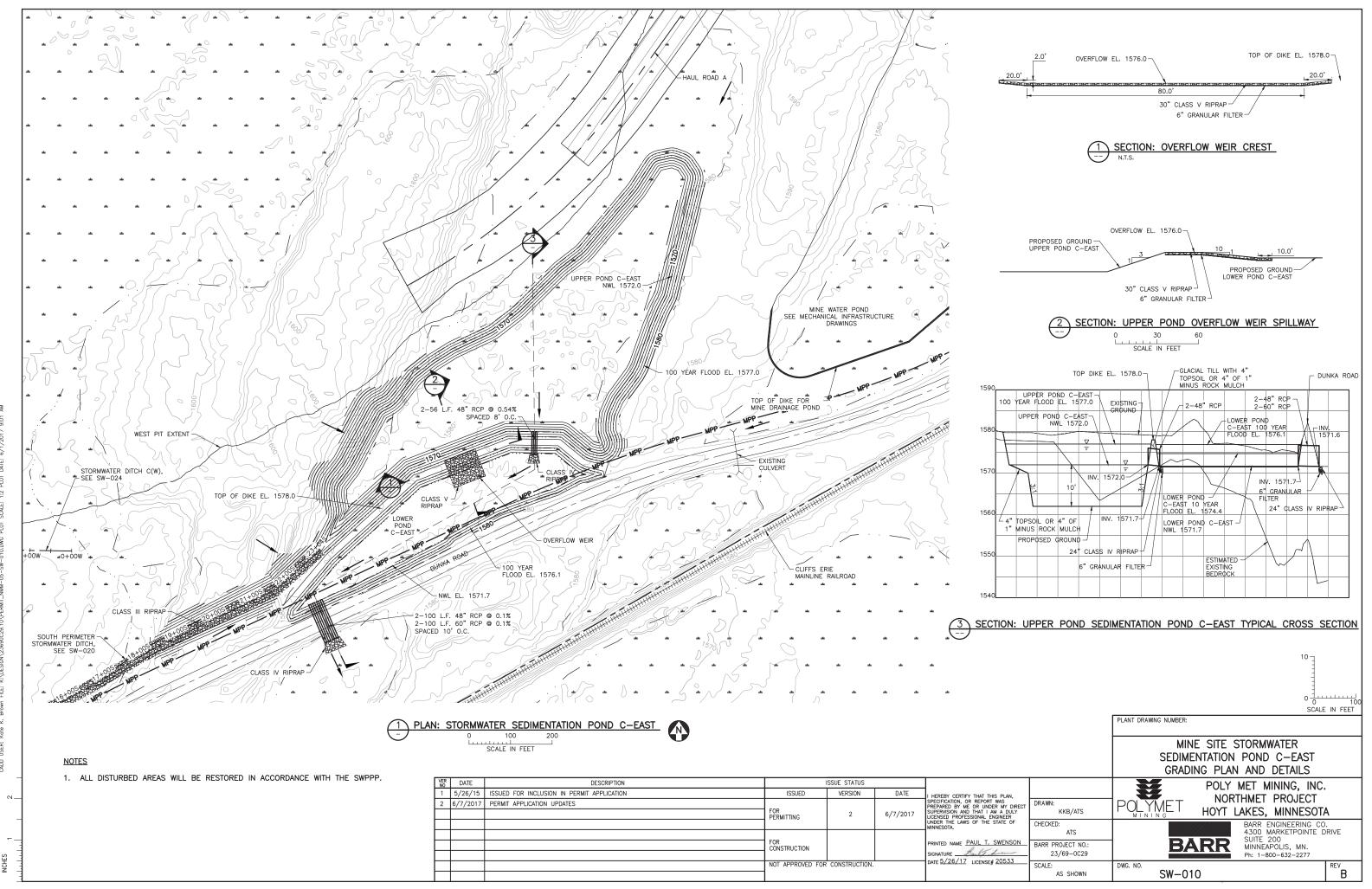

SCALE IN FEET

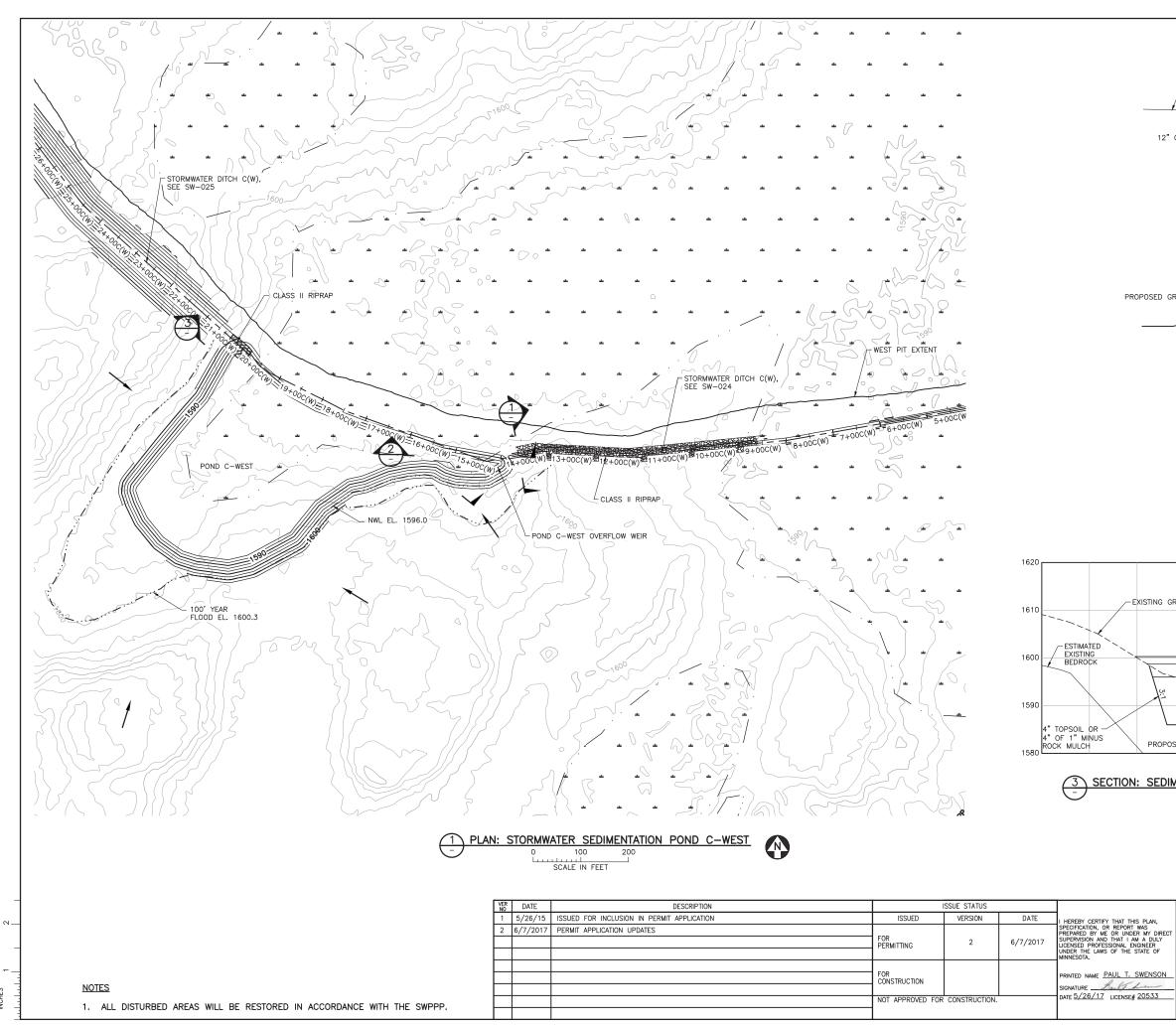
12

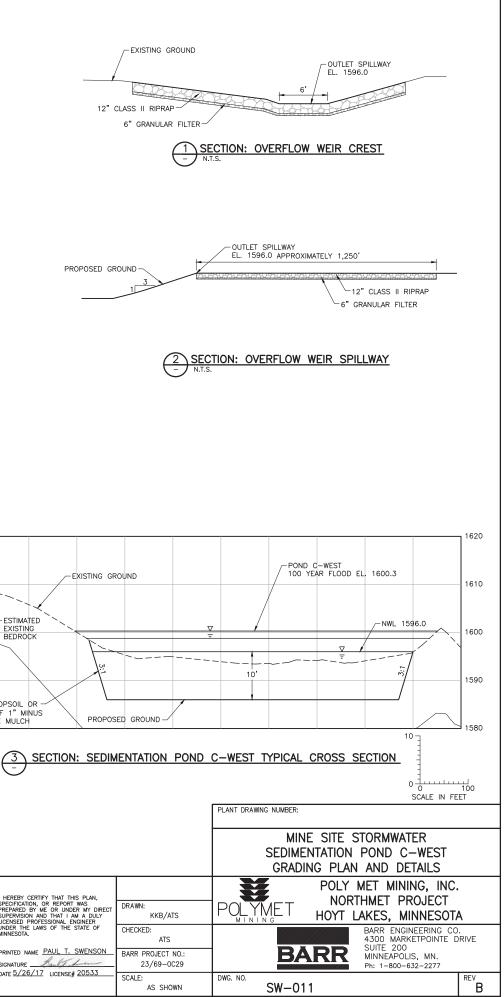
NOTES

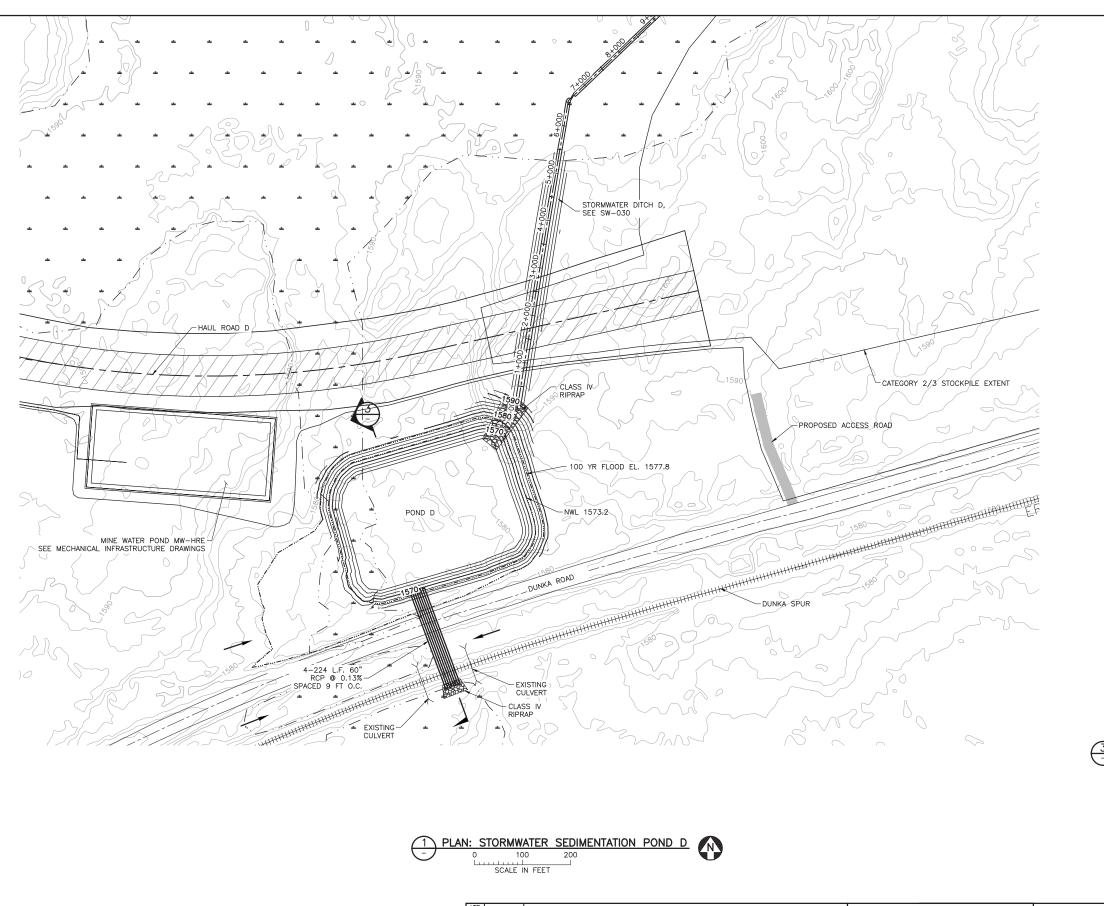

- 1. DITCHES NOT REQUIRING RIPRAP WILL BE CONSTRUCTED WITH NATIVE SOILS AND EITHER 4" TOPSOIL OR 4" OF 1" MINUS ROCK MULCH TO DESIGN PROFILE GRADE.
- 2. RESTORE ALL DISTURBED AREAS NOT STABILIZED WITH RIPRAP IN ACCORDANCE WITH THE SWPPP.
- 3. DESIGN DEPTH ESTABLISHED IN FINAL DESIGN OR IN FIELD. TOP OF DIKE TO FLOWLINE OF DITCH SHALL PROVIDE 1 FOOT OF FREEBOARD FROM DESIGN DEPTH.
- 4. INSPECTION TRENCH TO BE CONSTRUCTED ALONG ENTIRE LENGTH OF PERIMETER DIKES WHERE NON-ORGANIC MATERIALS ARE PRESENT.
- 5. PERIMETER DITCH AND DIKE ALONG THE NORTH SIDE OF THE CATEGORY 1 STOCKPILE (STATION 10+00 TO 143+53) SHALL HAVE 2.5H:1V SIDE SLOPES. ALL OTHER DITCHES AND DIKES SHALL HAVE SIDE SLOPES OF 3H:1V.

VER NO	DATE	DESCRIPTION ISSUE STATUS				
1	5/26/15	ISSUED FOR INCLUSION IN PERMIT APPLICATION	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,
2	6/7/2017	PERMIT APPLICATION UPDATES				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DI
			FOR PERMITTING	2	6///2017	SUPERVISION AND THAT I AM A DUL LICENSED PROFESSIONAL ENGINEER
						UNDER THE LAWS OF THE STATE OF MINNESOTA.
			FOR CONSTRUCTION			PRINTED NAME PAUL T. SWENSO
						SIGNATURE
			NOT APPROVED FOR	CONSTRUCTION.		DATE 37 207 17 LICENSE# 20333

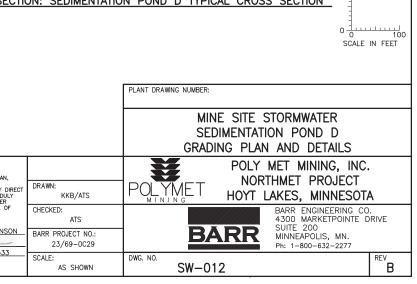


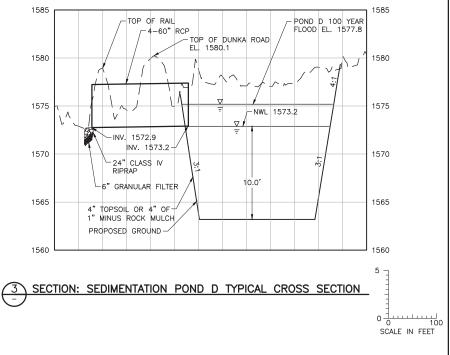

VER NO	DATE	DESCRIPTION		SSUE STATUS			
1	5/26/15	ISSUED FOR INCLUSION IN PERMIT APPLICATION	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,	
2	6/7/2017	PERMIT APPLICATION UPDATES				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY D	
			FOR PERMITTING		12	6/ // 2017	SUPERVISION AND THAT I AM A DUL LICENSED PROFESSIONAL ENGINEER
						UNDER THE LAWS OF THE STATE OF MINNESOTA.	
			505				
			FOR CONSTRUCTION			PRINTED NAME PAUL T. SWENS	
						SIGNATURE	
			NOT APPROVED FOR	CONSTRUCTION.		DATE 37 207 17 LICENSE# 20030	

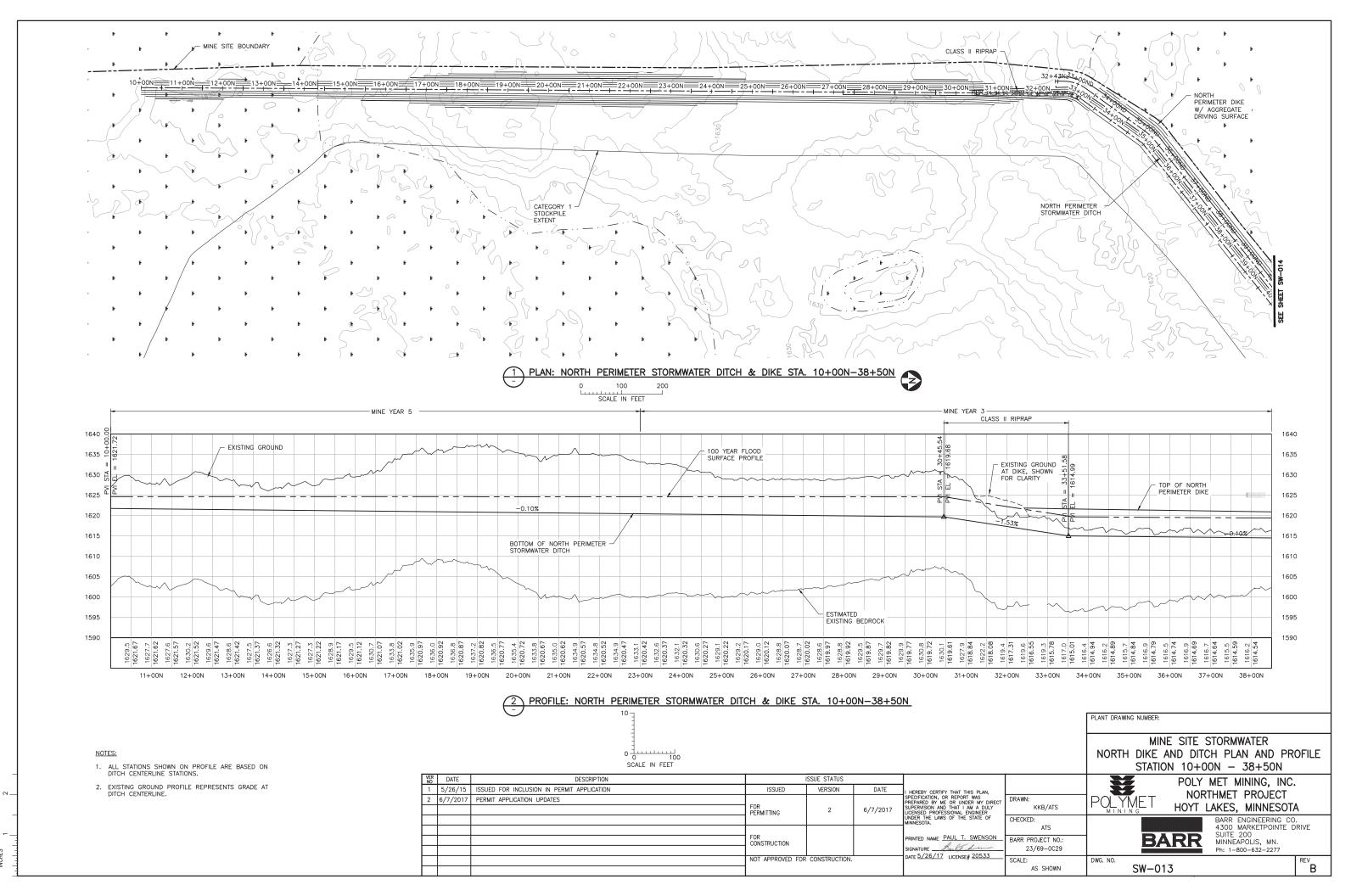

2



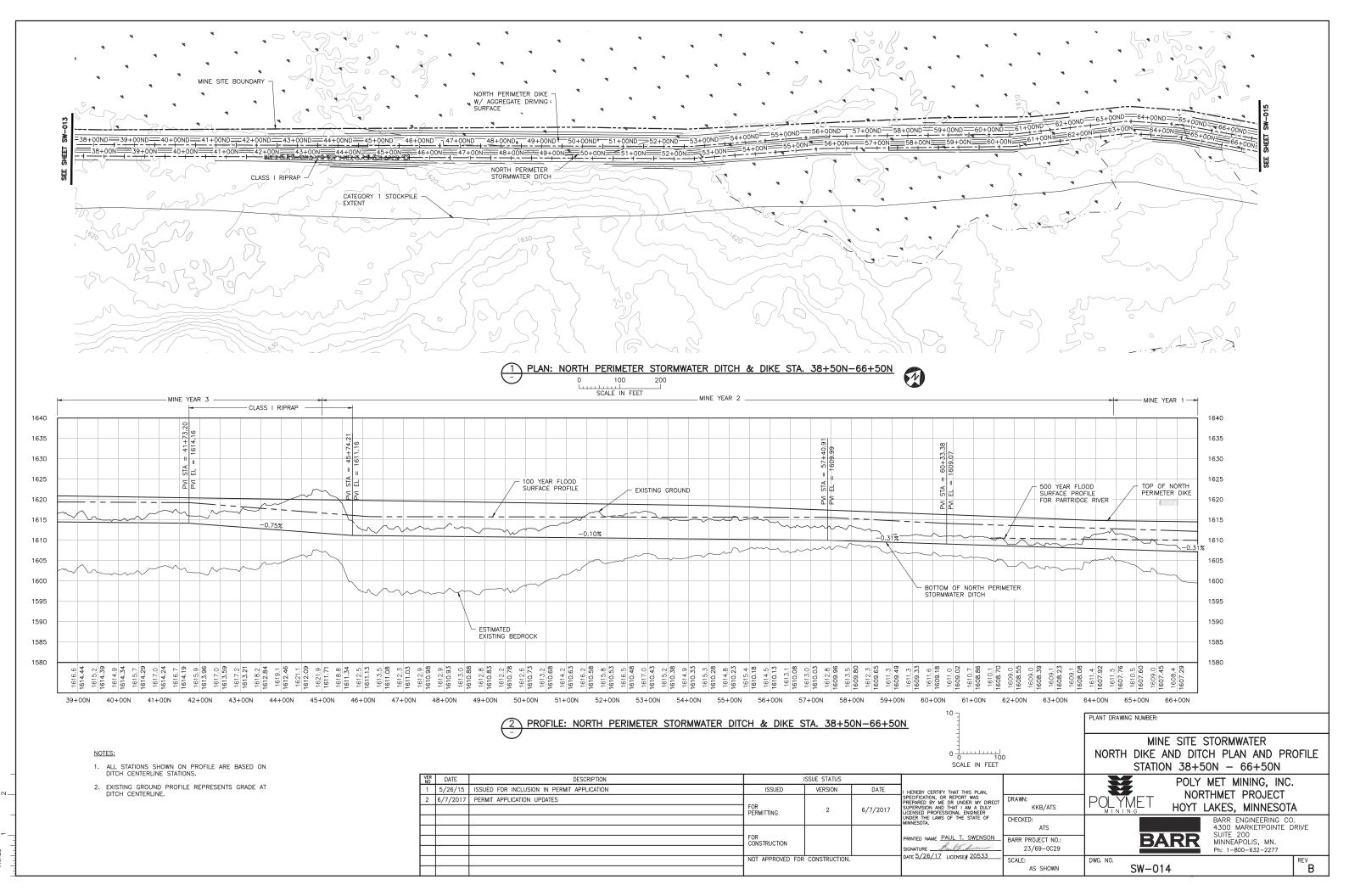
IOT	<u>ES</u>											
•	ALL	DISTURBED	AREAS	WILL	BE	RESTORED	IN	ACCORDANCE	WITH	THE	SWPPP.	

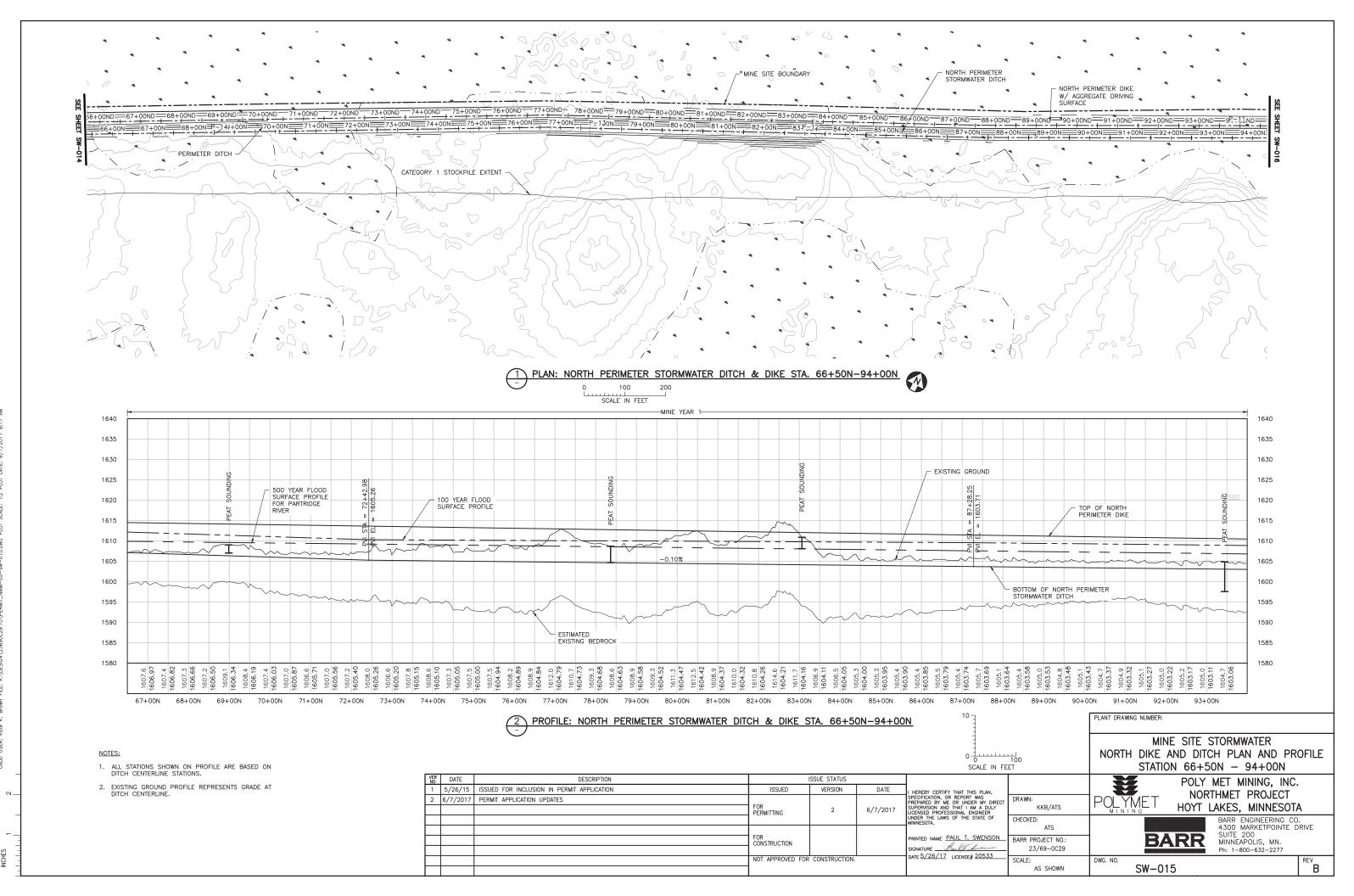

VER NO	DATE	DESCRIPTION		SSUE STATUS		
1	5/26/15	ISSUED FOR INCLUSION IN PERMIT APPLICATION	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,
2	6/7/2017	PERMIT APPLICATION UPDATES				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRE
			FOR PERMITTING	2		SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
						UNDER THE LAWS OF THE STATE OF MINNESOTA.
			FOR CONSTRUCTION			PRINTED NAME PAUL T. SWENSON
						SIGNATURE
			NOT APPROVED FOR	CONSTRUCTION.		DATE 37 207 17 LICENSE# 20333

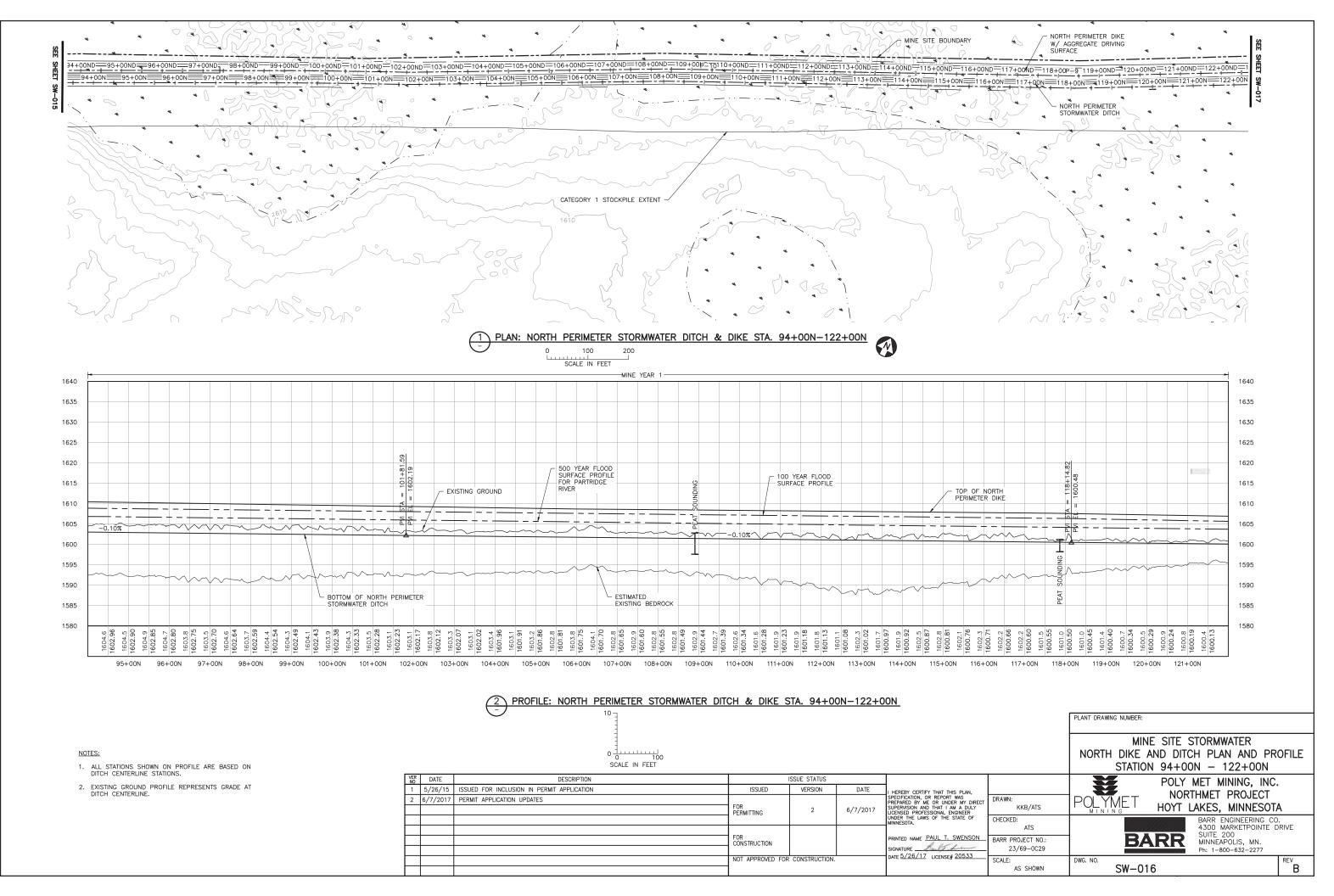

Ν.

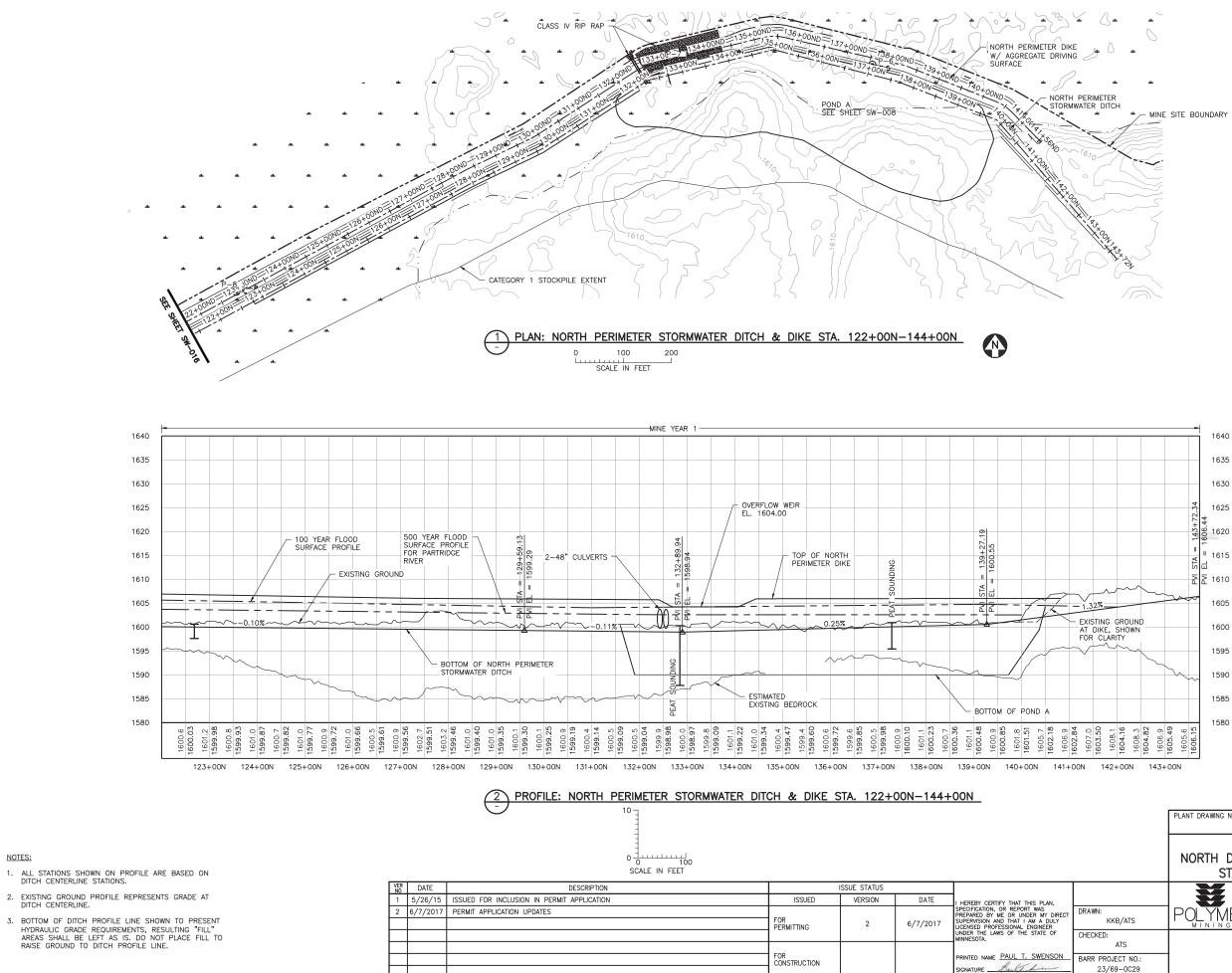

INCHES

NOTES


1. ALL DISTURBED AREAS WILL BE RESTORED IN ACCORDANCE WITH THE SWPPP.

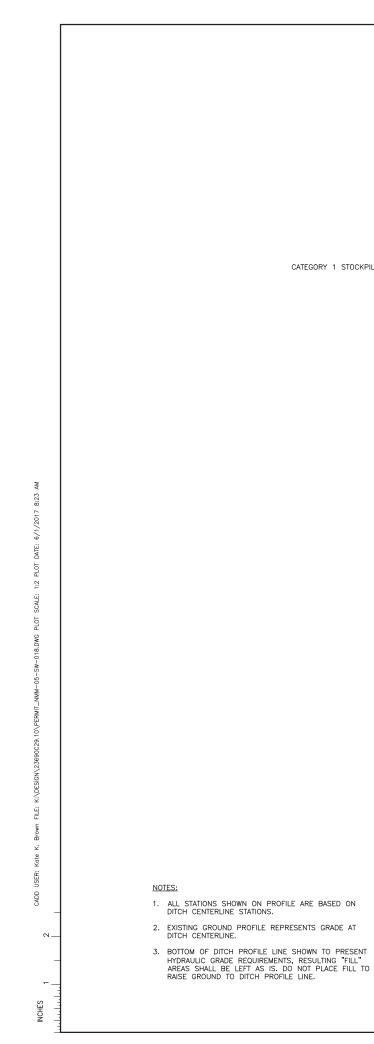


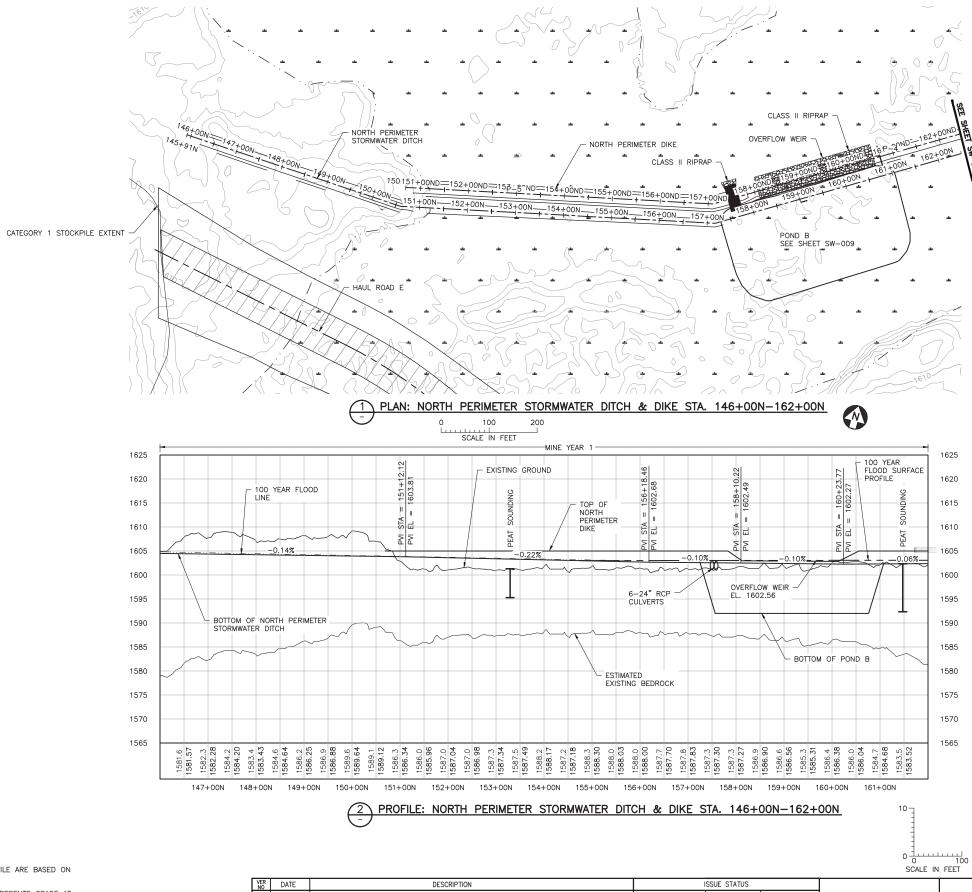

NCHES



CADD USER: Kate K. Brown FILE: K:\DESIGN\23690C29.10\PERWIT_NMM-05-SW-014.DWG PLOT SCALE: 1:2 PLOT DATE: 6/1/2017 8:20

CADD USER: Kate K. Brown FILE: K:\DESIGN\23690C29.10\PERWIT_NMM-05-SW-015.DWG PLOT SCALE: 1:2 PLOT DATE: 6/1/2

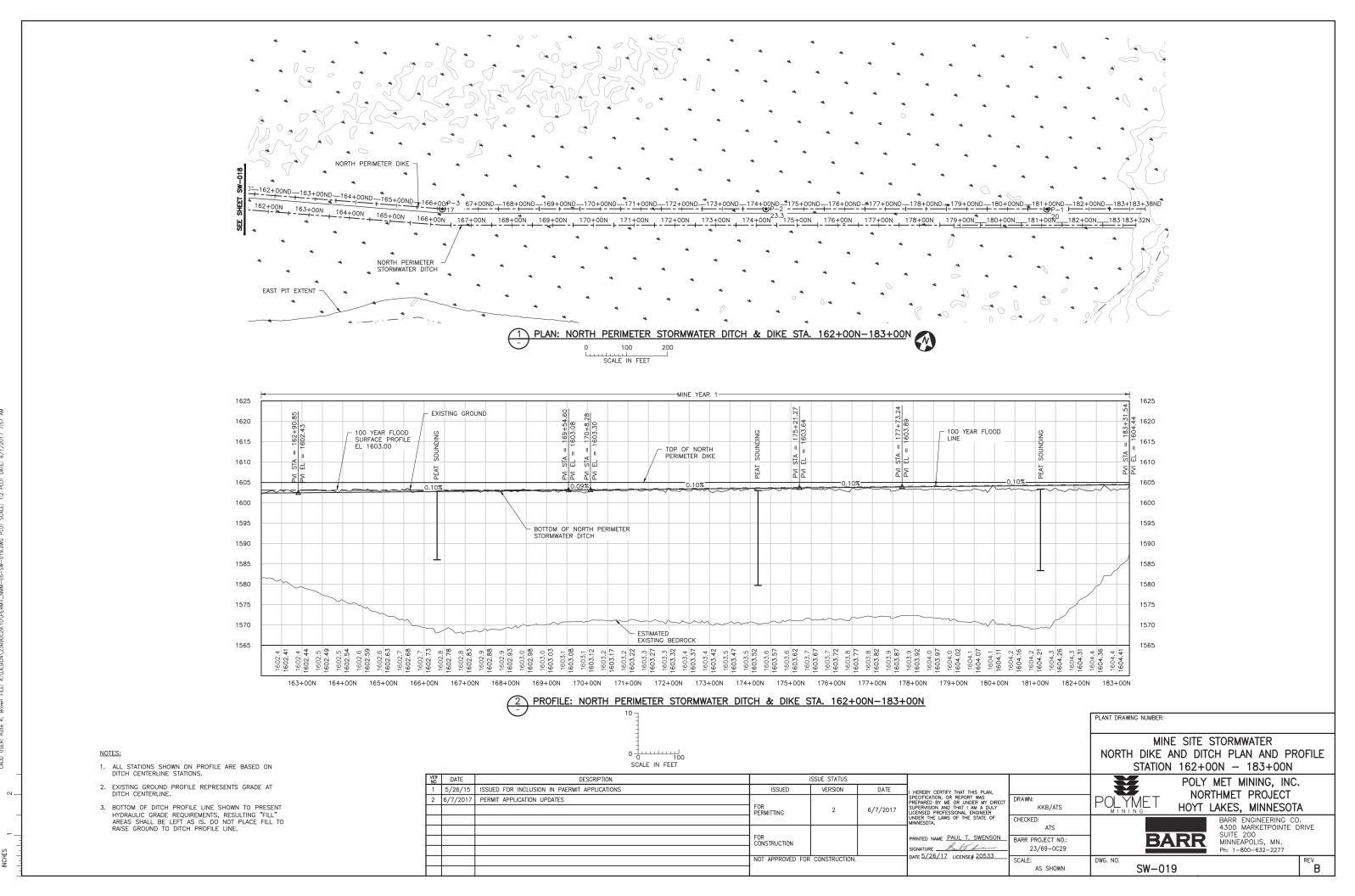


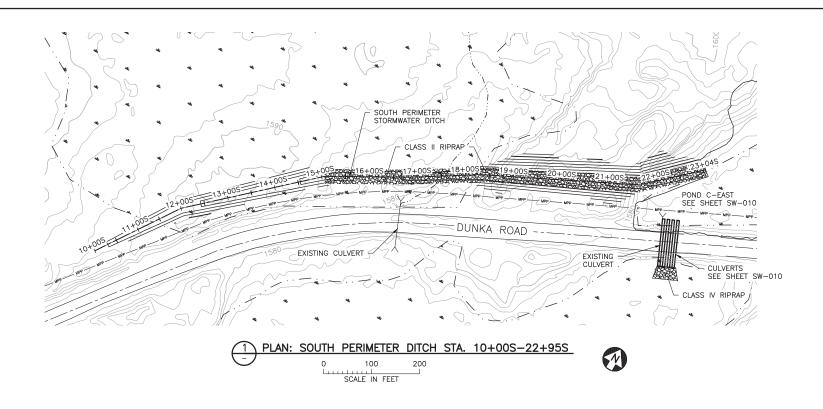

NOT APPROVED FOR CONSTRUCTION.

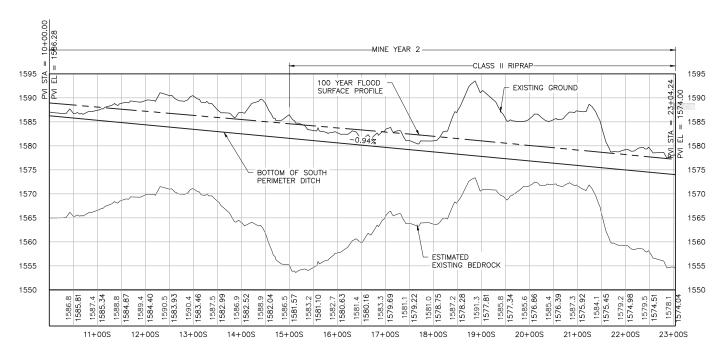
INCHES

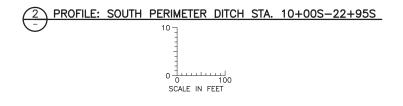
NOTES:

BOTTOM OF POND A	1585							
1600.36 1601.1 1600.48 1600.89 1600.85 1600.81 1601.8 1601.8 1602.18 1602.34 1602.35 1602.35 1602.35 1602.35 1603.35 1604.16 1604.35 1604.55 1604.55 1604.55 1604.55 1	1605.49 1605.6 1606.15 1606.15							
139+00N 140+00N 141+00N 142+00N 143+00N								
	PLANT DRAWING NUMBER:							
	MINE SITE STORMWATER NORTH DIKE AND DITCH PLAN AND PROFILE STATION 122+00N — 144+00N							
I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY WE OR UNDER WY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER	POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA							
UNDER THE LAWS OF THE STATE OF MINNESOTA. ATS PRINTED NAME PAUL T. SWENSON BARR PROJECT NO.: SIGNATURE Ball for 23/69-0C29	BARR ENGINEERING CO. 4300 MARKETPOINTE DRIVE SUITE 200 MINNEAPOLIS, MN. Pb: 1=800=632-2277							
DATE 5/26/17 LICENSE# 20533 SCALE:	DWG. NO. SW-017							




VER NO	DATE	DESCRIPTION		ISSUE STATUS		
1	5/26/15	ISSUED FOR INCLUSION IN PERMIT APPLICATION	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
2	6/7/2017	PERMIT APPLICATION UPDATES				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY D
			FOR PERMITTING	2	0///201/	SUPERVISION AND THAT I AM A DUI LICENSED PROFESSIONAL ENGINEER
						UNDER THE LAWS OF THE STATE OF MINNESOTA.
			FOR CONSTRUCTION			PRINTED NAME PAUL T. SWENS
						SIGNATURE DATE 5/26/17 LICENSE# 20533
			NOT APPROVED FOR	CONSTRUCTION.		DATE 57 207 17 LICENSE# 20553


		PLANT DRAWING NUMBER:			
		MINE SITE STORMWATER NORTH DIKE AND DITCH PLAN AND PROFILE STATION 146+00N – 162+00N			
LAN, Y DIRECT DULY EER E OF	DRAWN: KKB/ATS	POLY MET MINING, INC. POLYMET NORTHMET PROJECT HOYT LAKES, MINNESOTA			
INSON	CHECKED: ATS BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING CO. 4300 MARKETPOINTE DR SUITE 200 MINNEAPOLIS, MN. Ph: 1-800-632-2277	RIVE		
533	SCALE: AS SHOWN	DWG. NO. SW-018	B		


-	ł	1	62	5
ACE		1	62	0
		1	61	5
		1	61	С
%		1	60	5
\sim		1	60	С
		1	59	5
		1	59	С
		1	58	5
\sim		1	58	С
		1	57	5
		1	57	C
		1	56	5

CADD USER: Kate K. Brown FILE: K:\DESKN\23690C29.10\PERMIT_NNM-05-5W-019.DWG PLOT SCALE: 112 PLOT DATE: 6/1/2017 7:

ISSUE STATUS

VERSION

2

DATE

6/7/2017

ISSUED

FOR PERMITTING

FOR CONSTRUCTION

NOT APPROVED FOR CONSTRUCTION.

DESCRIPTION

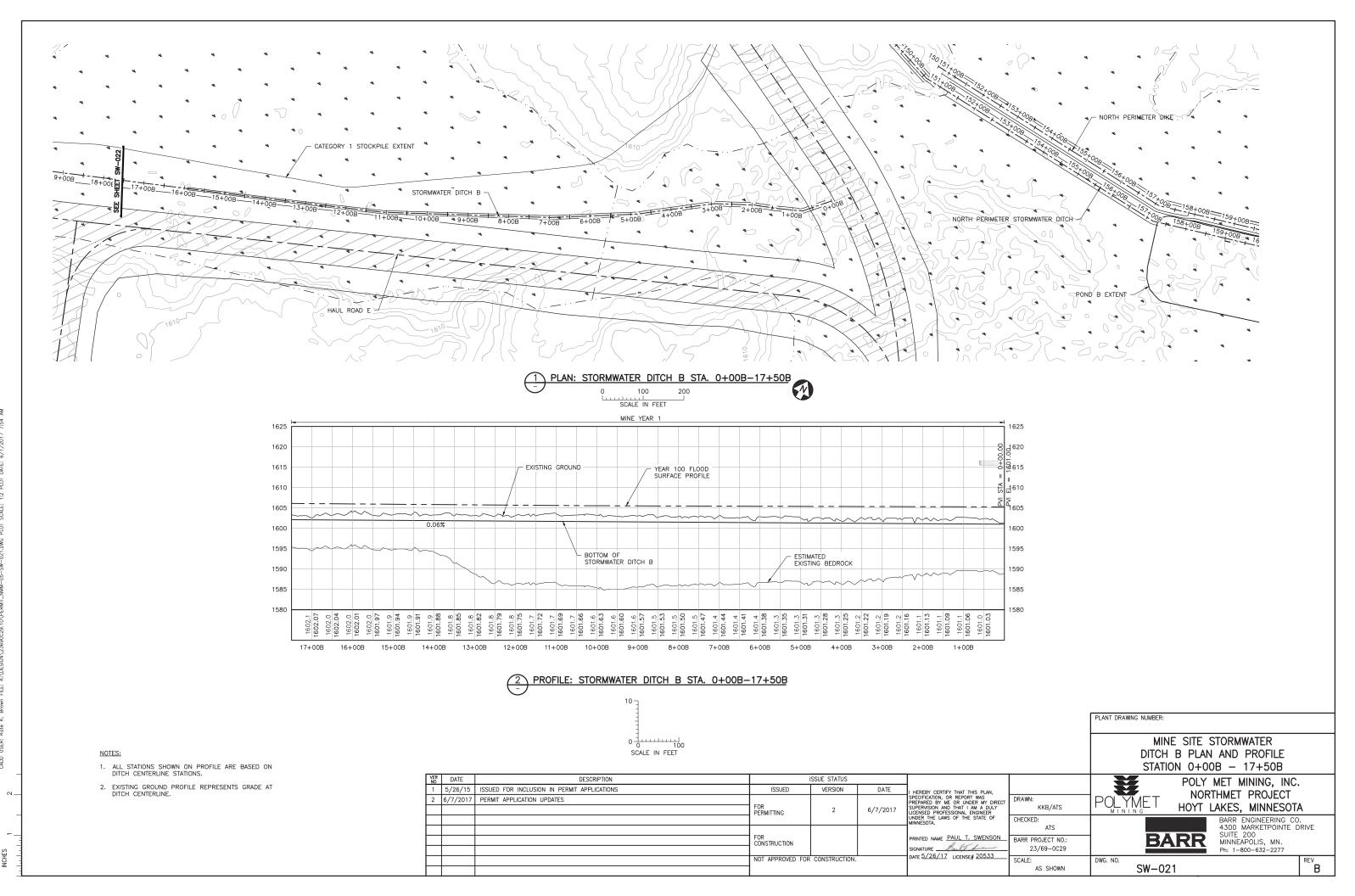
1 5/26/15 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS

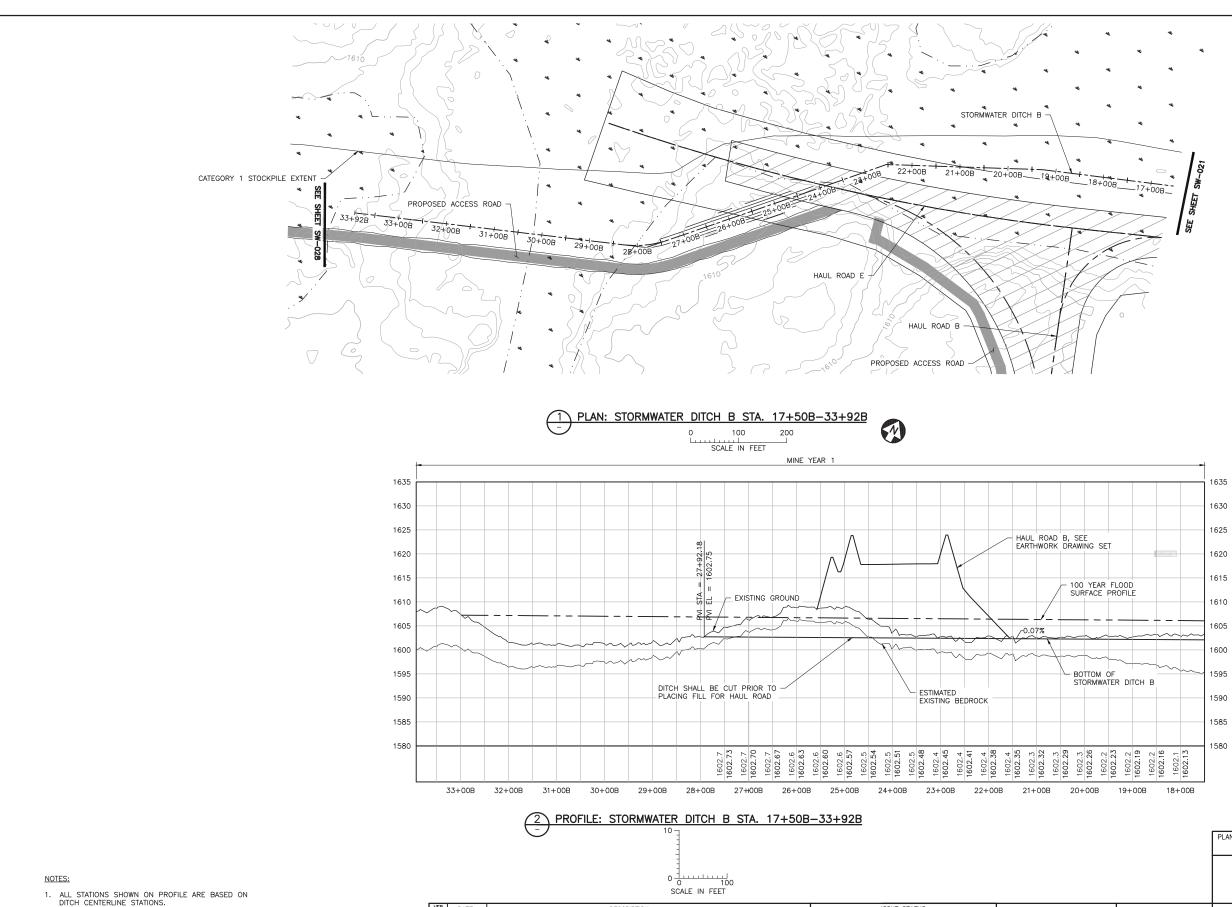
2 6/7/2017 PERMIT APPLICATION UPDATES

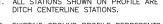
VER DATE

NC)T	ES	:
			_

- 1. ALL STATIONS SHOWN ON PROFILE ARE BASED ON DITCH CENTERLINE STATIONS.
- 2. EXISTING GROUND PROFILE REPRESENTS GRADE AT DITCH CENTERLINE.

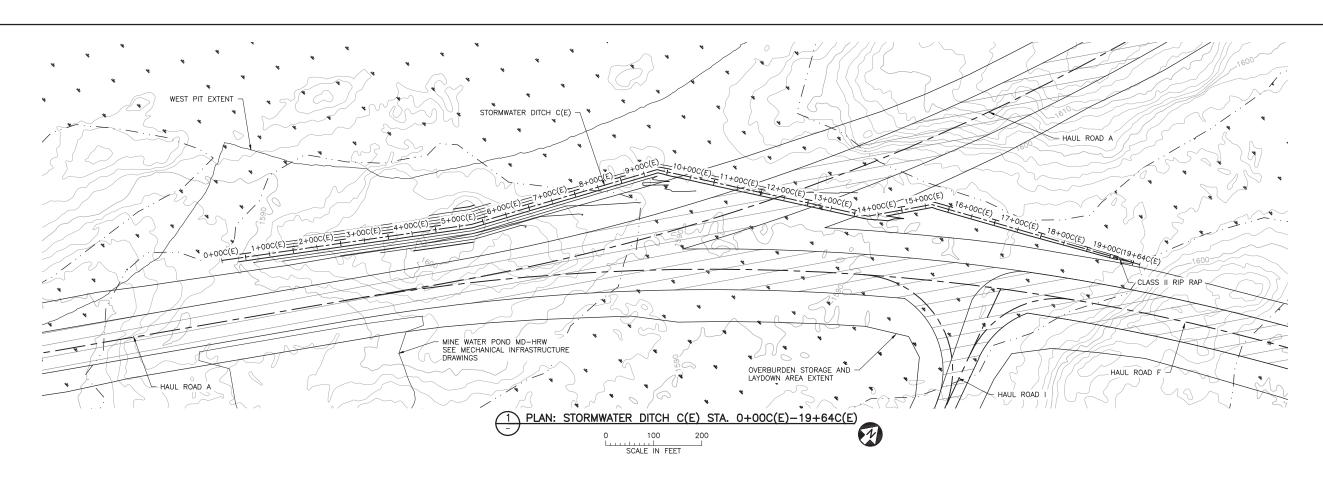

22	
6/1/2	
DATE:	
PLOT [
1:2 F	
SCALE:	
PLOT	
Brown FILE: K:\DESIGN\23690C29.10\PERMIT_NMM-05-SW-020.DWG PLOT SCALE: 1:2 PLOT DATE: 6/1/2017	
wn FIL	
K. Bro	
Kate I	
CADD USER: Kate K. E	
CADD	
0	
	2

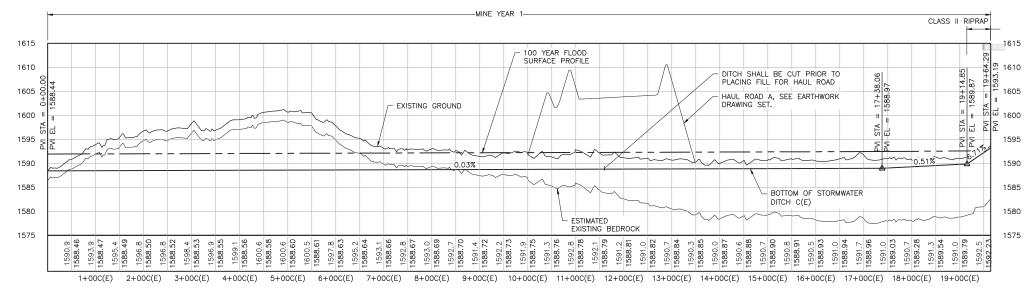

AM


28

INCHES	

		PLANT DRAWING NUMBER:				
		MINE SITE STORMWATER SOUTH DIKE AND DITCH PLAN AND PROFIL STATION 10+00S – 22+95S				
I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER	DRAWN: KKB/ATS	POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA				
UNDER THE LAWS OF THE STATE OF MINNESOTA. PRINTED NAME <u>PAUL T. SWENSON</u> SIGNATURE <u>PAUL June</u>	CHECKED: ATS BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING CO. 4300 MARKETPOINTE DRIVE SUITE 200 MINNEAPOLIS, MN. Ph: 1-800-632-2277				
DATE <u>5/26/17</u> LICENSE# 20533	SCALE: AS SHOWN	DWG. NO. REV	в			




- 2. EXISTING GROUND PROFILE REPRESENTS GRADE AT DITCH CENTERLINE.
- 3. BOTTOM OF DITCH PROFILE LINE SHOWN TO PRESENT AREAS SHALL BE LEFT AS IS. DO NOT PLACE FILL TO RAISE GROUND TO DITCH PROFILE LINE.

ER IO	DATE	DESCRIPTION		SSUE STATUS		
1	5/26/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN
2	6/7/2017	PERMIT APPLICATION UPDATES				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY D
			FOR PERMITTING	2	6/ // 2017	SUPERVISION AND THAT I AM A DU LICENSED PROFESSIONAL ENGINEER
						UNDER THE LAWS OF THE STATE O MINNESOTA.
			500			
			FOR CONSTRUCTION			PRINTED NAME PAUL T. SWENS
						SIGNATURE
			NOT APPROVED FOR	CONSTRUCTION.		DATE 07 207 17 LICENSE# 20000

INCHES

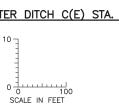
		PLANT DRAWING NUMBER:		
MINE SITE STORMWATER DITCH B PLAN AND PROFILE STATION 17+50B – 33+92B				
LAN, S IY DIRECT DULY EER E OF	DRAWN: KKB/ATS	POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA	N N	
NSON	CHECKED: ATS BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING CO. 4300 MARKETPOINTE DI SUITE 200 MINNEAPOLIS, MN. Ph: 1-800-632-2277		
533	SCALE: AS SHOWN	DWG. NO. SW-022	^{REV} B	

NOTES:

- 1. ALL STATIONS SHOWN ON PROFILE ARE BASED ON DITCH CENTERLINE STATIONS.
- 2. EXISTING GROUND PROFILE REPRESENTS GRADE AT DITCH CENTERLINE.

CAND LICED. Mata V Baaras Elle, MA DECIMAN STERATO IN DEDUIT MMM. DE SU	CADD USEN. NULL N. DIOWIL FILE. N. UESIGN (2000023-10 (FERMIL_INMM-00-3W		
		2	_
		-	-

	÷	-	
01.00			


1 5/26/15 ISSUED FOR INCLUSION IN PERMIT APPLICATION

PERMIT APPLICATION UPDATES

DESCRIPTION

VER DATE

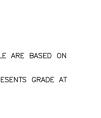
2 6/7/2017

ISSUE STATUS

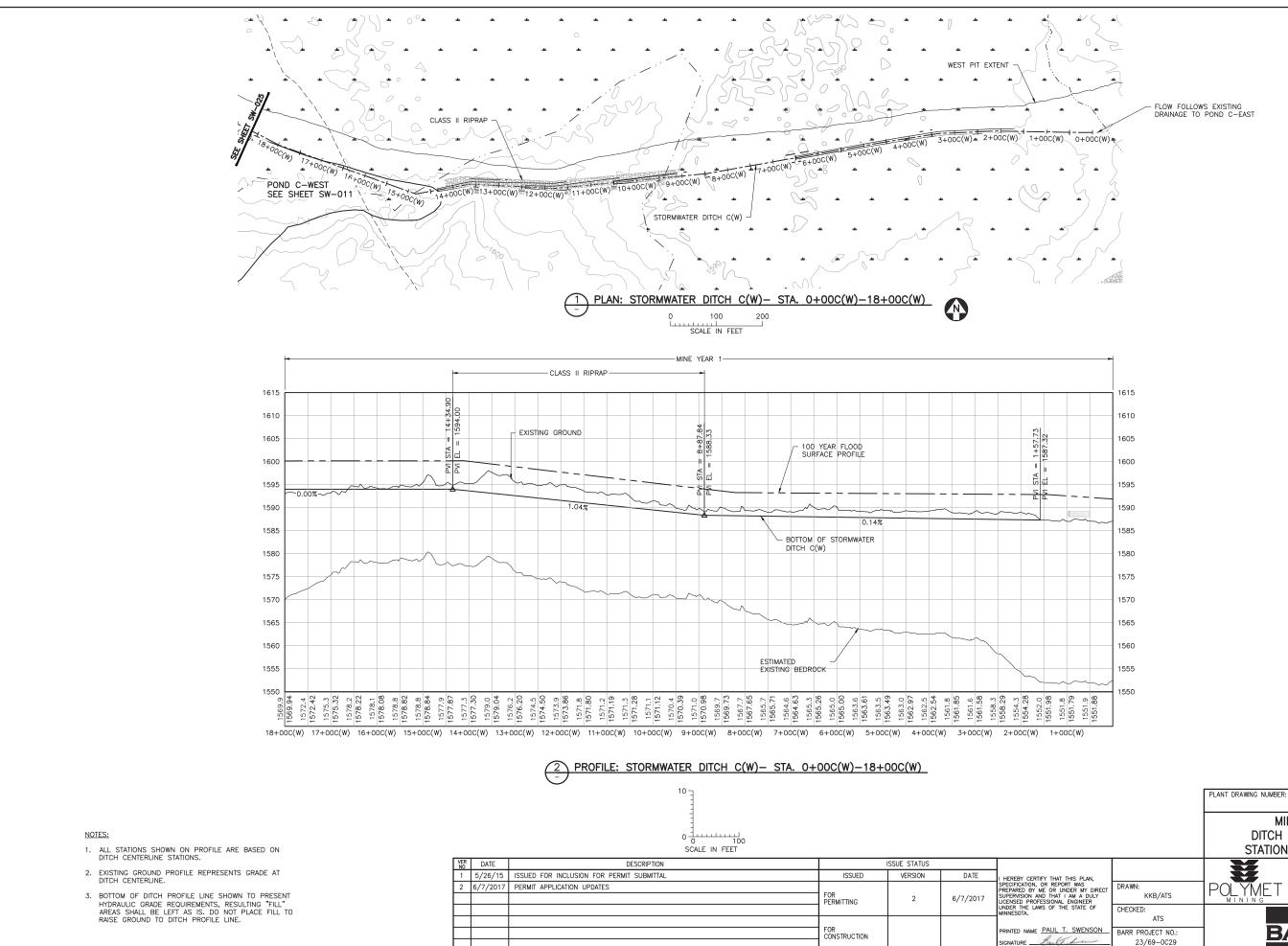
ISSUED

FOR PERMITTING

FOR CONSTRUCTION

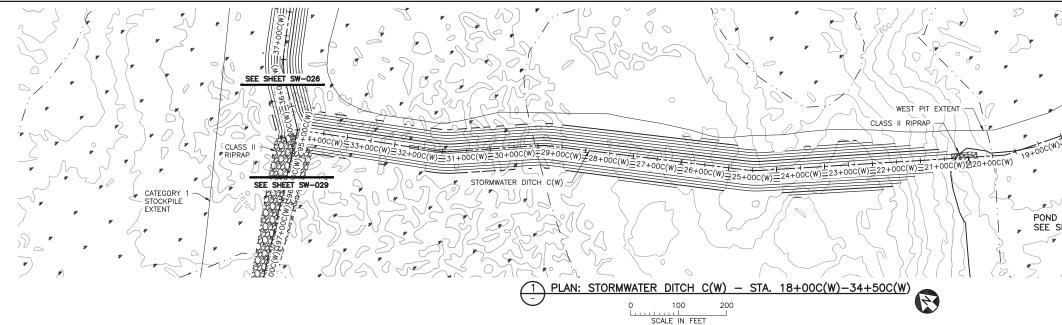

NOT APPROVED FOR CONSTRUCTION.

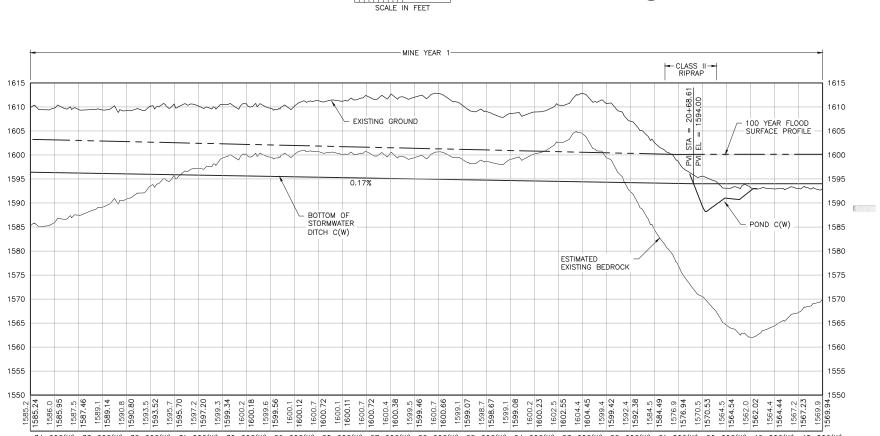
VERSION


2

DATE

6/7/2017




		PLANT DRAWING NUMBER:
		MINE SITE STORMWATER DITCH C(E) PLAN AND PROFILE STATION 0+00C(E) – 19+64C(E)
I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER	DRAWN: KKB/ATS	POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA
UNDER THE LAWS OF THE STATE OF MINNESOTA. PRINTED NAME <u>PAUL T. SWENSON</u> SIGNATURE <u>Ball form</u>	CHECKED: ATS BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING CO. 4300 MARKETPOINTE DRIVE SUITE 200 MINNEAPOLIS, MN. Ph: 1-800-632-2277
DATE <u>5/26/17</u> LICENSE# <u>20533</u>	SCALE: AS SHOWN	DWG. NO. SW-023 B

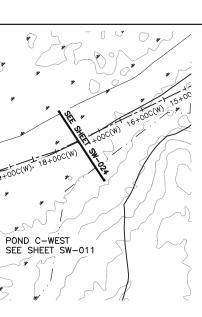
NOT APPROVED FOR CONSTRUCTION.

MINE SITE STORMWATER		
DITCH C(W) PLAN AND PROFILE STATION 0+00C(W) - 18+00C(W)		
POLY MET MINING, INC.		
POLYMET NORTHMET PROJECT HOYT LAKES, MINNESOTA		
BARR ENGINEERING CO, 4300 MARKETPOINTE DRIVE SUITE 200		
BARR MINEAPOLIS, MN. Ph: 1-800-632-2277		
DWG. NO. SW-024 REV		
-		

34+00C(W) 32+00C(W) 32+00C(W) 31+00C(W) 30+00C(W) 29+00C(W) 28+00C(W) 27+00C(W) 26+00C(W) 25+00C(W) 24+00C(W) 23+00C(W) 21+00C(W) 20+00C(W) 19+00C(W) 18+00C(W) 20+00C(W) 20+00C

(2) PROFILE: STORMWATER DITCH C(W) - STA. 18+00C(W)-34+50C(W)

R	DATE	DESCRIPTION		ISSUE STATUS		
	5/26/15	ISSUED FOR INCLUSION IN PERMIT APPLICATION	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
	6/7/201	PERMIT APPLICATION UPDATES	FOR PERMITTING	2	6/7/2017	SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIF SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF
			FOR CONSTRUCTION			MINNESOTA. PRINTED NAME PAUL T. SWENSC SIGNATURE <u>Date 5/26/17</u> LICENSE# 20533
\vdash			NOT APPROVED FOR	CONSTRUCTION.		

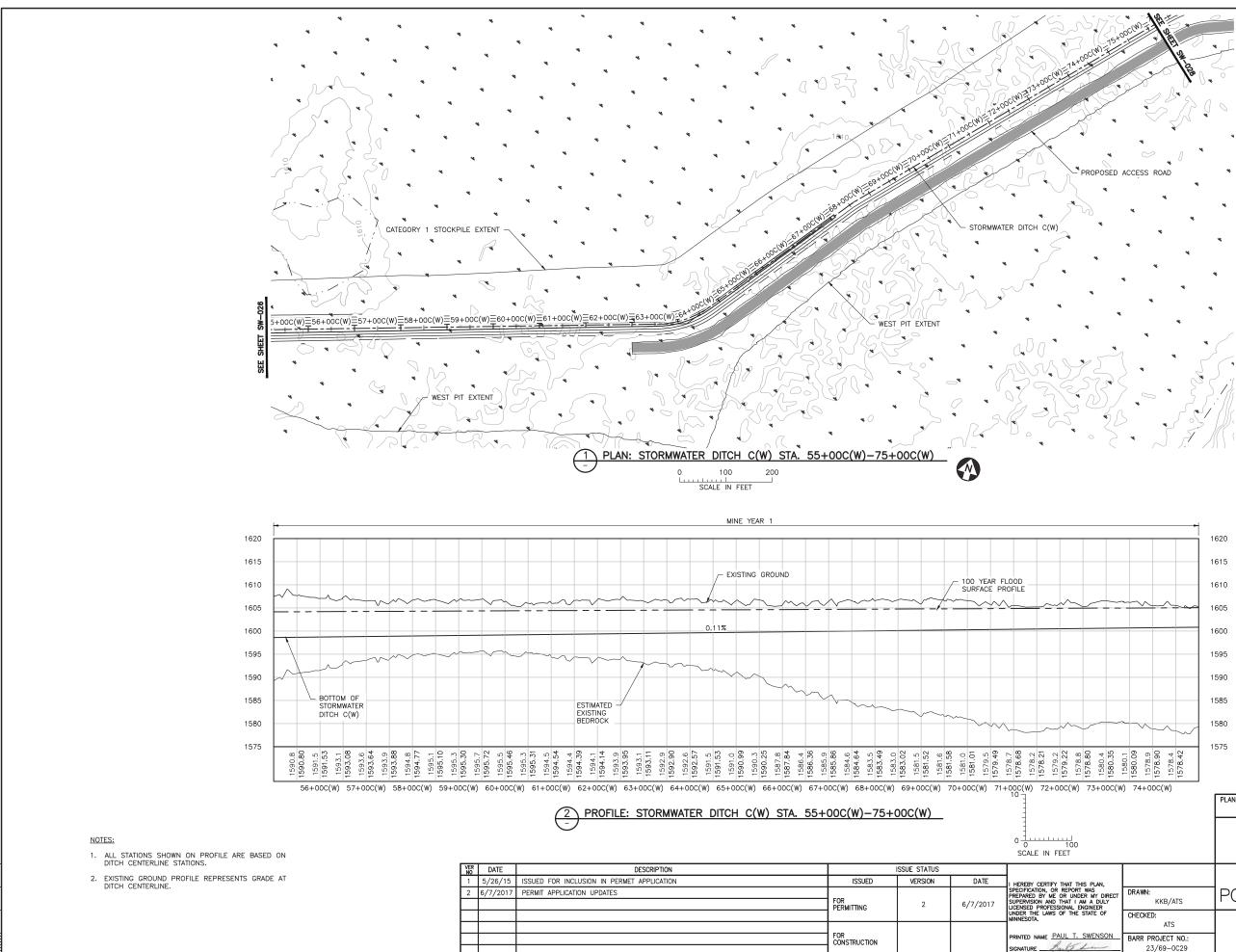

NOTES:


- 1. ALL STATIONS SHOWN ON PROFILE ARE BASED ON DITCH CENTERLINE STATIONS.
- 2. EXISTING GROUND PROFILE REPRESENTS GRADE AT DITCH CENTERLINE.
- 3. BOTTOM OF DITCH PROFILE LINE SHOWN TO PRESENT HYDRAULIC GRADE REQUIREMENTS, RESULTING "FILL" AREAS SHALL BE LEFT AS IS. DO NOT PLACE FILL TO RAISE GROUND TO DITCH PROFILE LINE.

ς.

NCHES

MINE SITE STORMWATER DITCH C(W) PLAN AND PROFILE STATION 18+00C(W) - 34+50C(W)				
NN, DIRECT MIX WR ARWN: KKB/ATS DRAWN: KKB/ATS DTA C C C C C C C C C C C C C C C C C C C				
OF CHECKED: ATS MINING USON BARR PROJECT NO:: 23/69-0C29 DARR PROJECT NO:	VE			
33 SCALE: DWG. NO. SW-025	B			

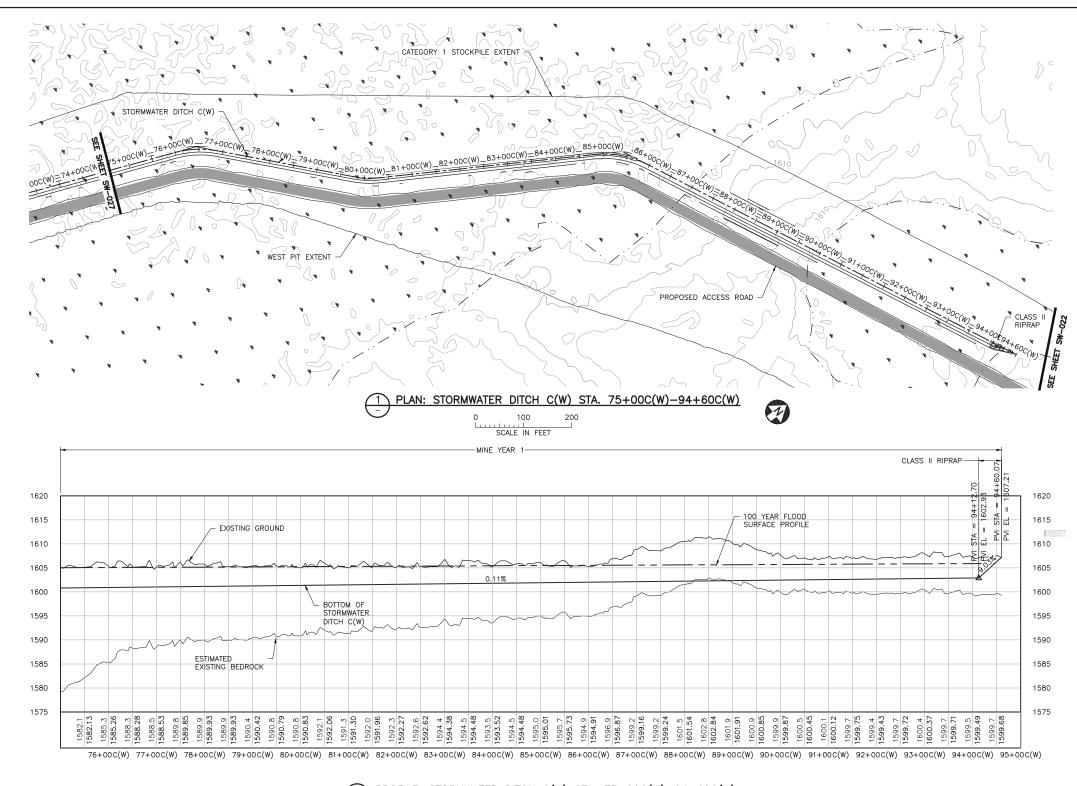


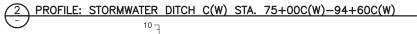
NOT APPROVED FOR CONSTRUCTION.

INCHES 1 2

	1585
	1580
1584.4 1584.5 1584.5 1584.5 1585.1 1585.1 1585.0 1585.0 1585.05 1585.05 1585.05 1586.0 1586.0 1586.0 1586.0 1587.1 1587.08 1587.08 1587.08 1587.08 1587.08 1587.08 1587.08 1587.08 1587.03 1597.03 1587.03 159	1575
+00C(W) 52+00C(W) 53+00C(W) 54+00C(W) 55+00C(W) PLANT DRAWING NUMBER:
0 100 SCALE IN FEET	MINE SITE STORMWATER DITCH C(W) PLAN AND PROFILE STATION 34+50C(W) – 55+00C(W)
I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY HE OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY UCENSED PROFESSIONAL ENGINEER	POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA
UNDER THE LAWS OF THE STATE OF MINNESOTA. ATS PRINTED NAME PAUL T. SWENSON BARR PROJECT NO.:	BARR ENGINEERING CO. 4300 MARKETPOINTE DRIVE SUITE 200 SUITE 200 MINNEAPOLIS, MN.
SIGNATURE	DWG. NO. SW-026 MINNEAPOLIS, MN. Ph: 1-800-632-2277
1	

1000

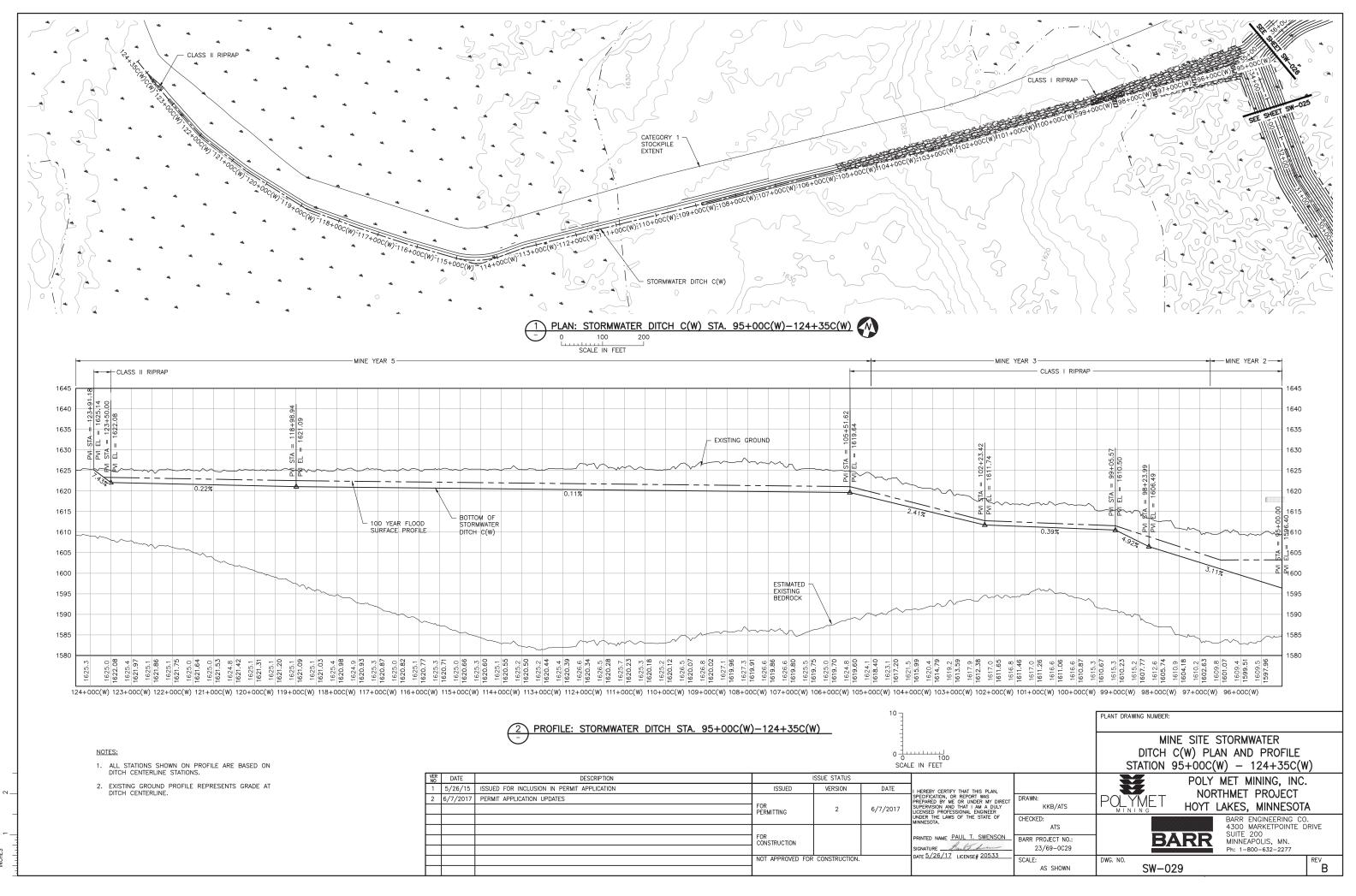


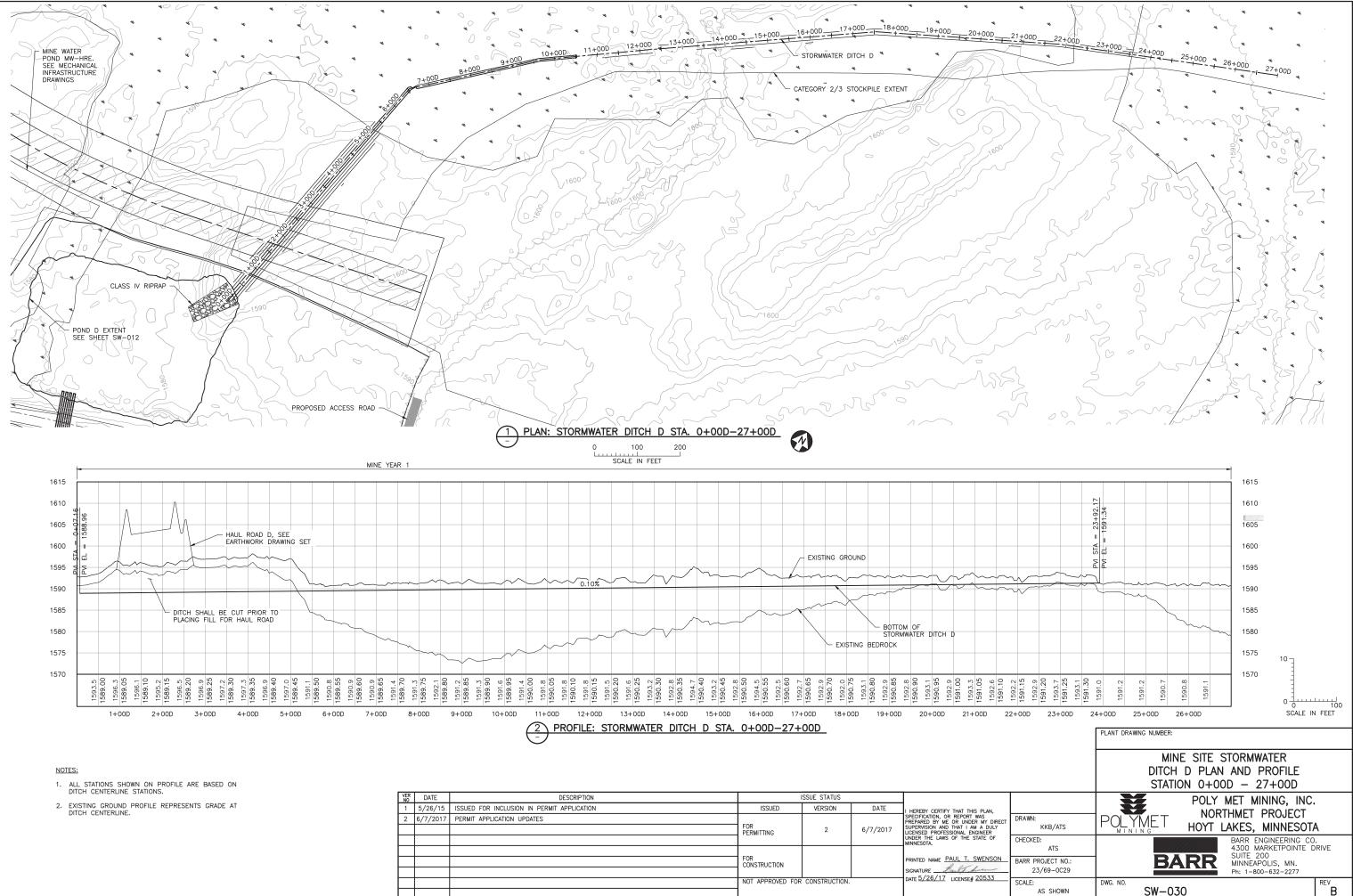

NOT APPROVED FOR CONSTRUCTION.

INCHES 1 2

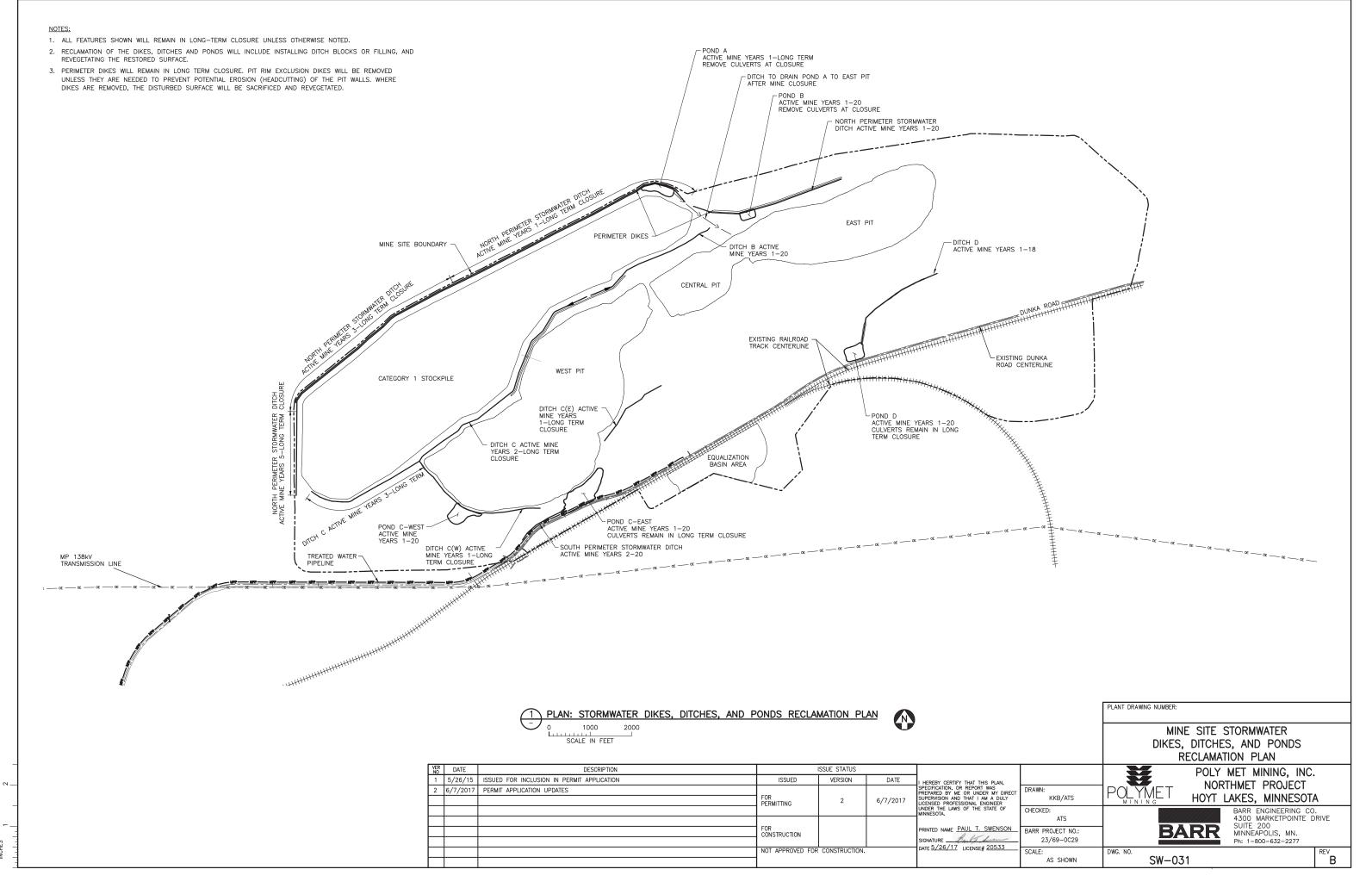
		1575
1578.7 1578.68 1578.21 1578.21 1579.22 1579.22 1579.80 1578.80 1580.4	1580.1 1580.09 1578.90 1578.42 1578.42	
-00C(W) 72+00C(W) 73+00C(V	/) 74+00C(W)	PLANT DRAWING NUMBER:
0 100 SCALE IN FEET		MINE SITE STORMWATER DITCH C(W) PLAN AND PROFILE STATION 55+00C(W) - 75+00C(W)
I HEREBY CERTIFY THAT THIS PLAN, SPECIFCATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY UCRISED PROFESSIONAL ENGINEER		POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA
UNDER THE LAWS OF THE STATE OF MINNESOTA. PRINTED NAME <u>PAUL T. SWENSON</u> SIGNATURE <u>Ball for the second second</u>	CHECKED: ATS BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING CO. 4300 MARKETPOINTE DRIVE SUITE 200 MINNEAPOLIS, MN. Ph: 1-800-632-2277
DATE <u>5/26/17</u> LICENSE# <u>20533</u>	SCALE: AS SHOWN	DWG. NO. SW-027 B

1615		
1610	1020	
1605		
1600		
1595		
1590		
1585		
1580		
1575		





- NOTES: 1. ALL STATIONS SHOWN ON PROFILE ARE BASED ON DITCH CENTERLINE STATIONS.
- 2. EXISTING GROUND PROFILE REPRESENTS GRADE AT DITCH CENTERLINE.

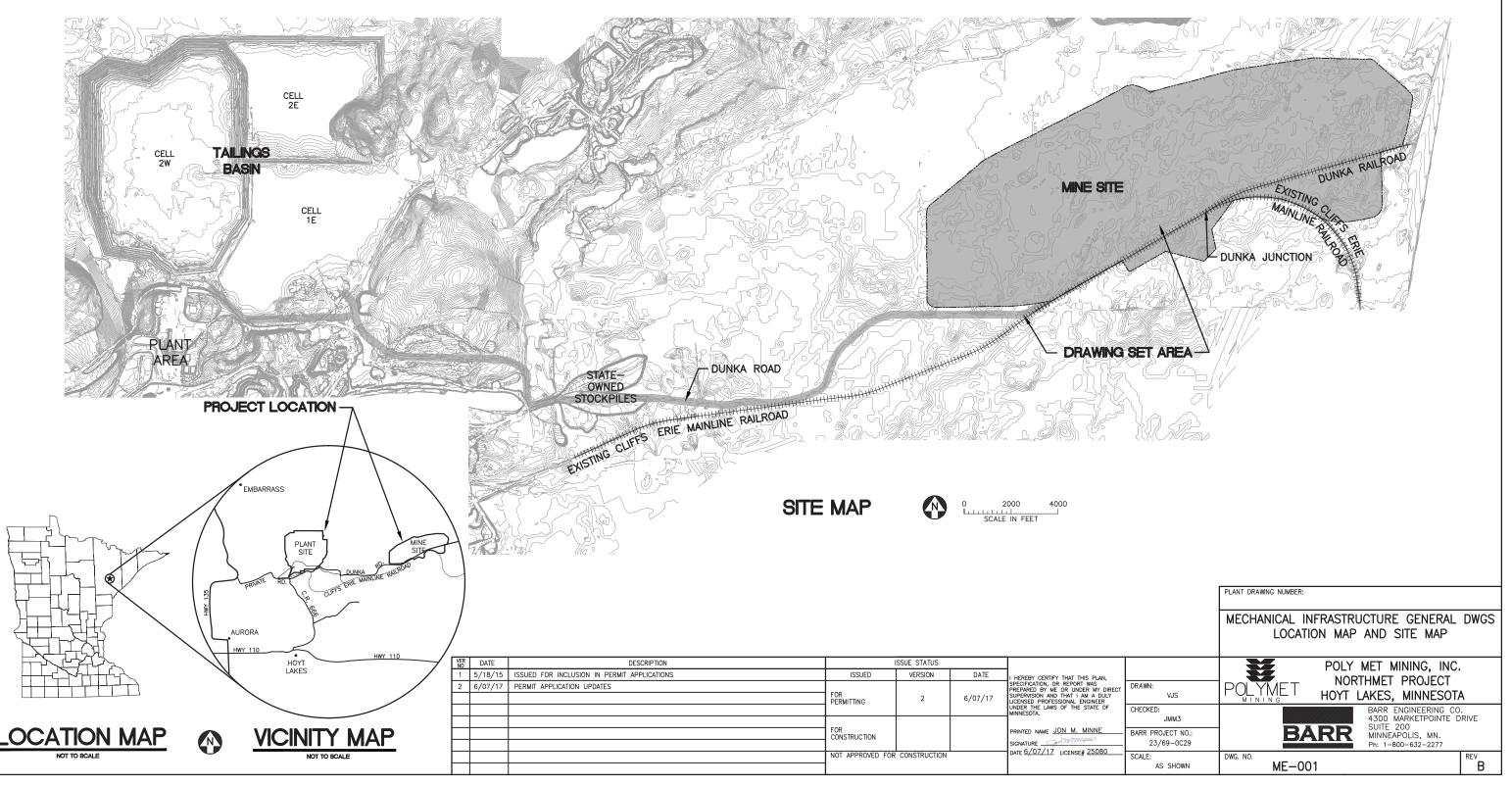

								PLANT DRAWING NUMBER:	
_		0 0 100 SCALE IN FEET						MINE SITE STORMWATER DITCH C(W) PLAN AND PROFI STATION 75+00C(W) - 94+600	LE C(W)
-[VER DATE	DESCRIPTION		SSUE STATUS				POLY MET MINING,	NC
ſ	1 5/26/1	5 ISSUED FOR INCLUSION IN PERMIT APPLICATION	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.			
-	2 6/7/201	7 PERMIT APPLICATION UPDATES	FOR	2	6/7/2017	SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER	DRAWN: KKB/ATS	POLYMET HOYT LAKES, MINNES	
						UNDER THE LAWS OF THE STATE OF MINNESOTA.	CHECKED:	BARR ENGINEERIN	
			FOR				ATS	4300 MARKETPOIN SUITE 200	IE DRIVE
$\left \right $			CONSTRUCTION			PRINTED NAME PAUL T. SWENSON SIGNATURE	BARR PROJECT NO.: 23/69-0C29	BARR MINNEAPOLIS, MN, Ph: 1-800-632-227	
ŀ			NOT APPROVED FOR	CONSTRUCTION.		DATE <u>5/26/17</u> LICENSE# <u>20533</u>	SCALE: AS SHOWN	DWG. NO. SW-028	REV

_							
Г	VER NO	DATE	DESCRIPTION		SSUE STATUS		
Γ	1	5/26/15	ISSUED FOR INCLUSION IN PERMIT APPLICATION	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,
Г	2	6/7/2017	PERMIT APPLICATION UPDATES				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIR
				FOR PERMITTING	2	6/7/2017	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
							UNDER THE LAWS OF THE STATE OF MINNESOTA.
L							
				FOR CONSTRUCTION			PRINTED NAME PAUL T. SWENSO
L							SIGNATURE Ball form
				NOT APPROVED FOR	CONSTRUCTION.		DATE 07 207 17 LICENSE# 20333

NCHES

Mechanical Infrastructure Permit Application Support Drawings

Errata Sheet


Poly Met Mining, Inc. NorthMet Project

Permit Application Support Drawings: Mechanical Infrastructure August 2017 (version 3)

Engineering design is currently in progress. The table below lists changes that have been identified todate and have not yet been incorporated in the attached permit application support drawings within this set. Final design will incorporate these changes along with additional site-specific information (e.g., supplementary geotechnical data); therefore, additional adjustments may be made during final design that will be incorporated into the final design drawing set.

Drawing Sheet(s)	Change
Global change to all sheets, as needed	The terminology "mine drainage" as noted in these drawings will be changed to "mine water".
MPP-009	The berm over the MPP will be revised to match the contours of the road where it crosses the proposed access road near the Equalization Basin Area.
MPP-010	The option of 1" minus rock as the top berm surface was eliminated to minimize additional impervious surfaces. Remove "or 1" minus rock" text on Sections 1, 2, 4, & 5.
MW-001	An access road will be added adjacent to a Mine Water pipe for construction and maintenance purposes. This access road will follow the Mine Water pipe that connects the Category 1 Stockpile and Haul Road F (in a general north-south orientation).
MW-003	The grading for the access road from the Mine Site Fueling and Maintenance Facility (MSFMF) to Pond MW-SOSP & Sump SOSP will be revised to optimize drainage.
ME-002, MPP-001, MPP-007, MPP-008, MPP-009, MW-001, MW-002, MW-007, MW-008, MW- 016	The "Mine Site Boundary" will be replaced by the "Mining Area Boundary" as shown on figures included in the Permit to Mine Application.

POLY MET MINING, INC. NORTHMET PROJECT PERMIT APPLICATION SUPPORT DRAWINGS MECHANICAL INFRASTRUCTURE HOYT LAKES, MINNESOTA

MECHANICAL INFRASTRUCTURE LEGEND

MINE WATER DRAWINGS

GENERAL

	EXISTING CONTOUR - MAJOR		PROPOSED MINE WATER PIPE
	EXISTING CONTOUR - MINOR		TOP OF DIKE BENCH PROPOSED MINE WATER CULVERT
	PROPOSED CONTOUR - MAJOR	Ó	PROPOSED SUMP MANHOLE
	PROPOSED CONTOUR - MINOR	MPP MPP	PROPOSED MINE TO PLANT PIPELINES
			PROPOSED HAUL ROAD MINE WATER DITCH
—1000—	OTHER FACILITY PROPOSED CONTOUR - MAJOR		PROPOSED STOCKPILE LINER OUTLET PIPE
	OTHER FACILITY PROPOSED CONTOUR - MINOR		PROPOSED MINE WATER WATERSHED
+++++++++++++++++++++++++++++++++++++++	PROPOSED RAILROAD		
+++++++++++++++++++++++++++++++++++++++	EXISTING RAILROAD		
	PROPOSED ACCESS ROADS		
	EXISTING ROAD		
	MINE SITE BOUNDARY		
<u>_</u>	WETLAND BOUNDARY		
 	HAUL ROAD		
	MINE TO PLANT PIPELINES DRAWINGS		
8	EXISTING POWER POLE		
	EXISTING TRAIL		
=====	EXISTING UNIMPROVED TRAIL		
—— R/W—	RIGHT OF WAY		
	EXISTING STRUCTURES		
$\sim \sim \sim$	TREE LINE		
OE	EXISTING OVERHEAD ELECTRIC		
	EXISTING UNDERGROUND ELECTRIC		
	PROPOSED MINE TO PLANT PIPELINES		

- PROPOSED CULVERT (NON-MINE WATER) \succ
 - PROPOSED MINE WATER PIPE -

<u>NOTES</u>

1. COORDINATE SYSTEM IS MINNESOTA STATE PLANE NORTH ZONE, NAD83.

2. ELEVATIONS ARE MEAN SEA LEVEL (MSL), NAVD88.

3. EXISTING TOPOGRAPHIC INFORMATION SHOWN ON THE DRAWINGS WAS PREPARED BY AEROMETRIC, INC. FROM LIDAR DATA COLLECTED ON MARCH 17, 2010.

SHEET NO. TITLE

MECHANICAL INFRASTRUCTURE GENERAL DRAWINGS

	LOCATION MAP AND SITE MAP
ME-002	LEGEND & SHEET INDEX
ME-003	MINE SITE - MINE WATER FLOW DIAGRAM
ME-004	MINE SITE - SUMP, POND AND PIPE DETAIL TABL

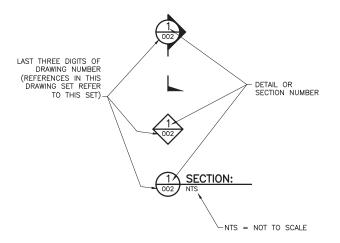
MINE TO PLANT PIPELINES DRAWINGS

MPP-001	GENERA	L LAYOUT	AND SHE	EET INDE>	(
MPP-002A	PLAN S	TATION 10	+00 TO	77+68		
MPP-002B	PLAN &	: PROFILE	STATION	113+70	TO	130+00
MPP-003	PLAN &	: PROFILE	STATION	130+00	TO	190+00
MPP-004	PLAN &	: PROFILE	STATION	190+00	TO	250+00
MPP-005	PLAN &	: PROFILE	STATION	250+00	TO	310+00
MPP-006	PLAN &	: PROFILE	STATION	310+00	TO	370+00
MPP-007	PLAN &	: PROFILE	STATION	370+00	TO	430+00
MPP-008	PLAN &	: PROFILE	STATION	430+00	TO	490+00
MPP-009	PLAN &	: PROFILE	STATION	490+00	TO	512+50
MPP-010	PIPELIN	E INSTALL	ATION TYP	PICAL SEC	CTIO	NS
MPP-011	DETAILS					
MPP-012	DETAILS	IN CLOSU	JRE			

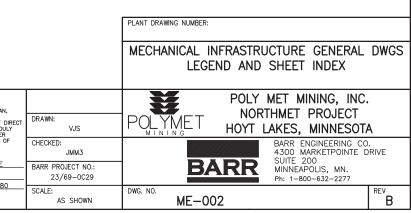
ABBREVIATIONS

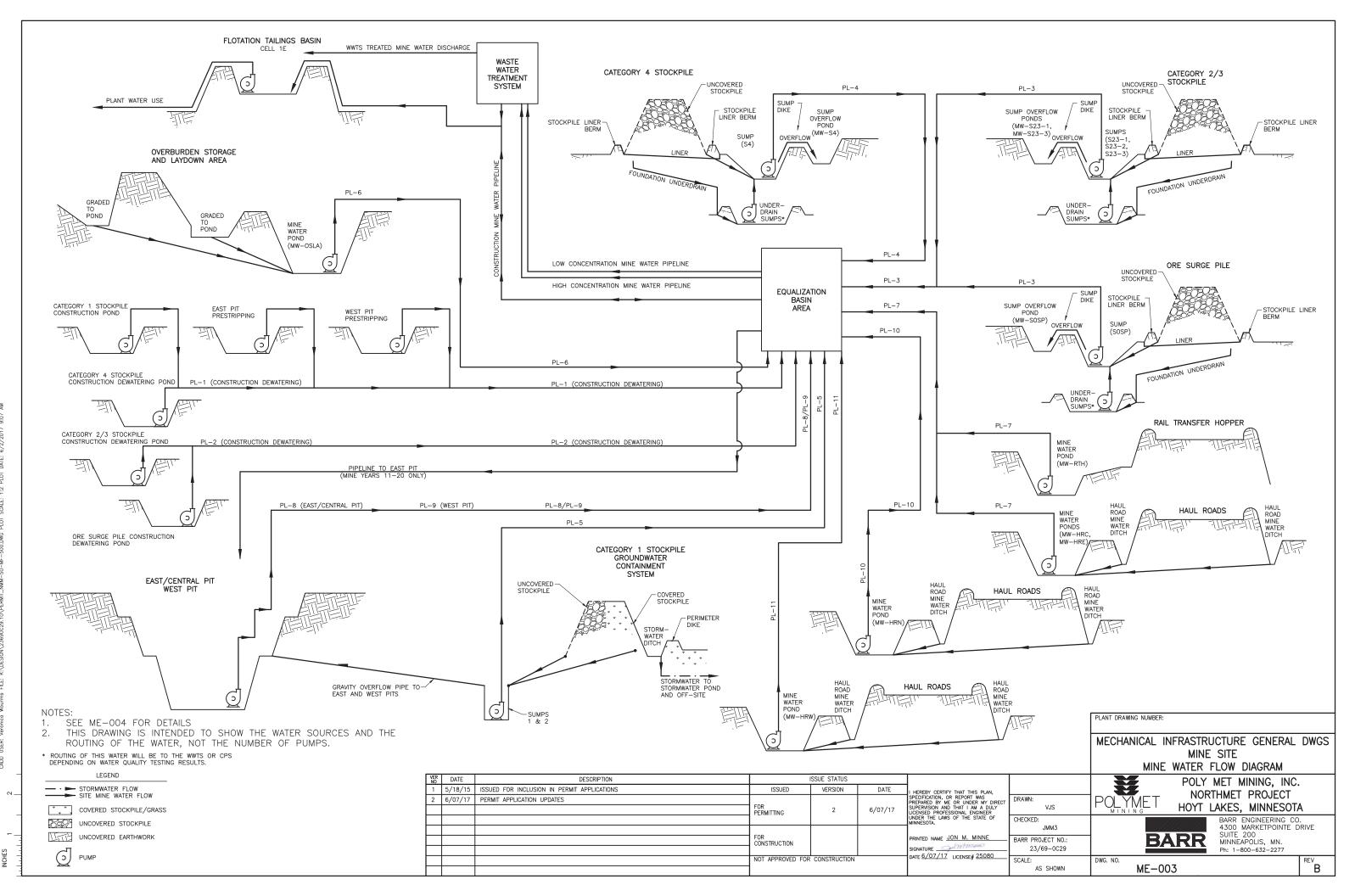
AC-FT	_	ACRE-FEET
AVE	_	AVERAGE
CAT	-	CATEGORY
Ф.	_	CENTERLINE
СMР	-	CORRUGATED METAL PIPE
CPS	-	CENTRAL PUMPING STATION
DIP	-	DUCTILE IRON PIPE
DV	_	DRAIN VALVE
DWG	_	DRAWING
EL.	_	ELEVATION
GAL	_	GALLONS
GCL	-	
GPM	_	GALLONS PER MINUTE
HDPE	_	HIGH-DENSITY POLYETHYLENE
HRC	_	HAUL ROAD CENTRAL
HRE	_	HAUL ROAD EAST
HRN	_	HAUL ROAD NORTH
HRW	_	HAUL ROAD WEST
INV	_	INVERT
LF	_	LINEAR FEET
MG	_	MILLION GALLONS
МН	_	MANHOLE
MIL	_	MEASUREMENT OF LINER THICKNESS: A MIL I
MIN	_	MINIMUM
MnDOT	_	MINNESOTA DEPARTMENT OF TRANSPORTATION
MPP	-	MINE TO PLANT PIPELINES
MW	_	MINE WATER
OSLA	_	OVERBURDEN STORAGE AND LAYDOWN AREA
OSP	_	ORE SURGE PILE
PL	_	PIPELINE
PSI	-	
RTH	-	RAIL TRANSFER HOPPER
SDR	-	STANDARD DIMENSION RATIO
STA	-	STATION
STOCKPIL	E—	WASTE ROCK STOCKPILE
TDH	-	TOTAL DESIGN HEAD
TYP	-	TYPICAL
V/A	-	VACUUM/AIR RELIEF
WWTS	-	WASTE WATER TREATMENT SYSTEM

VER NO	DATE	DESCRIPTION		SSUE STATUS		
1	5/18/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,
2	6/07/17	PERMIT APPLICATION UPDATES	FOR PERMITTING	2	6/07/17	SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRE SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.
			FOR CONSTRUCTION			
			NOT APPROVED FOR	CONSTRUCTION		DATE <u>6/07/17</u> LICENSE# <u>25080</u>


SHEET INDEX

SHEET NO. TITLE


MINE WATER DRAWINGS


١.	FS
-	20

DRAWING NUMBERING

MIL IS A THOUSANDTH OF AN INCH ATION

<u>SUMPS – TEMPORARY</u>

				DESIGN	APPROXIMA CAPA			ACTUAL		
ID	DESCRIPTION	OBJECTIVES	MINE YEARS	VOLUME* (GAL)	GPM	TDH (FT)	LINER TYPE	VOLUME* (GAL)	OVERFLOWS TO	SHOWN ON SHEET #
S23-1	CATEGORY 2/3 STOCKPILE SUMP	PROVIDE RUNOFF STORAGE FOR THE 10 YEAR 24 HOUR EVENT	1-19	4,855,000	190	210	MINE WATER SUMP LINER	4,855,000	MW-S23-1	MW-005
S23–2	CATEGORY 2/3 STOCKPILE SUMP	PROVIDE RUNOFF STORAGE FOR THE 10 YEAR 24 HOUR EVENT	3–17	3,878,000	150	230	MINE WATER SUMP LINER	3,910,000	MW-S23-1	MW-006
S23–3	CATEGORY 2/3 STOCKPILE SUMP	PROVIDE RUNOFF STORAGE FOR THE 10 YEAR 24 HOUR EVENT	6-16	2,151,000	90	270	MINE WATER SUMP LINER	2,151,000	MW-S23-3	MW-007
S4	CATEGORY 4 STOCKPILE SUMP	PROVIDE RUNOFF STORAGE FOR THE 10 YEAR 24 HOUR EVENT	1-11	3,291,000	130	50	MINE WATER SUMP LINER	4,073,000	MW-S4	MW-004
SOSP	ORE SURGE PILE SUMP	PROVIDE RUNOFF STORAGE FOR THE 10 YEAR 24 HOUR EVENT	1-20	2,770,000	80	90	MINE WATER SUMP LINER	2,835,000	MW-SOSP	MW-003

* DESIGN VOLUME REFLECTS THE VOLUME REQUIRED BASED ON THE DESIGN NEEDS; WHEREAS ACTUAL VOLUME REFLECTS THE VOLUME SHOWN IN THE ATTACHED DRAWING SET. ACTUAL VOLUME DOES NOT INCLUDE ADDITIONAL VOLUME FROM 3 FEET OF FREEBOARD

MINE PIT SUMPS

				INITIAL SUMP		APPROXIMATE P – INITIAL YEAR YEA		
ID	DESCRIPTION	OBJECTIVES	MINE YEARS	CAPACITY (AC-FT)	MAXIMUM SUMP CAPACITY (AC-FT)	GPM	TDH (FT)	OVERFLOWS TO
WP-W	WEST PIT - WEST SUMP	*COLLECTION IN PIT	2-20	6.6	14.0	YEAR 2: 820 YEAR 20: 1,590	YEAR 2: 120 YEAR 20: 740	NONE
WP-E	WEST PIT – EAST SUMP	*COLLECTION IN PIT	10-20	4.7	9.4	YEAR 10: 530 YEAR 20: 1,050	YEAR 10: 110 YEAR 20: 350	NONE
EP	EAST PIT	*COLLECTION IN PIT	1-20	11.6	19.5	YEAR 1: 1,520 YEAR 11: 2,340		NONE
CP	CENTRAL PIT	*COLLECTION IN PIT	11-20	3.8	3.8	YEAR 11: 440 YEAR 16: 440	YEAR 1: 60 YEAR 16: 390	NONE

+ PIT COLLECTION IS BASED ON 40% OF THE AVERAGE ANNUAL SNOW MELT OCCURRING WITHIN ONE DAY AND THE PUMP CAPACITY DESIGNED TO REMOVE THAT SNOW MELT EVENT WITHIN 3 DAYS

<u>SUMPS – PERMANENT</u>

						ATE PUMP			
ID	DESCRIPTION	OBJECTIVES	MINE YEARS	(GAL)	GPM	TDH (FTI)	LINER TYPE	OVERFLOWS TO	SHOWN ON SHEET #
SUMP 1	CATEGORY 1 STOCKPILE SUMP – EAST	COLLECTION FOR GROUNDWATER CONTAINMENT SYSTEM	1-20+	NA – MANHOLE	7,200	50	NA – MANHOLE	EAST PIT	SEE CATEGORY 1 STOCKPILE CONTAINMENT SYSTEM
SUMP 2	CATEGORY 1 STOCKPILE SUMP - WEST	COLLECTION FOR GROUNDWATER CONTAINMENT SYSTEM	1-20+	NA – MANHOLE	7,200	50	NA – MANHOLE	WEST PIT	DRAWING SET

NOTES:

ACTUAL PUMP, PIPE, AND POND SIZES WILL BE OPTIMIZED IN FINAL DESIGN
 STANDARDIZED PUMP SIZE TO BE DETERMINED DURING FINAL DESIGN
 MINE WATER SUMP LINER IS SHOWN IN DETAIL 1 ON SHEET MW-014
 MINE WATER POND LINER IS SHOWN IN DETAIL 2 ON SHEET MW-014
 ALL PUMP CAPACITY FLOWS AND TDH VALUES HAVE BEEN ROUNDED

MINE WATER PONDS

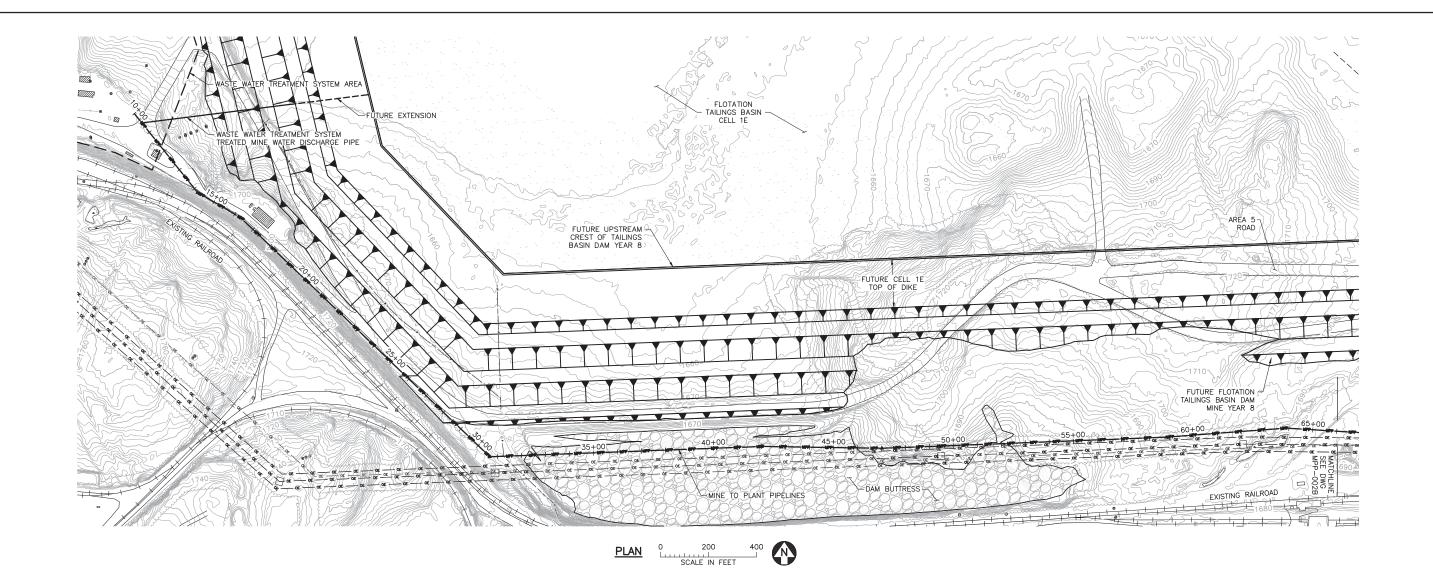

MINE WA	ATER PONDS		-							
				DESIGN	APPROXIM CAP/	ATE PUMP ACITY		ACTUAL		
ID	DESCRIPTION	OBJECTIVES	MINE YEARS	VOLUME* (GAL)	GPM	TDH (FT)	LINER TYPE	VOLUME* (GAL)	OVERFLOWS TO	SHOWN ON SHEET #
MW-S23-1	CATEGORY 2/3 STOCKPILE SUMP OVERFLOW POND	PROVIDE SUMP OVERFLOW STORAGE UP TO THE 100 YEAR 24 HOUR EVENT	1-19	6,973,000	NA	NA	MINE WATER POND LINER	7,006,000	NONE	MW-005/ MW-006
MW-S23-3	CATEGORY 2/3 STOCKPILE SUMP OVERFLOW POND	PROVIDE SUMP OVERFLOW STORAGE UP TO THE 100 YEAR 24 HOUR EVENT	6-16	1,727,000	NA	NA	MINE WATER POND LINER	1,727,000	NONE	MW-007
MW-S4	CATEGORY 4 STOCKPILE SUMP OVERFLOW POND	PROVIDE SUMP OVERFLOW STORAGE UP TO THE 100 YEAR 24 HOUR EVENT	1-11	2,639,000	NA	NA	MINE WATER POND LINER	3,226,000	NONE	MW-004
MW-SOSP	ORE SURGE PILE SUMP OVERFLOW POND	PROVIDE SUMP OVERFLOW STORAGE UP TO THE 100 YEAR 24 HOUR EVENT	1-20	1,564,000	NA	NA	MINE WATER POND LINER	1,727,000	NONE	MW-003
MW-HRC	HAUL ROAD RUNOFF POND	PROVIDE FLOOD STORAGE UP TO THE 100 YEAR 24 HOUR EVENT AND REDUCE TSS	1-20	1,988,000	40	80	MINE WATER POND LINER	2,248,000	NONE	MW-011
MW-HRE	HAUL ROAD RUNOFF POND	PROVIDE FLOOD STORAGE UP TO THE 100 YEAR 24 HOUR EVENT AND REDUCE TSS	1-20	3,487,000	70	110	MINE WATER POND LINER	3,487,000	NONE	MW-010
MW-HRW	HAUL ROAD RUNOFF POND	PROVIDE FLOOD STORAGE UP TO THE 100 YEAR 24 HOUR EVENT AND REDUCE TSS	2-20	1,206,000	30	70	MINE WATER POND LINER	1,303,000	NONE	MW-012
MW-HRN	HAUL ROAD RUNOFF POND	PROVIDE FLOOD STORAGE UP TO THE 100 YEAR 24 HOUR EVENT AND REDUCE TSS	2-20	1,434,000	30	110	MINE WATER POND LINER	1,499,000	NONE	MW-013
MW-RTH	RAIL TRANSFER HOPPER RUNOFF POND	PROVIDE FLOOD STORAGE UP TO THE 100 YEAR 24 HOUR EVENT AND REDUCE TSS	1-20	228,000	200	60	MINE WATER SUMP LINER	228,000	NONE	MW-009
MW-OSLA	OVERBURDEN STORAGE & LAYDOWN AREA RUNOFF POND	PROVIDE FLOOD STORAGE UP TO THE 25 YEAR 24 HOUR EVENT AND REDUCE TSS	1-20	3,487,000	100	90	NONE	4,725,000	NONE	MW-008
TEMP (VARIOUS)	STOCKPILE CONSTRUCTION RUNOFF PONDS AND PIT STRIPPING	TEMPORARY POND TO COLLECT RUNOFF DURING CONSTRUCTION	VARIES	VARIES	VARIES	VARIES	NONE	VARIES	NONE	NONE

VOLUME REFLECTS THE VOLUME REQUIRED BASED ON THE DESIGN NEEDS; WHEREAS ACTUAL VOLUME REFLECTS THE VOLUME SHOWN IN THE ATTACHED DRAWING SET. ACTUAL VOLUME DOES NOT INCLUDE ADDITIONAL VOLUME FROM 3 FEET OF FREEBOARD (1 FOOT FOR MW-RTH)

<u>PIPING</u>

PL-3PIPELINE NUMBER 3TRANSPORT MINE WATER TO THE WWTSCAT 2/3 & OSP3 TO 8PL-4PIPELINE NUMBER 4TRANSPORT MINE WATER TO THE WWTSCAT 44PL-5PIPELINE NUMBER 5TRANSPORT MINE WATER TO THE WWTSCAT 128 TO 42PL-6PIPELINE NUMBER 6TRANSPORT MINE WATER TO THE WWTSCAT 128 TO 42PL-7PIPELINE NUMBER 7TRANSPORT MINE WATER TO THE WWTSCAT 121 TO 6PL-8PIPELINE NUMBER 8TRANSPORT MINE WATER TO THE WWTSEAST PIT 4 CENTRAL PIT12 TO 20PL-9PIPELINE NUMBER 9TRANSPORT MINE WATER TO THE WWTSWEST PIT MW-HRN10 TO 22PL-10PIPELINE NUMBER 7TRANSPORT MINE WATER TO THE WWTSMW-HRN2							1								
MPP MME TO PLANT TRANSPORT WATER FROM THE CPS TO PLOTATION TALINGS BASIN CPS 20 PL-1 PPELINES TRANSPORT CONSTRUCTION WATER TO THE WWTS CTMP - CAT 1. CAT 4. 6251 PT 2 TO 8 PL-2 PPELINE NUMBER 1 TRANSPORT CONSTRUCTION WATER TO THE WWTS TEMP - CAT 7/3 4. 6251 PT 2 TO 8 PL-2 PPELINE NUMBER 2 TRANSPORT MINE WATER TO THE WWTS CAT 2/3 & 05P 3 TO 8 PL-4 PPELINE NUMBER 3 TRANSPORT MINE WATER TO THE WWTS CAT 4 4 PL-5 PIPELINE NUMBER 4 TRANSPORT MINE WATER TO THE WWTS CAT 4 4 PL-6 PIPELINE NUMBER 5 TRANSPORT MINE WATER TO THE WWTS CAT 1 28 TO 42 PL-6 PIPELINE NUMBER 6 TRANSPORT MINE WATER TO THE WWTS CAT 1 12 TO 20 PL-7 PIPELINE NUMBER 7 TRANSPORT MINE WATER TO THE WWTS MW-HRN 2 PL-11 PIPELINE NUMBER 8 TRANSPORT MINE WATER TO THE WWTS WWTS MW-HRN 2 PL-11 PIPELINE NUMBER 8 TRANSPORT MINE WATER TO THE WWTS WW-HRN 2 MW-HRN 2 PL-11	ID	DESCRIPTION		OBJE	CTIVES	WATER SOURCE									
PL-1 PIPELINE NUMBER 1 IMONSOUND WALER TO THE WYTS CAT 4_LSST PT 4_0SP 2/3 2 TO 8 & WEST PT 4_0SP 2/3 2 TO 8 PL-2 PIPELINE NUMBER 2 TRANSPORT CONSTRUCTION WATER TO THE WYTS TEMP - CAT 2/3 & 0SP 4_0SP 2/3 2 TO 8 PL-4 PIPELINE NUMBER 3 TRANSPORT MINE WATER TO THE WYTS CAT 4_1 4 PL-5 PIPELINE NUMBER 4 TRANSPORT MINE WATER TO THE WYTS CAT 1 2 8 TO 42 PL-6 PIPELINE NUMBER 7 TRANSPORT MINE WATER TO THE WYTS CAT 1 2 8 TO 42 PL-6 PIPELINE NUMBER 7 TRANSPORT MINE WATER TO THE WYTS CAT 1 12 TO 20 PL-7 PIPELINE NUMBER 8 TRANSPORT MINE WATER TO THE WYTS EAST FIT 4 12 TO 20 PL-9 PIPELINE NUMBER 9 TRANSPORT MINE WATER TO THE WYTS WEST PT 10 TO 22 PL-10 PIPELINE NUMBER 8 TRANSPORT MINE WATER TO THE WYTS WEST PT 10 TO 22 PL-11 PIPELINE NUMBER 1 TRANSPORT MINE WATER TO THE WYTS WEST PT 10 TO 22 PL-11 PIPELINE NUMBER 8 TRANSPORT MINE WATER TO THE WYTS WWTS WWTS 2 LIL PIPES ARE SIZED BASED ON THE USE OF HOPE SOR 111 PIPE WWTS	MPP		T TV			TO CPS	2	0							
PI-2 PIPELINE NUMBER 2 THE WNTS 1 + 0SP ** 2 10 0 * PL-3 PIPELINE NUMBER 3 TEANSPORT MINE WATER TO THE CAT 2/3 & 0SP 3 TO 8 PL-4 PIPELINE NUMBER 4 TEANSPORT MINE WATER TO THE CAT 2/3 & 0SP 3 TO 8 PL-4 PIPELINE NUMBER 4 TEANSPORT MINE WATER TO THE CAT 4 4 PL-5 PIPELINE NUMBER 5 TRANSPORT MINE WATER TO THE CAT 1 28 TO 42 PL-6 PIPELINE NUMBER 6 TRANSPORT MINE WATER TO THE CAT 1 28 TO 42 PL-7 PIPELINE NUMBER 8 TRANSPORT MINE WATER TO THE REXT PIT 4 12 TO 20 PL-8 PIPELINE NUMBER 8 TRANSPORT MINE WATER TO THE CENTRAL PIT 1 10 TO 22 PL-10 PIPELINE NUMBER 1 TRANSPORT MINE WATER TO THE WEST PIT 10 TO 22 PL-11 PIPELINE NUMBER 1 TRANSPORT MINE WATER TO THE MW - HRW 2 ILL IPPES ARE SIZED BASED ON THE USE OF HOPE SDR 11 PIPE MW - HRW 2 VILL IPPES ARE SIZED BASED ON THE USE OF HOPE SDR 11 PIPE INSUE STATUS INSUE STATUS VILL IPPES ARE SIZED BASED ON THE USE OF HOPE SDR 11 PIPE INSUE STATUS	PL-1	PIPELINE NUMBE	ER 1 -			CAT 4, EAST PIT	2 T	0 8							
PL-3 PIPELINE NUMBER 3 WHTS CM 2/3 & CUS 3 10 8 PL-4 PIPELINE NUMBER 4 TRANSPORT MINE WATER TO THE CAT 4 4 PL-5 PIPELINE NUMBER 5 TRANSPORT MINE WATER TO THE CAT 1 28 TO 42 PL-6 PIPELINE NUMBER 6 TRANSPORT MINE WATER TO THE CPS OSLA 3 PL-7 PIPELINE NUMBER 7 TRANSPORT MINE WATER TO THE CAT 1 12 TO 20 PL-8 PIPELINE NUMBER 8 TRANSPORT MINE WATER TO THE CENTRAL PIT 12 TO 20 PL-9 PIPELINE NUMBER 9 TRANSPORT MINE WATER TO THE WEST PIT 10 TO 22 PL-10 PIPELINE NUMBER 1 TRANSPORT MINE WATER TO THE WWTS 2 PL-11 PIPELINE NUMBER 1 TRANSPORT MINE WATER TO THE WWTS MW-HRW 2 PL-11 PIPELINE NUMBER 1 TRANSPORT MINE WATER TO THE WWTS MW-HRW 2 VELLINE NUMBER 4 TRANSPORT MINE WATER TO THE WWTS MW-HRW 2 VELLINE NUMBER 1 TRANSPORT MINE WATER TO THE WWTS MW-HRW 2 VELLINE NUMBER 3 TRANSPORT MINE WATER TO THE WWTS MW-HRW 2 VELLI PIPELINE NUMBER 3	PL-2	PIPELINE NUMBE	ER 2 -				2 T	0 8							
PL-4 PIPELINE NUMBER 4 WWTS UAI 4 4 PL-5 PIPELINE NUMBER 5 TRANSPORT MINE WATER TO THE CAT 1 28 TO 42 PL-6 PIPELINE NUMBER 6 TRANSPORT MINE WATER TO THE CAT 1 28 TO 42 PL-6 PIPELINE NUMBER 7 TRANSPORT MINE WATER TO THE CAT 1 28 TO 42 PL-7 PIPELINE NUMBER 7 TRANSPORT MINE WATER TO THE RTH, MW-HRE & 2 TO 20 PL-9 PIPELINE NUMBER 8 TRANSPORT MINE WATER TO THE EXEST PIT & 10 TO 22 WWTS WWTS WWTS 10 TO 22 PL-10 PIPELINE NUMBER 1 TRANSPORT MINE WATER TO THE WWTS WWTS 2 PL-11 PIPELINE NUMBER 1 TRANSPORT MINE WATER TO THE WWTS 2 MW-HRW 2 LL PIPES ARE SIZED BASED ON THE USE OF HDPE SDR 11 PIPE MW-HRW 2 2 MECHANICAL INFRASTRUCTURE GENERAL DW MINE WATER TO THE WWTS SSUED VERSION DATE HERRY CONFORMER WATE REAL PEOPT CONFORMER WATE REAL VL1 PIPES ARE SIZED BASED ON THE USE OF HDPE SDR 11 PIPE HERRY CONFORMER WATE REAL PEOPT CONFORMER WATE REAL PEOPT CONFORMER WATE REAL VIS FORMUTING 2 6/07/17 HERRY REAL					E CAT 2/3 & OSP	3 т	3 TO 8								
PL-S PIPELINE NUMBER 5 WWTS CAI 1 28 10 42 PL-6 PIPELINE NUMBER 6 TRANSPORT MINE WATER TO THE CPS OSLA 3 PL-7 PIPELINE NUMBER 7 TRANSPORT MINE WATER TO THE CPS OSLA 3 PL-7 PIPELINE NUMBER 7 TRANSPORT MINE WATER TO THE CENTRAL PIT 12 TO 20 PL-9 PIPELINE NUMBER 8 TRANSPORT MINE WATER TO THE CENTRAL PIT 10 TO 22 PL-10 PIPELINE NUMBER 1 TRANSPORT MINE WATER TO THE WEST PIT 10 TO 22 PL-11 PIPELINE NUMBER 1 TRANSPORT MINE WATER TO THE WWTS WW-HRN 2 LL PIPES ARE SIZED BASED ON THE USE OF HOPE SDR 11 PIPE MW-HRW 2 MCHANICAL INFRASTRUCTURE GENERAL DW MINE SITE SUMP, POND AND PIPE DETAIL TABLES VIS VIS VIS PULNT IN N G POLY MET MINING, INC. NORTHMET PROJECT HOT MAY THE PLAN HERE PROSTRUCTION PERMITING 2 6/07/17 PERMITING NUMER PROJECT NO: SUMPROVE MORTER SUM OF HERE SINCE ON HERE PROJECT NO: SUMPROVE MORTER MAY AND AUX SUMPROVE PROJECT NO: SUMPROVE OF CONSTRUCTION PORTED NAME SON A.M. MINNE SON A.M. MINNE SONCE ON HERE SINCE ON H						E CAT 4		4							
PL-7 PIPELINE NUMBER 7 TRANSPORT MINE WATER TO THE WWTS RTH, MW-HRE & MW-HRC 2 to 6 PL-8 PIPELINE NUMBER 8 TRANSPORT MINE WATER TO THE WWTS EAST PIT & CENTRAL PIT 12 to 20 PL-9 PIPELINE NUMBER 9 TRANSPORT MINE WATER TO THE WWTS EAST PIT & CENTRAL PIT 10 to 22 PL-10 PIPELINE NUMBER 1 TRANSPORT MINE WATER TO THE WWTS WEST PIT 10 to 22 PL-11 PIPELINE NUMBER 1 TRANSPORT MINE WATER TO THE WWTS MW-HRW 2 LL PIPES ARE SIZED BASED ON THE USE OF HDPE SDR 11 PIPE MW-HRW 2 VIE SSUE STATUS MW-HRW 0R THAN PROVED FOR CONSTRUCTOR PRANNER MORE MORE MORE MORE MORE MORE MORE MO					E CAT 1	28 T	0 42								
PL-7 PIPELINE NUMBER 7 wwts MW-HRC 2 10 5 PL-8 PIPELINE NUMBER 8 TRANSPORT MINE WATER TO THE CENTRAL PIT 12 TO 20 PL-9 PIPELINE NUMBER 9 TRANSPORT MINE WATER TO THE WWTS WWTS 10 TO 22 PL-10 PIPELINE NUMBER 1 TRANSPORT MINE WATER TO THE WWTS WWTS 2 PL-11 PIPELINE NUMBER 1 TRANSPORT MINE WATER TO THE WWTS MW-HRN 2 PL-11 PIPELINE NUMBER 1 TRANSPORT MINE WATER TO THE WWTS MW-HRN 2 LL PIPES ARE SIZED BASED ON THE USE OF HDPE SDR 111 PIPE MW-HRW 2 PLANT DRAWING NUMBER: MINE SITE SUMP, POND AND PIPE DETAIL TABLES SUMP, POND AND PIPE DETAIL TABLES VERSION DATE IHERERY CERTIFY THAT TH'S PLAN, SPECTROMY OR THE STREET POLY MET MINING, INC. NORTHMET PROJECT HOY LEARNER WATER OF WAS THE STATE OF WAS THE	PL-6	PL-6 PIPELINE NUMBER 6 TRANSPORT MINE WATER TO TH			WATER TO THE	OSLA		3							
PL-8 PPLINE NUMBER 8 WWTS CENTRAL PIT 12 10 20 PL-9 PIPELINE NUMBER 9 TRANSPORT MINE WATER TO THE WWTS WEST PIT 10 TO 22 PL-10 PIPELINE NUMBER 1 TRANSPORT MINE WATER TO THE WWTS WW-HRN 2 PL-11 PIPELINE NUMBER 1 TRANSPORT MINE WATER TO THE WWTS MW-HRN 2 PL-11 PIPELINE NUMBER 1 TRANSPORT MINE WATER TO THE WWTS MW-HRN 2 VEL11 PIPELINE NUMBER 1 TRANSPORT MINE WATER TO THE WWTS MW-HRN 2 VEL11 PIPELINE NUMBER 1 TRANSPORT MINE WATER TO THE WWTS MW-HRN 2 VERSION DATE MW-HRW 2 MINE SITE SUMP, POND AND PIPE DETAIL TABLES POR FOR CONSTRUCTION 0 6/07/17 I HEREFY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PRINTED ROOT OF RECONSTRUCTION DATE I HEREFY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PRINTED ROOT OF RECONSTRUCTION POLY MET MINING, INC. NORTHMET PROJECT HOT LAKES, MINNESSOTA MINE STEE SUMP, POND AND PIPE DETAIL TABLES POLY MET MINING, INC. NORTHMET PROJECT HOT LAKES, MINNESSOTA NORTHMET PROJECT HOT LAKES, MINNESSOTA MINE SOTA MINE SITE SUME PROVED FOR CONSTRUCTION RAR PROJECT NOI: 23/69-0C29 SALE: <td>PL-7</td> <td>PIPELINE NUMBE</td> <td>ER 7</td> <td></td> <td></td> <td></td> <td>2 T</td> <td colspan="3" rowspan="2"></td> <td></td> <td></td> <td></td> <td></td>	PL-7	PIPELINE NUMBE	ER 7				2 T								
PL-9 PIPELINE NUMBER 9 WWTS WEST PIT TO TO 22 PL-10 PIPELINE NUMBER 10 TRANSPORT MINE WATER TO THE WWTS MW-HRN 2 PL-11 PIPELINE NUMBER 11 TRANSPORT MINE WATER TO THE WWTS MW-HRN 2 LL PIPES ARE SIZED BASED ON THE USE OF HDPE SDR 11 PIPE MW-HRW 2 ILI PIPES ARE SIZED BASED ON THE USE OF HDPE SDR 11 PIPE MW-HRW 2 ISSUE STATUS I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PERMITTING PLANT DRAWING NUMBER: FOR CONSTRUCTION 0/07/17 I HEREBY CERTIFY THAT THIS PLAN, SIGNATURE PLANT THE APPROVED FOR CONSTRUCTION FOR CONSTRUCTION 2 6/07/17 I HEREBY CERTIFY THAT THIS PLAN, SIGNATURE PLANT THE APPROVED FOR CONSTRUCTION POLY MET MINING, INC. NORTHMET PROJECT HOY LAKES, MINNESOTA MINNER SIGNATURE PRIVED NAME JON M. MINNE SIGNATURE PRIVED NAME JON M. MINNE SIGNATU	PL-8	PIPELINE NUMBE	ER 8				12 T								
PL-10 10 WWTS MW-HKN 2 PL-11 PIPELINE NUMBER TRANSPORT MINE WATER TO THE WWTS MW-HRW 2 LL PIPES ARE SIZED BASED ON THE USE OF HDPE SDR 11 PIPE MW-HRW 2 MECHANICAL INFRASTRUCTURE GENERAL DW MINE SITE SUMP, POND AND PIPE DETAIL TABLES Issue Status I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION OR REPORT WAS FOR 2 6/07/17 I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION OR REPORT WAS DRAWN: VUS POLY MET MINING, INC. NORTHMET PROJECT HOT LAKES, MINNESOTA FOR 2 6/07/17 6/07/17 I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, SPECIFICATION, SPECIFICATION, SPECIFICATION, REPORT WAS DRAWN: VUS POLY MET MINING, INC. NORTHMET PROJECT HOT LAKES, MINNESOTA FOR 2 6/07/17 I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, SPECIFICATION, SPECIFICATION, SPECIFICATION, REPORT WAS OF THE STATE OF MINESOTA VUS POLY MET MINING, INC. NORTHMET PROJECT HOT LAKES, MINNESOTA INDER THE LAWS OF THE STATE OF MINESOTA I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, SPECIFICATION, REPORT WAS OF THE STATE OF MINESOTA I RAWN: VUS I RAWN: SECON THE STATE OF MININESOTA I RAWN: SECON THE STATE OF MINISTRUCTION I RAWN: SECON THE STATE OF MINISTRUCTION	PL-9	PIPELINE NUMBE	ER 9			E WEST PIT 10 T		0 22							
PL-11 PIPELINE NUMBER 11 TRANSPORT MINE WATER TO THE WWTS MW-HRW 2 LL PIPES ARE SIZED BASED ON THE USE OF HDPE SDR 11 PIPE MW-HRW 2 MECHANICAL INFRASTRUCTURE GENERAL DW MINE SITE SUMP, POND AND PIPE DETAIL TABLES ISSUE STATUS ISSUE STATUS INTED VERSION DATE FOR CONSTRUCTION FOR CONSTRUCTION FOR CONSTRUCTION FOR CONSTRUCTION NOT APPROVED FOR CONSTRUCTION	PL-10		BER			E MW-HRN	MW-HRN 2								
MINE SITE MINE SITE ISSUE STATUS ISSUE D VERSION DATE I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS DRAWN: POLY MET MINNING, INC. POR 6/07/17 6/07/17 0 (0/7/17 DRAWN: DRAWN: POLY MET MINNESOTA PERMITTING 2 6/07/17 6/07/17 DRAWN: DRAWN: POLY MET MINNESOTA MINNESOTA PREMACE DAY ME OF THE STATE OF MINNESOTA DRAWN: POLY MET MINNESOTA PREMITING 2 6/07/17 OF THE STATE OF DRAWN: POLY MET MINNESOTA MINNESTAL BARR PROJECT UNDER THE JAWN OF THE STATE OF DATE 6/07/17 DRAWN: DATE 0/10 (DRAWNESOTA DATE 0/10 (DRAWNESOTA MINNESTAL PRINTED NAME JON M. MINNE SIGNATURE JIMA3 DATE 6/02/12 DATE 6/07/17 DATE 6/07/1	PL-11		BER			E MW-HRW	:	2		PLANT DR	AWING NUMBER:				
ISSUED VERSION DATE I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OF UNDER MY DIRECT DRAWN: POLLT MILT MINING, TAC. NORTHMET PROJECT FOR PERMITTING 2 6/07/17 0/07/17 DRAWN: DRAWN: VJS DVEXTIGATION NORTHMET PROJECT HOYT LAKES, MINNESOTA HOULT MILTING 2 6/07/17 DRAWN: VJS DVEXTIGATION DRAWN: VJS NORTHMET PROJECT HOYT LAKES, MINNESOTA FOR CONSTRUCTION FOR CONSTRUCTION PRINTED NAME JON M. MINNE BARR PROJECT NO.: 23/69-0C29 DATE 200 MINNEAPOLIS, MN. PI: 1-800-632-2277 NOT APPROVED FOR CONSTRUCTION DATE 6/07/17 LICENSE# 25080 SCALE: DWC. NO. REV	ALL PIPES	ARE SIZED BASE	ED ON	THE USE OF HD	PE SDR 11 PIPE							MIN	e site		
ISSUED VERSION DATE I HEREBY CERTIFY THAT THIS PLAN, PREPARED THE LAWS OF THE STATE OF PREPARED THE LAWS OF THE STATE OF UNDER THE LAWS OF THE STATE OF MINNESOTA DRAWN: DIATE NORTHMET PROJECT FOR CONSTRUCTION 2 6/07/17 6/07/17 0/07/17				ISSUE STATUS							~	POI Y	MFT M	INING IN	IC.
FOR PERMITTING 2 6/07/17 PRÉPARDISION AND TRUI I MA A DURCE VY DIRECT ULCENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESSOTA DIMAIN VUS POLITINE HOYT LAKES, MINNESOTA SOURCE MINNESSOTA VIS POLITINE HOYT LAKES, MINNESOTA FOR CONSTRUCTION FOR CONSTRUCTION PRIVIED NAME JOIN M. MINNE SIGNATURE PRIVIE JAMAGE BARR PROJECT NO.: 23/69-0C29 BARR PROJECT NO. BARR PROJECT NO.: 23/69-0C29 BARR PROJECT NO. SUITE 200 MINNEAPOLIS, MN. Privie 1-800-632-2277		ISSI	UED	VERSION	DATE	I HEREBY CERTIFY THAT THIS	PLAN,				¥¥				
FOR CONSTRUCTION FOR SIGNATURE SOLVED IMM3 NOT APPROVED FOR CONSTRUCTION PRINTED NAME JON M. MINNE SIGNATURE NOT APPROVED FOR CONSTRUCTION DATE 6/07/17		FOR PERMITTIN	IG	2	6/07/17	PREPARED BY ME OR UNDER SUPERVISION AND THAT I AM LICENSED PROFESSIONAL ENG UNDER THE LAWS OF THE ST.	MY DIRECT A DULY	VJ:					LAKES,	MINNES	DTA
NOT AFFROVED FOR CONSTRUCTION "SCALE: DWG. NO. REV			CTION			MINNESOTA. PRINTED NAME JON M. MII SIGNATURE	INNE BARR PROJECT N 23/69-002		NO.:		B	ARR	4300 M SUITE 2 MINNEAF	ARKETPOINTI 00 POLIS, MN.	
		NOT APPR	ROVED	FOR CONSTRUCTION	-	DATE <u>\$707717</u> LICENSE# 2	:5080		WN	DWG. NO.	ME-0	04			

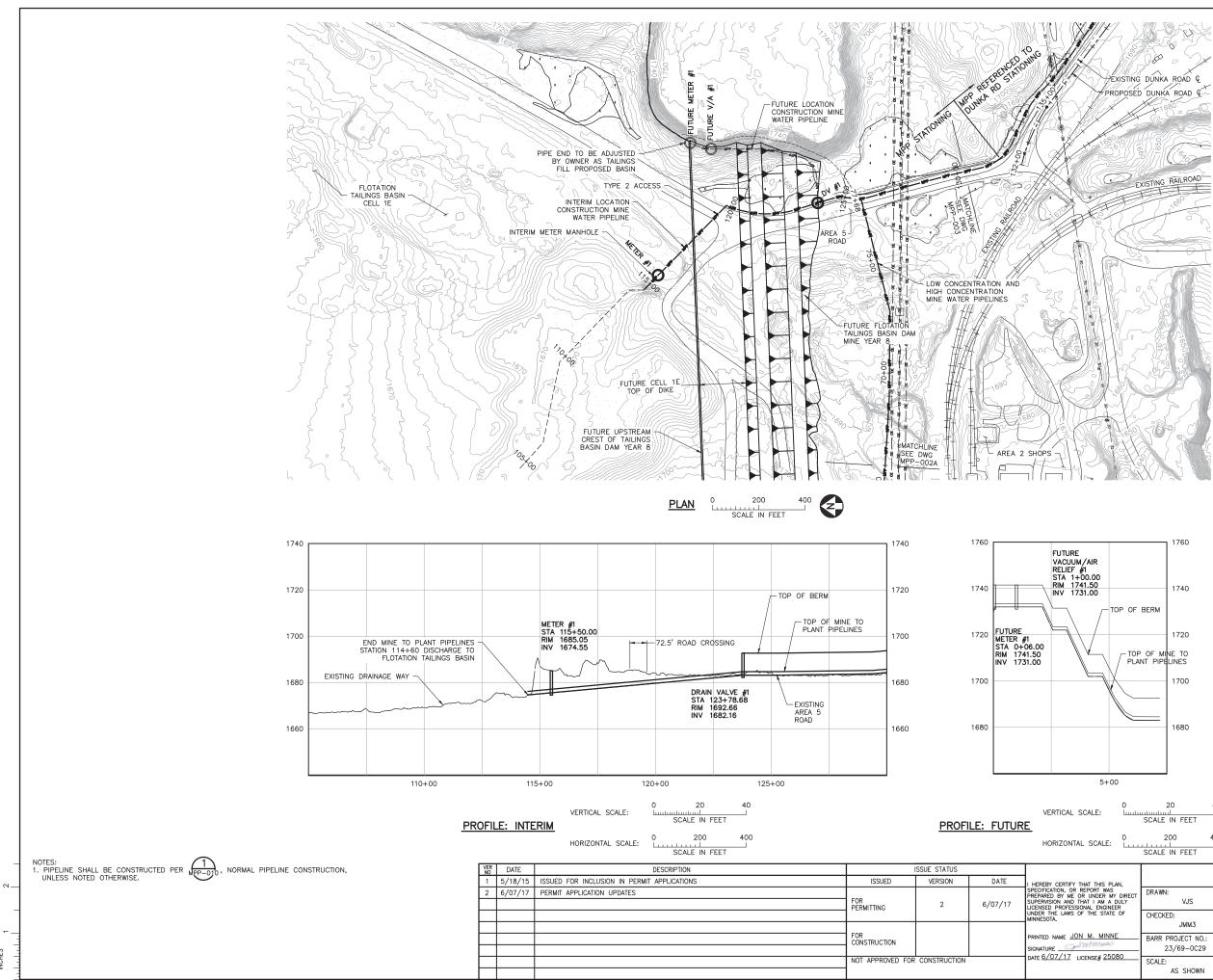
(FTI)	LINER TY	PE OVERFLOWS TO	SHOWN ON SHEET #						NOMINAL P				
				ID	DESCRIPTION	OBJECTI	VES	WATER SOURCE	SIZES* (I	N)			
50	NA – MANI	HOLE EAST PIT	SEE CATEGORY 1 STOCKPILE CONTAINMENT SYSTEM	MPP	MINE TO PLANT PIPELINES	TRANSPORT WATER FR FLOTATION TAILI		TO CPS	20				
50	NA – MANI	HOLE WEST PIT	DRAWING SET	PL-1	PIPELINE NUMBER 1	TRANSPORT CONSTRU THE W		TO TEMP - CAT 1, CAT 4, EAST PIT & WEST PIT	2 TO 8				
				PL-2	PIPELINE NUMBER 2	TRANSPORT CONSTRU THE W		TO TEMP - CAT 2/3 + OSP	2 TO 8				
				PL-3	PIPELINE NUMBER 3	TRANSPORT MINE WWTS		CAT 2/3 & OSP	3 TO 8	5			
				PL-4	PIPELINE NUMBER 4	TRANSPORT MINE WWTS		CAT 4	4				
				PL-5	PIPELINE NUMBER 5	TRANSPORT MINE WWTS		CAT 1	28 TO 4	-2			
				PL-6	PIPELINE NUMBER 6	TRANSPORT MINE WAT	IER TO THE CP	PS OSLA	3				
				PL-7	PIPELINE NUMBER 7	TRANSPORT MINE WWTS		RTH, MW-HRE & MW-HRC	2 TO 6	;			
				PL-8	PIPELINE NUMBER 8	TRANSPORT MINE WWTS		EAST PIT & CENTRAL PIT	12 TO 2	0			
				PL-9	PIPELINE NUMBER 9	TRANSPORT MINE WWTS		WEST PIT	10 TO 2	2			
				PL-10	PIPELINE NUMBER 10	TRANSPORT MINE WWTS		MW-HRN	2				
				PL-11	PIPELINE NUMBER 11	TRANSPORT MINE V		MW-HRW	2		PLANT DRAWING NUMBER:		
				*ALL PIPES	ARE SIZED BASED O	N THE USE OF HDPE	SDR 11 PIPE					NFRASTRUCTURE GE MINE SITE ND AND PIPE DETA	
VER NO	DATE		DESCRIPTION			ISSUE STATUS						POLY MET MININ	IG. INC.
1	, ,		IN PERMIT APPLICATIONS		ISSUED	VERSION		HEREBY CERTIFY THAT THIS F				NORTHMET PR	
2	6/07/17	PERMIT APPLICATION UP	PDATES		FOR		Pf	PECIFICATION, OR REPORT WA REPARED BY ME OR UNDER I SUPERVISION AND THAT I AM A	MY DIRECT	RAWN: VJS	POLYMET	HOYT LAKES, MI	
					PERMITTING	2	0/0//1/ Lu	ICENSED PROFESSIONAL ENGIN	IEER		MINING		
							M	INNESOTA.		HECKED: JMM3		BARR ENGIN 4300 MARKE	TPOINTE DRIVE
					FOR CONSTRUCTION		si	PRINTED NAME JON M. MIN		ARR PROJECT NO.: 23/69-0C29		SUITE 200 MINNEAPOLIS Ph: 1-800-63	, MN.
					NOT APPROVED	D FOR CONSTRUCTION	D/	DATE 6/07/17 LICENSE# 25	5080 SC	CALE:	DWG. NO.		REV
										AS SHOWN	ME-00	04	В


1 PLAN: SHEET INDEX

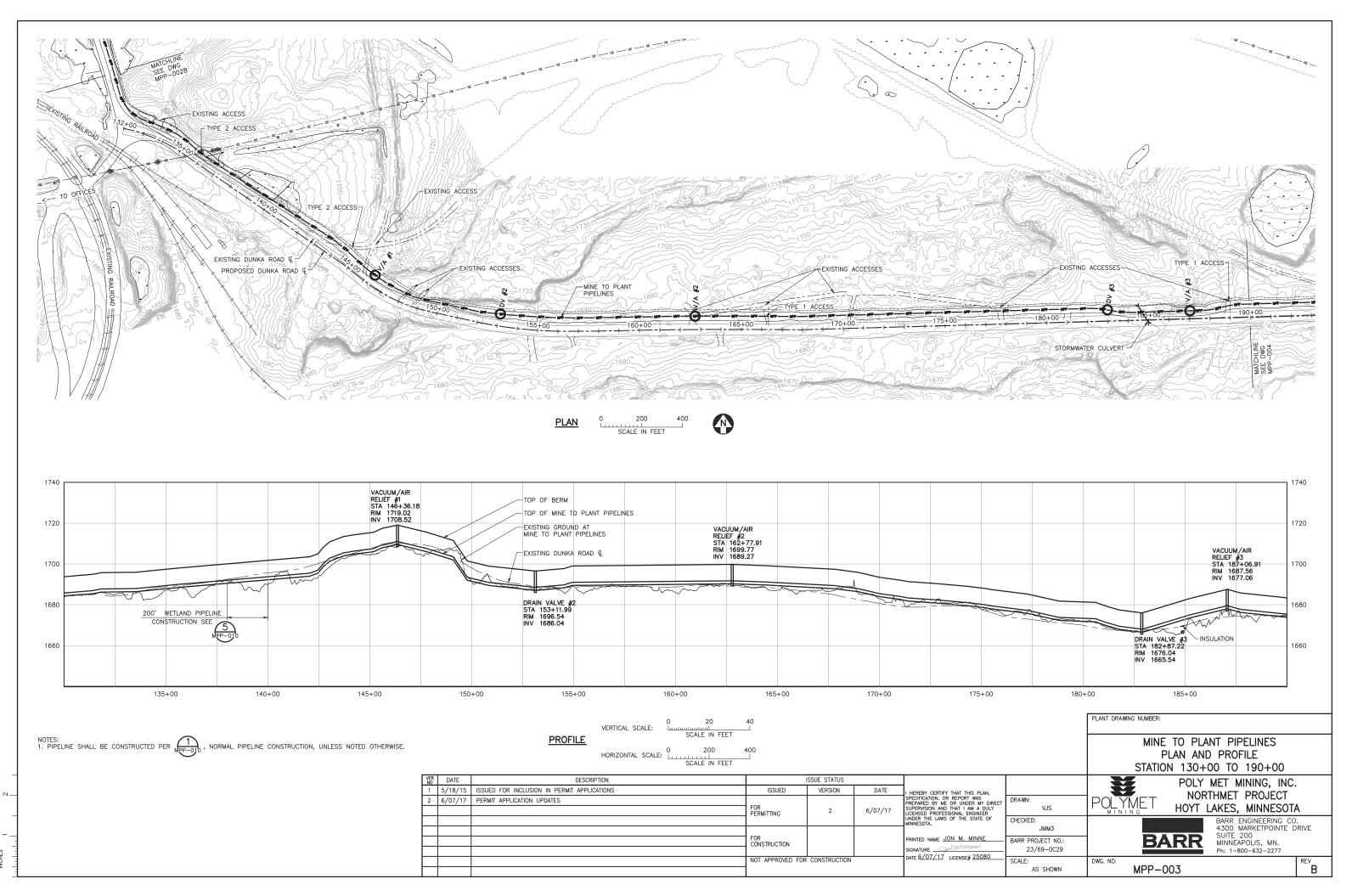
VER NO	DATE	DESCRIPTION		ISSUE STATUS		
1	5/18/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,
2	6/07/17	PERMIT APPLICATION UPDATES				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRE
			FOR PERMITTING	2	6/07/17	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
						UNDER THE LAWS OF THE STATE OF MINNESOTA.
			FOR CONSTRUCTION			PRINTED NAME JON M. MINNE
						SIGNATURE
			NOT APPROVED FOR	CONSTRUCTION		DATE 0/07/17 LICENSE# 23080

-

	EQUALIZATION BASIN AREA	. U
IND MINE TO PLANT P	WG. MPP-009	
	PLANT DRAWING NUMBER: MINE TO PLANT PIPELINES	
	GENERAL LAYOUT AND SHEET INDE	EX
AN, pirect DULY OF OF CHECKED:	POLYMET MINING, INC NORTHMET PROJECT HOYT LAKES, MINNESOT	- A
E BARR PROJECT NO.: 23/69-0C29	BARRR HINNEAPOLIS, MN. Ph: 1-800-632-2277	
SCALE: AS SHOWN	DWG. NO. MPP-001	B

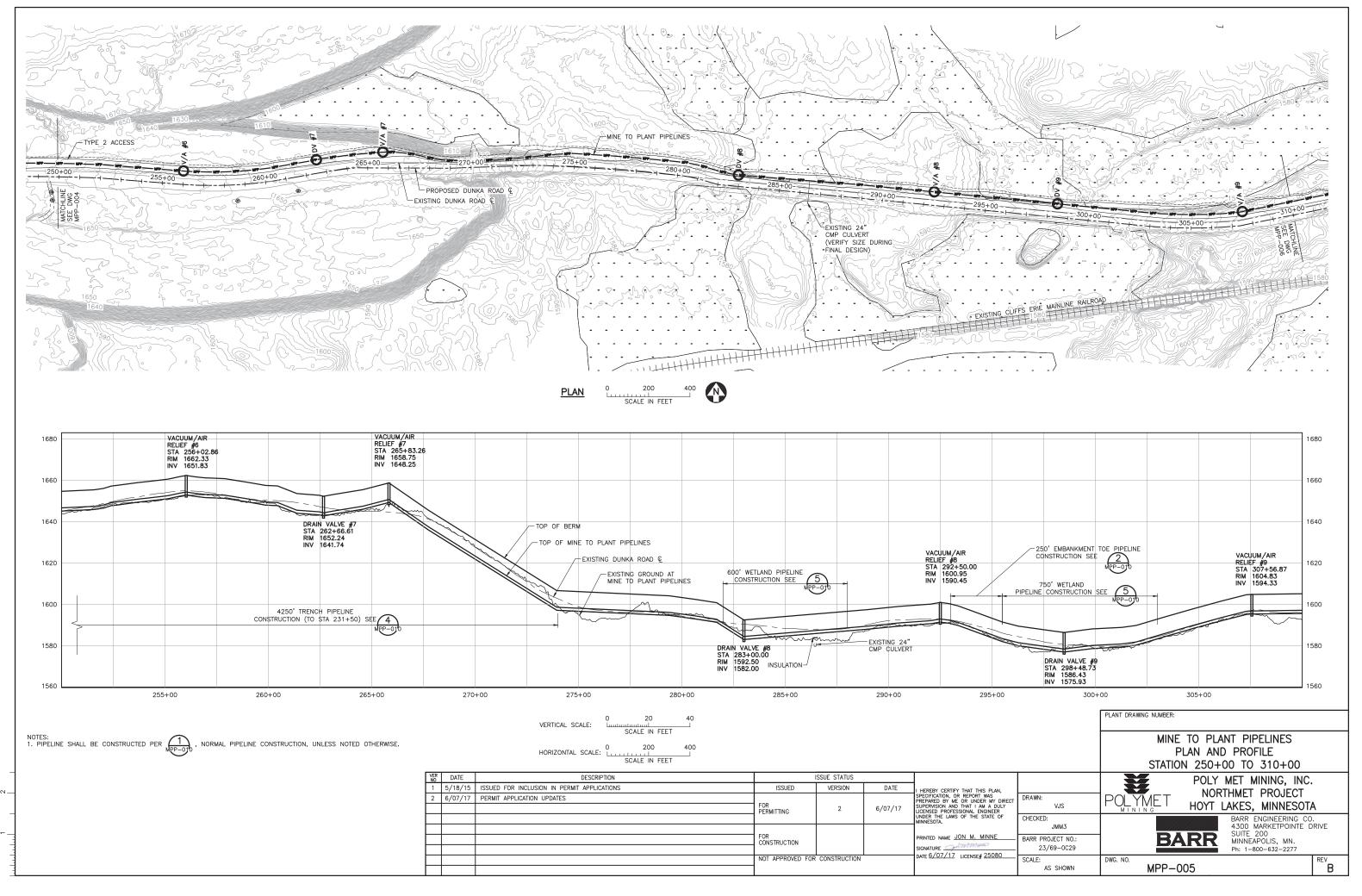

PROFILES TO BE DEVELOPED ONCE ROUTE IS FINALIZED DURING FINAL DESIGN.

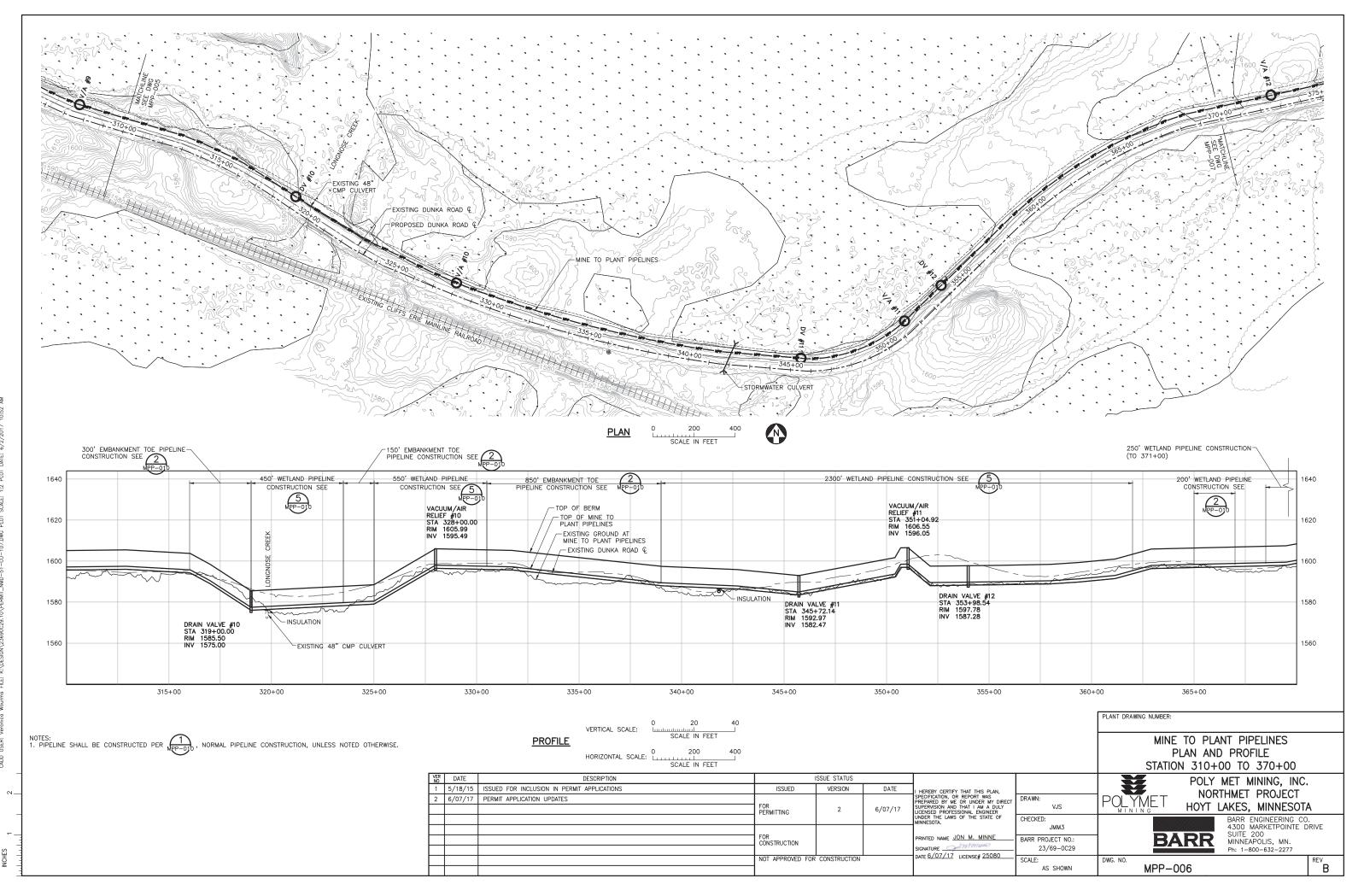
NOTES: 1. PIPELINE SHALL BE CONSTRUCTED PER (1), NORMAL PIPELINE CONSTRUCTION, UNLESS NOTED OTHERWISE.

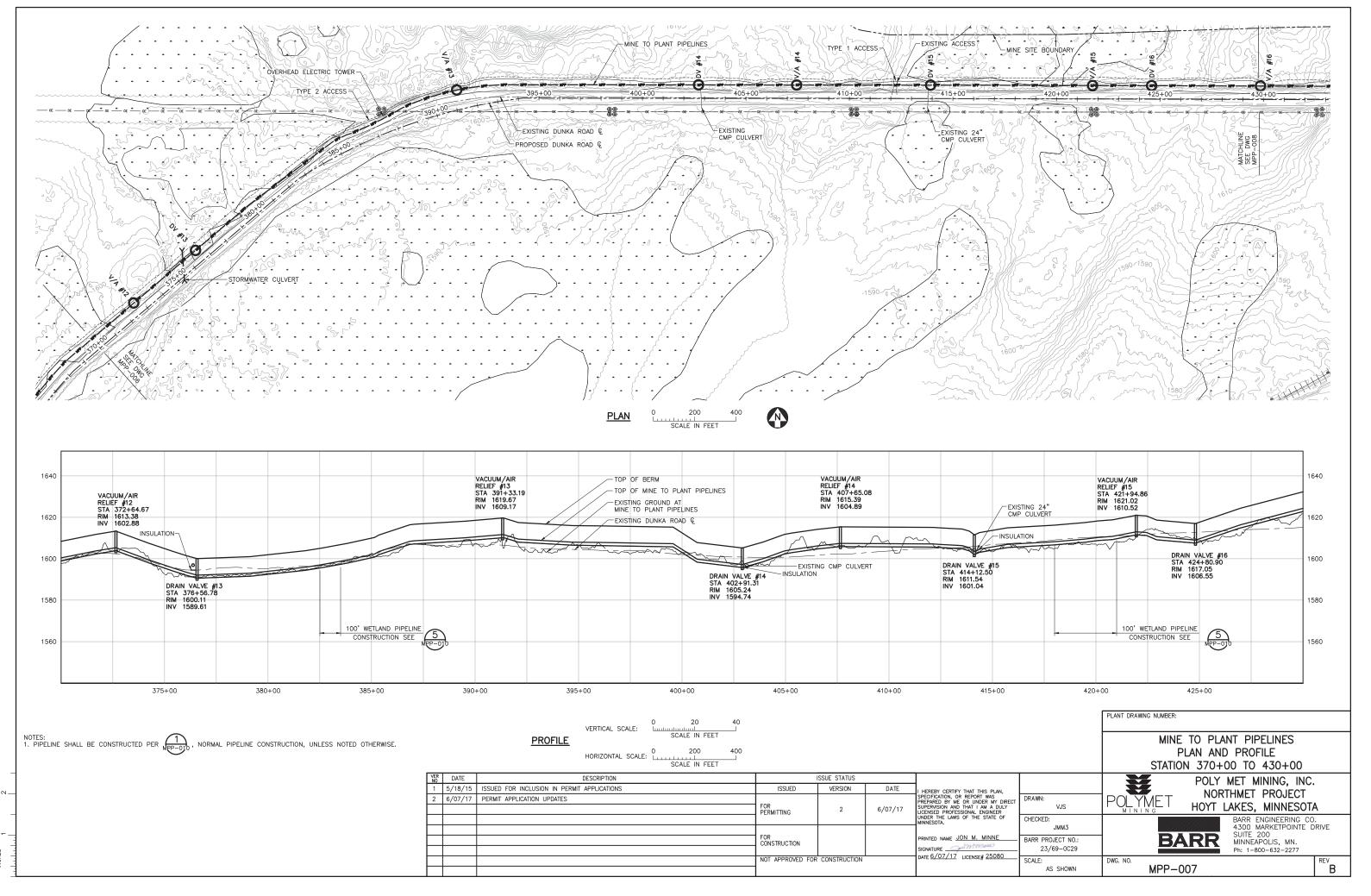

VER NO	DATE	DESCRIPTION		ISSUE STATUS		
1	5/18/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
2	6/07/17	PERMIT APPLICATION UPDATES				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DI
			FOR PERMITTING	2	6/07/17	SUPERVISION AND THAT I AM A DUL' LICENSED PROFESSIONAL ENGINEER
						UNDER THE LAWS OF THE STATE OF MINNESOTA.
			FOR CONSTRUCTION			PRINTED NAME JON M. MINNE
						SIGNATURE
			NOT APPROVED FOR	CONSTRUCTION		DATE 07 07 777 LICENSE# 20080

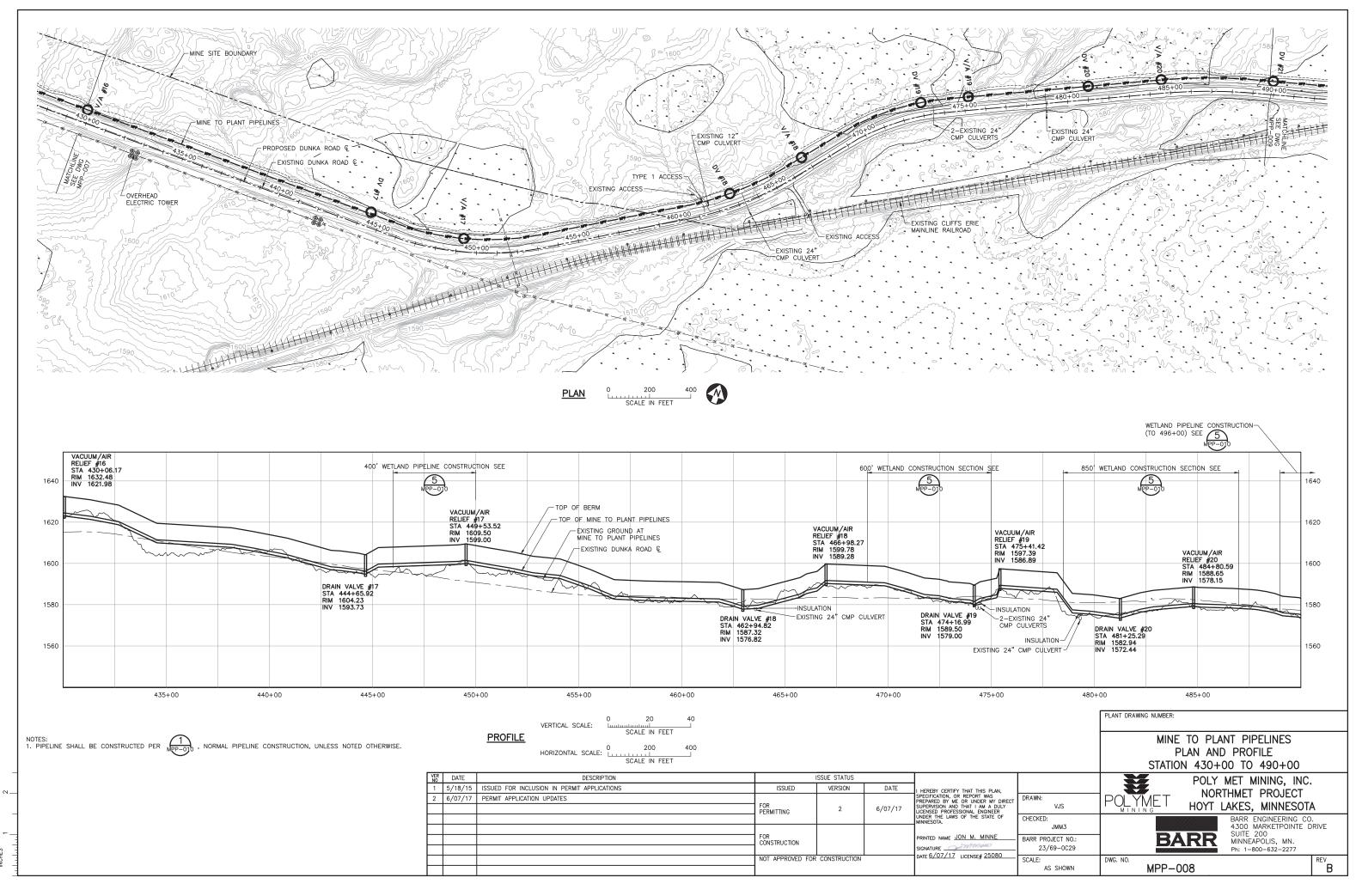
2 CADD Ν-INCHES

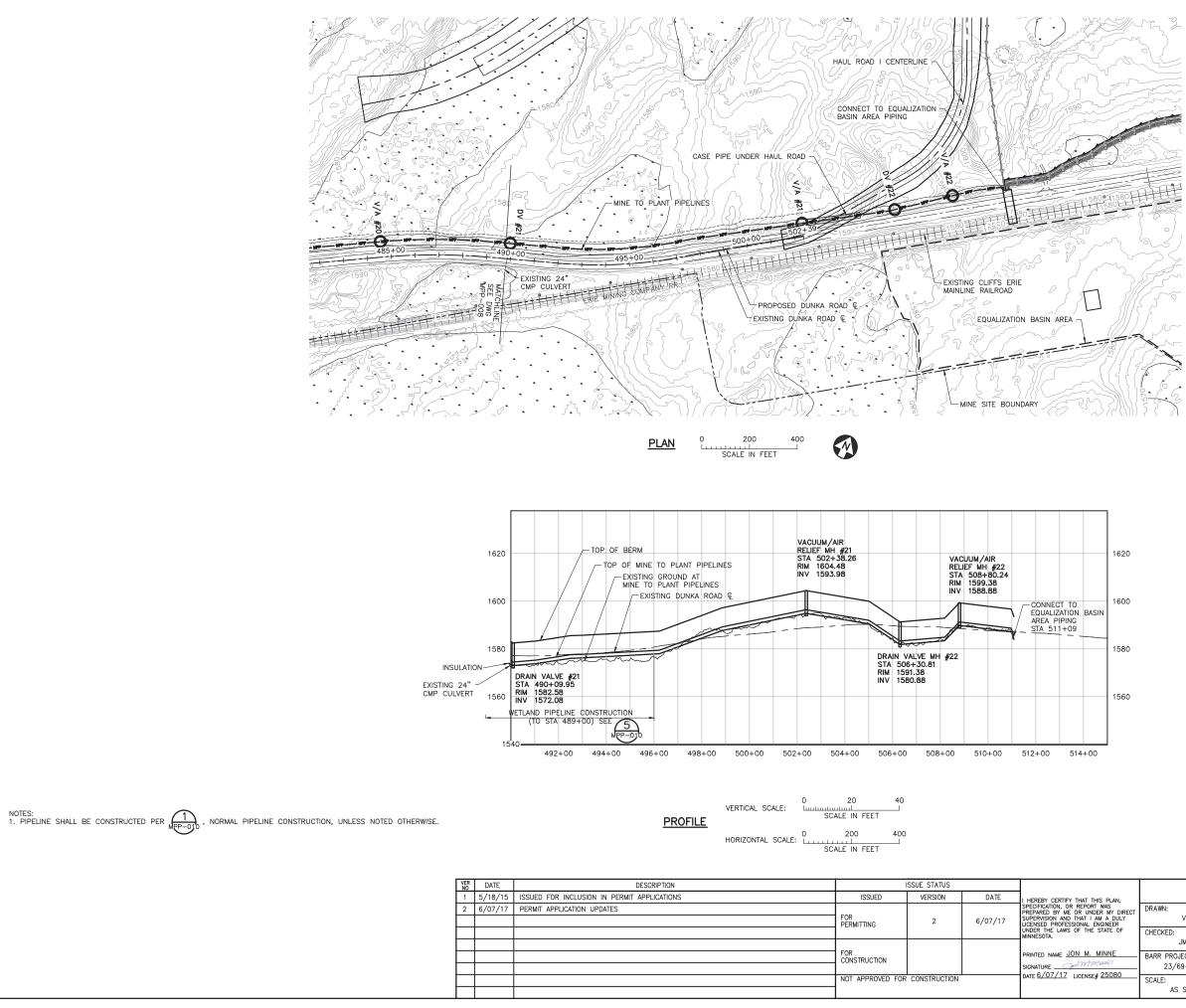
		PLANT DRAWING NUMBER:	
		MINE TO PLANT PIPELINES PLAN	
		STATION 10+00 TO 66+00	
AN,	DRAWN:	POLY MET MINING, INC.	
DIRECT DULY ER OF	VJS CHECKED: JMM3	HOYT LAKES, MINNESOTA BARR ENGINEERING CO 4300 MARKETPOINTE D	
E	BARR PROJECT NO.: 23/69-0C29	BARR NITE 200 MINNEAPOLIS, MN. Ph: 1-800-632-2277	
80	SCALE: AS SHOWN	DWG. NO. MPP-002A	REV B

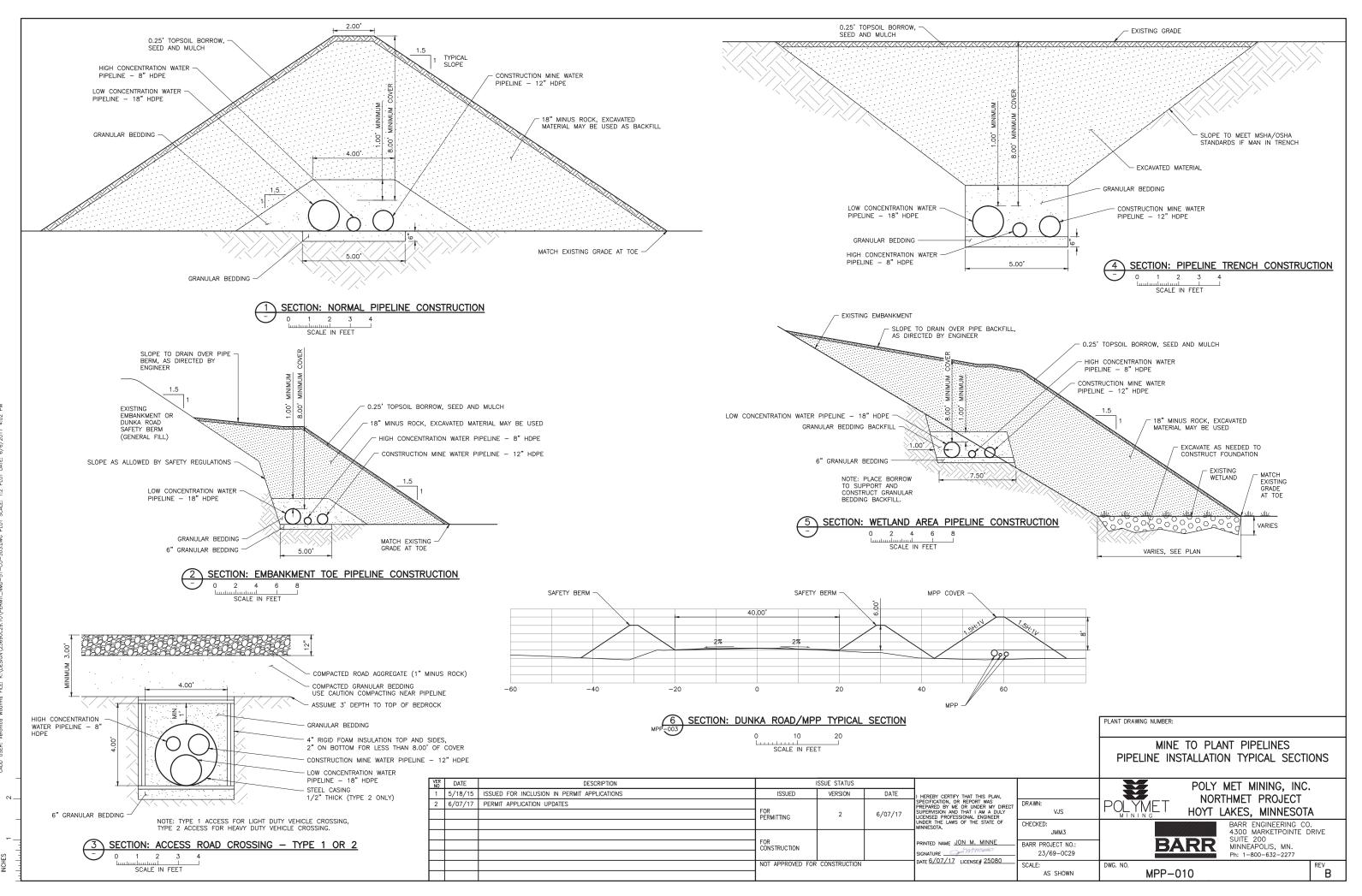


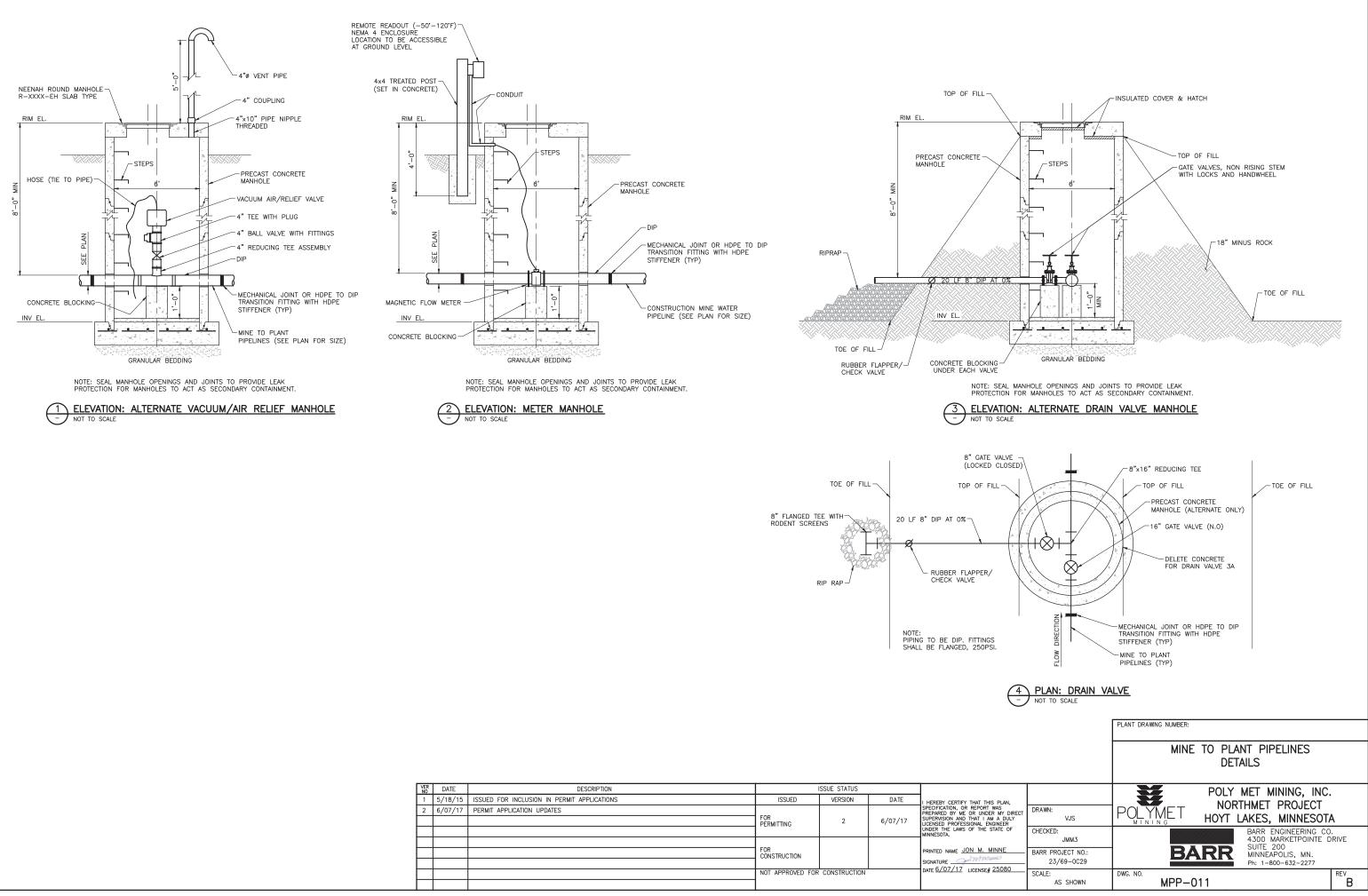

	1680		
00			
	20 40	PLANT DRAWING NUMBER:	
	SCALE IN FEET	MINE TO PLANT PIPELINES	
	200 400 SCALE IN FEET	PLAN AND PROFILE	
		STATION 113+70 TO 130+00	
LAN, 5 IY DIRECT DULY EER E OF	DRAWN: VJS	POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA	
E OF	CHECKED: JMM3	BARR ENGINEERING CO 4300 MARKETPOINTE D	
NE 080	BARR PROJECT NO.: 23/69-0C29	BARR SUITE 200 MINNEAPOLIS, MN. Ph: 1-800-632-2277	
<u>vov</u> '	SCALE: AS SHOWN	DWG. NO. MPP-002B	B B

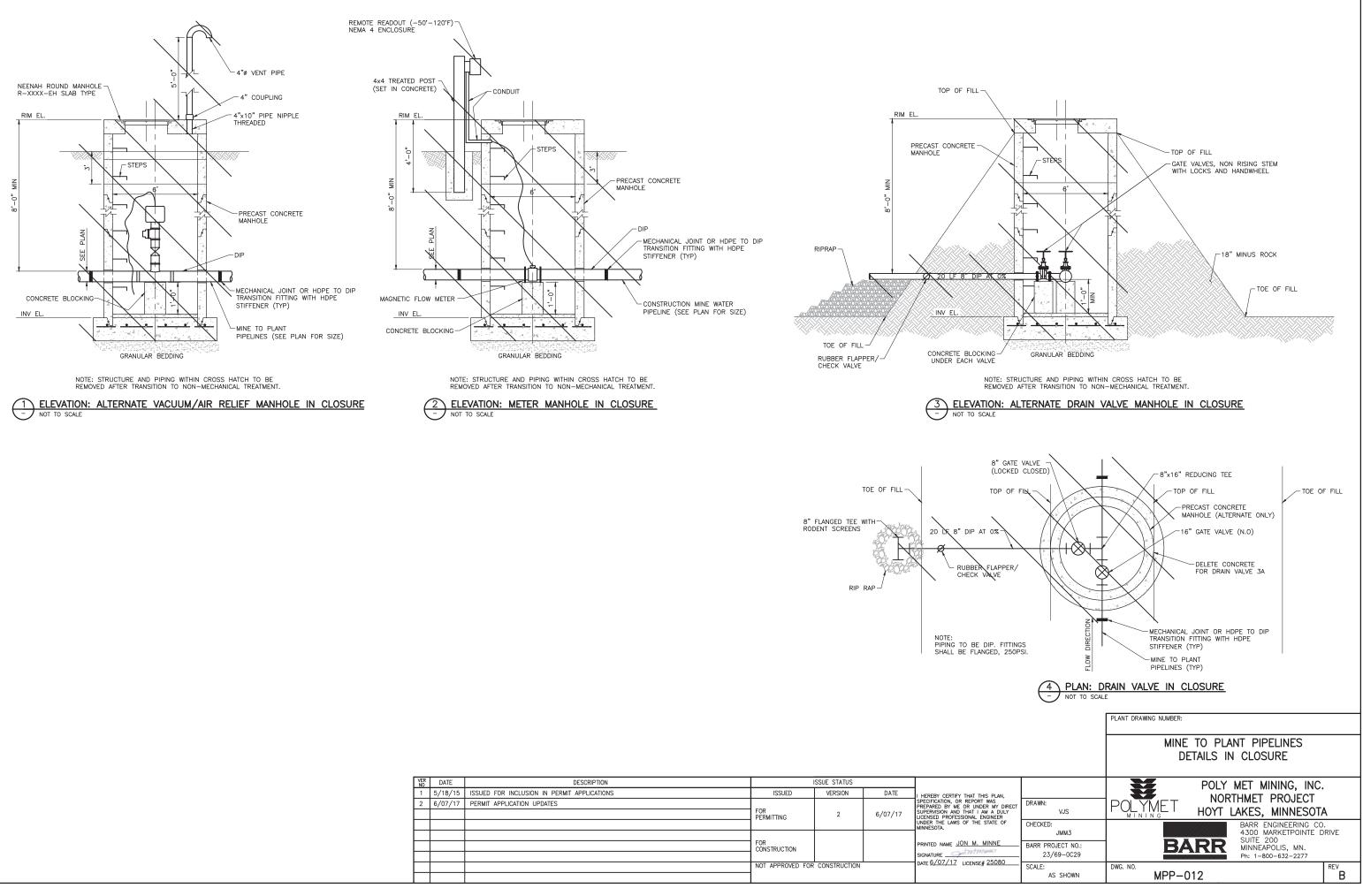



		MPP-004	I B
30	23/69-0C29 SCALE:	DWG. NO.	REV
	CHECKED: JMM3 BARR PROJECT NO.:	BARR ENGINEERING C 4300 MARKETPOINTE SUITE 200 MINNEAPOLIS, MN.	
DIRECT DULY R OF	DRAWN: VJS	POLYME HOYT LAKES, MINNESOT	
N,		POLY MET MINING, INC	
		PLAN AND PROFILE STATION 190+00 TO 250+00	
		MINE TO PLANT PIPELINES	
		PLANT DRAWING NUMBER:	
00	240	+00 245+00	
ERT			
			1580
			1600
			020
		DRAIN VALVE #6 STA 242+30.74 RIM 1644.78 INV 1634.28	1620
	Mr. Manufan		1640
651.01 640.51			1660
651.01		DN (TO STA 274+00) SEE MPP-010	-



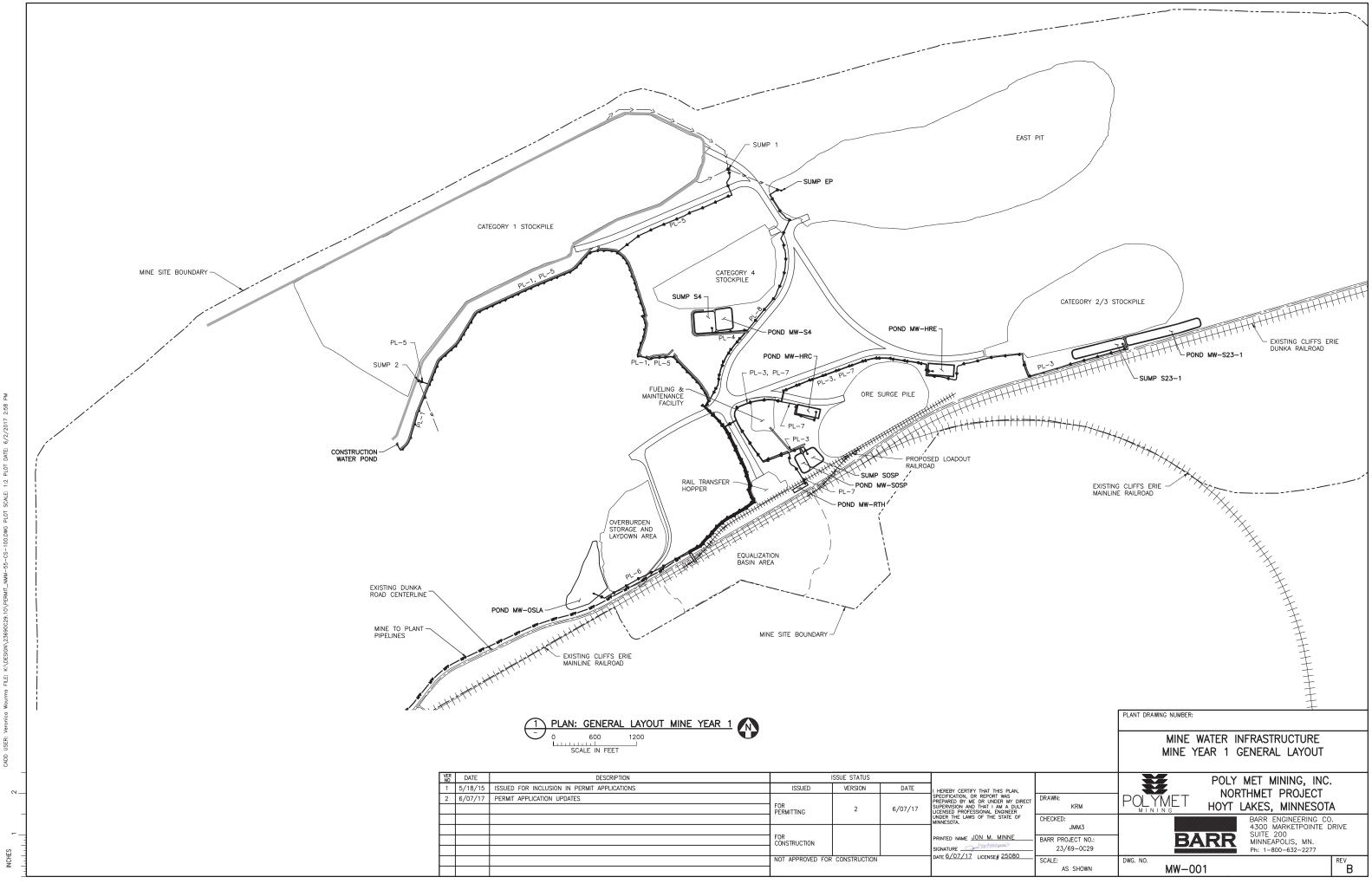

ADD NCHES

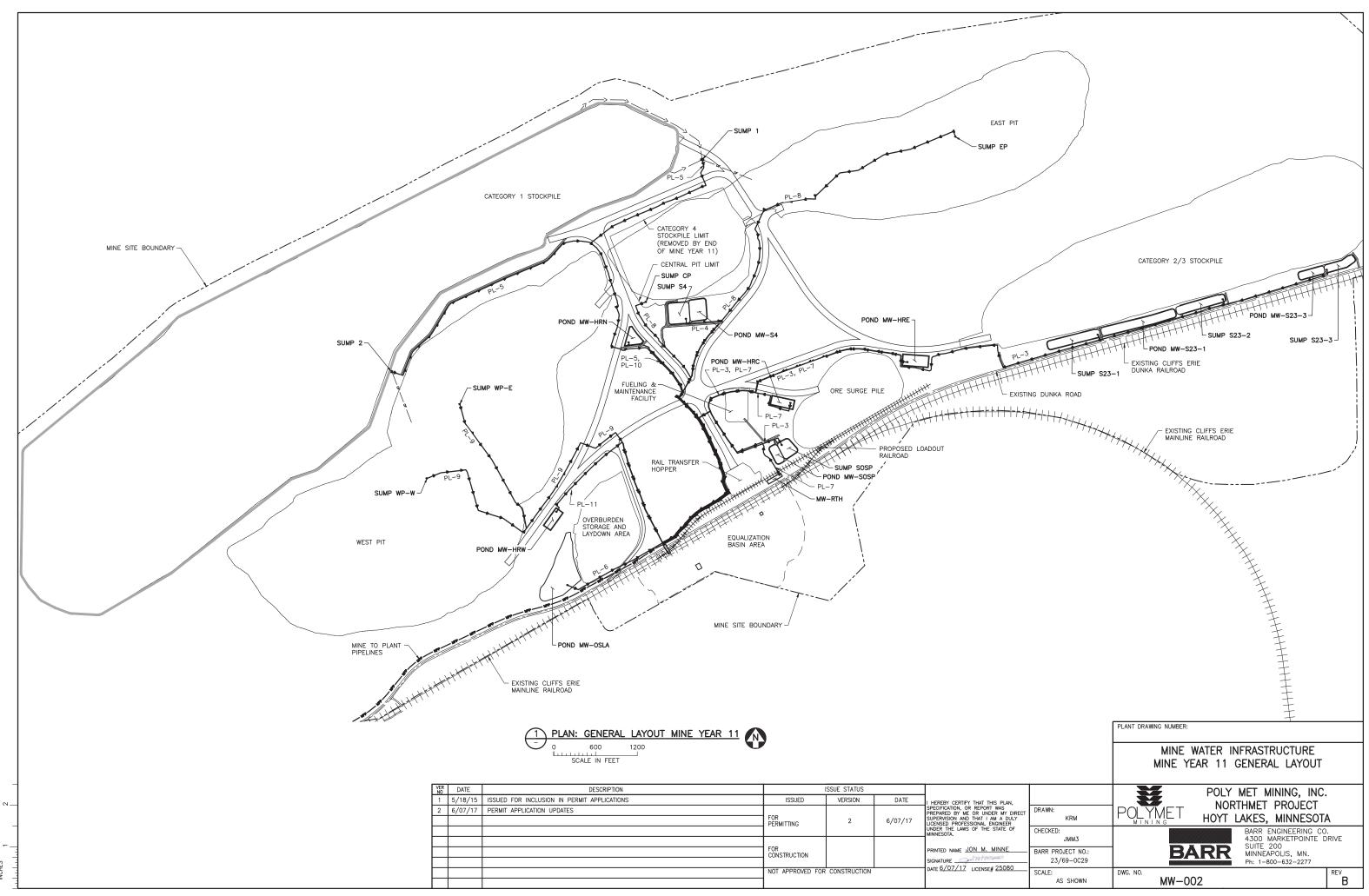


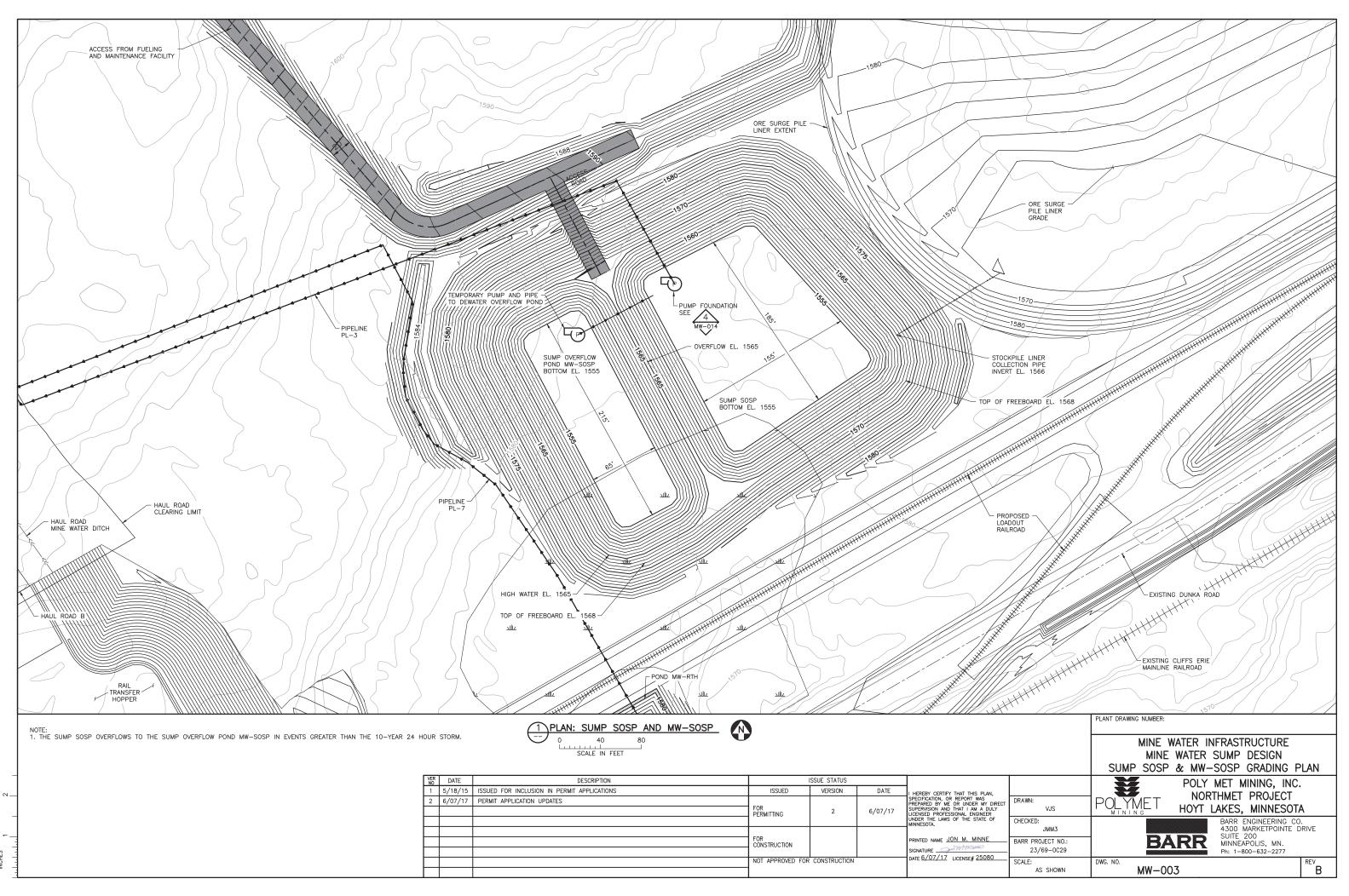

∩_

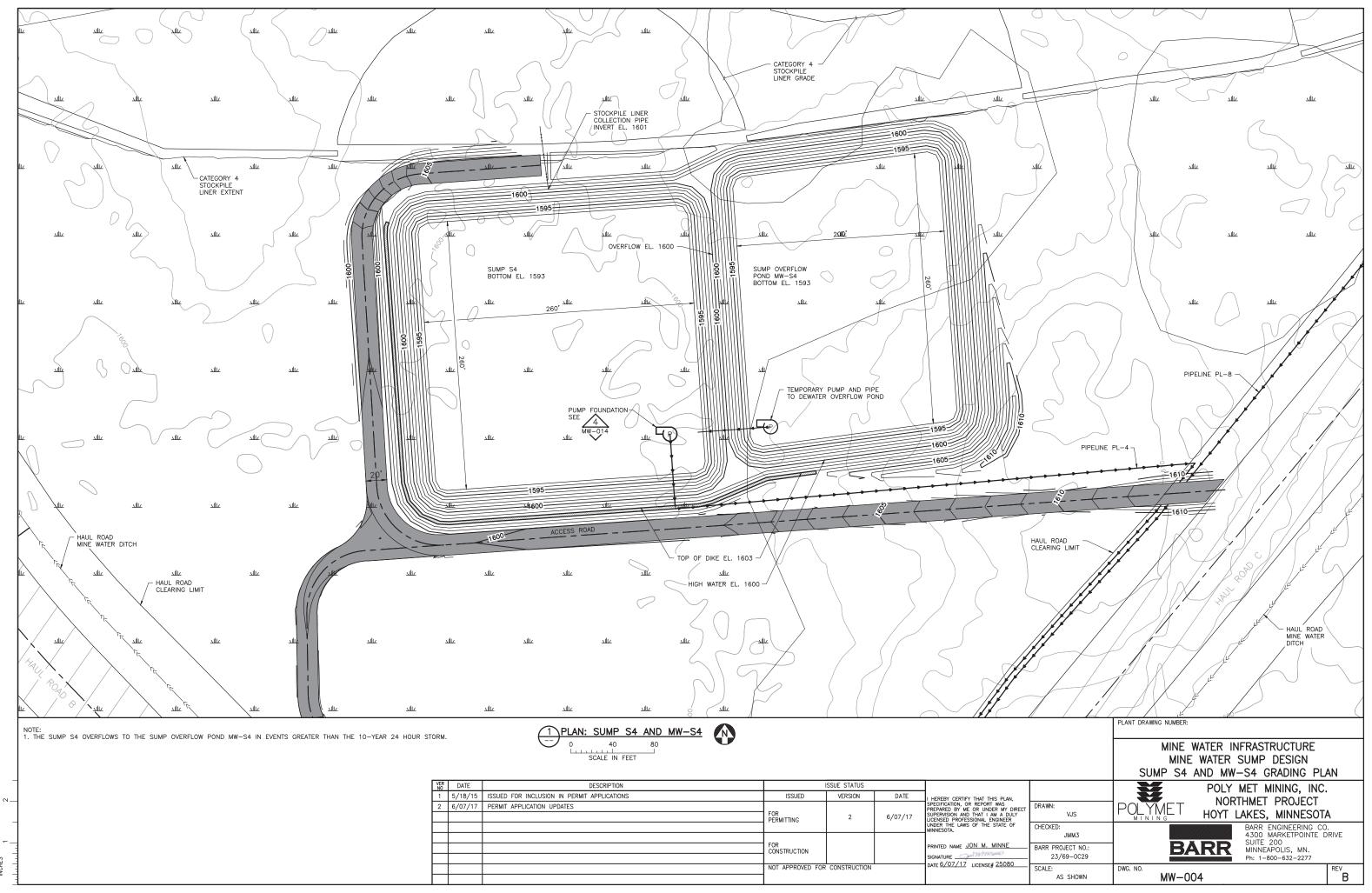
		PLANT DRAWING NUMBER:				
		MINE TO PLANT PIPELINES PLAN AND PROFILE STATION 490+00 TO 511+09				
AN, 7 DIRECT DULY ER 0F	DRAWN: VJS	POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA				
E	CHECKED: JMM3 BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING CO. 4300 MARKETPOINTE DRIVE SUITE 200 MINNEAPOLIS, MN. Ph: 1-800-632-2277				
80	SCALE: AS SHOWN	DWG. NO. MPP-009 B				

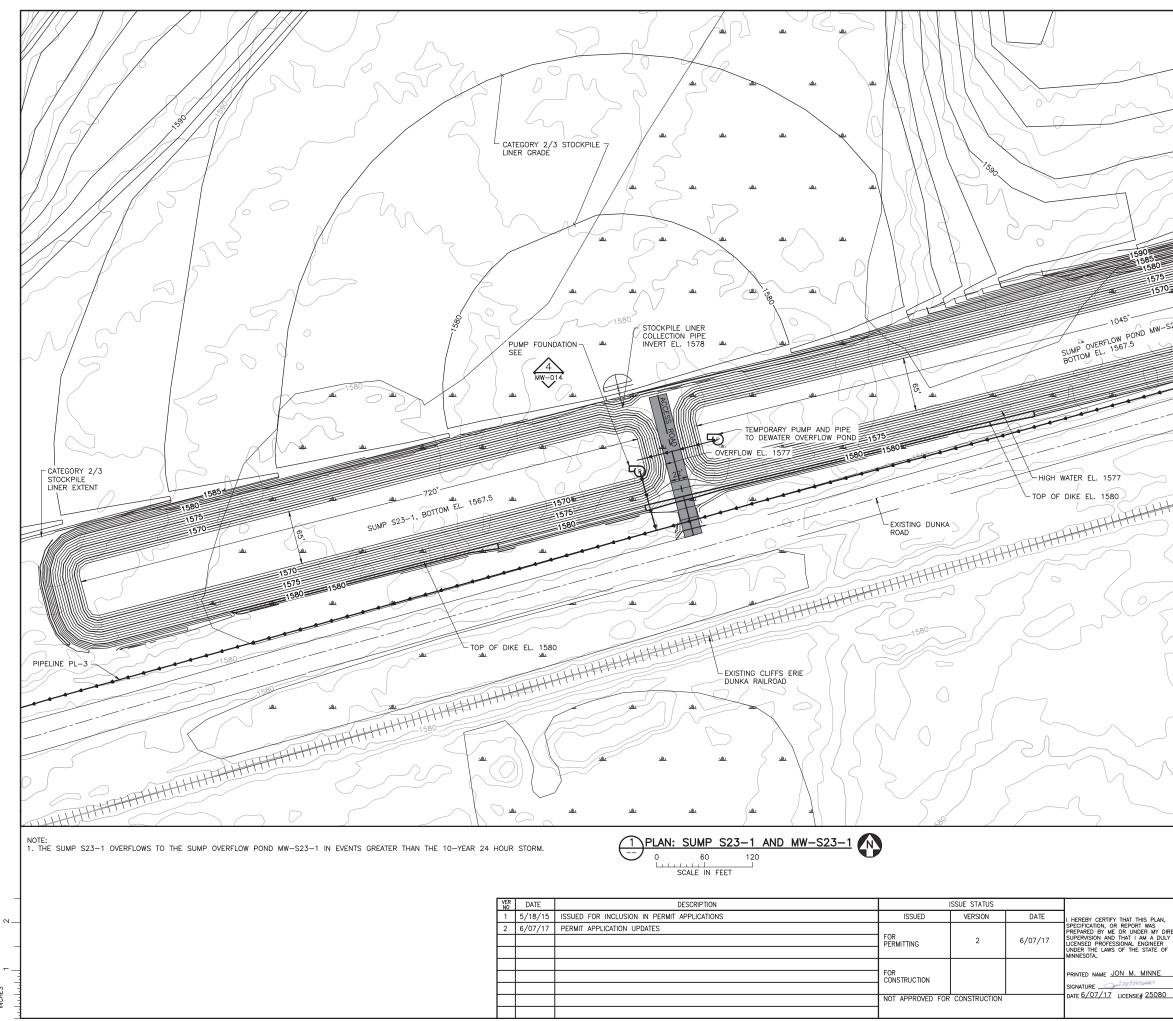
× -	DATE	DESCRIPTION	ISSUE STATUS			
	5/18/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
	6/07/17	PERMIT APPLICATION UPDATES				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT
			FOR PERMITTING	2	6/0//1/	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
						UNDER THE LAWS OF THE STATE OF MINNESOTA.
			FOR CONSTRUCTION			PRINTED NAME JON M. MINNE
						SIGNATURE
			NOT APPROVED FOR CONSTRUCTION		DATE 07 077 17 LICENSE# 20080	

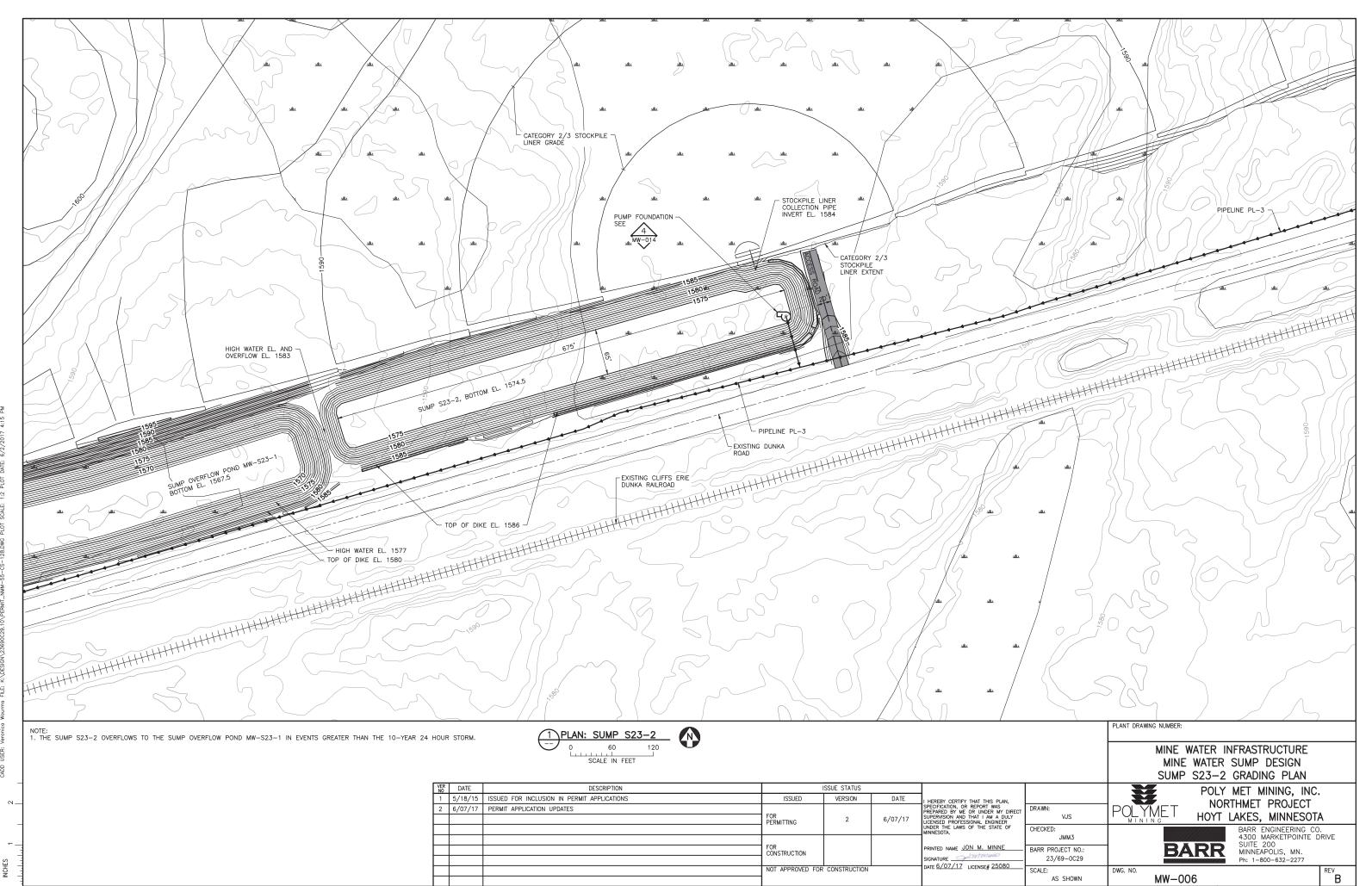


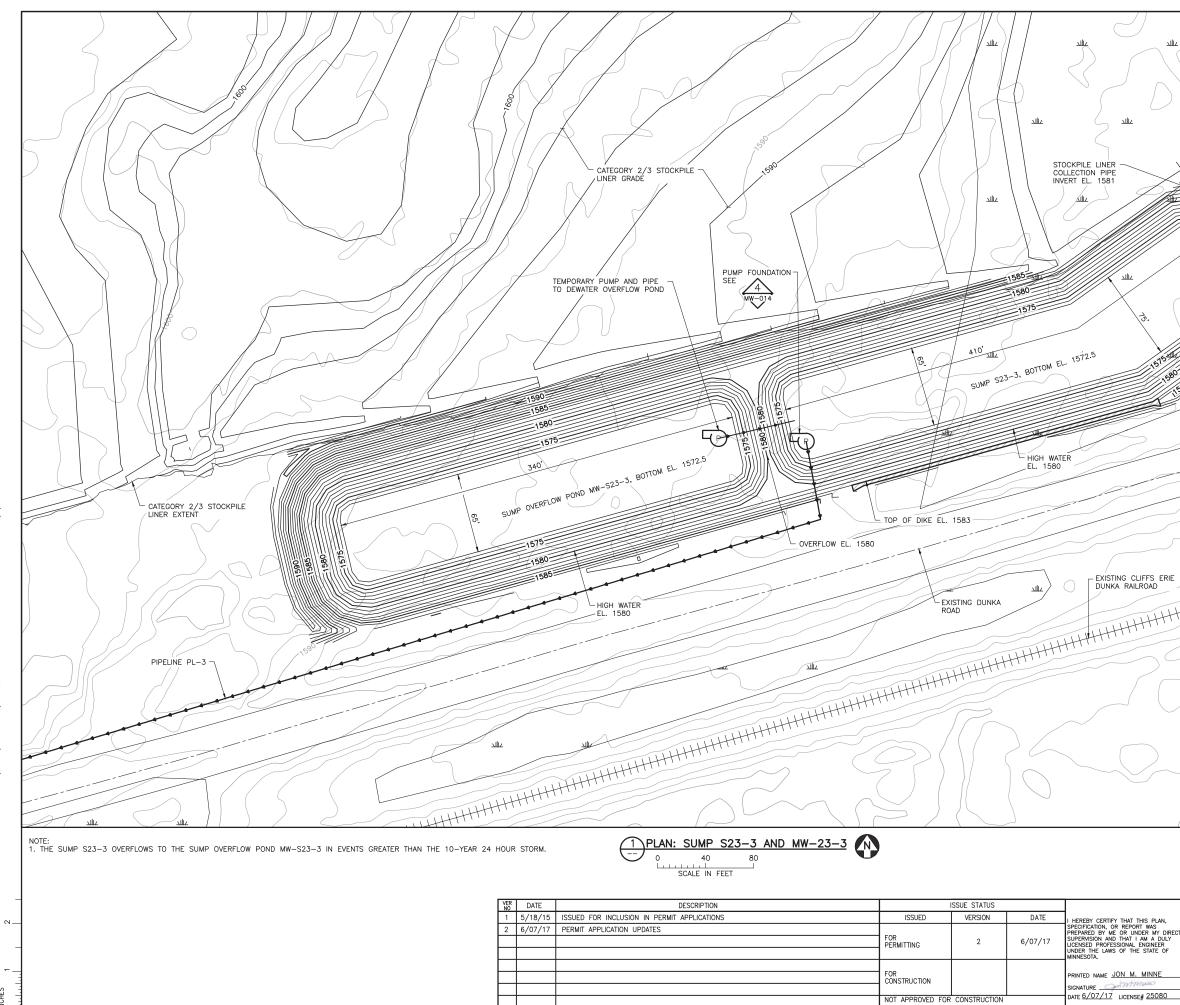



K P	20 DF 8" DIP AT 0%-
	RUBBER FLAPF CHECK VALVE
	NOTE


NOTE:			
PIPING	ΤO	BE	DIP.
SHALL	ΒE	FLA	NGE

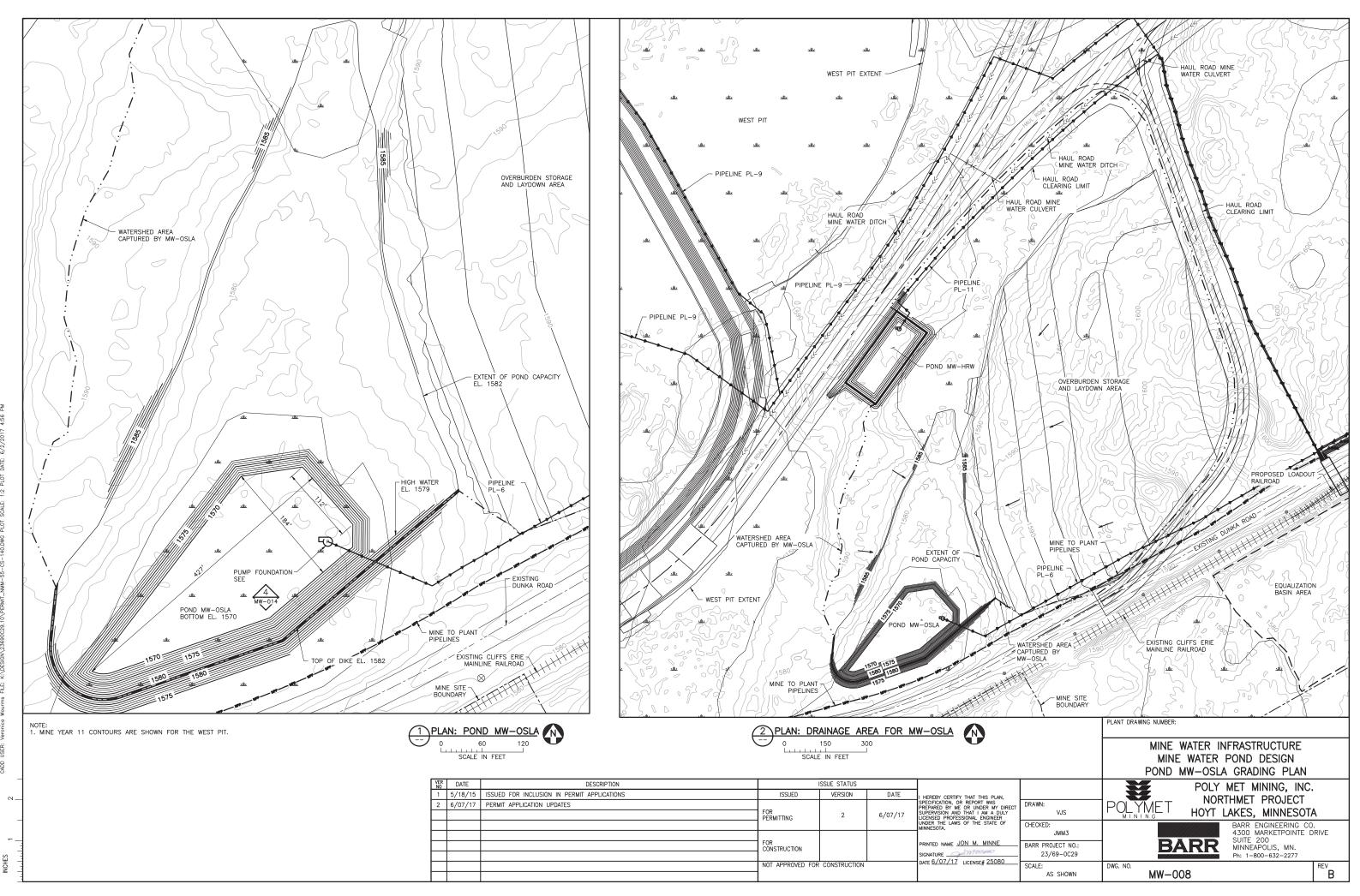

[VER NO	DATE	DESCRIPTION	ISSUE STATUS			
[1	5/18/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
	2	6/07/17	PERMIT APPLICATION UPDATES	FOR	2	6 /07 /17	SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DI SUPERVISION AND THAT I AM A DUL
				PERMITTING	2	, ,	LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.
				FOR			PRINTED NAME JON M. MINNE
				CONSTRUCTION			SIGNATURE
				NOT APPROVED FOR	CONSTRUCTION		DATE <u>6/07/17</u> LICENSE# <u>25080</u>

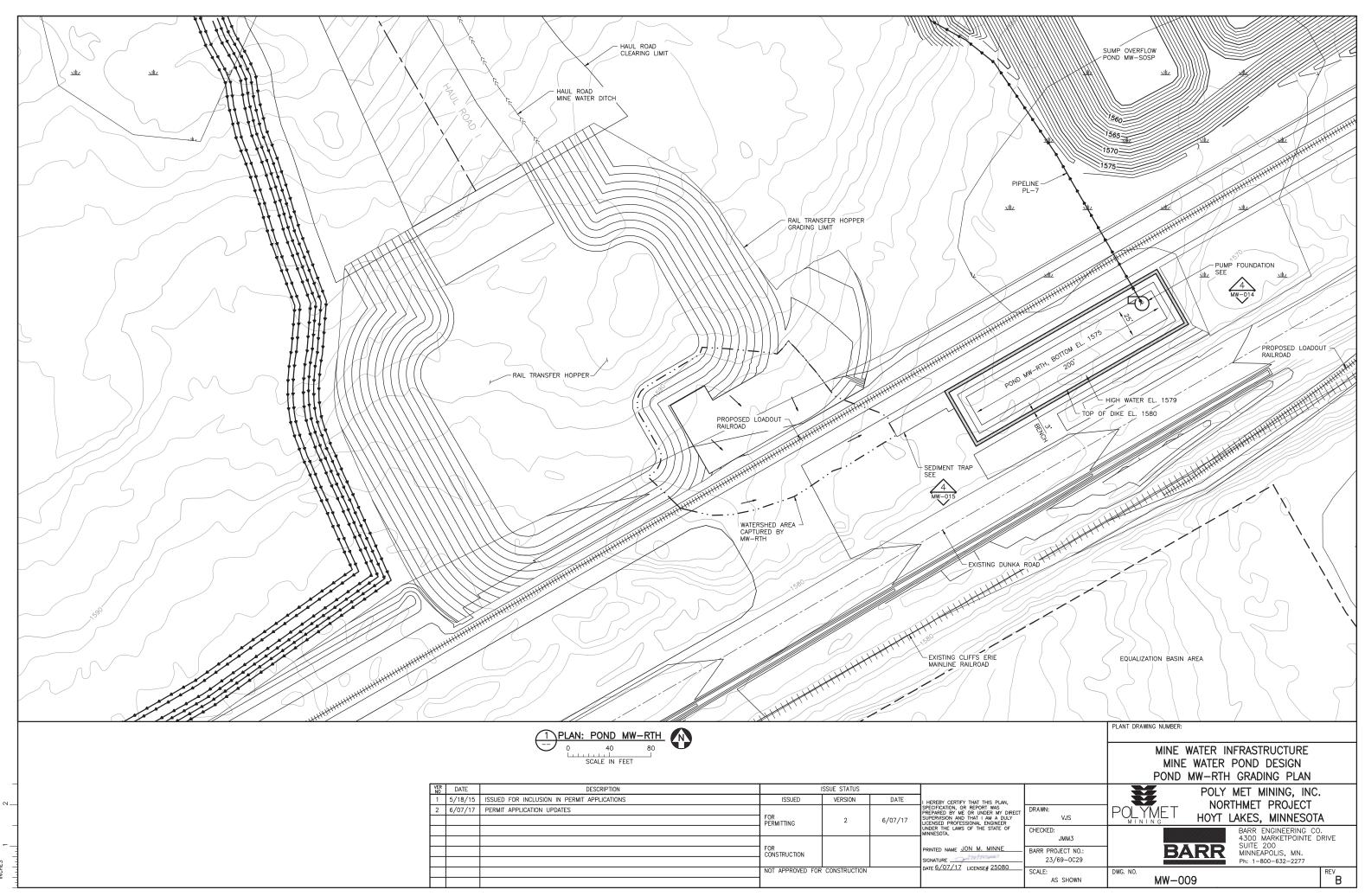


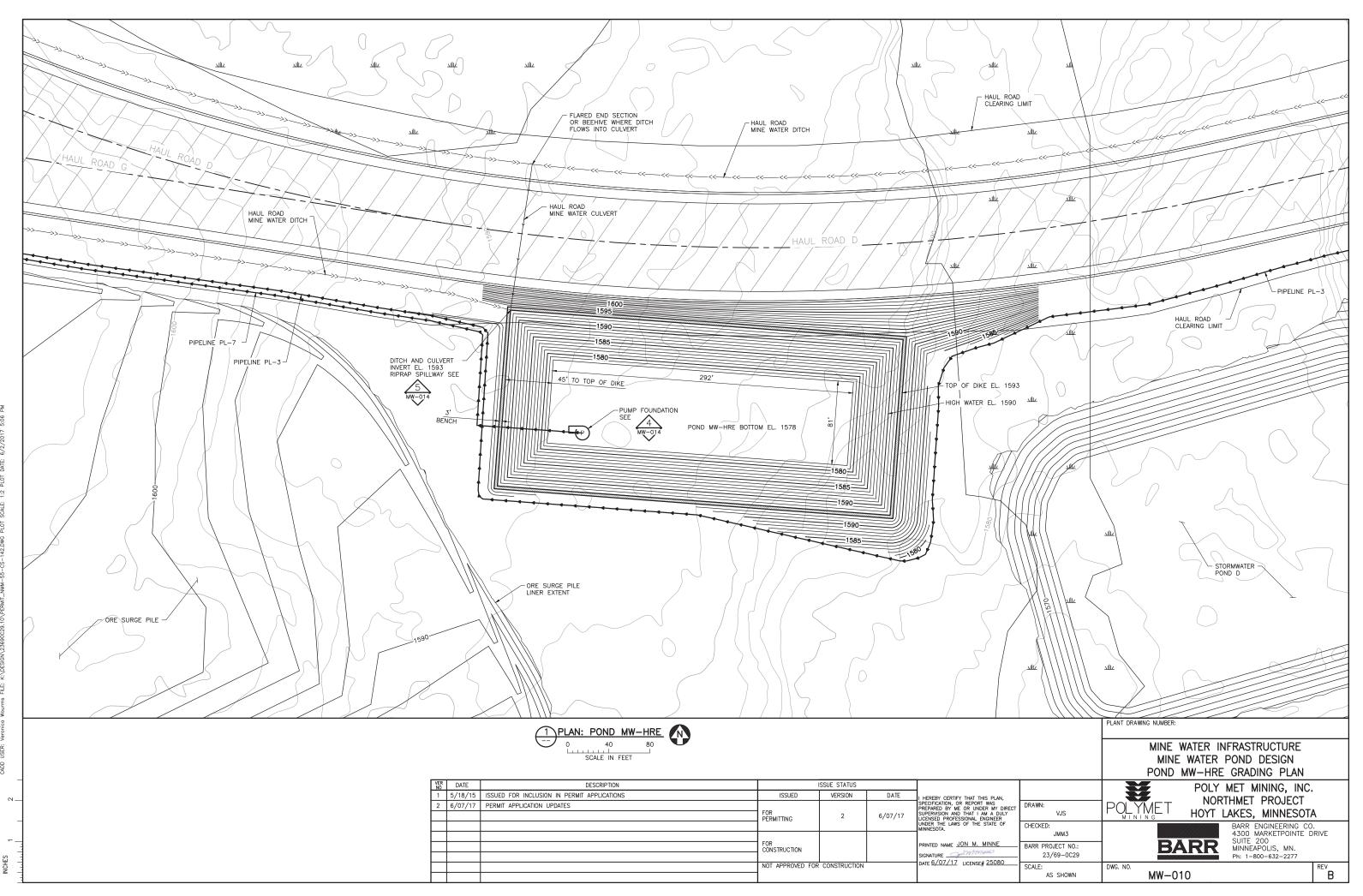

NCHES 1 CADD USER: Veronica Wourms FLE: K:\DESIGN\23690C29.10\PERMIT_NMM-55-C5-127.DWG PLOT SCALE: 1:2 PLOT DATE: 6/2/2011

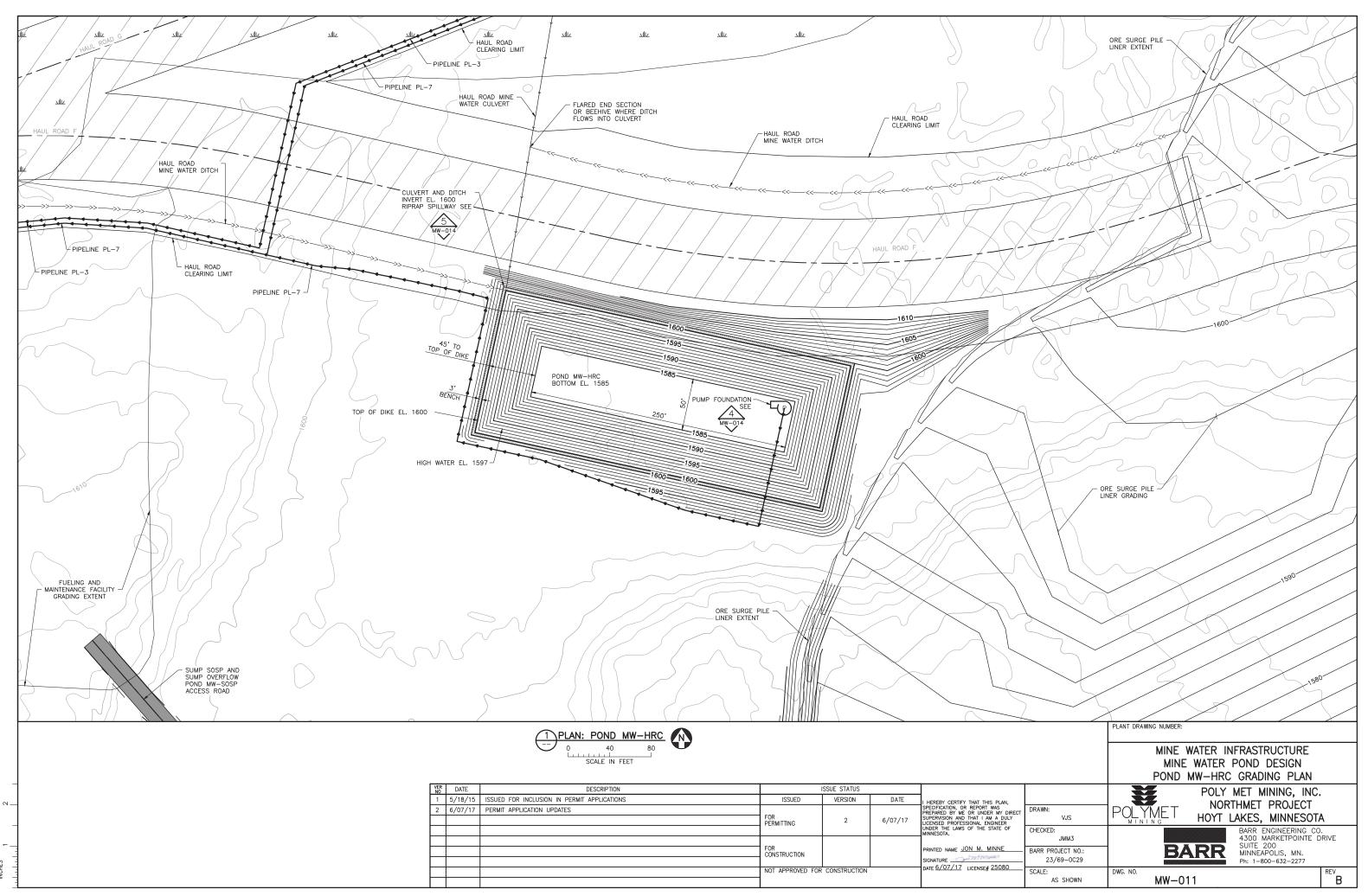
PM

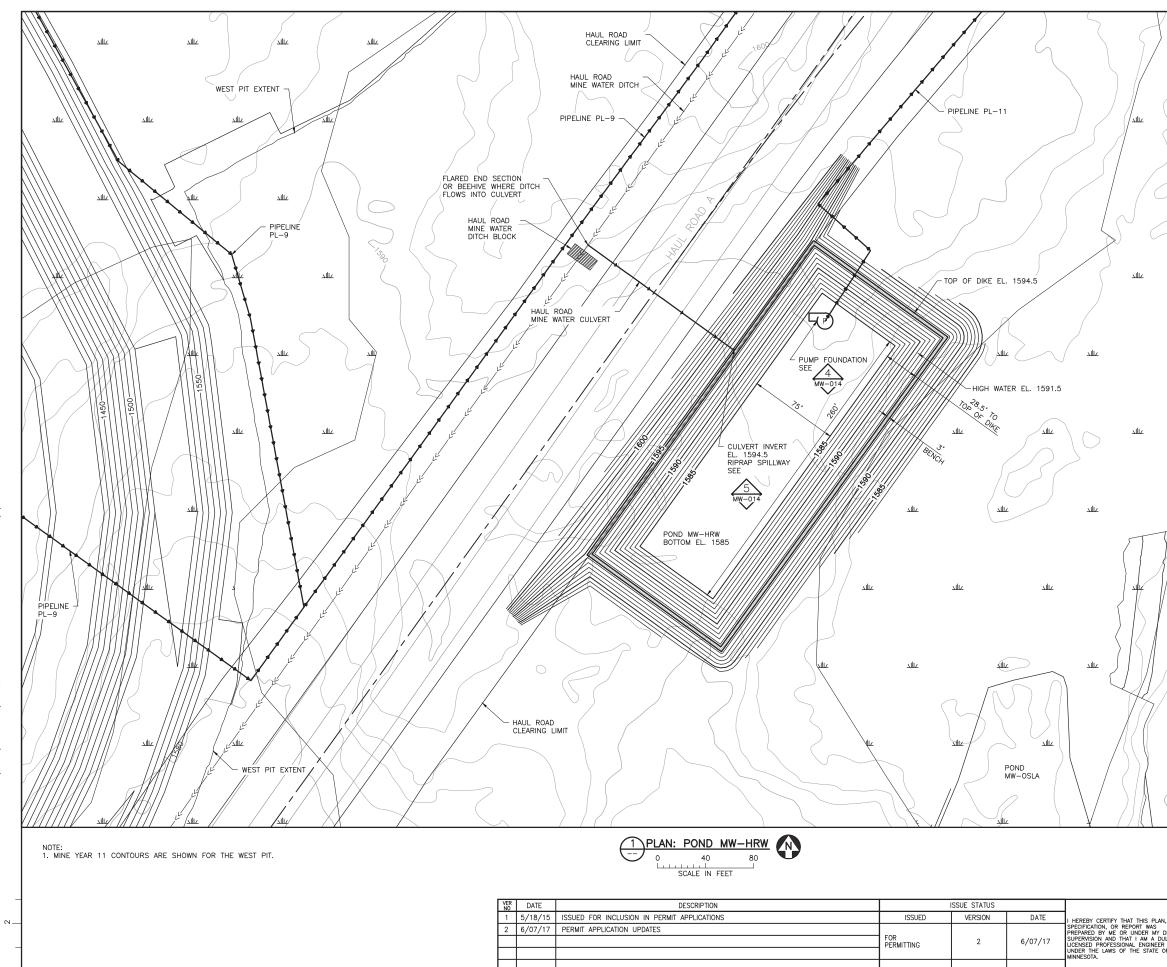
4:10

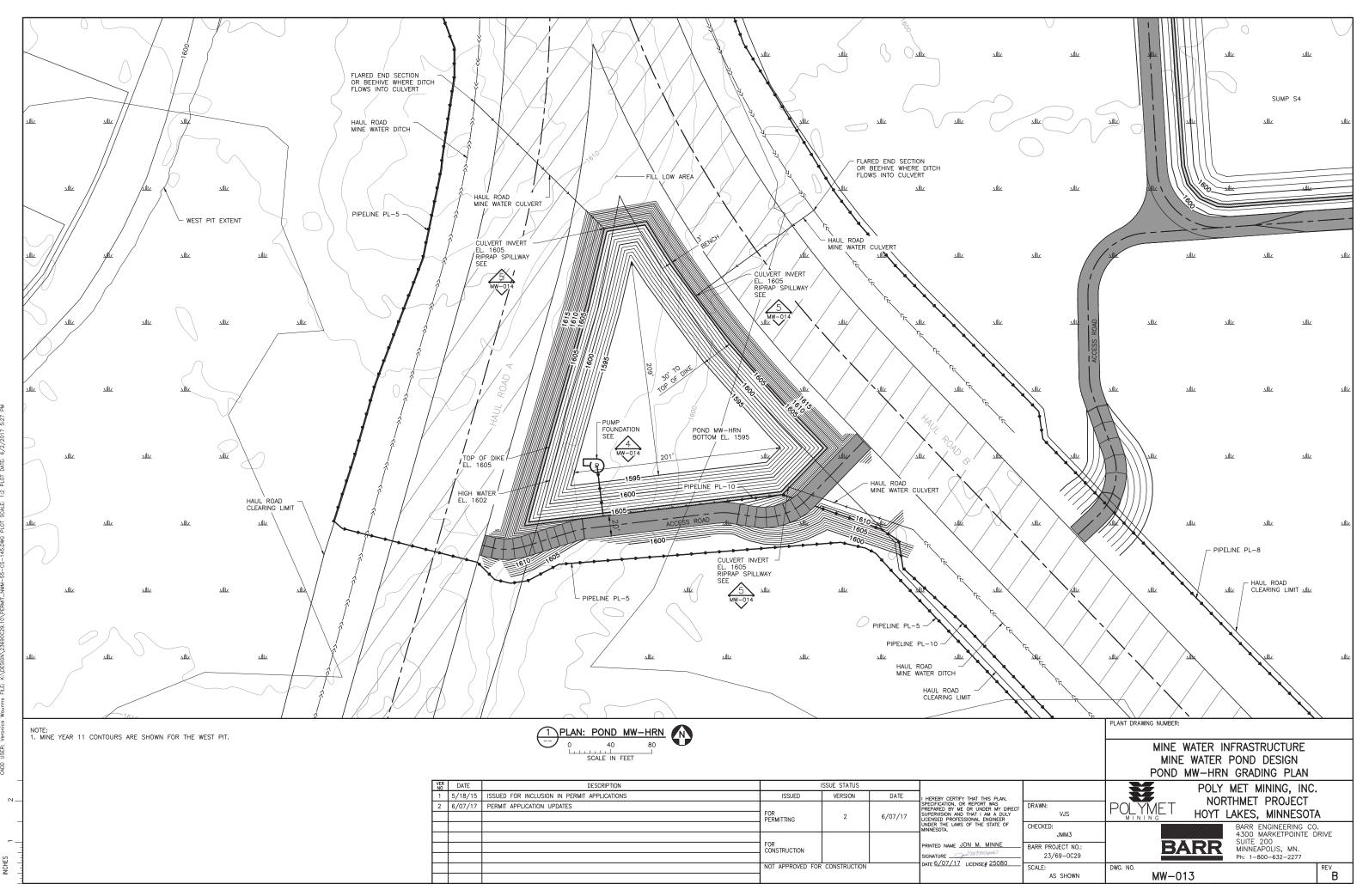

	$\square D S$		
		CATEGORY 2/3	
		STOCKPILE UNER EXTENT	
\sum			SUMP
		OVERFLOW EL. 1583	JZO Z
/	2230		
_	> V / (
	X /		
\sim	$\sim \chi$) / /////// / /
_			J]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]
			1585
5		1570	150-
70	عللد	<u></u>	
	$ \sim $	1580	
-523-	1,		\sim
<u></u>	SUL -		
			$\sim /$
			\square
	- F		-21
./			HAR
_		I I LINE TE O	
	1580		
2	1111111111	PIPELINE PL-3	
IL	HHIM		
HTI	·		
\sum	<i></i>		\sim
\bigcirc	\frown		$\langle $
			7
//		\bigwedge	
		TSRO T	\cap
>	\sim		
\bigcirc	5		
5			
$\left \right\rangle$			
<u> </u>		\sim	
5			علاد
$\left(\right)$			
7			
		suite suite	عللد
\wedge			عللمد
15	80		
	$\overline{}$. 5
)		عللد
		PLANT DRAWING NUMBER:	
		MINE WATER INFRASTRUCTURE	
		MINE WATER INFRASTRUCTURE MINE WATER SUMP DESIGN	
		SUMP S23-1 AND MW-S23-1 GRADING	
N,		POLY MET MINING, INC.	
DIRECT	DRAWN: VJS	I PULIMEI LIOVTIAKES MININESOTA	^
R OF	CHECKED:	BARR ENGINEERING CO	
	JMM3	4300 MARKETPOINTE D	RIVE
	BARR PROJECT NO.: 23/69-0C29	BARK MINNEAPOLIS, MN.	
30	237 69-0029 SCALE:	Ph: 1-800-632-2277	REV
	AS SHOWN	MW-005	В

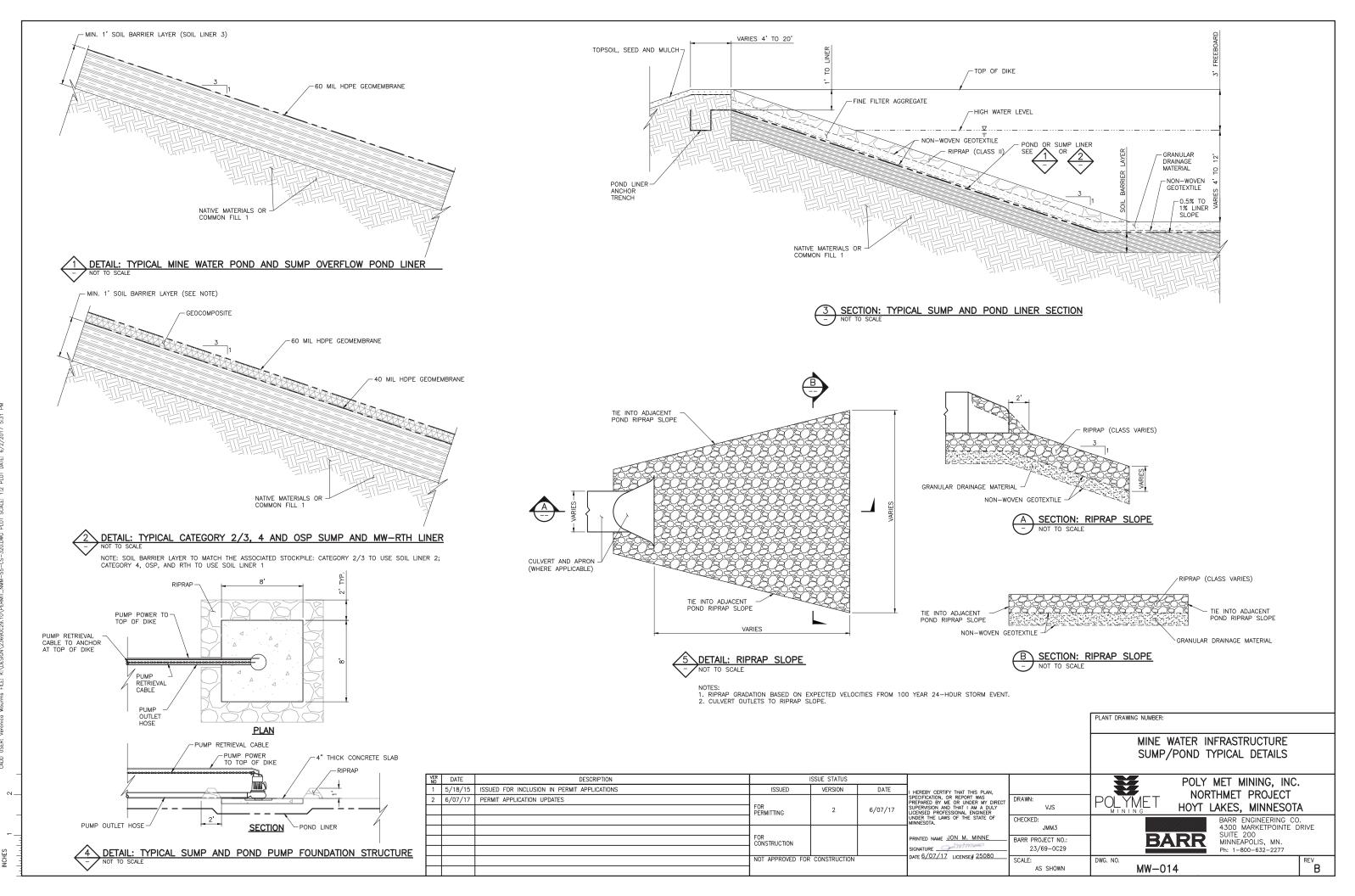


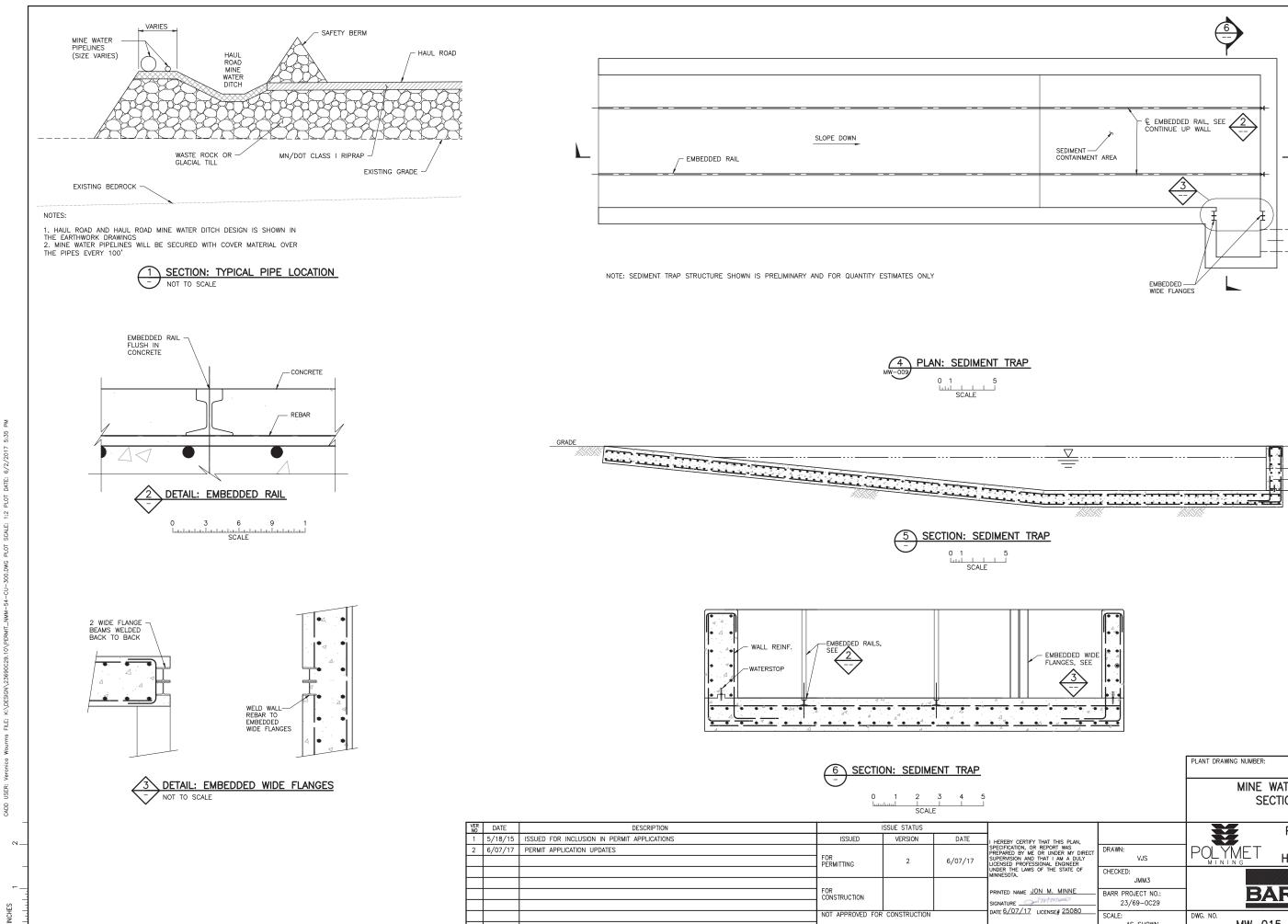


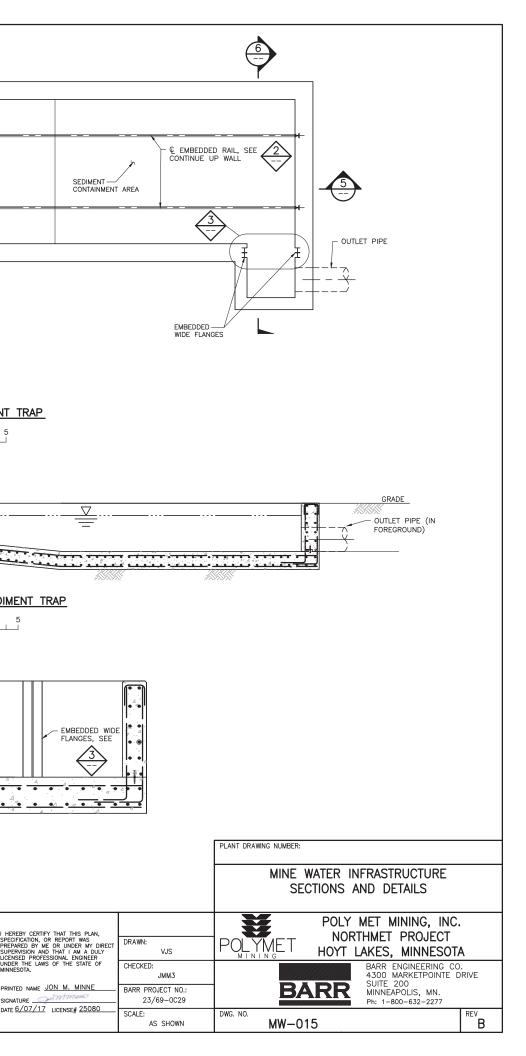

М


, di j			\sim
\sum)
		CATEGORY 2/3 STOCKPILE	
$\langle \rangle$	128		
//	1515		
_			> $($
		ARCEESS I ROAD	
541			
1580			
			TITH
			FILL
			\square
ERIE	unt the fit		<i></i>
HH		7) / 1 0 ~ 0	\bigwedge
$\overline{\mathcal{C}}$)
\sim		MINE SITE BOUNDARY	
			\sim
(
~			
			\bigcirc
		PLANT DRAWING NUMBER:	
		MINE WATER INFRASTRUCTURE	
		MINE WATER SUMP DESIGN SUMP S23-3 AND MW-S23-3 GRADING	PLAN
۱N,			
DIRECT DULY R OF	DRAWN: VJS CHECKED:	POLYMET HOYT LAKES, MINNESOTA BARR ENGINEERING CO.	
	JMM3 BARR PROJECT NO.:	BARR ENGINEERING CO. 4300 MARKETPOINTE D SUITE 200 MINNEAPOLIS, MN.	RIVE
30	23/69-0C29 SCALE: AS SHOWN	Ph: 1-800-632-2277	REV B




FOR CONSTRUCTION


NOT APPROVED FOR CONSTRUCTION


	ــــــــــــــــــــــــــــــــــــــ		
علاد			
suite		OVERBU STORAG LAYDOW	E AND
		0651	
		PLANT DRAWING NUMBER:	
		MINE WATER POND MW-HR	INFRASTRUCTURE POND DESIGN W GRADING PLAN
I HEREBY CERTIFY THAT THIS PLAN, SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MINNESOTA.	DRAWN: VJS	NOI	' MET MINING, INC. RTHMET PROJECT LAKES, MINNESOTA
	CHECKED: JMM3		BARR ENGINEERING CO. 4300 MARKETPOINTE DRIVE
PRINTED NAME JON M. MINNE SIGNATURE	BARR PROJECT NO.: 23/69-0C29	BARR	MINNEAPOLIS, MN. Ph: 1-800-632-2277
UNIL 2/ 2// // LICENSE# 20000	SCALE: AS SHOWN	DWG. NO. MW-012	REV

CAPD USER: Veronica Wourms FILE: K:\DESIGN\23690C29.10\PERMIT_NMM-55-CS-145.DWG PLOT SCALE: 1:2 PLOT DATE: 6/2/201

HIN: SEDIMENT TRAP

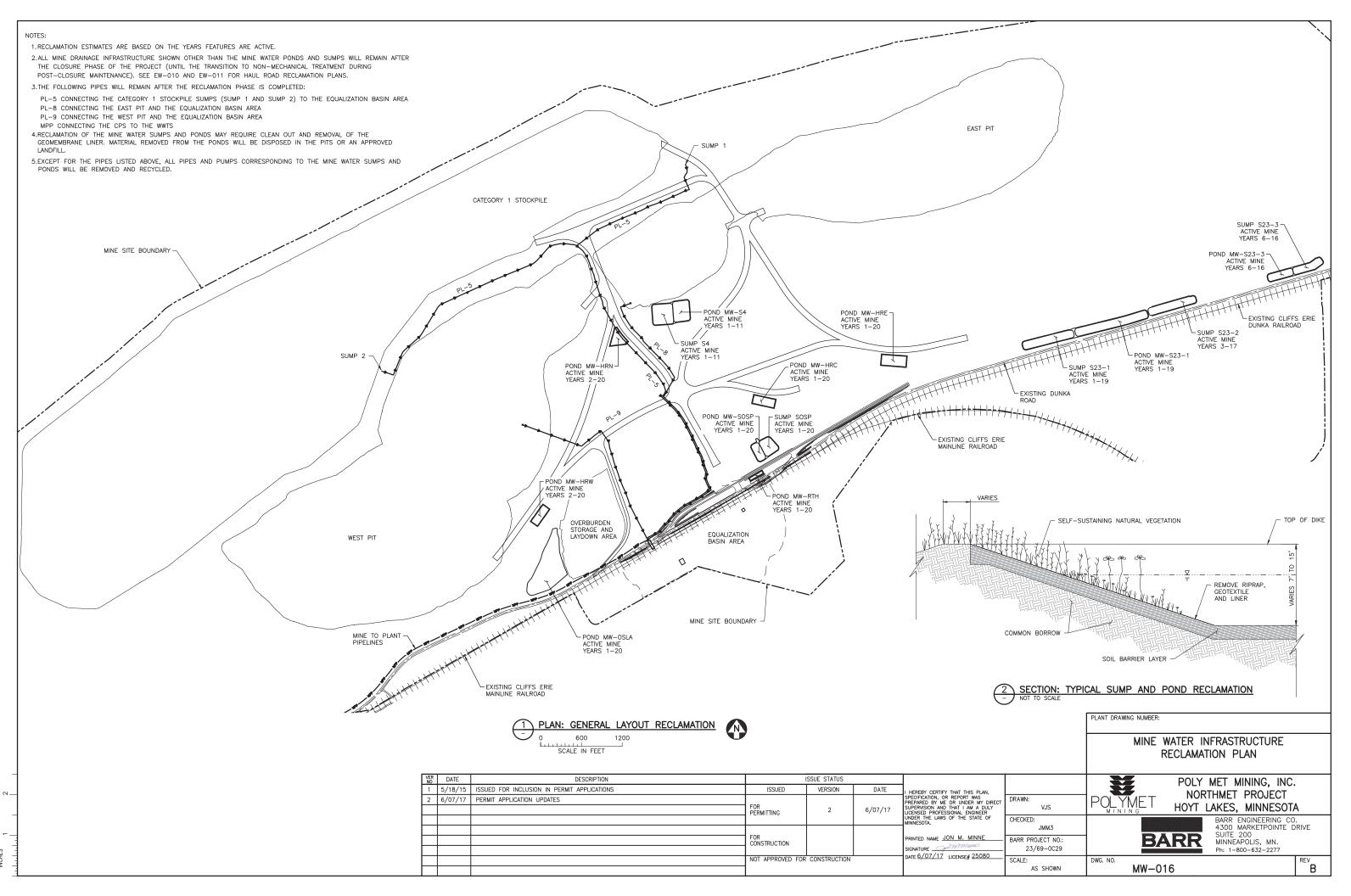
0 1 5 LILL SCALE

5 SECTION: SEDIMENT TRAP 0 1 ULL SCALE

• • •

3 2

DATE


6/07/17

SIGNATURE _

SCALE

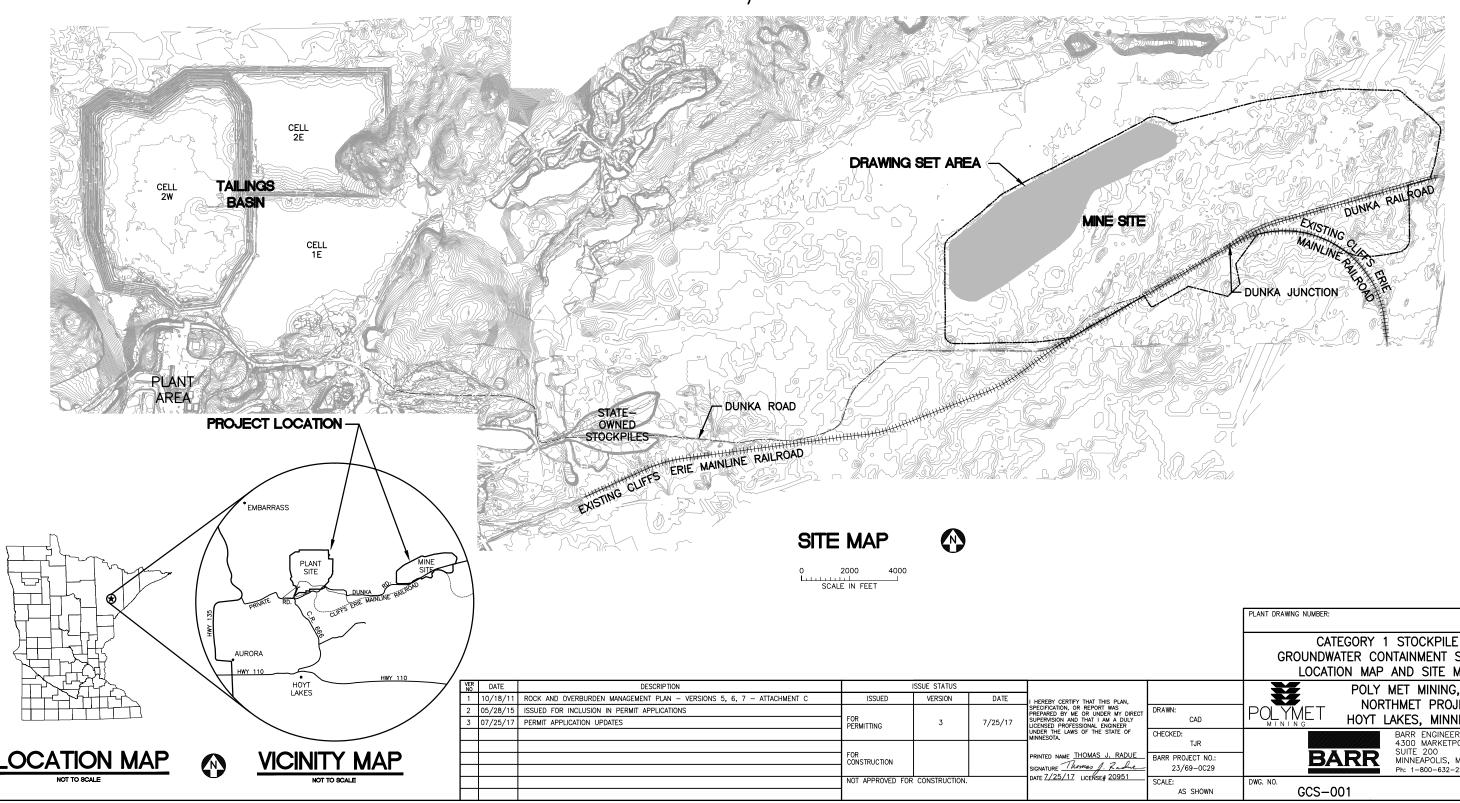
VERSION

2

Category 1 Stockpile Groundwater Containment System Permit Application Support Drawings

Errata Sheet

Poly Met Mining, Inc. NorthMet Project


Permit Application Support Drawings: Category 1 Stockpile Groundwater Containment System

August 2017 (version 3)

Engineering design is currently in progress. The table below lists changes that have been identified todate and have not yet been incorporated in the attached permit application support drawings within this set. Final design will incorporate these changes along with additional site-specific information (e.g., supplementary geotechnical data); therefore, additional adjustments may be made during final design that will be incorporated into the final design drawing set.

Drawing Sheet(s)	Change
Global change to all sheets, as needed	The terminology "mine drainage" as noted in these drawings will be changed to "mine water".
GCS-003	To meet construction stormwater requirements, a temporary berm will be added on the west side of the Mine Year 0 Category 1 Stockpile footprint to control mine water runoff as the stockpile is built out.
GCS-003, GCS-004, GCS-005, GCS- 006, GCS-007, GCS-008, GCS-009	The "Mine Site Boundary" will be replaced by the "Mining Area Boundary" as shown on figures included in the Permit to Mine Application.

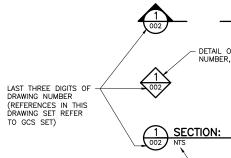
POLY MET MINING, INC. NORTHMET PROJECT PERMIT APPLICATION SUPPORT DRAWINGS CATEGORY 1 STOCKPILE GROUNDWATER CONTAINMENT SYSTEM HOYT LAKES, MINNESOTA

11.846,5	91-AVI			
	PLANT DRA	WING NUMBER:		
			STOCKPILE	
	G	ROUNDWATER CO LOCATION MAP	NTAINMENT SYS AND SITE MAP	
			MET MINING, IN	
ECT DRAWN:			THMET PROJECT _AKES, MINNES(
CHECKED: TJ	R		BARR ENGINEERING 4300 MARKETPOINTE SUITE 200	
BARR PROJEC	T NO.:	BARR	MINNEAPOLIS, MN.	
23/69-	·0C29		Ph: 1-800-632-2277	

GENERAL LEGEND

- EXISTING CONTOUR - MINOR
- ---- MINE SITE BOUNDARY
- ------ OF ------ PROPOSED SUMP OVERFLOW PIPE
- PROPOSED MINE WATER PIPE (PUMPED FLOW)
- - \bullet PROPOSED SUMP MANHOLE
- PROPOSED ACCESS ROADS
- HAUL ROAD

ABBREVIATIONS


- CAT CATEGORY DWG – DRAWING
- EL ELEVATION
- GCS GROUNDWATER CONTAINMENT SYSTEM
- MH MANHOLE
- NTS NOT TO SCALE
- PVI PROFILE VERTICAL INTERSECTION
 - STA STATION
 - WWTS WASTE WATER TREATMENT SYSTEM

SHEET INDEX

<u>SHEET NO. TITLE</u>

GENERAL DRAWINGS

DRAWING NUMBERING

<u>NOTES</u>

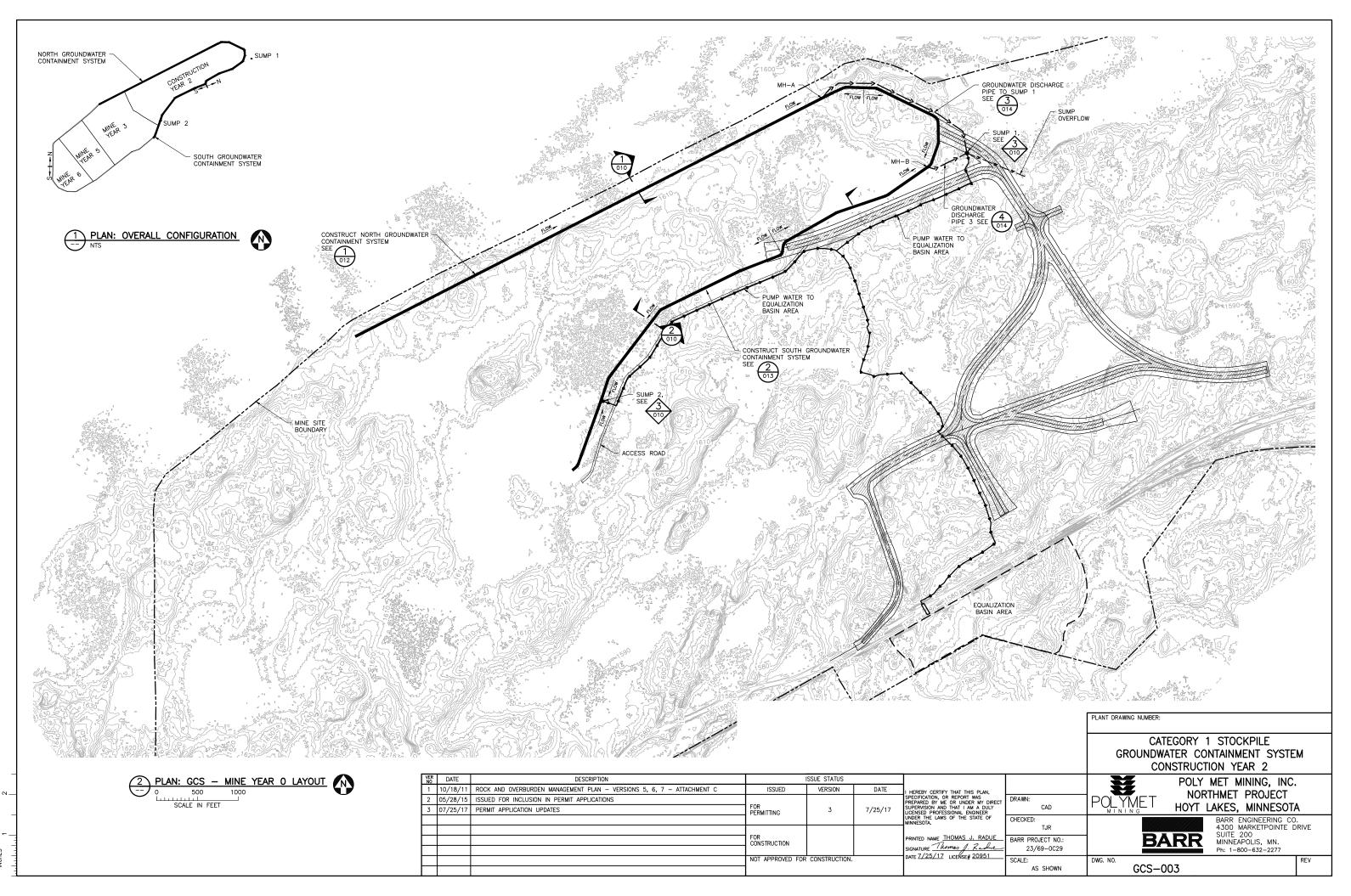
1. COORDINATE SYSTEM IS MINNESOTA STATE PLANE NORTH ZONE, NAD83.

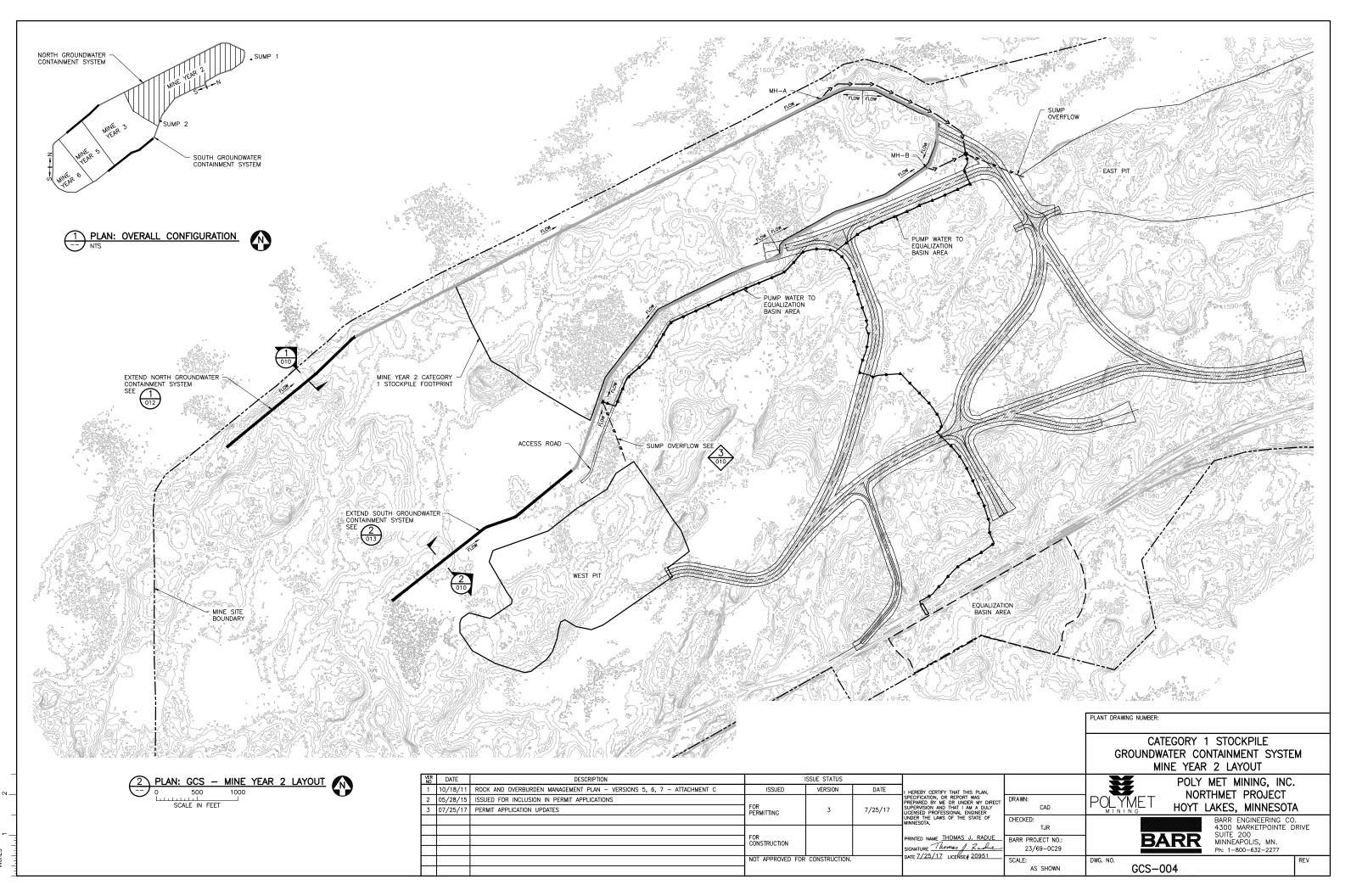
2. ELEVATIONS ARE MEAN SEA LEVEL (MSL), NAVD88.

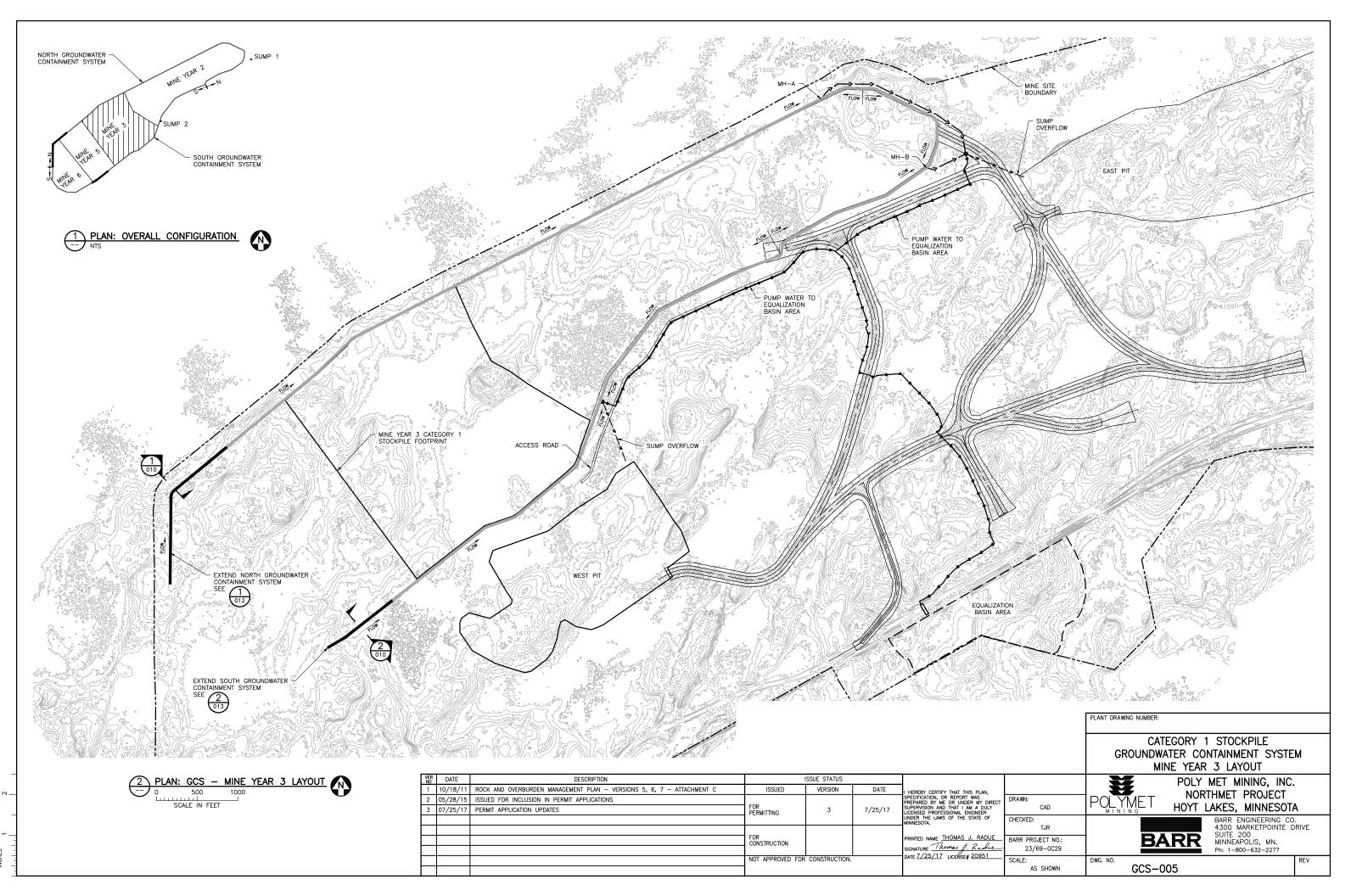
3. EXISTING TOPOGRAPHIC INFORMATION SHOWN ON THE DRAWINGS WAS PREPARED BY AEROMETRIC, INC. FROM LIDAR DATA COLLECTED ON MARCH 17, 2010.

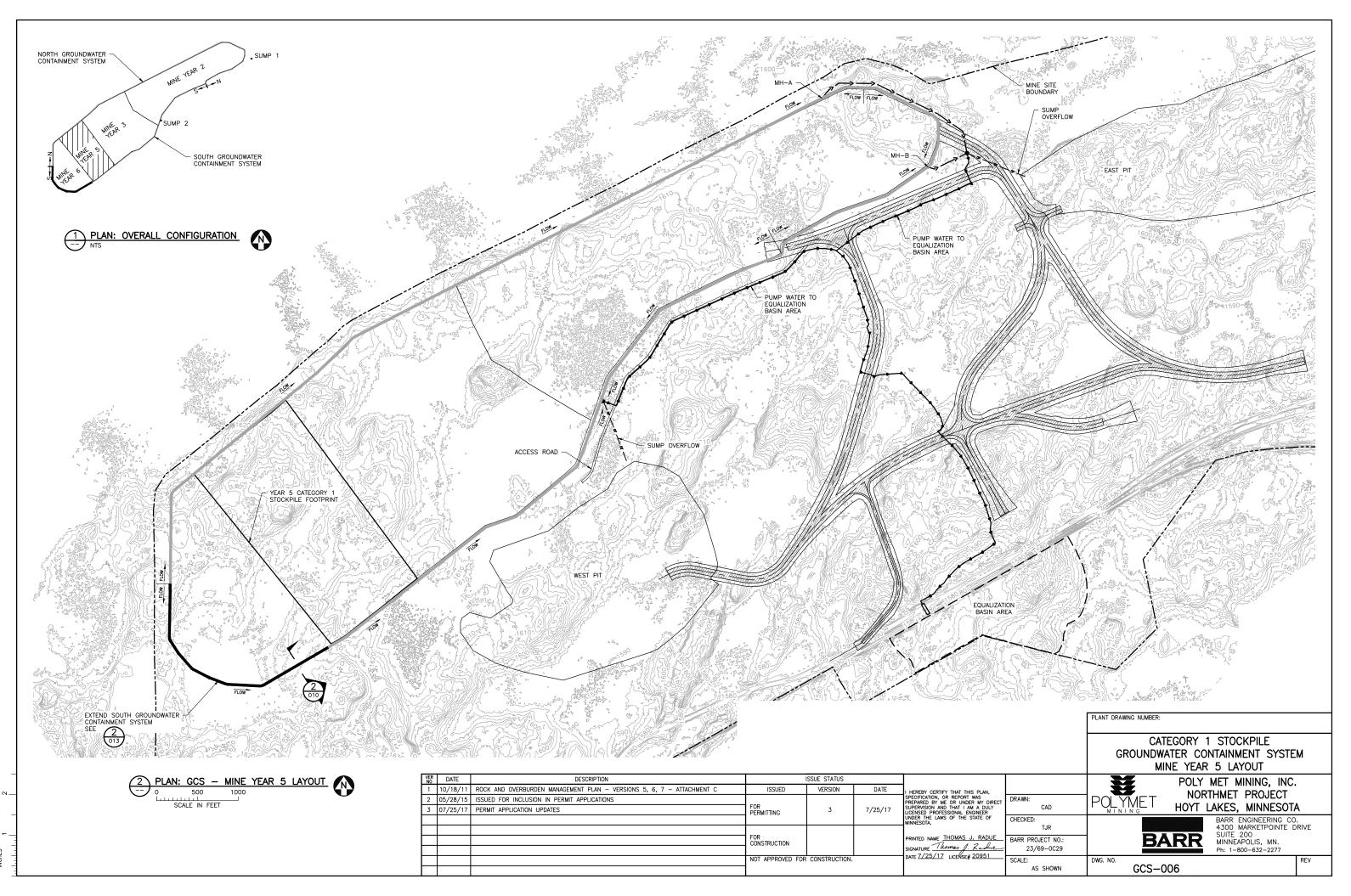
M

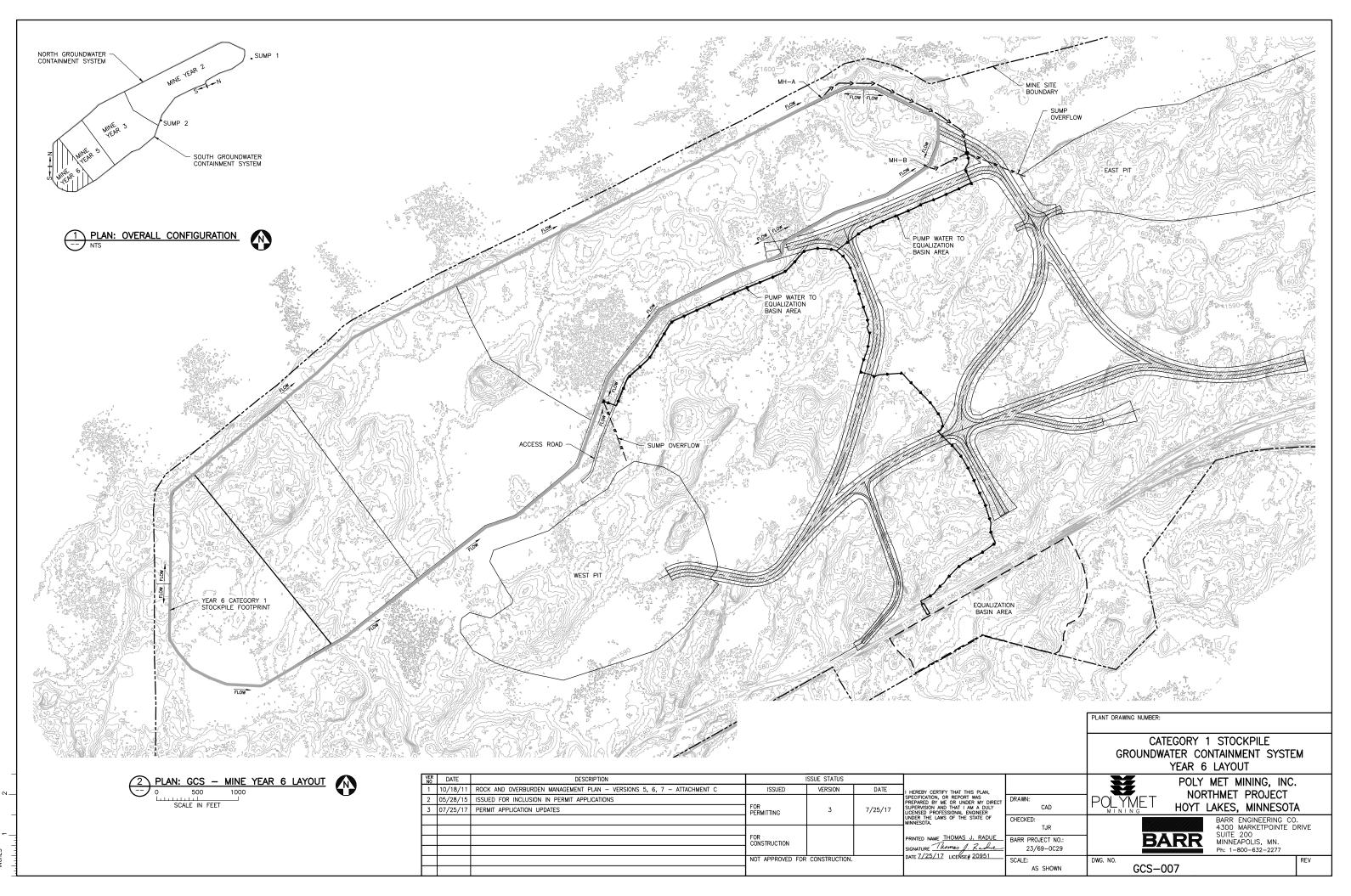
:02

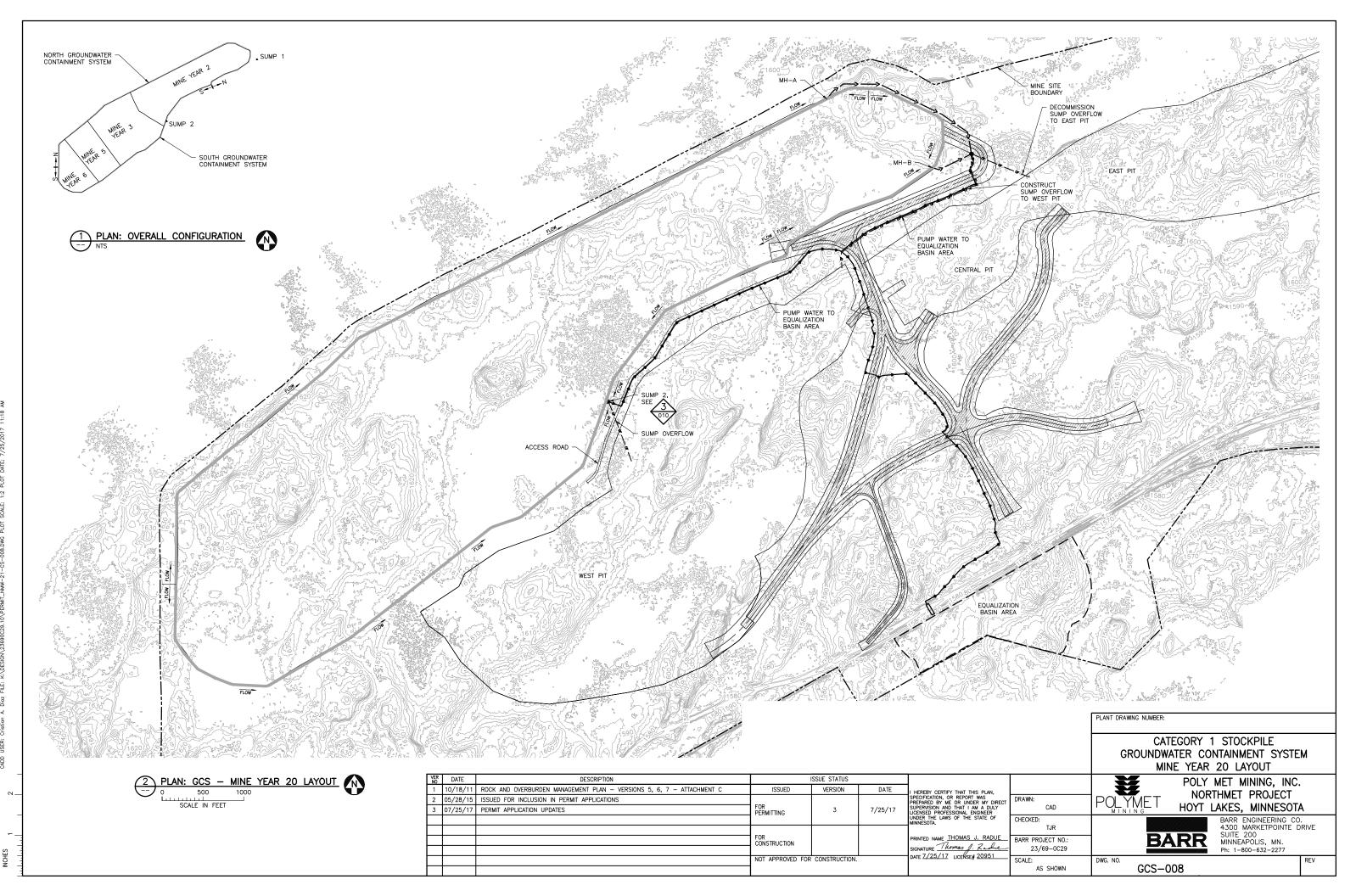

2

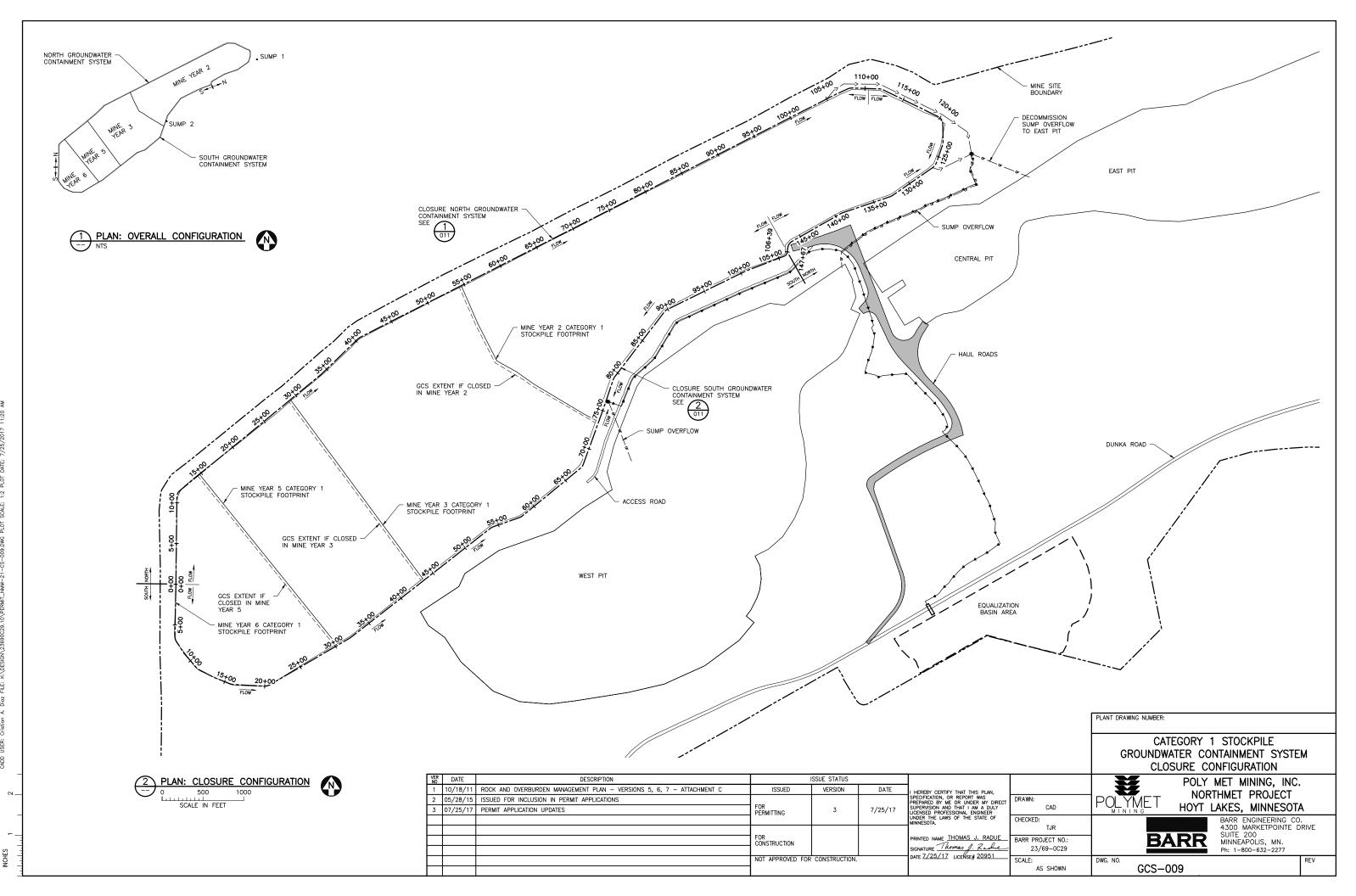

VER NO	DATE	DESCRIPTION	ISSUE STATUS			
1	10/18/11	ROCK AND OVERBURDEN MANAGEMENT PLAN - VERSIONS 5, 6, 7 - ATTACHMENT C	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
2	05/28/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIREC
3	07/25/17	PERMIT APPLICATION UPDATES	FOR PERMITTING	3	7/25/17	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
						UNDER THE LAWS OF THE STATE OF MINNESOTA.
			FOR CONSTRUCTION			PRINTED NAME THOMAS J. RADUE
						SIGNATURE Thomas J. Rache DATE 7/25/17 LICENSE# 20951
			NOT APPROVED FOR	CONSTRUCTION.		DATE 77 237 17 LICENSE# 20931

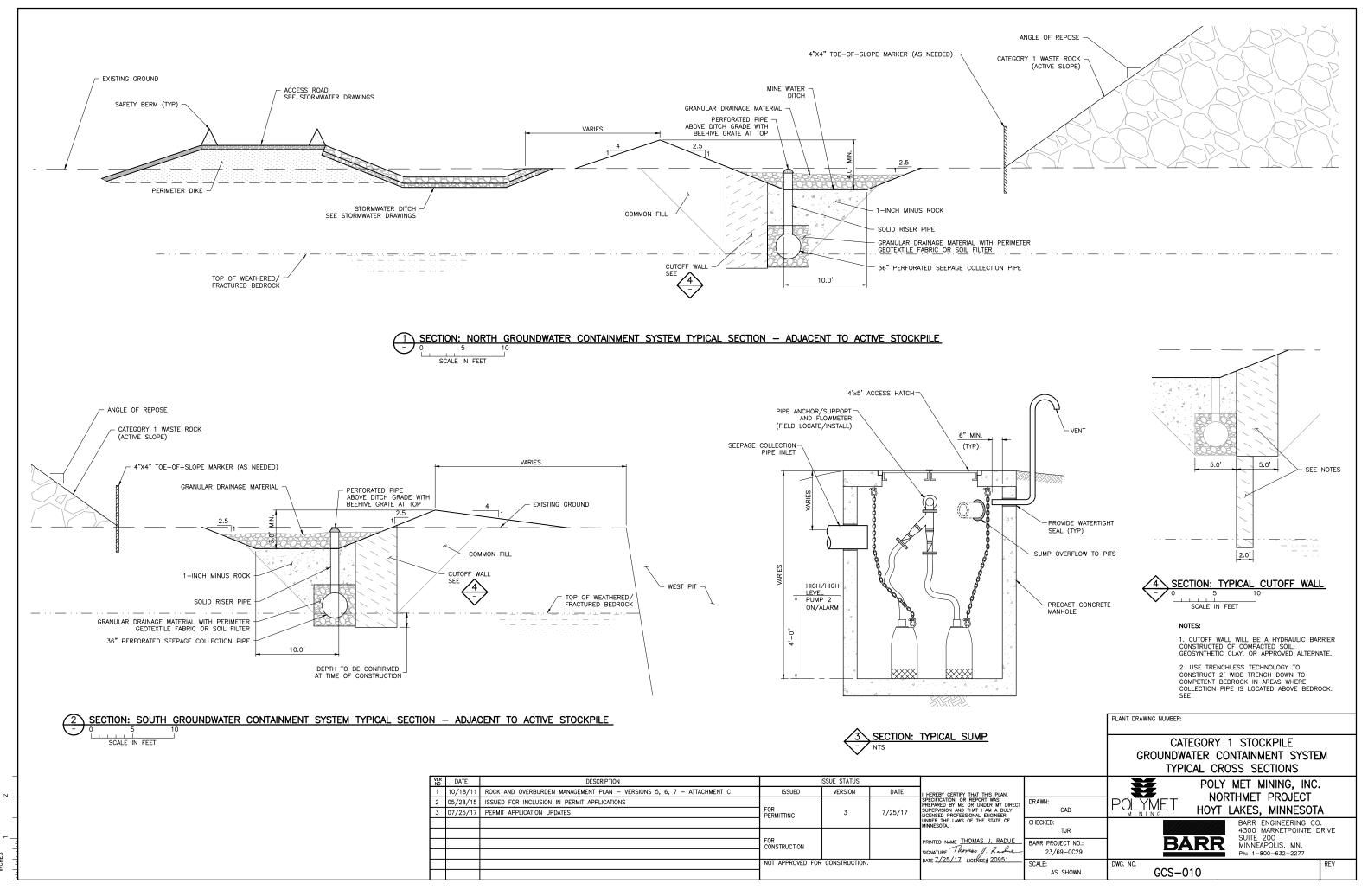

		PLANT DRAWING NUMBER: CATEGORY 1 STOCKPILE GROUNDWATER CONTAINMENT SYSTEM LEGEND AND SHEET INDEX				
N, DIRECT VULY R OF DUE <u>DUE</u> 51	DRAWN: CAD	POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA	NORTHMET PROJECT			
	CHECKED: TJR BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING CO. 4300 MARKETPOINTE DRIV SUITE 200 MINNEAPOLIS, MN. Ph: 1-800-632-2277	Æ			
	SCALE: AS SHOWN	GCS-002	EV			

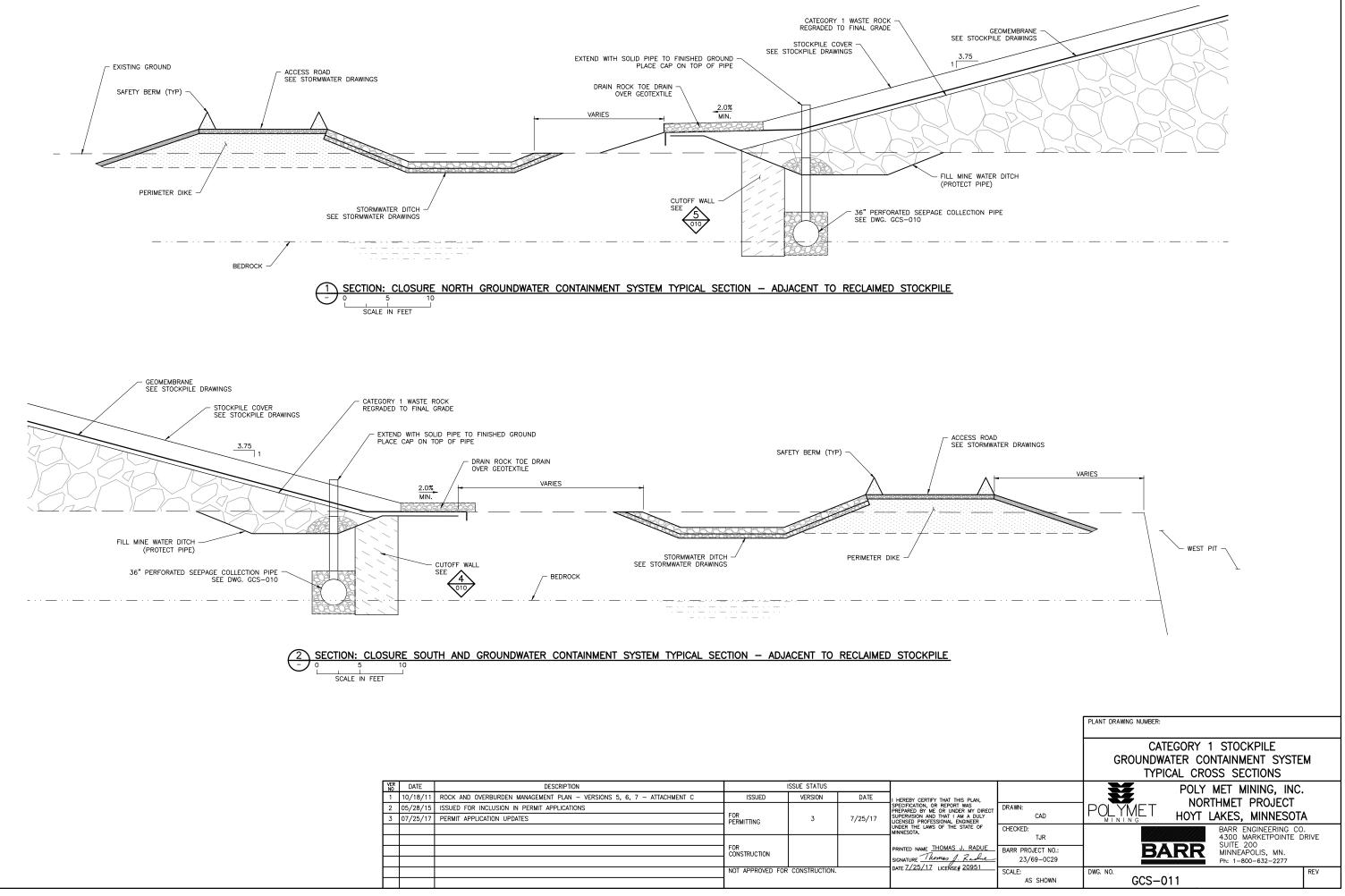

NTS = NOT TO SCALE

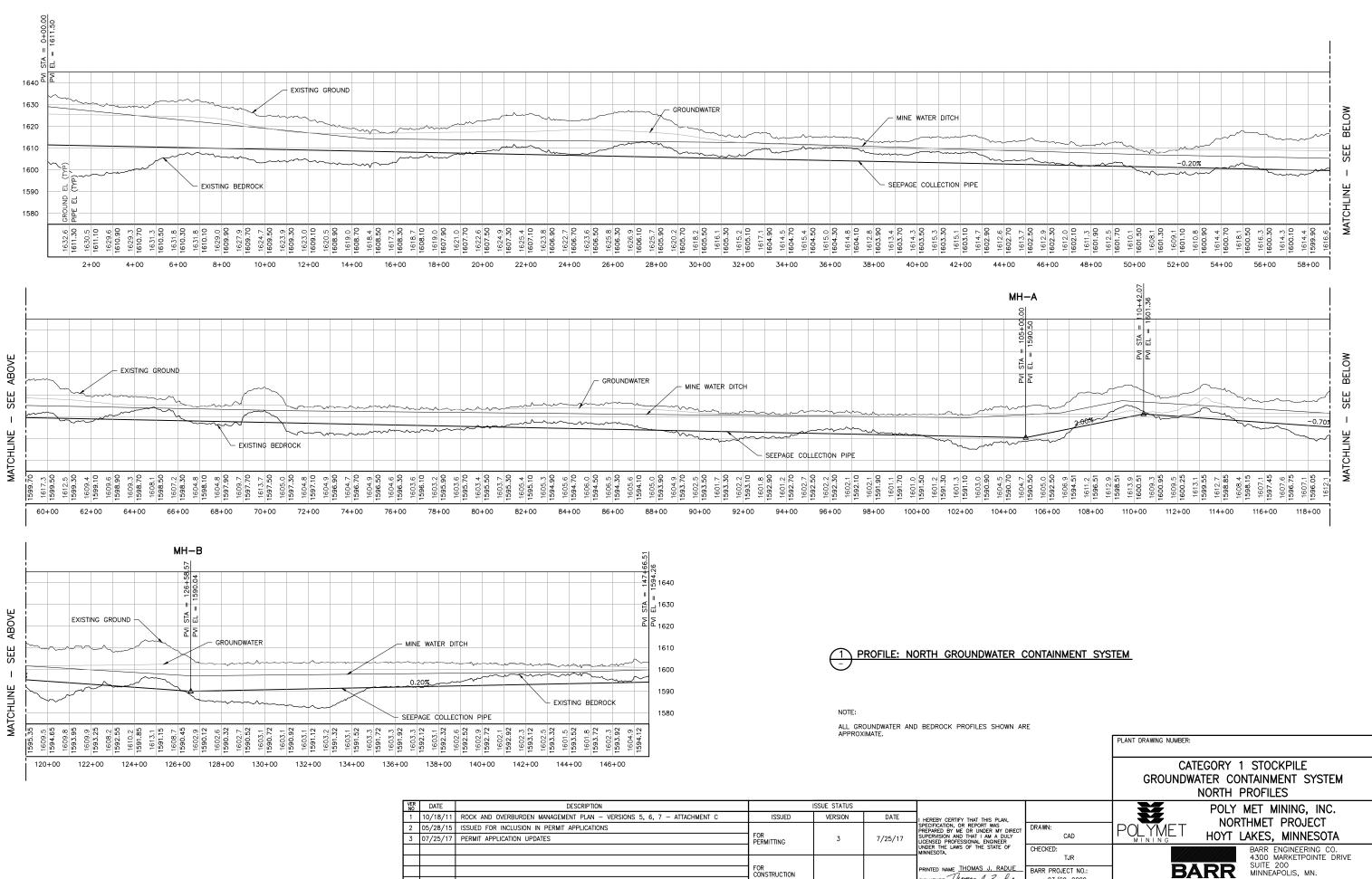

DETAIL OR SECTION NUMBER, TYPICAL











NOHES CADD USER: Cristian A. Diaz FILE: K:\DESIGN\Z3690C29.10\PERMIT_NMM-21-CS-010.DWG PLOT SCALE: 1:2 PLOT DATE: 7/25

1 10/18/11 ROCK AND OVERBURDEN MANAGEMENT PLAN - VERSIONS 5, 6, 7 - ATTACHMENT C ISSUED VERSION DATE I HEREBY CERTIFY THAT THIS PLAN, SPECIATION IN PERMIT APPLICATIONS 2 05/28/15 ISSUED FOR INCLUSION IN PERMIT APPLICATIONS FOR TOTAL AN A DULY 3 07/25/17 PERMIT APPLICATION UPDATES FOR TOTAL AN A DULY SPECIAL ON ON THE SIGNAL ENDINEER 4	VER NO	DATE	DESCRIPTION	ISSUE STATUS			
2 03/20/13 ISSUED FOR INCLOSION IN PERMIT APPLICATIONS FOR PERMIT APPLICATION UPDATES FOR PERMITTING 3 7/25/17 PREMOVE THE STATE OF MINNESOTA. 2 0 - - - - - - - 2 0 - - - - - - - 3 0 - - - - - - - 4 - - - - - - - - 5 - - - - - - - - 4 - - - - - - - - 5 - - - - - - - - 6 - - - - - - - - 6 - - - - - - - - 7 - - - - - - - - 7 - - - - - - - -	1	10/18/11	ROCK AND OVERBURDEN MANAGEMENT PLAN - VERSIONS 5, 6, 7 - ATTACHMENT C	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
3 07/25/17 PERMIT APPLICATION OPDATES PERMITTING 3 7/25/17 ÜCENSED PROFESSIONAL ENGINEER UNDER THE LWS OF THE STATE OF MINRESOTA. -	2	05/28/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				
FOR CONSTRUCTION FOR CONSTRUCTION FOR CONSTRUCTION FOR CONSTRUCTION FOR CONSTRUCTION FOR CONSTRUCTION SIGNATURE FOR CONSTRUCTION	3	07/25/17	PERMIT APPLICATION UPDATES				
CONSTRUCTION SIGNATURE Thomas J. Radius							
CONSTRUCTION SIGNATURE Thomas J. Radius							
autr 7/25/17 uppfor# 20051							
NOT APPROVED FOR CONSTRUCTION.							
				NOT APPROVED FOR CONSTRUCTION.		DATE 77 237 17 LICENSE# 20931	

VER NO	DATE	DESCRIPTION	ISSUE STATUS			
1	10/18/11	ROCK AND OVERBURDEN MANAGEMENT PLAN - VERSIONS 5, 6, 7 - ATTACHMENT C	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN,
2	05/28/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRECT
3	07/25/17	PERMIT APPLICATION UPDATES	FOR PERMITTING	3	//25/1/	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
						UNDER THE LAWS OF THE STATE OF MINNESOTA.
			FOR CONSTRUCTION			PRINTED NAME THOMAS J. RADUE
						SIGNATURE Thomas J. Radue DATE 7/25/17 LICENSE# 20951
			NOT APPROVED FOR	CONSTRUCTION.		DAIE // 23/ 1/ LICENSE# 20951

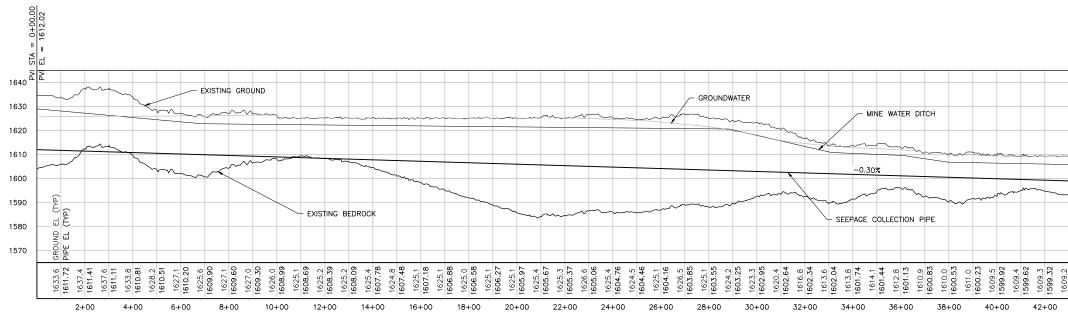
BARR PROJECT NO .:

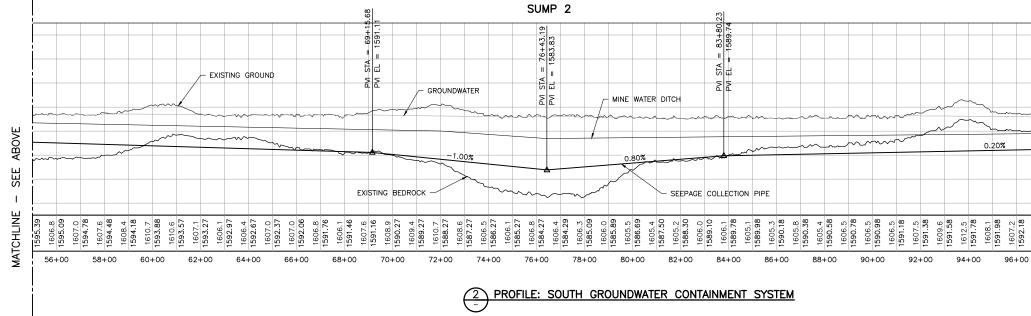
SCALE:

23/69-0C29

AS SHOWN

OWG. NO.

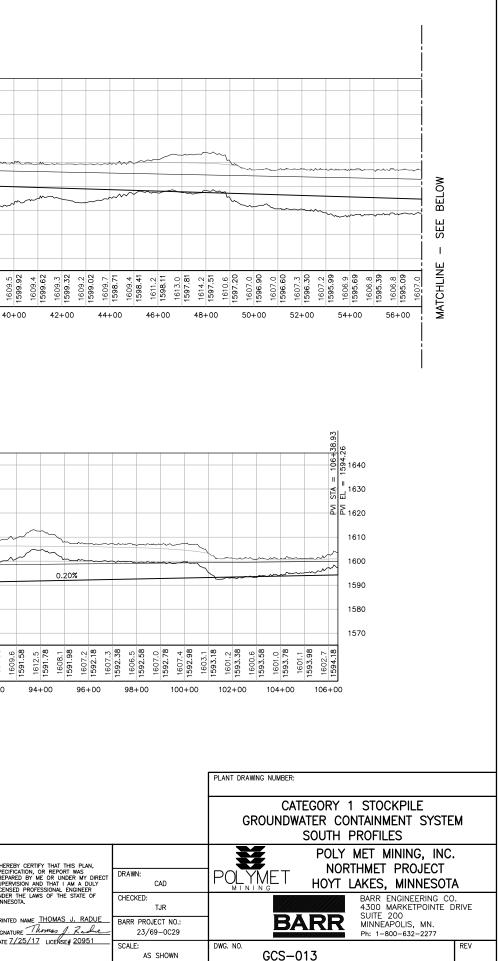

GCS-012

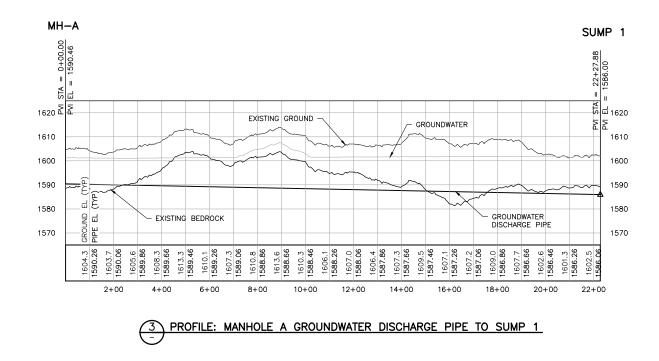

MINNEAPOLIS, MN.

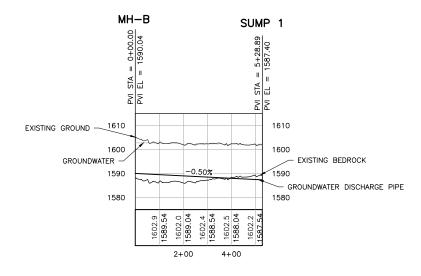
Ph: 1-800-632-2277

2

NCHES






NOTE:

ALL GROUNDWATER AND BEDROCK PROFILES SHOWN ARE APPROXIMATE.

VER NO	DATE	DESCRIPTION		SSUE STATUS		
1	10/18/11	ROCK AND OVERBURDEN MANAGEMENT PLAN - VERSIONS 5, 6, 7 - ATTACHMENT C	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
2	05/28/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DIRI
3	07/25/17	PERMIT APPLICATION UPDATES	FOR PERMITTING	3	//25/1/	SUPERVISION AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER
						UNDER THE LAWS OF THE STATE OF MINNESOTA.
			FOR CONSTRUCTION			PRINTED NAME THOMAS J. RADUE
						SIGNATURE Thomas J. Rachie DATE 7/25/17 LICENSE# 20951
			NOT APPROVED FOR	CONSTRUCTION.		DATE 7723717 LICENSE# 20331

4 PROFILE: MANHOLE B GROUNDWATER DISCHARGE PIPE TO SUMP 1

VER NO	DATE	DESCRIPTION		ISSUE STATUS		
1	10/18/11	ROCK AND OVERBURDEN MANAGEMENT PLAN - VERSIONS 5, 6, 7 - ATTACHMENT C	ISSUED	VERSION	DATE	I HEREBY CERTIFY THAT THIS PLAN.
2	05/28/15	ISSUED FOR INCLUSION IN PERMIT APPLICATIONS				SPECIFICATION, OR REPORT WAS PREPARED BY ME OR UNDER MY DI
3	07/25/17	PERMIT APPLICATION UPDATES	FOR PERMITTING	3	7/25/17	SUPERVISION AND THAT I AM A DUL' LICENSED PROFESSIONAL ENGINEER
						UNDER THE LAWS OF THE STATE OF MINNESOTA.
			FOR CONSTRUCTION			PRINTED NAME THOMAS J. RADU
						SIGNATURE Thomas J. Rach
			NOT APPROVED FOR	CONSTRUCTION.		DATE 7723717 LICENSE# 20951

		PLANT DRAWING NUMBER:		
	CATEGORY 1 STOCKPILE GROUNDWATER CONTAINMENT SYSTEM DISCHARGE PROFILES			
N, DIRECT ULY R	DRAWN: CAD	POLY MET MINING, INC. NORTHMET PROJECT HOYT LAKES, MINNESOTA		
DUE bie	CHECKED: TJR BARR PROJECT NO.: 23/69-0C29	BARR ENGINEERING CO 4300 MARKETPOINTE D SUITE 200 MINNEAPOLIS, MN. Ph: 1-800-632-2277		
<u>>1</u>	SCALE: AS SHOWN	DWG. NO. GCS-014	REV	

ALL GROUNDWATER AND BEDROCK PROFILES SHOWN ARE APPROXIMATE.

NOTE:

Appendix C

Chemical Additives Safety Data Sheets

Appendix C Chemical Additives Safety Data Sheets July 2016

Contents

Dust Suppressants Magnesium Chloride Aqueous Solution (Dustgard) Aqueous Amorphous Polymer Solution (BT-468) Roadsaver-C Roadsaver-C C-17 Roadsaver C-23 Durasoil C-29 Gorilla Snot C-41 Soiltac Coherex C-55 De-icer Calcium Chloride

P:\Mpls\23 MN\69\2369862\WorkFiles\APA\Permitting\NPDES\Permit Applications\Volume II - Mine Site\Appendices\Appendix B - Chemical Additives Safety Data Sheets\Appendix B Chemical Additives SDS TOC (06-21-2016).docx

SAFETY DATA SHEET

	1. Product and Company Identification
Product identifier	Magnesium Chloride Aqueous Solution
Other means of identification	7786-30-3 FREEZGARD LITE CI PLUS FREEZGARD ZERO CI PLUS FREEZGARD LITE CI PLUS LS DustGard DustGard Plus FreezGard Zero FreezGard Lite MagnaPro Chlori-Mag
Recommended use	Dust supression, deicing, general industrial, and speciality uses.
Recommended restrictions	None known.
Manufacturer	North American Salt Company A Compass Minerals Company 9900 West 109th Street, Suite 100 Overland Park, KS 66210 US Phone: 913-344-9200
CHEMTREC	1-800-424-9300
CANUTEC	1-613-996-6666
	2. Hazards Identification
Physical hazards	Not classified.
Health hazards	Not classified.
Environmental hazards	Not classified.
OSHA defined hazards	Not classified.
Label elements	
Hazard symbol	None.
Signal word	None.
Hazard statement	The substance does not meet the criteria for classification.
Precautionary statement	
Prevention	Observe good industrial hygiene practices.
Response	Wash hands after handling.
Storage	Store away from incompatible materials.
Disposal	Dispose of waste and residues in accordance with local authority requirements.
Hazard(s) not otherwise classified (HNOC)	None known.
Supplemental information	Not applicable.
	3. Composition/Information on Ingredients
Mixture	
Composition comments	The criteria for listing components in this section are: Carcinogens, Respiratory Sensitizers, Mutagens, Teratogens and Reproductive toxins are listed when present at 0.1% or greater; components which are otherwise hazardous according to WHMIS/OSHA are listed when present at 1.0% or greater. Non hazardous components are not listed. The products pertaining to this SDS have various proportions of components which do not meet the listing criteria.
	4. First Aid Measures
Inhalation	If breathing is difficult, remove to fresh air and keep at rest in a position comfortable for breathing. Call a physician if symptoms develop or persist.
Skin contact	Rinse skin with water/shower. Get medical attention if irritation develops and persists.
Eye contact	Rinse with water. Get medical attention if irritation develops and persists.
Ingestion	Rinse mouth. If ingestion of a large amount does occur, call a poison control center immediately.

Most important symptoms/effects, acute and delayed	Direct contact with eyes may cause temporary irritation.
Indication of immediate medical attention and special treatment needed	Treat symptomatically.
General information	Ensure that medical personnel are aware of the material(s) involved, and take precautions to protect themselves.
	5. Fire Fighting Measures
Suitable extinguishing media	Treat for surrounding material.
Unsuitable extinguishing media	None known.
Specific hazards arising from the chemical	During fire, gases hazardous to health may be formed.
Special protective equipment and precautions for firefighters	Self-contained breathing apparatus and full protective clothing must be worn in case of fire.
Fire-fighting equipment/instructions	Use standard firefighting procedures and consider the hazards of other involved materials.
Specific methods	Cool containers exposed to flames with water until well after the fire is out.
General fire hazards	No unusual fire or explosion hazards noted.
Hazardous combustion products	May include and are not limited to: Hydrogen chloride. Chlorine gas. Oxides of magnesium.
Explosion data Sensitivity to mechanical impact	Not available.
Sensitivity to static discharge	Not available.
	6. Accidental Release Measures
Personal precautions, protective equipment and emergency procedures	Keep unnecessary personnel away. For personal protection, see section 8 of the SDS.
Methods and materials for containment and cleaning up	Before attempting clean up, refer to hazard data given above. Small spills may be absorbed with non-reactive absorbent and placed in suitable, covered, labelled containers. Prevent large spills from entering sewers or waterways. Contact emergency services and supplier for advice. For waste disposal, see section 13 of the SDS.
Environmental precautions	Avoid discharge into drains, water courses or onto the ground.
	7. Handling and Storage
Precautions for safe handling	Avoid contact with eyes, skin and clothing. Use good industrial hygiene practices in handling this material.
Conditions for safe storage, including any incompatibilities	Keep container tightly closed in a cool, dry and well-ventilated place. Store away from incompatible materials (see Section 10 of the SDS).
	8. Exposure Controls/Personal Protection
Occupational exposure limits	No exposure limits noted for ingredient(s).
Biological limit values	No biological exposure limits noted for the ingredient(s).
Appropriate engineering	TWA PEL: No specific limits have been established for magnesium chloride (a soluble
controls	substance). As a guideline, OSHA (United States) has established the following limits which are generally recognized for inert or nuisance dust. Particulates Not Otherwise Regulated (PNOR): 5mg/cu.m. Respirable Dust 8-Hour TWA PEL, 15mg/cu.m. Total Dust 8-Hour TWA PEL.
	TWA TLV: No specific limits have been established for magnesium chloride (a soluble substance). As a guideline, ACGIH (United States) has established the following limits which are generally recognized for inert or nuisance dust. Particulates (insolubles) Not Otherwise Classified (PNOC): 10mg/cu.m. Inhalable Particulate 8-Hours TWA TLV, 3mg/cu.m. Respirable Particulate TWA TLV.
	Use process enclosures, local exhaust ventilation, or other engineering controls to control airborne levels below recommended exposure limits. If user operations generate dust, fumes, or mist, use ventilation to keep exposure to airborne contaminants below the exposure limit.
	and as assault water the assument

Individual protection measures, such as personal protective equipment

Eye/face protection Safety glasses

Skin protection	
Hand protection	Rubber gloves. Confirm with a reputable supplier first.
Other	As required by employer code.
Respiratory protection	Where exposure guideline levels may be exceeded, use an approved NIOSH respirator or NIOSH-approved filtering facepiece.
Thermal hazards	Not applicable.
General hygiene considerations	Always observe good personal hygiene measures, such as washing after handling the material and before eating, drinking, and/or smoking. Routinely wash work clothing and protective equipment to remove contaminants.

9. Physical and Chemical Properties

Appearance	Liquid			
Physical state	Liquid.			
Form	Crystalline.			
Color	Colorless to Light amber			
Odor	Odorless			
Odor threshold	Not available.			
рН	7 - 9 (5% solution)			
Melting point/freezing point	-1 °F (-18.33 °C) (30% solution, periodically mixed to ensure homogeneity)			
Initial boiling point and boiling range	Not applicable			
	225 °F (107.22 °C)			
Pour point	Not available.			
Specific gravity	1.24 - 1.34 (H2O = 1)			
Partition coefficient (n-octanol/water)	Not available.			
Flash point	Not available.			
Evaporation rate	Not available.			
Flammability (solid, gas)	Not applicable.			
Upper/lower flammability or exp	losive limits			
Flammability limit - lower (%)	Not available.			
Flammability limit - upper (%)	Not available.			
Explosive limit - lower (%)	Not available.			
Explosive limit - upper (%)	Not available.			
Vapor pressure	Not available.			
Vapor density	Not available.			
Relative density	Not available.			
Solubility(ies)	Easily soluble in cold water, hot water, methanol, acetone.			
Auto-ignition temperature	Not available.			
Decomposition temperature	Not available.			
Viscosity	Not available.			
	10. Stability and Reactivity			

10. Stability and Reactivity

Reactivity	Reactive with oxidizing agents, acids, metals in presence of moisture.
Possibility of hazardous reactions	No dangerous reaction known under conditions of normal use.
Chemical stability	Material is stable under normal conditions.
Conditions to avoid	Contact with incompatible materials.
Incompatible materials	Acids. Strong oxidizing agents. Metals.
Hazardous decomposition products	May include and are not limited to: Hydrogen chloride. Chlorine gas. Oxides of magnesium.

11. Toxicological Information

Page: 3 of 6

Information on likely routes of exposure

Ingestion

Inhalation	No adverse effects due to inhalation are expected.
Skin contact	No adverse effects due to skin contact are expected.
Eye contact	Direct contact with eyes may cause temporary irritation.
Symptoms related to the physical, chemical and toxicological characteristics	Direct contact with eyes may cause temporary irritation.
Information on toxicological effe	cts
Acute toxicity	Not classified.
Skin corrosion/irritation	Prolonged skin contact may cause temporary irritation.
Exposure minutes	Not available.
Erythema value	Not available.
Oedema value	Not available.
Serious eye damage/eye irritation	Direct contact with eyes may cause temporary irritation.
Corneal opacity value	Not available.
Iris lesion value	Not available.
Conjunctival reddening value	Not available.
Conjunctival oedema value	Not available.
Recover days	Not available.
Respiratory or skin sensitization	
Respiratory sensitization	Not classified.
Skin sensitization	This product is not expected to cause skin sensitization.
Germ cell mutagenicity	No data available to indicate product or any components present at greater than 0.1% are mutagenic or genotoxic.
Mutagenicity	No data available to indicate product or any components present at greater than 0.1% are mutagenic or genotoxic.
Carcinogenicity	This product is not considered to be a carcinogen by IARC, ACGIH, NTP, or OSHA.
Reproductive toxicity	This product is not expected to cause reproductive or developmental effects.
Teratogenicity	Not classified.
Specific target organ toxicity - single exposure	Not classified.
Specific target organ toxicity - repeated exposure	Not classified.
Aspiration hazard	Not classified.
Chronic effects	Not classified.
Further information	This product has no known adverse effect on human health.
Name of Toxicologically Synergistic Products	Not available.
	12. Ecological Information
Ecotoxicity	May be harmful to freshwater aquatic species and to plants that are not saline tolerant.
Persistence and degradability	No data is available on the degradability of this product.
Bioaccumulative potential	No data available.
Mobility in soil	No data available.
Mobility in general	Not available.
Other adverse effects	No other adverse environmental effects (e.g. ozone depletion, photochemical ozone creation potential, endocrine disruption, global warming potential) are expected from this component.
	13. Disposal Considerations
Disposal instructions	Collect and reclaim or dispose in sealed containers at licensed waste disposal site.
Local disposal regulations	Dispose in accordance with all applicable regulations.
Hazardous waste code	The waste code should be assigned in discussion between the user, the producer and the waste disposal company.

Empty containers should be taken to an approved waste handling site for recycling or disposal. Since emptied containers may retain product residue, follow label warnings even after container is emptied.

14. Transport Information

U.S. Department of Transportation (DOT)

Not regulated as dangerous goods.

Transportation of Dangerous Goods (TDG - Canada)

Not regulated as dangerous goods.

	15. Regulatory Information	
Canadian federal regulations	This product has been classified in accordance with the hazard crit Regulations and the SDS contains all the information required by th Regulations.	
WHMIS status	Not Controlled	
US federal regulations		
TSCA Section 12(b) Export	Notification (40 CFR 707, Subpt. D)	
Not regulated.		
CERCLA Hazardous Substa	ance List (40 CFR 302.4)	
Not listed. Clean Air Act (CAA) Section	n 112(r) Accidental Release Prevention (40 CFR 68.130)	
Not regulated.	(,,	
Clean Air Act (CAA) Section	n 112 Hazardous Air Pollutants (HAPs) List	
Not regulated.		
	eauthorization Act of 1986 (SARA)	
Hazard categories	Immediate Hazard - No Delaved Hazard - No	
	Fire Hazard - No	
	Pressure Hazard - No Reactivity Hazard - No	
SARA 302 Extremely	No	
hazardous substance		
SARA 311/312 Hazardous chemical	No	
SARA 313 (TRI reporting) Not regulated.		
Other federal regulations		
Safe Drinking Water Act (SDWA)	Not regulated.	
Food and Drug Administration (FDA)	Total food additive Direct food additive	
	GRAS food additive	
US state regulations	California Safe Drinking Water and Toxic Enforcement Act of 1986 is not known to contain any chemicals currently listed as carcinoge	ns or reproductive toxins.
-	tion 65 - Carcinogens & Reproductive Toxicity (CRT): Listed sub	stance
Not listed. US. Massachusetts RT	K - Substance List	
Not regulated. US. Pennsylvania RTK	- Hazardous Substances	
Not regulated. US. Rhode Island RTK		
Not regulated.		
Inventory status		
Country(s) or region	Inventory name	On inventory (yes/no)
Canada	Domestic Substances List (DSL)	Yes
Canada	Non-Domestic Substances List (NDSL)	No
United States & Puerto Rico *A "Yes" indicates that all compo	Toxic Substances Control Act (TSCA) Inventory nents of this product comply with the inventory requirements administered by	Yes the governing country(s)

16. Other Information

LEGEND	
Severe	4
Serious	3
Moderate	2
Slight	1
Minimal	0

Disclaimer

HEALTH / 1	
PHYSICAL HAZARD 0	
PERSONAL X	

The information in the sheet was written based on the best knowledge and experience currently available. Information contained herein was obtained from sources considered technically accurate and reliable. While every effort has been made to ensure full disclosure of product hazards, in some cases data is not available and is so stated. Since conditions of actual product use are beyond control of the supplier, it is assumed that users of this material have been fully trained according to the requirements of all applicable legislation and regulatory instruments. No warranty, expressed or implied, is made and supplier will not be liable for any losses, injuries or consequential damages which may result from the use of or reliance on any information contained in this document. 16-January-2015

For an updated SDS, please contact the supplier/manufacturer listed on the first page of the

This Safety Data Sheet was prepared to comply with the current OSHA Hazard Communication

>

Issue date
Effective date
Expiry date
Further information

Prepared by Other information

Standard (HCS) adoption of the Globally Harmonized System of Classification and Labeling of Chemicals (GHS).

This SDS conforms to the ANSI Z400.1/Z129.1-2010 Standard.

Dell Tech Laboratories, Ltd. Phone: (519) 858-5021

15-January-2015 15-January-2018

document.

Magnesium Chloride Aqueous Solution

Observe good industrial hygiene practices.

Wash hands after handling.

Store away from incompatible materials.

Compass Minerals, 9900 West 109th Street, Suite 100, Overland Park, KS, 66210, US, 913-344-9200

Magnesium Chloride Aqueous Solution

Observe good industrial hygiene practices.

Wash hands after handling.

Store away from incompatible materials.

Compass Minerals, 9900 West 109th Street, Suite 100, Overland Park, KS, 66210, US, 913-344-9200

Product Data Sheet

9900 West 109th Street – Suite 100 Overland Park, Kansas 66210 Phone 800-755-7258 Fax 800-359-7258

DUSTGARD® LIQUID

PRODUCTION LOCATION

Ogden, Utah

PRODUCT DESCRIPTION

Produced naturally from the Great Salt Lake, DustGard Liquid is formulated to control dust and stabilize soil on unpaved roads, stockpiles, and other sources of fugitive dust. DustGard Liquid is a light amber liquid with a density of approximately 185 gallons per ton.

PHYSICAL PROPERTIES

Specific Gravity	
pH (5% Solution)	
Weight	

1.31+/- 0.02 7.0 - 9.0 10.7 - 11.1 lbs./gallon

Typical Analysis			Typical	Range
Magnesium Chloride	MgCl ₂	(%)	30.3	28 - 33
Sulfate	SO4	(%)	1.9	0 - 2.7
Potassium	K	(%)	0.3	0.1 - 0.5
Water	H ₂ O	(%)	68	64 - 72

METHOD OF ANALYSIS

All testing is from Compass Minerals' internal quality control procedures, which are available upon request.

APPLICATION AND STORAGE

This liquid MgCl2 product in storage should be agitated regularly to minimize precipitation of undesirable solids/crystals. Application equipment should be washed daily with water. Storage equipment should be rinsed with water to prevent buildup of solids. Aluminum storage tanks or hauling equipment should not be grounded. Over application of MgCl2 may result in unusually slippery road surfaces and should be avoided.

Product Description and Codes	UPC code	Product Code
Bulk		

Information herein is intended to be indicative and not to be interpreted as a specification and no warranty is given

SAFETY DATA SHEET

Recommended use: Dust suppressant

Date Issued: 6/26/2015 Revision Date: 4/16/2015

BT-468

1: IDENTIFICATION

Product identifier: BT-468

Other identification: Aqueous amorphous polymer solution

Supplier details: Benetech, Inc. 2245 Sequoia Drive, Suite #300 Aurora, IL 60506 (phone): 630-844-1300

Emergency phone: 1-800-535-5053 (US and Canada) 1-352-323-3500 (International)

2: HAZARD(S) IDENTIFICATION

Hazard pictogram and signal word:

Hazard classification: Eye irritant; category 2A.

Hazard statements: H319; Causes serious eye irritation.

Warning

Precautionary statements:

- Prevention: P264; Wash exposed area thoroughly after handling. P280; Wear eye protection/face protection.
- Response: P305 + P351 + P338; IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
- Storage: P403+P233; Store in well-ventilated place. Keep container tightly closed. P405; Store locked up.
- Disposal: P501; Dispose of this material and its container in accordance with local, regional, national and/or international regulation.

Other hazards: Material spills may be very slippery.

3: INFORMATION ON INGREDIENTS

Ingredient Proprietary Blend CAS Number Not applicable <u>% by weight</u> Not applicable

4: FIRST AID MEASURES

The following first aid procedures assume appropriate personal and industrial hygiene practices are followed.

- **Eyes:** Flush with copious amounts of water. If symptoms are severe or persist, get medical attention.
- **Skin Contact:** Not expected to be a skin irritant. Wash thoroughly with water. Remove contaminated clothing. Launder contaminated clothing before re-use. If symptoms are severe or persist, get medical attention.
- **Ingestion:** Small amounts are not expected to be harmful. If instructed to do so by medical personnel, induce vomiting by either giving IPECAC syrup or by placing finger at back of throat. NEVER GIVE ANYTHING BY MOUTH TO AN UNCONSCIOUS PERSON. Get medical attention.
- **Inhalation:** Product is non-volatile and inhalation is not an expected exposure route. Remove to fresh air. If breathing is difficult, administer oxygen. If breathing has stopped, give artificial respiration. Keep person warm, and quiet. If symptoms are severe or persist, get medical attention.

5: FIRE-FIGHTING MEASURES

Suitable extinguishing media: Class B fire extinguishers (i.e.: foam, powder)

Specific combustion hazards: None

Special protective equipment and precautions for fire-fighters: Wear full bunker gear and SCBA (Self-Contained Breathing Apparatus).

6: ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures:

Chemical Splash Goggles in compliance with OSHA regulations are advised, impermeable gloves (natural rubber, nitrile, neoprene, etc.), impermeable clothing (coveralls), and waterproof footwear. Ventilate area with fresh air for personal comfort.

Methods and materials for containment and cleaning up:

- Small Spill: Absorb liquid on paper, vermiculite, floor absorbent, or other absorbent material and transfer to appropriate container(s).
- Large Spill: Stop spill at source, dike area of spill to prevent spreading, pump liquid to salvage tank. Remaining liquid may be taken up on sand, clay, earth, floor absorbent, or other absorbent material and shoveled into appropriate containers.

Prevent run-off to sewers, streams or other bodies of water. If run-off occurs, notify proper authorities as required, that a spill has occurred.

7: HANDLING AND STORAGE

Precautions for safe handling:

P270; Do not eat, drink, or smoke when using this product. P264; Wash skin exposed to product with soap and water. Wash hands after handling this product and before eating, drinking, or smoking. Avoid exposure to skin or eyes. Do not ingest. Do not breath aerosol containing this product. Use mechanical ventilation for personal comfort.

Conditions for safe storage:

Store material between 40°F and 120°F in original container. Protect from freezing.

8: EXPOSURE CONTROLS/PERSONAL PROTECTION

Control parameters: Ventilation: Provide sufficient mechanical (general and/or local exhaust) ventilation to maintain exposure below TLV(s).

Engineering controls: Mechanical and/or engineered barriers to prevent contact with this material in concentrated form are preferred.

Personal Protective Equipment:

Eye protection; Wear eye protection/face protection. Chemical splash goggles or a face shield are recommended in emergency spill situations.

Skin protection; Avoid prolonged or repeated skin contact. Resistant gloves such as natural rubber, neoprene, nitrile rubber are recommended. Water-proof or chemical-resistant coveralls are recommended. Water-proof foot gear is recommended.

Respiratory protection; Avoid breathing aerosols, mists or sprays of this material if they were to form. If exposure to aerosols, mists, or sprays of this material in undiluted form are likely, wear a respirator designed to filter particulates and organic vapors.

Prevention of ingestion; Avoid ingesting this material. Do not eat, drink, or smoke when contamination with this material is possible. Wash hands with soap and water after handling this product and before eating, drinking, or smoking. Remove and launder contaminated clothing before eating, drinking, or smoking.

Appearance	Brown liquid
Liquid Upper/Lower	Not applicable
Flammability/Explosive limits	
Liquid Flammability	Non-flammable
Solid, Gas Upper/Lower	Not applicable
Flammability/Explosive limits	
Solid. Gas Flammability	Not applicable
Autoignition temperature	Not applicable
Decomposition Temperature	No data available
Flash Point	Non-flammable
pH (3% Soln.)	7 - 9
Specific Gravity	10.87-lbs./gal.
Viscosity	<100-cP
Melting point	No data available
Initial Freezing Point	28.5°F
Initial Boiling point	219°F
Boiling Range	No data available
Odor	Slight
Odor Threshold	No data available
Vapor Pressure	14.2 mm Hg @ 68°F
Vapor Density	1.25 @ 68-⁰F
Solubility, Aqueous	100% (miscible)
Partition Coefficient: n-	100% in water
octanol/water	
Evaporation Rate	Normal 0.4 (water)

9: PHYSICAL AND CHEMICAL PROPERTIES

10: STABILITY AND REACTIVITY

Reactivity: Strong oxidizing agents, caustics. Chemical stability: Stable. Possibility of hazardous reactions: Will not occur. Conditions to avoid: None known. Incompatible materials: Oxidizers, salts.

Hazardous Decomposition Products:

<u>Substance</u>	<u>Condition</u>
Carbon monoxide	During Combustion of Residue
Carbon dioxide	During Combustion of Residue
Hydrocarbons	During Combustion of Residue
Toxic gas, vapor or particulate	During Combustion of Residue

11: TOXICOLOGICAL INFORMATION

Health and toxicological effects:

Likely exposure routes; ingestion, eye contact.

Symptoms of exposure; None known.

Delayed and immediate effects; No significant acute or delayed adverse effects have been found in oral rat studies done on the components of this product relative to the composition of this blend.

Acute Toxicity:

Oral; mouse, $LD_{50} > 5000$ mg/kg. Dermal; mouse, No data available. Inhalation; mouse, Not applicable.

This product is not considered a potential carcinogen by NPT, IARC, or OSHA.

12: ECOLOGICAL INFORMATION

Aquatic Toxicity:

P. Promelas LC_{50} : 3.7 grams/liters (3700 ppm). C. Dubia EC_{50} : 2.04 grams/liter (2040 ppm).

Persistence and Degradability:

Bioaccumulative potential is low, biological oxygen demand(BOD); 0.260 lbs BOD/lb solids, Chemical oxygen demand(COD); 0.919 lbs COD/lb of solids.

13: DISPOSAL CONSIDERATIONS

Waste Disposal Method: Allow waste and contaminated material to dry in open air or fume hood. Dispose of as non hazardous waste.

14: TRANSPORT INFORMATION

DOT Non-Bulk; Not regulated. DOT Bulk; Not regulated. IMDG; Not regulated. ICAO/IATA; Not regulated. CERCLA; Not regulated

15: REGULATORY INFORMATION

This product is not considered hazardous under the Clean Water Act, the Clean Air Act, or RCRA. This product is not reportable under SARA Title III, Sec 313.

16: OTHER INFORMATION

Revision Histor	γ
Date	Comment
4/16/2015	Original

As of the date of preparation of this document, the foregoing information is believed to be accurate and is provided in good faith to comply with applicable federal and state law(s). However, no warranty or representation with respect to such information is intended or given.

BT-468

Warning

H319: Causes serious eye irritation.

P264: Wash exposed area thoroughly after handling, P280: Wear chemical splash goggles when handling. Wear impermeable gloves when handling. Wear impermeable clothing or apron when handling. P305 + P351 + P338: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Remove contaminated clothing and launder after use. Wash hands after handling and before eating, drinking, or smoking.

Benetech, Inc. 2245 Sequoia Dr. Sulte 300 Aurora, IL 60506-6220 www. Benetechglobal.com

Additional Comments

1-352-323-3500

24″

PRODUCT BULLETIN

Haul Road Dust Suppressant BT-468(BT-RDL)

Product Description	• Benetech BT-468 controls airborne dust caused by the heavy moving equipment and road traffic. It is a lignosulfonate based haul road dust suppressant formulated with surfactant additives to promote penetration and improve spreadability.
Primary Uses	 This product is a cost effective means of reducing dust on haul roads, parking lots, and other high traffic dirt, gravel, or coal surfaces.
Benefits	 Cost competitive Non-oil based, ecologically safe Protects against wind erosion Easy application procedures Non-corrosive Contains additives to promote penetration, improve spreadability, and prevent excessive run-off. Easy clean-up
Application	• BT-468 should be applied with a hydro-seeder water truck, or water wagon equipped with standard spraying equipment for adequate application. Consult your Benetech representative for specific application rates.
Shipping	Bulk tank trucks.
Handling And Storage	 BT-468 is non-hazardous but should be handled with appropriate caution. Storage can be mild steel or fiberglass construction. Recommended storage limit 12 months.

1. PRODUCT AND COMPANY IDENTIFICATION

Product Identity: Roadsaver®-C

Recommended use of the chemical and restrictions on use: Road stabilization, dust control and de-icing

Manufacturer:EnviroTech Services, Inc.910 54th Ave, Suite 230Greeley, CO 80634Telephone:(970) 346-3900

Emergency Phone: CHEMTREC: (800) 424-9300

SDS Date of Preparation: 4/23/2015

2. HAZARDS IDENTIFICATION

GHS Classification:

Physical	Health	Environment
Not Hazardous	Not Hazardous	Not Hazardous

GHS Label Elements:

Causes serious eye irritation.

Wash thoroughly after handling.

Wear eye and face protection.

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

If eye irritation persists: Get medical attention.

3. COMPOSITION/INFORMATION ON INGREDIENTS

Component	CAS No.	Amount
Water	7732-18-5	60-75%
Calcium Chloride	10043-52-4	25-40%

The exact concentration is determined according to customer request.

4. FIRST AID MEASURES	
-----------------------	--

Eye: Flush victim's eyes with large quantities of water, while holding the eyelids apart. Get medical attention if irritation occurs and persists.

Skin: Wash skin thoroughly with soap and water. Get medical attention if irritation develops. Remove and launder clothing before reuse.

Ingestion: Do not induce vomiting. Rinse mouth with water and give one glass of water to drink. Never give anything by mouth an unconscious or convulsing person. Get medical attention if symptoms develop. **Inhalation:** Remove victim to fresh air. If breathing is difficult or irritation persists, get medical attention.

Most important Symptoms: May cause slight eye and skin irritation.

Indication of immediate medical attention/special treatment: Immediate medical attention is not required.

5. FIRE FIGHTING MEASURES

Suitable (and Unsuitable) Extinguishing Media: Use media appropriate for surrounding fire. Cool fire exposed containers and structures with water.

Specific hazards arising from the chemical: Thermal decomposition may yield hydrogen chloride, halogenated compounds, and chlorine gas.

Special Protective Equipment and Precautions for Fire-Fighting Instructions: Firefighters should wear positive pressure self-contained breathing apparatus and full protective clothing. Aqueous solutions may cause surfaces to be extremely slippery and cause a slip hazard.

6. ACCIDENTAL RELEASE MEASURES

Personal Precautions, Protective Equipment, and Emergency Procedures: Wear appropriate protective clothing as described in Section 8. Wash thoroughly after handling.

Methods and Materials for Containment and Cleaning Up: Dike and collect liquid or absorb with an inert absorbent and place in appropriate containers for disposal. Flush spill area with water. Report releases as required by local, state, and federal authorities.

7. HANDLING AND STORAGE

Precautions for Safe Handling: Avoid contact with the eyes, skin, and clothing. Avoid breathing mists or aerosols. Wear protective clothing and equipment as described in Section 8. Wash thoroughly with soap and water after handling. Keep containers closed when not in use.

Conditions for Safe Storage, Including Any Incompatibilities: Store in a cool, dry, well-ventilated area away from incompatible materials. Product may be corrosive to some metals.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Exposure Guidelines:

Calcium Chloride	None Established
Performance Additive	None Established

Engineering Controls: Use with adequate general ventilation to minimize exposures.

Respiratory Protection: In operations where exposure levels are excessive, a NIOSH approved respirator with dust/mist cartridges or supplied air respirator appropriate for the form and concentration of the contaminants should be used. Selection and use of respiratory equipment must be in accordance with OSHA 1910.134 and good industrial hygiene practice.

Skin Protection: Wear impervious gloves such as rubber or neoprene if needed to avoid prolonged skin contact.

Eye Protection: Safety glasses recommended.

Other: Long-sleeved clothing and long pants recommended to avoid prolonged skin contact. Suitable washing facilities should be available in the work area.

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance And Odor: Clear liquid with no odor.

Physical State: Liquid	Odor Threshold: Not established
Vapor Density: Not determined	Initial Boiling Point/Range: 110-122°C (230-252°F)
Solubility In Water: Soluble	Vapor Pressure: Not determined
Relative Density: 1.25-1.42	Evaporation Rate: Not determined
Melting/Freezing Point: Not determined	pH: 5-10
VOC Content: Not determined	Octanol/Water Coefficient: Not determined
Solubility: Complete	Decomposition Temperature: Not determined
Viscosity: <100 cP @ 70°F	Flammability (solid, gas): Not applicable
Flashpoint: None	Autoignition Temperature: Not determined
Flammable Limits: LEL: Not determined	UEL: Not determined

10. STABILITY AND REACTIVITY

Reactivity: Not normally reactive

Chemical Stability: Stable under normal storage and handling conditions.

Possibility of Hazardous Reactions: None known.

Conditions to Avoid: None known.

Incompatible Materials: Strong oxidizing agents, concentrated acids, and some metals.

Hazardous Decomposition Products: When heated to decomposition emits hydrogen chloride, halogenated compounds, and chlorine gas.

11. TOXICOLOGICAL INFORMATION

HEALTH HAZARDS:

Ingestion: Ingestion may cause slight irritation with nausea, vomiting, and diarrhea.

Inhalation: Inhalation of mists may cause slight irritation of the nose throat and upper respiratory tract.

Eye: May cause slight irritation with pain and tearing.

Skin: May cause slight irritation on prolonged or repeated contact.

Sensitization: This material is not known to cause sensitization.

Chronic: None known.

Carcinogenicity: None of the components is listed as a carcinogen or suspected carcinogen by IARC, NTP, or OSHA.

Germ Cell Mutagenicity: None currently known. Reproductive Toxicity: None currently known.

Numerical Measures of Toxicity:

No toxicity data available

12. ECOLOGICAL INFORMATION

Ecotoxicity: No data available Persistence and Degradability: Biodegradation is not applicable to inorganic substances. Bioaccumulative Potential: No data available Mobility in Soil: No data available Other Adverse Effects: None known

13. DISPOSAL CONSIDERATIONS

Dispose in accordance with local, state, and federal environmental regulations.

14. TRANSPORT INFORMATION

DOT Hazardous Materials Description:

Proper Shipping Name: Not regulated UN Number: None Hazard Class/Packing Group: None Labels Required: None

15. REGULATORY INFORMATION

CERCLA: This product is not subject to CERCLA release reporting. Many states have more stringent release reporting requirements. Report spills required under federal, state, and local regulations.

SARA Hazard Category (311/312): Not Hazardous

SARA 313: This product contains the following chemicals subject to Annual Release Reporting Requirements under SARA Title III, Section 313 (40 CFR 372): None

EPA TSCA Inventory: All of the ingredients in this product are listed on the EPA TSCA Inventory.

CANADA:

This product has been classified under the CPR and this MSDS discloses information elements required by the CPR.

Canadian CEPA: All the components of this product are listed on the Canadian DSL. **Canadian WHMIS Classification:** Not classified as dangerous

16. OTHER INFORMATION

NFPA Rating: Health = 2Flammability = 0HMIS Rating: Health = 2Flammability = 0

Instability = 0 Physical Hazard = 0

SDS Revision History: 5/15/2014: New SDS 4/23/2015: Updated SDS with new classification

Disclaimer: This Safety Data Sheet (SDS) is provided in response to customer requests to address the safe handling of the product. All statements, technical information and recommendations contained herein are the best of our knowledge, reliable and accurate. This SDS is not intended to make any representation as to how the product will perform when used for its intended purpose by a user. In that regards the product is sold "AS IS" and nothing in this SDS should be deemed to be a representation or warranty of any injury, loss, or damage, of any kind or nature, which are sustained by or arise from the use of the product. Nothing in this SDS is intended to be a representation or warranty by the manufacturer of the accuracy, safety, or usefulness for any purpose of any technical information, materials, techniques, or practices.

The information contained in this Safety Data Sheet is, to the best of our knowledge, accurate and reliable. This information should be provided to all individuals handling this product. Federal, state, and local regulations should be followed when handling this product.

Roadsaver-C

Warning

Causes serious eye irritation.

Wash thoroughly after handling Wear eye protection/face protection. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists: Get medical attention.

EnviroTech, 910 54th Ave, Suite 230, Greely, CO, 80634, US, 970-346-3900

Roadsaver-C Warning

Causes serious eye irritation.

Wash thoroughly after handling Wear eye protection/face protection. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists: Get medical attention.

EnviroTech, 910 54th Ave, Suite 230, Greely, CO, 80634, US, 970-346-3900

1. PRODUCT AND COMPANY IDENTIFICATION

Product Identity: Roadsaver®

Recommended use of the chemical and restrictions on use: Road stabilization and dust control

Manufacturer:	EnviroTech Services, Inc.
	910 54 th Ave, Suite 230
	Greeley, CO 80634
Telephone:	(970) 346-3900

Emergency Phone: CHEMTREC: (800) 424-9300

SDS Date of Preparation: 5/15/2014

2. HAZARDS IDENTIFICATION

GHS Classification:

Physical	Health	Environment
Not Hazardous	Not Hazardous	Not Hazardous

GHS Label Elements:

None Required

3. COMPOSITION/INFORMATION ON INGREDIENTS

Component	CAS No.	Amount
Water	7732-18-5	65-75%
Magnesium Chloride	7791-18-6	25-35%
Magnesium Sulfate	7487-88-9	<5.0%

The exact concentration is being withheld as a trade secret.

Eye: Flush victim's eyes with large quantities of water, while holding the eyelids apart. Get medical attention if irritation occurs and persists.

Skin: Wash skin thoroughly with soap and water. Get medical attention if irritation develops. Remove and launder clothing before reuse.

Ingestion: Do not induce vomiting. Rinse mouth with water and give one glass of water to drink. Never give anything by mouth to an unconscious or convulsing person. Get medical attention if symptoms develop. **Inhalation:** Remove victim to fresh air. If breathing is difficult or irritation persists, get medical attention.

Most important Symptoms: May cause slight eye and skin irritation.

Indication of immediate medical attention/special treatment: Immediate medical attention is not required.

5. FIRE FIGHTING MEASURES

Suitable (and Unsuitable) Extinguishing Media: Use media appropriate for surrounding fire. Cool fire exposed containers and structures with water.

Specific hazards arising from the chemical: Thermal decomposition may yield hydrogen chloride, halogenated compounds, and chlorine gas.

Special Protective Equipment and Precautions for Fire-Fighting Instructions: Firefighters should wear positive pressure self-contained breathing apparatus and full protective clothing. Aqueous solutions may cause surfaces to be extremely slippery and cause a slip hazard.

6. ACCIDENTAL RELEASE MEASURES

Personal Precautions, Protective Equipment, and Emergency Procedures: Wear appropriate protective clothing as described in Section 8. Wash thoroughly after handling.

Methods and Materials for Containment and Cleaning Up: Dike and collect liquid or absorb with an inert absorbent and place in appropriate containers for disposal. Flush spill area with water. Report releases as required by local, state and federal authorities.

7. HANDLING AND STORAGE

Precautions for Safe Handling: Avoid contact with the eyes, skin and clothing. Avoid breathing mists or aerosols. Wear protective clothing and equipment as described in Section 8. Wash thoroughly with soap and water after handling. Keep containers closed when not in use.

Conditions for Safe Storage, Including Any Incompatibilities: Store in a cool, dry, well-ventilated area away from incompatible materials. Product may be corrosive to some metals.

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

Exposure Guidelines:

Magnesium chloride	None Established
--------------------	------------------

Engineering Controls: Use with adequate general ventilation to minimize exposures.

Respiratory Protection: In operations where exposure levels are excessive, a NIOSH approved respirator with dust/mist cartridges or supplied air respirator appropriate for the form and concentration of the contaminants should be used. Selection and use of respiratory equipment must be in accordance with OSHA 1910.134 and good industrial hygiene practice.

Skin Protection: Wear impervious gloves such as rubber or neoprene if needed to avoid prolonged skin contact.

Eye Protection: Safety glasses recommended.

Other: Long-sleeved clothing and long pants recommended to avoid prolonged skin contact. Suitable washing facilities should be available in the work area.

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance And Odor: Clear to slight yellow liquid with low or no odor.

Physical State: Liquid	Odor Threshold: Not established
Vapor Density: Not determined	Initial Boiling Point/Range: 107.2°C (225°F)
Solubility In Water: Soluble	Vapor Pressure: Not determined
Relative Density: 1.24-1.34	Evaporation Rate: Not determined
Melting/Freezing Point: Not determined	pH: 4-9
VOC Content: Not determined	Octanol/Water Coefficient: Not determined
Solubility: Complete	Decomposition Temperature: Not determined
Viscosity: <60 cP @ 70°F	Flammability (solid, gas): Not applicable
Flashpoint: None	Autoignition Temperature: Not determined
Flammable Limits: LEL: Not determined	UEL: Not determined

10. STABILITY AND REACTIVITY

Reactivity: Not normally reactive

Chemical Stability: Stable under normal storage and handling conditions.

Possibility of Hazardous Reactions: None known.

Conditions to Avoid: None known.

Incompatible Materials: Strong oxidizing agents, concentrated acids, and some metals.

Hazardous Decomposition Products: When heated to decomposition emits hydrogen chloride, halogenated compounds, and chlorine gas.

11. TOXICOLOGICAL INFORMATION

HEALTH HAZARDS:

Ingestion: Ingestion may cause slight irritation with nausea, vomiting, and diarrhea.

Inhalation: Inhalation of mists may cause slight irritation of the nose, throat, and upper respiratory tract. **Eye:** May cause slight irritation with pain and tearing.

Skin: May cause slight irritation on prolonged or repeated contact.

Sensitization: This material is not known to cause sensitization.

Chronic: None known.

Carcinogenicity: None of the components is listed as a carcinogen or suspected carcinogen by IARC, NTP, or OSHA.

Germ Cell Mutagenicity: None currently known.

Reproductive Toxicity: None currently known.

Numerical Measures of Toxicity:

No toxicity data available

12. ECOLOGICAL INFORMATION

Ecotoxicity:

Product: Fathead minnow NOEC: 1.00 g/L; Ceriodaphnia dubia NOEC: 1.00 g/L; Selenastrum growth NOEC: 2.00 g/L

Persistence and Degradability: Biodegradation is not applicable to inorganic substances.

Bioaccumulative Potential: No data available

Mobility in Soil: No data available

Other Adverse Effects: None known

13. DISPOSAL CONSIDERATIONS

Dispose in accordance with local, state, and federal environmental regulations.

14. TRANSPORT INFORMATION

DOT Hazardous Materials Description:

Proper Shipping Name: Not regulated UN Number: None Hazard Class/Packing Group: None Labels Required: None

15. REGULATORY INFORMATION

CERCLA: This product is not subject to CERCLA release reporting. Many states have more stringent release reporting requirements. Report spills required under federal, state and local regulations.

SARA Hazard Category (311/312): Not Hazardous

SARA 313: This product contains the following chemicals subject to Annual Release Reporting Requirements under SARA Title III, Section 313 (40 CFR 372): None

EPA TSCA Inventory: All of the ingredients in this product are listed on the EPA TSCA Inventory.

CANADA:

This product has been classified under the CPR and this SDS discloses information elements required by the CPR.

Canadian CEPA: All the components of this product are listed on the Canadian DSL. **Canadian WHMIS Classification:** Not classified as dangerous

16. OTHER INFORMATION

NFPA Rating: Health = 0	Flammability = 0
HMIS Rating: Health = 1	Flammability = 0

Instability = 0 Physical Hazard = 0

SDS Revision History: 5/15/2014: New SDS 4/23/2015: Reviewed, no changes required

Disclaimer: This Safety Data Sheet (SDS) is provided in response to customer requests to address the safe handling of the product. All statements, technical information and recommendations contained herein are the best of our knowledge, reliable and accurate. This SDS is not intended to make any representation as to how the product will perform when used for its intended purpose by a user. In that regards the product is sold "AS IS" and nothing in this SDS should be deemed to be a representation or warranty of any injury, loss, or damage, of any kind or nature, which are sustained by or arise from the use of the product. Nothing in this SDS is intended to be a representation or warranty by the manufacturer of the accuracy, safety, or usefulness for any purpose of any technical information, materials, techniques, or practices.

The information contained in this Safety Data Sheet is, to the best of our knowledge, accurate and reliable. This information should be provided to all individuals handling this product. Federal, state, and local regulations should be followed when handling this product.

Roadsaver

EnviroTech, 910 54th Ave, Suite 230, Greely, CO, 80634, US, 970-346-3900

Roadsaver

EnviroTech, 910 54th Ave, Suite 230, Greely, CO, 80634, US, 970-346-3900

DURASOIL[®] SAFETY DATA SHEET

SECTION 1 – IDENTIFICATION

PRODUCT NAME	DURASOIL Ultra-Pure Synthetic Dust Control Fluid	
RELATED PATENTS	U.S. Patent No. 8,968,592 Additional patents may be pending in the L	J.S. and elsewhere
CHEMICAL FAMILY	Non-Petroleum Synthetic Alkane Fluid	
COMMON NAMES	Dust Binder, Dust Control Agent, Dust Cont Inhibitor, Dust Palliative, Dust Retardant, D Dust Suppressant	
MANUFACTURER	Soilworks, LLC – Soil Stabilization & Du 7580 N Dobson Rd, Ste 320 Scottsdale, Arizona 85256 USA (800) 545-5420 USA +1 (480) 545-5454 International info@soilworks.com www.soilworks.com	ıst Control
EMERGENCY PHONE NUMBERS	(800) 545-5420 USA +1 (480) 545-5454 International	
U.S. DATA UNIVERSAL NUMBERING Soilworks, LLC	SYSTEM (DUNS NUMBER) 131946159	
U.S. DEPARTMENT OF DEFENSE CON Soilworks, LLC	IMERCIAL AND GOVERNMENT ENTITY CODE (3FTH5	CAGE CODE)
U.S. DEPARTMENT OF DEFENSE NAT 275-gallon (1,041 Liter) 55-gallon (208 Liter)	IONAL STOCK NUMBERS (NSN) Intermediate Bulk Container (IBC) Tote Drum	6850-01542-5354 6850-01-542-3715
U.S. GENERAL SERVICES ADMINISTRA Soilworks, LLC	ATION (GSA) CONTRACT GS-07F-5364P	October 31, 2018

SYNONYMS/OTHER MEANS OF IDENTIFICATION

Durasoil is a synthetic fluid based dust binder, dust control agent, dust control fluid, dust control liquid, dust control material, dust control product, dust inhibitor, dust palliative, dust retardant, dust stabilizer and dust suppressant.

INTENDED USES

Durasoil is an environmentally safe, 100% non-petroleum, genuine synthetic fluid binder used for a wide variety of applications to abate dust, control dust, eliminate dust, inhibit dust, mitigate dust, reduce dust, retard dust, stabilize dust, stop dust and suppress dust for dust abatement, dust control, dust elimination, dust mitigation, dust reduction, dust stabilization and dust suppression.

SECTION 2 – HAZARDS IDENTIFICATION

This material is NOT considered hazardous according to OSHA criteria.

t clear (colorless) viscous liquid (fluid).
Ordenderen
. Odorless.
ful: may cause lung damage if swallowed.
ammable, but will burn on prolonged exposure to flame for high temperature.
classified as dangerous for the environment.
•

HEALTH HAZARDS

INHALATION Un	nder normal conditions of use, this material is NOT expected to be a primary route of
	xposure.
	olonged or repeated skin contact without proper cleaning can clog the pores of the skin
res	sulting in disorders such as acne/folliculitis.
EYE CONTACT Ma	ay cause slight irritation to eyes.
INGESTION Ha	armful: may cause lung damage if swallowed.

SIGNS AND SYMPTOMS

If material enters lungs, signs and symptoms may include coughing, choking, wheezing, difficulty in breathing, chest congestion, shortness of breath, and/or fever. The onset of respiratory symptoms may be delayed for several hours after exposure. Ingestion may result in nausea, vomiting and/or diarrhea.

U.S. NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) 704 HAZARD CLASS

Health	0	No unusual hazard
Flammability	1	Nonflammable, but will burn on prolonged exposure to flame for high temperature.
Reactivity	0	Stable, non-reactive and non-explosive

U.S. HAZARDOUS MATERIALS IDENTIFICATION SYSTEM (HMIS) RATING

Health	0	No significant risk to health	
Flammability	1	Nonflammable, but will burn on prolonged exposure to flame for high temperature.	
Physical Hazard	0	Stable, non-reactive and non-explosive	
Personal Protection	-	No special hazard under normal use	

SECTION 3 – COMPOSITION/ INFORMATION ON INGREDIENTS

#	COMPONENT	%	CASRN	
1.	A complex mixture of synthetic linear, branched and cyclic alkanes	Trade secret	Non-Hazardous	
2.	Proprietary	Trade secret	Non-Hazardous	

SECTION 4 – FIRST-AID MEASURES

EYE CONTACT

If irritation or redness develops from exposure, flush eyes with clean water. If irritation persists, seek medical attention.

SKIN CONTACT

No treatment necessary under normal conditions of use. Remove contaminated clothing. Wash affected area with mild soap and water. If irritation or redness develops and persists, seek medical attention.

INHALATION

No treatment necessary under normal conditions of use. If breathing difficulties develop move victim away from source of exposure and into fresh air in a position comfortable for breathing. If symptoms persist, seek medical attention.

INGESTION

No treatment necessary under normal conditions of use. If swallowed do not induce vomiting. If symptoms persist, seek medical attention.

SECTION 5 – FIRE-FIGHTING MEASURES

FLAMMABILITY

Nonflammable, but will burn on prolonged exposure to flame or high temperature.

FLASH POINT	420° F (216° C) ASTM D-93 (PMCC)
	474° F (246° C) ASTM D-92 (COC)

AUTOIGNITION TEMPERATURE >605° F (>318° C)

EXTINGUISHING MEDIA

Use foam, water spray or fog. Dry chemical powder, carbon dioxide, sand or earth may be used for small fires only.

SPECIAL FIRE FIGHTING PROCEDURES & PROTECTIVE EQUIPMENT

Do NOT use water in a jet. Proper protective equipment including breathing apparatus must be worn when approaching a fire in a confined space.

SPECIFIC HAZARDS

Hazardous combustion products may include: a complex mixture of airborne solid and liquid particulates and gasses (smoke). Carbon monoxide. Unidentified compounds.

U.S. NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) 704 HAZARD CLASS

Health	0	No unusual hazard
Flammability	1	Nonflammable, but will burn on prolonged exposure to flame or high temperature.
Reactivity	0	Stable, non-reactive and non-explosive

(0 – Minimal, 1 – Slight, 2 – Moderate, 3 – Serious, 4 – Severe)

SECTION 6 – ACCIDENTAL RELEASE MEASURES

Avoid contact with spilled or released material. For guidance on selection of personal protective equipment see Chapter 8 of this Safety Data Sheet. See Chapter 13 for information on disposal. Observe the relevant local and international regulations.

PROTECTIVE MEASURES

Stop the leak, if possible. Avoid contact with skin and eyes. Use appropriate containment to avoid environmental contamination. Prevent from spreading or entering drains, ditches, sewers, rivers or open bodies of water by using sand, earth or other appropriate barriers.

CLEAN-UP METHODS

Avoid accidents, clean up immediately. Slippery when spilled. Prevent from spreading by making a barrier with sand, earth or other containment material. Reclaim liquid directly or in an absorbent. Soak up residue with an absorbent such as clay, sand or other suitable material and dispose of properly.

ADDITIONAL ADVICE

Local authorities should be advised if significant spillages cannot be contained.

SECTION 7 - HANDLING AND STORAGE

GENERAL PRECAUTIONS

Use local exhaust ventilation if there is risk of inhalation of vapors, mists or aerosols. Properly dispose of any contaminated rags or cleaning materials in order to prevent fires. Use the information in this data sheet as input to a risk assessment of local circumstances to help determine appropriate controls for safe handling, storage and disposal of this material.

STORAGE

Keep container tightly closed in a cool, well-ventilated place. Use properly labelled and closeable containers.

HANDLING

Avoid breathing vapors or mist. Avoid contact with eyes. Avoid prolonged or repeated contact with skin. Wash thoroughly after handling. When handling product in drums, safety footwear should be worn and proper handling equipment should be used.

RECOMMENDED MATERIALS

For containers or container linings, use mild steel or high density polyethylene.

ADDITIONAL INFORMATION

Polyethylene containers should not be exposed to high temperatures because of possible risk of distortion.

SECTION 8 - EXPOSURE CONTROLS / PERSONAL PROTECTION

OCCUPATIONAL EXPOSURE LIMITS

ACGIH (mist) :	TWA (inhalable fraction)	5 mg/m ³
OSHA Z1 (Mist):	PEL	5 mg/m ³
OSHA Z1A (Mist):	TWA	5 mg/m ³

EXPOSURE CONTROLS

The level of protection and types of controls necessary will vary depending upon potential exposure conditions. Select controls based on a risk assessment of local circumstances. Appropriate measures include: Adequate ventilation to control airborne concentrations. Where material is heated, sprayed or mist formed, there is greater potential for airborne concentrations to be generated.

PERSONAL PROTECTIVE EQUIPMENT

Personal protective equipment (PPE) should meet recommended national standards. Check with PPE suppliers.

RESPIRATORY PROTECTION

Respiratory protection is NOT required under normal conditions of use in a well-ventilated workplace. In accordance with good industrial hygiene practices, precautions should be taken to avoid breathing of material. If engineering controls do not maintain airborne concentrations to a level which is adequate to protect worker health, select respiratory protection equipment suitable for the specific conditions of use and meeting relevant legislation. Check with respiratory protective equipment suppliers. Where air-filtering respirators are suitable, select an appropriate combination of mask and filter. Select a filter suitable for combined particulate/organic gases and vapors.

HAND PROTECTION

Where hand contact with the product may occur the use of gloves approved to relevant standards (e.g. Europe: EN374, US: F739) made from the following materials may provide suitable chemical protection: PVC, neoprene or nitrile rubber gloves. Suitability and durability of a glove is dependent on usage, e.g. frequency and duration of contact, chemical resistance of glove material, glove thickness, dexterity. Always seek advice from glove suppliers. Contaminated gloves should be replaced. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed with soap and water and dried thoroughly.

EYE PROTECTION

Eye protection is NOT required under normal conditions of use. If material is handled such that it could be splashed into eyes, wear splash-proof safety goggles or full face shield.

PROTECTIVE CLOTHING

Skin protection is NOT required under normal conditions of use or for single, short duration exposures. For prolonged or repeated exposures, use impervious chemical resistant boots, gloves and/or aprons over parts of the body subject to exposure.

MONITORING METHODS

Monitoring of the concentration of substances in the breathing zone of workers or in the general workplace may be required to confirm compliance with an OEL and adequacy of exposure controls.

SECTION 9 – PHYSICAL AND CHEMICAL PROPERTIES

ANILINE POINT	235 °F (113 °C)
ASH CONTENT	<0.01% (None detected)
AUTO IGNITION TEMPERATURE	>605° F (>318° C)
BOILING POINT	464 °F (240 °C)
CLOUD POINT	-22 °F (-30 °C)
COLOR	None. Colorless, clear and bright
CONDUCTIVITY	5,886 pS/m
DENSITY	<6.8 lb/gal (816 kg/m³) @ 59 °F (15 °C)
DIELECTRIC STRENGTH	46 MV/m
FLASH POINT (ASTM D92 COC)	474 °F (246 °C)
FLASH POINT (ASTM D93 PMCC)	420 °F (216 °C)
KINEMATIC VISCOSITY	4 cSt @ 212 °F (100 °C)
ODOR	None, Odorless
OIL SHEEN	None, Odoness None, Oil sheen free
PH	
PHYSICAL FORM	Not applicable. Not an aqueous solution
	Liquid, Synthetic Fluid
POUR POINT	-40 °F (-40 °C)
SPECIFIC GRAVITY	0.8155 @ 59 °F (15 °C)
VAPOR DENSITY (Air = 1)	>1
VAPOR PRESSURE	<0.5 Pa @ 68 °F (20 °C)
VISCOSITY INDEX	130 (minimal change with temperature)
WATER CONTENT	<0.01% (None detected)
WATER SOLUBILITY	Insoluble

SECTION 10 - STABILITY AND REACTIVITY

CHEMICAL STABILITY

Stable.

CONDITIONS TO AVOID

Extreme heat.

MATERIALS TO AVOID

Strong oxidizing agents.

HAZARDOUS DECOMPOSITION

Hazardous decomposition products are NOT expected to form during normal storage.

CORROSIVITY

Non-corrosive.

AIRCRAFT SURFACE REACTIVITY

Non-injurious to aircraft surfaces (Boeing Specification D6-17487 revision R)

Sandwich Corrosion	
Acrylic Crazing	
Paint Softening	
Hydrogen Embrittlement	

Pass / Conforms Pass / Conforms Pass / Conforms Pass / Conforms Pass / Conforms

No crazing, cracking or etching No hardness change, discoloration or staining No failure

Not listed as carcinogenic

Not listed as carcinogenic

Not listed as carcinogenic Not listed as carcinogenic

No corrosion

SECTION 11 - TOXICOLOGICAL INFORMATION

SKIN IRRITATION

Expected to be slightly irritating. Prolonged or repeated contact may cause defatting of the skin which can lead to dermatitis.

EYE IRRITATION

Expected to be slightly irritating.

RESPIRATORY IRRITATION

Inhalation of vapors or mists may cause irritation.

SENSITIZATION

NOT expected to be a skin sensitizer.

REPEATED DOSE TOXICITY

NOT expected to be a hazard.

CARCINOGENICITY

Components are NOT known to be associated with carcinogenic effects.

OSHA U.S. Occupational Safety and Health Administration

NTP U.S. National Toxicology Program

IARC World Health Organization International Agency for Research on Cancer

Prop 65 California Office of Environmental Health Hazard Assessment Proposition 65

REPRODUCTIVE AND DEVELOPMENTAL TOXICITY

NOT expected to be a hazard.

BENZENE & NAPHTHALENE DIOXINS & FURANS (PCDDs / PCDFs) HALOGENATED VOLATILE ORGANICS METALS (TCLP) **METALS** METALS MUTAGENICITY PESTICIDES, HERBICIDES AND PCBS PESTICIDES, HERBICIDES AND PCBS (TCLP) PHENOLIC COMPOUNDS POLYCHLORINATED BIPHENYL (PCBs) POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) SEMI-VOLATILE ORGANIC COMPOUNDS SEMI-VOLATILE ORGANIC COMPOUNDS (SVOC) SEMI-VOLATILE ORGANIC COMPOUNDS (TCLP) VOLATILE ORGANIC COMPOUNDS (TCLP) VOLATILE ORGANIC COMPOUNDS (VOC)

None Detected - EPA 5030B & 8260B None Detected - QC066-97, GC-MS None Detected - EPA 5030B & 8260B None Detected - EPA 6010B & 7470A None Detected - EPA 200.7 & 245.1 None Detected - EPA 6020 & 3050B, ICP None Detected - APHA 8030B None Detected - EPA 8151A None Detected - EPA 8081A & 8151A None Detected - QC066-97, GC-MS None Detected – GC-MS None Detected - EPA 3510, QC058-97, GC-MS None Detected - EPA 3510 & 8270, GC-MS None Detected - EPA 8270C None Detected - EPA 8270 & 1311 None Detected - EPA 8260 None Detected - EPA 8260B

SECTION 12 - ECOLOGICAL INFORMATION

Based on EPA guidelines, Durasoil is classified as practically non-toxic to all species. When used and applied properly, Durasoil is not known to pose any ecological problems.

AQUATIC TOXICITY

Bacterium Fathead Minnow Fathead Minnow Microalga Mysid Shrimp Mysid Shrimp Rainbow Trout Water Flea	Aliivibrio fischeri Pimephales promelas Pimephales promelas Pimephales promelas Pseudokirchneriella sub Americamysis bahia Americamysis bahia Oncorhynchus mykiss Daphnia magna	ocapita	15 minute 7 day 7 day 96 hour 7 day 7 day 96 hour 48 hour	$\begin{array}{c} IC_{50} \\ IC_{25} \\ IC_{50} \\ IC_{50} \\ IC_{50} \\ IC_{25} \\ IC_{50} \\ IC_{50} \\ IC_{50} \\ IC_{50} \end{array}$	>500,000 mg/L >2,000 mg/L >39,000 mg/L >28,000 mg/L >500,000 mg/L >1,000 mg/L >2,000 mg/L >2,000 mg/L 18,000 mg/L
TERRESTRIAL TOXICITY					
Lettuce	Seed germination		120 hour	LC ₅₀	>680,000 mg/L
Lettuce	Root elongation		120 hour	EC ₅₀	>13,000 mg/L
Earthworm	Eisenia andrei		14 day	LC ₅₀	>670,000 mg/L

DEGRADABILITY

Major constituents are expected to be readily biodegradable

MOBILITY

Liquid under most environmental conditions. Floats on water. If it enters soil, it will adsorb to the soil particles and will NOT be mobile.

OTHER ADVERSE EFFECTS

The synthetic fluid contains non-volatile components, which are NOT expected to be released to air in any significant quantities. Synthetic fluid is NOT expected to have ozone depletion potential, photochemical ozone creation potential or global warming potential.

SECTION 13 - DISPOSAL CONSIDERATIONS

MATERIAL DISPOSAL

Recover or recycle if possible. It is the responsibility of the waste generator to determine the toxicity and physical properties of the material generated to determine the proper waste classification and disposal methods in compliance with applicable regulations. Do NOT dispose into the environment, in drains or in water courses.

CONTAINER DISPOSAL

Dispose in accordance with prevailing regulations, preferably to a recognized collector or contractor. The competence of the collector or contractor should be established beforehand.

LOCAL LEGISLATION

Dispose in accordance with applicable regional, national and local laws and regulations.

SECTION 14 - TRANSPORT INFORMATION

U.S. DEPARTMENT OF TRANSPORTATION (DOT)

NOT regulated.

ulated. This material is NOT subject to DOT regulations under 49 CFR Parts 171-180.

INTERNATIONAL MARITIME DANGEROUS GOODS (IMDG)

NOT regulated. This material is NOT classified as dangerous under IMDG regulations.

INTERNATIONAL AIR TRANSPORT ASSOCIATION (IATA)

NOT regulated.

ed. This material is either NOT classified as dangerous under IATA regulations or needs to follow country specific requirements.

SECTION 15 - REGULATORY INFORMATION

The regulatory information is not intended to be comprehensive. Other regulations may apply to this material.

U.S. FEDERAL REGULATIONS

EPA COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION, AND LIABILITY ACT (CERCLA)

This material does NOT contain any chemicals with U.S. EPA CERCLA reportable quantities.

EPA SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT (SARA)

This material does NOT contain any chemicals with SARA reportable quantities.

EPA TOXIC SUBSTANCES CONTROL ACT (TSCA)

All components listed.

EPA CERCLA/SARA SECTION 302 EXTREMELY HAZARDOUS SUBSTANCES AND TPQS

This material does NOT contain any chemicals subject to the reporting requirements of SARA 302 and 40 CFR 372.

EPA CERCLA/SARA SECTION 311/312 (TITLE III HAZARD CATEGORIES)

Acute Health:NoChronic Health:NoFire Hazard:NoPressure Hazard:NoReactive Hazard:No

EPA CERCLA/SARA SECTION 313 AND 40 CFR 372

This material does NOT contain any chemicals subject to the reporting requirements of SARA 313 and 40 CFR 372.

U.S. STATE REGULATIONS

CALIFORNIA SAFE DRINKING WATER AND TOXIC ENFORCEMENT ACT (PROPOSITION 65)

This material does NOT contain any chemicals known to the State of California to cause cancer, birth defects or reproductive harm.

CANADIAN REGULATIONS

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations (CPR) and the SDS contains all the information required by the regulations.

CANADIAN DOMESTIC SUBSTANCES LIST (DSL)

All components listed.

WORKPLACE HAZARDOUS MATERIALS INFORMATION SYSTEM (WHIMIS)

None. This synthetic fluid is NOT a controlled product under the Canadian WHIMIS.

BUREAU DE NORMALIZATION DU QUÉBEC (BNQ)

Durasoil conforms as a dust control agent for non-asphalted roads and other similar surfaces. Certificate of Conformity: August 6, 2014, Certificate #: 1743, Standard #: BNQ 2410-300/2009-10-01, Certification Protocol #: BNQ 2410-900/2010-01-12

EUROPEAN REGULATIONS

EUROPEAN INVENTORY OF EXISTING COMMERCIAL SUBSTANCES (EINECS)

All components listed.

SECTION 16 – OTHER INFORMATION

SDS VERSION NUMBER 1.1

SDS EFFECTIVE DATE 2/27/2015

SDS REGULATIONS

The content and format of this SDS is in accordance with the OSHA Hazard Communication Standard, 29 CFR 1910.1200.

SDS DISTRIBUTION

The information in this document should be made available to all who may handle the product.

DISCLAIMER

The information presented in this Safety Data Sheet is based on data believed to be accurate as of the date this Safety Data Sheet was prepared. HOWEVER, NO WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY OTHER WARRANTY IS EXPRESSED OR IS TO BE IMPLIED REGARDING THE ACCURACY OR COMPLETENESS OF THE INFORMATION PROVIDED ABOVE, THE RESULTS TO BE OBTAINED FROM THE USE OF THIS INFORMATION OR THE PRODUCT, THE SAFETY OF THIS PRODUCT, OR THE HAZARDS RELATED TO ITS USE. No responsibility is assumed for any damage or injury resulting from abnormal use or from any failure to adhere to recommended practices. The information provided above, and the product, are furnished on the condition that the person receiving them shall make their own determination as to the suitability of the product for their particular purpose and on the condition that they assume the risk of their use. In addition, no authorization is given nor implied to practice any patented invention without a license.

C-38

Durasoil

May cause lung damage if swallowed. Nonflammable but will burn on prolonged exposure to flame for high temperature.

Soilworks, 7580 N Dobson Rd, Ste 320, Scottsdale, AZ, 800-545-5420, US, 800-545-5420

Durasoil

May cause lung damage if swallowed. Nonflammable but will burn on prolonged exposure to flame for high temperature.

Soilworks, 7580 N Dobson Rd, Ste 320, Scottsdale, AZ, 800-545-5420, US, 800-545-5420

U. 2 Ú.

œ **JURASO**

• • • • • • •

•

• •

•

• • •

•

•

• • • •

Dimensions*: 40 x 48 x 42 in (100 x 120 x 116 cm) Gross Weight*: 2,040 lbs (925 kg) Ultra-Pure Synthetic Dust Control Fluid Volume*: 275 gal (1,041 L)

Read Material Safety Data Sheet before using this product

Keep out of reach of children For industrial and professional use only

RST AID

ntities of water. If persistent irritation occurs, obtain dical attention. <u>Ingestion:</u> if swallowed, do not induce no treatment necessary under normal conditions Flush exposed area with wate iting: transport to nearest medical facility for additiona follow by washing with soap. Eyes: flush with cop If symptoms persist, obtain medical advice. nated cloth

-oam, water spray or fog.

SPILLS

earth or other containment material. Reclaim liquid directly or tches or open bodies of water by making a barrier with sand, an absorbent such as clay, sand or other suitable material opery when spilled. Avoid accidents and clean up Prevent from spreading or entering and dispose of properly.

C-40

7580 N Dobson Rd, Ste 320, Scottsdale, AZ 85256 Soil Stabilization & Dust Control Manufactured & Distributed by Soilworks, LLC

NSN: 6850-01-542-5354 | Cage Code: 3FTH5 | DUNS: 13-19-46159 800.545.5420 USA 001.480.545.5454 International www.soilworks.com | info@soilworks.com

800.545.5420 USA 001.480.545.5454 International www.soilworks.com 1750 E Northrop Blvd, Ste 250 Chandler, AZ 85286 USA info@sollworks.com

MATERIAL SAFETY DATA SHEET

	SECTION 1 -	MATERIAL IDENTIFICATION
PRODUCT NAME		GORILLA-SNOT*
		*GORILLA-SNOT is a registered trademark of Soilworks, LLC.
MANUFACTURER		Sollworks, LLC.
		1750 E Northrop Blvd, Ste 250 Chandler, AZ 85286-1595 USA
ONLINE INFORMATION		www.soilworks.com
EMERGENCY TELEPHON	E NUMBERS	800.545.5420 USA
		001.480.545-5454 International
REVISION DATE		August 2013 (supersedes November 2007)
PHYSICAL FORM		Mobile liquid
COLOR		Milky White (transparent once cured)
ODOR		Mild / Slight (no odor once cured)
C.A.S. CHEMICAL NAME		Mixture
SYNONYMS		Soil stabilizer, soil stabilization agent, soil solidifier, soil
		amendment, soil additive, soil crusting agent, dust control
		agent, dust inhibitor, dust palliative, dust suppressant, dust
CHEMICAL FAMILY		retardant
EMPIRICAL FORMULA		Vinyi Copolymer Emulsion Mixture
INTENDED USE		
		Soil stabilization, soil solidification, fugitive dust control, dust suppression, dust abatement, tackifier, dust abatement, PM ₁₀ and
		PM ₂₆ air quality control and erosion control
	SECTI	ON 2 - INGREDIENTS
%	CAS Number	Chemical Name

_	%	CAS Number	Chemical Name
1.	20-60	Proprietary	Vinyl Copolymer
2.	80-40	7732-18-5	Water
		SECTION	N 3 - HEALTH HAZARDS

ROUTES OF ENTRY

Eye Contact, Skin Contact, Ingestion and Inhalation

SIGNS AND SYMPTOMS OF ACUTE EXPOSURE

Eyes: Direct contact with this material may cause eye irritation including lachrymation (tearing).

Inhalation: Inhalation of vapor or aerosol may cause irritation to the respiratory tract (nose, throat, and lungs). Skin: Contact may cause skin irritation.

Ingestion: No hazard in normal industrial use.

SIGNS AND SYMPTOMS OF CHRONIC EXPOSURE

Prolonged or repeated contact with skin may cause irritation and dermatitis (inflammation).

CARCINOGENICITY

This material <u>does not</u> contain 0.1% or more of any chemical listed by the International Agency for Research on Cancer (IARC), the National Toxicology Program (NTP), or regulated by the Occupational Safety and Health Administration (OSHA) as a carcinogen.

SECTION 4 - FIRST AID

EYE CONTACT

Flush eyes with clean water for at least 15 minutes. Get immediate medical attention.

SKIN CONTACT

Remove contaminated clothing and shoes. Wash affected area with soap and water. Get medical attention if irritation develops or persists.

Soll Stabilization & Dust Control

800.545.5420 USA 001.480.545.5454 International www.soilworks.com 1750 E Northrop Blvd, Ste 250 Chandler, AZ 85286 USA info@soilworks.com

INHALATION

Move patient to fresh air. If breathing has stopped or is labored give assisted respiration (e.g. mouth-to-mouth). Supplemental oxygen may be indicated. Seek medical advice.

INGESTION

Give the victim one or two glasses of water or milk to drink. Get immediate medical attention. Never give anything by mouth to an unconscious person.

SECTION 5 - FIRE AND EXPLOSION DATA

FLASH POINT (closed cup) UPPER EXPLOSION LIMIT (UEL) LOWER EXPLOSION LIMIT (LEL) AUTOIGNITION TEMPERATURE FIRE HAZARD CLASSIFICATION (OSHA/NFPA) EXTINGUISHING MEDIA Not applicable Not applicable Not applicable Not applicable Non-Combustible

Product does not burn. The product will only burn after the water it contains is driven off. For dry polymer use carbon dioxide, foam, dry chemical or water fog to extinguish fire. Aqueous solution **is not** flammable.

FIRE FIGHTING EOUIPMENT

Wear self-contained breathing apparatus (SCBA) and full fire-fighting protective clothing. Thoroughly decontaminate all protective equipment after use.

FIRE FIGHTING INSTRUCTIONS

Containers of this material may build up pressure if exposed to heat (fire). Use water spray to cool fire-exposed containers.

FIRE AND EXPLOSION HAZARDS

This material will not burn unless it is evaporated to dryness. Closed containers may rupture when exposed to extreme heat.

HAZARDOUS COMBUSTION PRODUCTS

When dried polymer burns, water (H2O), carbon dioxide (CO2), carbon monoxide (CO) and smoke are produced.

SECTION 6 - ACCIDENTAL RELEASE MEASURES

CONTAINMENT TECHNIQUES (Removal of ignition sources, diking etc)

Stop the leak, If possible. Ventilate the space involved.

CLEAN-UP PROCEDURES

Wear suitable protective equipment. If recovery is not feasible, admix with dry soil, sand or non-reactive absorbent and place in an appropriate chemical waste container. Prevent spilled material from entering sanitary sewers, storm sewers, drainage systems and from entering bodies of water or ditches that lead to waterways. Transfer to containers by suction, preparatory for later disposal. Place In metal containers for recovery or disposal. Flush area with water spray. Wash contaminated property (e.g., automobiles) quickly before the material dries. For large spills, recover spilled material with a vacuum truck.

OTHER EMERGENCY ADVICE

Spilled polymer emulsion is very slippery. Use care to avoid falls. A film will form on drying. Remove saturated clothing and wash contacted skin area with soap and water. Product imparts a milky white color to contaminated waters. Foaming may result. Sewage treatment plants may not be able to remove the white color imparted to the water.

SECTION 7 - HANDLING AND STORAGE

STORAGE

Keep from freezing. Store in a dry area. Keep containers closed when not in use to minimize contact with atmospheric air and prevent inoculation with microorganisms.

HANDLING

Use only in well-ventilated areas. Avoid contact with eyes. Avoid breathing vapors. Avoid prolonged or repeated contact with skin. Wash hands thoroughly after handling and before eating or drinking.

Soil Stabilization & Dust Control

800,545,5420 USA 001,480,545,5454 International www.soilworks.com 1750 E Northrop Blvd, Ste 250 Chandler, AZ 85286 USA info@soilworks.com

SECTION 8 - PERSONAL PROTECTION / EXPOSURE CONTROLS

EXPOSURE GUIDELINES

There are no Occupational Safety and Health (OSHA) Permissible Exposure Limits (PEL) or American Conference of Governmental Industrial Hyglenists (ACGIH) Threshold Limit Values (TLV) or Short Term Exposure Limits (STEL) established for the component(s) of this product.

EYE PROTECTION

Chemical safety glasses.

HAND PROTECTION

Rubber Gloves. The breakthrough time of the selected glove(s) must be greater than the intended use period. RESPIRATORY PROTECTION

Not required under normal use.

PROTECTIVE CLOTHING

No specific recommendation.

ENGINEERING CONTROLS

Good general ventilation should be sufficient to control airborne levels of irritating vapors.

SECTION 9 – TYPICAL PF	HYSICAL AND CHEMICAL PROPERTIES
PHYSICAL FORM	Liquid
COLOR	Milky White (transparent once cured)
ODOR	Mild / Slight (no odor once cured)
pH	4-9
EVAPORATION RATE	<1 (BuAc=1)
VAPOR DENSITY	> 1 (Air = 1)
BOILING POINT	>100.00°C (>212.00°F)
FREEZING POINT	<0°C (<32°F)
SOLUBILITY IN WATER	Completely (100%) (until cured)
SPECIFIC GRAVITY (Water = 1)	1.02-1.10

SECTION 10 - STABILITY AND REACTIVITY

STABILITY

Stable at ambient temperatures. Coagulation may occur following freezing, thawing or boiling. INCOMPATIBILITY (Materials to Avoid) No incompatibilities have been identified.

HAZARDOUS DECOMPOSITION PRODUCTS

Thermal decomposition may form: Acetic acid and Acrolein. Thermal decomposition may produce various hydrocarbons and irritating, acrid vapors.

HAZARDOUS POLYMERIZATION

Will not occur

CONDITIONS TO AVOID

Freezing temperatures (until cured).

SECTION 11 - TOXICOLOGICAL PROPERTIES

ACUTE EYE TOXICITY

No Information is available.

ACUTE ORAL TOXICITY

No information is available.

ACUTE SKIN TOXICITY

No Information is available.

ACUTE INHALATION TOXICITY

No Information is available.

800.545.5420 USA 001.480.545.5454 International www.soilworks.com 1750 Northrop Blvd, Ste 250 Chandler, AZ 85286 USA info@soilworks.com

CHRONIC/CARCINOGENICY

This material <u>does not</u> contain 0.1% or more of any chemical listed by the International Agency for Research on Cancer (IARC), the National Toxicology Program (NTP), or regulated by the Occupational Safety and Health Administration (OSHA) as a carcinogen.

SECTION 12 - ECOLOGICAL INFORMATION

ECOTOXICITY Common Name	Species	Test	Result	Concentration
Green Algae	Raphidocelus Subcapitata	96-hr chronic LC50	>1,000	Undiluted
Fathead Minnow	Pimephales Promelas	96-hr acute LC50	>1,208	Undiluted
Rainbow Trout	Oncorhynchus Mykiss	96-hr acute LC50	>1,000	Undiluted

ENVIRONMENTAL FATE

No data is available

SECTION 13 - DISPOSAL CONSIDERATIONS

WASTE DISPOSAL METHOD

This material **is not** a RCRA hazardous waste. Disposal of this material is not regulated under RCRA. Consult federal, state and local regulations to ensure that this material and its containers, if discarded, is disposed of in compliance with all regulatory requirements. NOTE: As supplied or diluted, product material (foam

Included), when splashed on automobiles or other personal property, is difficult to remove if allowed to dry.

RCRA HAZARD CLASS

This material **is not** a RCRA hazardous waste. When discarded in its purchased form, this material would not be regulated as a RCRA Hazardous waste under 40 CFR 261.

SECTION 14	- TRANSPORT INFORMATION
DOT NON-BULK SHIPPING NAME	Refer to Bill of Lading - Not DOT Regulated // Keep From Freezing // Not dangerous goods
DOT BULK SHIPPING NAME	Refer to Bill of Lading.
IMO SHIPPING DATA	Refer to Bill of Lading.
ICAO/IATA SHIPPING DATA	Refer to Bill of Lading - Not IATA Regulated // Keep From Freezing // Not dangerous goods
CFR	Not Regulated // Keep From Freezing // Not dangerous goods
IMDG	Not Regulated // Keep From Freezing // Not dangerous goods
СТС	Not Regulated // Keep From Freezing // Not dangerous goods
SECTION 15	- REGULATORY INFORMATION
THE A PROPERTY OF A LAW TAILORY OF ATUR	

TSCA SECTION 8(b) INVENTORY STATUS

All components are included in the EPA Toxic Substances Control Act (TSCA) Chemical Substance Inventory. TSCA SECTION 12(b) EXPORT NOTIFICATION

This material **does not** contain any components that are subject to the U.S. Toxic Substances Control Act (TSCA) Section 12 (b) Export Notification requirements.

OSHA Hazard Communication Standard (29CFR1910.1200) hazard class(es)

This material **is not** classified as hazardous under the criteria of the U.S. Occupational Safety and Health Administration (OSHA) Hazard Communication Standard, 29 CFR 1910.1200

EPA SARA Title III Section 304 CERCLA

Reportable quantities have not been established for any of this material's components.

EPA SARA TITLE III Section 311/312 HAZARD COMMUNICATION STANDARD (HCS)

This material is not a hazardous chemical.

EPA SARA Title III Section 313 TOXIC CHEMICAL LIST (TCL)

This product does not contain Section 313 Reportable Ingredients.

CANADIAN INVENTORY STATUS

All components of this material are listed on the Canadian Domestic Substances List (DSL)

Soil Stabilization & Dust Control

800.545.5420 USA 001.480.545.5454 International www.soilworks.com 1750 E Northrop Blvd, Ste 250 Chandler, AZ 85286 USA info@soilworks.com

CANADIAN WHMIS

This material **is not** classified as a controlled product under the Canadian Workplace Hazardous Material Information System.

ADDITIONAL CANADIAN REGULATORY INFORMATION

This product **does not** contain a substance present on the WHMIS Ingredient Disclosure List (IDL) which is at or above the specified concentration limit.

EUROPEAN INVENTORY STATUS (EINECS)

The polymer portion of this product is manufactured from reactants which are listed on EINECS and meets the EINECS definition of an exempt polymer.

AICS (Australia)

Included on inventory

ENCS (Japan)

Included on inventory

ECL (South Korea)

Included on inventory

SEPA (China)

Included on inventory

SECTION 16 - OTHER INFORMATION

HMIS and NFPA Classification

Health: 1Flammability: 0Reactivity: 0Special Hazard: 0

Gorilla Snot

Direct contact with this material may cause eye irritation including lachrymation (tearing).

Inhalation of vapor or aerosol may cause irritation to the respiratory tract.

Contact may cause skin irritation.

Eye contact: flush eyes with clean water for at least 15 minutes. Get immediate medical attention.

Skin contact: Remove contaminated chlothing and shoes. Wash affected area with soap and water. Get medical attention if irritation persists.

Ihalation: Move patient to fresh air. If breathing has stopped or is labored give assisted respiration. Supplemented oxygen may be indicated. Seek medical advice.

Ingestion: Give the victim one or two glasses of water or milk to drink. Get immediate medical attention.

Soilworks, 7580 N Dobson Rd, Ste 320, Scottsdale, AZ, 800-545-5420, US, 800-545-5420

Gorilla Snot

Direct contact with this material may cause eye irritation including lachrymation (tearing).

Inhalation of vapor or aerosol may cause irritation to the respiratory tract.

Contact may cause skin irritation.

Eye contact: flush eyes with clean water for at least 15 minutes. Get immediate medical attention.

Skin contact: Remove contaminated chlothing and shoes. Wash affected area with soap and water. Get medical attention if irritation persists.

Ihalation: Move patient to fresh air. If breathing has stopped or is labored give assisted respiration. Supplemented oxygen may be indicated. Seek medical advice.

Ingestion: Give the victim one or two glasses of water or milk to drink. Get immediate medical attention.

Soilworks, 7580 N Dobson Rd, Ste 320, Scottsdale, AZ, 800-545-5420, US, 800-545-5420

L'A • • • • • • • • • • • U

œ GORILLA-SNO1

Vinyl Copolymer Soil Stabilizer

- Volume*: 275 gal (1,041 L)
- Gross Weight*: 2,500 lbs (1,135 kg)
- Dimensions⁺:40 x 48 x 42 in (100 x 120 x 116 cm)
 - "Specifications are approximate Doced Manageric Ceferent Decod
- Read Material Safety Data Sheet before using this product
 Keep out of reach of children
 - For industrial and professional use only
 Protect from Freezing

FIRST AID

<u>chalation</u>: no treatment necessary under normal conditions of use. If symptoms persist, obtain medical advice. <u>Skint</u> temove contaminated clothing, Itush exposed area with anier and follow by washing with soap. <u>Elses</u>: flush with opious quantities of water. If persistent irritation occurs, botain medical attention. <u>Ingestion</u>: if swallowed, do not notuce vomiting: transport to nearest medical facility for diditional treatment.

SPILLS

Sippery when spilled. Avoid accidents and clean up immediately. Prevent from spreading or entering drains, ditches or open bodies of water by making a barrier with sand, earth or other containment material. Reclaim liquid streetly or in an absorbent such as day, sand or other suitable material and dispose of properly.

C-47

Contract Holder

GSA

Soilworks, LLC Soil Stabilization & Dust Control 7580 N Dobson Rd, Ste 320, Scottsdale, AZ 85256

Manufactured & Distributed by

800.545.5420 USA 001.480.545.5454 International www.soilworks.com 1750 E Northrop Blvd, Ste 250 Chandler, AZ 85286 USA info@soilworks.com

MATERIAL SAFETY DATA SHEET

SECTION 1 -	MATERIAL IDENTIFICATION
PRODUCT NAME	SOILTAC*
MANUFACTURER	*SOILTAC is a registered trademark of Soilworks, LLC. Soilworks, LLC. 1750 East Northrop Blvd, Suite 250
TELEPHONE NUMBER ONLINE INFORMATION	Chandler, Arizona 85286-1747 USA <u>www.soilworks.com</u> 800-545-5420 Toll Free USA / +1.480.545.5454 (International) www.Soilworks.com
EMERGENCY TELEPHONE NUMBERS REVISION DATE PHYSICAL FORM COLOR ODOR	800-545-5420 Toll Free USA / +1.480.545.5454 (International) June 2013 <i>(supersedes November 2006)</i> Mobile liquid Milky White (transparent once cured) Mild / Slight (no odor once cured)
C.A.S. CHEMICAL NAME SYNONYMS	Mixture Soil stabilizer, soil stabilization agent, soil solidifier, soil amendment, soil additive, soil crusting agent, dust control agent, dust inhibitor, dust palliative, dust suppressant, dust retardant
CHEMICAL FAMILY EMPIRICAL FORMULA INTENDED USE	Vinyl Copolymer Emulsion Mixture Soil stabilization, soil solidification, fugitive dust control, dust suppression, dust abatement, tackifier, dust abatement, PM_{10} and $PM_{2.5}$ air quality control and erosion control
SECT	ION 2 - INGREDIENTS
% CAS Number	Chemical Name

	%	CAS Number	Chemical Name
1.	50-60	Proprietary	Vinyl Copolymer
2.	40-50	7732-18-5	Water
		SECTIO	ON 3 - HEALTH HAZARDS

ROUTES OF ENTRY

Eye Contact, Skin Contact, Ingestion and Inhalation

SIGNS AND SYMPTOMS OF ACUTE EXPOSURE

Eyes: Direct contact with this material may cause eye irritation including lachrymation (tearing).

Inhalation: Inhalation of vapor or aerosol may cause irritation to the respiratory tract (nose, throat, and lungs). Skin: Contact may cause skin irritation.

Ingestion: No hazard in normal industrial use.

SIGNS AND SYMPTOMS OF CHRONIC EXPOSURE

Prolonged or repeated contact with skin may cause irritation and dermatitis (inflammation).

CARCINOGENICITY

This material <u>does not</u> contain 0.1% or more of any chemical listed by the International Agency for Research on Cancer (IARC), the National Toxicology Program (NTP), or regulated by the Occupational Safety and Health Administration (OSHA) as a carcinogen.

SECTION 4 - FIRST AID

EYE CONTACT

Flush eyes with clean water for at least 15 minutes. Get immediate medical attention.

SKIN CONTACT

Remove contaminated clothing and shoes. Wash affected area with soap and water. Get medical attention if irritation develops or persists.

INHALATION

Move patient to fresh air. If breathing has stopped or is labored give assisted respiration (e.g. mouth-to-mouth). Supplemental oxygen may be indicated. Seek medical advice.

Soil Stabilization & Dust Control

800.545.5420 USA 001.480.545.5454 International www.soilworks.com 1750 E Northrop Blvd, Ste 250 Chandler, AZ 85286 USA info@soilworks.com

INGESTION

Give the victim one or two glasses of water or milk to drink. Get immediate medical attention. Never give anything by mouth to an unconscious person.

SECTION 5 - FIRE AND EXPLOSION DATA

FLASH POINT (closed cup) UPPER EXPLOSION LIMIT (UEL) LOWER EXPLOSION LIMIT (LEL) AUTOIGNITION TEMPERATURE FIRE HAZARD CLASSIFICATION (OSHA/NFPA) EXTINGUISHING MEDIA Not applicable Not applicable Not applicable Not applicable Non-Combustible

Product does not burn. The product will only burn after the water it contains is driven off. For dry polymer use carbon dioxide, foam, dry chemical or water fog to extinguish fire. Aqueous solution **is not flammable**.

FIRE FIGHTING EQUIPMENT

Wear self-contained breathing apparatus (SCBA) and full fire-fighting protective clothing. Thoroughly decontaminate all protective equipment after use.

FIRE FIGHTING INSTRUCTIONS

Containers of this material may build up pressure if exposed to heat (fire). Use water spray to cool fire-exposed containers.

FIRE AND EXPLOSION HAZARDS

This material **will not burn** unless it is evaporated to dryness. Closed containers may rupture when exposed to extreme heat.

HAZARDOUS COMBUSTION PRODUCTS

When dried polymer burns, water (H₂O), carbon dioxide (CO₂), carbon monoxide (CO) and smoke are produced. SECTION 6 - ACCIDENTAL RELEASE MEASURES

CONTAINMENT TECHNIQUES (Removal of ignition sources, diking etc)

Stop the leak, if possible. Ventilate the space involved.

CLEAN-UP PROCEDURES

Wear suitable protective equipment. If recovery is not feasible, admix with dry soil, sand or non-reactive absorbent and place in an appropriate chemical waste container. Prevent spilled material from entering sanitary sewers, storm sewers, drainage systems and from entering bodies of water or ditches that lead to waterways. Transfer to containers by suction, preparatory for later disposal. Place in metal containers for recovery or disposal. Flush area with water spray. Wash contaminated property (e.g., automobiles) quickly before the material dries. For large spills, recover spilled material with a vacuum truck.

OTHER EMERGENCY ADVICE

Spilled polymer emulsion is very slippery. Use care to avoid falls. A film will form on drying. Remove saturated clothing and wash contacted skin area with soap and water. Product imparts a milky white color to contaminated waters. Foaming may result. Sewage treatment plants may not be able to remove the white color imparted to the water.

SECTION 7 - HANDLING AND STORAGE

STORAGE

Keep from freezing. Store in a dry area. Keep containers closed when not in use to minimize contact with atmospheric air and prevent inoculation with microorganisms.

HANDLING

Use only in well-ventilated areas. Avoid contact with eyes. Avoid breathing vapors. Avoid prolonged or repeated contact with skin. Wash hands thoroughly after handling and before eating or drinking.

SECTION 8 - PERSONAL PROTECTION / EXPOSURE CONTROLS

EXPOSURE GUIDELINES

There are no Occupational Safety and Health (OSHA) Permissible Exposure Limits (PEL) or American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Values (TLV) or Short Term Exposure Limits (STEL) established for the component(s) of this product.

EYE PROTECTION

Chemical safety glasses.

HAND PROTECTION

Rubber Gloves. The breakthrough time of the selected glove(s) must be greater than the intended use period. **RESPIRATORY PROTECTION**

Not required under normal use.

800.545.5420 USA 001.480.545.5454 International www.soilworks.com

1750 E Northrop Blvd, Ste 250 Chandler, AZ 85286 USA info@soilworks.com

PROTECTIVE CLOTHING

No specific recommendation.

ENGINEERING CONTROLS

	nt to control airborne levels of irritating vapors. PHYSICAL AND CHEMICAL PROPERTIES
PHYSICAL FORM	liquid
COLOR	Milky White (transparent once cured)
ODOR	Mild / Slight (no odor once cured)
pH	4.5-6.0
EVAPORATION RATE	<1 (BuAc=1)
VAPOR DENSITY	> 1 (Air = 1)
BOILING POINT	>100.00°C (>212.00°F)
FREEZING POINT	<0°C (<32°F)
SOLUBILITY IN WATER	Completely (100%) (until cured)
SPECIFIC GRAVITY (Water = 1)	1.05-1.10
	STABILITY AND REACTIVITY
STABILITY	
	on may occur following freezing, thawing or boiling.
INCOMPATIBILITY (Materials to Avoid)	of they occur following neezing, thewing of bolling.
No incompatibilities have been identified.	
HAZARDOUS DECOMPOSITION PRODUC	τς
	cid and Acrolein. Thermal decomposition may produce various
hydrocarbons and irritating, acrid vapors.	ciù and Actolem. Thermai decomposition may produce various
HAZARDOUS POLYMERIZATION	
Will not occur	
CONDITIONS TO AVOID	
Freezing temperatures (until cured).	
	TOXICOLOGICAL PROPERTIES
ACUTE EYE TOXICITY	TOXICOLOGICAL PROPERTIES
No Information is available.	
ACUTE ORAL TOXICITY	
No Information is available. ACUTE SKIN TOXICITY	
No Information is available.	
ACUTE INHALATION TOXICITY	
No Information is available.	
CHRONIC/CARCINOGENICY	a af ann ab an iad line al bush a latan air a l ta an fa Dan a'
	re of any chemical listed by the International Agency for Research on
	ram (NTP), or regulated by the Occupational Safety and Health
Administration (OSHA) as a carcinogen.	
SECTION 12 -	ECOLOGICAL INFORMATION

SECTION 12 - ECOLOGICAL INFORMATION

ECOTOXICITY Common Name Concentration	Species			Tes	t								Re	su	lt								
Green Algae Fathead Minnow Rainbow Trout	Raphidocelus Subcapitat Pimephales Promelas Oncorhynchus Mykiss	a	9	96-h 96-h	nr a	cut	te l	LC5	0)		:	>1,0 >1,2 >1,0	208		Ur	ndi	ilut ilut	ed				
ENVIRONMENTAL FATE																							
No data is available.																							

800.545.5420 USA 001.480.545.5454 International www.soilworks.com 1750 E Northrop Blvd, Ste 250 Chandler, AZ 85286 USA info@soilworks.com

SECTION 13 - DISPOSAL CONSIDERATIONS

WASTE DISPOSAL METHOD

This material **is not** a RCRA hazardous waste. Disposal of this material is not regulated under RCRA. Consult federal, state and local regulations to ensure that this material and its containers, if discarded, is disposed of in compliance with all regulatory requirements. NOTE: As supplied or diluted, product material (foam included), when splashed on automobiles or other personal property, is difficult to remove if allowed to dry.

RCRA HAZARD CLASS

This material **is not** a RCRA hazardous waste. When discarded in its purchased form, this material would not be regulated as a RCRA Hazardous waste under 40 CFR 261.

SECTION 14 - TRANSPORT INFORMATION

SECTION 14 - TRANSPORT INFORMATION					
DOT NON-BULK SHIPPING NAME	Refer to Bill of Lading - Not DOT Regulated // Keep From Freezing // Not dangerous goods				
DOT BULK SHIPPING NAME	Refer to Bill of Lading.				
IMO SHIPPING DATA	Refer to Bill of Lading.				
ICAO/IATA SHIPPING DATA	Refer to Bill of Lading - Not IATA Regulated // Keep From Freezing // Not				
dangerous goods					
CFR	Not Regulated // Keep From Freezing // Not dangerous goods				
IMDG	Not Regulated // Keep From Freezing // Not dangerous goods				
СТС	Not Regulated // Keep From Freezing // Not dangerous goods				
SECTION	15 - REGULATORY INFORMATION				
TSCA SECTION 8(b) INVENTORY STA	ITUS				
All components are included in the EPA Toxic Substances Control Act (TSCA) Chemical Substance Inventory.					
TSCA SECTION 12(b) EXPORT NOTIF	ICATION				
This material does not contain any c	components that are subject to the U.S. Toxic Substances Control Act (TSCA)				
Section 12 (b) Export Notification rec					
OSHA Hazard Communication Star	dard (29CFR1910.1200) hazard class(es)				
This material is not classified as haze	ardous under the criteria of the U.S. Occupational Safety and Health				
	nunication Standard, 29 CFR 1910.1200				
EPA SARA Title III Section 304 CERC					
	established for any of this material's components.				
EPA SARA Title III Section 311/312	AZARD COMMUNICATION STANDARD (HCS)				
	This material is not a hazardous chemical.				
EPA SARA Title III Section 313 TOXI	C CHEMICAL LIST (TCL)				
This product does not contain Section	on 313 Reportable Ingredients.				
CANADIAN INVENTORY STATUS					
All components of this material are l	isted on the Canadian Domestic Substances List (DSL)				
CANADIANIWHMIS					

CANADIAN WHMIS

This material **is not** classified as a controlled product under the Canadian Workplace Hazardous Material Information System.

ADDITIONAL CANADIAN REGULATORY INFORMATION

This product **does not** contain a substance present on the WHMIS Ingredient Disclosure List (IDL) which is at or above the specified concentration limit.

EUROPEAN INVENTORY STATUS (EINECS)

The polymer portion of this product is manufactured from reactants which are listed on EINECS and meets the EINECS definition of an exempt polymer.

AICS (Australia)

Included on inventory

ENCS (Japan)

Included on inventory

ECL (South Korea)

Included on inventory

SEPA (China)

Included on inventory

Health

Flammability

Special Hazard

Reactivity

800.545.5420 USA 001.480.545.5454 International www.soilworks.com

1750 E Northrop Blvd, Ste 250 Chandler, AZ 85286 USA info@soilworks.com

SECTION 16 - OTHER INFORMATION HMIS and NFPA Classification : 1 : 0 : 0 : 0

Soiltac

Direct contact with this material may cause eye irritation including lychrymation (tearing). Flush eyes with water for at least 15 minutes. Get medical attention.

Inhalation of vapor or aerosol may cause irritation to the respiratory tract. Move patient to fresh air. If breathing has stopped or is labored give assisted respiration. Supplemental oxygen may be indicated. Seek medical advice.

Contact may cause skin irritation. Remove contaminated clothing and shoes. Wash affected area with soap and water. Get medical attention if irritation develops or persists.

Soilworks, 7580 N Dobson Rd, Ste 320, Scottsdale, AZ, 800-545-5420, US, 800-545-5420

Soiltac

Direct contact with this material may cause eye irritation including lychrymation (tearing). Flush eyes with water for at least 15 minutes. Get medical attention.

Inhalation of vapor or aerosol may cause irritation to the respiratory tract. Move patient to fresh air. If breathing has stopped or is labored give assisted respiration. Supplemental oxygen may be indicated. Seek medical advice.

Contact may cause skin irritation. Remove contaminated clothing and shoes. Wash affected area with soap and water. Get medical attention if irritation develops or persists.

Soilworks, 7580 N Dobson Rd, Ste 320, Scottsdale, AZ, 800-545-5420, US, 800-545-5420

S. U

SOILTAC

• • • • • • • •

•

• • • • • • • • • • • • • •

• • • • • •

Vinyl Copolymer Soil Stabilizer

Gross Weight*: 2,600 lb (1,180 kg)

Dimensions*: 40 x 48 x 42 in (100 x 120 x 116 cm)

pecifications are approximate Read Material Safety Data Sheet before using this product

Read waterial safety bata sheet before using this
 Keep out of reach of children
 For industrial and professional use only

For industrial and professional use only
 Protect from Freezing

Inhalation: no treatment necessary under normal conditions of use. If symptoms persist, obtain medical advice. <u>Skin:</u> Remove ontaminated cothing: Hush exposed area with

FIRST AID

ater and follow by washing with soap. <u>Eyes</u> flush with pious quantities of water. If persistent irritation occurs, butain medical attention. <u>Ingestion</u>: if swallowed, do not duce vomiting: transport to nearest medical facility for botitional treatment.

SPILLS

apper, which apprect. Avoid accuents and crean up immediately. Prevent from spreading or entering drains, dirthes or open bodies of water by making a barrier with and, earth or other containment material. Reclaim liquid directly or in an absorbent such as clay sand or other suitable material and dispose of properly.

C-54

GSA Contract Holder

Manufactured & Distributed by Soilworks, LLC Soil Stabilization & Dust Control 7580 N Dobson Rd, Ste 320, Scottsdale, AZ 85256 800.545.5420 USA | 001.480.545.5454 Internationa www.soilworks.com | info@soilworks.com

800.545.5420 USA | 001.480.545.5454 International www.soilworks.com | info@soilworks.com NSN: 6850-01-519-4708 | Cage Code: 3FTH5 | DUNS: 13-19-46159

DUST CONTROL

MATERIAL SAFETY DATA SHEET NAME OF PRODUCT COHEREX

SECTION 1: PRODUCT AND COMPANY IDENTIFICATION

PRODUCT NAME:	COHEREX	HAZARDOUS MATER	IALS IDENTIFICATION S	YSTEN
SYNONYMS:	PETROLEUM	HMIS® HAZARD RATING		
PRODUCT CODES:	1900	4 - SEVERE	HEALTH	1*
MANUFACTURER:	TRICOR REFINING, LLC	3 - SERIOUS	FLAMMABILITY	0
DIVISION:	BAKERSFIELD	2 - MODERATE	REACTIVITY	0
ADDRESS:	P.O. BOX 5877, BAKERSFIELD, CA 93388	1 - SLIGHT		-
EMERGENCY PHONE:	(661) 393-7110	0 - MINIMAL		
PREPARED BY:	TRICOR REFINING, LLC HEALTH, SAF	ETY AND ENVIRONMEN	TAL DEPARTMENT	й. И.

SECTION 2: HAZARDOUS INGREDIENTS / IDENTITY INFORMATION

CHEMICAL FAMILY: PET	ROLEUM HYDROCAR	BON IN WATER EMULSI	ON	
HAZARDOUS COMPONENT(S)	CAL-OSHA PEL-TWA (8 HOUR)	ACGIH TLV TWA (8 HOUR)	OTHER LIMITS RECOMMENDED	% BY WEIGHT
Heavy Naphthenic Distillate Solvent Extract CAS No. 64742-11-6	5 mg/m³ (As mineral oil mist)	5 mg/m³ (As mineral oil mist)	None	100

SECTION 3: HEALTH HAZARDS IDENTIFICATION

			and the second se	
ROUTES OF ENTRY:	EYES: Yes	SKIN: Yes	INGESTION: Yes	INHALATION: Yes

HEALTH HAZARDS (ACUTE AND CHRONIC):

EYES:	No data available.
SKIN:	Prolonged skin contact may cause irritation.
INGESTION:	This product is not expected to be acutely toxic by ingestion. If swallowed, do not induce vomiting. Call a physician.
INHALATION:	Remove the person to fresh air if respiratory discomfort occurs.
CARCINOGENICITY:	ACGIH, NTP, OSHA and IARC carcinogen lists were checked for those components with CAS Registry Numbers 64742-11-6.
ACGIH:	This product contains no ingredients classified as carcinogens.
IARC:	This product contains petroleum oils similar to ones categorized by the International Agency for Research on Cancer as causing skin cancer in laboratory animals when the oil was repeatedly applied for most of the lifetime of the animal with no effort made to remove the oil between applications. Handling instructions and precautions outlined in this MSDS should be followed when handling this product.
NTP:	This product contains no ingredients classified as carcinogens.
Code: 1900	1

OSHA: This product contains no ingredients classified as carcinogens.

CA PROP 65: This product contains chemicals in trace quantities that are on the California Proposition 65 List.

MEDICAL CONDITIONS AGGRAVATED BY EXPOSURE:

Persons susceptible to dermatitis (skin rash) may aggravate their condition by skin contact with this product.

SECTION 4: EMERGENCY AND FIRST AID MEASURES

EYES: Immediately flush eyes with water for a minimum of 15 minutes. Seek medical attention immediately.

SKIN: Wash with soap and water.

INGESTION: Contact a physician immediately.

INHALATION: If operating conditions create airborne concentrations that exceed the exposure standard, move the person to fresh air. Administer CPR if required. Provide oxygen if breathing is difficult. Seek medical attention immediately.

SECTION 5: FIRE AND EXPLOSION HAZARD DATA

FLAMMABLE LIMITS IN AIR,	UPPER: No data available
(% BY VOLUME)	LOWER: No data available
FLASH POINT: COC °F:	Not applicable
EXTINGUISHING MEDIA:	Foam, water fog, dry chemical, CO2
SPECIAL FIRE FIGHTING PROCEDURES:	None
HAZARDOUS DECOMPOSITION PRODUC	TS:
	Normal combustion forms carbon dioxide and water vapor, and may produce oxides of sulfur and nitrogen. Incomplete combustion can produce carbon monoxide.

SECTION 6: SPILL OR LEAK PROCEDURES

ACCIDENTAL RELEASE MEASURES:	In case of spill, clean up using absorbent material such as earth or sand. If spilled into the water, remove the bulk of the product by skimming. If spilled into a navigable waterway in the United States or that may enter the United States, and a film, sheen or discoloration of any water surface is observed, the spill must be reported to the United States National Response Center by calling (800) 424-8802.
WASTE DISPOSAL METHOD:	Dispose of in accordance with all applicable Federal, Provincial and Local Regulations.

SECTION 7: HANDLING AND STORAGE

HANDLING AND STORAGE:	Avoid fire, sparks or open flame. Wear appropriate personal protective equipment to ensure that this product does not contact the eyes or skin.
VENTILATION:	Use adequate ventilation to keep the airborne concentrations of this material below the established exposure limits.

SECTION 8: EXPOSURE CONTROLS/PERSONAL PROTECTION

RESPIRATORY PROTECTION:	If operating conditions create airborne concentrations that exceed the exposure standard for mineral oil mists, the use of an approved NIOSH/OSHA respirator for organic vapors or air supplied breathing equipment is recommended.
EYE PROTECTION:	Wear appropriate safety glasses, goggles or face shield.
Code: 1900	2

SKIN PROTECTION:

Long sleeve cotton shirt and cotton pants are recommended. Wear appropriate gloves.

SECTION 9: PHYSICAL AND CHEMICAL PROPERTIES

ŧ

 APPEARANCE:
 N/T (non Transparent) Yellow

 ODOR:
 Petroleum Odor

 PHYSICAL STATE:
 Liquid

 INITIAL BOILING POINT:
 Greater than 100 & C (212 ° F)

VAPOR PRESSURE (mmHg): Same VAPOR DENSITY (AIR = 1): Same SPECIFIC GRAVITY (H₂O = 1): 1.0

Same as water Same as water 1.0 PERCENT VOLATILE (% BY VOL.): EVAPORATION RATE (WATER = 1): SOLUBILITY IN WATER:

1 Readily dispersible

NA

SECTION 10: REACTIVITY DATA

STABILITY:	Stable
CONDITIONS CONTRIBUTING TO INSTABILITY:	None
INCOMPATIBILITY (MATERIAL TO AVOID):	May react with strong oxidizers.
HAZARDOUS DECOMPOSITION OR BY-PRODUC	TS:

Normal combustion forms carbon dioxide and water vapor, and may produce oxides of sulfur and nitrogen. Incomplete combustion can produce carbon monoxide.

HAZARDOUS POLYMERIZATION:

Will not occur

SECTION 11: TRANSPORT INFORMATION

U.S. DEPARTMENT OF TRANSPORTATION

Not regulated as a hazardouş material for transportation.

SECTION 12: REGULATORY INFORMATION

U.S. FEDERAL REGULATIONS:

TSCA (TOXIC SUBSTANCE CONTROL ACT) REGISTRY: Listed

CERCLA (COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION AND LIABILITY ACT):

Petroleum emulsions are not a hazardous substance under CERCLA.

SARA TITLE III (SUPERFUND AMENDMENTS AND REAUTHORIZATION ACT):

Section 302/304: Petroleum emulsions are not a hazardous chemical under 40 CFR Part 355. Petroleum emulsions are not listed as an extremely hazardous substance in 40 CFR Part 355, and are not known to contain an extremely hazardous substance in a concentration greater than one percent by weight.

Section 311/312:	Acute Health Hazard:	No
	Chronic Health Hazard:	Yes
	Fire Hazard:	No
	Pressure Release Hazard:	No
	Reactivity Hazard:	No

Section 313: This product is not known to contain any components in concentrations above *de minimus* levels that are listed as toxic in 40 CFR Part 372 pursuant to the requirements of Section 313 of SARA.

Code: 1900

3

WHMIS:

D2A

OSHA:

29 CFR 1910.1200 (Hazard Communication) required

UNITED STATES REGULATIONS:

Mineral oil, petroleum extracts, heavy naphthenic distillate solvent appears on one or more of the hazardous substances lists in the following states:

MA

The information provided in this Material Safety Data Sheet is believed to be accurate and reliable on and as of the date on page one. However, this Material Safety Data Sheet is not a guarantee or warranty of any kind, express or implied. Any and all warranties of merchantability and/or fitness for a particular purpose are specifically disclaimed. It is the user's responsibility to determine the conditions under which the product is used, including the selection of engineering controls, work practices and Personal Protective Equipment to minimize hazards.

Code: 1900

coherex

Skin: Prolonged skin contact may cause irritation. Wash with soap and water.

Ingestion: If swallowed call a physician. Do not induce vomiting.

Inhalation: Remove the person to fresh air if respiratory discomfort occurs. Administer CPR if required. Provide oxygen if breathing is difficult. Seek Medical attention immediately.

Eyes: Immediately flush eyes with water for at least 15 minutes. Seek medical attention immediately.

Tricor Refining LLC, P.O. Box 5877, Bakersfield, CA, 93388, US, 661-393-7110

coherex

Skin: Prolonged skin contact may cause irritation. Wash with soap and water.

Ingestion: If swallowed call a physician. Do not induce vomiting.

Inhalation: Remove the person to fresh air if respiratory discomfort occurs. Administer CPR if required. Provide oxygen if breathing is difficult. Seek Medical attention immediately.

Eyes: Immediately flush eyes with water for at least 15 minutes. Seek medical attention immediately.

Tricor Refining LLC, P.O. Box 5877, Bakersfield, CA, 93388, US, 661-393-7110

COHEREX®

Dust Control Agent and Base

Golden Bear Oil Specialties

PO Box 456, Chandler, AZ 85244-0161

Tei: (800) 456-3878 Fax: (480) 963-2270

Specifications: Coherex Dust Control Agent

	Test Method		Requirements	
Tests:	ASTM	AASHTO	Min.	Max.
Viscosity @ 25°C, SFS	D-244	T-59	15	40
Sieve Test, % w ⁽¹⁾	D-244	T-59		0.1
Residue, % w ⁽²⁾	D-244	T-59	60	65
Particle Charge Test	D-244	T-59	Positi	ve

¹Test procedure identical with ASTM except that distilled water shall be used in place of 2% sodium oleate solution.

²ASTM D-244 Evaporation Test for percent of residue is modified by heating 50 gram sample to 149°C (300°F) until foaming ceases, then cooling immediately and calculating results.

Note: For gal/ton conversion use 242 gal/ton.

Specifications: Coherex Base

	Test Method		Requirements	
Tests:	ASTM	AASHTO	Min.	Max.
Viscosity @ 100°C, cSt	D-445	÷.	17.17	23.83
Flash Point, COC, °C	D-92	T-48	208	
Asphaltenes, %w	D-2006-70			0.75
Saturated Hydrocarbons, %w	D-2006-70			20
Specific Gravity	D-1298	T-277	1.000	1.040

Note: Data presented are typical. Slight variation may occur from lot to lot.

No warranties, expressed or implied, including warranties of merchantability or fitness for a particular use, are made with respect to the products described herein. Nothing contained herein shall constitute a permission or recommendation to practice any invention covered by a patent without a license from the owner of the patent.

SAFETY DATA SHEET

1. Product and Company Identification

Product identifier	Calcium Chloride			
Other means of identification	IceAway Max Safe Step Extreme 7300 Calcium Chloride			
Recommended use	De-icer.			
Recommended restrictions	None known.			
Manufacturer	Compass Minerals International 9900 West 109th Street, Suite 100 Overland Park, KS 66210 US Phone 913-344-9200 Emergency US CHEMTREC 1-800-424-9 Emergency Canada CANUTEC 1-613-996			
CHEMTREC	1-800-424-9300			
CANUTEC	1-613-996-6666			
	2. Hazards Identifica	tion		
Physical hazards	Not classified.			
Health hazards	Acute toxicity, oral	Category 4		
	Serious eye damage/eye irritation	Category 2A		
Environmental hazards	Not classified.			
OSHA defined hazards	Not classified.			
Label elements				
Signal word	Warning			
Hazard statement	Harmful if swallowed. Causes serious eye irritation.			
Precautionary statement				
Prevention	Wash thoroughly after handling. Do not eat, drink or smoke when using thi Wear eye/face protection.	s product.		
Response	If swallowed: Call a poison center/doctor i If in eyes: Rinse cautiously with water for easy to do. Continue rinsing. If eye irritation	several minutes. Remove contac		
Storage	Store away from incompatible materials.			
Disposal	Dispose of contents/container in accordance with local/regional/national/international regulations.			
Hazard(s) not otherwise classified (HNOC)	None known.			
Supplemental information	100% of the mixture consists of component	nt(s) of unknown acute inhalation	toxicity.	
	3. Composition/Information o	n Ingredients		
Mixture				
Chemical name	Common name and synonym	s CAS number	%	
Calcium chloride		10043-52-4	60-100	
Composition comments	US GHS: The exact percentage (concentr secret in accordance with paragraph (i) of		ithheld as a trade	
	4. First Aid Measu	es		
Inhalation	If symptoms develop move victim to fresh	air. If symptoms persist, obtain	medical attention.	
Skin contact	Flush with cool water. Wash with soap a	nd water. Obtain medical attention	on if irritation persists.	
Eye contact	If in eyes: Rinse cautiously with water for a easy to do. Continue rinsing. If eye irritation			
#18827	Page: 1 of 7		Issue date 24-June-2015	

Ingestion If swallowed: Call a poison center/doctor if you feel unwell. Rinse mouth. Most important Symptoms may include stinging, tearing, redness, swelling, and blurred vision. symptoms/effects, acute and delayed Indication of immediate Treat patient symptomatically. medical attention and special treatment needed Ensure that medical personnel are aware of the material(s) involved, and take precautions to **General information** protect themselves. Show this safety data sheet to the doctor in attendance. Avoid contact with eyes. Keep out of reach of children. 5. Fire Fighting Measures Suitable extinguishing media Dry chemical, CO2, water spray or regular foam. Not available. Unsuitable extinguishing media Firefighters should wear a self-contained breathing apparatus. Specific hazards arising from the chemical

Firefighters should wear full protective clothing including self contained breathing apparatus.

Fire-fighting In the event of fire, cool tanks with water spray. Cool containers with flooding quantities of water equipment/instructions until well after fire is out. Specific methods Use standard firefighting procedures and consider the hazards of other involved materials. General fire hazards No unusual fire or explosion hazards noted. Hazardous combustion May include and are not limited to: Hydrogen chloride. Chlorine gas. Calcium oxide products Explosion data Sensitivity to mechanical Not available. impact Sensitivity to static Not available. discharge 6. Accidental Release Measures Keep people away from and upwind of spill/leak. Keep out of low areas. Do not touch damaged Personal precautions, containers or spilled material unless wearing appropriate protective clothing. Ensure adequate protective equipment and ventilation. Local authorities should be advised if significant spillages cannot be contained. For emergency procedures personal protection, see section 8 of the SDS. Before attempting clean up, refer to hazard data given above. Use broom or dry vacuum to collect Methods and materials for containment and cleaning up material for proper disposal without raising dust. Rinse area with water. Prevent large spills from entering sewers or waterways. Contact emergency services and supplier for advice. For waste disposal, see section 13 of the SDS. **Environmental precautions** Do not discharge into lakes, streams, ponds or public waters. 7. Handling and Storage Avoid contact with eyes. Precautions for safe handling Avoid breathing dust. Use only with adequate ventilation. Wear appropriate personal protective equipment. Observe good industrial hygiene practices. Wash thoroughly after handling. When using do not eat or drink. Conditions for safe storage, Store in a closed container. Store away from incompatible materials (see Section 10 of the SDS). including any incompatibilities Keep out of reach of children. 8. Exposure Controls/Personal Protection Occupational exposure limits No exposure limits noted for ingredient(s). No biological exposure limits noted for the ingredient(s). **Biological limit values**

Special protective equipment and precautions for firefighters

Exposure guidelines	TWA PEL: No specific limits have been established for calcium chloride (soluble substance). a guideline, OSHA (United States) has established the following limits which are generally recognized for inert or nuisance dust. Particulates Not Otherwise Regulated (PNOR): 5mg/cu. Respirable Dust 8-Hour TWA PEL, 15mg/cu.m. Total Dust 8-Hour TWA PEL.		
	TWA TLV: No specific limits have been established for calcium chloride (soluble substance). As a guideline, ACGIH (United States) has established the following limits which are generally recognized for inert or nuisance dust. Particulates (insolubles) Not Otherwise Classified (PNOC): 10mg/cu.m. Inhalable Particulate 8-Hours TWA TLV, 3mg/cu.m. Respirable Particulate TWA TLV.		
Appropriate engineering controls	Ensure adequate ventilation.		
Individual protection measures,	such as personal protective equipment		
Eye/face protection	Wear safety glasses with side shields (or goggles).		
Skin protection			
Hand protection	Wear suitable gloves.		
Other	As required by employer code.		
Respiratory protection	Where exposure guideline levels may be exceeded, use an approved NIOSH respirator.		
Thermal hazards	Not applicable.		
General hygiene considerations	Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and immediately after handling the product. When using do not eat or drink.		

	9. Physical and Chemical Properties
Appearance	Pellets
Physical state	Solid.
Form	Solid.
Color	White
Odor	Odorless
Odor threshold	Not applicable
рН	Not available
Melting point/freezing point	1421.6 °F (772 °C)
Initial boiling point and boiling range	3515 °F (1935 °C)
Pour point	Not applicable
Specific gravity	Not available
Partition coefficient (n-octanol/water)	Not applicable
Flash point	Not applicable
Evaporation rate	Not applicable
Flammability (solid, gas)	Not applicable.
Upper/lower flammability or exp	losive limits
Flammability limit - lower (%)	Not available.
Flammability limit - upper (%)	Not available.
Explosive limit - lower (%)	Not available.
Explosive limit - upper (%)	Not available.
Vapor pressure	Not applicable
Vapor density	Not applicable
Relative density	0.75 g/cm3 @ 20°C
Solubility(ies)	745 g/l
Auto-ignition temperature	Not applicable
Decomposition temperature	Not available.
Viscosity	Not applicable
	10. Stability and Reactivity

10. Stability and Reactivity

Reactivity Possibility of hazardous reactions

This product may react with oxidizing agents. Hazardous polymerization does not occur.

Chemical stabilityStable under recommended storage conditions.Conditions to avoidDo not mix with other chemicals.Incompatible materialsAcids. Oxidizers. Hot water.Hazardous decomposition
productsMay include and are not limited to: Chlorine gas. Calcium oxide. Hydrogen chloride.

11. Toxicological Information

		Information	
Routes of exposure	Eye, Skin contact, Inhalation, Inges	tion.	
Information on likely routes of e	kposure		
Ingestion	Not a normal route of exposure. May cause stomach distress, nausea or vomiting.		
Inhalation	Not a normal route of exposure. May cause respiratory tract irritation.		
Skin contact	No adverse effects due to skin contact are expected.		
Eye contact	Causes serious eye irritation.		
Symptoms related to the physical, chemical and toxicological characteristics	Symptoms may include stinging, te	aring, redness, swelling, and blurred vision.	
Information on toxicological effe	cts		
Acute toxicity	Harmful if swallowed.		
Components	Species	Test Results	
Calcium chloride (CAS 10043-52-4)		
Acute			
Dermal			
LD50	Rat	2630 mg/kg	
Inhalation			
LC50	Not available		
Oral	Maura		
LD50	Mouse	1940 mg/kg	
	Rat	1000 mg/kg	
Skin corrosion/irritation	Prolonged skin contact may cause	temporary irritation.	
Exposure minutes	Not available.		
Erythema value	Not available.		
Oedema value	Not available.		
Serious eye damage/eye irritation	Causes serious eye irritation.		
Corneal opacity value	Not available.		
Iris lesion value	Not available.		
Conjunctival reddening value	Not available.		
Conjunctival oedema value	Not available.		
Recover days	Not available.		
Respiratory or skin sensitization			
Respiratory sensitization	Not available.		
Skin sensitization	This product is not expected to cau	se skin sensitization.	
Germ cell mutagenicity	Not classified.		
Mutagenicity	Not classified.		
Carcinogenicity	Not classified or listed by IARC, NT	P, OSHA and ACGIH.	
Reproductive toxicity	Not classified.		
Teratogenicity	Not classified.		
Specific target organ toxicity - single exposure	Not classified.		
Specific target organ toxicity - repeated exposure	Not classified.		
Aspiration hazard	Not classified.		
Chronic effects	Not available.		
Further information	Not available.		

	12. Ecological Infor		
Ecotoxicity	See below		
Components	Species	Test Results	
Calcium chloride (CAS 1004	3-52-4)		
Crustacea	EC50 Daphnia	52 mg/L, 48 Hours	
Aquatic			
Fish	LC50 Fathead minnow (Pimer	ohales promelas) 3930 - 5360 mg/l, 96 hours	
Persistence and degradability	No data is available on the degradability	y of this product.	
Bioaccumulative potential	No data available.		
Mobility in soil	No data available.		
Mobility in general	Not available.		
Other adverse effects		(e.g. ozone depletion, photochemical ozone creation varming potential) are expected from this component.	
	13. Disposal Conside	erations	
Disposal instructions	Dispose of contents/container in accord	lance with local/regional/national/international regulations.	
Local disposal regulations	Dispose in accordance with all applicab	le regulations.	
Hazardous waste code	The waste code should be assigned in discussion between the user, the producer and the waste disposal company.		
Waste from residues / unused products	Empty containers or liners may retain some product residues. This material and its container mube disposed of in a safe manner (see: Disposal instructions).		
Contaminated packaging		a approved waste handling site for recycling or disposal. oduct residue, follow label warnings even after container is	
	14. Transport Infor	mation	
General U.S. Department of Transporta	Transportation of Dangerous Goods Re is correct as of the SDS date of issue. the product will appear below.	accordance with Part 2.2.1 (SOR/2014-152) of the egulations, we certify that the classification of this product If applicable, the technical name and the classification of	
Not regulated as dangerous	goods.		
Transportation of Dangerous G			
Not regulated as dangerous	-		
	15. Regulatory Infor	rmation	
Canadian federal regulations		ordance with the hazard criteria of the Controlled Products the information required by the Controlled Products	
=	es List (Second List): Listed substance		
Calcium chloride (CAS	10043-52-4) Listed.		
WHMIS status	Controlled		
WHMIS classification	Class D - Division 2B		
WHMIS labeling			
US federal regulations	This product is a "Hazardous Chemical' Standard, 29 CFR 1910.1200. All components are on the U.S. EPA TS	as defined by the OSHA Hazard Communication	
TSCA Section 12(b) Export	t Notification (40 CFR 707, Subpt. D)		
Not regulated. CERCLA Hazardous Subst	ance List (40 CFR 302.4)		
Not listed. Clean Air Act (CAA) Sectio Not regulated.	on 112(r) Accidental Release Prevention	(40 CFR 68.130)	

Clean Air Act (CAA) Sectior Not regulated.	112 Hazardous Air Pollutants (HAPs) L	ist
Superfund Amendments and Re	authorization Act of 1986 (SARA)	
Hazard categories	Immediate Hazard - Yes Delayed Hazard - No Fire Hazard - No Pressure Hazard - No Reactivity Hazard - No	
SARA 302 Extremely hazardous substance	No	
SARA 311/312 Hazardous chemical	No	
SARA 313 (TRI reporting) Not regulated.		
Other federal regulations Safe Drinking Water Act (SDWA)	Not regulated.	
Food and Drug Administration (FDA)	Not regulated.	
US state regulations	This product does not contain a chemica defects or other reproductive harm.	I known to the State of California to cause cancer, birth
Not listed.	ion 65 - Carcinogens & Reproductive To ening Levels: Listed substance	oxicity (CRT): Listed substance
Calcium chloride (CA	-	
US. Massachusetts RT	,	
Not regulated.		
US. Pennsylvania RTK	- Hazardous Substances	
Not regulated. US. Rhode Island RTK Not regulated.		
Inventory status		
Country(s) or region	Inventory name	On inventory (yes/no)*
Canada	Domestic Substances List (DSL)	Yes
Canada	Non-Domestic Substances List (NDSL)	No
United States & Puerto Rico	Toxic Substances Control Act (TSCA) In	ventory Yes
*A "Yes" indicates that all compo	nents of this product comply with the inventory r	equirements administered by the governing country(s)

LEGEND	HEALTH / 1
Severe4Serious3Moderate2Slight1Minimal0	FLAMMABILITY 0 PHYSICAL HAZARD 0 PERSONAL PROTECTION X
Disclaimer	Information contained herein was obtained from sources considered technically accurate and reliable. While every effort has been made to ensure full disclosure of product hazards, in some cases data is not available and is so stated. Since conditions of actual product use are beyond control of the supplier, it is assumed that users of this material have been fully trained according to the requirements of all applicable legislation and regulatory instruments. No warranty, expressed or implied, is made and supplier will not be liable for any losses, injuries or consequential damages which may result from the use of or reliance on any information contained in this document.
Issue date	24-June-2015
Effective date	15-June-2015
Expiry date	15-June-2018
Further information	For an updated SDS, please contact the supplier/manufacturer listed on the first page of the document.
Prepared by	Dell Tech Laboratories, Ltd. Phone: (519) 858-5021

16. Other Information

This Safety Data Sheet was prepared to comply with the current OSHA Hazard Communication Standard (HCS) adoption of the Globally Harmonized System of Classification and Labeling of Chemicals (GHS). This SDS conforms to the ANSI Z400.1/Z129.1-2010 Standard.

Calcium Chloride

Warning

Harmful if swallowed. Causes serious eye irritation.

Wash thoroughly after handling Do not eat, drink or smoke when using this product. IF SWALLOWED: Immediately call a POISON CENTER/doctor if you feel unwell.. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Rinse Mouth. If eye irritation persists: Get medical advice/attention. Dispose of contents/ container in accordance with specified local/regional/national/ international regulations for disposal.

Store away from incompatible materials.

Tricor Refining LLC, P.O. Box 5877, Bakersfield, CA, 93388, US, 661-393-7110

Calcium Chloride Warning

Harmful if swallowed. Causes serious eye irritation.

Wash thoroughly after handling Do not eat, drink or smoke when using this product. IF SWALLOWED: Immediately call a POISON CENTER/doctor if you feel unwell.. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. Rinse Mouth. If eye irritation persists: Get medical advice/attention. Dispose of contents/ container in accordance with specified local/regional/national/ international regulations for disposal.

Store away from incompatible materials.

Tricor Refining LLC, P.O. Box 5877, Bakersfield, CA, 93388, US, 661-393-7110