ANNUAL MONITORING REPORT

GARRISON SPORTS P.O. BOX 85, HIGHWAY 169 GARRISON, MINNESOTA 56450

MPCA SITE ID#: LEAK #10037

Prepared For:

Mr. Kari Hough Garrison Sports P.O. Box 85, Highway 169 Garrison, Minnesota 56450

Prepared By:

CERES ENVIRONMENTAL SERVICES
3825 85th Avenue North
Brooklyn Park, MN 55443

June 2000

Emergency Management & Environmental Consulting & Demolition and Recycling & Wood Waste Reduction

3825 85th Avenue North Brooklyn Park, MN 55443 Phone (612) 425-8822 Fax (612) 425-5636 Toll Free (800) 218-4424 www.ceresenvironmental.com

Mr. Jim MacArthur Minnesota Pollution Control Agency 1601 Minnesota Drive Brainerd, Minnesota 56401

June 5, 2000

RE: Annual Monitoring Report

Garrison Sports; MPCA Leak No. 10037

Garrison, Minnesota

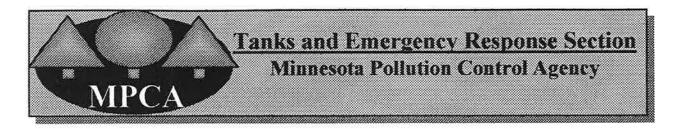
Dear Mr. MacArthur:

Ceres Environmental Services (Ceres), on behalf of Garrison Sports, is enclosing the above referenced report for your review and approval. Based on the findings in the report, Ceres respectfully requests that you concur with the recommendations that we have proposed. Thank you for your cooperation.

If you have any questions or require additional information, please contact Mike Lee at (612) 425-4239, ext. 114.

Sincerely,

CERES ENVIRONMENTAL SERVICES


Michael A. Lee

Project Manager/Geologist

nichael a. Lee

RECEIVED

MPCA-BRAINERD BRAINERD, MN

Annual Monitoring Report

Fact Sheet #3.26 April 1996

After the corrective action design (CAD) has been approved, this worksheet should be submitted on an annual schedule. If an active remediation system has been installed, the "Corrective Action Design System Monitoring Worksheet" fact sheet #3.31 should be submitted along with this worksheet. The "Corrective Action Design System Monitoring Worksheet" documents data collection of system emissions and operating parameters, as well as any changes to the system.

Under certain circumstances MPCA staff may request submittal of the monitoring information on a quarterly schedule. This should be conducted according to fact sheet 3.25 "Quarterly Monitoring Report."

Site name and address:

Garrison Sports

P.O. Box 85, Highway 169

Garrison, Minnesota 56450

MPCA Leak Number:

LEAK #: 00010037

Date submitted:

06/05/00

Section I. DISCUSSION

Discuss the results of the monitoring performed since the remedial investigation (RI) report or the last progress report has been submitted. Include any notable trends in the discussion.

Ceres Environmental Services (Ceres) has conducted four sampling events in monitoring wells MW-1, MW-2, and MW-5 since the MPCA Request For Additional Work in May of 1999. All groundwater sampling events were conducted in accordance with MPCA guidance document Fact Sheet # 3.23. During each sampling event, the monitoring wells were purged by removing five well volumes using dedicated sterilized disposable bailers. The ground water samples were placed in sterilized containers preserved with HCL provided by the laboratory, stored in a rigid iced cooler, and tracked under proper chain of custody procedures. The groundwater samples were submitted to Spectrum Laboratories for analysis of BTEX, GRO, and DRO.

In reference to Table 2, the general trend of BTEX, GRO and DRO in the impacted wells is toward decreasing contaminant concentrations. The compounds detected in MW-1 have generally decreased in their contaminant concentrations in the last four sampling events. In MW-2, GRO concentrations increased in the 10/14/99 and 02/03/00 sampling events, and then decreased in the last sampling event. DRO concentrations in MW-2 increased in the 10/14/99 sampling event, and then decreased in the last two sampling events. The only contaminant detected in MW-5 was DRO and it has not been present in the last two sampling events. The laboratory analytical reports for the groundwater samples collected during these sampling events are included in Appendix A.

The depth to water was measured in each of the five site monitoring wells during all four sampling events (refer to Table 1). The water level measurement data from the 02/03/00 sampling event was used to calculate groundwater flow direction. This water level elevation data continues to indicate that the general hydraulic gradient and flow direction is toward the east. The representative groundwater flow direction map for the above mentioned data is illustrated on Figure 3.

In conclusion, groundwater contaminants continue to be detected in MW-1 and MW-2. There were trace DRO detects just exceeding the laboratory detection limits in MW-5. The contaminant plume appears to be moving downgradient as evidenced by the contaminant concentrations increasing and then decreasing in MW-2. However, the overall general decreasing contaminant concentrations indicate that natural attenuation is occurring within the dissolved contaminant plume. Also, the leading edge of the contaminant plume is defined within the monitoring well network as evidenced by contamination no longer being detected in the downgradient well MW-5. Therefore, the dissolved contaminant plume stability appears to be confirmed.

If vapor impacts were reported during the remedial investigation, discuss the results of the vapor monitoring survey completed during this reporting period. Include in your discussion the sampling instrument and sampling method.

There were no vapor impacts reported during the remedial investigation.

NOTE: If vapor concentrations exceed 10 percent of the lower explosive limit, exit the building and contact the local fire department immediately. Then contact the Minnesota Duty Officer (24 hours) at 612/649-5451 (metro and outside Minnesota) or 1-800-422-0798 (Greater Minnesota). TTY users call 612/297-5353 (V/TTY) or 1-800-627-3529 (V/TTY). Vapor mitigation is required.

Section II. RECOMMENDATIONS

The recommendations section should present recommendations for additional corrective action, modifications to corrective action, additional monitoring or site closure. If cleanup goals have been achieved at the site, recommendations for termination of corrective actions may be presented.

Considering the analytical results of the last four sampling events, the dissolved contaminant plume appears to be stable and would have no apparent impact to the public health, welfare, or an environmental resource. Therefore, no additional environmental work is necessary at this site. Taking into account the issues discussed, Ceres respectfully requests that a No Further Action Letter be issued relative to this release site.

Section III. TABLES

Table 1

Water table summary.

Well Number	Date Measured	Depth of Water from Top of Casing (ft)	Product Thickness	Depth of Water Below Grade (ft)	Relative Groundwater Elevation
MW-1	07/01/99	7.10	N/A	7.15	92.90
	10/14/99	8.46	N/A	8.51	91.54
	02/03/00	8.83	N/A	8.88	91.17
	04/28/00	8.36	N/A	8.41	91.64
MW-2	07/01/99	6.61	N/A	6.76	92.67
	10/14/99	7.84	N/A	7.99	91.44
·	02/03/00	8.23	N/A	8.38	91.05
	04/28/00	7.77	N/A	7.92	91.51
MW-3	07/01/99	6.28	N/A	6.41	92.68
	10/14/99	7.51	N/A	7.64	91.45
	02/03/00	7.93	N/A	8.06	91.03
	04/28/00	Not Accessible	N/A	N/A	N/A
MW-4	07/01/99	6.62	N/A	6.63	92.74
	10/14/99	7.89	N/A	7.90	91.47
	02/03/00	8.24	N/A	8.25	91.12
	04/28/00	7.81	N/A	7.82	91.55
MW-5	07/01/99	7.61	N/A	5.21	92.12
	10/14/99	8.49	N/A	6.09	91.24
	02/03/00	8.91	N/A	6.51	90.82
	04/28/00	8.48	N/A	6.08	91.25

Notes: MW-3 was not accessible during the last sampling event due to damage from snow plowing.

Indicate the laboratory analytical results for water samples collected from each well. All analytical results collected from each well should be included on this table.

Table 2.

Well#	Date	Benzene	Toluene	Ethylbenzene	Xylenes	GRO	DRO
MW-1	07/01/99	BDL	40	19	98	540	270
	10/14/99	BDL	BDL	BDL	BDL	270	BDL
	02/03/00	BDL	BDL	BDL	BDL	250	BDL
	04/28/00	BDL	2.0	3.0	BDL	200	BDL
MW-2	07/01/99	BDL	BDL	BDL	6	940	280
101 00 -2	10/14/99	BDL	17	BDL	BDL	1900	580
	02/03/00	BDL	10	11	BDL	2400	240
	04/28/00	5.0	3.0	9.0	4.0	1400	98
MW-3	07/01/99	NA	NA	NA	NA	NA	NA
	10/14/99	NA	NA	NA	NA	NA	NA
	02/03/00	NA	NA	NA	NA	NA	NA
	04/28/00	NA	NA	NA	NA	NA	NA
MW-4	07/01/99	NA	NA	NA	NA	NA	NA
	10/14/99	NA	NA	NA	NA	NA	NA
	02/03/00	NA	NA	NA	NA	NA	NA
	04/28/00	NA	NA	NA	NA	NA	NA
MW-5	07/01/99	BDL	BDL	BDL	BDL	BDL	59
	10/14/99	BDL	BDL	BDL	BDL	BDL	45
	02/03/00	BDL	BDL	BDL	BDL	BDL	BDL
	04/28/00	BDL	BDL	BDL	BDL	BDL	BDL

Note: BDL = below laboratory method detection limit

NA = not analyzed

All compound concentrations are recorded in ppb = parts per billion

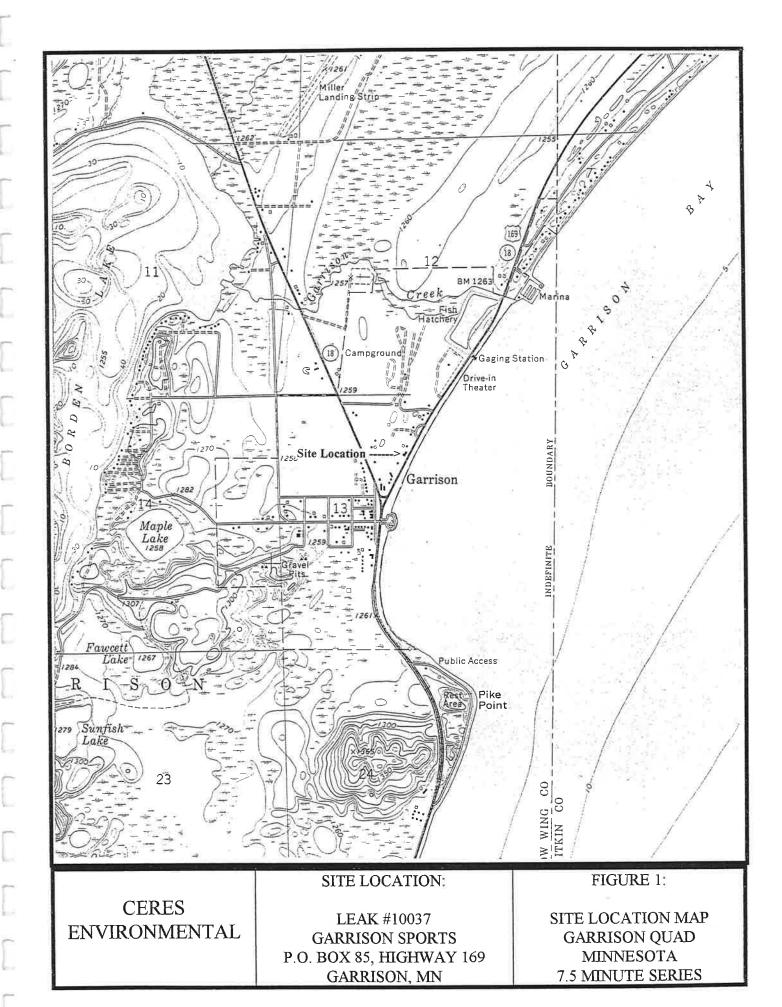
Table 3.

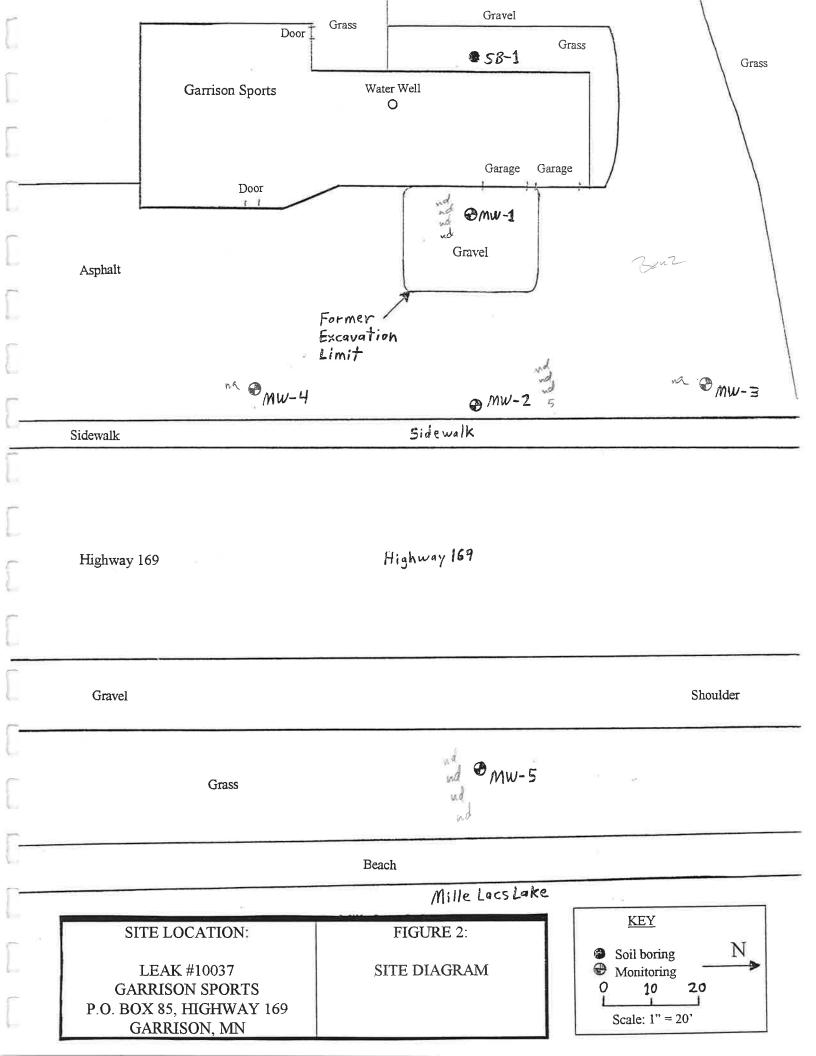
Indicate other notable contaminants (either petroleum or non-petroleum derived) detected in water samples.

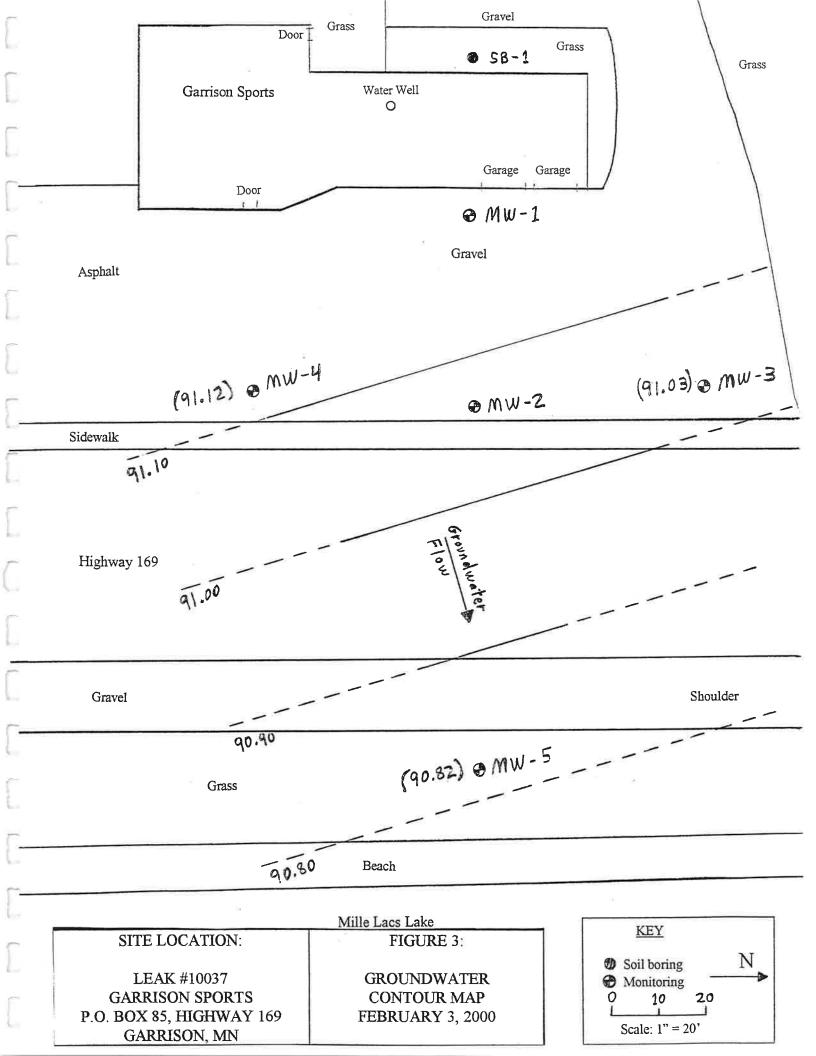
There were no other notable contaminants detected in the groundwater samples.

Section IV. FIGURES

Figures - (all maps must include a north arrow, scale and legend) Approximate scales are not acceptable.


- 1. Site location map. Adapt this map from a U.S. Geological Survey 7.5 minute quadrangle and identify the name of the 7.5 minute quadrangle.
- 2. Site map showing the locations of all groundwater and vapor monitoring points.
- 3. Updated ground water contour map, using water level elevations from the most recent round of water level measurements. Show all wells at the site, and differentiate wells constructed in different aquifers. Label ground water contours and elevations at each data point used for contouring.
- 4. Copies of most recent laboratory reports for ground water analyses, including a copy of the Chain of Custody.
- 5. Table of dissolved oxygen sample results (if collected)


Section V. APPENDICES


The appendices section of the report contains sufficient information to document all activities completed since the last report. All reproduced data must be legible. In general this should include all applicable information required for the Appendices section of a RI report.

Upon request, this document can be made available in other formats, including Braille, large print and audio tape. TTY users call 612/282-5332 or 1-800-657-3864 (voice/TTY).

Printed on recycled paper containing at least 10 percent fibers from paper recycled by consumers.

301 West County Road E2 • St. Paul, MN 55112-6859 651.633.0101 • FAX 651.633.1402

LABORATORY ANALYSIS REPORT

DATE:

July 19, 1999

PAGE:

4 Of 4

CLIENT:

Ceres Environmental Services

PROJECT NO.:

070199-200371

3825 85th Ave. N

COLLECTION DATE:

7/01/99

Brooklyn Park, MN 55443

COLLECTED BY:

Client 7/01/99

RECEIVED DATE: PROJECT DESCRP.:

Garrison Sports

CONTACT:

Micheal Lee

This report has been reviewed by me for technical accuracy and completeness. The analyses were performed using EPA or other approved methodologies and the results were reported on an "as received" basis unless otherwise noted. The results reported relate only to the items tested. Please contact me if you have any questions or comments regarding this report. Spectrum Labs, Inc. appreciates the opportunity to provide this analytical service for you.

Report Submitted By,

Lon Jones

Organics-Supervisor

TLH:wmc cc200-1

301 West County Road E2 • St. Paul, MN 55112-6859 651. 633.0101 • FAX 651. 633.1402

LABORATORY ANALYSIS REPORT

July 19, 1999

PAGE:

1 Of 4

CLIENT:

Ceres Environmental Services

PROJECT NO.:

070199-200371

3825 85th Ave. N

COLLECTION DATE:

7/01/99

Brooklyn Park, MN 55443

COLLECTED BY: RECEIVED DATE:

Client 7/01/99

PROJECT DESCRP.:

Garrison Sports

 $^{(o)}270$

CONTACT:

Micheal Lee

		Sample N Sample II		L23990-1 MW-1		
<u>ANALYSIS</u>	UNITS	MDL	PQL	RESULT		
EPA 8020/WIS DNR GRO						
Date Analyzed: 7/14/99						
Benzene	ug/L	3	10	ND		
Toluene	ug/L	3	10	40		
Ethylbenzene	ug/L	3	10	19		
m,p-Xylene*	ug/L	6	10	- 67		
o-Xylene	ug/L	2	10	31		
Gasoline Range Organics	ug/L	20	100	540		
Surrogate Recovery 1-Chloro-4-Fluorobenzene	Detector PID	%	Recovery (s) 148%			
1-Cnioro-4-F iuoropenzene	FID		140%			
ANALYSIS WIS DNR DRO Date Extracted: 7/08/99	<u>UNITS</u>	<u>MDL</u>	<u>POL</u>	RESULT		

Date Analyzed: 7/13/99

Diesel Range Organics

ug/L

30

100

⁽s) High surrogate recovery due to matrix interference.

^{(&}quot;)Significant peaks detected before DRO window.

^{*} means Coeluting Compounds

ND means Not Detected or below reported MDL

MDL means Method Detection Limit

PQL means Practical Quantification Limit

ug/L means Micrograms Per Liter which is equivalent to Parts Per Billion (ppb)

LABORATORY ANALYSIS REPORT

DATE:	
-------	--

July 19, 1999

PAGE:

2 Of 4

CLIENT:

Ceres Environmental Services

PROJECT NO.:

070199-200371

3825 85th Ave. N

COLLECTION DATE:

7/01/99

Brooklyn Park, MN 55443

COLLECTED BY: RECEIVED DATE: Client 7/01/99

PROJECT DESCRP.:

30

Garrison Sports

 $^{(0)}280$

100

CONTACT:

Micheal Lee

		L23990-2 MW-2		
<u>ANALYSIS</u>	<u>UNITS</u>	$MD\hat{L}$	\underline{POL}	<u>RESULT</u>
EPA 8020/WIS DNR GRO				
Date Analyzed: 7/14/99				
Benzene	ug/L	3	10	ND
Toluene	ug/L	3	10	ND
Ethylbenzene	ug/L	3	10	ND
m,p-Xylene*	ug/L	6	10	ND
o-Xylene	ug/L	2	10	$^{(r)}6$
Gasoline Range Organics	ug/L	20	100	940
Surrogate Recovery	Detector	%	Recovery	
1-Chloro-4-Fluorobenzene	PID		120%	
434444040	TTA ITMO	MDI	nor	D.E.GLIK W.
ANALYSIS	<u>UNITS</u>	\underline{MDL}	\underline{PQL}	<u>RESULT</u>
WIS DNR DRO				
Date Extracted: 7/08/99				

Diesel Range Organics ug/L

^(r)Result is above MDL, but below PQL.

Date Analyzed: 7/13/99

⁽a)Significant peaks detected before DRO window.

^{*} means Coeluting Compounds

ND means Not Detected or below reported MDL

MDL means Method Detection Limit

PQL means Practical Quantification Limit

ug/L means Micrograms Per Liter which is equivalent to Parts Per Billion (ppb)

LABORATORY ANALYSIS REPORT

T 4	
114	1 H *

July 19, 1999

PAGE:

3 Of 4

CLIENT:

Ceres Environmental Services

PROJECT NO.:

070199-200371

3825 85th Ave. N

COLLECTION DATE:

7/01/99

Brooklyn Park, MN 55443

COLLECTED BY:

Client

RECEIVED DATE:

7/01/99

PROJECT DESCRP.:

Garrison Sports

CONTACT:

Micheal Lee

		L23990-3 MW-5		
<u>ANALYSIS</u>	<u>UNITS</u>	Sample II <u>MDL</u>	POL	RESULT
EPA 8020/WIS DNR GRO				
Date Analyzed: 7/14/99				
Benzene	ug/L	3	10	ND
Toluene	ug/L	3	10	ND
Ethylbenzene	ug/L	3	10	ND
m,p-Xylene*	ug/L	6	10	ND
o-Xylene	ug/L	2	10	ND
Gasoline Range Organics	ug/L	20	100	ND
Surrogate Recovery	Detector	%	Recovery	
1-Chloro-4-Fluorobenzene	PID		105%	

ANALYSIS WIS DNR DRO	<u>UNITS</u>	<u>MDL</u>	<u>POL</u>	RESULT
Date Extracted: 7/08/99				
Date Analyzed: 7/13/99				
Diesel Range Organics	ug/L	30	100	^(r) 59

⁽r)Result is above MDL, but below PQL.

^{*} means Coeluting Compounds

ND means Not Detected or below reported MDL

MDL means Method Detection Limit

PQL means Practical Quantification Limit

ug/L means Micrograms Per Liter which is equivalent to Parts Per Billion (ppb)

301 West County Road E2 New Brighton, MN 55112 (612) 633-0101 FAX (612) 633-1402

CHAIN OF CUSTODY RECORD

Preserved Container Type A None B HNO3 C H ₂ SO ₄ C H ₂ SO ₄ C Organics F Bacteria G Other	COMMENTS	sl. impacted						
	YSIS REQUIRED							
MATER COSTL SOIL SOIL SOIL SOIL SOIL SOIL SOIL SOI	MATRIX ANALYSIS	X	777	777				
mine of		2	2	5				
Client Cerel CNViron Mental Client Contact Address 3825 85 TH Aux N. Spectrum Contact Phone # (612) 425-8822 Phone # (612) 425-8822 Client P.O.# Fax # Project # (7411/1501 501 1) Project # (7411/1501 501 1) Spectrum COLLECTION SAMPLE 1.D. / Initial	DESCRIPTION	MU-1	MW-2	Mw-05				
1825 85 IN 1825 85 IN 12) 425-88 11/1500 5 169, 641/500 2 169, 641/500	DATE TIME	bb-1.]		 E		
Client Cerel ENVIron Mer. Address 3825 85 TH ALL M. Phone # (612) 4125-8822 Fax # Project # (541/1500 500 + 5 Project # (541/1500 500 500 500 + 5 Project # (541/1500 500 500 500 500 + 5 Project # (541/1500 500 500 500 500 + 5 Project # (541/1500 500 500 500 500 500 +	Number DA	234:0-17-1-99	76	£	-			

Cooler Temp:

Date: Time:

Received By:

Date:

Relinquished By:

Sampled By (1, Let (Ceres 7-1-79) Paceived By:

Opposite of a George 1-993:50pm

LABORATORY ANALYSIS REPORT

DATE:

November 3, 1999

PAGE:

4 Of 4

CLIENT:

Ceres Environmental

PROJECT NO.:

101499-200371

3825 85th Ave. North

COLLECTION DATE:

10/14/99

Brooklyn Park, MN 55443

COLLECTED BY:

Client

RECEIVED DATE:

10/14/99

PROJECT DESCRP.:

Garrison Sports

CONTACT:

Micheal Lee

This report has been reviewed by me for technical accuracy and completeness. The analyses were performed using EPA or other approved methodologies and the results were reported on an "as received" basis unless otherwise noted. The results reported relate only to the items tested. Please contact me if you have any questions or comments regarding this report. Spectrum Labs, Inc. appreciates the opportunity to provide this analytical service for you.

Report Submitted By,

Lon Jones

Organics Supervisor

TLH:wmc ce307-1

LABORATORY ANALYSIS REPORT

TA	TI.
IIA	I P.S

November 3, 1999

PAGE:

1 Of 4

CLIENT:

Ceres Environmental 3825 85th Ave. North

PROJECT NO.: **COLLECTION DATE:** 101499-200371

COLLECTED BY:

10/14/99

Brooklyn Park, MN 55443

RECEIVED DATE:

Client

PROJECT DESCRP.:

10/14/99 Garrison Sports

CONTACT:

Micheal Lee

AMAINCIC	VINITE	Sample N Sample II	D . :	N.	7704-1 IW-1
ANALYSIS EDA 2020 AUG DAD GRO(d)	<u>UNITS</u>	\underline{MDL}	\underline{POL}	V	ESULT
EPA 8020/WIS DNR GRO ^(d)					
Date Analyzed: 10/22/99	47	_			175
Benzene	ug/L	6	20		ND
Toluene	ug/L	6	20		ND
Ethylbenzene	ug/L	6	20		ND
m,p-Xylene*	ug/L	12	20		ND
o-Xylene	ug/L	4	20		ND
Gasoline Range Organics	ug/L	40	200		270
Surrogate Recovery	Detector	%	Recovery		
1-Chloro-4-Fluorobenzene	PID		108%		
ANTALNOIC	IINITTO	MDI	DOI.		NECELL 10
ANALYSIS WIS DNR DRO	<u>UNITS</u>	\underline{MDL}	\underline{PQL}	W	RESULT
Date Extracted: 10/19/99					
Date Analyzed: 10/19/99	/T	20	7.00		1.00
Diesel Range Organics ^(L)	ug/L	30	100		ND

^(d)A dilution was necessary due to levels present; therefore, detection limits were raised.

(L)LCS/LCSD recovery was low for DRO.

* means Coeluting Compounds

ND means Not Detected or below reported MDL

MDL means Method Detection Limit

PQL means Practical Quantification Limit

ug/L means Micrograms Per Liter which is equivalent to Parts Per Billion (ppb)

BECKLERE

301 West County Road E2 • St. Paul, MN 55112-6859 651.633.0101 • FAX 651.633.1402

LABORATORY ANALYSIS REPORT

DATE:

November 3, 1999

PAGE:

2 Of 4

CLIENT:

Ceres Environmental

PROJECT NO.:

101499-200371

3825 85th Ave. North

COLLECTION DATE:

10/14/99

Brooklyn Park, MN 55443

COLLECTED BY:

Client

RECEIVED DATE: PROJECT DESCRP.:

10/14/99 Garrison Sports

CONTACT:

Micheal Lee

ANALWOIC	FINITE	Sample N Sample II	D.:	27704-2 MW-2
ANALYSIS END CRO(d)	<u>UNITS</u>	\underline{MDL}	\underline{POL}	RESULT
EPA 8020/WIS DNR GRO ^(d)				
Date Analyzed: 10/22/99				
Benzene	ug/L	6	20	ND
Toluene	ug/L	6	20	$^{(r)}17$
Ethylbenzene	ug/L	6	20	ND
m,p-Xylene*	ug/L	12	20	ND
o-Xylene	ug/L	4	20	ND
Gasoline Range Organics	ug/L	40	200	1900
Surrogate Recovery	Detector	%	Recovery	
1-Chloro-4-Fluorobenzene	PID		^(s) 151%	
ANAINCYC	TINITE	MDX	DOL	**************************************
ANALYSIS WIG DND DDG	<u>UNITS</u>	\underline{MDL}	\underline{POL}	<u>RESULT</u>
WIS DNR DRO				
Date Extracted: 10/19/99				

ug/L

Date Analyzed: 10/19/99 Diesel Range Organics(L)

30

100

580

⁽d) A dilution was necessary due to levels present; therefore, detection limits were raised.

⁽r)Result is above MDL, but below PQL.

⁽⁵⁾ High surrogate recovery due to matrix interference.

⁽L)LCS/LCSD recovery was low for DRO.

^{*} means Coeluting Compounds

ND means Not Detected or below reported MDL

MDL means Method Detection Limit

PQL means Practical Quantification Limit

ug/L means Micrograms Per Liter which is equivalent to Parts Per Billion (ppb)

LABORATORY ANALYSIS REPORT

DATE:

November 3, 1999

PAGE:

3 Of 4

CLIENT:

Ceres Environmental 3825 85th Ave. North

PROJECT NO.: **COLLECTION DATE:** 101499-200371

Brooklyn Park, MN 55443

COLLECTED BY:

10/14/99

RECEIVED DATE:

Client 10/14/99

PROJECT DESCRP.:

Garrison Sports

CONTACT:

Micheal Lee

ANALYSIS EPA 8020/WIS DNR GRO	<u>UNITS</u>	Sample N Sample II <u>MDL</u>		27704-3 MW-5 <u>RESULT</u>
Date Analyzed: 10/22,28/99				
Benzene	ug/L	3	10	ND
Toluene	ug/L	3	10	ND
Ethylbenzene	ug/L	3	10	ND
m,p-Xylene*	ug/L	6	10	ND
o-Xylene	ug/L	2	10	ND
Gasoline Range Organics	ug/L	20	100	ND
Surrogate Recovery 1-Chloro-4-Fluorobenzene	Detector PID	%	Recovery 95.8%	
ANALYSIS WIS DNR DRO Date Extracted: 10/19/99	<u>UNITS</u>	<u>MDL</u>	<u>POL</u>	<u>RESULT</u>
Date Analyzed: 10/19/99 Diesel Range Organics ^(L)	ug/L	30	100	^(r) 45

⁽r)Result is above MDL, but below PQL.

⁽L)LCS/LCSD recovery was low for DRO.

^{*} means Coeluting Compounds

ND means Not Detected or below reported MDL

MDL means Method Detection Limit

PQL means Practical Quantification Limit

ug/L means Micrograms Per Liter which is equivalent to Parts Per Billion (ppb)

301 West County Road E2 New Brighton, MN 55112 (612) 633-0101 FAX (612) 633-1402

CHAIN OF CUSTODY RECORD

	Preserved	Container	A None	D NaOH	E Bacteria G Other	100	COMMENTS						•			Time: Cooler Temp:	Time:
Record Number						\vee	YSIS REQUIRED						y			Lab: Date:	Dato
00					HER SELECT		RIX ANALYSIS	ヘスハ	ファン	200	2	7		a.	 5	Date: Time: Received By Lab:	Data: Timo: Bosoived By:
Miles	act	oject #		Vormal	TER TER		Containers MATRIX	X h	X	X						1 Or Lee (Cercs 10-1491 3730)	
Client # Client #		Non	Ĩ	DUE DATE WOVEN	JAN. MIL	SAMPLE I.D. /	DESCRIPTION	MW-1	Mw-2	MW-5						10 - W-99 12:30pm Collection	Date Delivering Day
Ceres Christine mental	Address 3825 85 TH AUC	Rossh Lym Porty, MM	Phone # (612) 425 8822	Fax#	Project # FAVE is Sports	COLLE	Number DATE TIME	37704-1 10-14-91	- 3	5	AND STATES		, iê.			Sampled By: Care / Care 10	and David

LABORATORY ANALYSIS REPORT

DATE:

February 10, 2000

PAGE:

4 Of 4

CLIENT:

Ceres Environmental

PROJECT NO.:

020300-200371

3825 85th Ave. North

COLLECTION DATE:

2/03/00

Brooklyn Park, MN 55443

COLLECTED BY:

Client

RECEIVED DATE:

2/03/00

PROJECT DESCRP.:

Garrison Sports

CONTACT:

Micheal Lee

This report has been reviewed by me for technical accuracy and completeness. The analyses were performed using EPA or other approved methodologies and the results were reported on an "as received" basis unless otherwise noted. The results reported relate only to the items tested. Please contact me if you have any questions or comments regarding this report. Spectrum Labs, Inc. appreciates the opportunity to provide this analytical service for you.

Report Submitted By,

Organics Supervisor

TLH:wmc ce041-1

301 West County Road E2 • St. Paul, MN 55112-6859 651. 633.0101 • FAX 651. 633.1402

LABORATORY ANALYSIS REPORT

DATE:

February 10, 2000

PAGE:

1 Of 4

CLIENT:

Ceres Environmental

3825 85th Ave. North

COLLECTION DATE:

PROJECT NO.:

020300-200371

Brooklyn Park, MN 55443

COLLECTED BY:

2/03/00

Client

RECEIVED DATE: PROJECT DESCRP.: 2/03/00 Garrison Sports

CONTACT:

Micheal Lee

		Sample N Sample II		30749-1 MW-1
ANALYSIS	UNITS	$MD\hat{L}$	POL	RESULT
EPA 8020/WIS DNR GRO ^(d)				
Date Analyzed: 2/08/00				
Benzene	ug/L	6	20	ND
Toluene	ug/L	6	20	ND
	ug/L	6	20	ND
Ethylbenzene	_	12	20	ND
m,p-Xylene*	ug/L			ND
o-Xylene	ug/L	4	20	
Gasoline Range Organics	ug/L	40	200	250
Surrogate Recovery	Detector	%	Recovery	
1-Chloro-4-Fluorobenzene	PID		112%	
	YINITATIO	MDI	DOL	DECHIT
<u>ANALYSIS</u>	<u>UNITS</u>	\underline{MDL}	\underline{POL}	RESULT
WIS DNR DRO				
Date Extracted: 2/08/00				
Date Analyzed: 2/09/00				
Diesel Range Organics(L)	ug/L	30	100	ND

⁽d) A dilution was necessary due to levels present; therefore, detection limits were raised. (L) LCS/LCSD recovery was low for DRO.

* means Coeluting Compounds

ND means Not Detected or below reported MDL

MDL means Method Detection Limit

PQL means Practical Quantification Limit

ug/L means Micrograms Per Liter which is equivalent to Parts Per Billion (ppb)

LABORATORY ANALYSIS REPORT

DATE:

February 10, 2000

PAGE:

2 Of 4

CLIENT:

Ceres Environmental

3825 85th Ave. North

Brooklyn Park, MN 55443

PROJECT NO.:

020300-200371

COLLECTION DATE: COLLECTED BY:

2/03/00

RECEIVED DATE:

Client

2/03/00

PROJECT DESCRP.:

Garrison Sports

CONTACT:

Micheal Lee

ANALYSIS EPA 8020/WIS DNR GRO ^(d)	<u>UNITS</u>	Sample N Sample I <u>MDL</u>		30749-2 MW-2 <u>RESULT</u>
Date Analyzed: 2/08/00				
Benzene	ug/L	6	20	ND
Toluene	ug/L	6	20	^(r) 10
Ethylbenzene	ug/L	6	20	$^{(r)}11$
m,p-Xylene*	ug/L	12	20	ND
o-Xylene	ug/L	4	20	ND
Gasoline Range Organics	ug/L	40	200	2400
Surrogate Recovery	Detector	%	Recovery	
1-Chloro-4-Fluorobenzene	PID		^(s) 123%	
ANALYSIS	UNITS	MDL	POL	RESULT
WIS DNR DRO	OTTE	TILL L	<u>r o r</u>	THE SCEE
Date Extracted: 2/08/00				
Date Analyzed: 2/09/00 Diesel Range Organics ^(L)	ug/L	30	100	240

⁽d) A dilution was necessary due to levels present; therefore, detection limits were raised. (r) Result is above MDL, but below PQL.

⁽L)LCS/LCSD recovery was low for DRO.

^{*} means Coeluting Compounds

ND means Not Detected or below reported MDL

MDL means Method Detection Limit

POL means Practical Quantification Limit

ug/L means Micrograms Per Liter which is equivalent to Parts Per Billion (ppb)

LABORATORY ANALYSIS REPORT

DATE:

February 10, 2000

PAGE:

3 Of 4

CLIENT:

Ceres Environmental

PROJECT NO.:

020300-200371

3825 85th Ave. North

COLLECTION DATE:

2/03/00

Brooklyn Park, MN 55443

COLLECTED BY: RECEIVED DATE: Client 2/03/00

PROJECT DESCRP.:

Garrison Sports

CONTACT:

Micheal Lee

ANALYSIS EPA 8020/WIS DNR GRO	<u>UNITS</u>	Sample N Sample II <u>MDL</u>		30749-3 MW-5 <u>RESULT</u>
Date Analyzed: 2/08/00				
Benzene	ug/L	3	10	ND
Toluene	ug/L	3	10	ND
Ethylbenzene	ug/L	3	10	ND
m,p-Xylene*	ug/L	6	10	ND
o-Xylene	ug/L	2	10	ND
Gasoline Range Organics	ug/L	20	100	ND
Surrogate Recovery	Detector	%	Recovery	
1-Chloro-4-Fluorobenzene	PID		103%	
ANALYSIS WIS DNR DRO	<u>UNITS</u>	<u>MDL</u>	<u>POL</u>	<u>RESULT</u>
Date Extracted: 2/08/00 Date Analyzed: 2/09/00 Diesel Range Organics ^(L)	ug/L	30	100	ND

⁽L)LCS/LCSD recovery was low for DRO.

MDL means Method Detection Limit

PQL means Practical Quantification Limit

ug/L means Micrograms Per Liter which is equivalent to Parts Per Billion (ppb)

^{*} means Coeluting Compounds

ND means Not Detected or below reported MDL

CHAIN OF CUSTODY RECORD

301 West County Road E2 New Brighton, MN 55112 (612) 633-0101 FAX (612) 633-1402

		# too!!C			Record Number	lber
Client Ceres Environmental	10711		MilheLe	C ₁	HCI	
28 2 28 S 28	TH			SI ,		/ / Preserved
Brodilyn Park, MW	Parke	Spectrum Project	#			Type Type
Phone # (612) 425-8822	-83	Client P.O.#				B HNO ₃
Fax# (612) 425-5636	-56	DUE DATE No	L.M.a	√. _		I D NaOH E Organics
Project # GALVISON SportS	Sister	strong.)IF	CHER		F Bacteria G Other
Spectrum COLLECTION	NO.	AMPLE I.D. /)S	.o.×	ANALYSIS REQUIRED	COMMENTS
DATE	II W II		-	<	1	
26-740-12-3-0		MW-1	×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		***
		MW - M	× ×	7		
76		71	\ - :	1/1/1		
→ ¬		111111 - 3	<u>-</u>	2 2		
-		C. Mary		4		
93		,				¥
	72	2/2			5	
×	2					
Sampled By: A Ass. / Covers	4 A	Date Time Relinguished By: (13 - 0 m - 30 m O M. Charles (13	Jac/Ceres 2-	Date: Time:	Received By Lab:	Date: Time: Cooler Temp:
Received By:	د	Date Time Relinquished By:		Date: Time:	Received By:	

LABORATORY ANALYSIS REPORT

May 18, 2000

PAGE:

4 Of 4

CLIENT:

Ceres Environmental

PROJECT NO.:

042800-200371

3825 85th Ave. North

COLLECTION DATE:

4/28/00

Brooklyn Park, MN 55443

COLLECTED BY: RECEIVED DATE: Client 4/28/00

CONTACT:

Mike Lee

PROJECT DESCP:

Garrison Sports

		Sample N Sample II		33316-4 Trip Blank
<u>ANALYSIS</u>	<u>UNITS</u>	\underline{MDL}	\underline{POL}	<u>RESULT</u>
EPA 8020/WIS DNR GRO				
Date Analyzed: 5/09/00				
Benzene	ug/L	1.0	10	ND
Toluene	ug/L	1.0	10	ND
Ethylbenzene	ug/L	1.0	10	ND
m,p-Xylene*	ug/L	2.4	10	ND
o-Xylene	ug/L	1.1	10	ND
Gasoline Range Organics	ug/L	23	100	ND
Surrogate Recovery	D etector PID	%	Recovery	
1-Chloro-4-Fluorobenzene	FID		70. 4 70	

^{*} means Coeluting Compounds

ND means Not Detected or below reported MDL

MDL means Method Detection Limit

PQL means Practical Quantification Limit

ug/L means Micrograms Per Liter which is equivalent to Parts Per Billion (ppb)

This report has been reviewed by me for technical accuracy and completeness. The analyses were performed using EPA or other approved methodologies and the results were reported on an "as received" basis unless otherwise noted. The results reported relate only to the items tested. Please contact me if you have any questions or comments regarding this report. Spectrum Labs, Inc. appreciates the opportunity to provide this analytical service for you.

Report Submitted By,

TZ IF From Coll Gerard Herro

Laboratory Manager

GJH:wmc ce33316

LABORATORY ANALYSIS REPORT

DATE:

May 18, 2000

PAGE:

1 Of 4

CLIENT:

Ceres Environmental

PROJECT NO.:

042800-200371

3825 85th Ave. North

COLLECTION DATE:

4/28/00

Brooklyn Park, MN 55443

COLLECTED BY: RECEIVED DATE: Client 4/28/00

CONTACT:

Mike Lee

PROJECT DESCP:

Garrison Sports

		Sample N Sample II		33316-1 MW-1
ANALYSIS	UNITS	\underline{MDL}	\underline{PQL}	<u>RESULT</u>
EPA 8020/WIS DNR GRO		•		
Date Analyzed: 5/09/00				
Benzene	ug/L	1.0	10	ND
Toluene	ug/L	1.0	10	$^{(r)}2.0$
Ethylbenzene	ug/L	1.0	10	$^{(r)}3.0$
m,p-Xylene*	ug/L	2.4	10	ND
o-Xylene	ug/L	1.1	10	ND
Gasoline Range Organics	ug/L	23	100	200
Surrogate Recovery	Detector	%	Recovery	
1-Chloro-4-Fluorobenzene	PID		116%	
<u>ANALYSIS</u>	<u>UNITS</u>	\underline{MDL}	\underline{PQL}	<u>RESULT</u>
WIS DNR DRO				
Date Extracted: 5/02/00				
Date Analyzed: 5/03/00				
Diesel Range Organics(L)	ug/L	30	100	ND
	_			

⁽r)Result is above MDL, but below PQL. (L)LCS/LCSD recovery was low for DRO.

ND means Not Detected or below reported MDL

MDL means Method Detection Limit

PQL means Practical Quantification Limit

ug/L means Micrograms Per Liter which is equivalent to Parts Per Billion (ppb)

^{*} means Coeluting Compounds

LABORATORY ANALYSIS REPORT

DATE:

May 18, 2000

PAGE:

2 Of 4

CLIENT:

Ceres Environmental

PROJECT NO.:

042800-200371

3825 85th Ave. North

COLLECTION DATE:

4/28/00

Brooklyn Park, MN 55443

COLLECTED BY: RECEIVED DATE: Client 4/28/00

CONTACT:

Mike Lee

PROJECT DESCP:

Garrison Sports

ANALYSIS EPA 8020/WIS DNR GRO ^(d)	<u>UNITS</u>	Sample N Sample II <u>MDL</u>		33316-2 MW-2 <u>RESULT</u>
Date Analyzed: 5/09,10/00 Benzene Toluene Ethylbenzene m,p-Xylene* o-Xylene Gasoline Range Organics	ug/L ug/L ug/L ug/L ug/L ug/L	2.0 2.0 2.0 4.8 2.2 46	20 20 20 20 20 20 20	(r) 5.0 (r) 3.0 (r) 9.0 ND (r) 4.0 1400
Surrogate Recovery 1-Chloro-4-Fluorobenzene	Detector PID	%	Recovery 115%	
ANALYSIS WIS DNR DRO Date Extracted: 5/02/00	<u>UNITS</u>	<u>MDL</u>	<u>POL</u>	RESULT
Date Analyzed: 5/03/00 Diesel Range Organics ^(L)	ug/L	30	100	^(r) 98

⁽d) A dilution was necessary due to levels present; therefore, detection limits were raised. (r) Result is above MDL, but below PQL.

⁽L)LCS/LCSD recovery was low for DRO.

^{*} means Coeluting Compounds

ND means Not Detected or below reported MDL

MDL means Method Detection Limit

PQL means Practical Quantification Limit

ug/L means Micrograms Per Liter which is equivalent to Parts Per Billion (ppb)

LABORATORY ANALYSIS REPORT

\mathbf{r}	4	mr.
IJ.	4	IE:

May 18, 2000

PAGE:

3 Of 4

CLIENT:

Ceres Environmental

PROJECT NO.:

042800-200371

3825 85th Ave. North

COLLECTION DATE:

4/28/00

Brooklyn Park, MN 55443

COLLECTED BY:

Client

Brooklyn Park, MIN 33443

RECEIVED DATE:

4/28/00

CONTACT:

Mike Lee

PROJECT DESCP:

Garrison Sports

ANA I WCIC	IINITO	Sample N Sample II	D.:	33316-3 MW-5
ANALYSIS	<u>UNITS</u>	\underline{MDL}	\underline{POL}	<u>RESULT</u>
EPA 8020/WIS DNR GRO				
Date Analyzed: 5/09/00				
Benzene	ug/L	1.0	10	ND
Toluene	ug/L	1.0	10	ND
Ethylbenzene	ug/L	1.0	10	ND
m,p-Xylene*	ug/L	2.4	10	ND
o-Xylene	ug/L	1.1	10	ND
Gasoline Range Organics	ug/L	23	100	ND
Surrogate Recovery	Detector	%	Recovery	
1-Chloro-4-Fluorobenzene	PID		89.0%	
ANALYSIS	UNITS	MDL	PQL	RESULT
WIS DNR DRO	014118	MDD	10 <u>D</u>	RESCEI
Date Extracted: 5/02/00				
Date Analyzed: 5/03/00 Diesel Range Organics ^(L)	ug/L	30	100	ND

⁽L)LCS/LCSD recovery was low for DRO.

^{*} means Coeluting Compounds

ND means Not Detected or below reported MDL

MDL means Method Detection Limit

PQL means Practical Quantification Limit

ug/L means Micrograms Per Liter which is equivalent to Parts Per Billion (ppb)

301 West County Road E2 New Brighton, MN 55112 (612) 633-0101 FAX (612) 633-1402

CHAIN OF CUSTODY RECORD

Container Type Organics Bacterla A None
B HNO₃
C H₂SO₄
D NaOH
E Organics
F Bacterla COMMENTS Record Number REQUIRED ANALYSIS 1 -28-100 3:35,m Time: X Wine Lea OTHER Number of Containers MATRIX TIOS MATER O Winguished By O Jan / Corres ţ.t DUE DATE NOV m & \mathcal{I} 7 7 Spectrum Project # 2 Spectrum Contact ClientContact Client P.O.# Relinquished By Client # DESCRIPTION SAMPLE I.D. / SIM Mw-1 MW-2 TRIP Time 12/2 ME 4-18-00 Client Ceves Environghenta 22,88-521/219) Project # GULVISON Sports Address 3825 85 TH AUL) Brooktyn Mark 1 GAYYI 10A, DATE | TIME COLLECTION Mushar a far 160,00 4-28-a 33316-1 Spectrum ~ Number Phone #_ -1 1 Sampled By;

REMEDIAL INVESTIGATION / CORRECTIVE ACTION DESIGN REPORT

GARRISON SPORTS P.O. BOX 85, HIGHWAY 169 GARRISON, MINNESOTA 56450

MPCA SITE ID#: LEAK #10037

Prepared For:

Mr. Kari Hough Garrison Sports P.O. Box 85, Highway 169 Garrison, Minnesota 56450

Prepared By:

CERES ENVIRONMENTAL SERVICES
3825 85th Avenue North
Brooklyn Park, MN 55443

April 1999

Table 3.

Indicate the laboratory analytical results for soil samples in mg/kg = ppm.

SOIL LABORATORY RESULTS Concentrations (ppm)

Well/Boring, Depth (ft)	Date Analyzed	MtBE	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	DRO	GRO
MW-1 (8-10)	7/17/97	BDL	5.9	44	24	88	300	1,200
MW-1 (38-40)	7/17/97	BDL	BDL	BDL	BDL	BDL	BDL	BDL
MW-2 (8-10)	7/17/97	BDL	BDL	BDL	BDL	BDL	BDL	BDL
MW-3 (8-10)	7/17/97	BDL	BDL	BDL	BDL	BDL	BDL	BDL
MW-4 (8-10)	7/17/97	BDL	BDL	BDL	BDL	BDL	BDL	BDL
MW-5 (8-10)	7/17/97	BDL	BDL	BDL	BDL	BDL	BDL	BDL
SB-1 (8-10)	7/17/97	BDL	BDL	BDL	BDL	BDL	BDL	BDL

Note: Please refer to Appendix B for laboratory results.

GRO = gasoline range organics

BDL = below laboratory detection limit

ppm = parts per million

DRO = diesel range organics

MtBE = Methyl tert-Butyl Ether

Table 4.

Indicate other notable contaminants (either petroleum or non-petroleum derived) detected in soil samples. Indicate contaminant and list in reported units mg/kg.

There are no other notable contaminants that were detected in the soil samples.

4.5 If any non-petroleum compounds were detected list them below and identify possible sources of these compounds.

There were no non-petroleum related compounds detected.

4.6 Describe the vertical and horizontal extent and magnitude of soil contamination.

The horizontal extent of soil contamination has been defined by perimeter soil borings SB-1, MW-3, MW-4, and MW-5. Soil boring MW-1 was advanced in the worst case area (release area). The vertical extent of soil contamination was established in boring MW-1 where the boring was completed 20 feet below the water table and 10 feet below deepest measurable contamination. Also, a dense silt (confining layer) was encountered at approximately 34 feet in boring MW-1. DRO concentrations of 300 ppm and GRO concentrations of 1,200 ppm were detected between (8-10 feet) in the former tank basin area. Therefore, the horizontal and vertical extent of the soil contamination has been established relative to this release site.

Section 5: Aquifer Characteristics/Ground Water Contamination Assessment

sup The	porting information for the det estimated hydraulic conductivity	and porosity were based on tables referenced in Freeze
_	0.001 cm/sec	X estimate from reference
		slug test
		permeability test
		Hazen approximation from grain-size distribution
5.2 Indi info	cate the thickness of the aquifermation to determine the aquif	er. If the investigation does not provide enough fer thickness, assume the aquifer is greater than 20 feet thick:less than 10 feet
		between 10 and 20 feet
		X 20 feet or greater
The 34 fe The vexten	nations and the lateral extent of stratigraphy underlying the site of et where a dense silt (confining law water table was encountered at a t of the above described deposits	f these formations: consists of a medium then fine sand to a depth of approximately ayer) was encountered. The boring termination depth is at 40 feet depth of approximately 7-9 feet below ground surface. The lateral is throughout the site boring and monitoring well network. There
The imp aquifer i	acted aquifer or the aquifer that f one of the following situations	at is likely to be impacted at the site is considered a resource s exist:
•	The aquifer is a current water	mation for the determination in the Methodologies appendix: raulic conductivity and porosity were based on tables referenced in Freeze and Groundwater and Wells, 1986. Please refer to Appendix C. cm/sec
•	The water bearing unit has a minimum thickness of 10 fee	hydraulic conductivity greater than 1 X 10 ⁻² cm/sec <u>and</u> a t.
•	The water bearing unit has a cm/sec and a minimum thick	hydraulic conductivity between 1 X 10 ⁻⁴ cm/sec and 1 X 10 ⁻²

• The water bearing unit has a hydraulic conductivity less than 1 X 10⁻⁴ cm/sec and no other viable source of water supply is available. (Bedrock may be considered a resource aquifer if

it is the only water supply available.)

5.4 Based on the aquifer characteristics and water supply availability, is the YES NO aquifer at the site a resource aquifer?

5.5 If other water supplies are available, explain.

The water supply wells in the area are completed into a sand/rock development at depths of approximately 75-120 feet.

5.6 Are there any other reasons the impacted aquifer should not be considered a resource aquifer?

According to the MPCA conditions described above, this aquifer meets the conditions to be considered a potential resource aquifer. However, this aquifer is not currently being used and may never be used as a resource aquifer.

Table 5.

Indicate the water level measured in all of the soil borings.

	SB-1	MW-1	MW-2	MW-3	MW-4	MW-5
Water level	9	8	7	7	7	7
depth, ft						

5.7 Is contaminated soil in contact with ground water?

YES NO

If YES or if ground water contamination appears likely then complete tables 6 and 7 below.

Table 6.

Indicate the laboratory analytical results for water samples collected from the borings, temporary wells or push probes.

Well/Boring Number	Date Sampled	MtBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	DRO	GRO

Note: There were no water samples collected from the borings, temporary wells, or push probes.

Table 7.

Indicate other notable contaminants (either petroleum or non-petroleum derived) detected in water samples collected from the borings, temporary wells or push probes. Indicate contaminant and report in units of µg/l (ppb).

GROUNDWATER LABORATORY RESULTS OTHER DETECTED COMPOUNDS FROM BORINGS Concentrations (ppb)

Boring Number	n-Butyl- benzene	sec- Butyl- benzene	Ethyl Benzene	Isopropyl Benzene	Methyl Ethyl Ketone	Napth- alene	n-Propyl- benzene	1,2,4- Trimethyl- benzene	1,3,5- Trimethyl- benzene
2									

Note: Not Applicable

5.8 If any non-petroleum compounds were detected list them below and indicate whether they exceed the HRLs. Also, identify possible sources of these compounds.

Not Applicable

5.9 If contaminated soil is not in contact with ground water, what is the distance separating the deepest contamination from the surface of the water table? Was this distance measured during site activities, referenced from geologic information, or estimated based on professional opinion during a site visit?

Not Applicable

5.10 Describe observations of any evidence of a fluctuating water table and a seasonal high water table (e.g., mottling). Also, from other sources of information describe the range of natural water table fluctuations in the area.

There was no evidence of a fluctuating water table or a seasonally high water table mark. No other sources of information were found to describe a range of natural water table fluctuations in the area.

feet

YES NO

5.11 In your judgment, is there a sufficient distance separating the petroleum contaminated soil (or an impacted non-resource aquifer) from the underlying resource aquifer to prevent petroleum contamination of the resource aquifer? Please explain in detail. In your explanation consider the data and information of this section as well as the nature of the petroleum release (i.e., volume, when it occurred, petroleum product).

The subject aquifer is a potential resource aquifer, which is not being used at this time and may never be used as such. The vertical and lateral extent of this release has been defined and the petroleum release is localized to the release source area. The source of the release is from the former UST area (tank basin where three gasoline USTs and one dispenser was located). This release appears to be a small volume of product that has only marginally impacted the groundwater and is confined within the monitoring well network. (Note: A majority of the petroleum-impacted soil was removed during the tank removal procedures.)

Additional Ground Water Investigation

Complete Section 6 and Section 7 only if: 1) a resource aquifer has been impacted at or above Minnesota Department of Health Health Risk Limits (HRLs), 2) a resource aquifer has been impacted below the HRLs, but the levels are likely to reach the HRLs, or 3) there is an insufficient distance separating the petroleum contaminated soil (or an impacted non-resource aquifer) from the underlying resource aquifer. Regardless of whether you are submitting a Limited Site Investigation or a full RI, all sections following Section 7 must be completed.

Section 6. Extent and Magnitude of Groundwater Contamination

Table 8.

Monitoring well construction.

Well Number	Unique Well Number	Date Installed	Relative Surface Elevation	Riser Height Above Grade	Bottom of Well (Elevation)	Screen Interval (Elev Elev.)
MW-1	599534	7/17/97	100.05	(0.05)	85.05	85.05-95.05
MW-2	599535	7/15/97	99.43	(0.15)	85.43	85.43-95.43
MW-3	599536	7/16/97	99.09	(0.13)	85.09	85.09-95.09
MW-4	599537	7/16/97	99.37	(0.01)	85.37	85.37-95.37
MW-5	599540	7/16/97	97.33	2.40	84.33	84.33-94.33

Notes: Top of casing reference based on assumed 100 foot elevation taken from the top of the two inch casing in monitoring well MW-1. Please refer to Appendix E for well construction diagrams.

Table 9.

Water table summary.

MONITORING WELL GROUNDWATER ELEVATIONS

Monitoring Well Number	Date Measured	Depth of Water from Top of Casing (ft)	Product Thickness	Depth of Water Below Grade (ft)	Relative Groundwater Elevation
MW-1	08-28-97	7.73	None	7.78	92.27
	11-20-97	8.66	None	8.71	91.34
	11-19-98	8.90	None	8.95	91.10
MW-2	08-28-97	7.13	None	7.28	92.15
	11-20-97	8.03	None	8.18	91.25
	11-19-98	8.31	None	8.46	90.97
MW-3	08-28-97	6.84	None	6.97	92.12
	11-20-97	7.70	None	7.83	91.26
	11-19-98	7.98	None	8.11	90.98

MONITORING WELL GROUNDWATER ELEVATIONS (continued)

Monitoring Well Number	Date Measured	Depth of Water from Top of Casing (ft)	Product Thickness	Depth of Water Below Grade (ft)	Relative Groundwater Elevation
MW-4	08-28-97	7.14	None	7.15	92.22
	11-20-97	8.08	None	8.09	91.28
	11-19-98	8.36	None	8.37	91.00
MW-5	08-28-97	7.87	None	5.47	91.86
	11-20-97	8.72	None	6.32	91.01
	11-19-98	9.08	None	6.68	90.65

Note: Top of casing reference based on assumed 100 foot elevation taken from the north side of the top of the two inch casing in monitoring well MW-1.

6.1 Were any deep monitoring wells completed at the site?

YES NO

If YES, which are deep wells?

Before a deep well is installed contact the MPCA project hydrologist for guidance on its necessity and placement. A deep monitoring well may be necessary if 1) contamination exist more than 10 feet below the water table or 2) the impacted aquifer is a resource aquifer or is hydraulically connected to a resource aquifer presently utilized by a water supply well located within 500 feet of the site.

Provide estimates of the following additional aquifer parameters:

Please refer to Appendix C for groundwater velocity calculations.

Horizontal Gradient (dh/dl):

0.30 ft / 91.0 ft = 0.0033

Vertical Gradient (dv/dl):

No gradient established

Porosity:

35%

Flow direction:

East

Hydraulic Conductivity (K)

0.001

Pore velocity:

<u>2.97</u>

meters/year

cm/sec

Table 10.

All ground water monitoring data should be collected from a minimum of two quarterly sampling events.

Indicate the laboratory analytical results for water samples.

Well/Boring Number	Date Sampled	MtBE	Benzene	Toluene	Ethyl- benzene	Total Xylenes	GRO	DRO
MW-1	08/28/97	BDL	280	540	89	590	7,700	1,300
	11/20/97	BDL	BDL	26	11	33.8	3,800	670
	11/19/98	BDL	BDL	3.7	BDL	1.8	440	190
MW-2	08/28/97	BDL	BDL	2.9	BDL	5.7	2,700	820
	11/20/97	BDL	BDL	5.7	6.1	13.4	3,300	440
	11/19/98	BDL	BDL	3.0	3.4	8.7	1,700	440
MW-3	08/28/97	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	11/20/97	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	11/19/98	BDL	BDL	BDL	BDL	BDL	BDL	BDL
MW-4	08/28/97	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	11/20/97	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	11/19/98	BDL	BDL	BDL	BDL	BDL	BDL	BDL
MW-5	08/28/97	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	11/20/97	0.96	BDL	BDL	BDL	0.58	BDL	BDL
	11/19/98	BDL	BDL	0.5	BDL	BDL	BDL	BDL

Note: The laboratory report results are included in Appendix B.

 $\mu g/l = ppb = parts per billion$

BDL = below laboratory detection limit

DRO = diesel range organics

GRO = gasoline range organics

MtBE = methyl tert-butyl ether

Table 11.

Indicate other notable contaminants (either petroleum or non-petroleum derived) detected in water samples.

Well#	Date Samples	n- Butyl- ben- zene	sec- Butyl- ben- zene	Iso- propyl- Ben- zene	Methyl Ethyl Ketone	Napth- alene	n- Propyl- ben- zene	1,2,4- Tri- methyl- Ben- zene	Ace- tone	Methyl Iso- butyl Ketone	p-Iso- propyl- toluene	1,3,5- Tri- methyl- Ben- zene
MW-1	08/28/97	140	8.5	22	BDL	28	62	380	BDL	BDL	BDL	170
	11/20/97	150	BDL	BDL	BDL	BDL	31	56	BDL	BDL	BDL	83
	11/19/98	17	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
MW-2	08/28/97	77	11	24	180	16	14	16	140	21	4.6	BDL
	11/20/97	110	8.4	22	140	13	24	BDL	BDL	BDL	BDL	BDL
	11/19/98	54	5.6	15	110	BDL	16	BDL	BDL	BDL	BDL	BDL

Table 11. (continued)

Well#	Date Samples	n- Butyl- ben- zene	sec- Butyl- ben- zene	Iso- propyl- Ben- zene	Methyl Ethyl Ketone	Napth- alene	n- Propyl- ben- zene	1,2,4- Tri- methyl- Ben- zene	Ace- tone	Methyl Iso- butyl Ketone	p-Iso- propyl- toluene	1,3,5- Tri- methyl- Ben- zene
MW-3	8/28/97	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	11/20/97	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	11/19/98	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
MW-4	8/28/97	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	11/20/97	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	11/19/98	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
MW-5	8/28/97	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	11/20/97	BDL	0.81	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	11/19/98	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL

Note: The laboratory report results are included in Appendix B.

 $\mu g/l = ppb = parts per billion$

6.2 If any non-petroleum compounds were detected list them below and indicate whether they exceed the HRLs. Also, identify possible sources of these compounds.

Acetone was detected in the groundwater sample collected from monitoring well MW-2 in the initial sampling event. Subsequent sampling events from MW-2 did not detect acetone. The acetone detected in the initial sampling event did not exceed the Minnesota Department of Health (MDH) HRLs. (Note: The acetone detect may have been misidentified during analysis procedures because of similar retention times in the analytical system to other petroleum compounds.)

6.3 Is there a clean or nearly clean (below HRLs) downgradient monitoring well located along the longitudinal axis of the contaminant plume?

(approximately 20 degrees plus or minus the axis)

6.4 Is there a worst case well completed through the source area of the release?

YES NO

If you have answered NO to any of the above three questions, please explain why a well was not completed in the required location.

Not Applicable

6.5 Provide an estimate of the longitudinal length of the dissolved contaminant plume:

< 150 feet

6.6 Describe the extent and magnitude of the ground water contamination:

The groundwater contamination is confined (defined) within the monitoring well network. The petroleum release appears to be a small volume of product that has only impacted the groundwater near the source area (former tank basin where three gasoline USTs and one dispenser was located). (Note: A majority of the petroleum-impacted soil was removed during the tank removal procedures.)

Section 7: Evaluation of natural attenuation

Table 12.

Complete the bioactivity data in the table below. Data should be from two quarterly rounds of sampling. Refer to the fact sheet #3.21 "Assessment of Natural Biodegradation at Petroleum Tank Release Sites" for acceptable methodologies and indicate the chosen method in the Methodologies appendix.

Monitoring Well	Temp. °C	рН	Dissolved oxygen (mg/l)	Nitrate (mg/l)	(Fe II) (mg/l)	(H ₂ S, HS ⁻) (mg/l)
MW-1	15.6	11.6	0.6	NA	NA	NA
MW-2	16.7	6.6	1.0	NA	NA	NA
MW-3	16.1	6.4	3.0	NA	NA	NA
MW-4	16.7	7.2	3.0	NA	NA	NA
MW-5	18.9	6.6	3.0	NA	NA	NA

Notes: NA = not available.

7.1 Discuss the results of the bioactivity evaluation. Specifically, compare the concentrations of the inorganic parameters inside and outside the plume.

The low dissolved oxygen concentrations within the dissolved contaminant plume and the higher oxygen concentrations outside of the contaminant plume indicate that bioactivity is occurring.

7.2 In your judgment, is natural biodegradation occurring at this site? Please explain.

YES NO

Because the dissolved contaminant plume is moving slowly downgradient and the soil type within the aquifer is medium to fine sand, natural biodegradation activities are likely occurring. Also, the difference in contaminant concentrations between monitoring well MW-2 (just downgradient from release) and MW-5 (farthest downgradient nearly clean) indicate natural biodegradational activities are occurring.

Section 11: Discussion

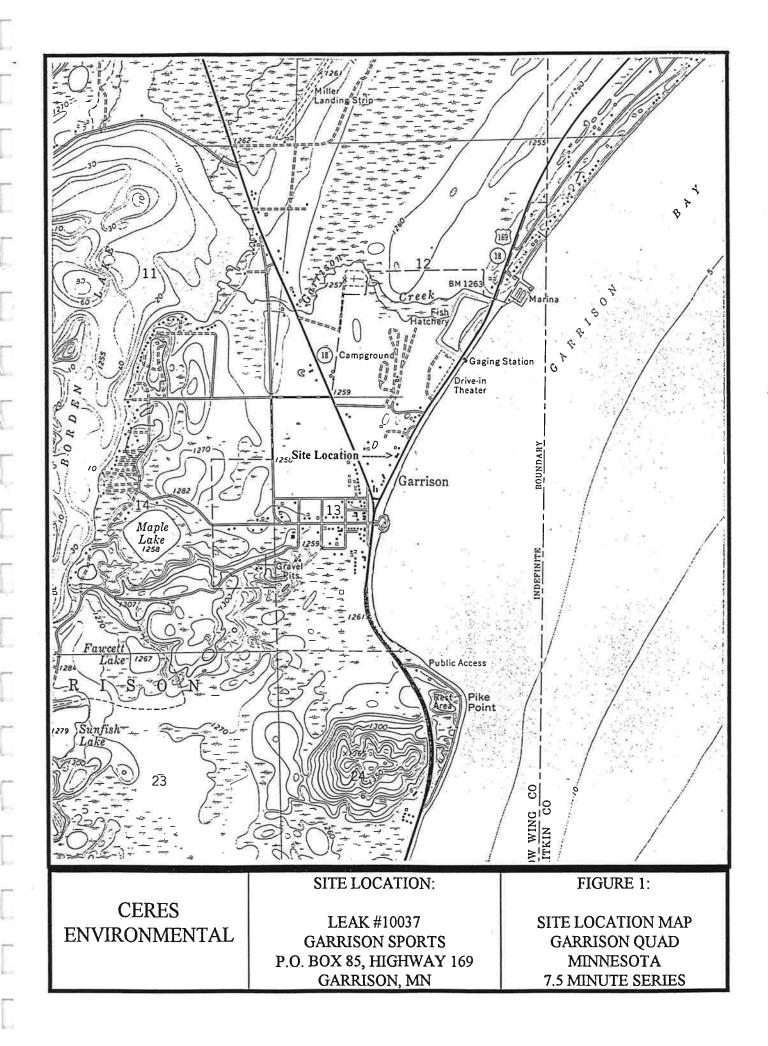
11.1 Discuss the risks associated with the remaining soil contamination?

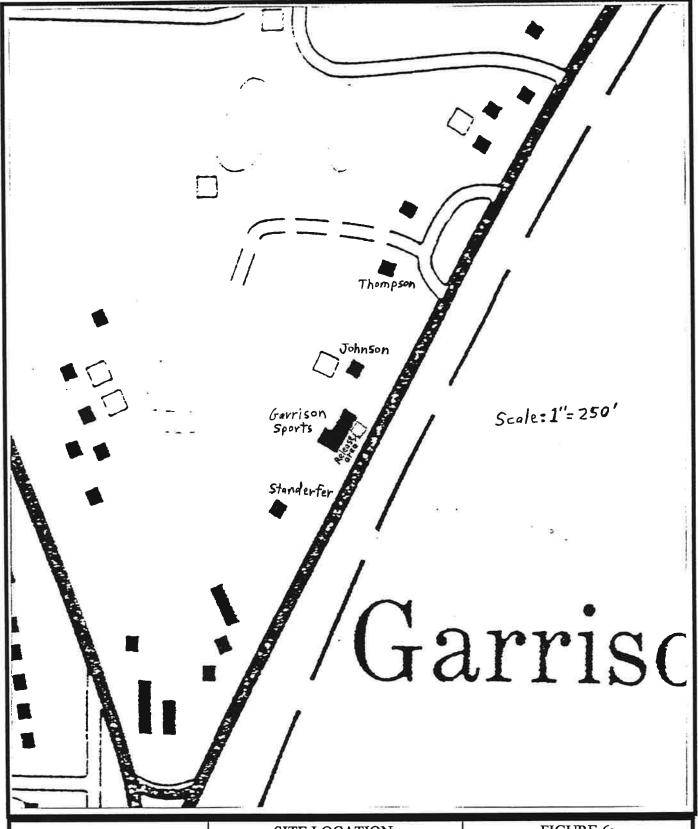
The soil boring investigation indicated that the soil contamination is localized to the release source area. Also, a majority of the petroleum-impacted soil was removed during the tank removal procedures. The potential for petroleum vapors to migrate from this site is minimal. Therefore the risks associated with the remaining contaminated soil is minimal.

11.2 Discuss the risks associated with the impacted ground water?

The dissolved contaminant plume is defined within the monitoring well network and natural biodegradation is likely occurring at this site. The onsite water supply well (Garrison Sports) is upgradient from the petroleum release, and this well was sampled and no petroleum related compounds were detected. There are no water supply wells located downgradient from the release site. Also, there is a nearly clean downgradient monitoring well located between the release area and Mille Lacs Lake indicating that it is not likely that any petroleum contaminants are reaching this surficial water body. Therefore, the risks associated with the impacted groundwater are minimal.

11.3 Discuss other concerns not mentioned above:


There are no other concerns relative to this release site. Considering the above mentioned risk determinations, the potential for this petroleum release site to impact receptors is minimal. Therefore, this release does not appear to constitute a threat to the public health and welfare, or to an environmental resource.


Section 12: Conclusions and Recommendations

site closure
additional vapor monitoring
X additional ground water monitoring
active cleanup

The recommendation above should be based on fact sheet #3.1 "Leaking Underground Storage Tank Investigation and Cleanup Policy." Describe below how you applied the policy to support your recommendation.

On page five of fact sheet #3.1, the MPCA indicates that it is not possible to establish plume stability with only two groundwater sampling events. Also stated, is that at least six rounds of quarterly monitoring data will be necessary to evaluate plume stability on a site by site basis. Therefore, Ceres Environmental Services, on behalf of Garrison Sports, recommends groundwater sampling of the site monitoring wells on a quarterly basis for a period of one year. After this one year period of groundwater monitoring, an annual report will be submitted to the MPCA as described in fact sheet #3.26. (Note: Due to the minimal risk associated with this release site, the MPCA may want to consider closure of this site.)

CERES ENVIRONMENTAL

SITE LOCATION:

LEAK #10037 GARRISON SPORTS P.O. BOX 85, HIGHWAY 169 GARRISON, MN FIGURE 6:

WALKING SURVEY
PROPERTY/
WATER SUPPLY WELL
LOCATION MAP

C. Describe the status of the other components of the tank system(s), (i.e., piping and dispensers) for those tanks listed above.

The piping and dispenser of the tank system were in fair to poor condition.

D. Identify and describe the source or suspected source(s) of the release.

The source of release is suspected to have been from leaking dispenser lines and connections, and from leaking piping and/or connections.

- E. What was the volume of the release? (if known): Not Known
- F. When did the release occur? (if known): Not Known
- G. Describe source of on-site drinking water.

The onsite drinking water source is Garrison Sports residential water supply well.

PART IV: EXCAVATION INFORMATION

- A. Dimensions of excavation: 20' x 30' x 8'
- B. Original tank backfill material (sand, gravel, etc.): Sand
- C. Native soil type (clay, sand, etc.): Medium sand
- D. Quantity of contaminated soil removed for treatment (cubic yards):
 [Note: If more than 150 cubic yards removed, please attach copy of written approval from MPCA.] 150 cubic yards of contaminated soil were removed for treatment.
- E. Were new tanks installed at the site? (No) If yes, how much soil was excavated to accommodate the installation of the new tanks? Not Applicable
- F. Was ground water encountered or was there evidence of a seasonally high ground water table? (Yes) At what depth? Groundwater was encountered at a depth of approximately (7-8 ft) below ground surface and there was no evidence of a seasonally high ground water table.
- G. If ground water was not encountered during the excavation, what is the expected depth of ground water? Not Applicable

C. List below all soil sample analytical results from bottom and sidewall samples (i.e., soils left in place when excavation is complete). Code the samples with sampling depths in parentheses as follows: sidewall samples S-1 (8 feet), S-2 (4 feet), etc.; bottom samples B-1 (13 feet), B-2 (14 feet), etc. Be sure the sample codes correspond to the site map required in part VI. Do not include analyses from the stockpiled soils.

Please refer to the following table.

Table 3. Soil Sample Analytical results from bottom samples.

Sample Code	Benzene	Toluene	Ethyl- benzene	Total Xylenes	GRO	DRO
D-1/Dispenser	BDL	BDL	BDL	BDL	BDL	NA
D-2/Dispenser	BDL	BDL	BDL	BDL	BDL	NA
D-3/Dispenser	BDL	BDL	BDL	BDL	BDL	18
B-4 UST#4 (9 ft)	BDL	BDL	BDL	BDL	NA	BDL
B-1 (7 ft)	0.31	1.7	0.30	6.4	73	23
B-2 (7 ft)	BDL	BDL	BDL	BDL	BDL	BDL
B-3 (7 ft)	BDL	BDL	BDL	BDL	BDL	NA
B-4 (7 ft)	BDL	BDL	BDL	BDL	BDL	NA

Note:

Copies of laboratory reports and chain of custody forms are included in Appendix A.

All results are recorded in parts per million (ppm).

DRO = diesel range organics

NA = not analyzed

St. Paul, MN. 55110

Tel. (612) 653-3471

Fax (612) 653-3475

LABORATORY REPORT

Client:

CERES Contracting

3825 85th Ave. North

Brooklyn Park, MN

Date Sampled:

07/15/97 - 07/16/97

Date Received:

07/17/97

Date Analyzed:

07/17/97 - 07/22/97 Physical State:

Soil

Project:

Garrison Sports

Garrison, MN

Report Date:

07/23/97

Lab P.N.:

1010-83

Client P.N.:

NA

Quality Assurance / Quality Control Summary

Parameter (Method)	QC <u>Type</u>	Percent Recovery	Acceptable Range	Relative Percent <u>Difference</u>	Acceptable Range
MtBE (EPA 8020)	M	93	76 - 125	0.44	0 - 20
Benzene (EPA 8020)	M	95	87 - 116	1.5	0 - 20
Toluene (EPA 8020)	M	98	87 - 115	0.84	0 - 20
Ethylbenzene (EPA 8020)	M	96	84 - 120	1.1	0 - 20
m,p-Xylenes (EPA 8020)	М	106	90 - 120	0.56	0 - 20
o-Xylenes (EPA 8020)	M	100	92 - 115	0.87	0 - 20
DRO (Wis. DNR)	M	90	70 - 120	6.8	0 - 20

M = Matrix Spike / Matrix Spike Duplicate

L = Laboratory Control Sample

Approved U. Woveful

Compounds were identified by column retention time and quantified by peak area of known standards using a Hewlett Packard ChemStation Data System. The samples were received by HORIZON LABORATORIES, INC. and accompanied by the Chain-of-Custody record. The Laboratory Report is the sole property of the client to whom it is addressed. The Laboratory Results are only a part of the Laboratory Report.

St. Paul, MN. 55110

Tel. (612) 653-3471

Fax (612) 653-3475

LABORATORY RESULTS

Client:

CERES Contracting

3825 85th Ave. North

Brooklyn Park, MN

Date Sampled: 07/15/97 - 07/16/97

Date Analyzed: 07/17/97 - 07/22/97

Physical State:

Soil

Project:

Garrison Sports

Garrison, MN

Report Date:

07/23/97

Lab P.N.:

1010-83

Client P.N.: NA

Sample I.D.	MtBE mg/kg <u>EPA 8020</u>	Benzene mg/kg EPA 8020	Toluene mg/kg <u>EPA 8020</u>	Ethyl- benzene mg/kg EPA 8020	Total, Xylenes mg/kg EPA 8020	GRO mg/kg <u>Wis. DNR</u>	DRO mg/kg <u>Wis. DNR</u>	% Moisture
MW-1 (8-10')	< 0.27	5.9	44	24	88	1,200	300	15
MW-1 (38-40')	< 0.13	< 0.059	< 0.21	< 0.21	< 0.39	< 3.3	< 0.90	17
MW-2 (8-10')	< 0.13	< 0.061	< 0.21	< 0.22	< 0.41	< 3.3	< 0.90	12
MW-3 (8-10')	< 0.13	< 0.060	< 0.21	< 0.21	< 0.40	< 3.3	< 0.90	16
MW-4 (8-10')	< 0.13	< 0.061	< 0.21	< 0.22	< 0.41	< 3.3	< 0.90	17
MW-5 (8-10')	< 0.13	< 0.061	< 0.21	< 0.22	< 0.40	< 3.3	< 0.90	16
SB-I (8-10')	< 0.13	< 0.061	< 0.21	< 0.22	< 0.41	< 3.3	< 0.90	21
PQL, mg/kg	0.0015	0.00070	0.0025	0.0025	0.0047	3.3	0.90	
MDL, mg/kg	0.00030	0.00014	0.00049	0.00050	0.00093	0,65	0.23	

MDL; Method Detection Limit for undiluted samples.

PQL; Practical Quantitation Limit for undiluted samples.

GRO; Gasoline Range Organics

DRO; Diesel Range Organics

MtBE; Methyl tert-Butyl Ether

All results are in mg/kg which is equal to parts-per-million (ppm) and are based on a "dry weight" basis.

Eaboratories, Inc.

CHAIN-OF-CUSTODY RECORD

4463 White Bear Parkway, Suite #105 St, Paul, MN. 55110 Tel. 612 / 653-3471 Fax 612 / 653-3475

HLI Project No. 1010 – 83 Check if "received on ice"			Invoice No.		No. of Container Sample Condition Horizon No.	30462	30463	30464	30465	30466	30467	30468			COMPANY OF DATE TIME	
Page of	Com o Analysis Requested	Filtered (Y/N) W/W/W/Preserved (Code) A/A/A/A		/o/X8/X0/		M	7	> =		7		7			(Suland Holle) Ho.	
Froject Name Galvison Mrs	Clien Project Nymber Clien Project Nymber	Prese	Code A-None B-HNO ₃ C-H ₂ SO ₄ D-MeOH		* .K	7-15-47		\dashv	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	5	5	7		DAYY TANEE	C CP-11-6	_
CEVES ENUTRONMENTAL 3825 BSTHAUR No. H.	Great Address (City, State, Zip) Normal Turnaround Il Other, Specify	(Mr. 18-10) (5 / 1/20 proted	Michay a. La /Ceres	Sample Collector's Signature		MW-1	MW-1	2-mW	MW-3		2007	8 35-6 (0-10)	6	10 RELINOUISHED BY / COMPANY	2/	

Rvs 3 (8/96)

Copies: White - Client (completion), Yellow - File (completion), Pink - Client (initial)

St. Paul, MN. 55110

Tel. (612) 653-3471

Fax (612) 653-3475

LABORATORY REPORT

Client:

CERES Environmental

3825 85th Ave. North

Brooklyn Center, MN

Date Received:

08/28/97

08/29/97

Date Analyzed:

Date Sampled:

08/29/97 - 09/05/97

Physical State:

Aqueous

Project:

Garrison Sports

P.O. Box 85, Hwy 169

Garrison, MN

Report Date:

09/10/97

Lab P.N.: Client P.N.:

1010-83.2 NA

Quality Assurance / Quality Control Summary

Parameter: (Method)	QC <u>Type</u>	Percent Recovery	Acceptable <u>Range</u>	Relative Percent <u>Difference</u>	Acceptable Range
MtBE (MDH 465E)	M	93	73 - 125	0.53	0 - 25
Benzene (MDH 465E)	M	93	83 - 116	2.0	0 - 8.5
Toluene (MDH 465E)	M	93	82 - 117	2.9	0 - 13
Ethylbenzene (MDH 465E)	M	93	81 - 116	3.2	0 - 10
m,p-Xylenes (MDH 465E)	M	92	76 - 118	3.7	0 - 12
o-Xylene (MDH 465E)	M	94	83 - 115	2.5	0 - 9.0
cis-1,2-Dichloroethene (MDH 465E)	M	90	88 - 113	0.77	0 - 11
Tetrachloroethene (MDH 465E)	M	95	79 - 121	4.2	0 - 12
GRO (Wis. DNR)	M	115	80 - 120	3.3	0 - 20
DRO (Wis. DNR)	M	115	80 - 120	7.2	0 - 20

M = Matrix Spike / Matrix Spike Duplicate

L = Laboratory Control Sample

Appgived 9 - North

Compounds were identified by column retention time and quantified by peak area to those of known standards using a Hewlett Packard ChemStation data system. The samples were received by HORIZON LABORATORIES, INC. and accompanied by the Chain-of-Custody Record. The Laboratory Report is the sole property of the client to whom it is addressed. The Laboratory Results are only a part of the Laboratory Report.

St. Paul, MN. 55110

Tel. (612) 653-3471

Fax (612) 653-3475

LABORATORY RESULTS

Client:

CERES Environmental

3825 85th Ave. North

Brooklyn Center, MN

Date Sampled:

08/28/97

Date Analyzed:

09/02/97 - 09/03/97

Physical State:

Aqueous

Project:

Garrison Sports

P.O. Box 85, Hwy 169

Garrison, MN

Report Date:

09/10/97

Lab P.N.:

1010-83.2

Client P.N.:

NA

VOC Results: Page 1 of 4

	MW-1	MW-2	MW-3 μg/l	MW-4 μg/l	MW-5 μg/l	PQL μg/l	MDL μg/l
	μg/l	μg/l					
<u>Parameter</u>	MDH 465E	MDH 465E	MDH 465E	MDH 465E	MDH 465E	<u>MDH 465E</u>	MDH 465E
Acetone	< 160	140	< 16	< 16	< 16	16	3.1
•	< 14	< 1.4	< 1.4	< 1.4	< 1.4	1.4	0.28
Allyl Chloride Benzene	280	< 0.28	< 0.28	< 0.28	< 0.28	0.28	0.056
Bromobenzene	< 2.6	< 0.26	< 0.26	< 0.26	< 0.26	0.26	0.052
Bromodenzene Bromochloromethane	< 6.5	< 0.65	< 0.65	< 0.65	< 0.65	0.65	0.13
Bromodichloromethane	< 3.1	< 0.31	< 0.31	< 0.31	< 0.31	0.31	0.061
Bromoform	< 7.0	< 0.70	< 0.70	< 0.70	< 0.70	0.70	0.14
Bromonethane	< 30	< 3.0	< 3.0	< 3.0	< 3.0	3.0	0.60
n-Butylbenzene	140	77	< 1.3	< 1.3	< 1.3	1.3	0.26
sec-Butylbenzene	8.5	11	< 0.70	< 0.70	< 0.70	0.70	0.14
tert-Butylbenzene	< 8.0	< 0.80	< 0.80	< 0.80	< 0.80	0.80	0.16
Carbon Tetrachloride	< 4.3	< 0.43	< 0.43	< 0.43	< 0,43	0.43	0.085
Chlorobenzene	< 3.6	< 0.36	< 0.36	< 0.36	< 0.36	0.36	0.071
Chloroethane	< 34	< 3.4	< 3.4	< 3.4	< 3.4	3.4	0.68
Chloroform	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50	0.50	0.10
Chloromethane	< 45	< 4.5	< 4.5	< 4.5	< 4,5	4.5	0.89
2-Chlorotoluene	< 7.0	< 0.70	< 0.70	< 0.70	< 0.70	0.70	0.14
4-Chlorotoluene	< 6.5	< 0.65	< 0.65	< 0.65	< 0.65	0.65	0.13
Dibromochloromethane	< 5.5	< 0.55	< 0.55	< 0.55	< 0.55	0.55	0.11
1,2-Dibromo-3-Chloropropane	< 7.0	< 0.70	< 0.70	< 0.70	< 0.70	0.70	0.14
1,2-Dibromoethane	< 1.6	< 0.16	< 0.16	< 0.16	< 0.16	0.16	0.031
Dibromomethane	< 2.8	< 0.28	< 0.28	< 0.28	< 0.28	0.28	0.055
1,2-Dichlorobenzene	< 7.0	< 0.70	< 0.70	< 0.70	< 0.70	0.70	0.14
1.3-Dichlorobenzene	< 6.0	< 0.60	< 0.60	< 0.60	< 0.60	0.60	0.12
1.4-Dichlorobenzene	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50	0.50	0.10
Dichlorodifluoromethane	< 32	< 3.2	< 3.2	< 3.2	< 3.2	3.2	0.63
1.1-Dichloroethane	< 7.0	< 0.70	< 0.70	< 0.70	< 0.70	0.70	0.14
1,2-Dichloroethane	< 3.1	< 0.31	< 0.31	< 0.31	< 0.31	0.31	0.061
1,1-Dichloroethene	< 8.5	< 0.85	< 0.85	< 0.85	< 0.85	0.85	0.17
cis-1,2-Dichloroethene	< 8.0	< 0.80	< 0.80	< 0.80	< 0.80	0.80	0.16
trans-1,2-Dichloroethene	< 7.5	< 0.75	< 0.75	< 0.75	< 0.75	0.75	0.15
Dichlorofluoromethane	< 20	< 2.0	< 2.0	< 2.0	< 2.0	2.0	0.39
1,2-Dichloropropane	< 2.7	< 0.27	< 0.27	< 0.27	< 0.27	0.27	0.053
1,3-Dichloropropane	< 2.7	< 0.27	< 0.27	< 0.27	< 0.27	0.27	0.053

PQL; Practical Quantitation Limit for undiluted samples.

MDL; Method Detection Limit for undiluted samples.

All results are in µg/l which is equal to parts-per-billion (ppb).

The Laboratory Results are only a part of the Laboratory Report.

St. Paul, MN. 55110

Tel. (612) 653-3471

Fax (612) 653-3475

LABORATORY RESULTS

Client:

CERES Environmental

3825 85th Ave. North

Brooklyn Center, MN

Date Sampled:

Physical State:

08/28/97

Date Analyzed: 09/0

09/02/97 - 09/03/97 Aqueous

Project:

Garrison Sports

P.O. Box 85, Hwy 169

Garrison, MN

Report Date:

09/10/97

Lab P.N.:

1010-83.2

Client P.N.: NA

VOC Results: Page 2 of 4

<u>Parameter</u>	MW-1 μg/l <u>MDH 465E</u>	MW-2 μg/l <u>MDH 465E</u>	MW-3 μg/l <u>MDH 465E</u>	MW-4 μg/l <u>MDH 465E</u>	MW-5 μg/l <u>MDH 465E</u>	PQL μg/l <u>MDH 465E</u>	MDL μg/l <u>MDH 465E</u>
*2,2-Dichloropropane	< 19	< 1.9	< 1.9	< 1.9	< 1.9	1.9	0.38
1,1-Dichloropropene	< 6.0	< 0.60	< 0.60	< 0.60	< 0.60	0.60	0.12
cis-1,3-Dichloropropene	< 5.5	< 0.55	< 0.55	< 0.55	< 0.55	0.55	0.11
trans-1,3-Dichloropropene	< 7.0	< 0.70	< 0.70	< 0.70	< 0.70	0.70	0.14
Ethyl Benzene	89	< 0.37	< 0.37	< 0.37	< 0.37	0.37	0.073
Ethyl Ether	< 9.0	< 0.90	< 0.90	< 0.90	< 0.90	0.90	0.18
Hexachlorobutadiene	< 24	< 2.4	< 2.4	< 2.4	< 2.4	2.4	0.47
Isopropyl Benzene	22	24	< 0.95	< 0.95	< 0.95	0.95	0.19
p-Isopropyltoluene	< 7.0	4.6	< 0.70	< 0.70	< 0.70	0.70	0.14
Methyl Ethyl Ketone	< 280	180	< 2.0	< 2.0	< 2.0	2.0	0.40
Methyl Isobutyl Ketone	< 6.5	21	< 0.65	< 0.65	< 0.65	0.65	0.13
Methyl tert-Butyl Ether	< 9.1	< 0.91	< 0.91	< 0.91	< 0.91	0.91	0.18
Methylene Chloride	< 82	< 8.2	< 8.2	< 8.2	< 8.2	8.2	0.90
Naphthalene	28	16	< 1.2	< 1.2	< 1.2	1.2	0.24
*n-Propylbenzene	62	14	< 1.1	< 1.1	< 1.1	1.1	0.21
o-Xylene	180	< 0.33	< 0.33	< 0.33	< 0.33	0.33	0.065
Styrene	< 4.1	< 0.41	< 0.41	< 0.41	< 0.41	0.41	0.082
1,1,1,2-Tetrachloroethane	< 4.7	< 0.47	< 0.47	< 0.47	< 0.47	0.47	0.094
1,1,2,2-Tetrachloroethane	< 2.1	< 0.21	< 0.21	< 0.21	< 0.21	0.21	0.041
Tetrachloroethene	< 5.0	< 0.50	< 0.50	< 0.50	< 0.50	0.50	0.099
Tetrahydrofuran	< 26	< 2.6	< 2.6	< 2.6	< 2.6	2.6	0.51
Toluene	540	2.9	< 0.42	< 0.42	< 0.42	0.42	0.084
1,2,3-Trichlorobenzene	< 16	< 1.6	< 1.6	< 1.6	< 1.6	1.6	0.32
1,2,4-Trichlorobenzene	< 24	< 2.4	< 2.4	< 2.4	< 2.4	2.4	0.47
1,1,1-Trichloroethane	< 6.5	< 0.65	< 0.65	< 0.65	< 0.65	0.65	0.13
1,1,2-Trichloroethane	< 2.3	< 0.23	< 0.23	< 0.23	< 0.23	0.23	0.046
Trichloroethene	< 7.0	< 0.70	< 0.70	< 0.70	< 0.70	0.70	0.14
Trichlorofluoromethane	< 11	< 1.1	< 1.1	< 1.1	< 1.1	1.1	0.22
1,2,3-Trichloropropane	< 1.6	< 0.16	< 0.16	< 0.16	< 0.16	0.16	0.031
1,1,2-Trichlorotrifluoroethane	< 20	< 2.0	< 2.0	< 2.0	< 2.0	2.0	0.39
1,2,4-Trimethylbenzene	380	16	< 0.80	< 0.80	< 0.80	0.80	0.16
*1,3,5-Trimethylbenzene	170	< 1.3	< 1.3	< 1.3	< 1.3	1.3	0.25
Vinyl Chloride	< 24	< 2.4	< 2.4	< 2.4	< 2.4	2.4	0.47
m,p-Xylenes	410	5.7	< 0.65	< 0.65	< 0.65	0.65	0.13

*; coeluting compounds

PQL; Practical Quantitation Limit for undiluted samples.

MDL; Method Detection Limit for undiluted samples.

All results are in µg/l which is equal to parts-per-billion (ppb).

St. Paul, MN. 55110

Tel. (612) 653-3471

Fax (612) 653-3475

LABORATORY RESULTS

Client:

CERES Environmental

3825 85th Ave. North

Brooklyn Center, MN

Date Sampled:

08/28/97

Date Analyzed:

09/03/97

Physical State:

Aqueous

Project:

Garrison Sports

P.O. Box 85, Hwy 169

Garrison, MN

Report Date:

09/10/97 1010-83.2

Lab P.N.:

NA

Client P.N.: N

VOC Results: Page 3 of 4

	Water Supply Well	PQL	MDL
	μg/l	μg/l	μg/l
Parameter	MDH 465E	MDH 465E	MDH 465E
THE ELITORET			
Acetone	< 16	16	3.1
Allyl Chloride	< 1.4	1.4	0.28
Benzene	< 0.28	0.28	0.056
Bromobenzene	< 0.26	0.26	0.052
Bromochloromethane	< 0.65	0.65	0.13
Bromodichloromethane	< 0.31	0.31	0.061
Bromoform	< 0.70	0.70	0.14
Bromomethane	< 3.0	3.0	0.60
n-Butylbenzene	< 1.3	1.3	0.26
sec-Butylbenzene	< 0.70	0.70	0.14
tert-Butylbenzene	< 0.80	0.80	0.16
Carbon Tetrachloride	< 0.43	0.43	0.085
Chlorobenzene	< 0.36	0.36	0.071
Chloroethane	< 3.4	3.4	0.68
Chloroform	< 0.50	0.50	0.10
Chloromethane	< 4.5	4.5	0.89
2-Chlorotoluene	< 0.70	0.70	0.14
4-Chlorotoluene	< 0.65	0.65	0.13
Dibromochloromethane	< 0.55	0.55	0.11
1,2-Dibromo-3-Chloropropane	< 0.70	0.70	0.14
1,2-Dibromoethane	< 0.16	0.16	0.031
Dibromomethane	< 0.28	0.28	0.055
1,2-Dichlorobenzene	< 0.70	0.70	0.14
1,3-Dichlorobenzene	< 0.60	0.60	0.12
1,4-Dichlorobenzene	< 0.50	0.50	0.10
Dichlorodifluoromethane	< 3.2	3.2	0.63
1,1-Dichloroethane	< 0.70	0.70	0.14
1,2-Dichloroethane	< 0.31	0.31	0.061
1,1-Dichloroethene	< 0.85	0.85	0.17
cis-1,2-Dichloroethene	< 0.80	0.80	0.16
trans-1,2-Dichloroethene	< 0.75	0.75	0.15
Dichlorofluoromethane	< 2.0	2.0	0.39
1,2-Dichloropropane	< 0.27	0.27	0.053
1,3-Dichloropropane	< 0.27	0.27	0.053

PQL; Practical Quantitation Limit

MDL; Method Detection Limit

All results are in µg/l which is equal to parts-per-billion (ppb).

St. Paul, MN. 55110

Tel. (612) 653-3471

Fax (612) 653-3475

LABORATORY RESULTS

Client:

CERES Environmental

3825 85th Ave. North

Brooklyn Center, MN

Date Sampled:

pled: 08/28/97

Date Analyzed:

09/03/97

Physical State:

Aqueous

Project:

Garrison Sports

P.O. Box 85, Hwy 169

Garrison, MN

Report Date:

09/10/97

Lab P.N.:

1010-83.2

Client P.N.:

NA

VOC Results: Page 4 of 4

	Water Supply Well	PQL	MDL
	μg/l	μg/l	μg/l
Parameter	MDH 465E	MDH 465E	MDH 465E
<u>I didiffecti</u>	WEDIT 103E	112211 1002	
*2,2-Dichloropropane	< 1.9	1.9	0.38
1,1-Dichloropropene	< 0.60	0.60	0.12
cis-1,3-Dichloropropene	< 0.55	0.55	0.11
trans-1,3-Dichloropropene	< 0.70	0.70	0.14
Ethyl Benzene	< 0.37	0.37	0.073
Ethyl Ether	< 0.90	0.90	0.18
Hexachlorobutadiene	< 2.4	2.4	0.47
Isopropyl Benzene	< 0.95	0.95	0.19
p-Isopropyltoluene	< 0.70	0.70	0.14
Methyl Ethyl Ketone	< 2.0	2.0	0.40
Methyl Isobutyl Ketone	< 0.65	0.65	0.13
Methyl tert-Butyl Ether	< 0.91	0.91	0.18
Methylene Chloride	< 4.5	4.5	0.90
Naphthalene	< 1.2	1.2	0.24
*n-Propylbenzene	< 1.1	1.1	0.21
o-Xylene	< 0.33	0.33	0.065
Styrene	< 0.41	0.41	0.082
1,1,1,2-Tetrachloroethane	< 0.47	0.47	0.094
1,1,2,2-Tetrachloroethane	< 0.21	0.21	0.041
Tetrachloroethene	< 0.50	0.50	0.099
Tetrahydrofuran	< 2.6	2.6	0.51
Toluene	< 0.42	0.42	0.084
1,2,3-Trichlorobenzene	< 1.6	1.6	0.32
1,2,4-Trichlorobenzene	< 2.4	2.4	0.47
1,1,1-Trichloroethane	< 0.65	0.65	0.13
1,1,2-Trichloroethane	< 0.23	0.23	0.046
Trichloroethene	< 0.70	0.70	0.14
Trichlorofluoromethane	< 1.1	1.1	0.22
1,2,3-Trichloropropane	< 0.16	0.16	0.031
1,1,2-Trichlorotrifluoroethane	< 2.0	2.0	0.39
1,2,4-Trimethylbenzene	< 0.80	0.80	0.16
*1,3,5-Trimethylbenzene	< 1.3	1.3	0.25
Vinyl Chloride	< 2.4	2.4	0.47
m,p-Xylenes	< 0.65	0.65	0.13
*; coeluting compounds			

*; coeluting compounds

PQL; Practical Quantitation Limit

MDL; Method Detection Limit

All results are in μ g/l which is equal to parts-per-billion (ppb).

St. Paul, MN. 55110

Tel. (612) 653-3471

Fax (612) 653-3475

LABORATORY RESULTS

Client:

CERES Environmental

3825 85th Avenue North

Brooklyn Park, MN

Date Sampled:

08/28/97

Date Analyzed:

08/29/97 - 09/05/97

Physical State:

Aqueous

Project:

Garrison Sports

P.O. Box 85, Hwy 169

Garrison, MN

Report Date:

09/10/97

Lab P.N.:

1010-83.2

Client P.N.:

NA

	:•		Dissolved
	GRO	DRO	Lead
	μg/l	μg/l	μg/l
Sample I.D.	Wis. DNR	Wis. DNR	EPA 200.8
MW-1	7,700	1,300	<3.0
MW-2	2,700	820	8.2
MW-3	< 40	<280	<3.0
MW-4	< 40	<280	<3.0
MW-5	< 40	<280	<3.0
Water Supply Well	< 40	<280	<3.0
PQL, μg/l	40	280	3.0
MDL, µg/l	4.3	13	0.60

PQL; Practical Quantitation Limit for undiluted samples.

MDL; Method Detection Limit for undiluted samples.

GRO; Gasoline Range Organics

DRO; Diesel Range Organics

All results are in µg/l which is equal to parts-per-billion (ppb).

Eaboratories, Inc.

CHAIN-OF-CUSTODY RECORD

4463 White Bear Parkway, Suite #105 St, Paul, MN. 55110 Tel. 612 / 653-3471 Fax 612 / 653-3475

ving Notes:	1010-83.2	ice"	ړ							Horizon No.	3,402	31403	3,404	31405	3/406	31407				TIME	742	
Laboratory Receiving Notes:	HLI Project No. /D		Temperature of	Lab Comments:				Invoice No.		Sample Condition	Good	_				ヘク				DATE	67/8	
		0								of Container s Type	3-40m/	,								ANY	squ'i	
_				Analysis Requested	/W/,	18/	//2	\ 		No. of Items	5	5	2	5	5	5				COMPANY	HONINOH	
	Page_		::#1	Analysis	1/11/2	/E/B	//	Prod	Jued 1	2/0						Z				`	(ann)	
		1 son MW			1/W/W	(E)			100/00/00/00/00/00/00/00/00/00/00/00/00/	70	7	7	ノフレ	7	7	7				RECEIVED BY	HAMM!	
	1.5	Huy 169, Garrison		Leres	Filtered (Y/N)	Preserved (Code)			_	201	7	? 7	7	7	7	7				TIME	Im Ou	_
. (Project Name	85 Hwy		7.he Lee			Code A-None B-HNO ₃	C-HSO D-MeOH	구 전	Time d Sampled	Lb-	1)	ſ	\	*				47 7:40 nm	_
•	Project Nume	P.O. Box 85		M;W	Send Report to:					Date Matrix Sampled	G.W. 8-28-47					rey C	1	-		DATE.	8-29-97	
					r leadensky			Cores		Ma	E.				->	Water	+			COMPANY	4	
	MENTO	2 Novth	MW		Samples fe		`			Field Sample ID		(G)				vell				o /	er/Ceve	
	CENE CAVITONMENTO	3825 85IH AURAUR NOVTH	Brown Lyn Party MW	If Other, Specify	Freld Filtered F.W. Sangles Fer leadendysis			Ohibas a. La	٤	Field S)-,	2-	ς,	7-	S	Water supply well				RELINQUISHED BY	Ornebush a fee /Ceves	
	Client Name	3825 8.	Brook lyn	Cuera Acoresa (Cary, Saire, Ap) Normal Turnaround 🔀 If Other, Specify	Feeld Filt	ent Comments:	Client Comments:	Shi	Sample Collector's Signature	Item No.	1 MW-1	2 MW-Z	3 MW-3	4 BW-4	s MW-5	6 Water	_	2 6	10	RELIN	Olm	

Copies: White - Client (completion), Yellow - File (completion), Pink - Client (initial)

St. Paul, MN. 55110

Tel. (612) 653-3471

Fax (612) 653-3475

LABORATORY REPORT

Client:

CERES Environmental

3825 85th Ave. North

Brooklyn Park, MN

Date Sampled:

11/20/97

Date Received:

11/20/97

Date Analyzed:

11/24/97 - 12/02/97

Physical State:

Aqueous

Project:

Garrison Sports

P.O. Box 85 Hwy 169

Garrison, MN

Report Date:

12/03/97

Lab P.N.:

1010-83.3 NA

Client P.N.:

Quality Assurance / Quality Control Summary

Parameter: (Method)	QC Type	Percent Recovery	Acceptable Range	Relative Percent Difference	Acceptable Range
MIBE (MDH 465E)	M	89	80 - 116	0.83	0 - 24
Benzene (MDH 465E)	M	94	76 - 117	0.77	0 - 12
Toluene (MDH 465E)	M	95	77 - 118	0.44	0 - 13
Ethylbenzene (MDH 465E)	M	94	77 - 119	1.1	0 - 12
m,p-Xylenes (MDH 465E)	M	92	78 - 116	1.2	0 - 12
o-Xylene (MDH 465E)	M	94	80 - 114	0.40	0 - 11
Dibromomethane (MDH 465E)	M	87	81 - 138	0.75	0 - 19
Tetrachloroethene (MDH 465E)	M	93	72 - 121	0.22	0 - 16
GRO (Wis. DNR)	M	115	80 - 120	1.4	0 - 20
DRO (Wis. DNR)	M	101	80 - 120	1.2	0 - 20

M = Matrix Spike / Matrix Spike Duplicate

L = Laboratory Control Sample

Davioused

Appropried a. Novobe

Compounds were identified by column retention time and quantified by peak area to those of known standards using a Hewlett Packard ChemStation data system. The samples were received by HORIZON LABORATORIES, INC. and accompanied by the Chain-of-Custody Record. The Laboratory Report is the sole property of the client to whom it is addressed.

The Laboratory Results are only a part of the Laboratory Report.

St. Paul, MN. 55110

Tel. (612) 653-3471

Fax (612) 653-3475

LABORATORY RESULTS

Client:

CERES Environmental

3825 85th Ave. North

Brooklyn Park, MN

Date Sampled:

11/20/97

Date Analyzed:

11/25/97

Physical State:

Aqueous

Project:

Garrison Sports

P.O. Box 85 Hwy 169

Gartison, MN

Report Date:

12/03/97 1010-83.3

Lab P.N.: Client P.N.:

NA

VOC Results: Page 1 of 2

	MW-1	MW-2	MW-3	MW-4	MW-5	PQL	MDL
	μg/l	μg/l	μg/Î	μg/l	μg/l	μg/1	μgʻl
Parameter	MDH 465E						
				ie ie			
Acetone	< 160	< 160	< 16	< 16	< 16	16	3.1
Allyl Chloride	< 14	< 14	< 1.4	< 1.4	< 1.4	1.4	0.28
Benzene	< 2.8	< 2.8	< 0.28	< 0.28	< 0.28	0.28	0.056
Bromobenzene	< 2.6	< 2.6	< 0.26	< 0.26	< 0.26	0.26	0.052
Bromochloromethane	< 6.5	< 6.5	< 0.65	< 0.65	< 0.65	0.65	0.13
Bromodichloromethane	< 3.1	< 3.1	< 0.31	< 0.31	< 0.31	0.31	0.061
Bromoform	< 7.0	< 7.0	< 0.70	< 0.70	< 0.70	0.70	0.14
Bromomethane =	< 30	< 30	< 3.0	< 3.0	< 3.0	3.0	0.60
n-Butylbenzene	150	110	< 1.3	< 1.3	< 1.3	1.3	0.26
sec-Butylbenzene	< 7.0	8.4	< 0.70	< 0.70	0.81	0.70	0.14
tert-Butylbenzene	< 8.0	< 8.0	< 0.80	< 0.80	< 0.80	0.80	0.16
Carbon Tetrachloride	< 4.3	< 4.3	< 0.43	< 0.43	< 0.43	0.43	0.085
Chlorobenzene	< 3.6	< 3.6	< 0.36	< 0.36	< 0.36	0.36	0.071
Chloroethane	< 34	< 34	< 3.4	< 3.4	< 3.4	3.4	0.68
Chloroform	< 5.0	< 5.0	< 0.50	< 0.50	< 0.50	0.50	0.10
Chloromethane	< 45	< 45	< 4.5	< 4.5	< 4.5	4.5	0.89
2-Chlorotoluene	< 7.0	< 7.0	< 0.70	< 0.70	< 0.70	0.70	0.14
4-Chlorotoluene	< 6.5	< 6.5	<-0.65	< 0.65	< 0.65	0.65	0.13
Dibromochloromethane	< 5.5	< 5.5	< 0.55	< 0.55	< 0.55	0.55	0.11
1,2-Dibromo-3-Chloropropane	< 7.0	< 7.0	< 0.70	< 0.70	< 0.70	0.70	0.14
1,2-Dibromoethane	< 1.6	< 1.6	< 0.16	< 0.16	< 0.16	0.16	0.031
Dibromomethane	< 2.8	< 2.8	< 0.28	< 0.28	< 0.28	0.28	0.055
1,2-Dichlorobenzene	< 7.0	< 7.0	< 0.70	< 0.70	< 0.70	0.70	0.14
1,3-Dichlorobenzene	< 6.0	< 6.0	< 0.60	< 0.60	< 0.60	0.60	0.12
1,4-Dichlorobenzene	< 5.0	< 5.0	< 0.50	< 0.50	< 0.50	0.50	0.10
Dichlorodifluoromethane	< 32	< 32	< 3.2	< 3.2	< 3.2	3.2	0.63
1,1-Dichloroethane	< 7.0	< 7.0	< 0.70	< 0.70	< 0.70	0.70	0.14
1,2-Dichloroethane	< 3.1	< 3.1	< 0.31	< 0.31	< 0.31	0.31	0.061
1,1-Dichloroethene	< 8.5	< 8.5	< 0.85	< 0.85	< 0.85	0.85	0.17
cis-1.2-Dichloroethene	< 8.0	< 8.0	< 0.80	< 0.80	< 0.80	0.80	0.16
trans-1,2-Dichloroethene	< 7.5	< 7.5	< 0.75	< 0.75	< 0.75	0.75	0.15
Dichlorofluoromethane	< 20	< 20	< 2.0	< 2.0	< 2.0	2.0	0.39
1,2-Dichloropropane	< 2.7	< 2.7	< 0.27	< 0.27	< 0.27	0.27	0.053
1.3-Dichloropropane	< 2.7	< 2.7	< 0.27	< 0.27	< 0.27	0.27	0.053
						- /	

PQL; Practical Quantitation Limit for undiluted samples

MDL; Method Detection Limit for undiluted samples.

All results are in $\mu g/l$ which is equal to parts-per-billion (ppb).

St. Paul, MN. 55110

Tel. (612) 653-3471

Fax (612) 653-3475

LABORATORY RESULTS

Client:

CERES Environmental

3825 85th Ave. North

Brooklyn Park, MN

Date Sampled:

11/20/97

11/25/97

Date Analyzed:

Physical State:

Aqueous

Project:

Garrison Sports

P.O. Box 85 Hwy 169

Garrison, MN

Report Date:

12/03/97 1010-83.3

Lab P.N.: Client P.N.:

NA

VOC Results; Page 2 of 2

	MW-1	MW-2	MW-3	MW-4	MW-5	PQL	MDL
	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l	μg/l
Parameter	MDH 465E	MDH 465E	MDH 465E	MDH 465E	MDH 465E	MDH 465E	MDH 465E
	***********	-				3	
*2,2-Dichloropropane	< 19	< 19	< 1.9	< 1.9	< 1.9	1.9	0.38
1,1-Dichloropropene	< 6.0	< 6.0	< 0.60	< 0.60	< 0.60	0.60	0.12
eis-1,3-Dichloropropene	< 5.5	< 5.5	< 0.55	< 0.55	< 0.55	0.55	0.11
trans-1,3-Dichloropropene	< 7.0	< 7.0	< 0.70	< 0.70	< 0.70	0.70	0.14
Ethyl Benzene	11	6.1	< 0.37	< 0.37	< 0.37	0.37	0.073
Ethyl Ether	< 9.0	< 9.0	< 0.90	< 0.90	< 0.90	0.90	0.18
Hexachlorobutadiene	< 24	< 24	< 2.4	< 2.4	< 2.4	2.4	0.47
Isopropyl Benzene	< 9.5	22	< 0.95	< 0.95	< 0.95	0.95	0.19
p-Isopropyltoluene	< 7.0	< 7.0	< 0.70	< 0.70	< 0.70	0.70	0.14
Methyl Ethyl Ketone	< 20	140	< 2.0	< 2.0	< 2.0	2.0	0.40
Methyl Isobutyl Ketone	< 6.5	< 6.5	< 0.65	< 0.65	< 0.65	0.65	0.13
Methyl tert-Butyl Ether	< 9.0	< 9.0	< 0.90	< 0.90	0.96	0.90	0.18
Methylene Chloride	< 45	< 45	< 4.5	< 4.5	< 4.5	4.5	0.90
Naphthalene	< 12	13	< 1.2	< 1.2	< 1.2	1.2	0.24
*n-Propylbenzene	31	24	< 1.1	< 1.1	< 1.1	1.1	0.21
o-Xylene	6.8	3.6	< 0.33	< 0.33	0.58	0.33	0.065
Styrene	< 4.1	< 4.1	< 0.41	< 0.41	< 0.41	0.41	0.082
1.1,1,2-Tetrachloroethane	< 4.7	< 4.7	< 0.47	< 0.47	< 0.47	0.47	0.094
1,1,2,2-Tetrachloroethane	< 2.1	< 2.1	< 0.21	< 0.21	< 0.21	0.21	0.041
Tetrachloroethene	< 5.0	< 5.0	< 0.50	< 0.50	< 0.50	0.50	0.099
Tetrahydrofuran	< 26	< 26	< 2.6	< 2.6	< 2.6	2.6	0.51
Toluene	26	5.7	< 0.42	< 0.42	< 0.42	0.42	0.084
1,2,3-Trichlorobenzene	< 16	< 16	< 1.6	< 1.6	< 1.6	1.6	0.32
1,2,4-Trichlorobenzene	< 24	< 24	< 2.4	< 2.4	< 2.4	2.4	0.47
1,1,1-Trichloroethane	< 6.5	< 6.5	< 0.65	< 0.65	< 0.65	0.65	0.13
1,1,2-Trichloroethane	< 2.3	< 2.3	< 0.23	< 0.23	< 0.23	0.23	0.046
Trichloroethene	< 7.0	< 7.0	< 0.70	< 0.70	< 0.70	0.70	0.14
Trichlorofluoromethane	< 11	< 11	< 1.1	< 1.1	< 1.1	1.1	0.22
1,2,3-Trichloropropane	< 1.6	< 1.6	< 0.16	< 0.16	< 0.16	0.16	0.031
1.1.2-Trichlorotrilluoroethane	< 20	< 20	< 2.0	< 2.0	< 2.0	2.0	0.39
1.2.4-Trimethylbenzene	56	< 8.0	< 0.80	< 0.80	< 0.80	0.80	0.16
*1,3,5-Trimethylbenzene	83	< 13	< 1.3	< 1.3	< 1.3	1.3	0.25
Vinyl Chloride	< 24	< 24	< 2.4	< 2.4	< 2.4	2.4	0.47
m.p-Xylenes	27	9.8	< 0.65	< 0.65	< 0.65	0.65	0.13
4 1 2							

*; coeluting compounds

PQL; Practical Quantitation Limit for undiluted samples.

MDL; Method Detection Limit for undiluted samples.

All results are in µg/l which is equal to parts-per-billion (ppb).

St. Paul, MN. 55110

Tel. (612) 653-3471

Fax (612) 653-3475

LABORATORY RESULTS

Client:

CERES Contracting

3825 85th Avenue North

Brooklyn Park, MN

Date Sampled:

11/20/97

Date Analyzed:

11/24/97 - 12/02/97

Physical State:

Aqueous

Project:

Garrison Sports

PO Box 85 Hwy 169

Garrison, MN

Report Date:

12/03/97

Lab P.N.:

1010-83.3

Client P.N.:

NA

	*1	GRO	DRO
		μg/l	hg/l
Sample I.D.	9	Wis. DNR	Wis. DNR
MW-1		3,800	670
MW-2		3,300	440
MW-3	<	40	<65
MW-4	<	40	<65
MW-5	<	40	<65
PQL, μg/l		40	65
MDL, μg/l		4.3	13

PQL; Practical Quantitation Limit for undiluted samples.

MDL; Method Detection Limit for undiluted samples.

GRO; Gasoline Range Organics

DRO; Diesel Range Organics

All results are in $\mu g/l$ which is equal to parts-per-billion (ppb).

Horizon Laboratories, Inc.

CHAIN-OF-CUSTODY RECORD

4463 White Bear Parkway, Suite #105 St, Paul, MN. 55110 Tel. 612 / 653-3471 Fax 612 / 653-3475

V	Ceres Environmental	CA PP	Stred Snosiring	tred!			. 1	Page			Laboratory Receiving Notes:	ving Notes:
W Glear	3825 85 IL ALLENCE MONTH	Project Name	ox 85,	Huri	P. D. Box 85, Hwy 169, Carriss,	, 765 IV	my				Check if "received on ice"	
Client,	Greek Address (Surea No. Suite) A NV	Project Address	Number	,		,	1			T IS	Temperature of Shipping Container:	ပ်
Normal	Normal Turawound If Other, Specify		W.Le	8			- Ar	Analysis Requested	ested	1 1	Lab Comments:	
ق	(mw-12mw-2impacted)	Send Report to:	ij		Filtered (Y/N)	2	N/N					
Clear	Эпппесы:		ć	4	Preserved (Code)	E	E/E/	\downarrow				
Client	Client Comments:		8			355	\	\ \	\	<u></u>		
	Midlata / Ceres			D-MeOH	MO	- Priso	\	\	<u></u>		Invoice No.	
Sample	Sample Collector's Signature			구 - HC	W/5.	00	<u> </u>	\				
Item No.	Field Sample ID	Date Matrix Sampled		Time Sampled	201		\	\	No. of Items	Container Type	Sample Condition	Horizon No.
-	1-mw	6.W. 11-20-97	6-97	1	7	2			1			32878
2	MW-Z)	7	2			Н			अध्नप
е	mw-3			5	7	7			4			32880
4	MW-4)	7	7			<i>h</i>			32881
S	MW-S	→	7)	7	7			7			32882
9												
7												
∞												
6												
01												
	ED BY		DATE	TIME		RECEIVED BY	ED BY	,	COMPANY	ΛX	DATE	TIME
	6 Midney a. Jus / Ceres	11-20-97	6-97	4 40pm	ž	Man	Thems	120	HORIZON	NO	11-20-97	4.40
					,							
Λ.												
					(20)							
ပိ	Copies: White - Client (completion), Yellow - File (completion), Pink - Client (initial)	etion), Pink - Clien	t (initial)								Rvs 3 (8/96)	(%

St. Paul, MN. 55110

Tel. (612) 653-3471

Fax (612) 653-3475

LABORATORY REPORT

Client:

CERES Environmental

3825 85th Ave. North

Brooklyn Park, MN

Date Sampled:

11/19/98

Date Received:

11/20/98

Date Analyzed:

11/23/98 - 11/26/98

Physical State:

Aqueous

Project:

Garrison Sports

Hwy 169 Garrison, MN Report Date:

12/09/98

Lab P.N.:

1010-83.4

Client P.N.:

NA

Quality Assurance / Quality Control Summary

Parameter: (Method)	QC <u>Type</u>	Percent <u>Recovery</u>	Acceptable Range	Relative Percent <u>Difference</u>	Acceptable Range
MtBE (MDH 465E)	М	87	64 - 132	0.83	0 - 16
Benzene (MDH 465E)	M	98	79 - 123	1.6	0 - 8.8
Toluene (MDH 465E)	M	98	79 - 122	2.6	0 - 8.7
Ethylbenzene (MDH 465E)	M	98	78 - 123	2.8	0 - 9.7
m,p-Xylenes (MDH 465E)	M	97	79 - 122	3.4	0 - 12
o-Xylene (MDH 465E)	M	97	78 - 123	3.1	0 - 9.6
Dibromomethane (MDH 465E)	M	84	66 - 112	0.86	0 - 19
Tetrachloroethene (MDH 465E)	M	98	79 - 125	2.8	0 - 7.5
GRO (Wis. DNR)	M	90	80 - 120	1.3	0 - 20
DRO (Wis. DNR)	M	92	80 - 120	4.8	0 - 20

M = Matrix Spike / Matrix Spike Duplicate

L = Laboratory Control Sample

and well

Approped Mount d. Mounte

Compounds were identified by column retention time and quantified by peak area to those of known standards using a Hewlett Packard ChemStation data system. The samples were received by HORIZON LABORATORIES, INC. and accompanied by the Chain-of-Custody Record. The Laboratory Report is the sole property of the client to whom it is addressed. The Laboratory Results are only a part of the Laboratory Report.

St. Paul, MN. 55110

Tel. (612) 653-3471

Fax (612) 653-3475

LABORATORY RESULTS

Client:

CERES Environmental

3825 85th Ave. North

Brooklyn Park, MN

Date Sampled:

11/19/98

Date Analyzed:

11/23/98 - 11/24/98

Physical State:

Aqueous

Project:

Garrison Sports

Hwy 169

Garrison, MN

Report Date:

12/09/98

Lab P.N.:

1010-83.4

Client P.N.:

NA

VOC Results: Page 1 of 2

<u>Parameter</u>	MW-1 μg/l <u>MDH 465E</u>	MW-2 μg/l <u>MDH 465E</u>	MW-3 μg/l <u>MDH 465E</u>	MW-4 μg/l <u>MDH 465E</u>	MW-5 μg/l <u>MDH 465E</u>	PQL µg/l MDH 465E	MDL µg/l MDH 465E
Acetone	< 78	< 78	< 16	< 16	< 16	16	3.1
Allyl Chloride	< 7.0	< 7.0	< 1.4	< 1.4	< 1.4	1.4	0.28
Benzene	< 1.4	< 1.4	< 0.28	< 0.28	< 0.28	0.28	0.056
Bromobenzene	< 1.3	< 1.3	< 0.26	< 0.26	< 0.26	0.26	0.052
Bromochloromethane	< 3.3	< 3.3	< 0.65	< 0.65	< 0.65	0.65	0.13
Bromodichloromethane	< 1.5	< 1.5	< 0.31	< 0.31	< 0.31	0.31	0.061
Bromoform	< 3.5	< 3.5	< 0.70	< 0.70	< 0.70	0.70	0.14
Bromomethane	< 15	< 15	< 3.0	< 3.0	< 3.0	3.0	0.60
n-Butylbenzene	17	54	< 1.3	< 1.3	< 1.3	1.3	0.26
sec-Butylbenzene	< 3.5	5.6	< 0.70	< 0.70	< 0.70	0.70	0.14
tert-Butylbenzene	< 4.0	< 4.0	< 0.80	< 0.80	< 0.80	0.80	0.16
Carbon Tetrachloride	< 2.1	< 2.1	< 0.43	< 0.43	< 0.43	0.43	0.085
Chlorobenzene	< 1.8	< 1.8	< 0.36	< 0.36	< 0.36	0.36	0.071
Chloroethane	< 17	< 17	< 3.4	< 3.4	< 3.4	3.4	0.68
Chloroform	< 2.5	< 2.5	< 0.50	< 0.50	< 0.50	0.50	0.10
Chloromethane	< 22	< 22	< 4.5	< 4.5	< 4.5	4.5	0.89
2-Chlorotoluene	< 3.5	< 3.5	< 0.70	< 0.70	< 0.70	0.70	0.14
4-Chlorotoluene	< 3.3	< 3.3	<-0.65	< 0.65	< 0.65	0.65	0.13
Dibromochloromethane	< 2.8	< 2.8	< 0.55	< 0.55	< 0.55	0.55	0.11
1,2-Dibromo-3-Chloropropane	< 3.5	< 3.5	< 0.70	< 0.70	< 0.70	0.70	0.14
1,2-Dibromoethane	< 0.78	< 0.78	< 0.16	< 0.16	< 0.16	0.16	0.031
Dibromomethane	< 1.4	< 1.4	< 0.28	< 0.28	< 0.28	0.28	0.055
1,2-Dichlorobenzene	< 3.5	< 3.5	< 0.70	< 0.70	< 0.70	0.70	0.14
1,3-Dichlorobenzene	< 3.0	< 3.0	< 0.60	< 0.60	< 0.60	0.60	0.12
1,4-Dichlorobenzene	< 2.5	< 2.5	< 0.50	< 0.50	< 0.50	0.50	0.10
Dichlorodifluoromethane	< 16	< 16	< 3.2	< 3.2	< 3.2	3.2	0.63
1,1-Dichloroethane	< 3.5	< 3.5	< 0.70	< 0.70	< 0.70	0.70	0.14
1,2-Dichloroethane	< 1.5	< 1.5	< 0.31	< 0.31	< 0.31	0.31	0.061
1,1-Dichloroethene	< 4.3	< 4.3	< 0.85	< 0.85	< 0.85	0.85	0.17
cis-1,2-Dichloroethene	< 4.0	< 4.0	< 0.80	< 0.80	< 0.80	0.80	0.16
trans-1,2-Dichloroethene	< 3.8	< 3.8	< 0.75	< 0.75	< 0.75	0.75	0.15
Dichlorofluoromethane	< 9.8	< 9.8	< 2.0	< 2.0	< 2.0	2.0	0.39
1,2-Dichloropropane	< 1.3	< 1.3	< 0.27	< 0.27	< 0.27	0.27	0.053
1,3-Dichloropropane	< 1.3	< 1.3	< 0.27	< 0.27	< 0.27	0.27	0.053

PQL; Practical Quantitation Limit for undiluted samples.

MDL; Method Detection Limit for undiluted samples.

All results are in µg/l which is equal to parts-per-billion (ppb).

St. Paul, MN. 55110

Tel. (612) 653-3471

Fax (612) 653-3475

LABORATORY RESULTS

Client:

CERES Environmental

3825 85th Ave. North

Brooklyn Park, MN

Date Sampled:

: 11/19/98

Date Analyzed:

11/23/98 - 11/24/98

Physical State:

Aqueous

Project:

Garrison Sports

Hwy 169

Garrison, MN

Report Date:

12/09/98

Lab P.N.:

1010-83.4

Client P.N.:

NA

VOC Results: Page 2 of 2

<u>Parameter</u>	MW-1 μg/l <u>MDH 465E</u>	MW-2 μg/l <u>MDH 465E</u>	MW-3 μg/l <u>MDH 465E</u>	MW-4 μg/l <u>MDH 465E</u>	MW-5 μg/l <u>MDH 465E</u>	PQL μg/l <u>MDH 465E</u>	MDL μg/l <u>MDH 465E</u>
*2,2-Dichloropropane	< 9.5	< 9.5	< 1.9	< 1.9	< 1.9	1.9	0.38
1,1-Dichloropropene	< 3.0	< 3.0	< 0.60	< 0.60	< 0.60	0.60	0.12
cis-1,3-Dichloropropene	< 2.8	< 2.8	< 0.55	< 0.55	< 0.55	0.55	0.11
trans-1,3-Dichloropropene	< 3.5	< 3.5	< 0.70	< 0.70	< 0.70	0.70	0.14
Ethyl Benzene	< 1.8	3.4	< 0.37	< 0.37	< 0.37	0.37	0.073
Ethyl Ether	< 4.5	< 4.5	< 0.90	< 0.90	< 0.90	0.90	0.18
Hexachlorobutadiene	< 12	< 12	< 2.4	< 2.4	< 2.4	2.4	0.47
Isopropyl Benzene	< 4.8	15	< 0.95	< 0.95	< 0.95	0.95	0.19
p-Isopropyltoluene	< 3.5	< 3.5	< 0.70	< 0.70	< 0.70	0.70	0.14
Methyl Ethyl Ketone	< 10	110	< 2.0	< 2.0	< 2.0	2.0	0.40
Methyl Isobutyl Ketone	< 3.3	< 3	< 0.65	< 0.65	< 0.65	0.65	0.13
Methyl tert-Butyl Ether	< 4.5	< 4.5	< 0.90	< 0.90	< 0.90	0.90	0.18
Methylene Chloride	< 23	< 23	< 4.5	< 4.5	< 4.5	4.5	0.90
Naphthalene	< 6.0	< 6.0	< 1.2	< 1.2	< 1.2	1.2	0.24
*n-Propylbenzene	< 5.3	16	< 1.1	< 1.1	< 1.1	1.1	0.21
o-Xylene	1.8	1.8	< 0.33	< 0.33	< 0.33	0.33	0.065
Styrene	< 2.1	< 2.1	< 0.41	< 0.41	< 0.41	0.41	0.082
1,1,1,2-Tetrachloroethane	< 2.4	< 2.4	< 0.47	< 0.47	< 0.47	0.47	0.094
1,1,2,2-Tetrachloroethane	< 1.0	< 1.0	< 0.21	< 0.21	< 0.21	0.21	0.041
Tetrachloroethene	< 2.5	< 2.5	< 0.50	< 0.50	< 0.50	0.50	0.099
Tetrahydrofuran	< 13	< 13	< 2.6	< 2.6	< 2.6	2.6	0.51
Toluene	3.7	3.0	< 0.42	< 0.42	0.50	0.42	0.084
1,2,3-Trichlorobenzene	< 8.0	< 8.0	< 1.6	< 1.6	< 1.6	1.6	0.32
1,2,4-Trichlorobenzene	< 12	< 12	< 2.4	< 2.4	< 2.4	2.4	0.47
1,1,1-Trichloroethane	< 3.3	< 3.3	< 0.65	< 0.65	< 0.65	0.65	0.13
1,1,2-Trichloroethane	< 1.2	< 1.2	< 0.23	< 0.23	< 0.23	0.23	0.046
Trichloroethene	< 3.5	< 3.5	< 0.70	< 0.70	< 0.70	0.70	0.14
Trichlorofluoromethane	< 5.5	< 5.5	< 1.1	< 1.1	< 1.1	1.1	0.22
1,2,3-Trichloropropane	< 0.78	< 0.78	< 0.16	< 0.16	< 0.16	0.16	0.031
1,1,2-Trichlorotrifluoroethane	< 9.8	< 9.8	< 2.0	< 2.0	< 2.0	2.0	0.39
1,2,4-Trimethylbenzene	< 4.0	< 4.0	< 0.80	< 0.80	< 0.80	0.80	0.16
*1,3,5-Trimethylbenzene	< 6.3	< 6.3	< 1.3	< 1.3	< 1.3	1.3	0.25
Vinyl Chloride	< 12	< 12	< 2.4	< 2.4	< 2.4	2.4	0.47
m,p-Xylenes	< 3.3	6.9	< 0.65	< 0.65	< 0.65	0.65	0.13

*; coeluting compounds

PQL; Practical Quantitation Limit for undiluted samples.

MDL; Method Detection Limit for undiluted samples.

All results are in µg/l which is equal to parts-per-billion (ppb).

St. Paul, MN. 55110

Tel. (612) 653-3471

Fax (612) 653-3475

LABORATORY RESULTS

Client:

CERES Contracting

3825 85th Avenue North

Brooklyn Park, MN

Date Sampled:

11/19/98

Date Analyzed:

11/25/98 - 11/26/98

Physical State:

Aqueous

Project:

Garrison Sports

Hwy 169 Garrison, MN Report Date:

12/09/98

Lab P.N.:

1010-83.4

Client P.N.:

NA

	GRO	DRO
	μg/l	μg/l
Sample I.D.	Wis. DNR	Wis. DNR
MW-1	440	190
MW-2	1,700	440
MW-3	< 22	<65
MW-4	< 22	<65
MW-5	< 22	<65
PQL, μg/l	22	65
MDL, µg/l	4.3	13

PQL; Practical Quantitation Limit

MDL; Method Detection Limit

GRO; Gasoline Range Organics

DRO; Diesel Range Organics

All results are in $\mu g/l$ which is equal to parts-per-billion (ppb).

