

March 27, 2001

Detroit Lakes, MN 56501 714 Lake Avenue Minnesota Pollution Control Agency Ms. Denise Oakes Lake Avenue Plaza, Suite 220

S. Menney

MARSHALL, MN

Monitoring Report, Facts Sheet #3.26 RE: United Grain and Energy, Hector, Minnesota; Leak # 0068; Annual

Ms. Oakes,

United Grain and Energy Please note that the Farmers Union Coop Oil Co. has merged with, and is now called Enclosed is the Annual Monitoring Report for Framers Union Coop Oil in Hector, MN

320-759-6535. Please review the annual report. Feel free to call me with any questions or comments at

Thank you.

Respectfully

Environmental Geologist Jason C. Coyle

Project Manager

AGASSIZ ENVIRONMENTAL/GEOTECHNICAL

cc: United Grain and Energy

Leaking Petroleum Storage Tanks

Minnesota Pollution Control Agency

http://www.pca.statc.mn.us/programs/lust_p.html

Annual Monitoring Report

Fact Sheet 3.26

annualy. If a remedial system has been installed, submit fact sheet 3.31 CAD System Monitoring After the Corrective Action Design (CAD) has been approved, update and submit this worksheet Worksheet along with this worksheet.

according to fact sheet 3.25, Quarterly Monitoring Report. submittal of the monitoring information on a quarterly schedule. This should be conducted Under certain circumstances Minnesota Pollution Control Agency (MPCA) staff may request

MPCA Site ID: Leak00068

Date: 03-27-01

Responsible Party: United Grain and Energy R.P. phone #: 1-800-547-5576

Consultant: Agassiz Environmental Consultant phone #: 320-759-6535

Facility Name: Union Coop Oil Company

Facility Address: 260 Main Street City: Hector

County: Renville Zip Code: 55342

Site location (UTM required; refer to standards): http://www.ot.state.mn.us/ot_files/handbook/standard/std17-1.html for spatial data

Other location information

LAT: N44° 44.6 LONG: W94° 43.0

State Plane coordinates:

Reporting Period: 07-01-99

Section 1. GROUND WATER MONITORING

report submitted. analytical results, performed since the remedial investigation (RI) report or the last progress Discuss the groundwater monitoring results, including water level measurements and

concentrations have showed a downward trend. Groundwater flow has continued to flow in due to extensive damage to the well and well casing. a northeasterly direction. Monitoring well #2 (MW-2) was not sampled during these events Two groundwater sampling events have been performed since the last report. Benzene

Section 2. VAPOR IMPACT MONITORING

vapor monitoring. Include in your discussion the sampling instrument and sampling method If vapor impacts were detected during previous assessments, discuss the results of follow-up

Vapor monitoring was not performed during the last two monitoring events

building and contact the local fire department immediately. Then contact the Minnesota (Greater Minnesota). TTY users call 651/297-5353 (V/TTY) or 1-800/627-3529 (V/TTY). Duty Officer (24 hours) at 651/649-5451 (metro and outside Minnesota) or 1-800/422-0798 NOTE: If vapor concentrations exceed 10 percent of the lower explosive limit, exit the Vapor mitigation is required.

Section 3. RECOMMENDATIONS

Leaking Underground Storage Tank Program. Discuss your recommendations. Your recommendation should be based on fact sheet #3.1,

the time of removal was poor and holes were present in the tank. An investigation should be this tank was not known in the past and was not investigated. The condition of this tank at contamination. performed around the former tank basin to determine the extent and magnetude of the UST located on the west end of the former Union Coop Oil Co. building. The location of Agassiz suggests that an investigation be performed around the location of the former Diesel If additional corrective action is recommended, please provide your justification.

for the reduction or termination of corrective actions may be presented. If significant reduction of risk has been achieved at the site, recommendations and rationale

If additional monitoring is recommended, indicate the proposed monitoring schedule and

United Grain and Energy – Hector Annual Monitoring Report Page 3 03/27/01

levels. site specific risk issues have been adequately addressed or minimized to acceptable low risk If closure is recommended, summarize significant site investigative events and describe how

United Grain and Energy – Hector Annual Monitoring Report Page 4 03/27/01

Section 4: CONSULTANT (OR OTHER) INFORMATION

found to be in violation of Minn. Stat. § 115.075 (1994) or Minn. Rules 7000.0300 (Duty of or certification, or if it omits material information, the responsible person or volunteer may be awards. In addition, I/we acknowledge on behalf of the responsible person or volunteer for this information in this document is inaccurate or incomplete, it will delay the completion of and as agents of the responsible person or volunteer for this leaksite. I/we acknowledge that if Candor), and that the responsible person or volunteer may be liable for civil penalties. leaksite that if this document is determined to contain a false material statement, representation remediation and may harm the environment and may result in reduction of reimbursement By signing this document, I/we acknowledge that we are submitting this document on behalf of

Name and Title:

Signature:

Date signed:

3/27/01

Jason C. Coyle Project Manager

Company and mailing address:

Agassiz Environmental/Geotechnical

P. O. Box 847

Alexandria, MN 56308

Phone:

320-759-6535

Fax:

320-759-6544

Upon request, this document can be made available in other formats, including Braille, large print and audio tape. TTY users call 651/282-5332 or Greater Minnesota 1-800/657-3864 (voice/TTY).

Printed on recycled paper containing at least 10 percent fibers from paper recycled by consumers.

Attach Tables:

- Table 1 Monitoring Well Completion Information
- Table 2 Summary of Water Levels Measurements Table 3 Analytical Results of Water Samples
- (Petroleum or Non-petroleum Derived) Table 4 - Other Contaminants Detected in Water Samples
- Table 5 Results of Natural Attenuation
- Table 6 Results of Vapor Monitoring

Monitoring Well Completion Information Table 1

	Well Number MW-1 MW-2 MW-3 MW-3	Unique Well Number 548206 548207 548208 548208	Date Installed 8/16/94 8/16/94 8/16/94 8/16/94	Surface Elevation	Top of Riser Elevation 101.74 102.11 103.02 100.50	Bottom of Well (Elevation) 80.79 80.08 81.67 82.06
8/16/94 100.50		Number 548206 548207 548207	Installed 8/16/94 8/16/94 8/16/94	Surface Elevation	10p of Kiser Elevation 101.74 102.11	0 ∞ ∞ ,,
8/16/94 100.50		548208	8/16/94		103.02	<u>%</u>
		548205	8/16/94		100.50	8 2.

elevation: 100'. Notes: (location and elevation of benchmark) Benchmark is a hydrant on Main Street, given

Water Level Measurements Table 2

III	Data	Denth of Water	Product	Danth of Water	Belative Croundwater	Water I aval
Number		from Top of Riser	Thicknes	Below Grade	Elevation	Above Screen
			S			(Y/N)
MW-1	3/23/94	9.16	Z			Z
	8/23/94	9.24	Z		92.50	Z
	11/11/94	8.85	Z		92.89	Z
	2/8/95	10.36	Z		91.38	Z
	5/8/95	7.67	Z		94.07	Z
	8/24/95	7.66	Z		94.08	Z
	12/4/95	8.22	Z		93.52	Z
	3/13/96	10.43	Z		91.29	Z
	6/21/96	7.97	Z		93.77	Z
	12/10/96	8.28	Z		93.46	Z
	3/9/97	9.57	Z		92.17	Z
	6/3/97	7.67	Z		94.07	Z

	MW-3		MW-2	
3/9/97 6/3/97 9/4/97 12/15/97	3/23/94 8/23/94 11/11/94 2/8/95 5/8/95 8/24/95 12/4/95 3/13/96 6/21/96	3/9/97 6/3/97 9/4/97 12/15/97 3/16/98 6/11/98 9/10/98 12/23/98 3/30/99 6/30/99	3/23/94 8/23/94 11/11/94 2/8/95 5/8/95 8/24/95 12/4/95 3/13/96 6/21/96 12/10/96	9/4/97 12/15/97 3/16/98 6/11/98 9/10/98 12/23/98 12/23/99 6/30/99 3/2/00 9/14/00
10.06 8.57 8.71 10.24	Dry 8.51 8.87 10.36 7.88 8.32 9.58 10.57 7.85 8.53	10.55 9.68 9.40 10.41 10.35 9.66 9.84 10.15 9.47 10.48	9.52 9.47 9.55 10.35 8.58 8.78 9.50 10.74 8.79 10.38	7.43 8.86 8.40 7.33 7.69 8.41 8.72 6.14 9.84
ZZZZ	Z Z Z Z Z Z Z Z Z Z	Z Z Z Z Z Z Z Z Z Z	Z Z Z Z Z Z Z Z Z Z	Z Z Z Z Z Z Z Z Z Z
92.96 94.45 94.31 92.78	NA 94.51 94.15 92.66 95.14 94.70 93.44 92.45 95.17 94.49	91.56 92.43 92.71 91.70 91.76 92.45 92.27 91.96 92.64 91.63	92.69 92.56 91.76 93.53 93.33 92.61 91.37 93.32 91.73	94.31 92.88 93.34 94.41 94.05 93.33 93.02 95.60 91.90 93.39
ZZZZ	Z Z Z Z Z Z Z Z Z Z	フフフフフフフフ	Z Z Z Z Z Z Z Z Z Z	Z Z Z Z Z Z Z Z Z Z

															_			_		_		
														MW-4								
6/30/99 3/2/00 9/14/00	12/23/98	6/11/98	12/15/97 3/16/98	9/4/97	3/9/97 6/3/97	12/10/96	6/21/96	3/13/96	8/24/95	5/8/95	2/8/95	11/11/94	9/22/94	8/23/94	9/14/00	3/2/00	6/30/99	3/30/99	12/23/98	9/10/98	6/11/98	3/16/98
7.78 8.62 8.17	8.28 8.43	7.96	8.58 8.01	7.81	8.63 8.03	8.22	7.82	8.56	7.91	7.72	8.78	8.08	7.98	16.68	9.08	10.75	7.64	9.62	9.57	8.83	8.04	8.89
ZZZ	ZZ	Z Z :	ZZ	Z	ZZ	Z	Z	Z, 2	ZZ	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z
92.72 91.88 92.33	92.22	92.54	91.92	92.69	91.87	92.28	92.68	91.94	92.59	92.78	91.72	92.42	92.52	83.82	93.94	92.27	95.38	93.40	93.45	94.19	94.98	94.13
ZZZ	ZZ	Z Z :	 Z Z	Z	z z	z	Z	Z 2	Z Z	z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	Z	z

Notes: Please see appendix for procedures. Describe the methods and procedures used to measure water levels and product thickness.

Table 3
Analytical Results of Water Samples

Well#	Date	Benzene	Toluene	Ethyl Benzene	Xylenes	MTBE	GRO	
MW-1	3/23/94 8/23/94	1596 222	1077 10.6	214 BDL	604		3. % 9. %	
	11/11/94	7520	913	451	1340		17.5	
	2/8/95	8170	2010	582	2460		27.0	
	5/8/95	18900	17000	1650	9050		81.4	
	12/4/95	8850	9140	1210	6110		46.1	
	3/13/96	5080	5520	1020	4920		28.0	
	6/21/96	12600	8180	1290	6070		50.1	
	12/10/96	13600	12600	1580	7890		47.9	
	3/9/97	11600	11700	1330	7570		44.6	
	6/3/97	15800	11600	1610	7810		55.2	
	9/4/97	5390	3880	480	2850		19.2	
	12/15/97	11500	7140	1490	6750		45.5	4.0
	3/16/98	9430	8640	1150	5690		41.3	
	6/11/98	12200	7850	1150	4210		57.4	
	9/10/98	6100	2110	1300	6550	445	23.0	
	12/23/98	10300	4840	1240	6430	250	38.5	
	3/30/99	10900	4880	1410	7930	350	43.1	
	6/30/99	8560	3730	1390	8170	227	41.4	
	3/2/00	1170	2110	7050	3730	203	33.5	
C-WM	3/23/94	3.7	2.9	1.3	4.1	77.2	BDI.	
:	8/23/94	BDL	BDL	BDL	BDL		BDL	
	11/11/94	6.5	16.8	2.6	13.6		BDL	0.1
	2/8/95	4.9	1.6	1.2	5.2		BDL	
	5/8/95	2.0	BDL	BDL	BDL		BDL	
	8/24/95	BDL	BDL	BDL	BDL		BDL	
	12/4/95	BDL	BDL	BDL	BDL		BDL	
	3/13/96	2.5	BDL	BDL	BDL		BDL	
	6/21/96	BDL	BDL	BDL	BDL		BDL	
	12/10/96	1.9	BDL	BDL	BDL		BDL	$\overline{}$
	3/9/97	BDL	BDL	BDL	BDL		BDL	
	6/3/97	1.3	331	10.8	51.7		1.29	
	9/4/97	2.2	BDL	BDL	BDL		BDL	
	12/15/97	11.3	BDL	BDL	BDL		BDL	
	3/16/98	39.7	BDL	BDL	BDL		BDL	
	6/11/98	BDL	BDL	BDL	BDL		BDL	
	9/10/98	11.1	4.8	4.2	25.2	BDL	0.17	

	MW-4		MW-3	
3/9/97 6/3/97 9/4/97 12/15/97 3/16/98 6/11/98 9/10/98	3/23/94 8/23/94 11/11/94 2/8/95 5/8/95 8/24/95 12/4/95 3/13/96 6/21/96 12/10/96	3/9/97 6/3/97 9/4/97 12/15/97 3/16/98 6/11/98 9/10/98 12/23/98 3/30/99 6/30/99 3/2/00 9/14/00	3/23/94 8/23/94 11/11/94 2/8/95 5/8/95 8/24/95 12/4/95 3/13/96 6/21/96 12/10/96	12/23/98 3/30/99 6/30/99 3/2/00 9/14/00
BDL 7.1 BDL BDL BDL BDL BDL	22.4 BDL 6.9 BDL BDL 1.1 1.8 BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	DRY BDL 4.9 BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL
BDL BDL 1.2 BDL BDL BDL BDL	31.1 BDL 21.9 0.9 2.1 4.2 BDL BDL BDL BDL	BDL 1.2 BDL BDL BDL 1.7 BDL BDL BDL BDL BDL BDL	DRY BDL 19.1 4.1 1.1 BDL 1.4 BDL BDL BDL	BDL BDL BDL
BDL BDL 1.2 BDL BDL BDL BDL	2.75 BDL 2.8 2.0 BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL 1.1 2.7 BDL BDL BDL BDL BDL	DRY BDL 3.2 2.2 BDL BDL BDL BDL BDL BDL BDL BDL	BDL
BDL BDL 3.2 BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	DRY BDL 3.2 2.2 BDL BDL BDL BDL BDL BDL BDL BDL BDL	BDL BDL
BDL		BDL BDL BDL		11.0 11.2 BDL
BDL BDL BDL BDL BDL BDL	BDL BDL BDL BDL BDL BDL BDL BDL	BDL 0.24 0.17 BDL 0.16 0.25 BDL BDL 0.163 BDL 0.192	DRY BDL 0.11 BDL BDL BDL BDL BDL BDL BDL 0.83 BDL	BDL BDL BDL
BDL BDL BDL BDL BDL BDL BDL	BDL BDL NA NA BDL BDL BDL BDL 0.1	1.2 0.3 0.5 0.16 0.3 0.43 0.5 0.2 0.267 0.267 0.692 0.340 0.858	DRY 0.2 BDL NA NA BDL BDL 2.8 0.2	BDL
ת ת ת ת ת ת ת	א א א א א א א א א	בית היה היה היה היה	ההרבהבהבה	התה

Lab Blank HRL(ug /L)	Field Blank												_							Blank	Trip					
		9/14/00	3/2/00	6/30/99	3/30/99	12/23/98	9/10/98	6/11/98	3/16/98	12/15/97	9/4/97	6/3/97	3/9/97	12/10/96	6/21/96	3/13/96	12/4/95	8/24/95	5/8/95	2/8/95	11/11/94	9/14/00	3/2/00	6/30/99	3/30/99	12/23/98
10		BDL	BDL	BDL	BDL	BDL	BDL	BDL	9.0	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
1000		BDL	BDL	BDL	BDL	BDL	BDL	BDL	34.7	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
700		BDL	BDL	BDL	BDL	BDL	BDL	BDL	6.4	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
10000		BDL	BDL	BDL	BDL	BDL	BDL	BDL	30.1	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
		BDL	NA	NA	BDL	NA	BDL															BDL	BDL	BDL	BDL	BDL
		BDL	BDL	BDL	BDL	BDL	BDL	BDL	0.11	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL	BDL
		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	BDL	BDL	BDL	BDL	BDL	BDL	BDL	NA	NA	NA	BDL	0.125*	BDL	BDL	BDL
		H	H	Ħ	ਸ	Ħ	ਸ	뇐	Ħ	Ħ	Ħ	ਸ	Ħ	H	Ħ	Ħ	ਸ	Ħ	펀	푀	Ħ	Ŧ	Ŧ	Ħ	Ħ	Ħ

in the lab type column. Report results in ug/L. Use less than symbols to show detection limit. Indicate mobile or fixed based

Table 4
Other Contaminants Detected in Water Samples
(Petroleum or Non-petroleum Derived)

MW-2	MW-1	Well Number Date Sampled
		Date Sampled
		1,2 DCA
		EDB

HRL (ug/L)	Lab Blank	Trip Blank	Field Blank	MW-3
4				
0.004				

Notes: detected in water samples collected from the borings, temporary wells or push probes. Report results in ug/L. Indicate other contaminants (either petroleum or non-petroleum derived)

Table 5
Natural Attenuation Parameters

Monitoring	Sample	Temp.	PH	Dissolved	Nitrate	(Fe II)	(H_2S, HS^-)
Well	Date	°C		Oxygen (mg/L)	(mg/L)	(mg/L)	(mg/L)
MW-1	03/02/00	11.1	5.64	3.6		4.26	
	09/14/00	14.3	6.46	1.8		1.78	
MW-2	03/02/00						
	09/14/00						
MW-3	03/02/00	10.1	6.82	2.2		1.16	
	09/14/00	14.3	6.42	0.6		>3.30	
MW-4	03/02/00	11.1	7.63	5.0			
	09/14/00	14.9	7.42	1.5		0.03	
T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 7 7	7	-	2	7. 6	7	Control of the contro

Notes: Describe the methods and procedures used. Please See appendix for procedures.

Table 6
Results of Vapor Monitoring

United Grain and Energy – Hector Annual Monitoring Report Page 12 03/27/01

Notes:

Attach Figures:

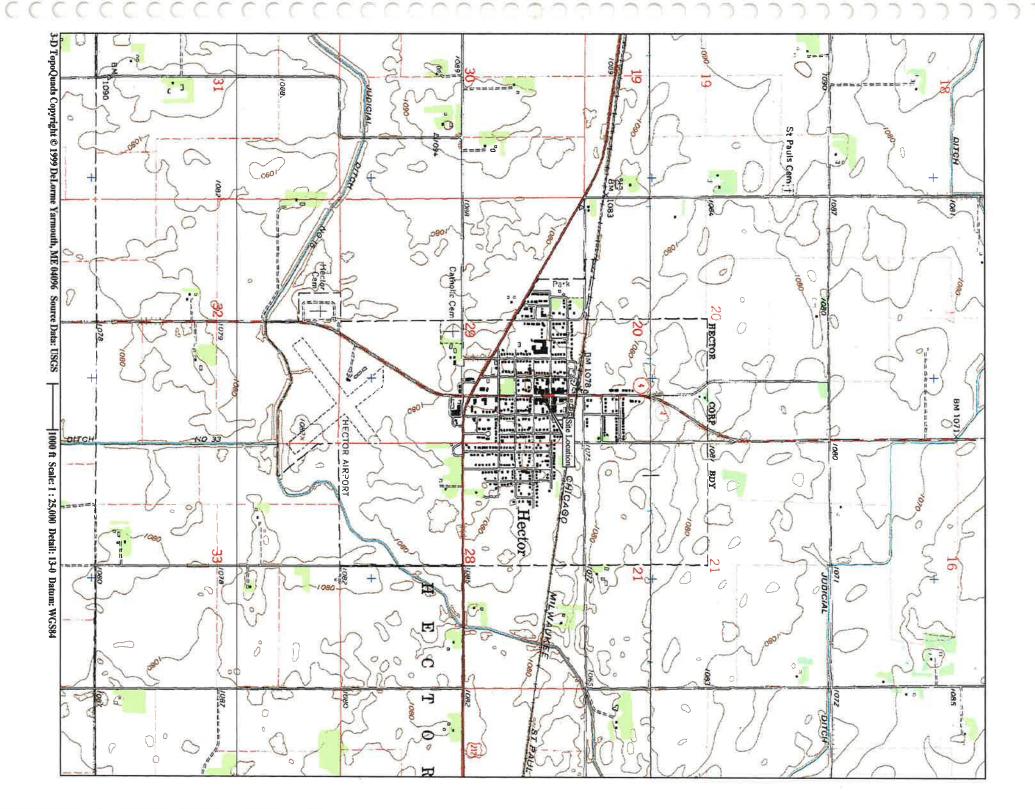
acceptable. Figures - (all maps are to include a north arrow, scale and legend) Approximate scales are not

- Site location map. and identify the name of the 7.5 minute quadrangle. Adapt this map from a U.S. Geological Survey 7.5 minute quadrangle
- Site map showing the locations of all ground water and vapor monitoring points
- each data point used for contouring water level measurements since the last report. Show all wells at the site, and differentiate wells constructed in different aquifers. Updated ground water contour maps, using water level elevations from all rounds of Label ground water contours and elevations at
- Hydrograph for all monitoring and recovery wells.
- Graph(s) showing contaminant concentrations over time for all monitoring and recovery

Attach Appendices:

completed since the last report. All reproduced data must be legible. The appendix section of the report contains sufficient information to document all activities

- the Chain of Custody and the MDH laboratory certification number. Copies of most recent laboratory reports for ground water analyses, including a copy of
- Sample collection information, including procedure, equipment, and decontamination.
- Field or sampling data sheets.


Web pages and phone numbers

MPCA staff
MPCA toll free
LUST web page
MPCA Infor. Request
PetroFund Web Page
PetroFund Phone
State Duty Officer

http://data.pca.state.mn.us/pca/emplsearch.html 1-800-657-3864

http://www.pca.state.mn.us/programs/lust_p.html http://www.pca.state.mn.us/about/inforequest.html http://www.commerce.state.mn.us/mainpf.htm 651-297-1119, or 1-800-638-0418

651-649-5451 or 1-800-422-0798

AGASSIZ ENVIRONMENTAL SYSTEMS, INC.

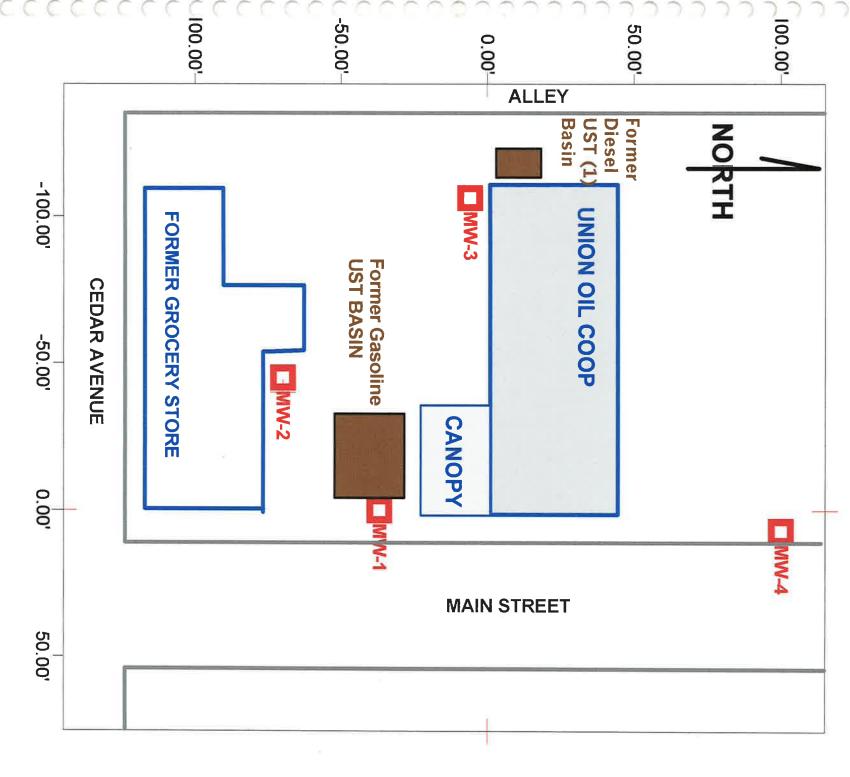


FIGURE 2 - SITE MAP

AGASSIZ ENVIRONMENTAL SYSTEMS, INC.

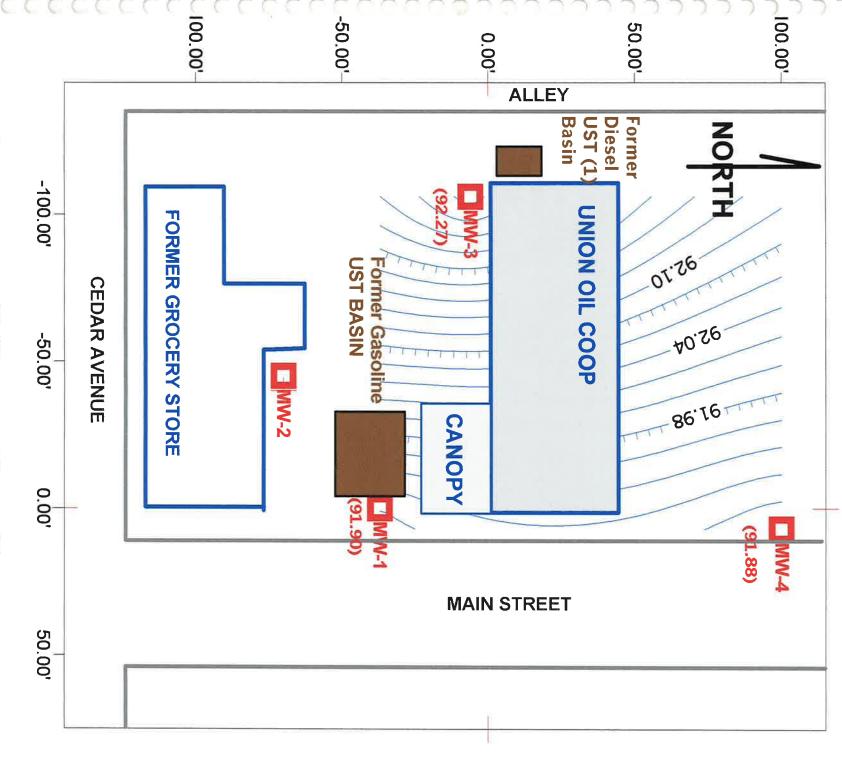


FIGURE 3 - GROUNDWATER CONTOUR MAP - 03/02/01

AGASSIZ ENVIRONMENTAL SYSTEMS, INC.

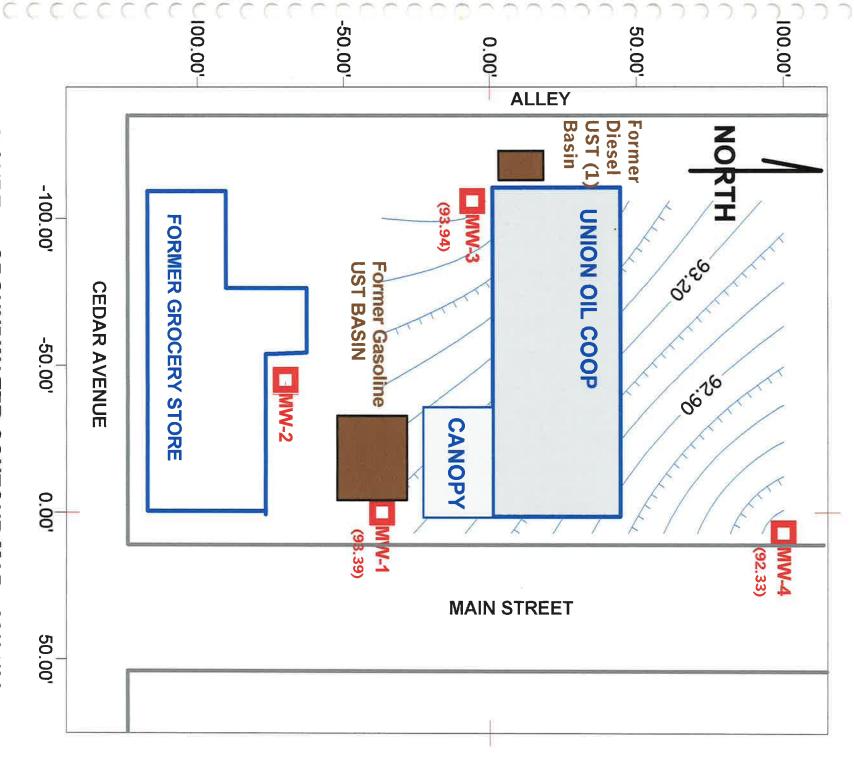
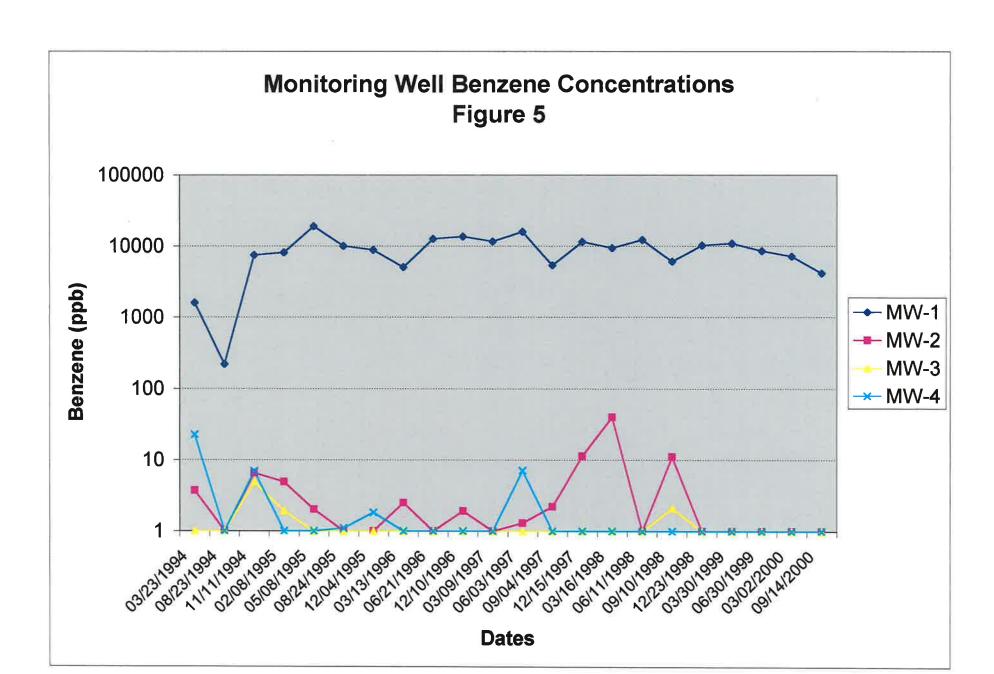
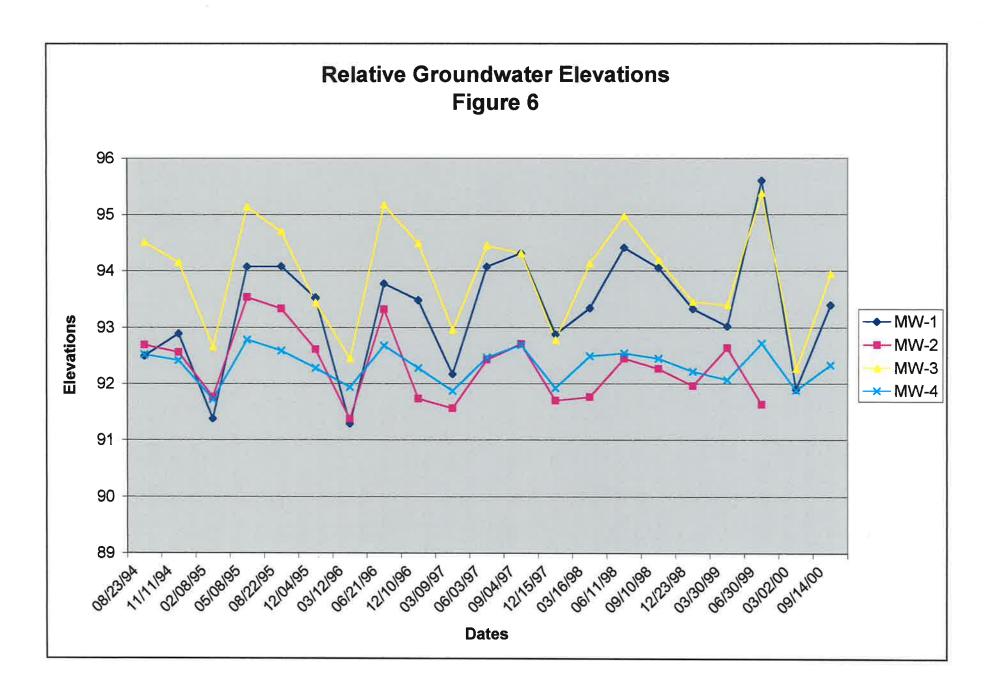




FIGURE 4 - GROUNDWATER CONTOUR MAP - 09/14/00

APPENDIX A LAB RESULTS

330 SO. CLEVELAND ST. P.O. BOX 349 CAMBRIDGE, MN 55008 LAB (612) 689-2175 METRO (612) 444-9270 FAX (612) 689-3660

MINNESOTA CERTIFIED LABORATORY NUMBER 027-059-156

DULUTH, MN 55802 LAB (218) 722-9884 FAX (218) 722-9964

March 16, 2000

Analytical Report

Agassiz Environmental Systems, Inc.

Chisago City, MN 55013 29385 Isabel Street

Chain of Custody

Project ID: 4002 Hector Union Oil

Chain of Custody: 34902

Date Received: 03/03/2000 4:43:09 PM by Joni Fields

Sample Information

	52989 Field	52988 Trip Blank	52987 MW-4	52986 MW-3	52985 MW-1	SampleID Descrip
Duplicate	Field Blank	3lank	4	3		ription
03/02/2000	03/02/2000	03/02/2000	03/02/2000	03/02/2000	03/02/2000	Date
Water	Water	Water	Water	Water	Water	Matri

Analytical results are listed on the following page(s).

Reviewed By

ames 3-16-00 Carrie James

Organic Chemist

MIDWEST ANALYTICAL SERVICES

March 16, 2000 Page 2 COC 34902

Date Analyzed: 3/15/00							
				Ethyl		Total Hydrocarbons	tal arbons
Parameter:	MTBE	Benzene	Toluene	Benzene	Xylenes	as	ys —
					•	GRO	DRO
Units:	(Jug/L)	(hg/L)	(J/grl)	(µg/L)	(µg/L)	(mg/L)	(mg/L)
MDL:	2.0	1.0	1.0	1.0	3.0	0.1	0.1
52985	203	7180	2110	1050	6030	33.5	13.6
MW-1							
52986	BDL	BDL	BDL	BDL	BDL	BDL.	0.340
MW-3		i		11	7		4.
52987	BDL	BDL	BDL	BDL	BDL	BDL	0.125*
MW-4							
52988		BDL	BDL	BDL	BDL	BDL	
Trip Blank							
52989		BDL	TOB	BDL	BDL	BDL	
Field Blank							
52990	245	7180	2910	1080	6010	36.1	10.3
Duplicate							
BDL = Below Detection Limit, MDL = Method Detection Limit	- Method Dete	ction Limit					

DRO may be due to possible lab contamination.

330 SO. CLEVELAND ST. CAMBRIDGE, MN 55008 LAB (612) 689-2175 METRO (612) 444-9270 FAX (612) 689-3660

DULUTH, MN 55802 LAB (218) 722-9884 FAX (218) 722-9964

September 26, 2000

Analytical Report

Jason Coyle

Agassiz Environmental Systems, Inc.

29385 Isabel Street

Chisago City, MN 55013

Chain of Custody

Project ID: 4002-Hector Coop.

Chain of Custody: 35531

Date Received: 09/18/2000 2:55:59 PM by Kevin Hines

Sample Information

59712	59711	59710	59709	59708	59707	SampleID
Trip Blank	Field Blank	Duplicate	MW 4	MW3	MW 1	SampleID Description
09/12/2000 Water	09/14/2000	09/14/2000	09/14/2000	09/14/2000	09/14/2000	Date
Water	Water	Water	Water	Vvater	Water	Matrix

Analytical results are listed on the following page(s).

Reviewed By

Anne Hoppenrath
Organic Chemist

MIDWEST ANALYTICAL SERVICES

September 26, 2000 Page 2 COC 35531

Date Analyzed: 9/25/00

			Ethyl		Total Hydrocart	tal arbons
MTBE	Benzene	Toluene	Benzene	Xylenes	as	S)
					GRO	DRO
(µg/L)	(µg/L)	(J/g/L)	(J/g/L)	(µg/L)	(mg/L)	(mg/L)
2.0	1.0	1.0	1.0	3.0	0.1	0.1
94.2	4170	618	725	3730	24.8	
BDL	BDL	BDL	BDL	BDL	0.192	0.858
-		Į.			X X	
BDL	BDL	BDL	BDL	BDL	BDL	BDL
BD	B	B)	BD	BD	0 194	0.943
BDL	BDL	BDL	BDL	BDL	BDL	
	MTBE (µg/L) 2.0 94.2 BDL BDL BDL		Benzene (µg/L) 1.0 4170 BDL BDL BDL BDL	Benzene Toluene Βι (μg/L) (μg/L)	Benzene Toluene Ethyl Benzene) (μg/L) (μg/L) 1.0 (μg/L) (μg/L) 1.0 (μg/L) 1.0 4170 618 725 BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL BDL	Benzene Toluene Ethyl Kylenes Hydical (μg/L) (mg/L) (mg/L) (mg/L) (mg/L) 0.1 0.1 24.8 8DL 8DL 8DL 0.193 8DL 8DL

NOTE: Sample #59712/Trip Blank was not received.

BDL = Below Detection Limit, MDL = Method Detection Limit

APPENDIX B
FIELD NOTES

SAMPLING DATA

5.64 PROJECT #: 4002 Hoto Union 0.1

. ..

CREW: "MOREY I'VE IT
WEATHER SERVICE: 450/ Suny Antley Pact

					C
	(Water to be rem	X .163 X 5=	Total Water:		
	= Total Water:	- TOC to Water:	TOC to Total		
				MW-8	(
	(Water to be removed)	X .163 X 5=	Total Water.		
	= Total Water:	- TOC to Water:	TOC to Total		
				Z-AAW	
	(Water to be removed)	X.163 X 5=	Total Water:		
	= Total Water:	- TOC to Water:	TOC to Total		
				MW-0	
	(Water to be removed)	X .163 X 5=	Total Water:	1	2)
	= Total Water:	- TOC to Water:	TOC to Total	3	
	**			MW-5	
7.0	(Water to be removed)	X .163 X 5=	Total Water:	5/15 (lws	Class
0 20	= Total Water: S.co	-TOC to Water: 8, 62	TOC to Total 18.44	11 Put	ر کو
Fe lower				7/2 MW-4	=
	(Water to be removed)	X .163 X 5=	Total Water:	(m) 50.2	: <u>\$</u>
0, 2.2 m	= Total Water: 8.64	- TOC to Water: 10.75	TOC to Total 21.35	Mso	ا مدر
761.16			7)	H 682 MW-3 8207	2
	(Water to be removed)	X .163 X 5=	Total Water:	FOR OLMS	-duis
, a	= Total Water:	- TOC to Water:	TOC to Total 22-03	4	ond
Th		o sample -	Well damaged unable to	H 5.82 MW-28206) 史 - 1
	(Water to be removed)	X .163 X 5=	Total Water:	1 10	1
02 3.6"	= Total Water: 9.05	-TOC to Water: 9.84	TOC to Total 20.95		
Fe 4.26				3nd,1675 MW-18205	JAC-
	/			197) H

MIDW.

"YTICAL SERVICES

330 SO. CLEVELAND ST. P.O. BOX 349 CAMBRIDGE, MN 55008 LAB (612) 689-2175 FAX (612) 689-3660

CHAIN OF

2.2 4.6

ODY RECORD

10

34902

205 WEST 2ND STREET
DULUTH, MN \$5892
PHONE (218) 722-9884
EAY (218) 723-9964

REQUEST FOR ANALYSIS

(Instructions on Back of Form)

ENT:			(012)	009-300	U																				FAX	X (21	8) 722	2-9964
	11.	ła.	-412					SAMPLER NAME:	thron	y 12x/c			/		s	HAD	ED A	ARE	AS FC	R L	АВО	RAT	ron	y US	SE O	NLY		
C)							7).	I SAMPLER	1/	11 -				7	/	1	7	7	1	1	7		7	7	7	7		2010-11-11-11
PE	S								J- Una	ble to sample		DRO (Includes BT		//		ACRA OR TOTALL	MIS	2	/ k	-/		/	/	/ ,	/,	PRE	SERVA	ATIVE
INERS					-	ATR	-	SAMPLE ID			1/	nctud	/ /	MV46	/	8	ME	ğ/	700	1	T	/ /	' /		/		11	' /
CONTAINERS	COMP.	GRAB	DATE	TIME	WATER	SOIL	ОТНЕВ	SAMPLE 🚓		LABORATORY I.D. NO.	SH S	DAG	BTEV	Voc (Minvage)	Ha d	ACR.	BOD BMETALS	138	Fou Con Tean	1	7		/	/ ,	ĬĢ/	INO I	ICE OF	OTHER
_		X	3/2	12:00	X			11111 2		52985	X	X	,			11	ş.		:X	X	-				X		X	
+		X	-t-		X			41142			X	X	-		-				- X	1	Ι,			\exists	Z		Ý	
1		X		13.50	Y			MW3		52986	X	X	1		T	1			3	1				T	X		17	
ł		X		14:35	X		- 10	MWY		52967	X	X							X	-X	Г			7	X		17	
		X		-	X			TRIP Blank		52988	X	X			1	1			X	X				┪		\top	1	
		X		_	X			Field Blank		52989	X	X		1		T		-	X	X	Г			7	χ			
1		X		_	X			DUD		52990	X	X					T		X		T			7	$\frac{1}{x}$	+	X	
								7							ŽÝ.				-	1				7	\Box			
														7	T						1			\dashv	\top			
			ý	+													\neg			1	- 2			7	\top		\Box	
																	\dashv			1	F			1	T	-	+	SE:
																	寸							\forall	\top	1	\forall	
														\top	T		\neg	\dashv		T				7	\top	+	+	
	4													\top			7	7						\forall	+	+	\Box	***
	The same		3 m			15.8			0	+				\top	1	$\dagger \dagger$	\dashv	\dashv	1			2	\dashv	\dashv	+	,	H	1700
. +	d by:	7	12	1		abo		Received by (Signature)	It	Relinquished by: (Signatu	re)			Date /	Time	Recei	ved by:	(Signa	iture)			CHE	ECK HEI	RE FO	P DRIN	IKING IITS		
quishe	ed by:	Signal	dra)	A.	D	ate / T	Inte (Received by (Signature)	7.1	Relinquished by: (Signatu	re)			Date /	Time	Recei	ved by:	(Signa	ture)			+-			_	QUIRED:		
quishe	ed by: (Signat	ure)	1	Da	ate / T	irbe~	Received on Laboratory by Con	payire) /	Date Time Cont	ents Te	mpera	iture:	Comments	s:			_			-	1	☐ N	ORMA	L 🔲	RUSH		
_		_	_	ļ			1	MINA	11 / NC	NIH HOL	1	101										DAT	E REOL	UIRED				

Well Sampling Data

Project: 4002 - Hector Coop

Date: 9-14-8

Sampled By: Weather: **Bob Klenzman**

75°F; sunny; wind 15-20 mph

548205	Well ID	MW 1 (J
20.95'	Total Depth	(Dear; strong
8.35	WIG	a gasoline oda.
12.40	Water	cdo.
المو 21 مما	Water Removed	
1700	Sample Time	

		_
548206	Well ID	MW2
22.03'	Total Depth	Well has been altered; TOC only
dry	DTW	seen altered.
	Water	TOC ordy, 1
	Water Removed	bow grade.
	Time Sampled	10.

MW3	Olever; Shight	the benugate edos	edou		
Well ID	Total Depth	DTW	Water	Water Removed	Time Sampled
548207	21.35'	9.08'	12.27	10.00 gal 1600	12000

MW 4	Clear, mo adons.	com.			
Well ID	Total Depth	WTG	Water	Water Removed	Time Sampled
548208	18.44'	B.177	10.27	8.371 gal	1445

-CRO/MUBE

Duplicata assugned to Med 3.

	mwy	MW3	IWM	Bio's
		_		Š
	म, पश्	6.42	6.46 57.7	pН
	7,42 SB.8	57.7		Temp
	811	784	790	Cond
	1.5 0.03	0.6 >3.30	8.1	Diss O2
	0.03	>3.30	।.ग8	Fe++
The same of the sa				

MIDWES ANALYTICAL SERVICES

330 SO. CLEVELAND ST. CAMBRIDGE, MN 55008 LAB (763) 689-2175 FAX (763) 689-3660

CHAIN OF TODY RECORD

REQUEST FOR ANALYSIS
(Instructions on Back of Form)

Nº 35531

DULUTH OFFICE:
205 WEST 2ND STREET

205 WEST 2ND STREET DULUTH, MN 55802 PHONE (218) 722-9884 FAX (218) 722-9964

ENT:	255	itz	Env	rons	n es	otr	Q.	SAM NAM	IPLER Rolos	ert KI	en zmar						s	HAD	ED /	RE	AS FO	R L	АВО	RAT	ORY	/ US	ΕO	NLY		
DEC ORT SE	T I.D.: ・シュ・ s	- 1	Envi lecto on Co	Coc	P	+		SIGI	IPLER NATURE: (R) MARKS:					DRO metudes BIES	7,	7,	7-/	1/10/20	18	/_	//	7/	//	7	7	7	/	PRI	ESERV	ATIVE
NEHS T TC	2	as	700°		M/	ATR	IX -	5	SAMPLE ID	ENTIFIC	CATION			nctudes		VOC (MNV46E)		PCP. OF TOTAL	BODGEMETALS	785 EBOD	Foot On Too,	//	4	//	//		/	/	/,	//_
CONTAINERS	COMP.	GRAB	DATE	TIME	WATER	SOIL	ОТНЕВ	SAI	MPLE	SAMPLE NO.	LABORAT	TORY O.	GRO	OHO	BTEX	SOC.	Ha da	ACP.	BOD	18	Fou	1	1			/	HCI	HNO	108.4	OTHER
_		X	9-14	1700	X	4		mwl			5970	17	X	X				4				X					X		X	
		X	1	1600	X	Ш		WM3	5		5970	18	X	X				s :	K .			Х	Ŀ		Ц		X		X	12
_		X		1445	X			mw	4 **	.:	5970	9	X	X								X		F. I		,;	χ		X	
_		X	-	-	X		Ц	Duplic	ate		5971		Х	X		┸			y d			X	L		i,		X		X	
_			9-14	1500	X			FIJOR	Jank.		59///		X									X					Χ	_	X	
		Х	9-15	_	X			True B	lank		5971	2	X			1	-	-				X	L		1		X	1	X	
				0	L	Н			_		9		1		_	1	+		Ш				\perp			_	\perp	_		
ž					\vdash	Н								4	_	_	_	_			-	1	L			_	\dashv	\dashv		
_					-		Н								-	+	+	-		\sqcup		_	_			4	4	_	_	
_					\vdash	Н	\vdash						_	27	- 1	+	+	+	Н	\dashv	-	+-	┡			_	\dashv	\dashv	+	
_					\vdash	Н	\dashv					1		\vdash	-	+	+	-		4	-		┡			4	\dashv	\dashv		
_					\vdash	\vdash							-	\dashv	+	+	+	+	\vdash	\vdash	_	+	-			-	\dashv	+	+	
-					\vdash	y .	\dashv								-	+	-	-				-	-			-	-		+	
-					\vdash	Н	_	-4							+	+	- J	+		\dashv	+	1 2	-			-	\dashv	-	- 1	- P. C.
1	ned by:	1 10	iture)	en o	1-165	Date /	Time:	Received by	(Signature)	met	Relinquished	by: (Signatu	ге)		+	Date	/ Time	Reco	eived by	r: (Signa	ature)	<u></u>	93				OR DRII	INKING MITS	_ [_	
duist	ned by:	(Signa	ture)		-	Date / T	Time	4.1	r: (Signature)	0	Relinquished	by: (Signatu	re)			Date	/ Time	Rece	eived by	: (Signa	iture)	ec		TUF				EQUIRE RUS		
Auist A	ed by:	(Signa	ture)	ul	9	Dafe /	Time	Revelved to	rtabolathry by (Si	gnature)	97/8	1 900	onto To	emparad	л а С	ommen	ts:							DAT	TE REC			_ HUS	1	

APPENDIX C
PROCEDURES

cccccccccccccccc

AGASSIZ ENVIRONMENTAL SYSTEMS, INC. METHODS

SOIL BORING

INSTALLATION

contamination. impact and proceed outward in an attempt to define the horizontal extent of In a subsurface investigation the soil borings are initially begun in the area of greatest

The augers are steam cleaned between bore holes to avoid cross-contamination

a mixture of cuttings and bentonite. ground water are sealed with grout; borings not intersecting ground water are sealed with Minnesota Department of Health (MDH) regulations (i.e., all borings that encounter Soil borings not completed as monitoring wells are abandoned in accordance with

taken (i.e., double-cased wells, etc.) explore confined aquifers, all necessary precautions to prevent cross-contamination are Care is always taken not to penetrate confining layers between aquifers; if this occurs the borehole is sealed with grout introduced through a "tremie" pipe. If it is required to

5-foot by 3-inch split spoon tubes or 2-foot by 2-inch split spoon tube The soil borings are advanced with a 3-1/4" inside diameter (ID) hollow-stem auger and

SOIL SAMPLING

cross-contamination the split spoon sampler is streamed cleaned between samples ionization detector (FID) or a photo ionization detector (PID) equipped meter. To avoid continuously screened for the presence of organic vapors utilizing a hydrogen flame auger (HSA). Soil samples are obtained from the split spoon tubes, samples are Borings are advanced using a Ingersoll Rand A-200 drill rig equipped with a hollow stem

are ionized by the 10.2 eV energy source. are ionized or "burned" in a flame. The photo ionization detector (PID) is equipped with a The PID readings represent a qualitative indicator of contamination by compounds which 10.2 electron volt (eV) lamp and calibrated to 250 parts per million (ppm) isobutylene. The FID readings represent a qualitative indicator of contamination by compounds which

with the MPCA Fact Sheet #3.22. The soil samples were screened for volatile organic compounds (VOCs) in accordance

sampler to minimize volatilization of hydrocarbons. Soil samples collected for analytical analysis are collected immediately after opening the

supplied jars, appropriate for their respective analysis, equipped with nylon septa. For (preservatives, if necessary, are included with laboratory-supplied jars, and soils weighed TPH/GRO and TPH/DRO approximately 25 grams of soil are placed in each jar Soil samples collected for analytical laboratory analysis are packed in clean, laboratoryfor TPH/GRO) are placed in the appropriate laboratory-supplied jar. with a digital scale). For VOC and/or BTEX analysis, approximately 25 grams of soil (as

analysis, site name, sample data point ID, name of sampler, time & date collected procedure is maintained at all times. All sample containers are labeled with type of preservative and sample prep instructions. Samples are stored in a cooler on ice until arrival at the laboratory (samples held at Agassiz's offices are placed in a dedicated refrigerator). Proper sample chain of custody

GEOPROBE BORINGS

INSTALLATION

decontaminated between holes using an Alconox wash and clean water rinse. Samples can are 45-inches long by 1.5-inches in diameter. sampler is used in conjunction with a clear plastic tube liner to provide core samples that be collected continuously utilizing a "Macro-Core" tube sampler. using a truck mounted GeoProbe Model 5400. Probe rods and sampling tubes are As an alternative to HSA borings, Agassiz may advance hydraulic push probe borings The "Macro-Core"

samplers are handled in the same manner as described above. a clear plastic liner, the Large Bore Sampler provides soil cores with are 22-inches long point to be retracted into the sampling tube as the sample is collected. Equipped with upon reaching the desired interval, a piston-stop pin is removed. This allows the drive by 1.025-inches in diameter. Samples collected from the "Macro-Core" or Large Bore Closed Piston sampling tubes. A drive point is fitted to the Large Bore Sampler and Discrete soil samples can be collected from a given interval using the Large Bore/

DRILLING LOGS

classification and description is based the Unified Soil Classification System (USCS) and data/location point ID, penetration data and elevation data (relative to surface). of sample collection, approximate location of the water table, organic vapor measurements contains soil classification, soil description, depth of significant changes in material, depth standard geotechnical field gauge information (See fig.). with respective depths, significant comments, date, name of driller and logger, sample A drilling log is compiled for every soil boring advanced; the information recorded

MONITORING WELL

INSTALLATION

wells are logged and completed under water well license #M-0159, which is held by Agassiz Environmental Systems, Inc. The wells are advanced using a Ingersoll Rand A-200 drill rig equipped with a HSA.

the water table when ever possible. Monitoring wells, unless otherwise required, are installed so the screen portion intersects

installation approach may be appropriate. Seasonable weather patterns are taken into slightly larger screen to compensate for water table fluctuations; or a phased well should remain open for at least 24 hours to allow water level to stabilize; the use of a account during screen placement. Where the depth below grade of the water table is difficult to approximate the bore hole

MW CONSTRUCTION/DEVELOPMENT

adequate hydraulic connection with the aquifer. cleaned prior to installation. All wells are developed following installation to ensure Wells are constructed of stainless steel or PVC, flush threaded couplings; all materials are Wells are constructed in accordance with the MDH regulations/code and under permit.

the well, depth of major features, slot size, gravel pack size, inner diameter of materials, materials, unique well number, data/location point ID, date, driller name and height of Well construction diagrams and forms are complied for each well and include diagram of

GROUNDWATER MEASUREMENTS

alcohol/de-ionized water rinse. In addition, the total depth to the bottom of the well is thoroughly decontaminated between monitoring wells with an Alconox/water wash and an notch in the inner casing of the monitoring wells to the water table by lowering a ground collected to assist with the determination of the volume of water present in the well and water probe which sounds a tone when it comes in contact with water. The probe is inspect the condition of the well. Ground water is gauged by measuring, prior to sampling, the distance from a surveyed

the ground water level by sample collection. Ground water level measurements are collected prior to sample collection as to not disturb

GROUNDWATER SAMPLING

representative of the aquifer. Once the volume of water is removed, a sample is the monitoring wells and removing five well volumes or more to obtain a sample contamination. Samples are collected by determining the volume of water present within immediately collected by clean, dedicated bailer. Ground water samples are collected in a manner to minimize the possibility of cross-

of Natural Resources (WI DNR) Modified GRO method; three samples are collected septa. For TPH/GRO samples are collected in accordance with the Wisconsin Department the WI DNR Modified DRO method; one sample is collected without headspace, in glass without headspace, in glass VOC vials with Teflon-lined septa caps. Samples are manner in which aeration is minimized. solution (preservative is supplied pre-added with the laboratory provided glass ware). For VOC vials with Teflon-lined septa caps. Samples are preserved with 5ul of a 50% HCL laboratory provided glass ware). For TPH/DRO samples are collected in accordance with preserved with 500ul of a 50% HCL solution (preservative is supplied pre-added with the laboratory-supplied jars, appropriate for their respective analysis, equipped with nylon Ground water samples collected for analytical laboratory analysis are placed in clean, VOC or BTEX each sample jar is filled completely so that no headspace exists and in a

preservative and sample prep instructions. analysis, site name, sample data point ID, name of sampler, time & date collected procedure is maintained at all times. All sample containers are labeled with type of Agassiz's offices are placed in a dedicated refrigerator). Proper sample chain of custody Samples are stored in a cooler on ice until arrival at the laboratory (samples held at