

Corrective Action Report

Junction Food-N-Fuel Site 5493 Miller Trunk Hwy Hermantown, Minnesota

MSA Project No. 00625001 MPCA Leak No. 3534

September 2013

Corrective Action Report

Junction Food-N-Fuel Site 5493 Miller Trunk Hwy Hermantown, Minnesota

MSA Project No. 00625001 MPCA Leak No. 3534

September 2013

Prepared by:

Jon Hinkel, P.G Senior Project Hydrologist

Reviewed by:

Jeff Anderson, P.E. Project Manager

MSA Professional Services, Inc. 301 West 1st Street, Suite 408 Duluth, MN 55802 (218) 722-3915

I. INTRODUCTION

Corrective Action Design Background

The Junction Food-N-Fuel site (Junction site, Figure 1) contains remnant gasoline impacts to its soils and groundwater which have been shown to extend beyond the Junction property boundaries. Specifically, the site's soil contaminant plume extends to the west and southwest of the Junction property boundaries, somewhat beneath the adjoining State Highway 53 right-of-way, and beneath the adjoining Radco / Turbo-Diesel property (Figure 2). The site's groundwater contaminant plume extends northwest of the Junction property boundary, and has impacted the adjacent Radco / Turbo-Diesel property's water supply well (designated as PW-5497) and an additional water supply well (designated as PW-4621) located on the next neighboring property owned by MMT Heating and Cooling (MMT) to the northwest (Figure 3).

Various corrective actions have been applied to the Junction site over its history. Recently however, the final corrective action goal has been established for this project to provide the site's two neighboring properties with safe drinking water. The principal objectives toward this goal have been as follows:

- provide support and assistance for a municipal water main to be extended to the area of the site; and
- provide private connections from the municipal water line extension to the two neighboring property facilities.

A Corrective Action Design for the project was compiled and submitted to the MPCA in July, 2012, with a project budget created and submitted to the Minnesota Department of Commerce's Petrofund (Petrofund) Program in March, 2013. Approvals from the MPCA and the Petrofund were received August 22nd, 2012, and March 21st, 2013, respectively. In addition to providing private connections to the water main, the MPCA requested that a confirmation indoor air sample be collected and analyzed from the Junction property building (now occupied by the Casa Latte Restaurant; see MPCA Correspondence, attached).

Installation of the Municipal Water Main

The city of Hermantown completed the installation of its planned water main extension during the late fall of 2012. Part of the installation required an excavation directed southeastward along the northeast margin of the Highway 53 from the highway's intersection with Lindahl Road, to a planned termination point located at the Junction property's highway entrance. Prior to the project's commencement, the portion of the excavation entering the area of the planned terminus was recognized as having the potential to intercept the western margin of the site's soil contaminant plume. During the excavation, an environmental technician visited the site, documented the progress of the excavation, screened excavated soils for petroleum-related organic vapors, and advised the excavation crew with regard to replacement of the excavated soil as backfill. Results of the excavation's monitoring revealed no excavated soils registering above 10 parts per million petroleum-related organic vapors, the MPCA threshold triggering the requirement for off-site disposal. Installation of the water main was completed, along with three spur lines and junction boxes for private connections. All excavated soils were then returned to the excavation. A full account of the excavation was summarized in: Excavation Report, City of Hermantown Water Main Excavation (TPT 96e-604: January, 2013).

Due to the seasonal advance of unfavorable weather conditions, scheduling of the follow-up private water line connections was postponed until the spring of 2013.

II. METHODS AND RESULTS

Private Water Line Connections

The site was revisited on June 20th, 2013 by Shelton Excavating (the excavation contractor) and MSA Professional Services (the environmental consultant). A horizontal boring was initiated near the Radco / Turbo-Diesel property water supply well, approximately 120 feet distant from the nearest mapped extent of the site's soil contaminant plume. The boring was driven using 2-inch diameter rod, and was extended southward, beneath the site's asphalt drive, toward the area of the water main's spur line junction boxes. No drill cuttings were produced during the operation. The municipal excavation was reopened in the area of the spur line junction boxes for the purpose of receiving the leading end of the horizontal boring. Due to rocky soils, the boring's planned course was diverted eastward several degrees, necessitating enlargement of the excavation southward, but remaining within the earlier water main's excavated area. The final reopened excavation measured approximately 6½ feet wide x 20 feet long x 9 feet deep. No groundwater was encountered or accumulated within the excavation during the short duration of its being open. No petroleum odors were observed during the excavation process. The soil stockpile generated adjacent to the excavation was sampled at 10 widely-spaced points, with each sample collected approximately 1 foot beneath the stockpile's surface. Each soil sample was individually sealed in a disposable plastic bag and allowed to generate potential head-space vapors for a minimum period of 10 minutes. The soil samples were then field screened for petroleum-related organic vapors using a portable photoionization detector (PID; equipped with a 10.6 eV lamp and calibrated to an isobutylene standard prior to field activities). PID readings ranged from 0.3 to 1.7 parts per million petroleum-related organic vapors (Table 1). Due to the low PID readings (<10 parts per million throughout the sample suite) the excavation contractor was given approval to use the excavated soil as backfill.

Due to the divergence of the horizontal boring, the appropriate spur line junction box was moved southward from its earlier position. A new 1 inch diameter copper line was then back-fed into the borehole from within the excavation as the drill rod was retracted. The final connections at the water main's spur line junction box and at the Radco / Turbo-Diesel facility were completed on June 21st, 2013. The excavation was backfilled with the excavated material.

The second private line installation (MMT property) was completed on June 25th and 26th, 2013. Prior to commencement, the excavation contractor's understanding of the locations of the site's known impacts was again confirmed. Due to the excessive distance separating the MMT property planned work from the site's known soil contaminant plume (approximately 250 feet), the drilling and excavation work proceeded without environmental monitoring, but with the arrangement that should evidence of petroleum contamination be encountered, the environmental technician would be called to the site immediately. The second water line installation and final connections were completed without evidence of petroleum contamination being encountered. All excavated soils were returned to the excavations as backfill.

As follow-ups to the municipal water line connections, the water supply wells of the Radco / Turbo-Diesel property and of the MMT property were abandoned and sealed on July 29th, 2013 by Denny's Well Drilling (see MDH Well Sealing Records, attached).

Confirmation Indoor Air Sampling

An indoor air sample was collected from the former Junction Food-N-Fuel building during a 24-hour period on July 2nd and 3rd, 2013 using a summa canister and analyzed for TO-15 parameters. Results of the interior air analysis revealed two relatively minor Intrusion Screening Value exceedences for the compounds 1,2-dichloroethane and trichloroethylene. Both of these are halogenated compounds, commonly associated with domestic and commercial cleaning agents, and may not be associated with the site's remnant petroleum contamination.

III. **CONCLUSIONS / RECOMMENDATIONS**

The final corrective action goal for this project, to provide the site's two neighboring properties with safe drinking water, has been achieved through direct connections to the city of Hermantown's municipal water supply. No contaminated soil or contaminated groundwater was generated during the project requiring special handling and disposal. The site's two impacted water supply wells have been abandoned and sealed to current Minnesota Department of Health (MDH) standards.

MSA Professional Services recommends that the Junction Food-N-Fuel site be reviewed for closure by the MPCA.

Upon receiving site closure, the following tasks will need to be completed:

- abandonment and sealing of the site's eight groundwater monitoring wells; and
- a forwarding of notification to the MPCA of the well abandonments.

Please feel free to contact us at (218) 722-3915 if you have any questions or require additional information.

This report was completed September 14th, 2013.

Senior Project Hydrologist **Environmental Department**

MSA Professional Services,

Inc.

09/12/2013

Jeffrey K. Anderson, P.E.

Report Reviewer

Environmental Department

MSA Professional Services, Inc.

Attachments: Figures 1-4

Tables 1,2, 17a, 17b **Laboratory Report**

MDH Well Sealing Records MPCA Correspondence

- ◆ MONITORING WELL LOCATION
- SOIL BORING LOCATION
- **W** PRIVATE DRINKING WATER WELL

BASE MAP CREATED FROM TWIN PORTS TESTING REPORT DATED 1/97 CHECKED BY

PROXIMATE EXTENT OF SOIL
CONTAMINATION
JUNCTION FOOD N FUEL
5493 MILLER TRUNK HWY
HERMANTOWN, MN

Transportation - Municipal Evelopment - Environmental

1835 N.Stevens St. Rhinelander, WI 54501 5-362-3244 1-800-844-7854 Fax: 715-362-4116 Web Address: www.msa-ps.com

 DRAWN BY
 CAR
 DATE
 9/2013

 CHECKED BY
 RJH
 SCALE
 AS SHOWN

2 FILE NO. 625001

Table 1
Stockpile Sample Field Screening Results

Junction Food-N-Fuel Site June 20th, 2013

Soil Sample	Number	Field Screening Reading
	SP-1	0.6
	SP-2	0.7
	SP-3	0.4
	SP-4	0.7
Stockpile	SP-5	0.5
Samples	SP-6	0.3
	SP-7	0.5
	SP-8	0.8
	SP-9	1.7
	SP-10	0.6

All readings are presented in parts per million petroleum-related organic vapors

DETAIL OF

STOCKPILE

FROM FIGURES 2,3,4

Table 2
Results of Interior Air Analyses: Casa Latte Restaurant

Junction Food-N-Fuel Site

Parameter	Air Samp	MPCA Intrusion Screening		
	April, 2007	October, 2007	July, 2013	Value
Acetone	82.6	61.2	45	31,000
Benzene	< 0.93	1.5	< 0.64	4.5
2-Butanone (MEK)	8.6	9.5	5.0	5,000
Carbon Disulfide	< 0.9	0.89	0.68	700
Chloroform			13	100
Chloromethane	1.1	1.1	1.6	90
Dichlorodifluoromethane	2.6	2.5	1.7	200
1,2- Dichloroethane		3.7	1.3	0.4
Ethanol		1,270	1300	15,000
Ethylbenzene	2.8	< 1.2	< 0.87	1,000
n-Heptane / Heptane	3.3	< 1.1	1.2	
n-Hexane	5.9	1.9	1.2	2,000
Methylene Chloride	< 1.0	< 0.98	2.0	20
Methly Tertiary Butyl Ether			< 0.72	3,000
Naphthalene			< 3.3	9
2-Propanol		92.0	54	7,000
Styrene	17.4	11.3	3.7	1,000
Tetrahydrofuran	< 0.86	< 0.83	0.65	
Toluene	7.2	4.8	5.3	5,000
Trichloroethylene	< 1.6	< 1.5	19	3
1,2,4-Trimethylbenzene	119	25.5	1.1	7
1,3,5-Trimethylbenzene	48.1	10.0	< 0.98	6
m & p-Xylene	10.8	4.0	< 1.7	100
o-Xylene	6.5	2.3	< 0.87	100

Notes:

Only detected compounds and standard petroleum compounds are included above; see lab report for full list of analyses. All analyses results are provided in in micrograms per cubic meter (ug/m3).

-- = analysis not conducted / regulatory standards not yet established / not included in earlier tables 17a and 17b **Bold** type indicates MPCA Intrusion Screening Value exceedence.

= shading indicates data previously reported in Tables 17a and 17b

< = below laboratory detection limits

Table 17a - Results of Soil Gas Sampling for Vapor Intrusion Screening Junction Food-N-Fuel, MPCA Leak #3534

Sample Location		ACTI	ON LEVEL		VS-1	VS-2	VS-3	VS4	54,212,35	⇒ SS-2	JENE.OUT001
Sampling Date	Comment of the Comment	ASS SUSSESSE	(美国)。 化二甲基		8/17/2005	8/17/2005	8/17/2005	8/17/2005	10/10/2006	10/23/2007	10/10/2006
Depth		MDH		EPA	4.5'	4'	3.25'	3.5'	18-20"	12"	
and the second second second	· Was Aff	₹Vs	Sanda Start CHA	ERCEPTONER	Sacreto figure	and the second	ALCOHOL: UK:	Constitution of the	The Market S	8888445 S 1944	0.000 a 1.000 a
COMPOUNDS	Acute	Chronic	ISC	RfC					-4/3		
compounds related to gasoline/diesel cont	amination	- Janya Criston		4.480	- :86kellässi :	(50/5,47,52/65)			gudalinan serinci ya ya Luda da Parasasa	The State of the S	Maria Series 132 15 Transport
Benzene	1000	1.3-4.5		-	<11.8	4,550	<1.0	<9.0	3.4	1.4	<0.87
Ethylbenzene	10,000			1,000	<15.9	<660	4.6	57.1	10	<1.7	<0.87
Toluene	37,000	400	-		<13.9	<570	10.9	112	96.6	14.1	
1,2,4-Trimethylbenzene	-	-	-	6	<45.2	4.850	9.8	96.8	134	<4.9	<1.0
1,3,5-Trimethylbenzene	-	*	-	6	<45.2	1,100	4.8	170	43.2	<4.9	<3.4
m & p-xylene	40,000,4-4-4	-			75.9	10,600	14.1	466	35.5		<3.4
o-xylene	43,000 total	-		700 total	<15.9	<660	4.5	211	13.8	<3.5 <1.7	<2.4
other compounds detected		A 31 & 47 A		1000		1 -000		211	13.0	TOTAL VIETNES	<1.2
Acetone	-	-	-	main reference construction of the second of	104		90.5	<6.6	252	8.8	
n-Hexane		2,000		-	42		43.3	242	40.2	6.2	4.8
4-Ethyltoluene					<45.2		5.8	139	25	<4.9	<0.96
2-Butanone (MEK)	10,000	_		_	54.5		16.2	<8.3	81.9	2.5	<3.4
Dichlorodifluoromethane	-	-	-	-	<30.7	<750	5.1	<23.5	5.5	6.0	<0.8 2.5
Methylene chloride	~		-	-	14.3	<530	<1.1	<9.8	2.9	5.5	∠.5 <0.95
Trichloroethene	-	_	-	-	40.1	<820	3.6	<15.2	2.9	7.2	<1.5
Cyclohexane	- "	-	-	6,000	<12.3	1000	7	<9.4	<0.91	2.8	<0.91
2-Propanol	-	-	-	-	10.2740 (6.38)				30.00	14.3	<0.91
Propylene	- "-		•		<6.3	ness 24623.	11.2	<4.8	<0.47	<0.69	<0.47
Carbon disulfide	6,000	700	-	700	<11.4	Page 1981	<0.97	<8.7	2.8	<1.2	<0.47
Carbon tetrachloride	-	-	-		<23.5	<960	<2.0	<17.9	1.9	<2.6	<1.7
n-Heptane			-	-	<15.0	2/07/2004		<11.5	5.5	<1.6	<1.1
4-Methyl-2-pentanone		-	-	-	<15.0		<1.3	<11.5	2.4	<1.6	<1.1
Tetrahydrofuran	-	-	-	-	<10.8	All saids	<0.92	<8.3	471	<1.2	<0.8
Chloromethane			-	-	<7.6	<310	<0.65	<5.8	<0.56	<0.83	<0.56
Styrene	21,000	1,000	-	1,000	<15.7	<650	<1.3	<12.0	<1.2	<1.7	<1.2

Notes:
All units are in ug/m3.

Only laboratory detected compounds are

Analytical results in ug/m3

- ≈ No established limits

MDH= Minnesota Department of Health

HRVs= Health Risk Values for Air

Bold result indicates analytical result above standards
VS-2 was analyzed using method TO-14 due to elevated levels of organic compounds.

= Not analyzed

Table 17b - Indoor Air Analytical Results of Vapor Monitoring Junction Food-N-Fuel, MPCA Leak #3534

		ACTION LEV	EL	Indoor Air	Sampling	Ou	tdoor Air Sampl	ing
Sample Location	M	DH 💹 🖟	EPA	IA-1	IA-2		JENE OUT001	OA-2
Sampling Date	HF	Vs		4/23/2007	10/22/2007	4/23/2007		10/22/2007
COMPOUNDS	Acute	Chronic	RfC		1.00		Carnero Col	
compounds related to gasol	ine/diesel cont	amination	and the Age of	of great states	10 mg 10			GREAT CONTRACTOR
Benzene	1000	1.3-4.5	_	< 0.93	1.5	<1.0	<0.87	<0.87
Ethylbenzene	10,000	-	1,000	2.8	<1.2	<1.4	<1.2	<1.2
Toluene	37,000	400	-	7.2	4.8	<1.2	<1.0	6.5
1,2,4-Trimethylbenzene	-	-	6	119	25.5	<4.0	<3.4	<3.4
1,3,5-Trimethylbenzene	_	-	6	48.1	10.0	<4.0	<3.4	<3.4
m & p-xylene	- 43,000 total	_	700 total	10.8	4.0	<2.8	<2.4	<2.4
o-xylene		_	700 total	6.5	2.3	<1.4	<1.2	<1.2
other compounds detected.	****							
Acetone	-	-	-	82.6	61.2	8.6	4.8	12.4
n-Hexane	-	2,000	-	5.9	1.9	<1.1	<0.96	11.4
Ethanol	'		_		1,270			8.7
4-Ethyltoluene	_	-		20.9	4.7	<4.0	<3.4	<3.4
2-Butanone (MEK)	10,000	-	-	8.6	9.5	< 0.95	<0.8	1.2
Dichlorodifluoromethane	-		-	2.6	2.5	2.1	2.5	2.6
1,2-Dichloroethane	-		-		3.7	有限。其类的		<1.1
Methylene chloride	-	-	-	<1.0	<0.98	<1.1	<0.95	247
Trichloroethene	-	-	-	<1.6	<1.5	<1.7	<1.5	<1.5
Cyclohexane	-	-	6,000	13.7	<0.94	<1.1	<0.91	<0.91
2-Propanol	-		-		92.0			<3.4
Propylene	-	-	-	<0.5	<0.48	<0.56	<0.47	<0.47
Carbon disulfide	6,000	700	700	<0.9	0.89	<1.0	<0.84	<0.84
Carbon tetrachloride	-	-	-	<1.9	<1.8	<2.1	<1.7	<1.7 .
n-Heptane	-	-	-	3.3	<1.1	<1.3	<1.1	<1.1
4-Methyl-2-pentanone		-	-	<1.2	1.6	<1.3	<1.1	<1.1
Tetrahydrofuran	-			<0.86	<0.83	< 0.95	<0.8	<0.80
Chloromethane	-	-	-	1.1	1.1	<0.67	<0.56	0.78
Styrene	21,000	1,000	1,000	17.4	11.3	<1.4	<1.2	<1.2
Vinyl acetate	-	-	200		18.3			<0.95

Only laboratory detected compounds are listed in this table
Analytical results in ug/m3
- = No established limits
MDH= Minnesota Department of Health

HRVs= Health Risk Values for Air

Bold result indicates analytical result above standards

			Billing informati	on:			An	alysis/Contai	ner/Preserv	ative		Chain of Custody
MSA Professional	Services		MSA Prof									Page of
301 West First St. Ste	408		Accounts 301 West	Payable First St. Ste	408							
Duluth,MN 55802												CC
,			Duluth,MI	N 55802							表に	<i>3</i> C
Report to:							_					I-E-N-C-E-S
Jon Hinkel			Email: jh	inkel@msa-ps	s.com						12065 Leb Mt. Juliet,	
Project Description: Junction Food-N-Fuel	Site		City/Sta Collecte		own,						Phone: (800	-
Phone: (218) 722-3915	Client Project #	# :	Lab F	roject #			1				Phone: (615 Fax: (615	5) 758-5858 5) 758-5859
FAX: (218) 722-4548	ROO	625001	MS	APRODMN-J	UNCTI	ON						
Collected by (print): Jan Hinkel	Site/Facility ID:	#: NTOWN, M	P.O.#	;			[]		-			
Collected by signature):	Rush? Same Day	(Lab MUST	Be Notified) 200%	Date Results			Summa				Acctnum MSAPRO	ODMN (lab use only)
Immediately				Standar		-	2				Template/Prelogin T8	7613/P434715
Packed on Ice N X Y	1			Email?No FAX?No		No.	-15TIC			32.5	Cooler # 6/25/13 Shipped Via: Fed I	EX Ground
Sample ID	Comp/Grab	Matrix*	Depth	Date	Time	Cntrs	TO-		- A		Remarks/Contaminant	Sample # (lab only)
Casa Latte Interior		Air		See Belo	9 W Y	1	X				164504"	
Air Sumple 7/3/13					il						<u> </u>	
												1,, 7 .
									_			* ***
						_						
						+		_				
												· ·
*Matrix: SS - Soil GW - Groundwater WY	V - WasteWater D	W - Drinking W	ater OT - Othe	r						pH	Temp	······································
Remarks: Test Begin: 7/2/										Flow	Other	
Test End: 7/3)	13 - 8-09a	m - 8,4	in. Ha V	ieuum							out	
Relinquished by: (Signature)	Date:	Time:	Receiv	ved by: (Signature)			<u></u>	Camr	loc returned	via: ∐UPS	Condition:	0.2
				, (- 3				l l	edEx 🗆 Cour		Condition.	(lab use only)
Relinquished by: (Signature)	Date:	Time:	Receiv	ved by: (Signature)				Temp		Bottles Received:		U
Relinquished by: (Signature)	Date:	Time:	Receive	or lab by: (Signa	ature) 🗸	1 /1		Am.	6	<u> </u>	COC Seal Intact:	Y N NA
			12	les 1	Lude	Ma		7-5		7945	pri Oneckeu.	NOF.
					**************************************	111	2000000	1/ -	, -	7 ' '		

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Jon Hinkel MSA Professional Services 301 West First St. Ste 408 Duluth, MN 55802

Report Summary

Thursday July 11, 2013

Report Number: L645048
Samples Received: 07/05/13
Client Project: MSA R00625001

Description: Junction Food-N-Fuel Site

The analytical results in this report are based upon information supplied by you, the client, and are for your exclusive use. If you have any questions regarding this data package, please do not hesitate to call.

Entire Report Reviewed By:

ohn Hawkins , ESC Representative

Laboratory Certification Numbers

A2LA - 1461-01, AIHA - 100789, AL - 40660, CA - 01157CA, CT - PH-0197, FL - E87487, GA - 923, IN - C-TN-01, KY - 90010, KYUST - 0016, NC - ENV375/DW21704/BIO041, ND - R-140. NJ - TN002, NJ NELAP - TN002, SC - 84004, TN - 2006, VA - 460132, WV - 233, AZ - 0612, MN - 047-999-395, NY - 11742, WI - 998093910, NV - TN000032011-1, TX - T104704245-11-3, OK - 9915, PA - 68-02979, IA Lab #364

Accreditation is only applicable to the test methods specified on each scope of accreditation held by ESC Lab Sciences.

Note: The use of the preparatory EPA Method 3511 is not approved or endorsed by the CA ELAP.

This report may not be reproduced, except in full, without written approval from ESC Lab Sciences. Where applicable, sampling conducted by ESC is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

July 11, 2013

MSA Professional Services 301 West First St. Ste 408

Duluth, MN 55802

Jon Hinkel

ESC Sample # : L645048-01

Date Received : 05, 2013 July

Description Junction Food-N-Fuel Site

Site ID : HERMANTOWN, MN Sample ID : CASA LATTE INTERIOR AIR SAMPLE 7/3/13

Project # : MSA R00625001

Collected By : Jon Hinkel Collection Date: 07/03/13 08:09

Parameter	Cas#	Mol Wght	RDL1 RDL2	ppbv	ug/m3	Method	Date	Dil.
Volatile Organics								
Acetone	67-64-1	58.1	1.25 3.00	19.	45.	TO-15	07/10/13	1
Allyl chloride	107-05-1	76.53	0.200 0.630	< 0.20	< 0.63	TO-15	07/10/13	1
Benzene	71-43-2	78.1	0.200 0.640	< 0.20	< 0.64	TO-15	07/10/13	1
Benzyl Chloride	100-44-7	127	0.200 1.00	< 0.20	< 1.0	TO-15	07/10/13	1
Bromodichloromethane	75-27-4	164	0.200 1.30	< 0.20	< 1.3	TO-15	07/10/13	1
Bromoform	75-25-2	253	0.600 6.20	< 0.60	< 6.2	TO-15	07/10/13	1
Bromomethane	74-83-9	94.9	0.200 0.780	< 0.20	< 0.78	TO-15	07/10/13	1
1,3-Butadiene	106-99-0	54.1	2.00 4.40	< 2.0	< 4.4	TO-15	07/10/13	1
Carbon disulfide	75-15-0	76.1	0.200 0.620	0.22	0.68	TO-15	07/10/13	1
Carbon tetrachloride	56-23-5	154	0.200 1.30	< 0.20	< 1.3	TO-15	07/10/13	1
Chlorobenzene	108-90-7	113	0.200 0.920	< 0.20	< 0.92	TO-15	07/10/13	1
Chloroethane	75-00-3	64.5	0.200 0.530	< 0.20	< 0.53	TO-15	07/10/13	1
Chloroform	67-66-3	119	0.200 0.970	2.7	13.	TO-15	07/10/13	1
Chloromethane	74-87-3	50.5	0.200 0.410	0.78	1.6	TO-15	07/10/13	1
2-Chlorotoluene	95-49-8	126	0.200 1.00	< 0.20	< 1.0	TO-15	07/10/13	1
Cyclohexane	110-82-7	84.2	0.200 0.690	< 0.20	< 0.69	TO-15	07/10/13	1
Dibromochloromethane	124-48-1	208	0.200 1.70	< 0.20	< 1.7	TO-15	07/10/13	1
1,2-Dibromoethane	106-93-4	188	0.200 1.50	< 0.20	< 1.5	TO-15	07/10/13	ī
1,2-Dichlorobenzene	95-50-1	147	0.200 1.20	< 0.20	< 1.2	TO-15	07/10/13	1
1,3-Dichlorobenzene	541-73-1	147	0.200 1.20	< 0.20	< 1.2	TO-15	07/10/13	ī
1,4-Dichlorobenzene	106-46-7	147	0.200 1.20	< 0.20	< 1.2	TO-15	07/10/13	ī
1,2-Dichloroethane	107-06-2	99	0.200 0.810	0.31	1.3	TO-15	07/10/13	ī
1,1-Dichloroethane	75-34-3	98	0.200 0.800	< 0.20	< 0.80	TO-15	07/10/13	ī
1,1-Dichloroethene	75-35-4	96.9	0.200 0.790	< 0.20	< 0.79	TO-15	07/10/13	ī
cis-1,2-Dichloroethene	156-59-2	96.9	0.200 0.790	< 0.20	< 0.79	TO-15	07/10/13	ī
trans-1,2-Dichloroethene	156-60-5	96.9	0.200 0.790	< 0.20	< 0.79	TO-15	07/10/13	ī
1,2-Dichloropropane	78-87-5	113	0.200 0.920	< 0.20	< 0.92	TO-15	07/10/13	ī
cis-1,3-Dichloropropene	10061-01-5	111	0.200 0.910	< 0.20	< 0.91	TO-15	07/10/13	ī
trans-1,3-Dichloropropene	10061-02-6	111	0.200 0.910	< 0.20	< 0.91	TO-15	07/10/13	1
1,4-Dioxane	123-91-1	88.1	0.200 0.720	< 0.20	< 0.72	TO-15	07/10/13	ī
Ethanol	64-17-5	46.1	50.4 95.0	710	1300	TO-15	07/11/13	80
Ethylbenzene	100-41-4	106	0.200 0.870	< 0.20	< 0.87	TO-15	07/10/13	1
4-Ethyltoluene	622-96-8	120	0.200 0.980	< 0.20	< 0.98	TO-15	07/10/13	ī
Trichlorofluoromethane	75-69-4	137.4	0.200 1.10	< 0.20	< 1.1	TO-15	07/10/13	1
Dichlorodifluoromethane	75-71-8		0.200 0.990	0.34	1.7	TO-15	07/10/13	1
1,1,2-Trichlorotrifluoroethane	76-13-1	187.4	0.200 1.50	< 0.20	< 1.5	TO-15	07/10/13	1
1,2-Dichlorotetrafluoroethane	76-14-2	171	0.200 1.30	< 0.20	< 1.4	TO-15	07/10/13	1
Heptane	142-82-5	100	0.200 0.820	0.30	1.2	TO-15	07/10/13	1
Hexachloro-1,3-butadiene	87-68-3	261	0.630 6.70	< 0.63	< 6.7	TO-15	07/10/13	1
n-Hexane	110-54-3	86.2	0.200 0.710	0.35	1.2	TO-15	07/10/13	1
Isopropylbenzene	98-82-8	120.2	0.200 0.710	< 0.20	< 0.98	TO-15	07/10/13	1
Methylene Chloride	75-09-2	84.9	0.200 0.980	0.58	2.0	TO-15	07/10/13	1
Methyl Butyl Ketone	591-78-6	100	1.25 5.10	< 1.3	< 5.1	TO-15	07/10/13	1
Mechyl bucyl Recoile	331-10-0	100	1.25 5.10	` 1.3	< J.I	10-13	0//10/13	_

RDL1 = ppbv , RDL2 = ug/m3

Note:

Units are based on (STP) - Standard Temperature and Pressure
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 07/11/13 17:03 Printed: 07/11/13 17:04

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

REPORT OF ANALYSIS

July 11, 2013

Jon Hinkel MSA Professional Services 301 West First St. Ste 408

Duluth, MN 55802

ESC Sample # : L645048-01

Date Received : July 05, 2013

Description Junction Food-N-Fuel Site

Site ID : HERMANTOWN, MN Sample ID CASA LATTE INTERIOR AIR SAMPLE 7/3/13

Project # : MSA R00625001

Collected By : Collection Date : Jon Hinkel 07/03/13 08:09

Parameter	Cas#	Mol Wght RDL1 RDL	2 ppbv	ug/m3	Method	Date Dil.	
2-Butanone (MEK) 4-Methyl-2-pentanone (MIBK) Methyl methacrylate MTBE Naphthalene 2-Propanol Propene Styrene 1,1,2,2-Tetrachloroethane Tetrachloroethylene Tetrahydrofuran Toluene 1,2,4-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,2,4-Trimethylene 1,2,4-Trimethylbenzene	78-93-3 108-10-1 80-62-6 1634-04-4 91-20-3 67-63-0 115-07-1 100-42-5 79-34-5 127-18-4 109-99-9 108-88-3 120-82-1 71-55-6 79-01-6 95-63-6	72.1 1.25 3.7 100.1 1.25 5.1 100.12 0.200 0.82 88.1 0.200 0.72 128 0.630 3.3 60.1 20.0 49. 42.1 0.400 0.69 104 0.200 0.85 168 0.200 1.4 166 0.200 1.4 72.1 0.200 0.59 92.1 0.200 0.75 181 0.630 4.7 133 0.200 1.1 133 0.200 1.1 131 0.200 1.1 120 0.200 0.98	1.7 0 < 1.3 0 < 0.20 0 < 0.20 0 < 0.63 0 22. 0 < 0.40 0 0.88 0 < 0.20 0 < 0.22 1.4 0 < 0.63 0 < 0.20 0 < 0.20	5.0 < 5.1 < 0.82 < 0.72 < 3.3 54. < 0.69 3.7 < 1.4 < 1.4 0.65 5.3 < 4.7 < 1.1 1.1	TO-15 TO-15 TO-15 TO-15 TO-15 TO-15 TO-15 TO-15 TO-15 TO-15 TO-15 TO-15 TO-15 TO-15	07/10/13 1 07/10/13 1	
1,2,4-Trimethylbenzene 1,3,5-Trimethylbenzene	95-63-6 108-67-8	120 0.200 0.98 120 0.200 0.98	0.22	1.1 < 0.98	TO-15 TO-15	07/10/13 1 07/10/13 1	
2,2,4-Trimethylpentane Vinyl chloride	540-84-1 75-01-4	114.22 0.200 0.93 62.5 0.200 0.51	0 < 0.20 0 < 0.20	< 0.93 < 0.51	TO-15 TO-15	07/10/13 1 07/10/13 1	
Vinyl Bromide Vinyl acetate m&p-Xylene o-Xylene TPH (GC/MS) Low Fraction	593-60-2 108-05-4 1330-20-7 95-47-6 8006-61-9		0 < 0.20 0 < 0.40 0 < 0.20	< 0.87 < 0.70 < 1.7 < 0.87 < 210	TO-15 TO-15 TO-15 TO-15 TO-15	07/10/13 1 07/10/13 1 07/10/13 1 07/10/13 1 07/10/13 1	
1,4-Bromofluorobenzene	460-00-4		97.13	% Rec.	TO-15	07/10/13 1	

RDL1 = ppbv , RDL2 = ug/m3

Note:

Units are based on (STP) - Standard Temperature and Pressure
The reported analytical results relate only to the sample submitted.
This report shall not be reproduced, except in full, without the written approval from ESC.

Reported: 07/11/13 17:03 Printed: 07/11/13 17:04

Summary of Remarks For Samples Printed 07/11/13 at 17:04:07

TSR Signing Reports: 341 R5 - Desired TAT

Sample: L645048-01 Account: MSAPRODMN Received: 07/05/13 09:45 Due Date: 07/12/13 00:00 RPT Date: 07/11/13 17:03

MSA Professional Services Jon Hinkel 301 West First St. Ste 408

Duluth, MN 55802

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L645048

July 11, 2013

		Laboratory Blank		
Analyte	Result	Units % Rec	Limit	Batch Date Analyzed
1,1,1-Trichloroethane	< .2	dqq		WG671017 07/09/13 14:29
1,1,2,2-Tetrachloroethane	< .2	ppb		WG671017 07/09/13 14:29
1,1,2-Trichloroethane	< .2	ppb		WG671017 07/09/13 14:29
1,1,2-Trichlorotrifluoroethane	< .2	ppb		WG671017 07/09/13 14:29
1,1-Dichloroethane	< .2	ppb		WG671017 07/09/13 14:29
1,1-Dichloroethene	< .2	ppb		WG671017 07/09/13 14:29
1,2,4-Trichlorobenzene	< .63	ppb		WG671017 07/09/13 14:29
1,2,4-Trimethylbenzene	< .2	ppb		WG671017 07/09/13 14:29
1,2-Dibromoethane	< .2	ppb		WG671017 07/09/13 14:29
1,2-Dichlorobenzene	< .2	ppb		WG671017 07/09/13 14:29
1,2-Dichloroethane	< .2	ppb		WG671017 07/09/13 14:29
1,2-Dichloropropane	< .2			WG671017 07/09/13 14:29
	< .2	ppb		
1,2-Dichlorotetrafluoroethane	< .2	ppb		WG671017 07/09/13 14:29 WG671017 07/09/13 14:29
1,3,5-Trimethylbenzene	< .2 < 2	ppb		
1,3-Butadiene		ppb		WG671017 07/09/13 14:29
1,3-Dichlorobenzene	< .2	ppb		WG671017 07/09/13 14:29
1,4-Dichlorobenzene	< .2	ppb		WG671017 07/09/13 14:29
1,4-Dioxane	< .2	ppb		WG671017 07/09/13 14:29
2,2,4-Trimethylpentane	< .2	ppb		WG671017 07/09/13 14:29
2-Butanone (MEK)	< 1.25	ppb		WG671017 07/09/13 14:29
2-Chlorotoluene	< .2	ppb		WG671017 07/09/13 14:29
4-Ethyltoluene	< .2	ppb		WG671017 07/09/13 14:29
4-Methyl-2-pentanone (MIBK)	< 1.25	ppb		WG671017 07/09/13 14:29
Acetone	< 1.25	ppb		WG671017 07/09/13 14:29
Allyl chloride	< .2	ppb		WG671017 07/09/13 14:29
Benzene	< .2	ppb		WG671017 07/09/13 14:29
Benzyl Chloride	< .2	ppb		WG671017 07/09/13 14:29
Bromodichloromethane	< .2	ppb		WG671017 07/09/13 14:29
Bromoform	< .6	ppb		WG671017 07/09/13 14:29
Bromomethane	< .2	dqq		WG671017 07/09/13 14:29
Carbon disulfide	< .2	ppb		WG671017 07/09/13 14:29
Carbon tetrachloride	< .2	ppb		WG671017 07/09/13 14:29
Chlorobenzene	< .2	ppb		WG671017 07/09/13 14:29
Dibromochloromethane	< .2	ddd		WG671017 07/09/13 14:29
Chloroethane	< .2	ppb		WG671017 07/09/13 14:29
Chloroform	< .2	ppb		WG671017 07/09/13 14:29
Chloromethane	< .2	ppb		WG671017 07/09/13 14:29
cis-1,2-Dichloroethene	< .2	ppb		WG671017 07/09/13 14:29
cis-1,3-Dichloropropene	< .2	ppb		WG671017 07/09/13 14:29
Cyclohexane	< .2	ppb		WG671017 07/09/13 14:29
Dichlorodifluoromethane	< .2	ppb		WG671017 07/09/13 14:29
Ethylbenzene	< .2	ppb		WG671017 07/09/13 14:29
=	< .2			WG671017 07/09/13 14:29
Heptane	< .63	ppb		WG671017 07/09/13 14:29
Hexachloro-1,3-butadiene		ppb		
Isopropylbenzene	< .2	ppb		WG671017 07/09/13 14:29
m&p-Xylene	< .4	ppb		WG671017 07/09/13 14:29
Methyl Butyl Ketone	< 1.25	ppb		WG671017 07/09/13 14:29
Methyl methacrylate	< .2	ppb		WG671017 07/09/13 14:29
MTBE	< .2	ppb		WG671017 07/09/13 14:29
Methylene Chloride	< .2	ppb		WG671017 07/09/13 14:29
n-Hexane	< .2	ppb		WG671017 07/09/13 14:29
Naphthalene	< .63	ppb		WG671017 07/09/13 14:29
o-Xylene	< .2	ppb		WG671017 07/09/13 14:29
Propene	< .4	ppb		WG671017 07/09/13 14:29
Styrene	< .2	ppb		WG671017 07/09/13 14:29
Tetrachloroethylene	< .2	ppb		WG671017 07/09/13 14:29
Tetrahydrofuran	< .2	ppb		WG671017 07/09/13 14:29
Toluene	< .2	ppb		WG671017 07/09/13 14:29
TPH (GC/MS) Low Fraction	< 50	ppb		WG671017 07/09/13 14:29

^{*} Performance of this Analyte is outside of established criteria.

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

MSA Professional Services Jon Hinkel 301 West First St. Ste 408

Duluth, MN 55802

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L645048

July 11, 2013

		Laboratory	Blank			
Analyte	Result	Units	% Rec	Limit	Batch Da	ite Analyzed
trans-1,2-Dichloroethene	< .2	dqq			WG671017 07	//09/13 14:29
trans-1,3-Dichloropropene	< .2	ppb			WG671017 07	//09/13 14:29
Trichloroethylene	< .2	ppb			WG671017 07	//09/13 14:29
Trichlorofluoromethane	< .2	ppb			WG671017 07	//09/13 14:29
Vinyl acetate	< .2	ppb			WG671017 07	//09/13 14:29
Vinyl Bromide	< .2	ppb				//09/13 14:29
Vinyl chloride	< .2	ppb				//09/13 14:29
1,4-Bromofluorobenzene		% Rec.	96.43	60-140	WG671017 07	//09/13 14:29
2-Propanol	< 1.25	ppb			WG671203 07	//10/13 13:07
Ethanol	< .63	ppb				//10/13 13:07
1,4-Bromofluorobenzene		% Rec.	96.91	60-140	WG671203 07	//10/13 13:07
		Laboratory Con	trol Sample			
Analyte	Units	Known Val	Result	% Rec	Limit	Batch
1,1,1-Trichloroethane	dqq	3.75	3.73	99.5	70-130	WG671017
1,1,2,2-Tetrachloroethane	ppb	3.75	3.65	97.4	70-130	WG671017
1,1,2-Trichloroethane	ppb	3.75	3.81	102.	70-130	WG671017
1,1,2-Trichlorotrifluoroethane	ppb	3.75	3.70	98.6	70-130	WG671017
1,1-Dichloroethane	ppb	3.75	3.83	102.	70-130	WG671017
1,1-Dichloroethene	dqq	3.75	3.82	102.	70-130	WG671017
1,2,4-Trichlorobenzene	ppb	3.75	3.93	105.	54-153	WG671017
1,2,4-Trimethylbenzene	ppb	3.75	3.84	102.	70-130	WG671017
1,2-Dibromoethane	ppb	3.75	3.93	105.	70-130	WG671017
1,2-Dichlorobenzene	ppb	3.75	3.58	95.5	70-130	WG671017
1,2-Dichloroethane	ppb	3.75	3.59	95.7	70-130	WG671017
1,2-Dichloropropane	ppb	3.75	3.91	104.	70-130	WG671017
1,2-Dichlorotetrafluoroethane	ppb	3.75	3.59	95.7	70-130	WG671017
1,3,5-Trimethylbenzene	ppb	3.75	3.79	101.	70-130	WG671017
1,3-Butadiene	ppb	3.75	4.22	113.	70-130	WG671017
1,3-Dichlorobenzene	ppb	3.75	3.69	98.4	70-130	WG671017
1,4-Dichlorobenzene	ppb	3.75	3.67	97.9	70-130	WG671017
1,4-Dioxane	ppb	3.75	3.81	102.	70-130	WG671017
2,2,4-Trimethylpentane	ppb	3.75	4.08	109.	70-130	WG671017
2-Butanone (MEK)	ppb	3.75	3.94	105.	70-130	WG671017
2-Chlorotoluene	ppb	3.75	3.68	98.1	70-130	WG671017
4-Ethyltoluene	ppb	3.75	3.75	99.9	70-130	WG671017
4-Methyl-2-pentanone (MIBK)	ppb	3.75	3.69	98.3	36-158	WG671017
Acetone	ppb	3.75	3.60	95.9	70-130	WG671017
Allyl chloride	ppb	3.75	4.19	112.	70-130	WG671017
Benzene	ppb	3.75	3.84	102.	70-130	WG671017
Benzyl Chloride	ppb	3.75	4.37	117.	70-130	WG671017
Bromodichloromethane	ppb	3.75	3.94	105.	70-130	WG671017
Bromoform	ppb	3.75	4.15	111.	70-130	WG671017
Bromomethane	ppb	3.75	3.66	97.6	70-130	WG671017
Carbon disulfide	ppb	3.75	4.15	111.	70-130	WG671017
Carbon tetrachloride	ppb	3.75	3.77	101.	70-130	WG671017
Chlorobenzene	ppb	3.75	3.71	98.8	70-130	WG671017
Dibromochloromethane	ppb	3.75	4.18	112.	70-130	WG671017
Chloroethane	ppb	3.75	3.80	101.	70-130	WG671017
Chloroform	ppb	3.75	3.66	97.6	70-130	WG671017
Chloromethane	ppb	3.75	3.79	101.	70-130	WG671017
cis-1,2-Dichloroethene	ppb	3.75	3.92	105.	70-130	WG671017
cis-1,3-Dichloropropene	ppb	3.75	4.34	116.	70-130	WG671017
Cyclohexane	ppb	3.75	4.09	109.	70-130	WG671017
Dichlorodifluoromethane	ppb	3.75	2.93	78.2	70-130	WG671017
Ethylbenzene	ppb	3.75	3.87	103.	70-130	WG671017
* Performance of this Analyte	is outside of	escapiisned crit	erıa.			

Performance of this Analyte is outside of established criteria. For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

MSA Professional Services Jon Hinkel 301 West First St. Ste 408

Duluth, MN 55802

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L645048

July 11, 2013

		Laboratory Con	trol Sample			
Analyte	Units	Known Val	Result	% Rec	Limit	Batch
Heptane	ppb	3.75	4.14	111.	70-130	WG671017
Hexachloro-1,3-butadiene	ppb	3.75	3.59	95.7	50-149	WG671017
Isopropylbenzene	ppb	3.75	3.99	106.	70-130	WG671017
m&p-Xylene	ppb	7.5	7.44	99.2	70-130	WG671017
Methyl Butyl Ketone	ppb	3.75	3.70	98.6	38-153	WG671017
Methyl methacrylate	ppb	3.75	3.96	106.	70-130	WG671017
MTBE	ppb	3.75	3.93	105.	70-130	WG671017
Methylene Chloride	ppb	3.75	3.46	92.3	70-130	WG671017
n-Hexane	ppb	3.75	4.14	110.	70-130	WG671017
Naphthalene	ppb	3.75	4.09	109.	54-154	WG671017
o-Xylene	ppb	3.75	4.06	108.	70-130	WG671017
Propene	ppb	3.75	3.96	106.	70-130	WG671017
Styrene	ppb	3.75	4.19	112.	70-130	WG671017
Tetrachloroethylene	dqq	3.75	3.86	103.	70-130	WG671017
Tetrahydrofuran	dqq	3.75	3.95	105.	70-130	WG671017
Toluene	dqq	3.75	3.96	106.	70-130	WG671017
TPH (GC/MS) Low Fraction	ppb	150	149.	99.0	70-130	WG671017
trans-1,2-Dichloroethene	ppb	3.75	3.78	101.	70-130	WG671017
trans-1,3-Dichloropropene	dqq	3.75	4.32	115.	70-130	WG671017
Trichloroethylene	ppb	3.75	3.79	101.	70-130	WG671017
Trichlorofluoromethane	dqq	3.75	3.57	95.3	70-130	WG671017
Vinyl acetate	ppb	3.75	4.55	121.	70-130	WG671017
Vinyl Bromide	dqq	3.75	3.81	102.	70-130	WG671017
Vinyl chloride	dqq	3.75	3.90	104.	70-130	WG671017
1,4-Bromofluorobenzene				97.01	60-140	WG671017
2-Propanol	dqq	3.75	3.95	105.	70-130	WG671203
Ethanol	dqq	3.75	4.00	107.	70-130	WG671203
1,4-Bromofluorobenzene	PPD	5.75	1.00	95.33	60-140	WG671203

		Laboratory	y Control	Sample Duplicate				
Analyte	Units	Result	Ref	%Rec	Limit	RPD	Limit	Batch
1,1,1-Trichloroethane	ppb	3.72	3.73	99.0	70-130	0.390	25	WG671017
1,1,2,2-Tetrachloroethane	ppb	3.60	3.65	96.0	70-130	1.39	25	WG671017
1,1,2-Trichloroethane	ppb	3.72	3.81	99.0	70-130	2.28	25	WG671017
1,1,2-Trichlorotrifluoroethane	ppb	3.75	3.70	100.	70-130	1.26	25	WG671017
1,1-Dichloroethane	ppb	3.80	3.83	101.	70-130	0.850	25	WG671017
1,1-Dichloroethene	ppb	3.77	3.82	101.	70-130	1.25	25	WG671017
1,2,4-Trichlorobenzene	ppb	3.97	3.93	106.	54-153	1.06	25	WG671017
1,2,4-Trimethylbenzene	ppb	3.75	3.84	100.	70-130	2.40	25	WG671017
1,2-Dibromoethane	ppb	3.84	3.93	102.	70-130	2.47	25	WG671017
1,2-Dichlorobenzene	ppb	3.51	3.58	94.0	70-130	1.95	25	WG671017
1,2-Dichloroethane	ppb	3.53	3.59	94.0	70-130	1.71	25	WG671017
1,2-Dichloropropane	ppb	3.81	3.91	102.	70-130	2.68	25	WG671017
1,2-Dichlorotetrafluoroethane	ppb	3.48	3.59	93.0	70-130	3.19	25	WG671017
1,3,5-Trimethylbenzene	ppb	3.73	3.79	99.0	70-130	1.64	25	WG671017
1,3-Butadiene	ppb	4.03	4.22	107.	70-130	4.67	25	WG671017
1,3-Dichlorobenzene	ppb	3.63	3.69	97.0	70-130	1.60	25	WG671017
1,4-Dichlorobenzene	ppb	3.61	3.67	96.0	70-130	1.74	25	WG671017
1,4-Dioxane	ppb	3.73	3.81	99.0	70-130	2.14	25	WG671017
2,2,4-Trimethylpentane	ppb	4.04	4.08	108.	70-130	0.960	25	WG671017
2-Butanone (MEK)	ppb	3.89	3.94	104.	70-130	1.27	25	WG671017
2-Chlorotoluene	ppb	3.62	3.68	96.0	70-130	1.68	25	WG671017
4-Ethyltoluene	ppb	3.68	3.75	98.0	70-130	1.88	25	WG671017
4-Methyl-2-pentanone (MIBK)	ppb	3.59	3.69	96.0	36-158	2.71	25	WG671017
Acetone	ppb	3.58	3.60	95.0	70-130	0.440	25	WG671017
Allyl chloride	ppb	4.08	4.19	109.	70-130	2.69	25	WG671017

 $[\]mbox{\scriptsize *}$ Performance of this Analyte is outside of established criteria.

For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

MSA Professional Services Jon Hinkel 301 West First St. Ste 408

Duluth, MN 55802

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

Quality Assurance Report Level II

L645048

July 11, 2013

Analyte	Units	Result	Ref	%Rec	Limit	RPD	Limit	Batch
Benzene	dqq	3.79	3.84	101.	70-130	1.48	25	WG67101
Benzyl Chloride	ppb	4.48	4.37	119.	70-130	2.44	25	WG67101
Bromodichloromethane	dqq	3.87	3.94	103.	70-130	1.67	25	WG67101
Bromoform	dqq	4.07	4.15	108.	70-130	2.10	25	WG67101
Bromomethane	dqq	3.67	3.66	98.0	70-130	0.250	25	WG67101
Carbon disulfide	dqq	4.23	4.15	113.	70-130	1.69	25	WG67101
Carbon tetrachloride	dqq	3.77	3.77	100.	70-130	0.240	25	WG67101
Chlorobenzene	dqq	3.65	3.71	97.0	70-130	1.61	25	WG67101
Dibromochloromethane	ppb	4.08	4.18	109.	70-130	2.52	25	WG67101
Chloroethane	dqq	3.87	3.80	103.	70-130	1.90	25	WG67101
Chloroform	ppb	3.64	3.66	97.0	70-130	0.700	25	WG67101
Chloromethane	ppb	3.61	3.79	96.0	70-130	4.87	25	WG67101
cis-1,2-Dichloroethene	ppb	3.86	3.92	103.	70-130	1.65	25	WG67101
cis-1,3-Dichloropropene	dqq	4.25	4.34	113.	70-130	2.25	25	WG67101
Cyclohexane	dqq	4.08	4.09	109.	70-130	0.430	25	WG67101
Dichlorodifluoromethane	dqq	2.73	2.93	73.0	70-130	7.13	25	WG67101
Ethylbenzene	ppb	3.78	3.87	101.	70-130	2.33	25	WG67101
Heptane	ppb	4.04	4.14	108.	70-130	2.42	25	WG67101
Hexachloro-1,3-butadiene	ppb	3.54	3.59	94.0	50-149	1.32	25	WG67101
Isopropylbenzene	ppb	3.92	3.99	104.	70-130	1.84	25	WG67101
m&p-Xylene	ppb	7.33	7.44	98.0	70-130	1.40	25	WG67101
Methyl Butyl Ketone	ppb	3.76	3.70	100.	38-153	1.71	25	WG67101
Methyl methacrylate	ppb	3.85	3.96	103.	70-130	2.85	25	WG67101
MTBE	ppb	3.93	3.93	105.	70-130	0.130	25	WG67101
Methylene Chloride	ppb	3.42	3.46	91.0	70-130	1.22	25	WG67101
n-Hexane	ppb	4.11	4.14	109.	70-130	0.900	25	WG67101
Naphthalene	ppb	4.18	4.09	112.	54-154	2.19	26	WG67101
o-Xylene	ppb	3.99	4.06	106.	70-130	1.70	25	WG67101
Propene	ppb	3.72	3.96	99.0	70-130	6.29	25	WG67101
Styrene	ppb	4.10	4.19	109.	70-130	2.05	25	WG67101
Tetrachloroethylene	ppb	3.77	3.86	100.	70-130	2.31	25	WG67101
Tetrahydrofuran	ppb	3.81	3.95	101.	70-130	3.67	25	WG67101
Toluene	ppb	3.89	3.96	104.	70-130	1.92	25	WG67101
TPH (GC/MS) Low Fraction	ppb	146.	149.	97.0	70-130	1.57	25	WG67101
trans-1,2-Dichloroethene	ppb	3.73	3.78	100.	70-130	1.32	25	WG67101
trans-1,3-Dichloropropene	ppb	4.22	4.32	113.	70-130	2.19	25	WG67101
Trichloroethylene	ppb	3.76	3.79	100.	70-130	0.810	25	WG67101
Trichlorofluoromethane	ppb	3.63	3.57	97.0	70-130	1.54	25	WG67101
Vinyl acetate	ppb	4.42	4.55	118.	70-130	2.79	25	WG67101
Vinyl Bromide	ppb	3.90	3.81	104.	70-130	2.19	25	WG67101
Vinyl chloride	ppb	3.75	3.90	100.	70-130	3.79	25	WG67101
1,4-Bromofluorobenzene				96.39	60-140			WG67101
2-Propanol	ppb	4.01	3.95	107.	70-130	1.52	25	WG67120
Ethanol	dqq	4.04	4.00	108.	70-130	0.840	25	WG67120

Batch number /Run number / Sample number cross reference

WG671017: R2739004: L645048-01 WG671203: R2741021: L645048-01

 $^{^{\}star}$ * Calculations are performed prior to rounding of reported values.

^{*} Performance of this Analyte is outside of established criteria.
For additional information, please see Attachment A 'List of Analytes with QC Qualifiers.'

MSA Professional Services Jon Hinkel 301 West First St. Ste 408

Duluth, MN 55802

Quality Assurance Report Level II

L645048

July 11, 2013

12065 Lebanon Rd. Mt. Juliet, TN 37122 (615) 758-5858 1-800-767-5859 Fax (615) 758-5859

Tax I.D. 62-0814289

Est. 1970

The data package includes a summary of the analytic results of the quality control samples required by the SW-846 or CWA methods. The quality control samples include a method blank, a laboratory control sample, and the matrix spike/matrix spike duplicate analysis. If a target parameter is outside the method limits, every sample that is effected is flagged with the appropriate qualifier in Appendix B of the analytic report.

Method Blank - an aliquot of reagent water carried through the entire analytic process. The method blank results indicate if any possible contamination exposure during the sample handling, digestion or extraction process, and analysis. Concentrations of target analytes above the reporting limit in the method blank are qualified with the "B" qualifier.

Laboratory Control Sample - is a sample of known concentration that is carried through the digestion/extraction and analysis process. The percent recovery, expressed as a percentage of the theoretical concentration, has statistical control limits indicating that the analytic process is "in control". If a target analyte is outside the control limits for the laboratory control sample or any other control sample, the parameter is flagged with a "J4" qualifier for all effected samples.

Matrix Spike and Matrix Spike Duplicate - is two aliquots of an environmental sample that is spiked with known concentrations of target analytes. The percent recovery of the target analytes also has statistical control limits. If any recoveries that are outside the method control limits, the sample that was selected for matrix spike/matrix spike duplicate analysis is flagged with either a "J5" or a "J6". The relative percent difference (%RPD) between the matrix spike and the matrix spike duplicate recoveries is all calculated. If the RPD is above the method limit, the effected samples are flagged with a "J3" qualifier.

5t. Louis		Minnesota	Statutes, Chapter 103I Mir	aling No. nnesota Unique Well No. W-series No. se blank il not known)	309077	
Township Name Township No. Range No. Hermantowh 50 15		raction (sm. → lg.		Date Well or Boring Constructed UNKNOU		
GPS Latitude degrees LOCATION: Longitude degrees	minutes_ minutes_		Depth Before Sealing 40 ft. AQUIFER(S)	Original Depth UNKII STATIC WATER LEVEL	owy	
Numerical Street Address or Fire Number and Cit 5 997 Miller Trui Show exact location of well or boring in section grid with "X."	nk Hu	ng Location of well or boring bwing property and buildings.	Single Aquifer Multiaquifer WELL/BORING Measured Estimated Date Measured Date Measured Estimated Date Measured			
E T	lines, roads	, and buildings.	CASING TYPE(S) Steel	ade Inside: Base	ement Offset Pit	
S I Mile		3	☐ Well Pit	☐ Buri		
PROPERTY OWNER'S NAME/COMPANY NAME Property owner's mailing address if different than well	ocation address in	dicated above	CASING(S) Diameter Diameter to to 40 ft	Set in oversize hole	☐ Yes ☐ No 💢 Ur	nknown
Hermantown Mn	558	71	in. fromtoftin. fromtoft	Yes No		nknown
WELL OWNER'S NAME/COMPANY NAME Well owner's mailing address if different than property of	owpar's address in	dicated above	SCREEN/OPEN HOLE Screen from to ft.	Open Hole from	to	-
			OBSTRUCTIONS Rods/Drop Pipe	☐ Debris ☐ Fill 💢	No Obstruction	
GEOLOGICAL MATERIAL COLOR	HARDNESS OR FORMATION	FROM TO	Obstructions removed? Yes No Des			
If not known, indicate estimated formation log from	om nearby well o	or boring.	Type Submersible		8	
O(111111) OU I				TWEEN 2 CASINGS, OR CASINGS Grouted with Tremie Pipe to ft.	Casing Perforation/Remo	
			in. from Type of Perforator	_ to fl.	Perforated Ren	noved
			Other			
			GROUTING MATERIAL(S) (One bag of Grouting Material Crime 117	from to	ft yards	_ bags
				from to	ft yards	_ bags
			OTHER WELLS AND BORINGS	fromto	ft yards	_ bags
REMARKS, SOURCE OF DATA, DIFFICULTIES	IN SEALING		Other unsealed and unused well or boring on proceedings of the contractor of the con	RTIFICATION	25. The information contained in the second	nn No.

WELL OR BORING LOCAT	is	WELL	AND BOI Minnesota		Minnesota Well and Boring Sealing No. Minnesota Unique Well No. or W-series No. (Leave blank if not known)	H 309078
Hermantown 5	No. Range No.	Section No. Fr	action (sm. → Ig ESENE	July 29-2013	Date Well or Boring Construction Win Knd	
GPS Latitude LOCATION: Longitude	degrees	minutes minutes	seconds	Depth Before Sealing 86	ft. Original Depth 411/	Known
Numerical Street Address or Fire				AQUIFER(S) Single Aquifer Multiaquifer	STATIC WATER LEVEL	- 1 29
4521 Lin	dahl	Rd.		WELL/BORING Water-Supply Well Monit. Well	Measured Estimate	d Date Measured July 29
Show exact location of well or be in section grid with "X."	oring	location, sho	of well or boring wing property and buildings.	Env. Bore Hole Other	8ft. M belo	ow above land surface
THIT	7			CASING TYPE(S)		
			X	Steel Plastic Tile Other		
	-		-	WELLHEAD COMPLETION		
W I I I I I I I I I I I I I I I I I I I			12	Outside: Well House At	Grade Inside: B	asement Offset
	½ Mile		20	Pitless Adapter/Unit Bu	uried W	ell Pit
	11		7	☐ Well Pit	☐ B	uried
\$ 1 Mile	Н		53	Other		ther
PROPERTY OWNER'S NAME OF	OMPANY NAME) _	CASING(S)		
STEVE TE	ITO			Diameter Depth Q	Set in oversize ho	ole? Annular space initially grouted?
Property owner's mailing address if o	a h	ocation/address ind	licated above	e in. from to 19	_ ft.	Yes No Unknown
4621 Lind Hermanton	in M	1 55	811	in. from to	_ ft.	☐ Yes ☐ No ☐ Unknown
Herman	7.0	,, ,,		in. from to	_ft.	Yes No Unknown
WELL OWNER'S NAME/COMPAN	NY NAME			SCREEN/OPEN HOLE		The same
Nell owner's mailing address if differe	ant than proporty	augusta address ind	licated about	Screen fromto	ft. Open Hole from 48	to 86 ft.
ven owner's mailing address it differe	eni inan property i	owners address ind	icated above	OBSTRUCTIONS		
				☐ Rods/Drop Pipe ☐ Check Valve(s)	Debris Fill	No Obstruction
				Type of Obstructions (Describe))	
GEOLOGICAL MATERIAL	COLOR	HARDNESS OR FORMATION	FROM TO	Obstructions removed? Yes No I	Describe	
If not known, indicate estimated	formation log fro	om nearby well or	boring.	PUMP Type		*
UNKNOWA				Removed Not Present	Other	
				METHOD USED TO SEAL ANNULAR SPACE	BETWEEN 2 CASINGS, OR CAS	SING AND BORE HOLE:
			in s		r Space Grouted with Tremie Pipe	
				in. from	toft,	Perforated Removed
				in. from	toft.	Perforated Removed
				Type of Perforator		
				Other		
				GROUTING MATERIAL(S) (One ba	ig of cement = 94 lbs., one bag o	of bentonite = 50 lbs.)
				Grouting Material Cement	fromO to86	tt yards bags
5					from to	ft,bags
	-				from to	ft yards bags
				OTHER WELLS AND BORINGS		
REMARKS, SOURCE OF DATA,	DIFFICULTIES	IN SEALING		Other unsealed and unused well or boring on	property? Yes XNo H	nw many?
			-77	LICENSED OR REGISTERED CONTRACTOR	CERTIFICATION	
				This well or boring was sealed in accordance is true to the best of my knowledge.	with Minnesota Rules, Chapter 4	725. The information contained in this report
				Dennis Deill.	na Tar	1779
			Bar.	Licensee Business Name	7 +11	License or Registration No.
				0.40		
				New My	29	2 July 31,201
				Certified Representative Signature	Certified	Rep. No. Date
IMPORTANT FUE MATERIAL OF SE	CDTV L	0000	~7 (Dennis KARA	0	
IMPORTANT-FILE WITH PROP PAPERS-WELL OWNER COPY		3090	18	Name of Person Sealing Well or Boring		

August 22, 2012

Mr. Jack Curtis Curtis Oil Company 4997 Miller Trunk Highway Duluth, MN 55811

Corrective Action Design Approval RE:

Site: Junction Food N Fuel, 5493 Miller Trunk Highway, Hermantown

Site ID#: LEAK0003534

Dear Mr. Curtis:

The Minnesota Pollution Control Agency (MPCA) Petroleum Remediation Program staff has reviewed your proposed corrective action design dated July, 2012, outlining a plan to mitigate the petroleum tank release at the above-referenced site. MPCA staff approves the plan as proposed with the following modifications:

• Please consider depth to groundwater while completing the work, as groundwater may fill in the excavation.

MPCA staff also requests a confirmation indoor air sample collected in the on-site building.

MPCA staff request that the approved corrective action be completed within 6 months of the date of this letter. Please keep the MPCA informed if the work cannot be performed within this deadline.

If subsequently obtained information indicates that the approved corrective actions are inappropriate or inadequate, the MPCA may require additional work or modifications in the approved work.

Approval of this corrective action design is based on its environmental merits for addressing the petroleum contamination only. This letter does not apply to other types of contamination that may be present on the subject property. You are responsible for insuring that this remedial system complies with all applicable building, electrical and fire codes and health department rules, and that all necessary state and local approvals are obtained. You are also responsible for ascertaining the need for and for obtaining any patents, licenses, or other permits, approvals or intellectual property rights which may be necessary.

This approval qualifies you for reimbursement of eligible costs from the Petroleum Tank Release Compensation Fund (Petrofund) under Minn. Stat. § 115C.09, subd. 2a. (a)(2) (2002). Applications for reimbursement must be made directly to the Petrofund staff at the Minnesota Department of Commerce. Reimbursement decisions are made by the Petro Board and are based on factors such as the adequacy of the investigation and/or cleanup, the reasonableness of costs, compliance with applicable laws, and cooperation with the MPCA. Please contact Petrofund staff at 651-297-1119 or 1-800-638-0418 for application forms and specific information regarding the reimbursement process.

Mr. Jack Curtis Page 2 August 22, 2012

If you have questions regarding the investigation of ground water at this site, please contact MPCA staff hydrogeologist Jim Pennino at 651-757-2648. If you have any other questions, please call me at 651-757-2331.

Sincerely,

Andrew Eddy

Project Manager

Petroleum Remediation Section

Remediation Division

AJE:tf

cc: Jon Hinkel, Twin Ports Testing

Minnesota Department of Commerce Petrofund Staff