

APPLIED ENGINEERING, INC. 1161 WAYZATA BLVD E., STE #60 WAYZATA, MINNESOTA 55391-2533 Applied@AppliedEngineeringUSA.Com PH # 952-939-9095

March 28, 2015

Roric Gilmer Waste Management of Minnesota, Inc. Savage, MN 55378 sent via email, rgilmer@wm.com

RE: MPCA Investigation Report; 12448 Pennsylvania Ave S., Savage, MN AE #3D15, MPCA Leak #19157

Dear Roric:

Attached is a completed MPCA Remedial Investigation Report. In summary, Applied Engineering was at the referenced location to oversee the installation of Geoprobe soil borings and to perform related environmental work.

The results of our investigation are contained in the attached report along with our conclusions. Based on the results, we recommend no further action and MPCA file closure. However, our recommendation is subject to review by the MPCA.

Upon your review / comments, you should forward this report to the MPCA Project Manager, Katheryn Serier.

Please call me if you'd like to discuss this further, 952-939-9095.

Momas a. Greene

Applied Engineering, Inc. Thomas A. Greene, P.E.

Atch: Report

APPLIED ENGINEERING, INC. 1161 WAYZATA BL/D E., STE #60 WAYZATA, MINNESOTA 55391-2533 Applied@AppliedEngineeringUSA.Com PH # 952-939-9095

MPCA INVESTIGATION REPORT

Location:

Waste Management 12448 Pennsylvania Ave S. Savage, MN 55378

for

Roric Gilmer Waste Management 12448 Pennsylvania Ave S. Savage, MN 55378

Applied Engineering Proj #3D15 MPCA Site Leak #19157

March 18, 2015

Investigation Report Form

Guidance Document 4-06

Complete this form to document site investigation activities, including Limited Site Investigations (LSIs) and Remedial Investigations (RIs). Do not revise or delete any text or questions from this report form. Include any additional information that is important for making a site management decision. If only an LSI is necessary, some questions do not need to be answered and have been identified in the form. Highlighted text contains instructions and references to related guidance documents for that section or question. Refer to Minnesota Pollution Control Agency (MPCA) Guidance Document 1-01 *Petroleum Remediation Program General Policy* for the overall site investigation objectives and to other MPCA guidance documents for details on investigation requirements and methods.

MPCA Site ID: Leak000 19157 Date: March 18, 2015

Responsible Party Information

Name: Waste Management of Minnesota, Inc.Phone #: 952-229-0081Mailing Address: 12448 Pennsylvania Ave S.City: SavageZip Code: 55378City: SavageZip Code: 55378Phone #: 952-229-0081Alternate Contact (if any) for Responsible Party: Roric GilmerPhone #: 952-229-0081Leak Site InformationLeak Site Name: Waste ManagementPhone #: 952-229-0081

Leak Site Address: 12448 Pennsylvania Ave S., Savage, MN 55378

County: Dakota

Environmental Professional Information

By signing this document, I/we acknowledge that we are submitting this document on behalf of and as agents of the responsible person or volunteer for this leak site. I/we acknowledge that if information in this document is inaccurate or incomplete, it will delay the completion of remediation and may harm the environment and may result in a reduction in Petrofund reimbursement. In addition, I/we acknowledge on behalf of the responsible person or volunteer for this leak site that if this document is determined to contain a false material statement, representation, or certification, or if it omits material information, the responsible person or volunteer may be found to be in violation of Minn. Stat. § 115.075 (2007) or Minn. R. 7000.0300 (Duty of Candor), and that the responsible person or volunteer may be liable for civil penalties.

MPCA staff are instructed to reject unsigned reports and reports that have been altered.

Name and Title of		
Report Author(s)	Signature	Date Signed
Thomas Greene, Proj Mgr	Thomas a. Speene	03/18/2015
Name and Title of Report Reviewer(s)	Signature	Date Signed
<u>Thomas Greene, Proj Mgr</u>	Momas a. Greene	03/18/2015
Name(s) of Field Technician(s):	Thomas Greene	
Company and Mailing Address:	Applied Engineering, Inc. 1161 Wayzata Blvd E., Ste #60 Wayzata, MN 55391	
Project Manager E-mail Address: Phone: Fax:	tom@appliedengineeringusa.com 952-939-9095 952-939-0178	

Emergency and High Priority Sites

A.	Is an existing drinking water well impacted or likely to be impacted within a two-year travel time?	Yes No
B.	Is a hydrogeologically sensitive aquifer impacted that is tapped by water wells that are within 500 feet from the release source? If <i>YES</i> , explain below.	Yes XNo
C.	Has the public water supply risk assessment concluded that the site is a high priority site with respect to a public water supply well (see Guidance Document 4-18 <i>Public Water Supply Risk Assessment at Petroleum Remediation Sites</i>)?	Yes 🛛 No
D.	Is there an existing surface water impact as indicated by 1) a petroleum sheen on the surface water or 2) a petroleum sheen or volatile organic compounds in the part per million range observed in a ground water sample collected close to the surface water?	Yes 🛛 No
E.	Has free product been detected at the site? If YES , attach Guidance Document 2-03 <i>Free Product Recovery Report Worksheet</i> in Section 6.	Yes No
F.	Are there any existing field-detectable vapor impacts (photoionization detector, explosimeter, odors, etc.) to a receptor?	Yes No
G.	Did the vapor intrusion assessment detect contaminants in excess of acute intrusion screening values (see Guidance Document 4-01a Vapor Intrusion Assessments Performed during Site Investigations)?	Yes 🛛 No

If you answered *YES* to any of questions A through G above, describe below the actions taken to date to reduce or eliminate the risk posed by the release.

Section 1: Site Assessment

Site and Release Information

Complete Guidance Document 1-03a *Spatial Data Reporting Form*, Guidance Document 2-05 *Release Information Worksheet* if 3-02 *General Excavation Report Worksheet* was not completed, and include in Section 6.

1.1 Describe the land use and pertinent geographic features (e.g., topographic changes, surface waters, etc.) within 1,000 feet of the site. Illustrate these features using the Site Location Map, aerial photographs, and Sanborn Fire Insurance Maps[™] for the various time periods they are available in Section 4.

The land use within 1,000 feet of the site is commercial, state highway, and undeveloped land. The area is generally level and there is a large wetland area beginning approximately 920 feet to the north.

1.2 Briefly describe the history of the site and any past site investigation work that may have been completed. If a Phase I or Phase II report has been prepared for this site, include a copy in Section 6.

According to the owner, the site was purchased by Waste Management in the early 1990's. They currently use an above ground storage tank for fueling their own vehicles. Prior to that, they used the underground diesel fuel storage tank.

The underground diesel storage tank was removed 6/27/13. As a result of the release detected during removal, follow-up soil borings were installed 5/5/14. The borings were accomplished by NCG Drilling, sub-contracted to Stevens Drilling, and overseen by Applied Engineering, Inc.

1.2 List other potential petroleum sources within 500 feet of the site and identify them on the Potential Receptor Map in Section 4.

The only other potential petroleum source is the on-site above ground diesel fuel storage tank.

1.3 Describe the status of the tank system(s) including current and former tanks, piping, and dispensers. Summarize the status and characteristics of all past and present tanks in Table 1 and identify all components on a Site Map.

The 10,000 gallon underground diesel fuel storage tank, two dispensers, product lines, and vent lines were removed in June, 2013 by B & H Petroleum Equipment Co. Details of the removal are contained in the MPCA Excavation Report attached to this report in Appendix A. 1.4 Briefly describe the known or suspected source(s) of the release and how it was discovered.

<u>The initial release was identified on the groundwater in the tank basin during</u> removal of the underground diesel fuel tank. The suspected source of the release is likely due to occasional overfills of the tank.

The highest DRO concentrations were identified beneath the two nearby removed pumps. The suspected source of this release is likely due to line leakage.

- **1.6** When did the release occur (if known)? <u>Unknown</u>
- **1.7** What was the volume and type(s) of petroleum product released (if known)? <u>Unknown gallons</u> Released product type(s): <u>Diesel Fuel</u>

When a tank has been excavated, refer to Guidance Documents 3-01 *Excavation of Petroleum Contaminated Soil and Tank Removal Sampling* and 3-02 *General Excavation Report Worksheet* for reporting requirements. If a tank has been excavated or if contaminated soil was removed for offsite treatment prior to this investigation, include Guidance Document 3-02 in Section 6.

1.8 Was soil excavated for off-site treatment? \Box Yes \boxtimes No

Date(s) soil was excavated:	Total volume removed:	cubic yards
Volume of total soil removed th	at was petroleum saturated:	cubic yards
Soil treatment method:	 Land treatment Thermal treatment Composting/Biopiling Other () Name and location of treatment for the second se	facility:

If you checked "Other", describe how the soil was treated and attach applicable documentation at the end of the reporting form.

Site-Specific Geology and Hydrogeology

1.9 Discuss the soil borings drilled and provide rationale for their locations. Include boring logs in Section 6. Boring logs must include all the information required in Guidance Document 4-01 *Soil and Ground Water Assessments Performed during Site Investigations.*

Boring GP-1 was installed at the pump island, the worst-case location Borings GP-2, 6, and 7 were installed east of the pump island to define the horizontal extent to the east GP-7 not only assessed the point furtherst to the east, but was also in close proximity to the existing above ground storage tank Boring GP-3 was installed to define the horizontal extent to the north Boring GP-4 was installed to define the horizontal extent to the south Boring GP-5 was installed to define the horizontal extent to the west GP-Air1 was installed at the worst case location GP-Air2 was installed to the north to assess the potential vapors in the direction of the on-site building

1.10 Indicate the locations and depths of soil samples submitted for grain size analysis.

Samples were submitted for grain size analysis from boring GP-1 at depths of 4, 10, and 16 feet deep, the interval considered most representative of estimated groundwater fluctuation.

1.11 Discuss in detail the site geology based on soil boring data, grain size analyses, cross sections, geologic logs of nearby water wells, and available published information. Include detailed descriptions of more porous lenses or stringers within tighter soil types.

Based on soil boring results, site stratigraphy consists of silts and clays to 6' deep, then sand to approximately 16' deep, thereafter refusal was encountered. Groundwater was encountered in all borings around 2' deep.

According to the Scott County Geologic Atlas, the soil in the area is "Silty clay loam to sandy loam—Interbedded with layers of fine-grained sand and gravel. Organic debris may be disseminated in the sediments and/or form discrete peat beds. Sediment in the Minnesota River valley is generally finer-grained and consists of a mixture of silt and clay with variable amounts of very fine-grained sand and organic matter. Coarser-grained sediment may be present within the river channel. Floodplain alluvium."

The nearest wells identified by the MDH CWI database are located approximately 700 feet north of the site. Unlike the on-site borings which identified lime rock at 16' deep, none of them identify lime rock until a depth of 115'. Unique well 811809 located approximately 2,000 feet south of the site indicates lime rock at 27' deep. Based on information from the closest available water supply well logs identified in the County Well Index (CWI), soils are various combinations of clays, silts and sands until encountering lime rock, depths which vary as previously described.

The grain size analyses for the three collected samples indicate mostly fine sand with a combined component of silt and clay ranging from 3.1% to 4.2%.

Other than the shallower lime-rock observed on-site, the above sources of geologic information appear generally consistent with one another.

1.12 Discuss in detail the local and regional hydrogeology based geologic logs of nearby water wells and available published information.

According to the Scott County Geologic Atlas, the elevation of the regional groundwater table is approximately 700'. The surface elevation of the site is approximately 726', thus the depth to the regional groundwater is calculated to be approximately 26' below ground surface. The soil borings encountered water at approximately 2 feet, indicating it is apparently perched in the upper clay and silty soils.

According to the Scott County Geologic Atlas, the regional groundwater flow is to the north, toward the Minnesota River. Its associated wetlands are located approximately 1000 feet north of the site.

1.13 Discuss site ground water flow direction using soil boring data, monitoring well data if collected, plume geometry, and available published information.

The groundwater levels in the soil borings were measured and the boring locations were surveyed, resulting in a calculated groundwater flow direction to the east-southeast.

1.14 Describe any evidence of a fluctuating water table or a seasonal high water table (e.g., mottling, saturated soil color or gleyed soils, monitoring well observations). Also, from other sources of information describe the range of natural water table fluctuations in the area.

No mottling, gleyed soils, or other indicators of water table fluctuation were observed in the soil boring samples.

No other sources of information are identified and readily available that indicate the range of natural water table fluctuations in the area.

Extent and Magnitude of Soil Contamination

1.15 Were soil borings conducted in or adjacent to the following source areas?

Dispensers	yes no not present	Piping	⊠yes □no □not present
Transfer areas	yes no present	Remote fill pipes	yes no Nnot present
UST basins	yes no not present	Valves	yes no Not present
AST basins	yes no not present	Known spill areas	\Box yes \Box no \boxtimes not present
	As shown on attached sketch	-	· ·

- **1.16 Horizontal Definition**: Based on requirements described in Guidance Document 4-01, were a sufficient number of soil borings completed to define the horizontal extent of soil contamination in all directions? Xes No
- **1.17 Vertical Definition:** Based on requirements described in Guidance Document 4-01, were all soil borings completed to the required depth? *Yes No*
- **1.18 Site Stratigraphy:** Based on requirements described in Guidance Document 4-01, was the stratigraphy boring completed to the required depth? \Box *Yes* \bigotimes *No*

If you answered *NO* to any of the four previous questions, explain why the borings were not conducted in the required locations or to the required depths. See Guidance Document 4-01 *Soil and Ground Water Assessments Performed during Site Investigations* regarding exceptions and MPCA approval for depth of drilling.

<u>1.17 Vertical Definition – MPCA Document 4-01 states to complete at least one soil</u> <u>boring to 20 feet below the deepest site contamination. At this site, the deepest</u> <u>contamination was detected at 6 feet deep and the deepest boring was completed at</u> <u>16 feet deep. Completing the boring any deeper was not possible due to refusal and</u> <u>what appeared to be weathered lime rock.</u>

<u>1.18 Site Stratigraphy – MPCA guidelines state to drill at least one boring to 20 feet</u> below the water table. However, completing the boring any deeper than 16' was not possible due to refusal and what appeared to be weathered lime rock.

1.19 Describe the vertical and horizontal extent and magnitude of soil contamination based on field observations, soil headspace measurements (Table 2), and soil analytical results (Tables 3 and 4). If non-petroleum contaminants are present, discuss the possible sources of these compounds. Provide a map and two cross sections that illustrate both soil headspace and laboratory analytical results in Section 4. Include laboratory analytical reports and soil sampling methodology in Section 6.

The horizontal extent of the soil contamination appears to be limited to the area immediately adjacent to the tank basin area and pump island area plus the area extending approximately 76 feet east of the pumps, where the eastern-most soil boring was installed. This is based on the assessment accomplished at the time of the tank removal and based on the seven soil borings installed.

The vertical extent of the contamination appeared to diminish to non-detect at 6 feet deep in all the borings where petroleum was detected, based on field PID measurements and confirmed by laboratory analysis.

1.20 Is contaminated soil in contact with ground water? \boxtimes *Yes* \square *No*

If *YES*, or if ground water contamination appears likely, then complete the **Aquifer Determination** section below.

If NO, complete question 1.21.

- **1.21 a)** What is the distance separating the deepest contamination from the surface of the water table?
 - **b**) Was this distance measured during site activities, referenced from geologic information, or estimated based on professional opinion during a site visit?
 - c) In your judgment, is there a sufficient distance separating the petroleum contaminated soil from the underlying aquifer to prevent contamination of the aquifer? \Box *Yes* \Box *No*

Please explain in detail. In your explanation, consider the site-specific geology, the data in this section, and the nature of the petroleum release (i.e., volume, age, released product type).

If YES, the Aquifer Determination is not necessary as part of the LSI.

If NO, complete the Aquifer Determination section below.

1.22 Is contaminated surface soil (0-2 feet) present at the site? \Box Yes \boxtimes No

If *YES*, delineate the extent of contaminated surface soil, identify the extent(s) of contaminated surface soil on a Site Map, and propose a corrective action in Section 3 to mitigate the impacts. If borings were used to define the extent, complete Table 5. See Guidance Document 3-01 *Excavation of Petroleum Contaminated Soil and Tank Removal Sampling* for more information regarding contaminated surface soil identification, delineation, and excavation.

Aquifer Determination

Complete this section if ground water has been contaminated or may become contaminated based on questions 1.20 and 1.21. Aquifer determination is made during the LSI. It is based upon the stratigraphy and a hydraulic conductivity measurement calculated from grain size analyses. The site stratigraphy gives the context within which the hydraulic conductivity measurement can be interpreted. Please refer to Guidance Document 4-01 *Soil and Ground Water Assessments Performed during Site Investigations* for methods and requirements. Provide the results of grain size analyses, calculations, and other information used for the determination of hydraulic conductivity in Section 6. Determine the aquifer thickness (b) from geologic logs of soil borings, water well logs, and available published information.

1.23 Calculate an average hydraulic conductivity Value (K). K = 306 ft/day (Hazen Method)

Indicate the calculation method (e.g. Hazen, Masch and Denny, Kozeny-Carmen, etc.).

1.24 Calculate a range for aquifer transmissivity (T) using the equation T = Kb, where b is the thickness of the aquifer. $T_{High} = -4,287 \text{ ft}^2/\text{day}$ $T_{Low} = -4,287 \text{ ft}^2/\text{day}$

(based on groundwater at 2' deep and weathered lime-rock at 16' deep)

If the transmissivity of a contaminated hydrogeologic unit is greater than 50 ft²/day, it is considered an aquifer for the purpose of the Petroleum Remediation Program. If the hydrogeologic unit meets the definition of an aquifer, then monitoring wells are required if any of the following conditions are met: 1) ground water is impacted at or above Minnesota Department of Health (MDH) Health Risk Limits (HRLs) or 1,000 μ g/L GRO or DRO; 2) ground water is impacted below the HRLs but levels are likely to reach the HRLs; or 3) there is an insufficient distance separating the petroleum contaminated soil (or an impacted non-aquifer) from an underlying aquifer. If monitoring wells were installed complete the **Aquifer Characterization** section below as part of an RI.

Aquifer Characterization

1.25 Discuss the drilling and installation of monitoring wells including the rationale for their locations. Summarize their construction in Table 9. Attach boring logs, well construction diagrams, and well logs in Section 6.

N/A- Temporary wells area used for data in this section; no permanent monitoring wells were installed

- **1.26** Is there a clean or nearly clean (below HRLs) downgradient monitoring well located along the longitudinal axis of the contaminant plume (approximately 20 degrees plus or minus the axis)?
- **1.27** Is there a worst case well completed through the source area(s) of the release?

If you answered *NO* to any of the above two questions, please explain why a well was not completed in the required location.

- **1.28** Provide an estimate of the longitudinal length of the dissolved contaminant <u>170 feet</u> plume:
- 29 Calculate ground water flow velocity (based on Darcy's Law) using the average hydraulic conductivity (K), average horizontal hydraulic gradient (dh/dl), and effective porosity (n). Provide documentation and show calculations in Section 6.

Hydraulic conductivity (K) = 306 ft/day (Method if different than that used in 1.23: N/A)
Porosity (n) = 0.33 method/reference - McWorter and Sunada (1977).
Average horizontal gradient (dh/dl) = 0.0084 (unitless)
Calculated ground water velocity (v) = 5.24 ft/day

1.30 Using the calculated ground water flow velocity from question 1.29, is there a receptor(s) located within a five-year travel time from the source area?

If *YES*, describe the location and type of receptor(s). Commercial wells are located approximately ¹/₄ mile north of the release.

1.31 Were any deep monitoring wells completed at the site? \Box Yes \boxtimes No

If *YES*, list them and indicate their depths:

 \bigtriangledown Yes \Box No

 \bigtriangledown Yes \Box No

Contact the MPCA project hydrologist before installing a deep monitoring well. A deep monitoring well **may** be necessary if: 1) contamination exists more than 10 feet below the water table or 2) the impacted aquifer is a drinking water aquifer or is hydraulically connected to the aquifer(s) presently used by a water supply well located within 500 feet of the release source.

If contamination is present at depth in the aquifer or in deeper aquifers, additional deep wells may be required. Provide the following information if deep wells were installed:

Vertical gradient (dv/dl) Inferred ground water flow direction

Provide the following information for the deep aquifer unit if it appears to be hydrogeologically distinct from the upper unit.

Porosity (n): Hydraulic conductivity (K)

ft/day

Submit this RI report after completing a minimum of *two quarterly sampling events*. Quarterly ground water monitoring and sampling should continue until MPCA response is received.

Extent and Magnitude of Ground Water Contamination

1.32 Describe the extent and magnitude of ground water contamination based on the analytical results of samples collected as part of an LSI (Tables 6, 7, and 8) and, if applicable, monitoring well samples collected as part of an RI (Tables 10, 11, and 12). Provide Site Maps that illustrate both the laboratory analytical results and, if applicable, ground water gradients in Section 4.

The groundwater impact appears to be generally defined by the temporary wells installed during the investigation. The plume geometry indicated an easterly flow based on field readings during the boring installations. Follow-up groundwater elevation calculations indicated a similar flow direction with more of a southerly component resulting in more of an east-southeast flow direction.

This direction is not consistent with the regional flow which is depicted in the county Geologic atlas as north. This is likely explained due to the observed water being an independent perched aquifer, not part of the regional water table system.

The highest magnitude of groundwater impact was detected in the worst-case boring, GP-1, with DRO concentrations of 10,200 ppb. DRO concentrations diminished to 1,530 ppb in GP-7, 93 feet to the east. Toluene concentrations were detected in GP-1at 1.81 ppb.

No other BTEX concentrations were detected in borings GP-1 to GP-6.

BTEX concentrations appeared in boring GP-7 at 1.41 ppb benzene; 172 ppb ethylbenze; 2.65 ppb toluene; and 1170 ppb xylenes. GP-7 is closest to the newer above ground storage tank which may account for the BTEX detections.

All detected concentrations are below Minnesota Department of Health drinking water standards.

1.33 If non-petroleum contaminants are present, discuss the possible sources of these compounds.

4-Chlorotoluene was detected at a concentration of 4.48 ug/l in GP-7. Readily available information does not identify 4-Chlorotoluene as a component of gasoline, however due to the vast number of gasoline formulations and additives, there is a possibility it may be a component. The MDH drinking water criteria for it is 100 ug/l.

1.34 Provide a discussion on QA/QC, including information on the samples collected and laboratory analyses performed. Include laboratory analytical reports and ground water sampling methodology in Section 6.

The samples were collected following prescribed MPCA guidelines as described in Appendix G. There were no known deviations to the prescribed guidelines between sample collection and relinquishment to the laboratory.

Based on review of the laboratory reports, fixed base laboratory control samples (LCS) and lab control samples duplicate (LCSD) results in general appear to adequately meet method criteria, i.e., process extraction was ideal, neither biased high nor low.

1.35 Laboratory certification number:

Pace Analytical, MN Certification # 027-053-137 (UST closure) TestAmerica, MN Certification # 019-999-319 (LSI investigation)

Evaluation of Natural Attenuation

Refer to the Guidance Document 4-03 *Assessment of Natural Attenuation at Petroleum Release Sites.* **Note**: Evaluation of natural attenuation is not required unless requested by MPCA staff.

- **1.36** Discuss the results of the natural attenuation assessment (Table 13). Specifically, compare the concentrations of the inorganic parameters inside and outside the plume and whether the data indicate natural biodegradation is occurring at the site.
- **1.37** If active remediation is anticipated, discuss reasons why natural attenuation (including biodegradation) can not adequately remediate the contaminants to acceptable risk levels.

Extent and Recovery of Free Product

If free product is encountered during the investigation, include Guidance Document 2-03 *Free Product Recovery Report Worksheet* in Section 6. See Guidance Document 2-02 *Free Product: Evaluation and Recovery* for additional information.

1.38 If free product was encountered during the site investigation, describe the work completed to delineate the extent of the free product zone and what efforts were or are being completed to recover it. Tabulate the volume of product recovered in Table 14. Illustrate the estimated horizontal extent of the free product zone on a Site Map in Section 4.

N/A

Section 2: Risk Assessment

Well Receptors

List all properties located within 500 feet of the site in Table 15. Identify all properties listed in Table 15 on the Potential Receptor Map in Section 4.

List all wells located within 500 feet of the site and any municipal or industrial wells within ½ mile in Table 16. All water wells within 500 feet of the release source must be listed even if construction information was not obtained or available. Include all available water supply well logs obtained from Minnesota Geological Survey, MDH, drillers, or county well management authorities, and any other well construction documentation in Section 6. Identify all wells listed in Table 16 on the Well Receptor Survey Map in Section 4.

2.1 Were all property owners within 500 feet of the site successfully contacted to $\forall Yes \square No$ determine if water wells are present?

If NO, please explain.

All addresses within 500 feet of the site were mailed letters requesting a response if a water well is present at the address. Non-responses and non-deliverable returned letters are assumed verification that no wells are on-site.

2.2 Discuss any physical limitation to the inspection of properties within the 500-foot survey radius.

<u>The physical inspection was limited to what was readily visible on the properties</u> from the public street and cannot account for wells blocked by structures, vegetation, or other obstructions on the property.

2.3 Discuss the results of the ground water receptor survey. Comment on the risks to water supply wells identified within 500 feet from the site as well as the risk posed by or to any municipal or industrial wells found within ½ mile. Specifically indicate whether identified water supply wells use the impacted aquifer. (Note: an impacted aquifer separated from another aquifer by a clay lens may not be considered a separate aquifer).

There are no wells identified within 500 feet of the site.

A municipal well is located approximately ¹/₂ mile southwest of the site. The well does not use the impacted aquifer.

Commercial well 211815, approximately 700' northwest and commercial well 207946 approximately 700' northeast do not appear to use the same aquifer. These wells are not likely impacted based on their distance from the source and the low to non-detect BTEX concentrations detected in the collected groundwater samples.

- **2.4** If water samples were collected from nearby water wells, discuss the analytical results below and tabulate them in Tables 11 and 12.
- **2.5** Is municipal water available in the area?
- **2.6** Based on the public water supply risk assessment, is the site located in a Source Water Assessment Area or Drinking Water Supply Management Area (see Guidance Document 4-18 *Public Water Supply Risk Assessment at Petroleum Remediation Sites*)?

If YES, provide the name of the area and include the required documentation in Section 6.

 \bigvee Yes \Box No

 \Box Yes \boxtimes No

2.7 Are there any plans for ground water development in the impacted aquifer within ½ mile of the site or one mile downgradient of the site if the aquifer is fractured?

Provide the name, title and telephone number of the person that was contacted for this information.

Name: Mike Klimers Title: Savage Utility Services Superintendent Tel: 952-224-3440

Surface Water Receptors

2.8 Are there any surface waters or wetlands located within $\frac{1}{4}$ mile of the site?

\square	Yes	No
$V \setminus$	165	110

🗌 Yes 🖂 No

If YES, list them along with their distance and direction from the site in Table 17.

There is a large wetlands area located about 1,200 feet north of the release.

Also, list below any potential pathways such as ditches, drain tiles, storm sewers, etc., that may lead to the identified surface water features.

The local storm sewer discharges into the wetlands area.

2.9 If surface water is present downgradient of the site, is there a clean downgradient soil boring or monitoring well located between the site and the surface water?

\boxtimes	Yes
	No
	NA

If *YES*, identify the clean downgradient boring or well, distance to the surface water feature, and discuss the contamination risk potential.

The "clean" boring is GP-3, north of worst-case boring GP-1. The groundwater sample analytical results detected no BTEX compounds. DRO concentrations were detected at 480 ppb. The wetlands is located 1,200 feet away and therefore any risk of impact does not appear significant.

If *NO*, and ground water from a downgradient boring or well is contaminated, we assume that contamination discharges to the surface water. Therefore, provide the following information:

Name of receiving water: Plume width, (W): Plume thickness, (H): Hydraulic conductivity, (K): Horizontal gradient, (dh/dl): Discharge, (Q) = H*W*K*(dh/dl)/1440

feet feet gal/day/ft² (unitless) gal/min

Guidance Document c-prp4-06: September 2008 Petroleum Remediation Program Minnesota Pollution Control Agency

Utilities and Subsurface Structures

2.10 Compare the relationship between the distribution of contaminant phases (soil, ground water, vapor, and non-aqueous phase liquid) to the location of all underground utility lines, utility service lines, and nearby basements and sumps. Include all identified utilities in Table 18. Show all utilities, utility service lines, and other subsurface structures on applicable cross sections in Section 4.

The building water service, sewer service, and gas service enter the building on its east side, approximately 100 to 150 feet northeast of the release. Water, sewer, and storm sewer mains are located 90' to 110' east of the eastern release source (pump island). The shallow groundwater at this site being approximately 2' deep covers most of the vertical profile of all the various utility trenches. Compacted native soil in the upper utility trenches would result in diminished expected preferential pathways. The contaminant is diesel fuel which is non-explosive at ambient temperatures. No free product was identified. Based on the preceding, the potential impact of explosive vapors on any underground utilities does not appear significant.

2.11 Is there any evidence that free product or contaminated ground water may be \Box *Yes* \boxtimes *No* traveling off site within the utility corridors?

If *YES*, a utility backfill investigation is required (refer to Guidance Document 4-01). Discuss the investigation rationale and results.

2.12 Is there a history of field-detectable vapor impacts in the vicinity of the site? \Box Yes \boxtimes No

If YES, describe:

Conduct a vapor survey if the vapor receptor survey and risk evaluation indicate a risk of vapor impact or an infiltration risk from contaminated ground water or free product to utilities or subsurface structures. See Guidance Document 4-02 *Potential Receptor Surveys and Risk Evaluation Procedures at Petroleum Release Sites*. Identify all vapor monitoring locations on the Vapor Survey Map by labeling each monitoring location with a number that corresponds to vapor monitoring locations listed in Table 19. Vapor monitoring methods, including instruments used, must be discussed in Section 6.

2.13 Provide a detailed description of each vapor monitoring location and indicate if vapors were detected.

Vapor Intrusion Receptors

When vapor intrusion receptors are present, a preliminary vapor intrusion risk assessment must be completed (see Guidance Document 4-01a *Vapor Intrusion Assessments Performed during Site Investigations*). If completed, include the Vapor Intrusion Assessment Map in Section 4 that identifies all vapor intrusion samples and receptors at and within the 100-foot preliminary assessment area.

2.14	Was a preliminary vapor intrusion risk assessment completed?	Yes 🗌 No
	If NO, explain why.	
2.15	Do any of the soil gas samples from locations near inhabited buildings exceed the ISVs by ten times (10X) for petroleum related compounds?	Yes No
	If you answered <i>YES</i> , is additional characterization of the vapor intrusion pathway needed for these buildings (e.g. sub-slab soil gas, an indoor building survey, or indoor air sampling)? If <i>YES</i> , complete question 3.4. If <i>NO</i> , explain why.	Yes No
2.16	Have sufficient data been collected to propose a Conceptual CorrectiveAction Design for buildings that are likely to be impacted by petroleumvapors? $\underline{N/A}$	Yes No
	If YES, describe your justification for corrective action.	
2.17	Based on the horizontal extent of impacted ground water or free product from the release, is additional soil gas sampling required beyond the 100-foot preliminary assessment area near inhabited buildings?	Yes 🛛 No
	If YES, describe your proposal for additional vapor intrusion sampling.	
	If NO, explain why.	
	In consideration of the diminished concentrations detected in the two borings, the extent of the vapor migration appears to be adequately defined.	
2.18	Were recommended field sampling procedures and laboratory QA/QC from Guidance Document 4-01a followed?	Xes No

If NO, explain why and discuss implications on data quality.

Site Conceptual Model Discussion

2.19 Provide a detailed site conceptual model (SCM). The SCM should integrate site-specific geology, hydrogeology, and the contaminant distribution with respect to identified exposure pathways (well receptors, surface water receptors, utilities and subsurface receptors, and vapor intrusion receptors). For additional information on SCM development, see Guidance Document 1-01 *Petroleum Remediation Program General Policy*.

The site geology is generally characterized as silt, clay and sandy soil to approximately 6' deep, then fine sand to 16' deep where refusal was encountered, presumabley lime-rock. Groundwater is observed at approximately 2' deep. Based on the Dakota County Geologic Atlas, the regional groundwater flow is to the north. Based on the soil borings plume geometry and calculated flow direction, the local groundwater flow is to the east, indicating the upper perched groundwater is not connected to the regional aquifer.

Due to the fine-grained soil of silts and clays, the horizontal extent of the impacted soil appears limited to close proximity to the two release source areas, the tank basin and pump island. The horizontal extent of the impacted groundwater is limited to the north, south, and west directions and extends approximately 70 feet to the east.

In all borings, there appears to be a background soil DRO concentration of approximately 0.50 mg/l. The exact source of these concentrations is unkown. It may be from the most recent release, the previous release, or some other unknown source associated with the nature of operations at this location. The reason is unknown for the elevated BTEX concentrations in the eastern-most boring, GP-7. However, the concentrations are within drinking water standards and therefore not considered to be of significant concern. Further investigation of either of these contaminants would not appear to be cost-effective.

The release appears to have migrated through two feet of soil to the groundwater which is found in silty, clayey soil. The extent of the impact in the soil appears to be stable. The extent of the impact in the groundwater also appears to be stable based on the diminishing concentrations.

Nearby wells were identified. Nearby wells include Municipal wells 11 & 12 approximately ¹/₂ mile to the southwest and commercial wells 211815, 207946, and 209940 to the north. Based on distance, contaminant concentration, and groundwater flow direction, these wells appear not to be at risk of being impacted by the release identified at this location. The facility at 12481 Rhode Island Ave, located approximately 500' northwest of the site, is not billed for water suggesting it may use well water. However, no well is readily identified for that site. In any case, there appears to be no significant risk of impact at that site based on its distance and direction from the release.

Surface Waters were identified approximately 1,000 feet to the north. Identified surface waters were the wetlands area of the Minnesota river flood plain. This surface water receptor appears not to be at risk of being impacted by the release identified at this location.

Underground utilities were identified. The nearest identified utilities include the sanitary storm sewer main, sanitary sewer main, and water main located in Pennsylvania Ave. S., approximately 90 feet east of the eastern release source (the pump island). These utilities appear not to be at risk of being impacted by the release identified at this location.

Vapor intrusion samples were collected at the source and near the on-site building. The building does not apper to be at risk of vapor intrusion by the release identified at this location.

2.20 Discuss any other site concerns not included in the above discussion $\frac{N/A}{2}$

Section 3: Site Management Decision

The site management decision should be based on the Program's objectives described in Guidance Document 1-01 *Petroleum Remediation Program General Policy*.

3.1 Recommendation for site:

 \boxtimes site closure

additional ground water monitoring
 additional field-detectable vapor monitoring
 additional soil gas/vapor intrusion investigation
 corrective action

3.2 If closure is recommended, summarize significant investigative events and describe how site-specific exposure pathways identified in question 2.19 have been adequately addressed.

Seven Geoprobe soil borings and two soil gas borings were installed to investigate the fuel oil release from the 10,000 gallon fiberglass underground tank. Field PID and laboratory results indicate the release was limited mainly to the tank and pump island areas. Samples from the shallow groundwater table indicate the plume migrated to the east, but no concentrations were identified in any of the water samples exceeding MDH drinking water standards.

Soil gas vapor intrusion levels are all within the 10x industrial vapor intrusion screening values.

Contaminant concentrations appear low enough that there are no identified exposure pathways for groundwater receptors, explosive vapor receptors, and vapor intrusion receptors.

- **3.3** If additional ground water or field-detectable vapor monitoring is recommended, indicate the proposed monitoring locations, sampling frequency, and target analytes. Conduct quarterly ground water monitoring and sampling until the MPCA responds to this report. <u>N/A</u>
- 3.4 If additional vapor intrusion investigation is recommended, provide details of proposed activities such as completing an indoor building survey, sub-slab vapor sampling, indoor air sampling, or locations for additional soil gas sampling. N/A
- **3.5** If corrective action is recommended, provide a conceptual approach by completing Guidance Document 4-19 *Conceptual Corrective Action Design Worksheet* and include in Section 6. See Guidance Document 4-10 *Elements of the Corrective Action Design* for more information on the corrective action design process and other requirements. (Note: MPCA staff will review this report at a higher-than-normal priority to determine if corrective action is required.)

Section 4: Figures

Attach the following figures in order of discussion in the text. All figures must include a north arrow, scale, and legend. Approximate scales are not acceptable.

Site Location Map using a U.S. Geological Survey 7.5 minute quadrangle map.

Aerial photos and Sanborn Fire Insurance MapsTM (if available) of the immediate area.

- One or more Site Maps showing:
 - Structures

- Locations and depths of on-site buried utilities
- All past and present petroleum storage tanks, piping, dispensers, and transfer areas
- Extent of soil excavation
- Boring and well locations (including any drinking water wells on site)
- Horizontal extent of soil contamination
- Extent of contaminated surface soil
- Horizontal extent of ground water contamination
- Horizontal extent of NAPL
- Location of end points for all geologic cross sections
- Potential pathways that lead to surface water features within 1/4 mile of the site

Distinguish sequential elements of investigations by dates, symbols, etc. in the key.

At least two (2) geologic cross sections depicting stratigraphy, soil headspace results, laboratory analytical results, water table elevation, and underground utilities.

- Groundwater Flow Direction Map
- Potential Receptor Map (scale 1 inch = 50 to 100 feet), centered on the release area, showing property boundaries and roads, and potential receptors such as buildings, water wells, underground utilities (distinguish between water, storm sewer, and sanitary sewer), surface waters, ditches, and any other pertinent items within 500 feet of the release source.

Well Receptor Survey Map showing ¹/₂-mile radius, 500-foot radius, water supply wells, and other potential sources of contamination on a U.S. Geological Survey 7.5 minute quadrangle map.

Vapor Survey Map showing utilities and buildings with basements and monitoring locations within 500 feet (if a survey was required). If the survey area has been expanded beyond 500 feet, adjust the map to encompass the entire surveyed area.

Vapor Intrusion Assessment Map showing all vapor intrusion samples and receptors at and within the 100-foot preliminary assessment area. If the assessment area has been expanded beyond 100 feet, adjust the map to encompass the entire assessment area.

Site Location Map

Minnesota DNR - ToMO Service USGS 1:24,000 Quadrangles JE Fisher NWR Southwood Sch HATTA Bloomington Ferry HENNEPIN PARK **CO** 10 Auto Club . Minnesota Masonic Hon Golf Could WERLOO 1-10-13 E Minnesota Valley Spuntry Club 0 1 ALTONAL WILDING REALING Rice Lake 695 3 MVNWR MVNWR Barden . MVNWR MVNWR Co MINNESQTA VALLE 8 3 NATIONAL WILDLIFE REFUGE ******* Sav 1 Sewage Disposal 16 \$ 73 P..... P T Cred (pull \bigcirc Park Boiling Springs MYNWR 823 760 13 Sandpit Glendale Cem 989

Geologic Cross-Section X - X'

Geologic Cross-Section Y - Y'

Potential Receptor Map

Labeled Property Identification Map

Well Receptor Map

Vapor Intrusion Assessment Map

Section 5: Tables

Tank #	Tank ** Material	UST or AST	Capacity (gallons)	Contents (product type)	Year installed	Tank Status*	Condition of Tank
1	F	UST	10k	Diesel	Unknown	Removed 6/27/13	No holes, No Oxidation
2	S	AST	10k	Diesel	approx 2012	current- ly used	No visible oxidation or holes

Table 1 Tank Information

*Indicate: removed (date), abandoned in place (date), or currently used, upgraded tank, installation of new tank. ** F for fiberglass or S for Steel Notes:

Soil Boring ID Depth GP-1 GP-2 GP-3 GP-4 GP-5 GP-6 **GP-7** (ft) 2 5 ND ND ND ND ND ND 4 10 30 ND ND ND ND ND 6 ND 25 30 12 ND 8 10 ND ND ND ND 12 ND ND ND ND ND 14 ND ND 16 ND ND

Table 2Results of Soil Headspace Screening

List instruments used and discuss field methods and procedures in Section 6. Add additional rows as needed, and copy the entire table if more columns are needed. Notes:

Boring ID	Sampled Depth (ft)	Date Sampled	Benzene	Toluene	Ethyl- benzene	Xylenes	MTBE	GRO	DRO	Lab Type ²
GP-1	6	05/05/14	<0.121	<0.121	<0.121	<0.362	<0.121		85.2	fixed
GP-1	12	05/05/14	<0.123	<0.123	<0.123	<0.369	<0.123		<6.71	fixed
GP-2	5	05/05/14	<0.113	<0.113	<0.113	0.385	<0.113		7230	fixed
GP-2	16	05/05/14	<0.119	<0.119	<0.119	<0.356	<0.119		<4.76	fixed
GP-3	8	05/05/14	<0.122	<0.122	<0.122	<0.367	<0.122		<7.50	fixed
GP-4	8	05/05/14	<0.122	<0.122	<0.122	<0.367	<0.122		<8.60	fixed
GP-5	8	05/05/14	<0.122	<0.122	<0.122	<0.365	<0.122		<4.84	fixed
GP-6	6	05/05/14	<0.123	<0.123	0.498	2.41	<0.123		25.6	fixed
GP-6	16	05/05/14	<0.119	<0.119	<0.119	<0.356	<0.119		<6.68	fixed
GP-7	6	05/05/14	<0.122	<0.122	<0.122	<0.366	<0.122		<8.50	fixed
GP-7	13.5	05/05/14	<0.119	<0.119	<0.119	<0.358	<0.119		<8.63	fixed

Table 3 Analytical Results of Soil Samples¹

¹Report results in mg/kg. Use less than symbols to show detection limit.

² Indicate "mobile" or "fixed" in the lab type column.

Add additional rows as needed.

Notes:

Table 4 Other Contaminants Detected in Soils (Petroleum or Non-petroleum Derived)¹

Boring ID	Sampled Depth (ft)	Date Sampled				Lab Type ²

¹ Report results in mg/kg. Use less than symbols to show detection limit. ² Indicate "mobile" or "fixed" in the lab type column.

Indicate other contaminants (either petroleum or non-petroleum derived) detected in soil collected from borings. Add additional rows as needed, and copy the entire table if more columns are needed. Notes:

Table 5 **Contaminated Surface Soil Results**

Sample ID	Headspace 10 ppm or Greater ¹ (Y/N)	Petroleum Saturated (Y/N)

¹ As measured with a photoionization detector (PID). Add additional rows as needed.

Notes:

Table 6	
Water Level Measurements and Depths of Water Samples Collected from Borin	gs

		Soil Boring										
	GP-1	GP-2	GP-3	GP-4	GP-5	GP-6	GP-7					
Static Water												
Level Depth ¹ (ft)	2.30	2.03	1.74	2.61	2.33	2.61	3.17					
Sampled												
Depth (ft)	2.30	2.03	1.74	2.61	2.33	2.61	3.17					
Sampling												
Method ²												

¹Describe the methods used to measure water levels in borings in Section 6. ² Refer to Guidance Document 4-05 for acceptable ground water sampling methods.

Notes: Sampling Method described in Appendix G, Methods

Table 7	
Analytical Results of Water Samples Collected from Bo	orings ¹

	Date	Sampled Depth			Ethyl-					Lab
Boring ID	Sampled	(ft)	Benzene	Toluene	benzene	Xylenes	MTBE	GRO	DRO	Type ²
GP-1	05/05/14	2.3	<0.500	1.83	<1.00	<3.00	<1.00		10.2	fixed
GP-3	05/05/14	1.74	<0.500	<1.00	<1.00	<3.00	<1.00		0.476	fixed
GP-4	05/05/14	2.61	<0.500	<1.00	<1.00	<3.00	<1.00		0.447	fixed
GP-5	05/05/14	2.33	<0.500	<1.00	<1.00	<3.00	<1.00		0.587	fixed
GP-6	05/05/14	2.61	<0.500	<1.00	<1.00	<3.00	<1.00		2.11	fixed
GP-7	05/05/14	3.17	1.41	2.65	172	1170	<1.00		1.53	fixed
Trip Blank										
Equip. Blank										
Lab Blank										
HRL ³										

¹ Report results in μ g/L. Use less than symbols to show detection limit. ² Indicate "mobile" or "fixed" in the lab type column.

³ See http://www.health.state.mn.us/divs/eh/groundwater/hrltable.html for list of current HRLs.

Add additional rows as needed.

Notes:

Table 8a
Other Contaminants Detected in Water Samples
Collected from Borings (Petroleum or Non-petroleum Derived) ¹

Boring ID	Date Sampled	Sampled Depth (ft)	Aceton	1,2,3- Trichloro	1,2,4- Trimethyl benzene	1,3,5- Trimethyl benzene	4-Chloro-	Isopropyl	Naphth- alene	Lab Type ²
GP-1	05/05/14	2.3	20.9	propune	benzene	Defizerie	tolucile	belizene		fixed
GP-3	05/05/14	1.74	12.1							fixed
GP-4	05/05/14	2.61	14.2							fixed
GP-5	05/05/14	2.33	14.3							fixed
GP-6	05/05/14	2.61	10.4							fixed
GP-7	05/05/14	3.17	14.7	1.78	637	43	4.48	22.3	104	fixed
Trip Blank										
Equip. Blank										
Lab Blank										
HRL^3										

¹ Report results in μ g/L. Use less than symbols to show detection limit.

² Indicate "mobile" or "fixed" in the lab type column.

³ See <u>http://www.health.state.mn.us/divs/eh/groundwater/hrltable.html</u> for list of current HRLs.

Indicate other contaminants (either petroleum or non-petroleum derived) detected in water samples collected from soil borings and temporary wells. Add additional rows as needed, and copy the entire table if more columns are needed. Notes:

Table 8b **Other Contaminants Detected in Water Samples Collected from Borings (Petroleum or Non-petroleum Derived)**¹

	Date	Sampled Depth	n-Butyl-	N- Propyl-	p-so- propyl-	sec- Butyl-		Lab
Boring ID	Sampled	(ft)	benzene	benzene	toluene	benzene		Type ²
GP-1								
GP-3								
GP-4								
GP-5								
GP-6								
GP-7	05/05/14	3.17	5.71	57	1.63	3.93		fixed
Trip Blank								
Equip. Blank								
Lab Blank								
HRL ³								

¹ Report results in μg/L. Use less than symbols to show detection limit. ² Indicate "mobile" or "fixed" in the lab type column.

³ See <u>http://www.health.state.mn.us/divs/eh/groundwater/hrltable.html</u> for list of current HRLs.

Indicate other contaminants (either petroleum or non-petroleum derived) detected in water samples collected from soil borings and temporary wells. Add additional rows as needed, and copy the entire table if more columns are needed. Notes:

Table 9Monitoring Well Completion Information1

Well Number	MDH Unique Well Number	Date Installed	Surface Elevation	Top of Casing Elevation	Bottom of Well Elevation	Screen Interval (Elev Elev.)	Total Well Depth from Surface (ft)

¹ Include well construction diagrams and MDH well logs in Section 6. Add additional rows as needed.

Notes: (location and elevation of benchmark)

Table 10	
Water Level Measurements in	Wells ¹

Well Number	Date Sampled	Depth to Water from Top of Riser	Product Thickness	Depth to Water Below Grade	Relative Groundwater Elevation	Water Level Above Screen (Y/N)

¹ Describe the methods used to measure water levels in Section 6. Add additional rows as needed.

Notes:

Table 11 Analytical Results of Water Samples Collected from Wells¹

Well	Date			Ethyl-					Lab
Number	Sampled	Benzene	Toluene	benzene	Xylenes	MTBE	GRO	DRO	Type ²
MW-1									
MW-2									
MW-3									
MW-4									
Trip Blank									
Equip. Blank									
Lab Blank									
HRL ³									

¹ Report results in μg/L. Use less than symbols to show detection limit.
 ² Indicate "mobile" or "fixed" in the lab type column.
 ³ See <u>http://www.health.state.mn.us/divs/eh/groundwater/hrltable.html</u> for list of current HRLs.

Add additional rows as needed. Notes:

Table 12 **Other Contaminants Detected in Water Samples** Collected from Wells (Petroleum or Non-petroleum Derived)¹

Well Number	Date Sampled				Lab Type ²
MW-1					
MW-2					
MW-3					
MW-4					
Trip Blank					
Equip. Blank					
Lab Blank					
HRL ³					

 1 Report results in µg/L. Use less than symbols to show detection limit. 2 Indicate "mobile" or "fixed" in the lab type column.

³ See http://www.health.state.mn.us/divs/eh/groundwater/hrltable.html for list of current HRLs.

Indicate other contaminants (either petroleum or non-petroleum derived) detected in water samples collected from wells. Add additional rows as needed, and copy the entire table if more columns are needed. Notes:

Table 13 **Natural Attenuation Parameters**

Well Number	Sample Date	Temp. °C	рН	Dissolved Oxygen (mg/L)	Nitrate (mg/L)	(Fe II) (mg/L)	(H ₂ S, HS ⁻) (mg/L)
MW-1							
MW-2							
MW-3							
MW-4							

Describe the methods and procedures used in Section 6. Add additional rows as needed Notes:

Table 14 **Free Product Recovery**

		Pre-Recovery Measurements				Ev Reco	ent overy ³	Cum Reco	ılative very ⁴		
Recovery Location ID	Recovery Date	Depth to FP ¹ (ft)	Depth to GW ² (ft)	FP Thickness (ft)	FP Volume (gal)	Recovery Method	FP (gal)	GW (gal)	FP (gal)	GW (gal)	Comments
MW-1											
MW-2											
MW-3											
MW-4											

 1 FP = Free Product

 2 GW = Ground Water

³Volume recovered during individual recovery event for that location.
 ⁴ Cumulative volume recovered at each recovery location (i.e., keep a running total for each recovery point).

Describe the methods and procedures used in Section 6. Add additional rows as needed.

Notes:

Guidance Document c-prp4-06: September 2008 Petroleum Remediation Program Minnesota Pollution Control Agency

Table 15
Properties Located within 500 feet of the Release Source

			We for Some le Well			Publi	c Water				
		Distance		Water Supply	Well	St	ıpply			Possible	
Prop ID ¹	Property Address	From Site (ft)	Well Present (Y/N)	How Determined ²	Well Use ³	Utilized (Y/N)	Confirmed by City (Y/N)	Base- ment (Y/N)	Sump (Y/N)	Petroleum Sources (Y/N)	Comments (including property use)
1	12461 Rhode Island Ave	see map	N	Visual	N/A	Y	Y			Ν	Commercial
2	12481 Rhode Island Ave	see map	N	Visual	N/A	*N*	Y			Ν	Commercial
3	12501 Rhode Island Ave	see map	N	Visual	N/A	Y	Y			N	Commercial
4	12519 Rhode Island Ave	see map	N	Visual	N/A	Y	Y			Ν	Commercial
5	12543 Rhode Island Ave	see map	N	Visual	N/A	Y	Y			Ν	Commercial
6	12557 Rhode Island Ave	see map	N	Visual	N/A	Y	Y			Ν	Commercial
7	12585 Rhode Island Ave	see map	N	Visual	N/A	Y	Y			Ν	Commercial
8	7525 Hwy 13 W	see map	N	Visual	N/A	Y	Y			N	Commercial
9	7369 Hwy 13 W	see map	Ν	Visual	N/A	Y	Y			Ν	Commercial
10	12493 Pennsylvania Ave	see map	N	Visual	N/A	Y	Y			Ν	Commercial
11	12515 Pennsylvania Ave	see map	N	Visual	N/A	Y	Y			Ν	Commercial
12	12553 Pennsylvania Ave	see map	N	Visual	N/A	Y	Y			N	Commercial
13	7401 126 th St W.	see map	Ν	Visual	N/A	Y	Y			Ν	Commercial

¹ Property IDs should correspond to labeled properties in the Potential Receptor Map.
 ² For example, visual observation, personal contact, telephone, returned postcard, assumed (i.e., no postcard returned).
 ³ For example, domestic, industrial, municipal, livestock, lawn/gardening, irrigation.

Add additional rows as needed.

Notes:

Table 16Water Supply Wells Located within 500 feet of theRelease Source and Municipal or Industrial Wells within ½ mile

	MDH		T - 4 - 1	Derre	St - 4* -				Distance and
Property	Woll	Cround	10tal Donth	Dase of	Static				from Source
In In I	Number	Floyation	(ft)	(ft)	Elevatio	Aquifor	Uso	Owner	(ft)
ID ID	Savaga	Lievation	(11)	(11)	п	Aquilei	Use	City of	(11)
1.4	#11	743	840	595	90'	Mt Simon	Municipal	Savage	¹ /2 mile SW
171	"11	745	040	575	20	Francon-ia	Waneipar	Suvuge	/2 11110 5 11
	Savage					Ironton-Gales-		City of	
2A	#12	743	520	313	15'	ville	Municipal	Savage	¹ /2 mile SW
		,						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	,
								Skelly	
3A	209940	715	225	165	0	Jordan	Commercial	Station	800' NNE
						"Quat Buried		B&M	
4A	207946	710	40	37	16	Artes"	Commercial	Motors	750' NE
								Eppler's	
						"Quat Water		Rental	
5A	407647	737	25	20	8.5	Table Aquifer"	Commercial	Property	1,700' S
						"Quat Buried		Rubber	
6A	211812	725	135	130	0	Artes"	Commercial	Specialites	1,000' SE

¹ Property IDs should correspond to properties listed in Table 15 and labeled properties in the Potential Receptor Map if known or applicable. Add additional rows as needed.

Notes: * indicates that no letter was returned (Letter instructed no need to return unless well existed; therefore, assume no well exists at this address)

Map ID ¹	Name and Type ²	Distance and Direction from Plume Edge (ft)	Clean Boring/Well Between? ³ (Y or N)

Table 17Surface Water Receptor Information

¹ Map ID should correspond to a surface water feature ID on the Potential Receptor Map.

² Type includes, but is not limited to, lake, retention pond, infiltration pond, ditch, intermittent stream, river, creek, rain garden, etc.

³ If the surface water feature is upgradient or cross-gradient from the site, indicate so with "NA" for not applicable. Add additional rows as needed.

Notes:

Table 18Utility Receptor Information

			Depth to		Flow			
		Construction	Top of		Direction	Year	Backfill	Distance to Water
Utility ID ¹	Description	Material	Structure	Diameter	(for liquids)	Installed	Material	Table
	Sanitary sewer main between							Top of structure at water
Ex 1	Main St and 1 st Ave	PVC	7 ft	2 ft	West	1984	Sand	table
	Water main between Main St							
<i>Ex 2</i>	and 1 st Ave	Polyethylene	8 ft	4 in	West	1996	Sand	1 ft below water table
							Native	
Ex 3	On-site water service line	Copper	6 ft	2 in	South	1980	soils	1 ft above water table
	Water Main on Pennsylvania							
	between S. Frontage Rd & 126 th							
1	St	Ductile Iron	8'	8"		~1979		6 ft below
	Sanitary Sewer Main on							
	Pennsylvania between S.							
2	Frontage Rd & 126 th St	PVC	<10'	8"		1979		<8 ft below
	Storm Sewer Main on							
	Pennsylvania between S.	Perforated						
3	Frontage Rd & 126 th St	Plastic	<5'	8"	North	unk		<3' below
4								
5								
6								
10								

¹ ID should correspond to an identified utility line on the Potential Receptor Map.

Add more rows as needed.

Notes: Information obtained from Savage Utility Supt.

Utility ID ¹	Name, title, and telephone number for public entity contacted to obtain information or other source of information
Ex 1, 2	Mary Smith, City Engineer, XXX-XXX-XXXX
Ex 3	Site owner

¹ IDs should correspond to the same IDs in the above table.

Add more rows as needed.

Notes:

Table 19Vapor Survey Results

Location ID ¹	Description ²	Monitoring Date	PID Reading (ppm)	Percent of the LEL ³

¹ Location IDs must match labeled locations on the Vapor Survey Map.

² Provide a brief description of the monitoring point (e.g., sump, basement corner, sanitary sewer manhole, storm sewer basin, etc.).

³ LEL = Lower Explosive Limit.

Add additional rows as needed.

Notes:

Table 20 Results of Soil Gas Sampling for Vapor Intrusion Screening¹

Sample ID ²		Air 1		Air 2						
Denth (feet)		03/0	3	3						
PID (ppm)		1	0		2					10v Inductrial
COMPOUNDS	CAS No.	Result	Report Limit	Result	Report Limit	Result	Report Limit	Result	Report Limit	Intrusion Screening Value ³
1,2,4-Trimethylbenzene	95-63-6	<1.97	0.983	5.15	0.983					200
1,3,5-Trimethylbenzene	108-67-8	10.5	0.983	<2.98	0.983					200
1,3-Butadiene	106-99-0	7.12	0.442	1.62	0.442					10
2-Butanone (MEK)	78-93-3	5.00	1.47	<4.47	1.47					100,000
Acetone	67-64-1	43.5	11.9	125	11.9					870,000
Benzene	71-43-2	2.51	0.639	4.33	0.639					130
Chlorobenzene	108-90-7	24.1	0.921	<2.79	0.921					1,000
Chloroform	67-66-3	<1.95	0.977	12.0	0.977					3,000
Ethylbenzene	100-41-4	<1.74	0.868	2.78	0.868					30,000
m&p-Xylene	179601-23-1	4.55	2.17	7.26	2.17					3,000 a
n-Heptane	142-82-5	<1.64	0.820	2.53	0.820					N/A
n-Hexane	110-54-3	<1.41	0.705	3.42	0.705					60,000
Propylene	115-07-1	72.6	8.61	<26.1	8.61					80,000
Tetrachloroethene	127-18-4	<2.71	1.36	25.1	1.36					600
Toluene	108-88-3	7.27	0.754	11.1	0.754					100,000
Trichlorofluoromethane	75-69-4	2.72	1.12	<3.40	1.12					20,000

¹ Report results in $\mu g/m^3$.

² Sample IDs should correspond to labeled locations on the Vapor Intrusion Assessment Map.

³ The Intrusion Screening Values can be found in Guidance Document 4-01a Vapor Intrusion Assessments Performed during Site Investigations.

Add additional rows as needed, and copy the entire table if more columns are needed. Notes:

Section 6: Appendices

Attach all required or applicable appendices in the following order. Indicate those appendices that are included in this report by marking the check box. All reproduced data must be legible. Reports missing required documentation are subject to rejection.

\boxtimes	Appendix A	Guidance Document 3-02 General Excavation Report Worksheet.
\square	Appendix B	Guidance Document 1-03a Spatial Data Reporting Form.
\square	Appendix C	Guidance Document 2-05 Release Information Worksheet.
	Appendix D	Copies of applicable Phase I and Phase II reports or supplemental sampling information such as aboveground storage tank (AST) upgrading and decommissioning sampling.
	Appendix E	Geologic Logs of Soil Borings, Including Construction Diagrams of Temporary and Permanent Wells, and Copies of the Minnesota Department of Health Well Record.
	Appendix F	Laboratory Analytical Reports for Soil, Soil Gas/Sub-slab Vapor/Indoor Air/Ambient Air, and Ground Water. Include laboratory QA/QC data, Chromatograms, and laboratory certification number.
	Appendix G	Methodologies and Procedures, Including Field Screening of Soil, Other Field Analyses, Soil Boring, Soil Sampling, Soil Gas/Sub-Slab/Indoor air/Ambient Air Sampling, Vapor Monitoring, Well Installation, and Water Sampling.
	Appendix H	Field or sampling data sheets (sampling forms, field crew notes, etc.).
	Appendix I	Grain Size Analysis, Hydraulic Conductivity Measurements, and Other Calculations.
	Appendix J	Guidance Document 2-03 Free Product Recovery Report Worksheet.
\square	Appendix K	Copies of Water Supply Well Logs with Legible Unique Numbers.
	Appendix L	Results of the Public Water Supply Risk Assessment. If the site is within a designated source water protection area, include a copy of the MDH Source Water Assessment and a map from the MPCA Petroleum Remediation Program Maps Online website.
	Appendix M	Guidance Document 4-19 Conceptual Corrective Action Design Worksheet.

Appendix A

Guidance Document 3-02 General Excavation Report Worksheet.

General Excavation Report Worksheet

Guidance Document 3-02

Complete the worksheet below to document excavation and treatment of petroleum contaminated soil removed **prior to** a Site Investigation and/or during tank removals and/or upgrades. If soil is excavated as an MPCA-approved corrective action **after** a Site Investigation is conducted, complete Guidance Document 3-02a *Corrective Action Excavation Report Worksheet*. Conduct excavations in accordance with Guidance Document 3-01 *Excavation of Petroleum Contaminated Soil*. Please type or print clearly. Do not revise or delete text or questions from this report form.

The excavation worksheet 3-02 deadline is 10 months from the date of receipt of the MPCA "Petroleum Storage Tank Release Investigation and Corrective Action" letter. MPCA staff may establish a shorter deadline for high priority sites.

PART I: BACKGROUND

A. Site: MPCA Site ID#: LEAK00019157

Waste Management Street: 12448 Pennsylvania Ave S. City, Zip: Savage, 55378 County: Dakota

C. Excavating Contractor: B&H Petroleum

Contact: Gary Eckert Telephone: 507-387-6629 Tank Contractor Certification Number: B. Tank Owner/Operator: Waste Management

Mailing Address: Attn: Roric Gilmer Waste Management Street/Box: 12448 Pennsylvania Ave S. City, Zip: Savage, 55378 Telephone: 952-229-0081

D. Consultant: Applied Engineering, Inc.

Contact: Thomas Greene Street/Box: 1161 Wayzata Blvd E., Ste #60 City, Zip: Wayzata, MN 55391 Telephone: 952-939-9095

- E. Others on-site during site work (e.g., fire marshal, local officials, MPCA staff, etc.): John Babin, Fire Inspector
- F. Site Location Information: Attach Guidance Document 1-03a *Spatial Data Reporting Form* if it has not already been submitted or will not be submitted as part of Guidance Document 4-06 *Investigation Report Form*.

This information is provided in the follow-up MPCA Report.

General Excavation Report Worksheet Page 2

Note: If person other than tank owner and/or operator is conducting the cleanup, provide name, address, and relationship to site on a separate attached sheet.

PART II: DATES

- A. Date release reported to MPCA: 6/27/2013
- B. Dates site work performed (tanks removed, piping removed, soil excavation, soil borings, etc.):

Work Performed		Date
One Tank & two pump removed, soil samples collected	<u>6/27/2013</u>	

PART III: SITE AND RELEASE INFORMATION

A. Describe the land use and pertinent geographic features within 1,000 feet of the site. (i.e. residential property, industrial, wetlands, etc.)

The site and surrounding area is developed as commercial business to the east, south, and west. To the north of the site is highway 13. North of highway 13 is a wetland area.

B. Provide the following information for <u>all tanks</u> removed and any remaining at the site:

Tank #	Tank ** Material	UST or AST	Capacity (gallons)	Contents (product type)	Year installed	Tank Status*	Condition of Tank
1	F	UST	10k	Diesel	Unknown	Removed 6/27/13	No holes, No Oxidation
2	S	AST	10k	Diesel	approx 2012	current- ly used	No visible oxidation or holes

Table 1.

*Indicate: removed (date), abandoned in place (date), or currently used, upgraded tank, installation of new tank. ** F for fiberglass or S for Steel Notes:

Piping Material (check all that apply): Steel, Fiberglass, Fiberglass, Copper, Other

C. Describe the location and status of the other components of the tank system(s) (i.e., transfer locations, valves, piping and dispensers) for those tanks listed above.

The tank, vent, dispensers, and product lines were removed.

- D. Identify the source(s) of the release or contamination encountered. Only check those options that were verified, if source is unknown check Other and describe:
 Piping, Tank, Dispenser, Pump/Turbine, Delivery Problem, Other the exact source was not readily apparent, therefore it is presumably due to occasional overfills.
- E. Identify the cause of the release (tank and/or piping). Check all that apply: Corrosion, Install Problem, Spill, Unknown, Mechanical or Physical Damage, Other See D. above
- F. Identify the method the release was detected. Check all that apply: Removal, Line Leak Detection, Tank Leak Detection, Visual/Olfactory, Site Assessment, Other
- G. Identify any surface soil contamination.
- H. What was the volume of the release? (if known): unknown gallons
- I. Historic contamination present (unknown origin?). 🗌 Yes, 🖾 No
- J. When did the release occur? (if known): Unknown
- K. Describe source of on-site drinking water. <u>Municipal water is supplied to the site</u>
- L. Has the site ever, at any point had an E-85 tank? \Box Yes, \boxtimes No

PART IV: EXCAVATION INFORMATION

- A. Dimensions of excavation(s): Length **31** feet Width **15** feet Depth 13 feet
- B. Original tank backfill material (sand, gravel, etc.), if applicable: Peastone
- C. Native soil type (clay, sand, etc.): Sandy Silt
- D. Quantity of contaminated soil removed for treatment (cubic yards): N/A (Indicate on the site map where the petroleum contaminated soil was excavated)

How many cubic yards of the removed soil was petroleum saturated? N/A (Indicate on the site map where the petroleum saturated soil was excavated)

[Note: If the volume removed is more than allowed in Guidance Document 3-01 *Excavation of Petroleum Contaminated Soil*, please document MPCA staff approval.]

- E. Were new tanks and/or piping and dispensers installed? (No) If yes, what volume of contaminated soil was excavated to accommodate the installation of the new tanks and piping?
- F. If contaminated soil was removed to accommodate the installation of new tanks and/or piping, show your calculations for the amount of soil removal allowed using Table 3 in Guidance Document 3-01 *Excavation of Petroleum Contaminated Soil.* N/A

- G. Was ground water encountered or a suspected perched water layer or was there evidence of a seasonally high ground water table (i.e. mottling)? <u>Yes</u> At what depth? <u>observed at 5 ft. deep.</u>
- H. If ground water was not encountered during the excavation, what is the expected depth of ground water?
- I. Additional investigation to determine the need for a Limited Site Investigation is necessary at sites with sandy or silty sandy soil, a water table within 25 feet of the ground surface, and visual or other evidence of soil remaining contamination. See Table 2 in Guidance Document 3-01 *Excavation of Petroleum Contaminated Soil*. If a soil boring is necessary, describe the soil screening and analytical results. Attach the boring logs and laboratory results to this report.
- J. If no soil boring was performed, explain.

This information is provided in the follow-up MPCA Report.

K. If ground water was encountered or if a soil boring was conducted, was there evidence of ground water contamination? (**Unknown**) Describe this evidence of contamination, e.g., free product (specify thickness), product sheen, ground water in contact with petroleum contaminated soil, water analytical results, etc. **Note**: If you observe free product, contact MPCA staff immediately, as outlined in Guidance Document 2-02 *Free Product: Evaluation and Recovery*.

A tank basin water sample was collected for laboratory analysis; foam appeared on the water surface in the tank basin indicating diesel fuel impact.

- L. Was bedrock encountered in the excavation? (\Box yes/ \boxtimes no) At what depth?
- M. Were other unique conditions associated with this site? (\Box yes/ \Box no) If so, explain.

PART V: SAMPLING INFORMATION

- A. Briefly describe the field screening methods used to distinguish contaminated from uncontaminated soil:
- B. List soil vapor headspace analysis results collected during excavation of tanks, lines and dispensers, valves, and transfer locations. (i.e., soils left in place when excavation is complete). Code the samples with sampling depths in parentheses as follows: sidewall samples S-1 (8 feet), S-2 (4 feet), etc.; bottom samples B-1 (13 feet), B-2 (14 feet), removed soil R-1 (4 feet), R-1 (8 feet), etc.; stockpile samples SP-1, etc; line samples L-1, L2, etc.; transfer locations T-1 (4 feet), T-1 (8 feet), etc.; dispensers D-1 (4 feet), etc. Be sure the sample codes correspond with the site map in part VI, below.

Sample Code	Soil Type	Reading ppm	Sample Code	Soil Type	Reading ppm
S-1 (13')	Pea gravel	40			
S-2 (13')	Pea Gravel	100			
S-3 (4')	Sandy Silt	79			
S-4 (4')	Sandy Silt	61			

- C. Was the "removed soil" placed back into the excavation basin? (Xyes/ no) If no, please complete Part VIII: Soil Treatment Information section. If yes, a Limited Site Investigation is necessary (see Guidance Document 4-01 *Soil and Ground Water Assessments Performed during Site Investigations*).
- D. Briefly describe the soil analytical sampling and handling procedures used:

Soil sampling followed MPCA recommended procedures including Wisconsin Department of Natural Resources modified Gasoline Range Organics (GRO) and modified Diesel Range Organics (DRO) methods as applicable, including cold storage until delivered to the laboratory. According to the laboratory, all analyses were performed using EPA or other accepted methodologies. E. List below all soil sample analytical results from bottom and side wall samples collected after excavation of tanks, lines and dispensers, valves, and transfer locations (i.e., soils left in place when excavation is complete). Code the samples with sampling depths in parentheses as follows: sidewall samples S-1 (8 feet), S-2 (4 feet), etc.; bottom samples B-1 (13 feet), B-2 (14 feet), removed soil R-1 (4 feet), R-1 (8 feet), etc.; stockpile samples SP-1, etc; line samples L-1, L2, etc.; transfer locations T-1 (4 feet), T-1 (8 feet), etc.; dispensers D-1 (4 feet), etc.; Be sure the sample codes correspond to the site map required in part VI.

Sample Code	GRO/ DRO	Benzene mg/kg	Ethyl- benzene mg/kg	Toluene Mg/kg	Xylene mg/kg	MTBE mg/kg	Lead mg/kg
S-1	24.6/138	< 0.051	0.058	< 0.051	< 0.15	< 0.25	n/a
S-2	53.1/26.4	< 0.052	0.086	< 0.052	0.24	<0.26	n/a
S-3	44.3/7,000	< 0.053	0.078	<0.53	0.21	<0.26	n/a
S-4	33.6/10,200	< 0.061	0.070	< 0.061	< 0.18	< 0.31	n/a

Note: Attach copies of laboratory reports and chain of custody forms.

PART VI: FIGURES

Attach the following figures to this report:

- 1. Site location map. This information is provided in the follow-up MPCA Report.
- 2. Site map(s) drawn to scale illustrating the following:
 - a. Location of all present and former tanks, piping, and dispensers;
 - b. Location of surface soil contamination
 - c. Location of other structures (buildings, canopies, etc.);
 - d. Adjacent city, township, or county roadways;
 - e. Dimensions of excavation(s), including contour lines (maximum 2-foot contour intervals) to represent the depths of the final excavation(s);
 - f. Location of soil screening samples (e.g. R-1), soil analytical samples (e.g., S-1 or B-1), and any soil borings (e.g., SB-1). Also, attach all boring logs.
 - g. North arrow, bar scale and map legend.
 - h. Provide location of any on-site water wells. If on-site water wells exist, please provide well logs and/or construction diagrams.
 - i. Locations of new tanks, piping and dispensers, if installed.

PART VII: CONCLUSIONS AND RECOMMENDATIONS

Recommendation for site:

☐site closure ⊠additional investigation

Justify the recommendations for the site. If no further action is necessary, the MPCA staff will review this report following notification of soil treatment.

Additional information is provided in the follow-up MPCA Report.

PART VIII: SOIL TREATMENT INFORMATION

- A. Soil treatment method used (thermal, land application, composting, other). If you choose "other" specify treatment method: N/A
- B. Location of treatment site/facility: N/A
- C. Date MPCA approved soil treatment (if thermal treatment was used, indicate date that the MPCApermitted thermal treatment facility agreed to accept soil): N/A
- D. Identify the location of stockpiled contaminated soil: N/A

PART IX: CONSULTANT (OR OTHER) PREPARING THIS REPORT

By signing this document, I/we acknowledge that we are submitting this document on behalf of and as agents of the responsible person or volunteer for this leak site. I/we acknowledge that if information in this document is inaccurate or incomplete, it will delay the completion of remediation and may harm the environment and may result in reduction of reimbursement awards. In addition, I/we acknowledge on behalf of the responsible person or volunteer for this leak site that if this document is determined to contain a false material statement, representation, or certification, or if it omits material information, the responsible person or volunteer may be found to be in violation of Minn. Stat. § 115.075 (1994) or Minn. 7000.0300 (Duty of Candor), and that the responsible person or volunteer may be liable for civil penalties.

MPCA staff are instructed to reject unsigned excavation reports or if the report form has been altered.

Name and Title:

Signature:

Date signed:

Thomas A. Greene, P.E. Project Manager

Thomas Q. Speene

March 3, 2015

Company and mailing address:

Applied Engineering, Inc. 1161 Wayzata Blvd E., Ste #60 Wayzata, MN 55391

Telephone: <u>952-939-9095</u>

Fax: 952-939-0178

If additional investigation is not necessary, please mail this form and all necessary attachments to the MPCA project manager. If additional investigation is necessary, include this form as an appendix to Guidance Document 4-06 *Investigation Report Form*. **MPCA staff will not review excavation reports indicating a limited site investigation is necessary unless the limited site investigation has been completed.**

	Web pages and phone numbers
MPCA staff	http://pca.state.mn.us/pca/staff/index.cfm
MPCA toll free	1-800-657-3864
Petroleum Remediation	Program web page
	http://www.pca.state.mn.us/programs/lust_p.html
MPCA Infor. Request	http://www.pca.state.mn.us/about/inforequest.html
MPCA Petroleum Brow	nfields Program
	http://www.pca.state.mn.us/programs/vpic_p.html
PetroFund Web Page	http://www.state.mn.us/cgi-bin/portal/mn/jsp/content.do?id=-
	536881377&agency=Commerce
PetroFund Phone	651-297-1119, or 1-800-638-0418
State Duty Officer	651-649-5451 or 1-800-422-0798

Upon request, this document can be made available in other formats, including Braille, large print and audio tape. TTY users call 651/282-5332 or 1-800-657-3864 (voice/TTY).

Printed on recycled paper containing at least 10 percent fibers from paper recycled by consumers.

Guidance Document c-prp3-02: February 2010 Petroleum Remediation Program Minnesota Pollution Control Agency

This drawing is not a survey and not intended for purposes other than this environmental investigation.

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

July 12, 2013

Mr. Thomas Greene Applied Engineering 2905 Oak Lea Terrace Wayzata, MN 55391

RE: Project: 3D15 WASTE MANAGEMENT Pace Project No.: 10233818

Dear Mr. Greene:

Enclosed are the analytical results for sample(s) received by the laboratory on June 28, 2013. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Oard Davy

Carol Davy for Diane J. Anderson diane.anderson@pacelabs.com Project Manager

Enclosures

Pace Analytical Services, Inc. 1700 Elm Street - Suite 200 Minneapolis, MN 55414 (612)607-1700

CERTIFICATIONS

Project: 3D15 WASTE MANAGEMENT

Pace Project No.: 10233818

Minnesota Certification IDs

1700 Elm Street SE Suite 200, Minneapolis, MN 55414 A2LA Certification #: 2926.01 Alaska Certification #: UST-078 Alaska Certification #MN00064 Arizona Certification #: AZ-0014 Arkansas Certification #: 88-0680 California Certification #: 01155CA Colorado Certification #Pace Connecticut Certification #: PH-0256 EPA Region 8 Certification #: Pace Florida/NELAP Certification #: E87605 Georgia Certification #: 959 Hawaii Certification #Pace Idaho Certification #: MN00064 Illinois Certification #: 200011 Kansas Certification #: E-10167 Louisiana Certification #: 03086 Louisiana Certification #: LA080009 Maine Certification #: 2007029 Maryland Certification #: 322 Michigan DEQ Certification #: 9909 Minnesota Certification #: 027-053-137

Mississippi Certification #: Pace Montana Certification #: MT CERT0092 Nebraska Certification #: Pace Nevada Certification #: MN_00064 New Jersey Certification #: MN-002 New York Certification #: 11647 North Carolina Certification #: 530 North Dakota Certification #: R-036 Ohio VAP Certification #: CL101 Oklahoma Certification #: 9507 Oregon Certification #: MN200001 Oregon Certification #: MN300001 Pennsylvania Certification #: 68-00563 Puerto Rico Certification Tennessee Certification #: 02818 Texas Certification #: T104704192 Utah Certification #: MN00064 Virginia/DCLS Certification #: 002521 Virginia/VELAP Certification #: 460163 Washington Certification #: C754 West Virginia Certification #: 382 Wisconsin Certification #: 999407970

SAMPLE SUMMARY

Project: 3D15 WASTE MANAGEMENT

Pace Project No.: 10233818

Lab ID	Sample ID	Matrix	Date Collected	Date Received
10233818001	S-1	Solid	06/27/13 15:00	06/28/13 14:15
10233818002	S-2	Solid	06/27/13 15:00	06/28/13 14:15
10233818003	S-3	Solid	06/27/13 15:00	06/28/13 14:15
10233818004	S-4	Solid	06/27/13 15:00	06/28/13 14:15
10233818005	W1	Water	06/27/13 15:00	06/28/13 14:15

SAMPLE ANALYTE COUNT

Project: 3D15 WASTE MANAGEMENT Pace Project No : 10233818

ab ID	Sample ID	Method	Analysts	Analytes Reported
0233818001	S-1	WI MOD DRO	MT	2
		WI MOD GRO	KT1	7
		ASTM D2974	CMS2	1
0233818002	S-2	WI MOD DRO	MT	2
		WI MOD GRO	KT1	7
		ASTM D2974	CMS2	1
0233818003	S-3	WI MOD DRO	MT	2
		WI MOD GRO	KT1	7
		ASTM D2974	CMS2	
0233818004	S-4	WI MOD DRO	MT	2
		WI MOD GRO	KT1	7
		ASTM D2974	CMS2	
0233818005	W1	WI MOD DRO	JRH	2
		WI MOD GRO	KT1	7

Project: 3D15 WASTE MANAGEMENT

Pace Project No.: 10233818

Sample: S-1	Lab ID: 1023381800 ⁻	1 Collected: 06/27/	13 15:00	Received: 06	/28/13 14:15 N	Matrix: Solid	
Results reported on a "dry-weig	ght" basis						
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical Method: WI M	IOD DRO Preparation	Method:	WI MOD DRO			
Diesel Range Organics Surrogates	138 mg/kg	10.4	1	07/03/13 09:42	07/08/13 20:57		
n-Triacontane (S)	86 %	50-150	1	07/03/13 09:42	07/08/13 20:57	638-68-6	
WIGRO GCV	Analytical Method: WI M	IOD GRO Preparation	Method	TPH GRO/PVO	C WI ext.		
Benzene	ND mg/kg	0.051	1	07/07/13 14:54	07/10/13 01:27	71-43-2	
Ethylbenzene	0.058 mg/kg	0.051	1	07/07/13 14:54	07/10/13 01:27	100-41-4	
Gasoline Range Organics	24.6 mg/kg	5.1	1	07/07/13 14:54	07/10/13 01:27		
Methyl-tert-butyl ether	ND mg/kg	0.25	1	07/07/13 14:54	07/10/13 01:27	1634-04-4	
Toluene	ND mg/kg	0.051	1	07/07/13 14:54	07/10/13 01:27	108-88-3	
Xylene (Total) <i>Surrogates</i>	ND mg/kg	0.15	1	07/07/13 14:54	07/10/13 01:27	1330-20-7	
a,a,a-Trifluorotoluene (S)	95 %	80-125	1	07/07/13 14:54	07/10/13 01:27	98-08-8	
Dry Weight	Analytical Method: AST	M D2974					
Percent Moisture	3.0 %	0.10	1		07/05/13 00:00		

Project: 3D15 WASTE MANAGEMENT

Pace Project No.: 10233818

Sample: S-2	Lab ID: 102338	Collected:	06/27/	13 15:00	Received: 06	i/28/13 14:15 I	Matrix: Solid	
Results reported on a "dry-weig	ght" basis							
Parameters	Results	Units Repor	rt Limit	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical Method	: WI MOD DRO Pre	paration	Method:	WI MOD DRO			
Diesel Range Organics	26.4 mg/kg	J	10.1	1	07/03/13 09:42	07/08/13 20:50)	
Surrogates								
n-Triacontane (S)	87 %		50-150	1	07/03/13 09:42	07/08/13 20:50	638-68-6	
WIGRO GCV	Analytical Method	: WI MOD GRO Pre	paratior	Method	TPH GRO/PVO	C WI ext.		
Benzene	ND mg/kg	J	0.052	1	07/07/13 14:54	07/10/13 05:02	2 71-43-2	
Ethylbenzene	0.086 mg/kg)	0.052	1	07/07/13 14:54	07/10/13 05:02	2 100-41-4	
Gasoline Range Organics	53.1 mg/kg]	5.2	1	07/07/13 14:54	07/10/13 05:02	2	
Methyl-tert-butyl ether	ND mg/kg]	0.26	1	07/07/13 14:54	07/10/13 05:02	2 1634-04-4	
Toluene	ND mg/kg	1	0.052	1	07/07/13 14:54	07/10/13 05:02	2 108-88-3	
Xylene (Total)	0.24 mg/kg	1	0.16	1	07/07/13 14:54	07/10/13 05:02	1330-20-7	
Surrogates								
a,a,a-Trifluorotoluene (S)	88 %		80-125	1	07/07/13 14:54	07/10/13 05:02	98-08-8	
Dry Weight	Analytical Method	: ASTM D2974						
Percent Moisture	2.6 %		0.10	1		07/05/13 00:00)	

Project: 3D15 WASTE MANAGEMENT

Pace Project No.:

ct No.: 10233818

Sample: S-3	Lab ID: 10233	818003	Collected:	06/27/	13 15:00	Received: 06	6/28/13 14:15 N	/latrix: Solid	
Results reported on a "dry-weig	ght" basis								
Parameters	Results	Units	Report	Limit	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical Metho	d: WI MO	D DRO Prep	paration	Method:	WI MOD DRO			
Diesel Range Organics Surrogates	7000 mg/l	kg		1040	100	07/03/13 09:42	07/09/13 09:51		
n-Triacontane (S)	0 %		Ę	50-150	100	07/03/13 09:42	07/09/13 09:51	638-68-6	S4
WIGRO GCV	Analytical Metho	d: WI MO	D GRO Prep	paration	Method:	TPH GRO/PVO	C WI ext.		
Benzene	ND mg/l	٨g		0.053	1	07/07/13 14:54	07/10/13 04:43	71-43-2	
Ethylbenzene	0.078 mg/l	٨g		0.053	1	07/07/13 14:54	07/10/13 04:43	100-41-4	
Gasoline Range Organics	44.3 mg/l	٨g		5.3	1	07/07/13 14:54	07/10/13 04:43		
Methyl-tert-butyl ether	ND mg/l	٨g		0.26	1	07/07/13 14:54	07/10/13 04:43	1634-04-4	
Toluene	ND mg/l	٨g		0.053	1	07/07/13 14:54	07/10/13 04:43	108-88-3	
Xylene (Total) <i>Surrogates</i>	0.21 mg/l	kġ		0.16	1	07/07/13 14:54	07/10/13 04:43	1330-20-7	
a,a,a-Trifluorotoluene (S)	88 %		8	30-125	1	07/07/13 14:54	07/10/13 04:43	98-08-8	
Dry Weight	Analytical Metho	d: ASTM	D2974						
Percent Moisture	3.6 %			0.10	1		07/05/13 00:00		

Project: 3D15 WASTE MANAGEMENT

Pace Project No.:

ect No.: 10233818

Sample: S-4	Lab ID:	10233818004	Collected: 06/2	7/13 15:00	Received: 06	6/28/13 14:15 N	Aatrix: Solid	
Results reported on a "dry-weig	ght" basis							
Parameters	Results	Units	Report Limi	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical I	Method: WI MO	D DRO Preparati	on Method	: WI MOD DRO			
Diesel Range Organics Surrogates	10200	mg/kg	121	0 100	07/03/13 09:42	07/09/13 09:58		
n-Triacontane (S)	C) %	50-15	0 100	07/03/13 09:42	07/09/13 09:58	638-68-6	S4
WIGRO GCV	Analytical I	Method: WI MO	D GRO Preparati	on Method	I: TPH GRO/PVO	C WI ext.		
Benzene	ND) mg/kg	0.06	1 1	07/07/13 14:54	07/10/13 01:47	71-43-2	
Ethylbenzene	0.070	mg/kg	0.06	1 1	07/07/13 14:54	07/10/13 01:47	100-41-4	
Gasoline Range Organics	33.6	i mg/kg	6.	1 1	07/07/13 14:54	07/10/13 01:47		
Methyl-tert-butyl ether	ND) mg/kg	0.3	1 1	07/07/13 14:54	07/10/13 01:47	1634-04-4	
Toluene	ND) mg/kg	0.06	1 1	07/07/13 14:54	07/10/13 01:47	108-88-3	
Xylene (Total) <i>Surrogates</i>	ND) mg/kg	0.1	8 1	07/07/13 14:54	07/10/13 01:47	1330-20-7	
a,a,a-Trifluorotoluene (S)	97	%	80-12	51	07/07/13 14:54	07/10/13 01:47	98-08-8	
Dry Weight	Analytical I	Method: ASTM	D2974					
Percent Moisture	16.3	8 %	0.1	0 1		07/05/13 00:00		

Project: 3D15 WASTE MANAGEMENT

Pace Project No.: 10233818

Sample: W1	Lab ID: 1023381800	5 Collected: 06/27/	13 15:00	Received: 06	/28/13 14:15 N	latrix: Water	
Parameters	Results Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
WIDRO GCS	Analytical Method: WI	MOD DRO Preparation	Method	WI MOD DRO			
Diesel Range Organics Surrogates	12.5 mg/L	0.52	5	07/03/13 07:19	07/06/13 16:07		
n-Triacontane (S)	86 %	50-150	5	07/03/13 07:19	07/06/13 16:07	638-68-6	
WIGRO GCV	Analytical Method: WI	MOD GRO					
Benzene	ND ug/L	1.0	1		07/10/13 12:31	71-43-2	
Ethylbenzene	1.3 ug/L	1.0	1		07/10/13 12:31	100-41-4	
Gasoline Range Organics	ND ug/L	100	1		07/10/13 12:31		
Methyl-tert-butyl ether	ND ug/L	5.0	1		07/10/13 12:31	1634-04-4	
Toluene	3.3 ug/L	1.0	1		07/10/13 12:31	108-88-3	
Xylene (Total) Surrogates	6.1 ug/L	3.0	1		07/10/13 12:31	1330-20-7	
a,a,a-Trifluorotoluene (S)	101 %	80-125	1		07/10/13 12:31	98-08-8	

QUALITY CONTROL DATA

Project: 3D15 WASTE MANAGEMENT

Pace Project No.: 10233818

Associated Lab Samples:

QC Batch: GCV/11009 QC Batch Method: TPH GRO/PVOC WI ext.

 1009
 Analysis Method:
 WI MOD GRO

 GRO/PVOC WI ext.
 Analysis Description:
 WIGRO Solid GCV

 10233818001, 10233818002, 10233818003, 10233818004

 METHOD BLANK:
 1472754
 Matrix:
 Solid

 Associated Lab Samples:
 10233818001, 10233818002, 10233818003, 10233818004
 10233818004

1472757

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	mg/kg	ND	0.050	07/09/13 15:27	
Ethylbenzene	mg/kg	ND	0.050	07/09/13 15:27	
Gasoline Range Organics	mg/kg	ND	5.0	07/09/13 15:27	
Methyl-tert-butyl ether	mg/kg	ND	0.25	07/09/13 15:27	
Toluene	mg/kg	ND	0.050	07/09/13 15:27	
Xylene (Total)	mg/kg	ND	0.15	07/09/13 15:27	
a,a,a-Trifluorotoluene (S)	%	102	80-125	07/09/13 15:27	

LABORATORY CONTROL SAMPLE	& LCSD: 1472755	72756								
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Benzene	mg/kg	5	4.5	4.8	91	96	80-120	6	20	
Ethylbenzene	mg/kg	5	4.8	4.9	96	99	80-120	3	20	
Gasoline Range Organics	mg/kg	50	51.2	50.8	102	102	80-120	.8	20	
Methyl-tert-butyl ether	mg/kg	5	4.3	4.6	85	91	80-120	7	20	
Toluene	mg/kg	5	4.7	4.9	93	97	80-120	4	20	
Xylene (Total)	mg/kg	15	14.5	14.9	96	99	80-120	3	20	
a,a,a-Trifluorotoluene (S)	%				98	98	80-125			

MATRIX SPIKE SAMPLE:

Parameter	Units	10234249007 Result	Spike Conc.	MS Result	MS % Rec	% Rec Limits	Qualifiers
Benzene	mg/kg	<0.055	5.7	5.4	95	80-120	
Ethylbenzene	mg/kg	<0.055	5.7	5.6	99	80-120	
Gasoline Range Organics	mg/kg	<5.5	56.6	60.8	108	80-120	
Methyl-tert-butyl ether	mg/kg	<0.27	5.7	5.4	96	80-120	
Toluene	mg/kg	<0.055	5.7	5.5	97	80-120	
Xylene (Total)	mg/kg	<0.16	17	16.9	100	80-120	
a,a,a-Trifluorotoluene (S)	%				94	80-125	

SAMPLE DUPLICATE: 1472758

		10234249008	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Benzene	mg/kg	<0.058	ND		20	
Ethylbenzene	mg/kg	<0.058	0.092		20	
Gasoline Range Organics	mg/kg	31.5	62.0	65	20	D6
Methyl-tert-butyl ether	mg/kg	<0.29	ND		20	
Toluene	mg/kg	<0.058	.011J		20	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

QUALITY CONTROL DATA

Project: 3D15 WASTE MANAGEMENT

Pace Project No.: 10233818

SAMPLE DUPLICATE: 1472758						
		10234249008	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Xylene (Total)	mg/kg	0.20	0.40	69	20	
a,a,a-Trifluorotoluene (S)	%	95	82	13		

QUALITY CONTROL DATA

Project: 3D15 WASTE MANAGEMENT

ug/L

ug/L

%

Pace Project No · 10233818

Toluene

Xylene (Total)

a,a,a-Trifluorotoluene (S)

Pace Project No.: 10233818					
QC Batch: GCV/110	12	Analysis Meth	nod: W	I MOD GRO	
QC Batch Method: WI MOD	GRO	Analysis Description: WIGF		IGRO GCV Water	
Associated Lab Samples: 102	233818005				
METHOD BLANK: 1473883		Matrix:	Water		
Associated Lab Samples: 102	233818005				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/L	ND	1.0	07/10/13 07:19	
Ethylbenzene	ug/L	ND	1.0	07/10/13 07:19	
Gasoline Range Organics	ug/L	ND	100	07/10/13 07:19	
Methyl-tert-butyl ether	ug/L	ND	5.0	07/10/13 07:19	

ND

ND

102

1.0 07/10/13 07:19

3.0 07/10/13 07:19

80-125 07/10/13 07:19

LABORATORY CONTROL SAMP	ABORATORY CONTROL SAMPLE & LCSD: 1473884 1473885										
		Spike	LCS	LCSD	LCS	LCSD	% Rec		Max		
Parameter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers	
Benzene	ug/L	100	104	100	104	100	80-120	3	20		
Ethylbenzene	ug/L	100	104	101	104	101	80-120	3	20		
Gasoline Range Organics	ug/L	1000	1150	1070	115	107	80-120	7	20		
Methyl-tert-butyl ether	ug/L	100	102	104	102	104	80-120	2	20		
Toluene	ug/L	100	104	101	104	101	80-120	3	20		
Xylene (Total)	ug/L	300	317	309	106	103	80-120	3	20		
a,a,a-Trifluorotoluene (S)	%				99	97	80-125				

MATRIX SPIKE & MATRIX SP	E: 14738	86		1473887								
			MS	MSD								
	102	234146001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Benzene	ug/L	16500	10000	10000	26900	27900	105	114	80-120	4	20	
Ethylbenzene	ug/L	2450	10000	10000	13000	13300	105	109	80-120	3	20	
Gasoline Range Organics	ug/L	103000	100000	100000	211000	214000	108	111	80-120	1	20	
Methyl-tert-butyl ether	ug/L	ND	10000	10000	9950	10500	99	105	80-120	5	20	
Toluene	ug/L	31000	10000	10000	40800	42100	98	110	80-120	3	20	
Xylene (Total)	ug/L	11800	30000	30000	43100	43900	104	107	80-120	2	20	
a,a,a-Trifluorotoluene (S)	%						98	100	80-125			

QUALITY CONTROL DATA

Project:	3D15 WASTE MA	NAGEMENT						
Pace Project No.:	10233818							
QC Batch:	MPRP/40396		Analysis Meth	od:	ASTM D2974			
QC Batch Method:	ASTM D2974		Analysis Desc	ription:	Dry Weight/Perc	ent Moisture		
Associated Lab Sar	nples: 10233818	3001, 10233818002,	10233818003, 10	233818004				
SAMPLE DUPLICA	TE: 1472187							
			10233935005	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD	(Qualifiers
Percent Moisture		%	10.5	10	0.9	4	30	
SAMPLE DUPLICA	TE: 1472188							
			10233860006	Dup		Max		
Paran	neter	Units	Result	Result	RPD	RPD	(Qualifiers
Percent Moisture		%	13.7	1:	3.0	6	30	

QUALITY CONTROL DATA

Project:	3D15 WASTE MA	NAGEMENT									
Pace Project No.:	10233818										
QC Batch:	OEXT/22175		Analys	is Method:	W		RO				
QC Batch Method:	WI MOD DRO		Analys	is Descriptio	on: W	IDRO G	CS				
Associated Lab Sar	mples: 10233818	001, 10233818002,	10233818	003, 10233	818004						
METHOD BLANK:	1471056		N	Aatrix: Solid	ł						
Associated Lab Sar	mples: 10233818	001, 10233818002,	10233818	003, 10233	818004						
			Blank	Re	porting						
Parar	meter	Units	Resul	t I	Limit	Ana	lyzed	Qualif	iers		
Diesel Range Orga	nics	mg/kg		ND	10.0	07/08/	13 14:27				
n-Triacontane (S)		%		88	50-150	07/08/	13 14:27				
LABORATORY CO	NTROL SAMPLE &	LCSD: 1471057		14	471058						
			Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parar	neter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Diesel Range Orga	nics	mg/kg	80	64.3	62.7	80	78	70-120	3	20	
n-Triacontane (S)		%				87	83	50-150			

QUALITY CONTROL DATA

Project:	3D15 WASTE MA	NAGEMENT									
Pace Project No.:	10233818										
QC Batch:	OEXT/22170		Analys	is Method	: W		RO				
QC Batch Method:	WI MOD DRO		Analys	is Descrip	tion: W	IDRO G	CS				
Associated Lab Sar	mples: 10233818	3005									
METHOD BLANK:	1470948		Ν	Aatrix: Wa	ter						
Associated Lab Sar	mples: 10233818	3005									
			Blank	K R	eporting						
Parar	neter	Units	Resul	t	Limit	Ana	lyzed	Qualif	iers		
Diesel Range Orga	nics	mg/L		ND	0.10	07/06/	13 13:56				
n-Triacontane (S)		%		99	50-150	07/06/	13 13:56				
LABORATORY CO	NTROL SAMPLE 8	LCSD: 1470949			1470950						
			Spike	LCS	LCSD	LCS	LCSD	% Rec		Max	
Parar	meter	Units	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qualifiers
Diesel Range Orga	nics	mg/L	2	1.7	7 1.7	85	83	75-115	2	20	
n-Triacontane (S)		%				89	83	50-150			

QUALIFIERS

Project: 3D15 WASTE MANAGEMENT

Pace Project No.: 10233818

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to changes in sample preparation, dilution of the sample aliquot, or moisture content.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PRL - Pace Reporting Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine (8270 listed analyte) decomposes to Azobenzene.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

D6 The relative percent difference (RPD) between the sample and sample duplicate exceeded laboratory control limits.

S4 Surrogate recovery not evaluated against control limits due to sample dilution.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:3D15 WASTE MANAGEMENTPace Project No.:10233818

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
10233818001	S-1	WI MOD DRO	OEXT/22175	WI MOD DRO	GCSV/11628
10233818002	S-2	WI MOD DRO	OEXT/22175	WI MOD DRO	GCSV/11628
10233818003	S-3	WI MOD DRO	OEXT/22175	WI MOD DRO	GCSV/11628
10233818004	S-4	WI MOD DRO	OEXT/22175	WI MOD DRO	GCSV/11628
10233818005	W1	WI MOD DRO	OEXT/22170	WI MOD DRO	GCSV/11609
10233818001	S-1	TPH GRO/PVOC WI ext.	GCV/11009	WI MOD GRO	GCV/11010
10233818002	S-2	TPH GRO/PVOC WI ext.	GCV/11009	WI MOD GRO	GCV/11010
10233818003	S-3	TPH GRO/PVOC WI ext.	GCV/11009	WI MOD GRO	GCV/11010
10233818004	S-4	TPH GRO/PVOC WI ext.	GCV/11009	WI MOD GRO	GCV/11010
10233818005	W1	WI MOD GRO	GCV/11012		
10233818001	S-1	ASTM D2974	MPRP/40396		
10233818002	S-2	ASTM D2974	MPRP/40396		
10233818003	S-3	ASTM D2974	MPRP/40396		
10233818004	S-4	ASTM D2974	MPRP/40396		

aco 700	e Analytical Labs 0 Elm St., Suite 200	V		AE Pro	j/P.O. # 3D	15	(Lab - P	LEAS	E ensu	ire th	is Pr	ojeci	l# ap	pear	s on	Lab	Rep	ort)	
ini .on	meapons, white some a	han i		Site Na	me WASTE	MAN	AGOMOD	1	_		4		10	2	h	one	-		
pp	blied Engineering, Inc.			Site Ad	dress <u>7299</u>	Penhs	y IVania A	IVC_	Samp	ler Sig	nature	r	////		212				
/ay	vzata, MN 55391-2533	Eax 052	-939-0478		SAVAGE	MA									REQU	ESTED	ANAL	YSES:	
	952-939-9095	2013	000 011 0	Soil	L	ocation			Туре	HNU	Presr- vative	#Con- tain-	GRO	DRO	MTBE &	VOCs 465	Lead	Metals &PCBs	
ŧ	Code	Date	Time	or Air	(all samples	grab unless	noted)	Depth	Soil	Level	(b)	ers L	(c)	(c)		(a)	(a)	(a,α)	ni.
1	5-1	6-27	500	5	BELOW E	. ENA	1 K	12	Ver and	^{e1} 40	<u></u>	ر ۲			V				10
2	5-2		((<u> </u>	. 1)	- <u>0</u>	13	5. A 1A	100	<u>_M</u>	2		./	V				
3	5-3				11 E.	₽5₽	EP-PUMP	4	Janly M	79	M	3	1	1	- 1			<u> </u>	
4	5-4	V	Y	V	h W.		<u></u>	4	1 · · · · ·	6)	M	4	Ľ,		17		<u> </u>		a
5	WI	6-27	1500	W	TANK	BASIN)	5			ļ				-		 	_	-
6			. 	<u> </u>			and Constant (Constant on the Constant of the	<u> </u>	1	ļ	<u> </u>	ļ	_		<u> </u>	<u> </u>	ļ	<u> </u>	$\frac{1}{2}$
7						and an		<u> </u>			 	<u> </u>					<u> </u>		-
8							-	<u> </u>	<u> </u>	<u> </u>	ļ	ļ	 	<u> </u>	<u> </u>	<u></u>	<u> </u>	+	4
9							and a second	ļ	ļ	ļ	ļ			_			_	<u> </u>	-
10				and a second				ļ		<u> </u>	ļ		<u> </u>	ļ					4
11								ļ			ļ			<u> </u>		- 	<u> </u>	<u> </u>	4
12										<u> </u>	ļ	ļ	<u> </u>	<u> </u>	<u> </u>	-			4
12				Alexandra and							ļ						<u> </u>	_	4
13															ļ		1		_
14														<u> </u>		_		-	_
15															<u> </u>	4			-
10													<u> </u>						4
40						,					1						_		
18	2										<u> </u>	_							_
19	J							-	dour a solution									<u> </u>	
20	Comments:						anganan 1999 yang dina dina 200 yang baharan di nang baharan dina dina dina dina dina dina dina di												
							Lata D	مامانى	rogulto i			nort 1	rahle.	Мv	es [1n o			4
S	amples shipped on ice: 🌶 ab: Provide Chromatoorar	¶yes [ns perN] no 1PCA req	uireme	nts: Myes []n	0	Lab: P	vide H	ard Cop	y of La	ab Re	port	K ye	s []	no			1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 - 1994 -	
a b	Metals to be analyzed incl Type Preservative: M = N	ude Arse ethanol;	nic, Bariur H = Hydrc	n, Cadn chloric	nium, Chromium, Le Acid (HCI)	ad, Mercu	ry, Selenium, a	na Silve	er. Also a	an leity Ze		003							
c d	Analyze sample constitue	nts per W LTERED	isconsin E upon arriv	DNR GR val by L/	O and/or DRO Meti BORATORY	nods; Also	perrorm Dry W	eight A	naiysis										
e	California Modified EPA N	ethod 80	15																
		Relino	quished by	\sim		1 -	-		Recei	vea by	4	-	Å.	1-	ÍA	101	6	1.	190
1	Sig Date & Time	1. G	<u> </u>	he	ne	6-2	8-13	Sig	., Compa	ny:	<u>1 Ç</u>	=1	<u>UI</u>	X,	<u> </u>	70	E		
1.	. oig., bac, a mite		A.	App	lied Engineering, In	· 107	30	Prii	nt Name I	3eneäi	tn sig.	:		1	οA	eC		n 1	
	(1)	Proceedings of the second	7114	H	NACE	612.01	13	Sig	., Compa	iny:(A	¢	C		$\mathcal{A}_{\mathcal{O}}$	500	(0/72	
~	Sig Data Time	~ I	I M AM	1	1 1 1 1 1 1		and the second se	-										1 N	

<i>s</i> 7	Sample (Docume	nt Name:	aint Corm	Document R	levised: 28Jan20	13
Pace Analytical	oumpic c	Docum	ent No.:	eiperoini	Pa Issuin	g Authority:	
		F-MN-L-2	13-rev.06	· · ·	Pace Minnes	sota Quality Offic	ce
ample Condition Client Name: Upon Receipt Apple 2 Courier: Fed Ex UPS	USPS		Project	*: WO	#: 102 ;	33818)
Commercial Pace	Other			10233			
ustody Seal on Cooler/Box Present?	No	Seals I	ntact? [Optional: P	roj. Due Date:	Proj. Name:
acking Material: Bubble Wrap Bubble B	Bags 🔲 N	one [Other:_	<i>i</i>	Te	emp Blank?	tres DNo
ermom. Used: B88A912167504 80512447	72337080	ype of Ice	: Wet	Blue	None Sai	mples on ice, cooli	ng process has beg
poler Temp Read (°C): mp should be above freezing to 6°C Correction	o Corrected (Factor:	°C): 1 HVe	<u>.9</u> Da	te and Initials o	iiological Tissue Fro of Person Examinin Com	ozen? Yes g Contents:	HE 6 (22
Chain of Custody Present?	Yes	No	□N/A	1.			
Chain of Custody Filled Out?	Ves	ΠNο	□n/a	2.			
Chain of Custody Relinquished?	Ves	ΠNο	□n/a	3.			
Sampler Name and/or Signature on COC?	Ves	No	□n/a	4.	· · · · · · · · · · · · · · · · · · ·		· · ·
Samples Arrived within Hold Time?	Ves	ΠNο	□n/a	5.			
Short Hold Time Analysis (<72 hr)?	Yes	ENO	□n/a	6.			
Rush Turn Around Time Requested?	Yes	No	□n/a	7.	· · ·	•	
Sufficient Volume?	Ves	No	□n/A	8.		· ·	
Correct Containers Used?	Ves	No	□n/a	9.			
-Pace Containers Used?	Ves	No	□n/a				
Containers Intact?	Yes	□No	□n/a	10.	-		
iltered Volume Received for Dissolved Tests?	Yes	□No	□n/A	11.		· ·	· · · ·
ample Labels Match COC?	Yes	No	□n/a	12. Jon	LABRIS	Pant MA	ah
-Includes Date/Time/ID/Analysis Matrix:	T Rows			W	Hshed or	+ BOILD	3
No containers needing actor base preservation nave been checked? Noncompliances are noted in 13. All containers needing preservation are found to be in compliance with EPA recommendation?	☐Yes			13. Sample #	HNO₃]H₂SO₄ □N	аОН 🗌 НСІ
HNO ₃ , H ₂ SO ₄ , HCl<2; NaOH>12) xceptions: VOA, Coliform, TOC, Oil and Grease,						Lot # of added	
VI-DRU (Water)				Initial when co	mpleted:	preservative:	
rip Blank Present?				14, 15		·····	
rip Blank Custody Seals Present?	Yes	[2]No		£.J.			
Pace Trip Blank Lot # (if purchased): IENT NOTIFICATION/RESOLUTION Person Contacted: Comments/Resolution:			[Date/Time:	Field Data R	equired? []Ye	s 🗍 No
oject Manager Review:		DAM		Date:	7/1/13		

Data File: \\192.168.10.12\chem\10gcs9.i\070813dro.b/070813000074.D

Report Date: 07/09/2013

Sample ID: 10233818001

Data File: \\192.168.10.12\chem\10gcs9.i\070813dro.b/070813000073.D

Report Date: 07/09/2013

Sample ID: 10233818002

Data File: \\192.168.10.12\chem\10gcs9.i\070913dro.b/070913000023.D

Report Date: 07/09/2013

Sample ID: 10233818003

Data File: \\192.168.10.12\chem\10gcs9.i\070913dro.b/070913000024.D

Report Date: 07/09/2013

Sample ID: 10233818004

Data File: \\192.168.10.12\chem\10gcs4.i\070613dro.b/0706F027.D

Report Date: 07/06/2013

Data File: \\192.168.10.12\chem\10gcv3.i\070913a-1.b/G1-19040.d

Report Date: 07/11/2013

Data File: \\192.168.10.12\chem\10gcv3.i\070913a-2.b/G1-19040.d

Report Date: 07/11/2013

Data File: \\192.168.10.12\chem\10gcv3.i\070913a-1.b/G1-19051.d

Report Date: 07/11/2013

Data File: \\192.168.10.12\chem\10gcv3.i\070913a-2.b/G1-19051.d

Report Date: 07/11/2013

Data File: \\192.168.10.12\chem\10gcv3.i\070913a-1.b/G1-19050.d

Report Date: 07/11/2013

Data File: \\192.168.10.12\chem\10gcv3.i\070913a-2.b/G1-19050.d

Report Date: 07/11/2013

Data File: \\192.168.10.12\chem\10gcv3.i\070913a-1.b/G1-19041.d

Report Date: 07/11/2013

Data File: \\192.168.10.12\chem\10gcv3.i\070913a-2.b/G1-19041.d

Report Date: 07/11/2013

Data File: \\192.168.10.12\chem\10gcv3.i\070913b-1.b/G1-19074.d

Report Date: 07/10/2013

Data File: \\192.168.10.12\chem\10gcv3.i\070913b-2.b/G1-19074.d

Report Date: 07/10/2013

Appendix B

Guidance Document 1-03a Spatial Data Reporting Form.

Petroleum Remediation Program

Minnesota Pollution Control Agency

http://www.pca.state.mn.us/programs/lust_p.html

Spatial Data Reporting Form

Guidance Document 1-03a (For complete instructions, see Guidance Document 1-03.)

Part 1. Background

Has a site location data point been submitted for this site (circle/highlight)? YES or NO *If yes, you do not need to complete Part 2 of this form but should complete Part 3 if there are additional site features to report. This form can be submitted electronically if desired (e.g., as an e-mail attachment to the project manager).*

MPCA Site ID: LEAK000 19157 Site Name: Waste Management Data Collection Date: March 15, 2015 Name of Person Who Collected Data: T. Greene Organization Name: Applied Engineering, Inc. Organization Type: Consultant

Part 2. Site Location (use one of the three spatial data reporting formats provided)

Point Description: Center of Former Tank Basin
Collection Method: Map Interpolation, Google Earth
Datum (circle/highlight): WGS84
1) Longitude (dd mm ss.ss): 93°22'27.28"W Latitude (dd mm ss.ss): 44°46'34.61"N

Part 3. Other Site Features N/A

Appendix C

Guidance Document 2-05 Release Information Worksheet

Release Information Worksheet

Guidance Document 2-05

Petroleum Remediation Program

The Release Information Worksheet is necessary in order to meet the Public Record Provision of the Energy Policy Act of 2005. Complete the worksheet below to document tank and release information. This form may be included as an appendix in Guidance Document 4-06 or 4-08, or it may be submitted independently. Please type or print clearly. Do not revise or delete text or questions from this form.

Α.	General information		
	Site name/city: <u>Waste Man</u>	agement, Savage	MPCA Site ID#: LEAK00019157
В.	Tank material (check all th	nat apply):	
	🗌 Steel 🛛 🖾 Fiberglass		
C.	Piping material (check all	that apply):	
	🗌 Steel 🛛 🖾 Fiberglass	☐ Flexible plastic ☐ Copper	Other (specify):
D.	Identify the known or su	spected source(s) of the re	lease or contamination encountered (check all that apply):
	🗌 Piping 🗌 Tank 🗌 D	Dispenser 🗌 Submersible turb	ine pump 🛛 🗌 Delivery problem
	Other (specify):	<u>e exact source was not readil</u> <u>/erfills.</u>	y apparent, therefore it is presumably due to occasional
E.	Identify the cause of the	e release (tank and/or piping) (check all that apply):
	Overfill Mechanical	or physical damage Install	problem 🗌 Corrosion 🔲 Spill 🔲 Unknown
	\boxtimes Other (specify): $\frac{TI}{OV}$	ne exact source was not readi verfills.	ly apparent, therefore it is presumably due to occasional
F.	Identify how the release	was detected (check all that	apply):
	🛛 Removal 🛛 🗌 Line leak	detection	on
	Other (specify):		
G.	Has the site ever stored	E85 in any former or curre	nt tank? 🗌 Yes 🖾 No
н.	Has the site ever stored	leaded gasoline in any for	ner or current tank? 🗌 Yes 🖾 No
We	eb pages and phone num	bers:	
MP	PCA staff: http://	//www.pca.state.mn.us/pca/staff	index.cfm
MP	PCA phone: 651-	296-6300 or 1-800-657-3864	
Pet	etroleum Remediation		Nuct a html

Program Web page:	http://www.pca.state.mn.us/programs/lust_p.html
MPCA Info. Request:	http://www.pca.state.mn.us/about/inforequest.html
MPCA VIC Program:	http://www.pca.state.mn.us/cleanup/vic.html
MPCA Petroleum Brownfields Program:	http://www.pca.state.mn.us/programs/vpic_p.html
PetroFund Web page:	http://www.state.mn.us/cgi-bin/portal/mn/jsp/content.do?id=-536881377&agency=Commerce
PetroFund phone:	651-215-1775 or 1-800-638-0418
State Duty Officer:	651-649-5451 or 1-800-422-0798

c-prp2-05

Appendix E

Geologic Logs of Soil Borings, Minnesota Department of Health Well Record (pending), Construction Diagrams of Temporary Wells

		BORING LOG		Boring # C	SP-1					
AE Project # 3D1	5	Site Name: Waste Management	Boring Date: 5/5/1	4						
Surface Elevation	(ft): ~100	Site Address: 12448 Pennsylvania Ave S.	Drilling Co.: NCG	Subbed to Stev	vens					
Temperature (dec	ą. F): 60		Drill Rig Model: G	Drill Rig Model: Geoprobe 6600						
Sheet 1 of 1	,	Drilling Method: Push Probe	Drill Crew Chief: J	ohn						
		5		Moisture	HNU	Lab				
Dopth	Water	Decoription of		Contont		Comple				
Depth	vvater		Oslar	Content	Level	Sample				
(it)	Levei	watenai/Comments	Color	dry/damp/saturated	(ppm)	Number				
0		Concrete, base course	Provin	Dry	F					
0.5		Peastone then sand	DIOWII	Saturated	5					
2			- Crov	"	10					
3.9		Silt (ML)	Glay Top & Dark Crov	"	10					
5				"	30	1				
5		Boorly-graded Fine Sand (SB)	Grav	"		1				
7			Glay "	"	ND					
8			"	"	ND					
9			"	"	ND					
10			"	"	ND					
10		Refusal	"	"	ND	2				
12						-				
13										
14										
15										
16										
17										
18										
19										
20										
N.		(Use add'l sheet if necessary)	End of Boring Dep	th: 12'		1				
APP	LIED	Boring Abandonment Method: Bentonite	Observed Water L	evel Depth: 2.30)'					
ENGIN	EERING	Surface Patch Type: Cement	Preparer Name: T	homas Greene						
Applied Enginee	rina. Inc.	Comments:	·							
1161 Wayzata Ri	vd F. #60									
Wayzata MN 553	201									
(050)000 0005										
(925)929-9092		"ND" indicates not detected								
LOG-xxxx; 04/08										

		BORING LOG		Boring # G	SP-2				
AE Project # 3D1	5	Site Name: Waste Management	Boring Date: 5/5/	14					
Surface Elevation	(ft): ~100	Site Address: 12448 Pennsylvania Ave S.	Drilling Co.: NCG	/ Subbed to Stev	vens				
Temperature (dec	q. F): 60	Shakopee, MN	Drill Rig Model: 0	Drill Rig Model: Geoprobe 6600					
Sheet 1 of 1	,	Drilling Method: Push Probe	Drill Crew Chief:	John					
				Moisture	HNU	Lab			
Depth	Water	Description of		Content	Level	Sample			
(ft)	Level	Material/Comments	Color	(dry/damp/saturated	(ppm)	Number			
0		Concrete, base course	White	Dry					
0.5		Peastone	Brown	Saturated	ND				
1.5		No recovery	-	-					
3.5		Lean Clay (CL)	Brown	н	30	3			
4		Sandy Silt (ML)	Gray	"					
5			"	"	12				
6		Poorly-graded Fine Sand (SP)	"	"					
7			II	"	ND				
8			"	"					
9			"	"	ND				
10			п	II					
11			п	II	ND				
12			"	"					
13			"	"	ND				
14			"	"					
15		Refusal	"	"	ND	4			
16									
17									
18									
19									
20									
	241 140 Tomore 240 TET 1	(Use add'I sheet if necessary)	End of Boring De	pth: 16'					
APP	LIED	Boring Abandonment Method: Bentonite	Observed Water	Level Depth: 2.03	3'				
ENGIN	EEKING	Surface Patch Type: Cement	Preparer Name:	Thomas Greene					
Applied Enginee	ring, Inc.	Comments:							
1161 Wayzata Bl	vd E. #60								
Wayzata, MN 553	391								
(952)939-9095									
		"ND" indicates not detected							
LOG-xxxx; 04/08									

		BORING LOG		Boring # G	SP-3	
AE Project # 3D15 Surface Elevation Temperature (deg Sheet 1 of 1	5 (ft): ~100 J. F): 60	Site Name: Waste Management Site Address: 12448 Pennsylvania Ave S. Shakopee, MN Drilling Method: Push Probe	Boring Date: 5/5/ Drilling Co.: NCG Drill Rig Model: Drill Crew Chief:	14 3 / Subbed to Stev Geoprobe 6600 John	ens	
Depth (ft)	Water	Description of	Color	Moisture Content		Lab Sample Number
0 0.5		Concrete, base course Poorly-graded Medium Sand (SP)	White Brown	Dry Saturated	ND	
1 2		No recovery	-	-		
3 4		" " " Poorly-graded Fine Sand (SP)	- Gray	-	ND	
5 6				"	ND	
7 8				"	ND	5
9 10 11						
12 13						
14 15						
16 18						
19 20						
	LIED EERING	(Use add'l sheet if necessary) Boring Abandonment Method: Bentonite Surface Patch Type: Cement	End of Boring De Observed Water Preparer Name:	epth: 8' Level Depth: 1.74 Thomas Greene	,'	
Applied Engineering, Inc. 1161 Wayzata Blvd E. #60 Wayzata, MN 55391 (952)939-9095		Comments:				
LOG-xxxx; 04/08						

		BORING LOG		Boring # G	SP-4	
AE Project # 3D1 Surface Elevatior Temperature (deg Sheet 1 of 1	5 n (ft): ~100 g. F): 60	Site Name: Waste Management Site Address: 12448 Pennsylvania Ave S. Shakopee, MN Drilling Method: Push Probe	Boring Date: 5/5/ Drilling Co.: NCG Drill Rig Model: 0 Drill Crew Chief: 0	14 / Subbed to Stev Geoprobe 6600 John	rens	
Depth (ft)	Water	Description of	Color	Moisture Content		Lab Sample Number
0	_0.01		White	Dry	(PP)	
0.5		Poorly-graded Medium Sand (SP)	Brown	Saturated	ND	
1	_	Silty Sand (SM)	Brown	"	ne -	
2			"	"	ND	
3	•		"	"	ND	
4		Poorly-graded Fine Sand (SP)	Grav	"	ND	
5			"	"	ND	
6			"	"		
7			"	"		6
8					ND	0
0						
9						
11						
12						
12						
13						
14						
15						
10						
10						
19						
20						
				-		
				-		
		(Use add'I sheet if necessary)	End of Boring De			
ENGIN	LIEU IEERING	Boring Abandonment Method: Bentonite	Observed Water	Level Depth: 2.61		
		Surface Patch Type: Cement	Preparer Name:	Thomas Greene		
Applied Enginee	ering, Inc.	Comments:				
1161 Wayzata B	vd E. #60					
Wayzata, MN 553	391					
(952)939-9095						
		"ND" indicates not detected				
LOG-xxxx; 04/08						

BORING LOG			Boring # GP-5				
AE Project # 3D15 Surface Elevation (ft): ~100 Temperature (deg. F): 60 Sheet 1 of 1		Site Name: Waste Management Site Address: 12448 Pennsylvania Ave S. Shakopee, MN Drilling Method: Push Probe	Boring Date: 5/5/14 Drilling Co.: NCG / Subbed to Stevens Drill Rig Model: Geoprobe 6600 Drill Crew Chief: John				
Depth	Water	Description of		Moisture Content	HNU Level	Lab Sample	
(ft)	Level	Material/Comments	Color	(dry/damp/saturated	(ppm)	Number	
0		Concrete, base course	White	Dry			
0.5	T	Poorly-graded Medium Sand (SP)	Brown	Saturated	ND		
1.5		Hard Sandy Clay (CL)	Dark Brown	"			
2.5		Poorly-graded Fine Sand (SP)	Brown	"	ND		
3			II	"	ND		
4			н	"			
5			"	"	ND		
6			"	"			
7			"	n	ND	7	
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
10							
19							
20							
	(Use add'l sheet if necessary) End of Boring Depth: 8'						
		Boring Abandonment Method: Bentonite Observed Water Level Depth: 2.33'					
		Surface Patch Type: Cement Preparer Name: Thomas Greene					
Applied Engineering, Inc.		Comments:					
1161 Wayzata Blv	d E. #60						
Wayzata, MN 5539	91						
(952)939-9095							
		"ND" indicates not detected					
LOG-xxxx; 04/08							

BORING LOG		Boring # GP-6					
AE Project # 3D15		Site Name: Waste Management	Boring Date: 5/5/14				
Surface Elevation (ft): ~100		Site Address: 12448 Pennsylvania Ave S.	Drilling Co.: NCG / Subbed to Stevens				
Temperature (deg. F): 60		Shakopee, MN	akopee, MN Drill Rig Model: Geoprobe 660				
Sheet 1 of 1		Drilling Method: Push Probe	Drill Crew Chief: John				
				Moisture	HNU	Lab	
Depth	Water	Description of		Content	Level	Sample	
(ft)	Level	Material/Comments	Color	dry/damp/saturated	(ppm)	Number	
0		Concrete, base course	White	Dry			
0.5		Poorly-graded Medium Sand (SP)	Brown	Saturated	ND		
1.5		Silt (ML)	Dk Brown/Green	"			
2				"	ND		
3		Silty Sand (SM)	Tan	"			
4		Poorly-graded Fine Sand (SP)	Gray / Black	"	190	8	
5			" "	"			
6			Gray	"	ND		
7			"	"			
8			"	"	ND		
9			"	"			
10			п	н	ND		
11			п	н			
12			"	"	ND		
13			"	"			
14			"	"	ND		
15			п	н			
15.8			II.	"	ND		
16		Weathered Limestone - Refusal	White	Dry	ND	9	
17							
18							
19							
20							
		(Use add'I sheet if necessary) End of Boring Depth: 16'					
APPL	IED	Boring Abandonment Method: Bentonite Observed Water Level Depth: 2.61'		'			
ENGINE	EKING	Surface Patch Type: Cement	Preparer Name: 7	homas Greene			
Applied Engineering, Inc.		Comments:					
1161 Wayzata Blvo	d E. #60	Refusal at 16'					
Wayzata, MN 5539	1						
(952)939-9095							
		"ND" indicates not detected					
LOG-xxxx; 04/08							

BORING LOG		Boring # GP-7					
AE Project # 3D15		Site Name: Waste Management	Boring Date: 5/5/14				
Surface Elevation (ft): ~100		Site Address: 12448 Pennsylvania Ave S.	Drilling Co.: NCG / Subbed to Stevens				
Temperature (deg. F): 60		Shakopee, MN	Drill Rig Model: Geoprobe 6600				
Sheet 1 of 1		Drilling Method: Push Probe	Drill Crew Chief: John				
				Moisture	HNU	Lab	
Depth	Water	Description of		Content	Level	Sample	
(ft)	Level	Material/Comments	Color	dry/damp/saturated	(ppm)	Number	
0		Top soil	Dark Brown	Dry			
1				Saturated	ND		
2		Silty Clay (CL)	Brown	"			
3		и и		"	ND		
4		Fine Silty Sand (SM)	Dark Gray	"			
5				"	25	10	
6				"			
7				"	ND		
8		Poorly-graded Fine Sand with some gravel (SP)	Gray	"			
9			"	"	ND		
10			"	"			
11			"	"	ND		
12			"	"			
13			"	"	ND	11	
13.5		Refusal					
15							
16							
17							
18							
19							
20							
2.6.2		(I lse add'l sheet if pecessary)	End of Boring De	onth: 13.5'			
	IIFN	(Use auu i sileer ii riecessary) Eliu ui b0lling Deptil: 13.3 Boring Abandonment Method: Bentonite Observed Water Level Dopth: 3.17'					
ENGINEERING		Surface Patch Type: Natural	Preparer Name: Thomas Greene				
Applied Engineering Inc		Comments:					
1161 Wayzata P	vd E #60	Refusal at 13.5'					
Wayzata MN 653	va L. #00 RQ1						
(952)939-9095							
(002)003-3033		"ND" indicates not detected					
LOG-xxxx; 04/08							

Appendix F

Laboratory Analytical Reports for Soil, Soil Gas and Ground Water

THE LEADER IN ENVIRONMENTAL TESTING

ANALYTICAL REPORT

TestAmerica Laboratories, Inc.

TestAmerica Cedar Falls 704 Enterprise Drive Cedar Falls, IA 50613 Tel: (319)277-2401

TestAmerica Job ID: 310-30191-2 Client Project/Site: 3D15

For:

Applied Engineering, Inc. 1161 Wayzata Blvd. E. Suite 60 Wayzata, Minnesota 55391

Attn: Mr. Thomas Greene

Authorized for release by: 5/19/2014 4:10:29 PM

Derrick Klinkenberg, Project Manager I (319)277-2401 derrick.klinkenberg@testamericainc.com

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Sample Summary	5
Detection Summary	6
Client Sample Results	9
Definitions	39
Surrogate Summary	40
QC Sample Results	42
QC Association	58
Chronicle	62
Certification Summary	67
Method Summary	68
Subcontract Data	69
Chain of Custody	100
Receipt Checklists	104
Clean Canister Certification	105
Pre-Ship Certification	105
Clean Canister Data	107

Job ID: 310-30191-2

Laboratory: TestAmerica Cedar Falls

Narrative

Job Narrative 310-30191-1

Comments

No additional comments.

Receipt

The samples were received on 5/7/2014 9:35 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperatures of the 2 coolers at receipt time were 1.0° C and 1.1° C.

Except:

<< EXPLANATION REQUIRED>> Canister and Flow Controller ID numbers not listed on the COC or Container labels. Unable to match up Flow Controller to Sample / Canister. Logged in as inactive.

GC/MS VOA

Method(s) 8260B: The continuing calibration verification (CCV) associated with batch 47990 recovered above the upper control limit for Dibromomethane (21.1 %D), Chlorodibromomethane (20.5 %D), 1,2-Dichloroethane (22.6 %D), Ethylene dibromide (23.4 %D). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method(s) 8260B: The laboratory control sample (LCS) for batch 47990 recovered outside control limits for the following analytes: 3-Chloro-1-propene, Vinyl chloride, Chloroethane, Dichlorodifluoromethane, Chloromethane, and Dichlorofluoromethane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

Method(s) 8260B: The continuing calibration verification (CCV) associated with batch 48111 recovered above the upper control limit for Carbon tetrachloride (23.2 %D), Dibromomethane (30.4 %D), Styrene (21.9 %D), Dichlorobromomethane (22.5 %D), Chloroethane (31.9 %D), o-Xylene (20.7 %D), 1,1,2,2-Tetrachloroethane (22.1 %D), 1,2,4-Trimethylbenzene (20.5 %D), 1,3,5-Trimethylbenzene (20.3 %D), 1,3-Dichloropropane (22.7 %D), 4-Chlorotoluene (21.5 %D), Chlorodibromomethane (26.8 %D), 1,1,2-Trichloroethane (24.6 %D), 1,2-Dichloroethane (30.7%D), Ethylene Dibromide (29.5 %D), 1,1,1,2-Tetrachloroethane (20.9 %D), and Dichlorofluoromethane (29.5 %D). The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported.

Method(s) 8260B: The laboratory control sample (LCS) for batch 48111 recovered outside control limits for the following analytes: 3-Chloro-1-propene, Chloroethane, and Chloromethane. These analytes were biased high in the LCS and were not detected in the associated samples; therefore, the data have been reported.

No other analytical or quality issues were noted.

GC VOA

Method(s) WI-GRO: Surrogate recovery for the following sample(s) was outside control limits: 8 - GP-6 6' (310-30191-8). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method(s) WI-GRO: Surrogate recovery for the following sample(s) was outside control limits: 3 - GP-2 5' (310-30191-3). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No other analytical or quality issues were noted.

GC Semi VOA

Method(s) WI-DRO: The laboratory control sample (LCS) and / or laboratory control sample duplicate (LCSD) for batch 47696 recovered outside control limits for the following analytes: DRO. These analytes were biased low in the LCS/LCSD and were reran for confirmation; therefore, the data have been reported.

Method(s) WI-DRO: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 47696 recovered outside control limits for the following analytes: DRO.

Method(s) WI-DRO: The laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for batch 47696 recovered

TestAmerica Job ID: 310-30191-2

Job ID: 310-30191-2 (Continued)

Laboratory: TestAmerica Cedar Falls (Continued)

outside control limits for the following analytes: DRO. These analytes were biased low in the LCS/LCSD and were confirmed by reruns; therefore, the data have been reported.

Method(s) WI-DRO: The %RPD of the laboratory control sample (LCS) and laboratory control standard duplicate (LCSD) for preparation batch 47696 recovered outside control limits for the following analytes: DRO.

No other analytical or quality issues were noted.

General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

VOA Prep

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Client: Applied Engineering, Inc. Project/Site: 3D15

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
310-30191-1	1 - GP-1 6'	Soil	05/05/14 16:30	05/07/14 09:35
310-30191-2	2 - GP-1 12'	Soil	05/05/14 16:30	05/07/14 09:35
310-30191-3	3 - GP-2 5'	Soil	05/05/14 16:30	05/07/14 09:35
310-30191-4	4 - GP-2 16'	Soil	05/05/14 16:30	05/07/14 09:35
310-30191-5	5 - GP-3 8'	Soil	05/05/14 16:30	05/07/14 09:35
310-30191-6	6 - GP-4 8'	Soil	05/05/14 16:30	05/07/14 09:35
310-30191-7	7 - GP-5 8'	Soil	05/05/14 16:30	05/07/14 09:35
310-30191-8	8 - GP-6 6'	Soil	05/05/14 16:30	05/07/14 09:35
310-30191-9	9 - GP-6 16'	Soil	05/05/14 16:30	05/07/14 09:35
310-30191-10	10 - GP-7 6'	Soil	05/05/14 16:30	05/07/14 09:35
310-30191-11	11 - GP-7 13.5'	Soil	05/05/14 16:30	05/07/14 09:35
310-30191-15	1 - GP-1	Ground Water	05/05/14 16:30	05/07/14 09:35
310-30191-16	2 - GP-6	Ground Water	05/05/14 16:30	05/07/14 09:35
310-30191-17	3 - GP-3	Ground Water	05/05/14 16:30	05/07/14 09:35
310-30191-18	4 - GP-4	Ground Water	05/05/14 16:30	05/07/14 09:35
310-30191-19	5 - GP-5	Ground Water	05/05/14 16:30	05/07/14 09:35
310-30191-20	7 - GP-7	Ground Water	05/05/14 16:30	05/07/14 09:35
310-30191-21	MeOH Blank	Soil	05/05/14 00:00	05/07/14 09:35
310-30191-22	Trip Blank	Water	05/05/14 00:00	05/07/14 09:35
310-30191-23	Air 1	Air	05/05/14 16:30	05/07/14 09:35
310-30191-24	Air 2	Air	05/05/14 16:30	05/07/14 09:35

RL

6.59

MDL Unit

mg/Kg

Result Qualifier

85.2 *

Diesel Range Organics (DRO)

Analyte

Client Sample ID: 1 - GP-1 6'

Lab Sample ID: 310-30191-1

Prep Type

Silica Gel

Dil Fac D Method

1 🔅 WI-DRO

5	
8	
9	

L								Cleanup
Client Sample ID: 2 - GP-1 12'						Lab	Sample IE): 310-30191-2
No Detections.								
Client Sample ID: 3 - GP-2 5'						Lab	Sample ID): 310-30191-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Xylenes, Total	0.385		0.340		mg/Kg	<u> </u>	WI-GRO	Total/NA
Diesel Range Organics (DRO)	7230	*	663		mg/Kg	100 [‡]	WI-DRO	Silica Gel
								Cleanup
Client Sample ID: 4 - GP-2 16'						Lab	Sample ID): 310-30191-4
No Detections.								
Client Sample ID: 5 - GP-3 8'						Lab	Sample IE): 310-30191-5
No Detections.								
Client Sample ID: 6 - GP-4 8'						Lab	Sample IE): 310-30191-6
No Detections.								
Client Sample ID: 7 - GP-5 8'						Lab	Sample IE): 310-30191-7
No Detections.								
Client Sample ID: 8 - GP-6 6'						Lab	Sample IE): 310-30191-8
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Ethylbenzene	0.498		0.123		mg/Kg	<u>1</u>	WI-GRO	Total/NA
Xylenes, Total	2.41		0.368		mg/Kg	1 [‡]	WI-GRO	Total/NA
Diesel Range Organics (DRO)	25.6	*	8.31		mg/Kg	1 [‡]	WI-DRO	Silica Gel Cleanup
Client Sample ID: 9 - GP-6 16'						Lab	Sample IE): 310-30191-9
No Detections.								
Client Sample ID: 10 - GP-7 6'						Lab S	Sample ID:	310-30191-10
No Detections.								
Client Sample ID: 11 - GP-7 13.5	1					Lab S	Sample ID:	310-30191-11
No Detections.								
Client Sample ID: 1 - GP-1						Lab S	Sample ID:	310-30191-15

Detection Summary

RL

10.0

MDL Unit

Result Qualifier

Client: Applied Engineering, Inc. Project/Site: 3D15

Analyte

Client Sample ID: 1 - GP-1 (Continued)

Lat	o S	ample	ID: 310-30191-15	
Dil Fac	D	Method	Prep Type	

Acetone	20.9		10.0		ug/L	1		8260B	Total/NA
Toluene	1.83		1.00		ug/L	1		8260B	Total/NA
Diesel Range Organics (DRO)	10.2		0.119		mg/L	1		WI-DRO	Total/NA
Client Sample ID: 2 - GP-6						Lat	o S	ample ID:	310-30191-16
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Acetone	10.4		10.0		ug/L	1	_	8260B	Total/NA
Diesel Range Organics (DRO)	2.11		0.111		mg/L	1		WI-DRO	Total/NA
Client Sample ID: 3 - GP-3						Lat	כ S	ample ID:	310-30191-17
- Analyte	Result	Qualifier	RL	MDL	Unit	Lak Dil Fac	ס כ ס	Method	310-30191-17 Prep Type
Analyte Acetone	Result	Qualifier	RL 10.0	MDL	Unit ug/L	<u>Dil Fac</u> 1	ס S 	Method 8260B	310-30191-17 Prep Type Total/NA
Analyte Acetone Diesel Range Organics (DRO)	Result 12.1 0.476	Qualifier	RL 10.0 0.112	MDL	Unit ug/L mg/L	Dil Fac 1 1	D S	Method 8260B WI-DRO	310-30191-17 Prep Type Total/NA Total/NA
Analyte Acetone Diesel Range Organics (DRO) Client Sample ID: 4 - GP-4	Result 12.1 0.476	Qualifier	RL 10.0 0.112	MDL	Unit ug/L mg/L	Dil Fac 1 1 Lak	D S	Ample ID: Method 8260B WI-DRO Ample ID:	310-30191-17 Prep Type Total/NA Total/NA 310-30191-18
Analyte Acetone Diesel Range Organics (DRO) Client Sample ID: 4 - GP-4 Analyte Analyte	Result 12.1 0.476 Result	Qualifier	RL 10.0 0.112 RL	MDL	Unit ug/L mg/L Unit	Lat Dil Fac 1 1 Lat Dil Fac	S D S S S D	Method 8260B WI-DRO Cample ID: Method	310-30191-17 Prep Type Total/NA Total/NA 310-30191-18 Prep Type
Analyte Acetone Diesel Range Organics (DRO) Client Sample ID: 4 - GP-4 Analyte Acetone	Result 12.1 0.476 Result 11.1 11.1	Qualifier	RL 10.0 0.112 RL 10.0	MDL	Unit ug/L mg/L Unit ug/L	Lak 		Method 8260B WI-DRO ample ID: Method 8260B	310-30191-17 Prep Type Total/NA Total/NA 310-30191-18 Prep Type Total/NA

Client Sample ID: 5 - GP-5	Lab	Sample ID	: 310-30191-19			
Analyte	Result Qualifier	RL	MDL Unit	Dil Fac D	Method	Prep Type
Acetone	14.3	10.0	ug/L	1	8260B	Total/NA
Diesel Range Organics (DRO)	0.587	0.108	mg/L	1	WI-DRO	Total/NA

Client	Samp	le ID	: 7 -	GP-7

Lab Sample ID: 310-30191-20

Analyte	Result	Qualifier RL	MDL U	Init	Dil Fac	D	Method	Prep Type
Acetone	14.7	10.0	u	g/L	1	_	8260B	Total/NA
Benzene	1.41	0.500	u	g/L	1		8260B	Total/NA
n-Butylbenzene	5.71	1.00	u	g/L	1		8260B	Total/NA
sec-Butylbenzene	3.93	1.00	u	g/L	1		8260B	Total/NA
4-Chlorotoluene	4.48	1.00	u	g/L	1		8260B	Total/NA
Ethylbenzene	172	1.00	u	g/L	1		8260B	Total/NA
Isopropylbenzene	22.3	1.00	u	g/L	1		8260B	Total/NA
p-Isopropyltoluene	1.63	1.00	u	g/L	1		8260B	Total/NA
Naphthalene	104	5.00	u	g/L	1		8260B	Total/NA
N-Propylbenzene	57.0	1.00	u	g/L	1		8260B	Total/NA
Toluene	2.65	1.00	u	g/L	1		8260B	Total/NA
1,2,3-Trichloropropane	1.78	1.00	u	g/L	1		8260B	Total/NA
1,2,4-Trimethylbenzene	637	1.00	u	g/L	1		8260B	Total/NA
1,3,5-Trimethylbenzene	43.0	1.00	u	g/L	1		8260B	Total/NA
Xylenes, Total	1170	30.0	u	g/L	10		8260B	Total/NA
Diesel Range Organics (DRO)	1.53	0.112	m	ng/L	1		WI-DRO	Total/NA

Client Sample ID: MeOH Blank

No Detections.

This Detection Summary does not include radiochemical test results.

TestAmerica Cedar Falls

Lab Sample ID: 310-30191-21

Client Sample ID: Trip Blank

No Detections.

Client Sample ID: Air 1

Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac) Method	Prep Type
Propylene	42.2	·	10.0		ppb v/v	2	TO-15	Total/NA
1,3-Butadiene	3.22		0.400		ppb v/v	2	TO-15	Total/NA
Trichlorofluoromethane	0.484		0.400		ppb v/v	2	TO-15	Total/NA
Acetone	18.3		10.0		ppb v/v	2	TO-15	Total/NA
Methyl Ethyl Ketone	1.70		1.00		ppb v/v	2	TO-15	Total/NA
Benzene	0.787		0.400		ppb v/v	2	TO-15	Total/NA
Toluene	1.93		0.400		ppb v/v	2	TO-15	Total/NA
Chlorobenzene	5.24		0.400		ppb v/v	2	TO-15	Total/NA
m,p-Xylene	1.05		1.00		ppb v/v	2	TO-15	Total/NA
Xylene, o-	0.957		0.400		ppb v/v	2	TO-15	Total/NA
1,3,5-Trimethylbenzene	2.13		0.400		ppb v/v	2	TO-15	Total/NA

Client Sample ID: Air 2

Lab Sample ID: 310-30191-24

Analyte	Result	Qualifier	RL	RL	Unit	Dil Fac	D	Method	Prep Type
1,3-Butadiene	0.732		0.606		ppb v/v	3.03	_	TO-15	Total/NA
Acetone	52.8		15.2		ppb v/v	3.03		TO-15	Total/NA
n-Hexane	0.969		0.606		ppb v/v	3.03		TO-15	Total/NA
Chloroform	2.45		0.606		ppb v/v	3.03		TO-15	Total/NA
Benzene	1.36		0.606		ppb v/v	3.03		TO-15	Total/NA
n-Heptane	0.616		0.606		ppb v/v	3.03		TO-15	Total/NA
Toluene	2.95		0.606		ppb v/v	3.03		TO-15	Total/NA
Tetrachloroethene	3.71		0.606		ppb v/v	3.03		TO-15	Total/NA
Ethylbenzene	0.641		0.606		ppb v/v	3.03		TO-15	Total/NA
m,p-Xylene	1.67		1.52		ppb v/v	3.03		TO-15	Total/NA
1,2,4-Trimethylbenzene	1.05		0.606		ppb v/v	3.03		TO-15	Total/NA

5

Lab Sample ID: 310-30191-22

Lab Sample ID: 310-30191-23

Client Sample ID: 1 - GP-1 6	5'			Lab Sam	b Sample ID: 310-30191-1				
Date Collected: 05/05/14 16:30								Mat Percent Soli	rix: Soil ds: 80.6
_ Method: WI-GRO - Wisconsin - (Gasoline Range	organics (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.121		0.121		mg/Kg	 	05/08/14 11:02	05/09/14 20:25	1
Toluene	<0.121		0.121		mg/Kg	¢	05/08/14 11:02	05/09/14 20:25	1
Ethylbenzene	<0.121		0.121		mg/Kg	¢	05/08/14 11:02	05/09/14 20:25	1
Methyl tert-butyl ether	<0.121		0.121		mg/Kg	¢	05/08/14 11:02	05/09/14 20:25	1
Xylenes, Total	<0.362		0.362		mg/Kg	₽	05/08/14 11:02	05/09/14 20:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		80 - 120				05/08/14 11:02	05/09/14 20:25	1
- Method: WI-DRO - Wisconsin - I	Diesel Range O	roanics (GC	c) - Silica Gel Cl	eanup					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	85.2	*	6.59		mg/Kg	<u></u>	05/08/14 11:42	05/15/14 08:06	1
- General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	19.4		0.100		%			05/08/14 09:00	1
Percent Solids	80.6		0.100		%			05/08/14 09:00	1

Client Sample ID: 2 - GP-1	12'						Lab Sam	ple ID: 310-3	0191-2
Date Collected: 05/05/14 16:30								Mat	rix: Soil
Date Received: 05/07/14 09:35								Percent Soli	ds: 82.8
_ Method: WI-GRO - Wisconsin⊸	- Gasoline Range	Organics	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.123		0.123		mg/Kg	<u>\$</u>	05/08/14 11:02	05/09/14 21:05	1
Toluene	<0.123		0.123		mg/Kg	\$	05/08/14 11:02	05/09/14 21:05	1
Ethylbenzene	<0.123		0.123		mg/Kg	¢	05/08/14 11:02	05/09/14 21:05	1
Methyl tert-butyl ether	<0.123		0.123		mg/Kg	¢	05/08/14 11:02	05/09/14 21:05	1
Xylenes, Total	<0.369		0.369		mg/Kg	₽	05/08/14 11:02	05/09/14 21:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		80 - 120				05/08/14 11:02	05/09/14 21:05	1
- Method: WI-DRO - Wisconsin -	Diesel Range O	rganics (GC	C) - Silica Gel C	eanup					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	<6.71	*	6.71		mg/Kg	\\\\	05/08/14 11:42	05/16/14 16:57	1
- General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	17.2		0.100		%			05/08/14 09:00	1
Percent Solids	82.8		0.100		%			05/08/14 09:00	1

Client Sample ID: 3 - GP-2	lient Sample ID: 3 - GP-2 5'								0191-3
Date Collected: 05/05/14 16:30								Mat	rix: Soil
Date Received: 05/07/14 09:35								Percent Soli	ds: 88.1
_ Method: WI-GRO - Wisconsin -	Gasoline Range	organics	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.113		0.113		mg/Kg	₿ Ø	05/08/14 11:02	05/10/14 03:04	1
Toluene	<0.113		0.113		mg/Kg	¢	05/08/14 11:02	05/10/14 03:04	1
Ethylbenzene	<0.113		0.113		mg/Kg	¢	05/08/14 11:02	05/10/14 03:04	1
Methyl tert-butyl ether	<0.113		0.113		mg/Kg	¢	05/08/14 11:02	05/10/14 03:04	1
Xylenes, Total	0.385		0.340		mg/Kg	¢	05/08/14 11:02	05/10/14 03:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	139	X	80 - 120				05/08/14 11:02	05/10/14 03:04	1
- Method: WI-DRO - Wisconsin - I	Diesel Range O	rganics (GC	c) - Silica Gel C	eanup					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	7230	*	663		mg/Kg	\\\	05/08/14 11:42	05/16/14 21:43	100
General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	11.9		0.100		%			05/08/14 09:00	1
Percent Solids	88.1		0.100		%			05/08/14 09:00	1

Client Sample ID: 4 - GP-2	16'						Lab Sam	ple ID: 310-3	0191-4
Date Collected: 05/05/14 16:30								Mat	rix: Soil
Date Received: 05/07/14 09:35								Percent Soli	ds: 84.6
_ Method: WI-GRO - Wisconsin	- Gasoline Range	organics	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.119		0.119		mg/Kg	<u> </u>	05/08/14 11:02	05/09/14 21:45	1
Toluene	<0.119		0.119		mg/Kg	¢	05/08/14 11:02	05/09/14 21:45	1
Ethylbenzene	<0.119		0.119		mg/Kg	¢	05/08/14 11:02	05/09/14 21:45	1
Methyl tert-butyl ether	<0.119		0.119		mg/Kg	¢	05/08/14 11:02	05/09/14 21:45	1
Xylenes, Total	<0.356		0.356		mg/Kg	¢	05/08/14 11:02	05/09/14 21:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		80 - 120				05/08/14 11:02	05/09/14 21:45	1
- Method: WI-DRO - Wisconsin	- Diesel Range O	rganics (GC	C) - Silica Gel C	leanup					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	<4.76	*	4.76		mg/Kg	\	05/08/14 11:42	05/16/14 17:29	1
- General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	15.4		0.100		%			05/08/14 09:00	1
Percent Solids	84.6		0.100		%			05/08/14 09:00	1

Client Sample ID: 5 - GP-3	8'						Lab Sam	ple ID: 310-3	0191-5
Date Collected: 05/05/14 16:30								Mat	rix: Soil
Date Received: 05/07/14 09:35								Percent Soli	ds: 81.1
_ Method: WI-GRO - Wisconsin	- Gasoline Range	Organics	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.122		0.122		mg/Kg	₩	05/08/14 11:02	05/09/14 22:25	1
Toluene	<0.122		0.122		mg/Kg	¢	05/08/14 11:02	05/09/14 22:25	1
Ethylbenzene	<0.122		0.122		mg/Kg	¢	05/08/14 11:02	05/09/14 22:25	1
Methyl tert-butyl ether	<0.122		0.122		mg/Kg	¢	05/08/14 11:02	05/09/14 22:25	1
Xylenes, Total	<0.367		0.367		mg/Kg	¢	05/08/14 11:02	05/09/14 22:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		80 - 120				05/08/14 11:02	05/09/14 22:25	1
- Method: WI-DRO - Wisconsin	- Diesel Range O	rganics (GC	C) - Silica Gel C	eanup					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	<7.50	*	7.50		mg/Kg	<u></u>	05/08/14 11:42	05/16/14 18:01	1
- General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	18.9		0.100		%			05/08/14 09:00	1
Percent Solids	81.1		0.100		%			05/08/14 09:00	1

Client Sample ID: 6 - GP-4	Lab Sample ID: 310-30191-								
Date Collected: 05/05/14 16:30								Mat	rix: Soil
Date Received: 05/07/14 09:35								Percent Soli	ds: 80.4
_ Method: WI-GRO - Wisconsin	- Gasoline Range	Organics	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.122		0.122		mg/Kg	₩	05/08/14 11:02	05/09/14 23:04	1
Toluene	<0.122		0.122		mg/Kg	¢	05/08/14 11:02	05/09/14 23:04	1
Ethylbenzene	<0.122		0.122		mg/Kg	¢	05/08/14 11:02	05/09/14 23:04	1
Methyl tert-butyl ether	<0.122		0.122		mg/Kg	¢	05/08/14 11:02	05/09/14 23:04	1
Xylenes, Total	<0.367		0.367		mg/Kg	₽	05/08/14 11:02	05/09/14 23:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		80 - 120				05/08/14 11:02	05/09/14 23:04	1
_ Method: WI-DRO - Wisconsin	- Diesel Range O	rganics (GC	C) - Silica Gel C	eanup					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	<8.60	*	8.60		mg/Kg	<u></u>	05/08/14 11:42	05/16/14 18:33	1
- General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	19.6		0.100		%			05/08/14 09:00	1
Percent Solids	80.4		0 100		%			05/08/14 09:00	1

Client Sample ID: 7 - GP-5		Lab Sample ID: 310-30191-							
Date Collected: 05/05/14 16:30								Mat	rix: Soil
Date Received: 05/07/14 09:35								Percent Soli	ds: 81.0
_ Method: WI-GRO - Wisconsin	- Gasoline Range	Organics	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.122		0.122		mg/Kg	 	05/08/14 11:02	05/09/14 23:44	1
Toluene	<0.122		0.122		mg/Kg	¢	05/08/14 11:02	05/09/14 23:44	1
Ethylbenzene	<0.122		0.122		mg/Kg	¢	05/08/14 11:02	05/09/14 23:44	1
Methyl tert-butyl ether	<0.122		0.122		mg/Kg	¢	05/08/14 11:02	05/09/14 23:44	1
Xylenes, Total	<0.365		0.365		mg/Kg	¢	05/08/14 11:02	05/09/14 23:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		80 - 120				05/08/14 11:02	05/09/14 23:44	1
- Method: WI-DRO - Wisconsin -	- Diesel Range O	rganics (GC	C) - Silica Gel C	leanup					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	<4.84	*	4.84		mg/Kg	<u>Å</u>	05/08/14 11:42	05/16/14 19:04	1
- General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	19.0		0.100		%			05/08/14 09:00	1
Percent Solids	81.0		0.100		%			05/08/14 09:00	1

Client Sample ID: 8 - GP-6	6'						Lab Sam	ple ID: 310-3	0191-8
Date Collected: 05/05/14 16:30								Mat	rix: Soil
Date Received: 05/07/14 09:35								Percent Soli	ds: 82.7
Method: WI-GRO - Wisconsin -	Gasoline Range	Organics	(60)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.123		0.123		mg/Kg	₩ \[\]	05/08/14 14:16	05/09/14 07:07	1
Toluene	<0.123		0.123		mg/Kg	₽	05/08/14 14:16	05/09/14 07:07	1
Ethylbenzene	0.498		0.123		mg/Kg	₽	05/08/14 14:16	05/09/14 07:07	1
Methyl tert-butyl ether	<0.123		0.123		mg/Kg	¢	05/08/14 14:16	05/09/14 07:07	1
Xylenes, Total	2.41		0.368		mg/Kg	₽	05/08/14 14:16	05/09/14 07:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	138	X	80 - 120				05/08/14 14:16	05/09/14 07:07	1
_ Method: WI-DRO - Wisconsin -	Diesel Range O	roanics (GC	C) - Silica Gel C	eanup					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	25.6	*	8.31		mg/Kg	<u></u>	05/08/14 11:42	05/16/14 19:36	1
– General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	17.3		0.100		%			05/08/14 09:00	1
Percent Solids	82.7		0 100		0/2			05/08/14 00:00	1

Client Sample ID: 9 - GP-6	ient Sample ID: 9 - GP-6 16'								0191-9
Date Collected: 05/05/14 16:30								Mat	rix: Soil
Date Received: 05/07/14 09:35								Percent Soli	ds: 85.7
– Method: WI-GRO - Wisconsin -	Gasoline Range	Organics (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.119		0.119		mg/Kg	\$	05/08/14 14:16	05/09/14 07:47	1
Toluene	<0.119		0.119		mg/Kg	¢	05/08/14 14:16	05/09/14 07:47	1
Ethylbenzene	<0.119		0.119		mg/Kg	¢	05/08/14 14:16	05/09/14 07:47	1
Methyl tert-butyl ether	<0.119		0.119		mg/Kg	¢	05/08/14 14:16	05/09/14 07:47	1
Xylenes, Total	<0.356		0.356		mg/Kg	₽	05/08/14 14:16	05/09/14 07:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		80 - 120				05/08/14 14:16	05/09/14 07:47	1
- Method: WI-DRO - Wisconsin -	Diesel Range O	roanics (GC	c) - Silica Gel C	eanup					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	<6.68	*	6.68		mg/Kg	<u></u>	05/08/14 11:42	05/16/14 20:08	1
- General Chemistry									
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Percent Moisture	14.3		0.100		%			05/08/14 09:00	1
Percent Solids	85.7		0 100		%			05/08/14 00:00	1

Client Sample ID: 10 - GP-7	ient Sample ID: 10 - GP-7 6'							Lab Sample ID: 310-30191-10				
Date Collected: 05/05/14 16:30								Mat	rix: Soil			
Date Received: 05/07/14 09:35								Percent Soli	ds: 81.9			
_ Method: WI-GRO - Wisconsin -	Gasoline Range	Organics ((GC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Benzene	<0.122		0.122		mg/Kg	\$	05/08/14 14:16	05/09/14 08:27	1			
Toluene	<0.122		0.122		mg/Kg	¢	05/08/14 14:16	05/09/14 08:27	1			
Ethylbenzene	<0.122		0.122		mg/Kg	¢	05/08/14 14:16	05/09/14 08:27	1			
Methyl tert-butyl ether	<0.122		0.122		mg/Kg	¢	05/08/14 14:16	05/09/14 08:27	1			
Xylenes, Total	<0.366		0.366		mg/Kg	¢	05/08/14 14:16	05/09/14 08:27	1			
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac			
4-Bromofluorobenzene (Surr)	95		80 - 120				05/08/14 14:16	05/09/14 08:27	1			
- Method: WI-DRO - Wisconsin -	Diesel Range O	roanics (GC	c) - Silica Gel C	eanup								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Diesel Range Organics (DRO)	<8.50	*	8.50		mg/Kg	<u>Å</u>	05/08/14 11:42	05/16/14 20:40	1			
- General Chemistry												
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac			
Percent Moisture	18.1		0.100		%			05/08/14 09:00	1			
Percent Solids	81.9		0.100		%			05/08/14 09:00	1			

Client Sample ID: 11 - GP-7 13.5' Lab Sample ID: 310-30191-11 Date Collected: 05/05/14 16:30 Matrix: Soil Date Received: 05/07/14 09:35 Percent Solids: 82.0 Method: WI-GRO - Wisconsin - Gasoline Range Organics (GC) MDL Unit Result Qualifier Dil Fac Analyte RL D Prepared Analyzed ☆ Benzene <0.119 0.119 05/08/14 14:16 05/09/14 09:07 mg/Kg 1 ₽ Toluene < 0.119 0.119 mg/Kg 05/08/14 14:16 05/09/14 09:07 1 Ethylbenzene <0.119 0.119 mg/Kg ₽ 05/08/14 14:16 05/09/14 09:07 1 ¢ Methyl tert-butyl ether <0.119 0.119 05/08/14 14:16 05/09/14 09:07 mg/Kg 1 ð Xylenes, Total <0.358 0.358 mg/Kg 05/08/14 14:16 05/09/14 09:07 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 89 80 - 120 05/08/14 14:16 05/09/14 09:07 1 Method: WI-DRO - Wisconsin - Diesel Range Organics (GC) - Silica Gel Cleanup Analyte Result Qualifier MDL D Dil Fac RL Unit Prepared Analyzed Diesel Range Organics (DRO) <8.63 8.63 ☆ 05/08/14 11:42 mg/Kg 05/16/14 21:11 1 **General Chemistry** Analyte Result Qualifier RL RL Unit D Prepared Analyzed Dil Fac 0.100 % 05/08/14 09:00 **Percent Moisture 18.0** 1 82.0 0.100 % 05/08/14 09:00 **Percent Solids** 1

6

Lab Sample ID: 310-30191-15 Matrix: Ground Water

5

6

17

Client Sample ID: 1 - GP-1 Date Collected: 05/05/14 16:30 Date Received: 05/07/14 09:35

Method: 8260B - Volatile Organ	nic Compounds (GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	20.9		10.0		ug/L			05/13/14 15:27	1
Allyl chloride	<2.00	*	2.00		ug/L			05/13/14 15:27	1
Benzene	<0.500		0.500		ug/L			05/13/14 15:27	1
Bromobenzene	<1.00		1.00		ug/L			05/13/14 15:27	1
Bromochloromethane	<5.00		5.00		ug/L			05/13/14 15:27	1
Bromodichloromethane	<1.00		1.00		ug/L			05/13/14 15:27	1
Bromoform	<5.00		5.00		ug/L			05/13/14 15:27	1
Bromomethane	<4.00		4.00		ug/L			05/13/14 15:27	1
2-Butanone (MEK)	<10.0		10.0		ug/L			05/13/14 15:27	1
n-Butylbenzene	<1.00		1.00		ug/L			05/13/14 15:27	1
sec-Butylbenzene	<1.00		1.00		ug/L			05/13/14 15:27	1
tert-Butylbenzene	<1.00		1.00		ug/L			05/13/14 15:27	1
Carbon tetrachloride	<2.00		2.00		ug/L			05/13/14 15:27	1
Chlorobenzene	<1.00		1.00		ug/L			05/13/14 15:27	1
Chlorodibromomethane	<5.00		5.00		ug/L			05/13/14 15:27	1
Dichlorofluoromethane	<1.00	*	1.00		ug/L			05/13/14 15:27	
Chloroethane	<4.00	*	4.00		ug/L			05/13/14 15:27	1
Chloroform	<1.00		1.00		ug/L			05/13/14 15:27	1
Chloromethane	<3.00	*	3.00		ua/L			05/13/14 15:27	1
4-Chlorotoluene	<1.00		1.00		ua/L			05/13/14 15:27	1
2-Chlorotoluene	<1.00		1.00		ua/L			05/13/14 15:27	1
1.2-Dibromo-3-Chloropropane	<10.0		10.0		ua/L			05/13/14 15:27	
1 2-Dibromoethane (EDB)	<10.0		10.0		ug/l			05/13/14 15:27	1
Dibromomethane	<1.00		1.00		ua/L			05/13/14 15:27	1
1.2-Dichlorobenzene	<1.00		1.00		ua/L			05/13/14 15:27	
1 3-Dichlorobenzene	<1.00		1 00		ug/l			05/13/14 15:27	1
1.4-Dichlorobenzene	<1.00		1.00		ua/L			05/13/14 15:27	1
Dichlorodifluoromethane	<3.00	*	3 00		ug/l			05/13/14 15:27	
1.2-Dichloroethane	<1.00		1.00		ua/L			05/13/14 15:27	1
1.1-Dichloroethane	<1.00		1.00		ua/L			05/13/14 15:27	1
1.1-Dichloroethene	<2.00		2.00		ua/L			05/13/14 15:27	1
cis-1.2-Dichloroethene	<1.00		1.00		ua/L			05/13/14 15:27	1
trans-1.2-Dichloroethene	<1.00		1.00		ua/L			05/13/14 15:27	1
1.2-Dichloropropane	<1.00		1.00		ua/L			05/13/14 15:27	
1.3-Dichloropropane	<1.00		1.00		ua/L			05/13/14 15:27	1
2.2-Dichloropropane	<4.00		4.00		ua/L			05/13/14 15:27	1
1.1-Dichloropropene	<1.00		1.00		ua/L			05/13/14 15:27	
cis-1.3-Dichloropropene	<5.00		5.00		ua/L			05/13/14 15:27	1
trans-1 3-Dichloropropene	<5.00		5.00		ug/L			05/13/14 15:27	1
Diethyl ether	<1 70		1 70		ug/l			05/13/14 15:27	
Ethylbenzene	<1.00		1.00		ug/L			05/13/14 15:27	1
Hexachlorobutadiene	<5.00		5.00		ug/L			05/13/14 15:27	1
Isopropylbenzene	<1 00		1 00		<u>-</u>			05/13/14 15:27	· · · · · · · · · · · · · · · · · · ·
n-Isopropyltoluene	<1.00		1.00		∽g,⊏ ua/l			05/13/14 15:27	, 1
4-Methyl-2-pentanone (MIRK)	<10.00		10.0		∽g,⊏ ua/l			05/13/14 15:27	, 1
Methylene Chloride	< 10.0 < 5.00		5.00		~9'⊏ ua/l			05/13/14 15:27	
Methyl tert-butyl ether	<1.00		1 00		ua/l			05/13/14 15:27	1
Nanhthalene	~5.00		5.00		ug/L			05/13/14 15:27	1
	~0.00		1 00		ug/L			05/13/14 15:27	
	<1.00		1.00		uy/L			00/10/14 10.27	1

TestAmerica Job ID: 310-30191-2

Client Sample ID: 1 - GP-1 Date Collected: 05/05/14 16:30 Date Received: 05/07/14 09:35

Lab Sample ID: 310-30191-15 Matrix: Ground Water

Method: 8260B - Volatile Organ	ic Compounds ((GC/MS) (Coi	ntinued)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Styrene	<1.00		1.00		ug/L			05/13/14 15:27	1	
1,1,1,2-Tetrachloroethane	<1.00		1.00		ug/L			05/13/14 15:27	1	6
1,1,2,2-Tetrachloroethane	<1.00		1.00		ug/L			05/13/14 15:27	1	
Tetrachloroethene	<1.00		1.00		ug/L			05/13/14 15:27	1	
Tetrahydrofuran	<50.0		50.0		ug/L			05/13/14 15:27	1	
Toluene	1.83		1.00		ug/L			05/13/14 15:27	1	8
1,2,3-Trichlorobenzene	<5.00		5.00		ug/L			05/13/14 15:27	1	U
1,2,4-Trichlorobenzene	<5.00		5.00		ug/L			05/13/14 15:27	1	0
1,1,1-Trichloroethane	<1.00		1.00		ug/L			05/13/14 15:27	1	3
1,1,2-Trichloroethane	<1.00		1.00		ug/L			05/13/14 15:27	1	
Trichloroethene	<1.00		1.00		ug/L			05/13/14 15:27	1	
Trichlorofluoromethane	<4.00		4.00		ug/L			05/13/14 15:27	1	
1,2,3-Trichloropropane	<1.00		1.00		ug/L			05/13/14 15:27	1	
1,1,2-Trichlorotrifluoroethane	<2.00		2.00		ug/L			05/13/14 15:27	1	
1,2,4-Trimethylbenzene	<1.00		1.00		ug/L			05/13/14 15:27	1	
1,3,5-Trimethylbenzene	<1.00		1.00		ug/L			05/13/14 15:27	1	
Vinyl chloride	<1.00	*	1.00		ug/L			05/13/14 15:27	1	13
Xylenes, Total	<3.00		3.00		ug/L			05/13/14 15:27	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	95		75 - 110					05/13/14 15:27	1	
Dibromofluoromethane (Surr)	96		75 - 120					05/13/14 15:27	1	
Toluene-d8 (Surr)	96		80 - 120					05/13/14 15:27	1	
Method: WI-DRO - Wisconsin -	Diesel Range O	rganics (GC)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	17
Diesel Range Organics (DRO)	10.2		0.119		mg/L		05/09/14 08:22	05/13/14 20:41	1	

Lab Sample ID: 310-30191-16 Matrix: Ground Water

5

6

Client Sample ID: 2 - GP-6 Date Collected: 05/05/14 16:30 Date Received: 05/07/14 09:35

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Acetone	10.4	10.0	ug/L		05/13/14 15:03	1
Allyl chloride	<2.00 *	2.00	ug/L		05/13/14 15:03	1
Benzene	<0.500	0.500	ug/L		05/13/14 15:03	1
Bromobenzene	<1.00	1.00	ug/L		05/13/14 15:03	1
Bromochloromethane	<5.00	5.00	ug/L		05/13/14 15:03	1
Bromodichloromethane	<1.00	1.00	ug/L		05/13/14 15:03	1
Bromoform	<5.00	5.00	ug/L		05/13/14 15:03	1
Bromomethane	<4.00	4.00	ug/L		05/13/14 15:03	1
2-Butanone (MEK)	<10.0	10.0	ug/L		05/13/14 15:03	1
n-Butylbenzene	<1.00	1.00	ug/L		05/13/14 15:03	1
sec-Butylbenzene	<1.00	1.00	ug/L		05/13/14 15:03	1
tert-Butylbenzene	<1.00	1.00	ug/L		05/13/14 15:03	1
Carbon tetrachloride	<2.00	2.00	ug/L		05/13/14 15:03	1
Chlorobenzene	<1.00	1.00	ua/L		05/13/14 15:03	1
Chlorodibromomethane	<5.00	5.00	ua/L		05/13/14 15:03	1
Dichlorofluoromethane	<1.00 *	1.00	ua/L		05/13/14 15:03	1
Chloroethane	<4.00 *	4 00	ug/l		05/13/14 15:03	1
Chloroform	<1.00	1.00	ug/L		05/13/14 15:03	. 1
Chloromethane	<3.00 *	3.00	ug/L		05/13/14 15:03	
4-Chlorotoluene	<1.00	1.00	ug/L		05/13/14 15:03	1
2-Chlorotoluene	<1.00	1.00	ug/L		05/13/14 15:03	1
1.2 Dibromo 3 Chloropropano	<10.0	1.00	ug/L		05/13/14 15:03	
1.2 Dibromosthone (EDB)	<10.0	10.0	ug/L		05/13/14 15:03	1
	<10.0	10.0	ug/L		05/13/14 15:03	1
	<1.00	1.00	ug/L		05/13/14 15:03	1
	<1.00	1.00	ug/L		05/13/14 15:03	1
	<1.00	1.00	ug/L		05/13/14 15.03	1
1,4-Dichlorobenzene	<1.00	1.00	ug/L		05/13/14 15:03	1
	<3.00	3.00	ug/L		05/13/14 15:03	1
1,2-Dichloroethane	<1.00	1.00	ug/L		05/13/14 15:03	1
1,1-Dichloroethane	<1.00	1.00	ug/L		05/13/14 15:03	
1,1-Dichloroethene	<2.00	2.00	ug/L		05/13/14 15:03	1
cis-1,2-Dichloroethene	<1.00	1.00	ug/L		05/13/14 15:03	1
trans-1,2-Dichloroethene	<1.00	1.00	ug/L		05/13/14 15:03	1
1,2-Dichloropropane	<1.00	1.00	ug/L		05/13/14 15:03	1
1,3-Dichloropropane	<1.00	1.00	ug/L		05/13/14 15:03	1
2,2-Dichloropropane	<4.00	4.00	ug/L		05/13/14 15:03	1
1,1-Dichloropropene	<1.00	1.00	ug/L		05/13/14 15:03	1
cis-1,3-Dichloropropene	<5.00	5.00	ug/L		05/13/14 15:03	1
trans-1,3-Dichloropropene	<5.00	5.00	ug/L		05/13/14 15:03	1
Diethyl ether	<1.70	1.70	ug/L		05/13/14 15:03	1
Ethylbenzene	<1.00	1.00	ug/L		05/13/14 15:03	1
Hexachlorobutadiene	<5.00	5.00	ug/L		05/13/14 15:03	1
Isopropylbenzene	<1.00	1.00	ug/L		05/13/14 15:03	1
p-Isopropyltoluene	<1.00	1.00	ug/L		05/13/14 15:03	1
4-Methyl-2-pentanone (MIBK)	<10.0	10.0	ug/L		05/13/14 15:03	1
Methylene Chloride	<5.00	5.00	ug/L		05/13/14 15:03	1
Methyl tert-butyl ether	<1.00	1.00	ug/L		05/13/14 15:03	1
Naphthalene	<5.00	5.00	ug/L		05/13/14 15:03	1
N-Propylbenzene	<1.00	1.00	ug/L		05/13/14 15:03	1

Client Sample ID: 2 - GP-6 Date Collected: 05/05/14 16:30 Date Received: 05/07/14 09:35

TestAmerica Job ID: 310-30191-2

Lab Sample ID: 310-30191-16 Matrix: Ground Water

Styrene <1.00	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
1,1,2-Tetrachloroethane <1.00	Styrene	<1.00		1.00		ug/L			05/13/14 15:03	1	
1,1,2,2-Tetrachloroethane <1.00	1,1,1,2-Tetrachloroethane	<1.00		1.00		ug/L			05/13/14 15:03	1	6
Tetrachloroethene <1.00 ug/L 05/13/14 15:03 1 Tetrahydrofuran <50.0	1,1,2,2-Tetrachloroethane	<1.00		1.00		ug/L			05/13/14 15:03	1	
Tetrahydrofuran <50.0	Tetrachloroethene	<1.00		1.00		ug/L			05/13/14 15:03	1	
Toluene <1.00 ug/L 05/13/14 15:03 1 1,2,3-Trichlorobenzene <5.00	Tetrahydrofuran	<50.0		50.0		ug/L			05/13/14 15:03	1	
1,2,3-Trichlorobenzene <5.00	Toluene	<1.00		1.00		ug/L			05/13/14 15:03	1	9
1,2,4-Trichlorobenzene <5.00	1,2,3-Trichlorobenzene	<5.00		5.00		ug/L			05/13/14 15:03	1	0
1,1,1-Trichloroethane <1.00	1,2,4-Trichlorobenzene	<5.00		5.00		ug/L			05/13/14 15:03	1	0
1,1,2-Trichloroethane <1.00	1,1,1-Trichloroethane	<1.00		1.00		ug/L			05/13/14 15:03	1	9
Trichloroethene <1.00 ug/L 05/13/14 15:03 1 Trichlorofluoromethane <4.00	1,1,2-Trichloroethane	<1.00		1.00		ug/L			05/13/14 15:03	1	
Trichlorofluoromethane <4.00 4.00 ug/L 05/13/14 15:03 1 1,2,3-Trichloropropane <1.00	Trichloroethene	<1.00		1.00		ug/L			05/13/14 15:03	1	
1,2,3-Trichloropropane <1.00	Trichlorofluoromethane	<4.00		4.00		ug/L			05/13/14 15:03	1	
1,1,2-Trichlorotrifluoroethane <2.00	1,2,3-Trichloropropane	<1.00		1.00		ug/L			05/13/14 15:03	1	
1,2,4-Trimethylbenzene <1.00	1,1,2-Trichlorotrifluoroethane	<2.00		2.00		ug/L			05/13/14 15:03	1	
1,3,5-Trimethylbenzene <1.00	1,2,4-Trimethylbenzene	<1.00		1.00		ug/L			05/13/14 15:03	1	
Vinyl chloride <1.00 * 1.00 ug/L 05/13/14 15:03 1 Xylenes, Total <3.00	1,3,5-Trimethylbenzene	<1.00		1.00		ug/L			05/13/14 15:03	1	
Xylenes, Total <3.00 3.00 ug/L 05/13/14 15:03 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 96 75 - 110 05/13/14 15:03 1 Dibromofluoromethane (Surr) 93 75 - 120 05/13/14 15:03 1 Toluene-d8 (Surr) 97 80 - 120 05/13/14 15:03 1 Method: WI-DRO - Wisconsin - Diesel Range Organics (GC) MDL MDL Unit D Prepared Analyzed Dil Fac Diesel Range Organics (DRO) 2.11 0.111 mg/L 0 05/09/14 08:22 05/13/14 21:13 1	Vinyl chloride	<1.00	*	1.00		ug/L			05/13/14 15:03	1	113
Surrogate%RecoveryQualifierLimitsPreparedAnalyzedDil Fac4-Bromofluorobenzene (Surr)9675 - 11005/13/14 15:031Dibromofluoromethane (Surr)9375 - 12005/13/14 15:031Toluene-d8 (Surr)9780 - 12005/13/14 15:031Method: WI-DRO - Wisconsin - Diesel Range Organics (GC)AnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacDiesel Range Organics (DRO)2.110.111mg/L05/09/14 08:2205/13/14 21:131	Xylenes, Total	<3.00		3.00		ug/L			05/13/14 15:03	1	
Surrogate%RecoveryQualifierLimitsPreparedAnalyzedDil Fac4-Bromofluorobenzene (Surr)9675 - 11005/13/14 15:031Dibromofluoromethane (Surr)9375 - 12005/13/14 15:031Toluene-d8 (Surr)9780 - 12005/13/14 15:031Method: WI-DRO - Wisconsin - Diesel Range Organics (GC)NDLUnitDPreparedAnalyzedDil FacAnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacDiesel Range Organics (DRO)2.110.111ng/L05/09/14 08:2205/13/14 21:131											
4-Bromofluorobenzene (Surr) 96 75 - 110 05/13/14 15:03 1 Dibromofluoromethane (Surr) 93 75 - 120 05/13/14 15:03 1 Toluene-d8 (Surr) 97 80 - 120 05/13/14 15:03 1 Method: WI-DRO - Wisconsin - Diesel Range Organics (GC) 05/13/14 15:03 1 Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Diesel Range Organics (DRO) 2.11 0.111 mg/L 05/09/14 08:22 05/13/14 21:13 1	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
Dibromofluoromethane (Surr) 93 75 - 120 05/13/14 15:03 1 Toluene-d8 (Surr) 97 80 - 120 05/13/14 15:03 1 Method: WI-DRO - Wisconsin - Diesel Range Organics (GC) Mole Mole Mark MDL Unit D Prepared Analyzed Dil Fac Diesel Range Organics (DRO) 2.11 0.111 mg/L D 05/09/14 08:22 05/13/14 21:13 1	4-Bromofluorobenzene (Surr)	96		75 - 110					05/13/14 15:03	1	
Toluene-d8 (Surr) 97 80 - 120 05/13/14 15:03 1 Method: WI-DRO - Wisconsin - Diesel Range Organics (GC) Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Diesel Range Organics (DRO) 2.11 0.111 mg/L D Prepared Analyzed Dil Fac	Dibromofluoromethane (Surr)	93		75 - 120					05/13/14 15:03	1	
Method: WI-DRO - Wisconsin - Diesel Range Organics (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Diesel Range Organics (DRO) 2.11 0.111 0.111 mg/L D 05/09/14 08:22 05/13/14 21:13 1	Toluene-d8 (Surr)	97		80 - 120					05/13/14 15:03	1	16
AnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDil FacDiesel Range Organics (DRO)2.110.111mg/L05/09/14 08:2205/13/14 21:131	Method: WI-DRO - Wisconsin -	Diesel Range O	rganics (GC	>)							
Diesel Range Organics (DRO) 2.11 0.111 mg/L 05/09/14 08:22 05/13/14 21:13 1	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	17
	Diesel Range Organics (DRO)	2.11		0.111		mg/L		05/09/14 08:22	05/13/14 21:13	1	

Lab Sample ID: 310-30191-17 Matrix: Ground Water

Date Collected: 05/05/14 16:30 Date Received: 05/07/14 09:35

Client Sample ID: 3 - GP-3

Arabyce Result Dualitier RL MDL Durk D Pregard Analyzed Different Aly chicking <2.00 <2.00 ugL 0.01/14/10.026 11 Bornachen <0.00 .000 ugL 0.01/14/10.026 11 Bornachenzene <1.00 1.00 ugL 0.01/14/14.00.45 11 Schurtzenene <1.00 1.00 ugL 0.01/14/14.00.45 11 Schurtzenene <1.00 1.00 ugL 0.01/14/14.00.45 11 Chronachenne <1.00 1.00 ugL 0.01/14/14.00.45 11 Chronachenne <1.00 1.00 ugL	Method: 8260B - Volatile Organ	nic Compounds	(GC/MS)						
Actions 12.1 10.0 ugL 05/14/16.0045 1 Benzons 40.600 5.00 ugL 05/14/16.0045 1 Benzons 40.600 5.00 ugL 05/14/16.0045 1 Benzonsentance 41.00 1.00 ugL 05/14/16.0045 1 Chronsterschnichte 42.00 2.00 ugL 05/14/16.0045 1 Dichochuronnethane 41.00 1.00 ugL 05/14/16.0045 1 Dichochuronnethane 41.00 1.00 ugL 05/14/16.0045 1 Dichochuronnethane	Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Aly thinked 2.00 upl 06/14/16.0045 1 Bername 0.00 0.500 upl 06/14/16.0045 1 Bernamehanne 4.00 1.00 upl 06/14/16.0045 1 Bernamehanne 4.00 1.00 upl 06/14/16.0045 1 Bernamehanne 4.00 4.00 upl 06/14/16.0045 1 Statanone (NEK) 410.0 1.00 upl 06/14/16.0045 1 Statanone (NEK) 410.0 1.00 upl 06/14/14.0045 1 Statanone (NEK) 410.0 1.00 upl 06/14/14.0045 1 Statanone (NEK) 410.0 1.00 upl 06/14/14.0045 1 Chroberbare 4.00 2.00 upl 06/14/14.0045 1 Chroberbare 4.00 1.00 upl 06/14/14.0045 1 Chroberbare 4.00 1.00 upl 06/14/14.0045 1 Chroberbare 4.00 1.00	Acetone	12.1		10.0	ug/L			05/14/14 00:45	1
Banzame <0.500 0.500 upl 05/14/14 00.45 1 Bromoberizone 1.00 1.00 upl 05/14/14 00.45 1 Bromoberizone 4.00 1.00 upl 05/14/14 00.45 1 Bromoberizone 4.00 4.00 upl 05/14/14 00.45 1 Bromoberizone 4.00 1.00 upl 05/14/14 00.45 1 Standamerizane 4.00 1.00 upl 05/14/14 00.45 1 Standamerizane 4.00 1.00 upl 05/14/14 00.45 1 Standamerizane 4.00 1.00 upl 05/14/14 00.45 1 Chronberizane 4.00 1.00 upl 05/14/14 00.45 1 Chronberizane 4.00 1.00 upl 05/14/14 00.45 1 Chronberizane 4.00 upl 05/14/14 00.45 1 1 Chronberizane 4.00 upl 05/14/14 00.45 1 1 Chronberizane 4.00 </td <td>Allyl chloride</td> <td><2.00</td> <td>*</td> <td>2.00</td> <td>ug/L</td> <td></td> <td></td> <td>05/14/14 00:45</td> <td>1</td>	Allyl chloride	<2.00	*	2.00	ug/L			05/14/14 00:45	1
Bromochizone 1.00 1.00 upl. 05/14/14 00.45 1 Bromochizonembane 5.00 5.00 upl. 05/14/14 00.45 1 Bromochizonembane 5.00 0.00 upl. 05/14/14 00.45 1 Bromochizonembane 4.00 4.00 upl. 05/14/14 00.45 1 Demochizonembane 4.00 1.00 upl. 05/14/14 00.45 1 Sea Butjonzene 4.00 1.00 upl. 05/14/14 00.45 1 Sea Butjonzene 4.00 1.00 upl. 05/14/14 00.45 1 Carton terzchorde 2.00 upl. 05/14/14 00.45 1 Dichordnurmethane 4.00 1.00 upl. 05/14/14 00.45 1 Dichordnurmethane 4.00 1.00 upl. 05/14/14 00.45 1 Dichordnurmethane 4.00 4.00 upl. 05/14/14 00.45 1 Dichordnurmethane 4.00 4.00 upl. 05/14/14 00.45 1 Dicho	Benzene	<0.500		0.500	ug/L			05/14/14 00:45	1
Bronndchioromethane 5.00 0.01 0.02 0.05/14/14 00.45 1 Bronndchioromethane 4.00 1.00 ugl. 05/14/14 00.45 1 Bronndchioromethane 4.00 1.00 ugl. 05/14/14 00.45 1 2.Budanne (MEK) 410.0 1.00 ugl. 05/14/14 00.45 1 2.Budanne (MEK) 410.0 1.00 ugl. 05/14/14 00.45 1 2.Budanne (MEK) 410.0 1.00 ugl. 05/14/14 00.45 1 Chrochstrande 2.00 2.00 ugl. 05/14/14 00.45 1 Chrochstrande 4.00 1.00 ugl. 05/14/14 00.45 1	Bromobenzene	<1.00		1.00	ug/L			05/14/14 00:45	1
Bremdelindenterhane <1.00 upL OB/14/14 00.45 I Bromolerm 5.00 upL OB/14/14 00.45 I Bromolerm 5.00 upL OB/14/14 00.45 I Bromolerm 1.00 1.00 upL OB/14/14 00.45 I n-Bulybenzene 1.00 1.00 upL OB/14/14 00.45 I n-Bulybenzene 1.00 1.00 upL OB/14/14 00.45 I carbon Heschlande 2.00 2.00 upL OB/14/14 00.45 I Carbon Heschlande 2.00 1.00 upL OB/14/14 00.45 I Chlorodburomethane 1.00 1.00	Bromochloromethane	<5.00		5.00	ug/L			05/14/14 00:45	1
Bromorethame < 5.00 UpL OF/14/14 00.45 1 Deromorethame < 4.00	Bromodichloromethane	<1.00		1.00	ug/L			05/14/14 00:45	1
Bromomethane<4.004.00ugL05/14/14 00.4512.50Hanon (MEK)<10.0	Bromoform	<5.00		5.00	ug/L			05/14/14 00:45	1
24butance (MEK)<10.0UgU05f14/14 00.451see butybenzene<10.0	Bromomethane	<4.00		4.00	ug/L			05/14/14 00:45	1
nButyberzene 1.00 ug/L 05/14/14 00.45 1 sez-Butyberzene 1.00 ug/L 05/14/14 00.45 1 Lart-Butyberzene 1.00 ug/L 05/14/14 00.45 1 Carbon tetrachloride 2.00 ug/L 05/14/14 00.45 1 Chorobberzene 1.00 ug/L 05/14/14 00.45 1 Chorobberzene 1.00 ug/L 05/14/14 00.45 1 Chorobbrane 4.00 % 4.00 ug/L 05/14/14 00.45 1 Chorobbrane 4.00 4.00 ug/L 05/14/14 00.45 1 Chorobbrane 4.00 1.00 ug/L 05/14/14 00.45 1 Chorobbrane 4.00 1.00 ug/L 05/14/14 00.45 1 1.2-Dibrono-3-Choropopane 1.00 1.00 ug/L 05/14/14 00.45 1 1.2-Dibronoethane 1.00 1.00 ug/L 05/14/14 00.45 1 1.2-Dibronoethane 1.00 1.00 ug/L 05/14/14 00.	2-Butanone (MEK)	<10.0		10.0	ug/L			05/14/14 00:45	1
sec-Butylhenzene 1.00 ug/L 05/14/14.00.45 1 Carbon terlachlonde 2.00 ug/L 05/14/14.00.45 1 Carbon terlachlonde 2.00 ug/L 05/14/14.00.45 1 Chlorobharzene 4.00 1.00 ug/L 05/14/14.00.45 1 Chlorobharzene 4.00 1.00 ug/L 05/14/14.00.45 1 Dichlorobharzene 4.00 1.00 ug/L 05/14/14.00.45 1 Chlorobharzene 4.00 1.00 ug/L 05/14/14.00.45 1 Chlorobharzene 4.00 1.00 ug/L 05/14/14.00.45 1 Chlorobharzene 4.00 1.00 ug/L 05/14/14.00.45 1 2.Chlorobharzene 1.00 1.00 ug/L 05/14/14.00.45 1 1.2.Dibromos-Schloropropane 41.00 1.00 ug/L 05/14/14.00.45 1 1.2.Dichlorobenzene 41.00 1.00 ug/L 05/14/14.00.45 1 1.2.Dichlorobenzene	n-Butylbenzene	<1.00		1.00	ug/L			05/14/14 00:45	1
int-Butylenzene <1.00 upL 05/14/14 00.45 1 Carbon terrachionide <2.00	sec-Butylbenzene	<1.00		1.00	ug/L			05/14/14 00:45	1
Carbon tetrachloride -2.00 ug/L 05/14/14 00.45 1 Chlorodbironomethane -5.00 5.00 ug/L 05/14/14 00.45 1 Dichorodbironomethane -5.00 5.00 ug/L 05/14/14 00.45 1 Dichorodbironomethane -1.00 1.00 ug/L 05/14/14 00.45 1 Chlorodbironomethane -1.00 1.00 ug/L 05/14/14 00.45 1 Chlorodbironomethane -3.00 3.00 ug/L 05/14/14 00.45 1 Chlorothune -1.00 1.00 ug/L 05/14/14 00.45 1 2.Chlorothune -1.00 1.00 ug/L 05/14/14 00.45 1 1.2.Dibronomethane -1.00 1.00 ug/L 05/14/14 00.45 1 <td>tert-Butylbenzene</td> <td><1.00</td> <td></td> <td>1.00</td> <td>ug/L</td> <td></td> <td></td> <td>05/14/14 00:45</td> <td>1</td>	tert-Butylbenzene	<1.00		1.00	ug/L			05/14/14 00:45	1
Chiorobarene 1.00 ugL 05/14/14 00:45 1 Chiorobaromethane 5.00 ugL 05/14/14 00:45 1 Chiorobaromethane 4.00 1.00 ugL 05/14/14 00:45 1 Chiorothane 4.00 ugL 05/14/14 00:45 1 Chioromethane 4.00 ugL 05/14/14 00:45 1 Chioromethane 4.00 ugL 05/14/14 00:45 1 Chioromethane 4.00 1.00 ugL 05/14/14 00:45 1 2-Chiorobluene 1.00 1.00 ugL 05/14/14 00:45 1 1.2-Dibrome-3-Chioropropane 1.00 1.00 ugL 05/14/14 00:45 1 1.2-Dibromethane 1.00 1.00 ugL 05/14/14 00:45 1 1.2-Dibromethane 1.00 1.00 ugL 05/14/14 00:45 1 1.2-Dibromethane 1.00 1.00 ugL 05/14/14 00:45 1 1.2-Dibriorothane 1.00 1.00 ugL 05/14/14 00:	Carbon tetrachloride	<2.00		2.00	ug/L			05/14/14 00:45	1
Chlocodibromonethane <5.00 ug/L OB/14/14 00.45 1 Dichlorothane <1.00	Chlorobenzene	<1.00		1.00	ug/L			05/14/14 00:45	1
Dichloroburomethane <1.00 ugl Off/14/14 00.45 1 Chiorobane <4.00	Chlorodibromomethane	<5.00		5.00	ug/L			05/14/14 00:45	1
Chlorothane 4.00 ug/L 05/14/14 00.45 1 Chlorothane 4.00 ug/L 05/14/14 00.45 1 Chlorothane 3.00 ug/L 05/14/14 00.45 1 Chlorothane 4.00 1.00 ug/L 05/14/14 00.45 1 2-Chlorotoluene 4.00 1.00 ug/L 05/14/14 00.45 1 2-Chlorotoluene 4.00 1.00 ug/L 05/14/14 00.45 1 1.2-Dhoronethane (EDB) <10.0	Dichlorofluoromethane	<1.00		1.00	ug/L			05/14/14 00:45	1
Chloroforn 1.00 ug/L 05/14/14 00:45 1 Chloromethane 3.00 3.00 ug/L 05/14/14 00:45 1 4-Chlorobluene 1.00 ug/L 05/14/14 00:45 1 2-Chlorobluene 1.00 ug/L 05/14/14 00:45 1 1.2-Dibromethane 10.0 ug/L 05/14/14 00:45 1 1.2-Dibrobenzene 1.00 ug/L 05/14/14 00:45 1 1.2-Dibrobenzene 1.00 ug/L 05/14/14 00:45 1 1.2-Dibrobenzene 1.00 ug/L 05/14/14 00:45 1 1.2-Dibribroethane 1.00 ug/L 05/14/14 00:45 1 1.2-Dibribroethane 1.00 ug/L 05/14/14	Chloroethane	<4.00	*	4.00	ug/L			05/14/14 00:45	1
Chicomethane 3.00 ug/L 05/14/14 00.45 1 4-Chiorobluene 4.00 1.00 ug/L 05/14/14 00.45 1 2-Chiorobluene 1.00 1.00 ug/L 05/14/14 00.45 1 1.2-Dibromo-3-Chioropropane 4.0.0 10.0 ug/L 05/14/14 00.45 1 1.2-Dibromo-thane (EDB) 410.0 10.0 ug/L 05/14/14 00.45 1 1.2-Dichlorobenzene 1.00 1.00 ug/L 05/14/14 00.45 1 1.3-Dichlorobenzene 4.00 1.00 ug/L 05/14/14 00.45 1 1.4-Dichlorobenzene 4.00 1.00 ug/L 05/14/14 00.45 1 1.4-Dichlorobenzene 4.00 1.00 ug/L 05/14/14 00.45 1 1.4-Dichlorobenzene 4.00 1.00 ug/L 05/14/14 00.45 1 1.2-Dichlorobenzene 4.00 1.00 ug/L 05/14/14 00.45 1 1.2-Dichloropropane 4.00 1.00 ug/L 05/14/14 00.45 1	Chloroform	<1.00		1.00	ug/L			05/14/14 00:45	1
4-Chorotoluene 1.00 ug/L 06/14/14 00:45 1 2-Chorotoluene 1.00 ug/L 06/14/14 00:45 1 1.2-Ditrono-Choropropane 10.0 10.0 ug/L 05/14/14 00:45 1 1.2-Ditrono-Choropropane 10.0 ug/L 05/14/14 00:45 1 1.2-Ditrono-thane 1.00 10.0 ug/L 05/14/14 00:45 1 1.2-Dichlorobenzene 1.00 1.00 ug/L 05/14/14 00:45 1 1.3-Dichlorobenzene 1.00 1.00 ug/L 05/14/14 00:45 1 1.4-Dichlorobenzene 1.00 1.00 ug/L 05/14/14 00:45 1 1.4-Dichlorobenzene 1.00 1.00 ug/L 05/14/14 00:45 1 1.2-Dichloroethane 1.00 1.00 ug/L 05/14/14 00:45 1 1.1-Dichloroethane 1.00 1.00 ug/L 05/14/14 00:45 1 1.1-Dichloroethane 1.00 1.00 ug/L 05/14/14 00:45 1 1.1-Dichloroethane 1.00 1.00 ug/L 05/14/14 00:45 1 <tr< td=""><td>Chloromethane</td><td><3.00</td><td>*</td><td>3.00</td><td>ug/L</td><td></td><td></td><td>05/14/14 00:45</td><td>1</td></tr<>	Chloromethane	<3.00	*	3.00	ug/L			05/14/14 00:45	1
2-Chiorotoluene <1.00	4-Chlorotoluene	<1.00		1.00	ug/L			05/14/14 00:45	1
1.2-Dibromo-3-Chloropropane <10.0	2-Chlorotoluene	<1.00		1.00	ug/L			05/14/14 00:45	1
1.2-Dibromethane (EDB) <10.0	1,2-Dibromo-3-Chloropropane	<10.0		10.0	ug/L			05/14/14 00:45	1
Dibromomethane <1.00 ug/L 05/14/14 00:45 1 1,2-Dichlorobenzene <1.00	1,2-Dibromoethane (EDB)	<10.0		10.0	ug/L			05/14/14 00:45	1
1.2-Dichlorobenzene <1.00	Dibromomethane	<1.00		1.00	ug/L			05/14/14 00:45	1
1.3-Dichlorobenzene <1.00	1,2-Dichlorobenzene	<1.00		1.00	ug/L			05/14/14 00:45	1
1.4-Dichlorobenzene <1.00	1,3-Dichlorobenzene	<1.00		1.00	ug/L			05/14/14 00:45	1
Dichlorodifiuoromethane <3.00 3.00 ug/L 05/14/14 00:45 1 1.2-Dichloroethane <1.00	1,4-Dichlorobenzene	<1.00		1.00	ug/L			05/14/14 00:45	1
1,2-Dichloroethane <1.00	Dichlorodifluoromethane	<3.00		3.00	ug/L			05/14/14 00:45	1
1,1-Dichloroethane <1.00	1,2-Dichloroethane	<1.00		1.00	ug/L			05/14/14 00:45	1
1,1-Dichloroethene <2.00	1,1-Dichloroethane	<1.00		1.00	ug/L			05/14/14 00:45	1
cis-1,2-Dichloroethene <1.00	1,1-Dichloroethene	<2.00		2.00	ug/L			05/14/14 00:45	1
trans-1,2-Dichloroethene<1.001.00ug/L05/14/14 00:4511,2-Dichloropropane<1.00	cis-1,2-Dichloroethene	<1.00		1.00	ug/L			05/14/14 00:45	1
1.2-Dichloropropane <1.00	trans-1,2-Dichloroethene	<1.00		1.00	ug/L			05/14/14 00:45	1
1,3-Dichloropropane <1.00	1,2-Dichloropropane	<1.00		1.00	ug/L			05/14/14 00:45	
2,2-Dichloropropane <4.00	1,3-Dichloropropane	<1.00		1.00	ug/L			05/14/14 00:45	1
1,1-Dichloropropene <1.00	2,2-Dichloropropane	<4.00		4.00	ug/L			05/14/14 00:45	1
cis-1,3-Dichloropropene <5.00	1,1-Dichloropropene	<1.00		1.00	ug/L			05/14/14 00:45	1
trans-1,3-Dichloropropene <5.00	cis-1.3-Dichloropropene	<5.00		5.00	ua/L			05/14/14 00:45	1
Diethyl ether <1.70	trans-1.3-Dichloropropene	<5.00		5.00	ug/L			05/14/14 00:45	1
Ethylbenzene <1.00	Diethyl ether	<1.70		1.70	ug/L			05/14/14 00:45	1
Hexachlorobutadiene <5.00	Ethylbenzene	<1.00		1.00	ua/L			05/14/14 00:45	1
Isopropylbenzene <1.00	Hexachlorobutadiene	< 5.00		5.00	ug/L			05/14/14 00:45	1
p-Isopropyltoluene <1.00	Isopropylbenzene	<1 00		1 00	ug/l			05/14/14 00:45	· · · · · · · · · · · · · · · · · · ·
4-Methyl-2-pentanone (MIBK) <10.0	p-Isopropyltoluene	<1.00		1 00	ug/L			05/14/14 00:45	1
Methylene Chloride <5.00 5.00 ug/L 05/14/14 00:45 1 Methyl tert-butyl ether <1.00	4-Methyl-2-pentanone (MIBK)	<10.0		10 0	ua/l			05/14/14 00:45	1
Methyl tert-butyl ether <1.00 1.00 ug/L 05/14/14 00:45 1 Naphthalene <5.00	Methylene Chloride	<5.00		5.00	ug/L			05/14/14 00:45	· · · · · · · · · · · · · · · · · · ·
Naphthalene <5.00 5.00 ug/L 05/14/14 00:45 1 N-Propylbenzene <1.00	Methyl tert-butyl ether	<1 00		1 00	ug/L			05/14/14 00:45	1
N-Propylbenzene <100 100 μα/l 05/14/14 00:45 1	Nanhthalene	<5.00		5.00	ug/L			05/14/14 00:45	1
	N-Pronylbenzene	<0.00 <1 00		1 00	ug/L			05/14/14 00:45	· · · · · · · · · · · · · · · · · · ·

TestAmerica Cedar Falls

5

TestAmerica Job ID: 310-30191-2

Lab Sample ID: 310-30191-17

Matrix: Ground Water

Date Collected: 05/05/14 16:30 Date Received: 05/07/14 09:35

Client Sample ID: 3 - GP-3

Method: 8260B - Volatile Orgar	nic Compounds	(GC/MS) (Co	ontinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	<1.00		1.00		ug/L			05/14/14 00:45	1
1,1,1,2-Tetrachloroethane	<1.00		1.00		ug/L			05/14/14 00:45	1
1,1,2,2-Tetrachloroethane	<1.00		1.00		ug/L			05/14/14 00:45	1
Tetrachloroethene	<1.00		1.00		ug/L			05/14/14 00:45	1
Tetrahydrofuran	<50.0		50.0		ug/L			05/14/14 00:45	1
Toluene	<1.00		1.00		ug/L			05/14/14 00:45	1
1,2,3-Trichlorobenzene	<5.00		5.00		ug/L			05/14/14 00:45	1
1,2,4-Trichlorobenzene	<5.00		5.00		ug/L			05/14/14 00:45	1
1,1,1-Trichloroethane	<1.00		1.00		ug/L			05/14/14 00:45	1
1,1,2-Trichloroethane	<1.00		1.00		ug/L			05/14/14 00:45	1
Trichloroethene	<1.00		1.00		ug/L			05/14/14 00:45	1
Trichlorofluoromethane	<4.00		4.00		ug/L			05/14/14 00:45	1
1,2,3-Trichloropropane	<1.00		1.00		ug/L			05/14/14 00:45	1
1,1,2-Trichlorotrifluoroethane	<2.00		2.00		ug/L			05/14/14 00:45	1
1,2,4-Trimethylbenzene	<1.00		1.00		ug/L			05/14/14 00:45	1
1,3,5-Trimethylbenzene	<1.00		1.00		ug/L			05/14/14 00:45	1
Vinyl chloride	<1.00		1.00		ug/L			05/14/14 00:45	1
Xylenes, Total	<3.00		3.00		ug/L			05/14/14 00:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		75 - 110					05/14/14 00:45	1
Dibromofluoromethane (Surr)	95		75 - 120					05/14/14 00:45	1
Toluene-d8 (Surr)	100		80 - 120					05/14/14 00:45	1
Method: WI-DRO - Wisconsin -	Diesel Range O	rganics (GC	;)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	0.476		0.112		mg/L		05/09/14 08:22	05/13/14 21:46	1

Lab Sample ID: 310-30191-18 Matrix: Ground Water

5

6

17

Client Sample ID: 4 - GP-4 Date Collected: 05/05/14 16:30 Date Received: 05/07/14 09:35

Analyte	Result Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Acetone	14.2	10.0	ug/L		05/14/14 00:21	1
Allyl chloride	<2.00 *	2.00	ug/L		05/14/14 00:21	1
Benzene	<0.500	0.500	ug/L		05/14/14 00:21	1
Bromobenzene	<1.00	1.00	ug/L		05/14/14 00:21	1
Bromochloromethane	<5.00	5.00	ug/L		05/14/14 00:21	1
Bromodichloromethane	<1.00	1.00	ua/L		05/14/14 00:21	1
Bromoform	<5.00	5.00	ua/L		05/14/14 00:21	
Bromomethane	<4.00	4.00	ua/L		05/14/14 00:21	1
2-Butanone (MEK)	<10.0	10.0	ug/L		05/14/14 00:21	1
n-Butylbenzene	<1.00	1 00	ug/L		05/14/14 00:21	
sec-Butylbenzene	<1.00	1.00	ug/L		05/14/14 00:21	1
tert-Butylbenzene	<1.00	1.00	ug/L		05/14/14 00:21	1
Carbon tetrachloride	<2.00	2.00	ug/L		05/14/14 00:21	
	<1.00	2.00	ug/L		05/14/14 00:21	1
Chlorodibromomothano	< 5.00	5.00	ug/L		05/14/14 00:21	1
Disblorefueremethene	<5.00	5.00	ug/L		05/14/14 00.21	
	<1.00	1.00	ug/L		05/14/14 00:21	1
Chloroform	<4.00	4.00	ug/L		05/14/14 00:21	1
Chiorotorm	<1.00	1.00	ug/L		05/14/14 00:21	
Chloromethane	<3.00 *	3.00	ug/L		05/14/14 00:21	1
4-Chlorotoluene	<1.00	1.00	ug/L		05/14/14 00:21	1
2-Chlorotoluene	<1.00	1.00	ug/L		05/14/14 00:21	1
1,2-Dibromo-3-Chloropropane	<10.0	10.0	ug/L		05/14/14 00:21	1
1,2-Dibromoethane (EDB)	<10.0	10.0	ug/L		05/14/14 00:21	1
Dibromomethane	<1.00	1.00	ug/L		05/14/14 00:21	1
1,2-Dichlorobenzene	<1.00	1.00	ug/L		05/14/14 00:21	1
1,3-Dichlorobenzene	<1.00	1.00	ug/L		05/14/14 00:21	1
1,4-Dichlorobenzene	<1.00	1.00	ug/L		05/14/14 00:21	1
Dichlorodifluoromethane	<3.00	3.00	ug/L		05/14/14 00:21	1
1,2-Dichloroethane	<1.00	1.00	ug/L		05/14/14 00:21	1
1,1-Dichloroethane	<1.00	1.00	ug/L		05/14/14 00:21	1
1,1-Dichloroethene	<2.00	2.00	ug/L		05/14/14 00:21	1
cis-1,2-Dichloroethene	<1.00	1.00	ug/L		05/14/14 00:21	1
trans-1,2-Dichloroethene	<1.00	1.00	ug/L		05/14/14 00:21	1
1,2-Dichloropropane	<1.00	1.00	ug/L		05/14/14 00:21	1
1,3-Dichloropropane	<1.00	1.00	ug/L		05/14/14 00:21	1
2,2-Dichloropropane	<4.00	4.00	ug/L		05/14/14 00:21	1
1,1-Dichloropropene	<1.00	1.00	ug/L		05/14/14 00:21	1
cis-1,3-Dichloropropene	<5.00	5.00	ug/L		05/14/14 00:21	1
trans-1,3-Dichloropropene	<5.00	5.00	ug/L		05/14/14 00:21	1
Diethyl ether	<1.70	1.70	ug/L		05/14/14 00:21	1
Ethylbenzene	<1.00	1.00	ug/L		05/14/14 00:21	1
Hexachlorobutadiene	<5.00	5.00	ug/L		05/14/14 00:21	1
Isopropylbenzene	<1.00	1.00	ug/L		05/14/14 00:21	1
p-Isopropyltoluene	<1.00	1.00	ug/L		05/14/14 00:21	1
4-Methyl-2-pentanone (MIBK)	<10.0	10.0	ug/L		05/14/14 00:21	1
Methylene Chloride	<5.00	5.00	ua/L		05/14/14 00:21	1
Methyl tert-butyl ether	<1.00	1.00	ua/L		05/14/14 00:21	1
Naphthalene	<5.00	5.00	ua/L		05/14/14 00:21	1
N-Pronylbenzene	<1.00	1 00	3 ua/l		05/14/14 00.21	· · · · · · · 1

Client Sample ID: 4 - GP-4

TestAmerica Job ID: 310-30191-2

Matrix: Ground Water

Lab Sample ID: 310-30191-18

Date Collected: 05/05/14 16:30 Date Received: 05/07/14 09:35

Method: 8260B - Volatile Organ	nic Compounds	(GC/MS) (Co	ontinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	<1.00		1.00		ug/L			05/14/14 00:21	1
1,1,1,2-Tetrachloroethane	<1.00		1.00		ug/L			05/14/14 00:21	1
1,1,2,2-Tetrachloroethane	<1.00		1.00		ug/L			05/14/14 00:21	1
Tetrachloroethene	<1.00		1.00		ug/L			05/14/14 00:21	1
Tetrahydrofuran	<50.0		50.0		ug/L			05/14/14 00:21	1
Toluene	<1.00		1.00		ug/L			05/14/14 00:21	1
1,2,3-Trichlorobenzene	<5.00		5.00		ug/L			05/14/14 00:21	1
1,2,4-Trichlorobenzene	<5.00		5.00		ug/L			05/14/14 00:21	1
1,1,1-Trichloroethane	<1.00		1.00		ug/L			05/14/14 00:21	1
1,1,2-Trichloroethane	<1.00		1.00		ug/L			05/14/14 00:21	1
Trichloroethene	<1.00		1.00		ug/L			05/14/14 00:21	1
Trichlorofluoromethane	<4.00		4.00		ug/L			05/14/14 00:21	1
1,2,3-Trichloropropane	<1.00		1.00		ug/L			05/14/14 00:21	1
1,1,2-Trichlorotrifluoroethane	<2.00		2.00		ug/L			05/14/14 00:21	1
1,2,4-Trimethylbenzene	<1.00		1.00		ug/L			05/14/14 00:21	1
1,3,5-Trimethylbenzene	<1.00		1.00		ug/L			05/14/14 00:21	1
Vinyl chloride	<1.00		1.00		ug/L			05/14/14 00:21	1
Xylenes, Total	<3.00		3.00		ug/L			05/14/14 00:21	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		75 - 110					05/14/14 00:21	1
Dibromofluoromethane (Surr)	98		75 - 120					05/14/14 00:21	1
Toluene-d8 (Surr)	96		80 - 120					05/14/14 00:21	1
Method: WI-DRO - Wisconsin -	Diesel Range O	rganics (GC	;)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	0.447		0.108		mg/L		05/09/14 08:22	05/13/14 22:18	1

Lab Sample ID: 310-30191-19 Matrix: Ground Water

5

6

Client Sample ID: 5 - GP-5 Date Collected: 05/05/14 16:30 Date Received: 05/07/14 09:35

Analyte	Result Qualifier	RL	MDL Unit	D Pre	pared	Analyzed	Dil Fac
Acetone	14.3	10.0	ug/L		·	05/13/14 23:57	1
Allvl chloride	<2.00 *	2.00	ua/L			05/13/14 23:57	1
Benzene	<0.500	0.500	ug/L			05/13/14 23:57	1
Bromobenzene	<1.00	1 00	ug/l			05/13/14 23:57	
Bromochloromethane	<5.00	5.00	ug/L			05/13/14 23:57	1
Bromodichloromethane	<1.00	1.00	ug/L			05/13/14 23:57	1
Bromoform	<5.00	5.00	ug/L			05/13/14 23:57	1
Bromomethane	<1.00	4.00	ug/L			05/13/14 23:57	1
2 Butanono (MEK)	<10.0	4.00	ug/L			05/13/14 23:57	1
	<10.0	1.00	ug/L			05/13/14 23:57	
	<1.00	1.00	ug/L			05/13/14 23:57	1
tert Butulbenzene	<1.00	1.00	ug/L			05/13/14 23.57	1
	<1.00	1.00	ug/L			05/13/14 23:57	1
Carbon tetrachioride	<2.00	2.00	ug/L			05/13/14 23:57	1
Chlorobenzene	<1.00	1.00	ug/L			05/13/14 23:57	1
Chlorodibromomethane	<5.00	5.00	ug/L			05/13/14 23:57	1
Dichlorofluoromethane	<1.00	1.00	ug/L			05/13/14 23:57	1
Chloroethane	<4.00 *	4.00	ug/L			05/13/14 23:57	1
Chloroform	<1.00	1.00	ug/L			05/13/14 23:57	1
Chloromethane	<3.00 *	3.00	ug/L			05/13/14 23:57	1
4-Chlorotoluene	<1.00	1.00	ug/L			05/13/14 23:57	1
2-Chlorotoluene	<1.00	1.00	ug/L			05/13/14 23:57	1
1,2-Dibromo-3-Chloropropane	<10.0	10.0	ug/L			05/13/14 23:57	1
1,2-Dibromoethane (EDB)	<10.0	10.0	ug/L			05/13/14 23:57	1
Dibromomethane	<1.00	1.00	ug/L			05/13/14 23:57	1
1,2-Dichlorobenzene	<1.00	1.00	ug/L			05/13/14 23:57	1
1,3-Dichlorobenzene	<1.00	1.00	ug/L			05/13/14 23:57	1
1,4-Dichlorobenzene	<1.00	1.00	ug/L			05/13/14 23:57	1
Dichlorodifluoromethane	<3.00	3.00	ug/L			05/13/14 23:57	1
1,2-Dichloroethane	<1.00	1.00	ug/L			05/13/14 23:57	1
1,1-Dichloroethane	<1.00	1.00	ug/L			05/13/14 23:57	1
1,1-Dichloroethene	<2.00	2.00	ug/L			05/13/14 23:57	1
cis-1,2-Dichloroethene	<1.00	1.00	ug/L			05/13/14 23:57	1
trans-1,2-Dichloroethene	<1.00	1.00	ug/L			05/13/14 23:57	1
1,2-Dichloropropane	<1.00	1.00	ug/L			05/13/14 23:57	1
1,3-Dichloropropane	<1.00	1.00	ug/L			05/13/14 23:57	1
2,2-Dichloropropane	<4.00	4.00	ug/L			05/13/14 23:57	1
1,1-Dichloropropene	<1.00	1.00	ug/L			05/13/14 23:57	1
cis-1.3-Dichloropropene	<5.00	5.00	ua/L			05/13/14 23:57	1
trans-1.3-Dichloropropene	<5.00	5.00	ug/L			05/13/14 23:57	1
Diethyl ether	<1.70	1.70	ua/L			05/13/14 23:57	
Ethylbenzene	<1.00	1 00	ug/L			05/13/14 23:57	1
Hexachlorobutadiene	<5.00	5.00	ug/L			05/13/14 23:57	1
Isopropylbenzene	<1 00	1 00	ug/L			05/13/14 23.57	· · · · · · · · · · · · · · · · · · ·
n-Isopropyltoluene	<1.00	1.00	ug/L			05/13/14 23.57	1
4-Methyl-2-pentanone (MIRK)	<10.0	10.0	ug/L			05/13/14 23.57	1
Methylene Chloride	<5.00	5.00	ug/L			05/13/14 23:57	۱ ۱
Methyl tert-butyl other	~3.00	1.00	ug/L			05/13/14 23.37	1
Nanhthalana	~ 1.00	F.00	uy/L			05/13/14 23.37	ا م
	S-0.0	5.00	ug/L			05/13/14 23:57	1
IN-Propyidenzene	<1.00	1.00	ug/L			05/13/14 23:57	1

Client Sample ID: 5 - GP-5 Date Collected: 05/05/14 16:30 Date Received: 05/07/14 09:35

Lab Sample ID: 310-30191-19 Matrix: Ground Water

Method: 8260B - Volatile Organ	ic Compounds ((GC/MS) (Co	ntinued)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	5
Styrene	<1.00		1.00		ug/L			05/13/14 23:57	1	
1,1,1,2-Tetrachloroethane	<1.00		1.00		ug/L			05/13/14 23:57	1	6
1,1,2,2-Tetrachloroethane	<1.00		1.00		ug/L			05/13/14 23:57	1	
Tetrachloroethene	<1.00		1.00		ug/L			05/13/14 23:57	1	
Tetrahydrofuran	<50.0		50.0		ug/L			05/13/14 23:57	1	_
Toluene	<1.00		1.00		ug/L			05/13/14 23:57	1	8
1,2,3-Trichlorobenzene	<5.00		5.00		ug/L			05/13/14 23:57	1	
1,2,4-Trichlorobenzene	<5.00		5.00		ug/L			05/13/14 23:57	1	0
1,1,1-Trichloroethane	<1.00		1.00		ug/L			05/13/14 23:57	1	3
1,1,2-Trichloroethane	<1.00		1.00		ug/L			05/13/14 23:57	1	
Trichloroethene	<1.00		1.00		ug/L			05/13/14 23:57	1	
Trichlorofluoromethane	<4.00		4.00		ug/L			05/13/14 23:57	1	
1,2,3-Trichloropropane	<1.00		1.00		ug/L			05/13/14 23:57	1	
1,1,2-Trichlorotrifluoroethane	<2.00		2.00		ug/L			05/13/14 23:57	1	
1,2,4-Trimethylbenzene	<1.00		1.00		ug/L			05/13/14 23:57	1	
1,3,5-Trimethylbenzene	<1.00		1.00		ug/L			05/13/14 23:57	1	
Vinyl chloride	<1.00		1.00		ug/L			05/13/14 23:57	1	13
Xylenes, Total	<3.00		3.00		ug/L			05/13/14 23:57	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	95		75 - 110					05/13/14 23:57	1	
Dibromofluoromethane (Surr)	98		75 - 120					05/13/14 23:57	1	
Toluene-d8 (Surr)	96		80 - 120					05/13/14 23:57	1	16
Method: WI-DRO - Wisconsin -	Diesel Range O	rganics (GC))							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	17
Diesel Range Organics (DRO)	0.587		0.108		mg/L		05/09/14 08:22	05/13/14 22:51	1	

Lab Sample ID: 310-30191-20 Matrix: Ground Water

5

6

17

Client Sample ID: 7 - GP-7 Date Collected: 05/05/14 16:30 Date Received: 05/07/14 09:35

Method: 8260B - Volatile Orga	nic Compounds	(GC/MS)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	14.7		10.0		ug/L			05/13/14 23:32	1
Allyl chloride	<2.00	*	2.00		ug/L			05/13/14 23:32	1
Benzene	1.41		0.500		ug/L			05/13/14 23:32	1
Bromobenzene	<1.00		1.00		ug/L			05/13/14 23:32	1
Bromochloromethane	<5.00		5.00		ug/L			05/13/14 23:32	1
Bromodichloromethane	<1.00		1.00		ug/L			05/13/14 23:32	1
Bromoform	<5.00		5.00		ug/L			05/13/14 23:32	1
Bromomethane	<4.00		4.00		ug/L			05/13/14 23:32	1
2-Butanone (MEK)	<10.0		10.0		ug/L			05/13/14 23:32	1
n-Butylbenzene	5.71		1.00		ug/L			05/13/14 23:32	1
sec-Butylbenzene	3.93		1.00		ug/L			05/13/14 23:32	1
tert-Butylbenzene	<1.00		1.00		ug/L			05/13/14 23:32	1
Carbon tetrachloride	<2.00		2.00		ug/L			05/13/14 23:32	1
Chlorobenzene	<1.00		1.00		ug/L			05/13/14 23:32	1
Chlorodibromomethane	<5.00		5.00		ug/L			05/13/14 23:32	1
Dichlorofluoromethane	<1.00		1.00		ug/L			05/13/14 23:32	1
Chloroethane	<4.00	*	4.00		ug/L			05/13/14 23:32	1
Chloroform	<1.00		1.00		ug/L			05/13/14 23:32	1
Chloromethane	<3.00	*	3.00		ua/L			05/13/14 23:32	1
4-Chlorotoluene	4.48		1.00		ua/L			05/13/14 23:32	1
2-Chlorotoluene	<1.00		1.00		ua/L			05/13/14 23:32	1
1.2-Dibromo-3-Chloropropane	<10.0		10.0		ua/L			05/13/14 23:32	
1 2-Dibromoethane (EDB)	<10.0		10.0		ua/l			05/13/14 23:32	1
	<1.00		1 00		ug/L			05/13/14 23:32	1
1 2-Dichlorobenzene	<1.00		1 00		ua/l			05/13/14 23:32	
1 3-Dichlorobenzene	<1.00		1.00		ua/l			05/13/14 23:32	1
1 4-Dichlorobenzene	<1.00		1.00		ug/L			05/13/14 23:32	1
Dichlorodifluoromethane	<3.00		3.00		ua/l			05/13/14 23:32	
1 2-Dichloroethane	<1.00		1.00		ug/L			05/13/14 23:32	1
1 1-Dichloroethane	<1.00		1.00		ug/L			05/13/14 23:32	1
1 1-Dichloroethene	<2.00		2.00		ug/L			05/13/14 23:32	
cis_1 2-Dichloroethene	<1.00		1.00		ug/L			05/13/14 23:32	1
trans_1 2-Dichloroethene	<1.00		1.00		ug/L			05/13/14 23:32	1
1 2-Dichloropropane	<1.00		1.00		ug/L			05/13/14 23:32	
1 3-Dichloropropane	<1.00		1.00		ug/L			05/13/14 23:32	1
2 2-Dichloropropane	<1.00		4.00		ug/L			05/13/14 23:32	1
1 1-Dichloropropene	~4.00		4.00		ug/L			05/13/14 23.32	
cis_1 3-Dichloropropene	~ 5.00		5.00		ug/L			05/12/14 22:22	1
trans_1.3-Dichloropropene	<5.00		5.00		ug/L			05/13/14 23.32	1
	<0.00 ~1 70		0.00 1 70		ug/L			05/13/14 23.32	····· 4
	<1.70		1.70		ug/L			05/13/14 23.32	1
	172		5.00		ug/L			05/13/14 23.32	1
	\$00.c>		0.00		ug/L			05/13/14 23.32	1 م
	22.3		1.00		ug/L			05/13/14 23:32	1
p-isopropyitoluene	1.63		1.00		ug/L			05/13/14 23:32	1
4-weinyi-z-pentanone (MIBK)	< 10.0		10.0		ug/L			05/13/14 23:32	· · · · · · · ·
	< 5.00		5.00		ug/L			05/13/14 23:32	1
	<1.00		1.00		ug/L			05/13/14 23:32	1
Naphthalene	104		5.00		ug/L			05/13/14 23:32	1
N-Propylbenzene	57.0		1.00		ug/L			05/13/14 23:32	1

TestAmerica Job ID: 310-30191-2

5

6

Lab Sample ID: 310-30191-20 Matrix: Ground Water

Client Sample ID: 7 - GP-7 Date Collected: 05/05/14 16:30 Date Received: 05/07/14 09:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	<1.00		1.00		ug/L			05/13/14 23:32	1
1,1,1,2-Tetrachloroethane	<1.00		1.00		ug/L			05/13/14 23:32	1
1,1,2,2-Tetrachloroethane	<1.00		1.00		ug/L			05/13/14 23:32	1
Tetrachloroethene	<1.00		1.00		ug/L			05/13/14 23:32	1
Tetrahydrofuran	<50.0		50.0		ug/L			05/13/14 23:32	1
Toluene	2.65		1.00		ug/L			05/13/14 23:32	1
1,2,3-Trichlorobenzene	<5.00		5.00		ug/L			05/13/14 23:32	1
1,2,4-Trichlorobenzene	<5.00		5.00		ug/L			05/13/14 23:32	1
1,1,1-Trichloroethane	<1.00		1.00		ug/L			05/13/14 23:32	1
1,1,2-Trichloroethane	<1.00		1.00		ug/L			05/13/14 23:32	1
Trichloroethene	<1.00		1.00		ug/L			05/13/14 23:32	1
Trichlorofluoromethane	<4.00		4.00		ug/L			05/13/14 23:32	1
1,2,3-Trichloropropane	1.78		1.00		ug/L			05/13/14 23:32	1
1,1,2-Trichlorotrifluoroethane	<2.00		2.00		ug/L			05/13/14 23:32	1
1,2,4-Trimethylbenzene	637		1.00		ug/L			05/13/14 23:32	1
1,3,5-Trimethylbenzene	43.0		1.00		ug/L			05/13/14 23:32	1
Vinyl chloride	<1.00		1.00		ug/L			05/13/14 23:32	1
Xylenes, Total	1170		30.0		ug/L			05/16/14 14:28	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		75 - 110					05/13/14 23:32	1
4-Bromofluorobenzene (Surr)	95		75 - 110					05/16/14 14:28	10
Dibromofluoromethane (Surr)	96		75 - 120					05/13/14 23:32	1
Dibromofluoromethane (Surr)	98		75 - 120					05/16/14 14:28	10
Toluene-d8 (Surr)	98		80 - 120					05/13/14 23:32	1
Toluene-d8 (Surr)	94		80 - 120					05/16/14 14:28	10
Method: WI-DRO - Wisconsin -	Diesel Range O	rganics (GC	>)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (DRO)	1.53		0.112		ma/L		05/09/14 08:22	05/13/14 23:24	1

RL

0.100

0.100

0.100

0.100

0.300

Limits

80 - 120

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

05/08/14 14:16

05/08/14 14:16

05/08/14 14:16

05/08/14 14:16

05/08/14 14:16

Prepared

05/08/14 14:16

Client Sample ID: MeOH Blank

Method: WI-GRO - Wisconsin - Gasoline Range Organics (GC)

Result Qualifier

< 0.100

< 0.100

< 0.100

<0.100

< 0.300

%Recovery Qualifier

88

Date Collected: 05/05/14 00:00 Date Received: 05/07/14 09:35

Analyte

Benzene

Toluene

Ethylbenzene

Xylenes, Total

Surrogate

Methyl tert-butyl ether

4-Bromofluorobenzene (Surr)

Lab Sample ID: 310-30191-21

Analyzed

05/09/14 11:46

05/09/14 11:46

05/09/14 11:46

05/09/14 11:46

05/09/14 11:46

Analyzed

05/09/14 11:46

Matrix: Soil

Dil Fac

1

1

1

1

1

1

Dil Fac

5
6
8
9

Lab Sample ID: 310-30191-22

Matrix: Water

5

6

17

Client Sample ID: Trip Blank Date Collected: 05/05/14 00:00

Date Received: 05/07/14 09:35

Analyte	Result	Qualifier	RL	MDL Unit	D Prepared	Analyzed	Dil Fac
Acetone	<10.0		10.0	ug/L		05/13/14 11:48	1
Allyl chloride	<2.00	*	2.00	ug/L		05/13/14 11:48	1
Benzene	<0.500		0.500	ug/L		05/13/14 11:48	1
Bromobenzene	<1.00		1.00	ug/L		05/13/14 11:48	1
Bromochloromethane	<5.00		5.00	ug/L		05/13/14 11:48	1
Bromodichloromethane	<1.00		1.00	ug/L		05/13/14 11:48	1
Bromoform	<5.00		5.00	ug/L		05/13/14 11:48	1
Bromomethane	<4.00		4.00	ug/L		05/13/14 11:48	1
2-Butanone (MEK)	<10.0		10.0	ug/L		05/13/14 11:48	1
n-Butylbenzene	<1.00		1.00	ug/L		05/13/14 11:48	1
sec-Butylbenzene	<1.00		1.00	ug/L		05/13/14 11:48	1
tert-Butylbenzene	<1.00		1.00	ug/L		05/13/14 11:48	1
Carbon tetrachloride	<2.00		2.00	ug/L		05/13/14 11:48	1
Chlorobenzene	<1.00		1.00	ug/L		05/13/14 11:48	1
Chlorodibromomethane	<5.00		5.00	ug/L		05/13/14 11:48	1
Dichlorofluoromethane	<1.00	*	1.00	ug/L		05/13/14 11:48	1
Chloroethane	<4.00	*	4.00	ug/L		05/13/14 11:48	1
Chloroform	<1.00		1.00	ug/L		05/13/14 11:48	1
Chloromethane	<3.00	*	3.00	ug/L		05/13/14 11:48	1
4-Chlorotoluene	<1.00		1.00	ua/L		05/13/14 11:48	1
2-Chlorotoluene	<1.00		1.00	ua/L		05/13/14 11:48	1
1.2-Dibromo-3-Chloropropane	<10.0		10.0	ua/L		05/13/14 11:48	
1 2-Dibromoethane (EDB)	<10.0		10.0	ug/l		05/13/14 11.48	1
Dibromomethane	<1.00		1.00	ua/L		05/13/14 11:48	1
1.2-Dichlorobenzene	<1.00		1.00	ua/L		05/13/14 11:48	1
1.3-Dichlorobenzene	<1.00		1.00	ua/L		05/13/14 11:48	1
1.4-Dichlorobenzene	<1.00		1.00	ua/L		05/13/14 11:48	1
Dichlorodifluoromethane	<3.00	*	3.00	ug/l		05/13/14 11.48	1
1 2-Dichloroethane	<1.00		1 00	ug/L		05/13/14 11:48	1
1 1-Dichloroethane	<1.00		1.00	ug/L		05/13/14 11:48	1
1 1-Dichloroethene	<2.00		2 00	ug/L		05/13/14 11:48	
cis-1.2-Dichloroethene	<1.00		1.00	ug/L		05/13/14 11:48	1
trans-1 2-Dichloroethene	<1.00		1 00	ug/l		05/13/14 11.48	1
1 2-Dichloropropane	<1.00		1 00	ug/L		05/13/14 11:48	
1.3-Dichloropropane	<1.00		1.00	ug/L		05/13/14 11:48	1
2 2-Dichloropropane	<4.00		4 00	ug/L		05/13/14 11:48	1
1 1-Dichloropropene	<1.00		1.00	ug/L		05/13/14 11:48	
cis-1 3-Dichloropropene	<5.00		5.00	ug/L		05/13/14 11:48	1
trans_1 3-Dichloropropene	<5.00		5.00	ug/L		05/13/14 11:48	1
Diethyl ether	<1 70		1 70	ug/L		05/13/14 11:48	
Ethylbenzene	<1.70		1.00	ug/L		05/13/14 11:48	1
Hexachlorobutadiene	<5.00		5.00	ug/L		05/13/14 11:48	1
Isonronylbenzene	~0.00		1 00	ug/L		05/13/14 11:40	
	<1.00		1.00	ug/L		05/13/14 11:40	1
4-Methyl-2-pentanone (MIRK)	<10.0		1.00	ug/L		05/13/14 11:40	1
Methylene Chloride	~ 10.0		5.00	ug/L		05/13/14 11:40	
	< 0.00		1 00	ug/L		05/13/14 11.40	1
Nanhthalene	~ = 00		5.00	ug/L		05/13/14 11.40	1
	<0.0U		J.UU 1.00	uy/L		05/12/14 11.40	۱ ۸
м-гторушендене	<1.00		1.00	ug/L		03/13/14 11.48	1

Client Sample ID: Trip Blank Date Collected: 05/05/14 00:00 Date Received: 05/07/14 09:35

Lab Sample ID: 310-30191-22 Matrix: Water

Method: 8260B - Volatile Orga	nic Compounds	(GC/MS) (C	ontinued)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Styrene	<1.00		1.00		ug/L			05/13/14 11:48	1
1,1,1,2-Tetrachloroethane	<1.00		1.00		ug/L			05/13/14 11:48	1
1,1,2,2-Tetrachloroethane	<1.00		1.00		ug/L			05/13/14 11:48	1
Tetrachloroethene	<1.00		1.00		ug/L			05/13/14 11:48	1
Tetrahydrofuran	<50.0		50.0		ug/L			05/13/14 11:48	1
Toluene	<1.00		1.00		ug/L			05/13/14 11:48	1
1,2,3-Trichlorobenzene	<5.00		5.00		ug/L			05/13/14 11:48	1
1,2,4-Trichlorobenzene	<5.00		5.00		ug/L			05/13/14 11:48	1
1,1,1-Trichloroethane	<1.00		1.00		ug/L			05/13/14 11:48	1
1,1,2-Trichloroethane	<1.00		1.00		ug/L			05/13/14 11:48	1
Trichloroethene	<1.00		1.00		ug/L			05/13/14 11:48	1
Trichlorofluoromethane	<4.00		4.00		ug/L			05/13/14 11:48	1
1,2,3-Trichloropropane	<1.00		1.00		ug/L			05/13/14 11:48	1
1,1,2-Trichlorotrifluoroethane	<2.00		2.00		ug/L			05/13/14 11:48	1
1,2,4-Trimethylbenzene	<1.00		1.00		ug/L			05/13/14 11:48	1
1,3,5-Trimethylbenzene	<1.00		1.00		ug/L			05/13/14 11:48	1
Vinyl chloride	<1.00	*	1.00		ug/L			05/13/14 11:48	1
Xylenes, Total	<3.00		3.00		ug/L			05/13/14 11:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		75 - 110			-		05/13/14 11:48	1
Dibromofluoromethane (Surr)	98		75 - 120					05/13/14 11:48	1
Toluene-d8 (Surr)	97		80 - 120					05/13/14 11:48	1

Lab Sample ID: 310-30191-23 Matrix: Air

5

6

17

Date Collected: 05/05/14 16:30 Date Received: 05/07/14 09:35

Client Sample ID: Air 1

Method: TO-15 - Volatile Organ	ic Compounds i	n Ambient A	ir						
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Propylene	42.2		10.0		ppb v/v			05/16/14 06:53	2
Dichlorodifluoromethane	<1.00		1.00		ppb v/v			05/16/14 06:53	2
1,2-Dichlorotetrafluoroethane	<0.400		0.400		ppb v/v			05/16/14 06:53	2
Chloromethane	<1.00		1.00		ppb v/v			05/16/14 06:53	2
Vinyl chloride	<0.400		0.400		ppb v/v			05/16/14 06:53	2
1,3-Butadiene	3.22		0.400		ppb v/v			05/16/14 06:53	2
Bromomethane	<0.400		0.400		ppb v/v			05/16/14 06:53	2
Chloroethane	<1.00		1.00		ppb v/v			05/16/14 06:53	2
Trichlorofluoromethane	0.484		0.400		ppb v/v			05/16/14 06:53	2
Ethanol	<10.0		10.0		ppb v/v			05/16/14 06:53	2
Freon TF	<0.400		0.400		ppb v/v			05/16/14 06:53	2
1,1-Dichloroethene	<0.400		0.400		ppb v/v			05/16/14 06:53	2
Acetone	18.3		10.0		v/v dag			05/16/14 06:53	2
Isopropyl alcohol	<10.0		10.0		v/v dag			05/16/14 06:53	2
Carbon disulfide	<1.00		1.00		ppb v/v			05/16/14 06:53	2
Methylene Chloride	<1.00		1 00		nnb v/v			05/16/14 06:53	2
Methyl tert-butyl ether	<0.400		0 400		nnh v/v			05/16/14 06:53	2
trans-1 2-Dichloroethene	<0.400		0.400		nnh v/v			05/16/14 06:53	2
n-Heyane	<0.100		0.400		nnh v/v			05/16/14 06:53	2
1 1-Dichloroethane	<0.400		0.400					05/16/14 06:53	2
Vinyl acetate	<10.0		10.0					05/16/14 06:53	2
	<10.0		10.0					05/16/14 06:53	· · · · · · · · · · · · · · · · · · ·
	< 10.0		10.0					05/10/14 00:55	2
via 1.2 Disklarasthana	1.70		0.400					05/10/14 00.55	2
cis-1,2-Dichioroethene	<0.400		0.400		ppp v/v			05/10/14 00.53	ے ۔
Tetrahudrafuran	<0.400		0.400					05/10/14 00.55	2
1 etranydroturan	< 10.0		10.0					05/16/14 06:53	2
	<0.400		0.400		v/v dqq			05/16/14 06:53	
Cyclonexane	<0.400		0.400		ppb v/v			05/16/14 06:53	2
	<0.400		0.400		ppb v/v			05/16/14 06:53	2
Benzene	0.787		0.400		ppp v/v			05/16/14 06:53	
1,2-Dichloroethane	<0.400		0.400		ppb v/v			05/16/14 06:53	2
n-Heptane	<0.400		0.400		ppb v/v			05/16/14 06:53	2
Trichloroethene	<0.400		0.400		ppb v/v			05/16/14 06:53	2
1,2-Dichloropropane	<0.400		0.400		ppb v/v			05/16/14 06:53	2
Bromodichloromethane	<0.400		0.400		ppb v/v			05/16/14 06:53	2
cis-1,3-Dichloropropene	<0.400		0.400		ppb v/v			05/16/14 06:53	2
Methyl isobutyl ketone	<1.00		1.00		ppb v/v			05/16/14 06:53	2
Toluene	1.93		0.400		ppb v/v			05/16/14 06:53	2
trans-1,3-Dichloropropene	<0.400		0.400		ppb v/v			05/16/14 06:53	2
1,1,2-Trichloroethane	<0.400		0.400		ppb v/v			05/16/14 06:53	2
Tetrachloroethene	<0.400		0.400		ppb v/v			05/16/14 06:53	2
Methyl Butyl Ketone (2-Hexanone)	<1.00		1.00		ppb v/v			05/16/14 06:53	2
1,2-Dibromoethane	<0.400		0.400		ppb v/v			05/16/14 06:53	2
Chlorobenzene	5.24		0.400		ppb v/v			05/16/14 06:53	2
Ethylbenzene	<0.400		0.400		ppb v/v			05/16/14 06:53	2
m,p-Xylene	1.05		1.00		ppb v/v			05/16/14 06:53	2
Xylene, o-	0.957		0.400		ppb v/v			05/16/14 06:53	2
Styrene	<0.400		0.400		ppb v/v			05/16/14 06:53	2
Bromoform	<0.400		0.400		ppb v/v			05/16/14 06:53	2

Client Sample ID: Air 1 Date Collected: 05/05/14 16:30

Date Received: 05/07/14 09:35

Lab Sample ID: 310-30191-23 Matrix: Air

Analyte	Result	Qualifier	RL RL		Unit	D	Prepared	Analyzed	Dil Fac	
1,1,2,2-Tetrachloroethane	<0.400		0.400			ppb v/v			05/16/14 06:53	2
4-Ethyltoluene	<0.400		0.40	00		ppb v/	v		05/16/14 06:53	2
1,3,5-Trimethylbenzene	2.13		0.40	0		ppb v/	V		05/16/14 06:53	2
1,2,4-Trimethylbenzene	<0.400		0.40	00		ppb v/	v		05/16/14 06:53	2
1,3-Dichlorobenzene	<0.400		0.400		ppb v/v			05/16/14 06:53	2	
1,4-Dichlorobenzene	<0.400		0.400		ppb v/v			05/16/14 06:53	2	
Benzyl chloride	<0.400		0.400			ppb v/v			05/16/14 06:53	2
1,2-Dichlorobenzene	<0.400		0.400			ppb v/v			05/16/14 06:53	2
1,2,4-Trichlorobenzene	<1.00		1.00			ppb v/v			05/16/14 06:53	2
Hexachlorobutadiene	<0.400		0.400			ppb v/v			05/16/14 06:53	2
Naphthalene	<1.00		1.00			ppb v/v			05/16/14 06:53	2
Dibromochloromethane	<0.400		0.400			ppb v/v			05/16/14 06:53	2
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Cyclohexane, 1,1,3-trimethyl-	184	TJN	ppb v/v		14	.67	3073-66-3		05/16/14 06:53	2
Cyclohexane, 1,3,5-trimethyl-, (1 alpha	164	TJN	ppb v/v		14	.98	1795-26-2		05/16/14 06:53	2
Unknown	156	ΤJ	ppb v/v		15	.57			05/16/14 06:53	2
Unknown	192	ΤJ	ppb v/v		15	79			05/16/14 06:53	2
Unknown	336	ΤJ	ppb v/v		16	.05			05/16/14 06:53	2
Unknown	609	ΤJ	ppb v/v		16	.35			05/16/14 06:53	2
Unknown	683	ΤJ	ppb v/v		16	.51			05/16/14 06:53	2
Unknown	181	ΤJ	ppb v/v		16	.73			05/16/14 06:53	2
Unknown	292	ΤJ	ppb v/v		16	.87			05/16/14 06:53	2
Unknown	251	ΤJ	ppb v/v		16	97			05/16/14 06:53	2
Lab Sample ID: 310-30191-24

Matrix: Air

5

6

17

Client Sample ID: Air 2

Date Collected: 05/05/14 16:30 Date Received: 05/07/14 09:35

Method: TO-15 - Volatile Organic	Compounds in	Ambient Air	ы	ы	Unit	Б	Propared	Analyzod	Dil Eac
				RL			Frepareu	Analyzeu	
Disbloradifluoramethana	<15.2		15.2					05/14/14 23:47	3.03
	< 1.52		0.606					05/14/14 23:47	3.03
Chloremethene	<0.000		1.50		ppb v/v			05/14/14 23:47	3.03
Vipul oblorido	<1.52		1.52		ppb v/v			05/14/14 23:47	3.03
	< 0.000		0.000					05/14/14 23:47	3.03
1,3-Butadiene	0.732		0.606		ppb v/v			05/14/14 23:47	3.03
Chloraethana	<0.000		0.606					05/14/14 23:47	3.03
	<1.52		1.52					05/14/14 23.47	3.03
I richlorofluoromethane	<0.606		0.606					05/14/14 23:47	3.03
Ethanol	< 15.2		15.2		ppb v/v			05/14/14 23:47	3.03
Freon IF	<0.606		0.606		ppb v/v			05/14/14 23:47	3.03
1,1-Dicnioroetnene	<0.606		0.606		ppb v/v			05/14/14 23:47	3.03
Acetone	52.8		15.2		ppb v/v			05/14/14 23:47	3.03
	<15.2		15.2		ppb v/v			05/14/14 23:47	3.03
Carbon disulfide	<1.52		1.52		ppb v/v			05/14/14 23:47	3.03
Methylene Chloride	<1.52		1.52		ppb v/v			05/14/14 23:47	3.03
Methyl tert-butyl ether	<0.606		0.606		ppb v/v			05/14/14 23:47	3.03
trans-1,2-Dichloroethene	<0.606		0.606		ppb v/v			05/14/14 23:47	3.03
n-Hexane	0.969		0.606		ppb v/v			05/14/14 23:47	3.03
1,1-Dichloroethane	<0.606		0.606		ppb v/v			05/14/14 23:47	3.03
Vinyl acetate	<15.2		15.2		ppb v/v			05/14/14 23:47	3.03
Ethyl acetate	<15.2		15.2		ppb v/v			05/14/14 23:47	3.03
Methyl Ethyl Ketone	<1.52		1.52		ppb v/v			05/14/14 23:47	3.03
cis-1,2-Dichloroethene	<0.606		0.606		ppb v/v			05/14/14 23:47	3.03
Chloroform	2.45		0.606		ppb v/v			05/14/14 23:47	3.03
Tetrahydrofuran	<15.2		15.2		ppb v/v			05/14/14 23:47	3.03
1,1,1-Trichloroethane	<0.606		0.606		ppb v/v			05/14/14 23:47	3.03
Cyclohexane	<0.606		0.606		ppb v/v			05/14/14 23:47	3.03
Carbon tetrachloride	<0.606		0.606		ppb v/v			05/14/14 23:47	3.03
Benzene	1.36		0.606		ppb v/v			05/14/14 23:47	3.03
1,2-Dichloroethane	<0.606		0.606		ppb v/v			05/14/14 23:47	3.03
n-Heptane	0.616		0.606		ppb v/v			05/14/14 23:47	3.03
Trichloroethene	<0.606		0.606		ppb v/v			05/14/14 23:47	3.03
1,2-Dichloropropane	<0.606		0.606		ppb v/v			05/14/14 23:47	3.03
Bromodichloromethane	<0.606		0.606		ppb v/v			05/14/14 23:47	3.03
cis-1,3-Dichloropropene	<0.606		0.606		ppb v/v			05/14/14 23:47	3.03
Methyl isobutyl ketone	<1.52		1.52		ppb v/v			05/14/14 23:47	3.03
Toluene	2.95		0.606		ppb v/v			05/14/14 23:47	3.03
trans-1,3-Dichloropropene	<0.606		0.606		ppb v/v			05/14/14 23:47	3.03
1,1,2-Trichloroethane	<0.606		0.606		ppb v/v			05/14/14 23:47	3.03
Tetrachloroethene	3.71		0.606		ppb v/v			05/14/14 23:47	3.03
Methyl Butyl Ketone (2-Hexanone)	<1.52		1.52		ppb v/v			05/14/14 23:47	3.03
1,2-Dibromoethane	<0.606		0.606		ppb v/v			05/14/14 23:47	3.03
Chlorobenzene	<0.606		0.606		ppb v/v			05/14/14 23:47	3.03
Ethylbenzene	0.641		0.606		ppb v/v			05/14/14 23:47	3.03
m,p-Xylene	1.67		1.52		ppb v/v			05/14/14 23:47	3.03
Xylene, o-	<0.606		0.606		ppb v/v			05/14/14 23:47	3.03
Styrene	<0.606		0.606		ppb v/v			05/14/14 23:47	3.03
Bromoform	<0.606		0.606		ppb v/v			05/14/14 23:47	3.03

Client Sample ID: Air 2 Date Collected: 05/05/14 16:30

Date Received: 05/07/14 09:35

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: 310-30191-24 Matrix: Air

Dil Fac 6

Analyte	Result	Qualifier	RI	L	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,2,2-Tetrachloroethane	<0.606		0.600	5		ppb v/v			05/14/14 23:47	3.03
4-Ethyltoluene	<0.606		0.600	6		ppb v/v			05/14/14 23:47	3.03
1,3,5-Trimethylbenzene	<0.606		0.600	6		ppb v/v			05/14/14 23:47	3.03
1,2,4-Trimethylbenzene	1.05		0.600	6		ppb v/v			05/14/14 23:47	3.03
1,3-Dichlorobenzene	<0.606		0.600	3		ppb v/v			05/14/14 23:47	3.03
1,4-Dichlorobenzene	<0.606		0.600	3		ppb v/v			05/14/14 23:47	3.03
Benzyl chloride	<0.606		0.600	6		ppb v/v			05/14/14 23:47	3.03
1,2-Dichlorobenzene	<0.606		0.600	6		ppb v/v			05/14/14 23:47	3.03
1,2,4-Trichlorobenzene	<1.52		1.52	2		ppb v/v			05/14/14 23:47	3.03
Hexachlorobutadiene	<0.606		0.600	6		ppb v/v			05/14/14 23:47	3.03
Naphthalene	<1.52		1.52	2		ppb v/v			05/14/14 23:47	3.03
Dibromochloromethane	<0.606		0.600	3		ppb v/v			05/14/14 23:47	3.03
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D		RT	CAS No.	Prepared	Analyzed	Dil Fac
Unknown	5.97	ΤJ	ppb v/v		21	.78			05/14/14 23:47	3.03
Unknown	7.11	ΤJ	ppb v/v		22	.56			05/14/14 23:47	3.03
Unknown	16.2	ΤJ	ppb v/v		23	.32			05/14/14 23:47	3.03
Unknown	9.03	ΤJ	ppb v/v		23	.52			05/14/14 23:47	3.03
Unknown	40.1	ΤJ	ppb v/v		23	.72			05/14/14 23:47	3.03
Unknown	8.61	ΤJ	ppb v/v		23	.94			05/14/14 23:47	3.03
Unknown	76.1	ΤJ	ppb v/v		24	.09			05/14/14 23:47	3.03
Unknown	8.54	ΤJ	ppb v/v		24	.29			05/14/14 23:47	3.03
Unknown	45.4	ΤJ	ppb v/v		24	.41			05/14/14 23:47	3.03
Unknown	26.4	ΤJ	ppb v/v		25	.92			05/14/14 23:47	3.03

Qualifiers

GC/MS VOA		
Qualifier	Qualifier Description	
*	LCS or LCSD exceeds the control limits	5
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.	J
GC VOA		
Qualifier	Qualifier Description	
Х	Surrogate is outside control limits	7
GC Semi VOA	λ	
Qualifier	Qualifier Description	8
*	LCS or LCSD exceeds the control limits	
*	RPD of the LCS and LCSD exceeds the control limits	9
Air - GC/MS V	'OA TICs	4.0
Qualifier	Qualifier Description	
J	Indicates an Estimated Value for TICs	
Ν	Presumptive evidence of material.	
т	Result is a tentatively identified compound (TIC) and an estimated value.	
Glossary		12
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CNF	Contains no Free Liquid	
DER	Duplicate error ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision level concentration	17
	Management and a state of a set of the	

ML Minimum Level (Dioxin) NC Not Calculated

Minimum detectable activity

Minimum detectable concentration

Estimated Detection Limit

Method Detection Limit

- ND Not detected at the reporting limit (or MDL or EDL if shown)
- PQL Practical Quantitation Limit
- QC **Quality Control**

MDA

EDL

MDC

MDL

- Relative error ratio RER
- RL Reporting Limit or Requested Limit (Radiochemistry)
- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix:	Ground	Water

				Percent Su
		BFB	DBFM	TOL
Lab Sample ID	Client Sample ID	(75-110)	(75-120)	(80-120)
310-30191-15	1 - GP-1	95	96	96
310-30191-16	2 - GP-6	96	93	97
310-30191-17	3 - GP-3	95	95	100
310-30191-18	4 - GP-4	96	98	96
310-30191-19	5 - GP-5	95	98	96
310-30191-20	7 - GP-7	93	96	98
310-30191-20	7 - GP-7	95	98	94

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: 8260B - Volatile Organic Compounds (GC/MS)

Matrix: Water

-			gate Recovery (Acceptance Limits)			
		BFB	DBFM	TOL		1
Lab Sample ID	Client Sample ID	(75-110)	(75-120)	(80-120)		
310-30191-22	Trip Blank	95	98	97		
LCS 310-47990/4	Lab Control Sample	96	104	96		
LCS 310-48111/4	Lab Control Sample	96	101	97		
LCS 310-48351/4	Lab Control Sample	97	104	98		
MB 310-47990/7	Method Blank	93	96	98		
MB 310-48111/7	Method Blank	92	93	97		
MB 310-48351/7	Method Blank	97	93	97		

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

TOL = Toluene-d8 (Surr)

Method: WI-GRO - Wisconsin - Gasoline Range Organics (GC)

Matrix: Soil

Percent Surrogate Recovery (Acceptance Limits) BFB Lab Sample ID **Client Sample ID** (80-120) 310-30191-1 1 - GP-1 6' 95 310-30191-2 2 - GP-1 12' 99 310-30191-3 3 - GP-2 5' 139 X 4 - GP-2 16' 310-30191-4 98 310-30191-5 5-GP-3 8' 105 310-30191-6 6 - GP-4 8' 86 310-30191-7 7 - GP-5 8' 99 310-30191-8 8 - GP-6 6' 138 X 310-30191-9 9 - GP-6 16' 94 10 - GP-7 6' 95 310-30191-10 310-30191-11 11 - GP-7 13.5' 89 310-30191-21 MeOH Blank 88

5

Surrogate Legend

Matrix: Solid

BFB = 4-Bromofluorobenzene (Surr)

Method: WI-GRO - Wisconsin - Gasoline Range Organics (GC)

Matrix: Solid			Prep Type: Total/NA
_			Percent Surrogate Recovery (Acceptance Limits)
		BFB	
Lab Sample ID	Client Sample ID	(80-120)	
LCS 310-47690/2-A	Lab Control Sample	109	
LCS 310-47719/2-A	Lab Control Sample	114	
LCSD 310-47690/23-A	Lab Control Sample Dup	109	
LCSD 310-47719/21-A	Lab Control Sample Dup	110	
MB 310-47690/1-A	Method Blank	95	
MB 310-47719/1-A	Method Blank	101	
Surrogate Legend			

BFB = 4-Bromofluorobenzene (Surr)

Client Sample ID: Method Blank

Prep Type: Total/NA

2 3 4 5 6

1	_
1	17
1	

Method: 8260B	- Volatile	Organic	Compounds	(GC/MS)

Lab Sample ID: MB 310-47990/7

Matrix: Water Analysis Batch: 47990

	MB	MB				
Analyte	Result	Qualifier RL	MDL Unit	D Prep	ared Analyzed	Dil Fac
Acetone	<10.0	10.0	ug/L		05/13/14 11:24	1
Allyl chloride	<2.00	2.00	ug/L		05/13/14 11:24	1
Benzene	<0.500	0.500	ug/L		05/13/14 11:24	1
Bromobenzene	<1.00	1.00	ug/L		05/13/14 11:24	1
Bromochloromethane	<5.00	5.00	ug/L		05/13/14 11:24	1
Bromodichloromethane	<1.00	1.00	ug/L		05/13/14 11:24	1
Bromoform	<5.00	5.00	ug/L		05/13/14 11:24	1
Bromomethane	<4.00	4.00	ug/L		05/13/14 11:24	1
2-Butanone (MEK)	<10.0	10.0	ug/L		05/13/14 11:24	1
n-Butylbenzene	<1.00	1.00	ug/L		05/13/14 11:24	1
sec-Butylbenzene	<1.00	1.00	ug/L		05/13/14 11:24	1
tert-Butylbenzene	<1.00	1.00	ug/L		05/13/14 11:24	1
Carbon tetrachloride	<2.00	2.00	ug/L		05/13/14 11:24	1
Chlorobenzene	<1.00	1.00	ug/L		05/13/14 11:24	1
Chlorodibromomethane	<5.00	5.00	ua/L		05/13/14 11:24	1
Dichlorofluoromethane	<1.00	1.00	ua/L		05/13/14 11:24	1
Chloroethane	<4.00	4.00	ug/L		05/13/14 11:24	1
Chloroform	<1.00	1.00	ug/L		05/13/14 11:24	1
Chloromethane	<3.00	3.00	ua/L		05/13/14 11:24	
4-Chlorotoluene	<1.00	1 00	ug/l		05/13/14 11:24	1
2-Chlorotoluene	<1.00	1.00	ug/L		05/13/14 11:24	1
1 2-Dibromo-3-Chloropropane	<10.0	10.0	ug/L		05/13/14 11:24	
1.2-Dibromoethane (EDB)	<10.0	10.0	ug/L		05/13/14 11:24	1
Dibromomethane	<1.00	1 00	ug/L		05/13/14 11:24	1
1 2-Dichlorobenzene	<1.00	1.00	ug/L		05/13/14 11:24	
1.3-Dichlorobenzene	<1.00	1.00	ug/L		05/13/14 11:24	1
1 4-Dichlorobenzene	<1.00	1.00	ug/L		05/13/14 11:24	1
Dichlorodifluoromethane	<3.00	3.00	ug/L		05/13/14 11:24	· · · · · · · · · 1
1 2-Dichloroethane	<1.00	1.00	ug/L		05/13/14 11:24	1
1 1-Dichloroethane	<1.00	1.00	ug/L		05/13/14 11:24	1
	<2.00	2.00	ug/L		05/13/14 11:24	1
cis-1 2-Dichloroethene	<1.00	1.00	ug/L		05/13/14 11:24	1
trans_1_2-Dichloroethene	<1.00	1.00	ug/L		05/13/14 11:24	1
1 2-Dichloropropage	<1.00	1.00	ug/L		05/13/14 11:24	1
1.3-Dichloropropane	<1.00	1.00	ug/L		05/13/14 11:24	1
	<1.00	1.00	ug/L		05/13/14 11:24	1
	<4.00	4.00	ug/L		05/13/14 11:24	
	< 1.00	5.00	ug/L		05/13/14 11:24	1
trans 1.2 Disblarapropage	< 5.00	5.00	ug/L		05/13/14 11:24	1
Diathyl other	<1.70	1.70	ug/L		05/13/14 11:24	
	<1.70	1.70	ug/L		05/13/14 11.24	1
	<1.00	1.00 E 00	ug/L		05/13/14 11:24	1
	< 1.00	5.00	ug/L		05/13/14 11.24	
	<1.00	1.00	ug/L		05/13/14 11:24	T A
p-isopropyitoluene	<1.00	1.00	ug/L		05/13/14 11:24	1
4-ivietnyi-2-pentanone (MIBK)	<10.0	10.0	ug/L		05/13/14 11:24	1
wernylene Chloride	<5.00	5.00	ug/L		05/13/14 11:24	1
wetnyl tert-butyl ether	<1.00	1.00	ug/L		05/13/14 11:24	1
Naphthalene	<5.00	5.00	ug/L		05/13/14 11:24	1

Client Sample ID: Method Blank

Prep Type: Total/NA

5

	05/12/14 11.24		
	05/13/14 11.24	I	
	Analyzed	Dil Fac	
-	05/13/14 11:24	1	
	05/13/14 11:24	1	
	05/13/14 11:24	1	11

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 310-47990/7

Matrix: Water Analysis Batch: 47990

· ·····	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
N-Propylbenzene	<1.00		1.00		ug/L			05/13/14 11:24	1
Styrene	<1.00		1.00		ug/L			05/13/14 11:24	1
1,1,1,2-Tetrachloroethane	<1.00		1.00		ug/L			05/13/14 11:24	1
1,1,2,2-Tetrachloroethane	<1.00		1.00		ug/L			05/13/14 11:24	1
Tetrachloroethene	<1.00		1.00		ug/L			05/13/14 11:24	1
Tetrahydrofuran	<50.0		50.0		ug/L			05/13/14 11:24	1
Toluene	<1.00		1.00		ug/L			05/13/14 11:24	1
1,2,3-Trichlorobenzene	<5.00		5.00		ug/L			05/13/14 11:24	1
1,2,4-Trichlorobenzene	<5.00		5.00		ug/L			05/13/14 11:24	1
1,1,1-Trichloroethane	<1.00		1.00		ug/L			05/13/14 11:24	1
1,1,2-Trichloroethane	<1.00		1.00		ug/L			05/13/14 11:24	1
Trichloroethene	<1.00		1.00		ug/L			05/13/14 11:24	1
Trichlorofluoromethane	<4.00		4.00		ug/L			05/13/14 11:24	1
1,2,3-Trichloropropane	<1.00		1.00		ug/L			05/13/14 11:24	1
1,1,2-Trichlorotrifluoroethane	<2.00		2.00		ug/L			05/13/14 11:24	1
1,2,4-Trimethylbenzene	<1.00		1.00		ug/L			05/13/14 11:24	1
1,3,5-Trimethylbenzene	<1.00		1.00		ug/L			05/13/14 11:24	1
Vinyl chloride	<1.00		1.00		ug/L			05/13/14 11:24	1
Xylenes, Total	<3.00		3.00		ug/L			05/13/14 11:24	1

	MB MB				
Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93	75 - 110		05/13/14 11:24	1
Dibromofluoromethane (Surr)	96	75 - 120		05/13/14 11:24	1
Toluene-d8 (Surr)	98	80 - 120		05/13/14 11:24	1

Lab Sample ID: LCS 310-47990/4 Matrix: Water Analysis Batch: 47990

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Spike LCS LCS %Rec. Analyte Added Result Qualifier %Rec Limits Unit D Acetone 40.0 60 - 150 52.67 ug/L 132 ug/L Allyl chloride 20.0 26.63 133 45 - 130 * Benzene 20.0 21.96 ug/L 110 70 - 130 Bromobenzene 20.0 21.00 ug/L 105 75 - 130 Bromochloromethane 20.0 24 14 121 65 - 145 ug/L Bromodichloromethane 20.0 22.63 ug/L 113 60 - 130 20.0 ug/L 98 Bromoform 19.63 30 - 125 Bromomethane 20.0 24.48 ug/L 122 35 - 130 ug/L 2-Butanone (MEK) 40.0 47.13 118 55 - 140 n-Butylbenzene 20.0 21.76 ug/L 109 55 - 135 sec-Butylbenzene 20.0 22.10 ug/L 111 65 - 135 20.0 60 - 135 tert-Butylbenzene 21.89 ug/L 109 Carbon tetrachloride 20.0 23.15 ug/L 116 55 - 130 20.0 21.15 106 75 _ 125 Chlorobenzene ug/L Chlorodibromomethane 20.0 22.28 ug/L 111 45 - 125 60 - 140 Dichlorofluoromethane 20.0 150 29.98 ug/L Chloroethane 20.0 31.46 ug/L 157 55 - 135 Chloroform 20.0 21.49 ug/L 107 70 - 125

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 310-47990/4

Matrix: Water Analysis Batch: 47990

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloromethane	20.0	30.09	*	ug/L		150	30 - 125	
4-Chlorotoluene	20.0	22.68		ug/L		113	70 - 140	
2-Chlorotoluene	20.0	22.22		ug/L		111	75 - 135	
1,2-Dibromo-3-Chloropropane	20.0	22.45		ug/L		112	35 - 130	
1,2-Dibromoethane (EDB)	20.0	24.89		ug/L		124	70 - 135	
Dibromomethane	20.0	23.52		ug/L		118	75 - 130	
1,2-Dichlorobenzene	20.0	21.22		ug/L		106	65 - 135	
1,3-Dichlorobenzene	20.0	21.24		ug/L		106	70 - 130	
1,4-Dichlorobenzene	20.0	20.97		ug/L		105	60 - 140	
Dichlorodifluoromethane	20.0	27.02	*	ug/L		135	35 _ 130	
1,2-Dichloroethane	20.0	23.85		ug/L		119	65 - 140	
1,1-Dichloroethane	20.0	22.60		ug/L		113	60 _ 130	
1,1-Dichloroethene	20.0	21.61		ug/L		108	60 _ 135	
cis-1,2-Dichloroethene	20.0	21.56		ug/L		108	70 - 135	
trans-1,2-Dichloroethene	20.0	22.42		ug/L		112	60 _ 145	
1,2-Dichloropropane	20.0	21.86		ug/L		109	65 - 130	
1,3-Dichloropropane	20.0	22.69		ug/L		113	75 - 125	
2,2-Dichloropropane	20.0	22.79		ug/L		114	25 _ 120	
1,1-Dichloropropene	20.0	22.57		ug/L		113	60 _ 140	
cis-1,3-Dichloropropene	20.0	20.51		ug/L		103	30 - 120	
trans-1,3-Dichloropropene	20.0	21.72		ug/L		109	35 - 120	
Diethyl ether	20.0	22.25		ug/L		111	60 _ 135	
Ethylbenzene	20.0	21.74		ug/L		109	70 - 130	
Hexachlorobutadiene	20.0	20.00		ug/L		100	60 ₋ 135	
Isopropylbenzene	20.0	22.33		ug/L		112	70 _ 125	
p-Isopropyltoluene	20.0	21.32		ug/L		107	60 - 140	
4-Methyl-2-pentanone (MIBK)	40.0	46.25		ug/L		116	40 _ 135	
Methylene Chloride	20.0	21.45		ug/L		107	55 _ 145	
Methyl tert-butyl ether	20.0	22.22		ug/L		111	50 ₋ 135	
Naphthalene	20.0	23.02		ug/L		115	40 _ 135	
N-Propylbenzene	20.0	22.27		ug/L		111	70 - 135	
Styrene	20.0	22.02		ug/L		110	70 - 130	
1,1,1,2-Tetrachloroethane	20.0	21.76		ug/L		109	65 _ 120	
1,1,2,2-Tetrachloroethane	20.0	22.87		ug/L		114	65 ₋ 130	
Tetrachloroethene	20.0	21.35		ug/L		107	70 _ 135	
Tetrahydrofuran	40.0	46.33	J	ug/L		116	45 - 135	
Toluene	20.0	22.24		ug/L		111	70 ₋ 135	
1,2,3-Trichlorobenzene	20.0	21.41		ug/L		107	55 _ 130	
1,2,4-Trichlorobenzene	20.0	20.87		ug/L		104	40 _ 135	
1,1,1-Trichloroethane	20.0	21.54		ug/L		108	60 _ 125	
1,1,2-Trichloroethane	20.0	23.39		ug/L		117	75 - 125	
Trichloroethene	20.0	21.15		ug/L		106	70 - 130	
Trichlorofluoromethane	20.0	28.38		ug/L		142	55 - 145	
1,2,3-Trichloropropane	20.0	22.55		ug/L		113	60 - 150	
1,1,2-Trichlorotrifluoroethane	20.0	22.71		ug/L		114	50 ₋ 140	
1,2,4-Trimethylbenzene	20.0	22.29		ug/L		111	70 - 140	
1,3,5-Trimethylbenzene	20.0	22.07		ug/L		110	70 - 140	
Vinyl chloride	20.0	29.01	*	ug/L		145	45 - 135	

TestAmerica Cedar Falls

17

Spike

Added

Limits

75 - 110

75 - 120

80 - 120

40.0

LCS LCS

44.29

Result Qualifier

Unit

ug/L

D

%Rec

111

Lab Sample ID: LCS 310-47990/4

Matrix: Water

Analyte

Surrogate

Toluene-d8 (Surr)

Matrix: Water

Xylenes, Total

Analysis Batch: 47990

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

LCS LCS

%Recovery Qualifier

96

104

96

MB MB

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

%Rec.

Limits

70 - 130

9

1	
1	
1	
1	
1	

Client Sample ID: Method Blank Prep Type: Total/NA

Analysis Batch: 48111

Lab Sample ID: MB 310-48111/7

4-Bromofluorobenzene (Surr)

Dibromofluoromethane (Surr)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<10.0		10.0		ug/L			05/13/14 23:08	1
Allyl chloride	<2.00		2.00		ug/L			05/13/14 23:08	1
Benzene	<0.500		0.500		ug/L			05/13/14 23:08	1
Bromobenzene	<1.00		1.00		ug/L			05/13/14 23:08	1
Bromochloromethane	<5.00		5.00		ug/L			05/13/14 23:08	1
Bromodichloromethane	<1.00		1.00		ug/L			05/13/14 23:08	1
Bromoform	<5.00		5.00		ug/L			05/13/14 23:08	1
Bromomethane	<4.00		4.00		ug/L			05/13/14 23:08	1
2-Butanone (MEK)	<10.0		10.0		ug/L			05/13/14 23:08	1
n-Butylbenzene	<1.00		1.00		ug/L			05/13/14 23:08	1
sec-Butylbenzene	<1.00		1.00		ug/L			05/13/14 23:08	1
tert-Butylbenzene	<1.00		1.00		ug/L			05/13/14 23:08	1
Carbon tetrachloride	<2.00		2.00		ug/L			05/13/14 23:08	1
Chlorobenzene	<1.00		1.00		ug/L			05/13/14 23:08	1
Chlorodibromomethane	<5.00		5.00		ug/L			05/13/14 23:08	1
Dichlorofluoromethane	<1.00		1.00		ug/L			05/13/14 23:08	1
Chloroethane	<4.00		4.00		ug/L			05/13/14 23:08	1
Chloroform	<1.00		1.00		ug/L			05/13/14 23:08	1
Chloromethane	<3.00		3.00		ug/L			05/13/14 23:08	1
4-Chlorotoluene	<1.00		1.00		ug/L			05/13/14 23:08	1
2-Chlorotoluene	<1.00		1.00		ug/L			05/13/14 23:08	1
1,2-Dibromo-3-Chloropropane	<10.0		10.0		ug/L			05/13/14 23:08	1
1,2-Dibromoethane (EDB)	<10.0		10.0		ug/L			05/13/14 23:08	1
Dibromomethane	<1.00		1.00		ug/L			05/13/14 23:08	1
1,2-Dichlorobenzene	<1.00		1.00		ug/L			05/13/14 23:08	1
1,3-Dichlorobenzene	<1.00		1.00		ug/L			05/13/14 23:08	1
1,4-Dichlorobenzene	<1.00		1.00		ug/L			05/13/14 23:08	1
Dichlorodifluoromethane	<3.00		3.00		ug/L			05/13/14 23:08	1
1,2-Dichloroethane	<1.00		1.00		ug/L			05/13/14 23:08	1
1,1-Dichloroethane	<1.00		1.00		ug/L			05/13/14 23:08	1
1,1-Dichloroethene	<2.00		2.00		ug/L			05/13/14 23:08	1
cis-1,2-Dichloroethene	<1.00		1.00		ug/L			05/13/14 23:08	1
trans-1,2-Dichloroethene	<1.00		1.00		ug/L			05/13/14 23:08	1
1,2-Dichloropropane	<1.00		1.00		ug/L			05/13/14 23:08	1
1,3-Dichloropropane	<1.00		1.00		ug/L			05/13/14 23:08	1
2,2-Dichloropropane	<4.00		4.00		ug/L			05/13/14 23:08	1

Client Sample ID: Method Blank

Prep Type: Total/NA

2 3 4 5 6 7 8

	Method: 8260B	- Volatile Organic (Compounds (GC	C/MS) (Continued)
--	---------------	----------------------	---------------	-------------------

Lab Sample ID: MB 310-48111/7

Matrix: Water Analysis Batch: 48111

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1-Dichloropropene	<1.00		1.00		ug/L			05/13/14 23:08	1
cis-1,3-Dichloropropene	<5.00		5.00		ug/L			05/13/14 23:08	1
trans-1,3-Dichloropropene	<5.00		5.00		ug/L			05/13/14 23:08	1
Diethyl ether	<1.70		1.70		ug/L			05/13/14 23:08	1
Ethylbenzene	<1.00		1.00		ug/L			05/13/14 23:08	1
Hexachlorobutadiene	<5.00		5.00		ug/L			05/13/14 23:08	1
Isopropylbenzene	<1.00		1.00		ug/L			05/13/14 23:08	1
p-Isopropyltoluene	<1.00		1.00		ug/L			05/13/14 23:08	1
4-Methyl-2-pentanone (MIBK)	<10.0		10.0		ug/L			05/13/14 23:08	1
Methylene Chloride	<5.00		5.00		ug/L			05/13/14 23:08	1
Methyl tert-butyl ether	<1.00		1.00		ug/L			05/13/14 23:08	1
Naphthalene	<5.00		5.00		ug/L			05/13/14 23:08	1
N-Propylbenzene	<1.00		1.00		ug/L			05/13/14 23:08	1
Styrene	<1.00		1.00		ug/L			05/13/14 23:08	1
1,1,1,2-Tetrachloroethane	<1.00		1.00		ug/L			05/13/14 23:08	1
1,1,2,2-Tetrachloroethane	<1.00		1.00		ug/L			05/13/14 23:08	1
Tetrachloroethene	<1.00		1.00		ug/L			05/13/14 23:08	1
Tetrahydrofuran	<50.0		50.0		ug/L			05/13/14 23:08	1
Toluene	<1.00		1.00		ug/L			05/13/14 23:08	1
1,2,3-Trichlorobenzene	<5.00		5.00		ug/L			05/13/14 23:08	1
1,2,4-Trichlorobenzene	<5.00		5.00		ug/L			05/13/14 23:08	1
1,1,1-Trichloroethane	<1.00		1.00		ug/L			05/13/14 23:08	1
1,1,2-Trichloroethane	<1.00		1.00		ug/L			05/13/14 23:08	1
Trichloroethene	<1.00		1.00		ug/L			05/13/14 23:08	1
Trichlorofluoromethane	<4.00		4.00		ug/L			05/13/14 23:08	1
1,2,3-Trichloropropane	<1.00		1.00		ug/L			05/13/14 23:08	1
1,1,2-Trichlorotrifluoroethane	<2.00		2.00		ug/L			05/13/14 23:08	1
1,2,4-Trimethylbenzene	<1.00		1.00		ug/L			05/13/14 23:08	1
1,3,5-Trimethylbenzene	<1.00		1.00		ug/L			05/13/14 23:08	1
Vinyl chloride	<1.00		1.00		ug/L			05/13/14 23:08	1
Xylenes, Total	<3.00		3.00		ug/L			05/13/14 23:08	1

	MB	МВ				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		75 _ 110		05/13/14 23:08	1
Dibromofluoromethane (Surr)	93		75 _ 120		05/13/14 23:08	1
Toluene-d8 (Surr)	97		80 - 120		05/13/14 23:08	1

Lab Sample ID: LCS 310-48111/4 Matrix: Water

Analysis Batch: 48111

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Acetone	40.0	53.20		ug/L		133	60 - 150	
Allyl chloride	20.0	26.69	*	ug/L		133	45 - 130	
Benzene	20.0	22.82		ug/L		114	70 - 130	
Bromobenzene	20.0	21.48		ug/L		107	75 _ 130	
Bromochloromethane	20.0	26.45		ug/L		132	65 _ 145	
Bromodichloromethane	20.0	22.64		ug/L		113	60 - 130	

TestAmerica Cedar Falls

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

9

17

Client Sample ID: Lab Control Sample

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 310-48111/4 Matrix: Water

watri	X: V	ater	
Analy	ysis	Batch:	48111

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Bromoform	20.0	19.78		ug/L		99	30 - 125	
Bromomethane	20.0	24.46		ug/L		122	35 - 130	
2-Butanone (MEK)	40.0	45.19		ug/L		113	55 ₋ 140	
n-Butylbenzene	20.0	22.29		ug/L		111	55 - 135	
sec-Butylbenzene	20.0	22.35		ug/L		112	65 - 135	
tert-Butylbenzene	20.0	22.22		ug/L		111	60 - 135	
Carbon tetrachloride	20.0	23.68		ug/L		118	55 ₋ 130	
Chlorobenzene	20.0	21.46		ug/L		107	75 ₋ 125	
Chlorodibromomethane	20.0	23.05		ug/L		115	45 - 125	
Dichlorofluoromethane	20.0	27.75		ug/L		139	60 _ 140	
Chloroethane	20.0	28.27	*	ug/L		141	55 - 135	
Chloroform	20.0	21.97		ug/L		110	70 - 125	
Chloromethane	20.0	28.24	*	ug/L		141	30 - 125	
4-Chlorotoluene	20.0	23.46		ug/L		117	70 - 140	
2-Chlorotoluene	20.0	22.70		ug/L		114	75 - 135	
1.2-Dibromo-3-Chloropropane	20.0	20.97		ug/L		105	35 - 130	
1,2-Dibromoethane (EDB)	20.0	24.43		ug/L		122	70 - 135	
Dibromomethane	20.0	24.39		ug/L		122	75 ₋ 130	
1.2-Dichlorobenzene	20.0	22.30		ua/L		111	65 - 135	
1.3-Dichlorobenzene	20.0	21.83		ua/L		109	70 - 130	
1.4-Dichlorobenzene	20.0	22.20		ua/L		111	60 - 140	
Dichlorodifluoromethane	20.0	23.69		ua/L		118	35 - 130	
1.2-Dichloroethane	20.0	25.02		ua/L		125	65 _ 140	
1 1-Dichloroethane	20.0	23.28		ua/l		116	60 - 130	
1 1-Dichloroethene	20.0	23 17		ug/L		116	60 - 135	
cis-1 2-Dichloroethene	20.0	23.22		ug/L		116	70 - 135	
trans-1 2-Dichloroethene	20.0	23 45		ug/L		117	60 145	
1 2-Dichloropropane	20.0	23.05		ug/L		115	65 - 130	
1.3-Dichloropropane	20.0	23.28		ug/L		116	75 125	
2 2-Dichloropropane	20.0	22.07		ug/L		110	25 120	
1 1-Dichloropropene	20.0	23.46		ug/L		117	60 140	
cis-1.3-Dichloropropene	20.0	21.09		ug/L		105	30 120	
trans-1 3-Dichloropropene	20.0	22.20		ug/L		111	35 120	
Diethyl ether	20.0	22.00		ug/L		110	60 135	
Ethylbenzene	20.0	22.00		ug/L		110	70 130	
Hexachlorobutadiene	20.0	21.01		ug/L		107	60 135	
	20.0	21.40		ug/L		112	70 125	
	20.0	22.02		ug/L		112	60 140	
4 Mothyl 2 pontonono (MIPK)	20.0	45.60		ug/L		114	40 125	
4-ivietnyi-z-pentanone (widk)	40.0	40.02		ug/L		114	40 - 133	
Methylene Chloride	20.0	22.05		ug/L		113	50 - 145	
Methyl tert-butyl ether	20.0	23.21		ug/L		110	50 - 135	
Naphthalene	20.0	23.38		ug/L		117	40 - 135	
	20.0	22.92		ug/L		115	70 - 135	
Styrene	20.0	22.48		ug/L		112	70 - 130	
	20.0	22.47		ug/L		112	65 - 120	
1,1,2,2- i etrachloroethane	20.0	22.67		ug/L		113	65 - 130	
I etrachioroethene	20.0	22.96		ug/L "		115	/0 - 135	
ıetranyaroturan	40.0	45.72	J	ug/L		114	45 - 135	

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 310-48111/4 . Matrix: Wator

watrix. v	aler	
Analysis	Batch:	48111

· ·····, ····	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Toluene	20.0	23.42		ug/L		117	70 - 135	
1,2,3-Trichlorobenzene	20.0	21.69		ug/L		108	55 ₋ 130	
1,2,4-Trichlorobenzene	20.0	21.04		ug/L		105	40 _ 135	
1,1,1-Trichloroethane	20.0	22.57		ug/L		113	60 ₋ 125	
1,1,2-Trichloroethane	20.0	24.63		ug/L		123	75 ₋ 125	
Trichloroethene	20.0	22.61		ug/L		113	70 - 130	
Trichlorofluoromethane	20.0	26.80		ug/L		134	55 ₋ 145	
1,2,3-Trichloropropane	20.0	22.77		ug/L		114	60 ₋ 150	
1,1,2-Trichlorotrifluoroethane	20.0	23.00		ug/L		115	50 - 140	
1,2,4-Trimethylbenzene	20.0	22.53		ug/L		113	70 _ 140	
1,3,5-Trimethylbenzene	20.0	23.05		ug/L		115	70 - 140	
Vinyl chloride	20.0	26.54		ug/L		133	45 ₋ 135	
Xylenes, Total	40.0	44.78		ug/L		112	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	96		75 - 110
Dibromofluoromethane (Surr)	101		75 - 120
Toluene-d8 (Surr)	97		80 - 120

- - - -- - -

Lab Sample ID: MB 310-48351/7 Matrix: Water

Analysis Batch: 48351

	MB	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Xylenes, Total	<3.00		3.00		ug/L			05/16/14 09:36	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		75 _ 110			-		05/16/14 09:36	1
Dibromofluoromethane (Surr)	93		75 - 120					05/16/14 09:36	1
Toluene-d8 (Surr)	97		80 - 120					05/16/14 09:36	1

Lab Sample ID: LCS 310-48351/4 Matrix: Water

Analysis Batch: 48351										
			Spike	LCS	LCS				%Rec.	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Xylenes, Total			40.0	44.07		ug/L		110	70 - 130	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene (Surr)	97		75 _ 110							
Dibromofluoromethane (Surr)	104		75 - 120							
Toluene-d8 (Surr)	98		80 - 120							

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Lab Sample ID: MB 310-47690	/1-A									Client Sa	ample ID: N	/lethod	Blank
Matrix: Solid											Prep Ty	pe: To	tal/NA
Analysis Batch: 47736											Prep	Batch:	47690
	Μ	B MB											
Analyte	Resu	It Qualifier	RL		MDL	Unit		D	Pr	epared	Analyze	d	Dil Fac
Benzene	<0.096	5	0.0965			mg/Kg			05/08	3/14 11:02	05/09/14 1	5:06	1
Toluene	<0.096	5	0.0965			mg/Kg			05/08	3/14 11:02	05/09/14 1	5:06	1
Ethylbenzene	<0.096	5	0.0965			mg/Kg			05/08	3/14 11:02	05/09/14 1	5:06	1
Methyl tert-butyl ether	<0.096	5	0.0965			mg/Kg			05/08	3/14 11:02	05/09/14 1	5:06	1
Xylenes, Total	<0.28	9	0.289			mg/Kg			05/08	3/14 11:02	05/09/14 1	5:06	1
Surrogata	W Basava	D MD	Limita						р.	ranarad	Analyz	- d	
A Bromofluorobenzene (Surr)								-	05/0	epareu 8/17 11:02	05/00/1/ 1	5:06	
		5	00 - 720						05/00	5/14 11.02	03/03/14 1	5.00	1
- Lab Sample ID: LCS 310-4769	0/2-A							Cli	ient	Sample	ID: Lab Co	ntrol S	ample
Matrix: Solid											Prep Ty	/pe: To	tal/NA
Analysis Batch: 47736											Prep	Batch:	47690
· ····· , · · · · · · · · · · · · · · · · · · ·			Spike	LCS	LCS						%Rec.		
Analyte			Added	Result	Qual	lifier	Unit		D	%Rec	Limits		
Benzene			4.69	4.611			mg/Kg		_	98	80 - 120		
Wisconsin GRO			46.9	48.27			mg/Kg			103	80 - 120		
Toluene			4.69	4.516			mg/Kg			96	80 - 120		
Ethylbenzene			4.69	4.576			mg/Kg			98	80 - 120		
m-Xylene & p-Xylene			9.38	8.829			mg/Kg			94	80 - 120		
o-Xylene			4.69	4.672			mg/Kg			100	80 - 120		
Methyl tert-butyl ether			4.69	4.826			mg/Kg			103	80 - 120		
Xylenes, Total			14.1	13.50			mg/Kg			96	80 - 120		
		~											
Surrogato	«Bocovory O	valifior	Limite										
A Bromofluorobenzene (Surr)	100 100		80 120										
	109		00 - 720										
Lab Sample ID: LCSD 310-476	90/23-A						CI	ient S	Sam	ple ID: L	ab Control	Samp	le Dup
Matrix: Solid											Prep Ty	vpe: To	tal/NA
Analysis Batch: 47736											Prep	Batch:	47690
			Spike	LCSD	LCS	D					%Rec.		RPD
Analyte			Added	Result	Qual	lifier	Unit		D	%Rec	Limits	RPD	Limit
Benzene			4.67	4.513			mg/Kg			97	80 - 120	2	20
Wisconsin GRO			46.7	47.86			mg/Kg			102	80 - 120	1	20
Toluene			4.67	4.393			mg/Kg			94	80 - 120	3	20
Ethylbenzene			4.67	4.472			mg/Kg			96	80 - 120	2	20
m-Xylene & p-Xylene			9.34	8.654			mg/Kg			93	80 - 120	2	20
o-Xylene			4.67	4.491			mg/Kg			96	80 - 120	4	20
Methyl tert-butyl ether			4.67	4.559			mg/Kg			98	80 - 120	6	20
, ,													

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	109		80 - 120

Method: WI-GRO - Wisconsin - Gasoline Range Organics (GC) (Continued)

Lab Sample ID: MB 310-47719/1-A

Client Sample ID: Method Blank 3 Prep Type: Total/NA 4 Prep Batch: 47719 5 repared Analyzed Dil Fac 8/14 14:16 05/08/14 21:07 1 8/14 14:16 05/08/14 21:07 1 8/14 14:16 05/08/14 21:07 1

Matrix: Solid											Prep Ty	pe: To	tal/NA
Analysis Batch: 47735											Prep I	Batch:	47719
	MB	MB											
Analyte	Result	Qualifier	RL		MDL	Unit		D	P	repared	Analyze	d	Dil Fac
Benzene	<0.0920)	0.0920			mg/Kg	j		05/0	8/14 14:16	05/08/14 2	:07	1
Toluene	<0.0920)	0.0920			mg/Kg	J		05/0	8/14 14:16	05/08/14 2 ⁻	:07	1
Ethylbenzene	<0.0920)	0.0920			mg/Kg	J		05/0	8/14 14:16	05/08/14 2	:07	1
Methyl tert-butyl ether	<0.0920)	0.0920			mg/Kg	}		05/0	8/14 14:16	05/08/14 2	:07	1
Xylenes, Total	<0.276	5	0.276			mg/Kg	J		05/0	8/14 14:16	05/08/14 2	:07	1
	МВ	B MB											
Surrogate	%Recovery	Qualifier	Limits						P	repared	Analyze	d	Dil Fac
4-Bromofluorobenzene (Surr)	101		80 - 120						05/0	8/14 14:16	05/08/14 2	1:07	1
Lab Sample ID: LCS 310-47	719/2-A							Cli	ient	Sample	ID: Lab Co	ntrol S	ample
Matrix: Solid											Prep Ty	pe: To	tal/NA
Analysis Batch: 47735											Prep I	Satch:	47719
			Spike	LCS	LCS						%Rec.		
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Benzene			4.97	5.116			mg/Kg		_	103	80 - 120		
Wisconsin GRO			49.7	55.88			mg/Kg			112	80 - 120		
Toluene			4.97	5.051			mg/Kg			102	80 - 120		
Ethylbenzene			4.97	5.153			mg/Kg			104	80 - 120		
m-Xylene & p-Xylene			9.95	9.914			mg/Kg			100	80 - 120		
o-Xylene			4.97	5.209			mg/Kg			105	80 - 120		
Methyl tert-butyl ether			4.97	5.328			mg/Kg			107	80 - 120		
Xylenes, Total			14.9	15.12			mg/Kg			101	80 - 120		
	LCS LCS	s											
Surrogate	%Recoverv Qua	alifier	Limits										
4-Bromofluorobenzene (Surr)	114		80 - 120										
- Lab Sample ID: LCSD 310-4	7719/21-4						Cli	ient S	Sam	nle ID: L	ab Control	Samn	le Dun
Matrix: Solid											Prep Tv	pe: To	tal/NA
Analysis Batch: 47735											Pren	Batch:	47719
			Spike	LCSD	LCS	D					%Rec.		RPD
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limit
Benzene			4.63	4.775			mg/Kg		_	103	80 - 120	7	20
Wisconsin GRO			46.3	51.21			mg/Kg			111	80 - 120	9	20
Toluene			4.63	4.701			mg/Kg			102	80 - 120	7	20

Toluene 4.63 4.701 Ethylbenzene 4.63 4.781 m-Xylene & p-Xylene 9.26 9.202 o-Xylene 4.63 4.835 4.63 4.906 Methyl tert-butyl ether Xylenes, Total 13.9 14.04

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			80 - 120

TestAmerica Cedar Falls

103

99

104

106

101

80 - 120

80 - 120

80 - 120

80 - 120

80 - 120

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

7

7

7

8

7

20

20

20

20

20

Matrix: Water

Lab Sample ID: MB 310-47788/1-A

Method: WI-DRO - Wisconsin - Diesel Range Organics (GC)

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 47788

Analysis Batch: 48090												Prep	Batch:	47788
	MB	MB												
Analyte	Result	Qualifier		RL		MDL	Unit		D	P	repared	Analyze	ed	Dil Fac
Diesel Range Organics (DRO)	<0.100			0.100			mg/L			05/0	9/14 08:22	05/13/14 1	7:57	1
Lab Sample ID: LCS 310-47788/2-A									CI	ient	Sample	ID: Lab Co	ontrol S	ample
Matrix: Water												Prep Ty	pe: To	tal/NA
Analysis Batch: 48090												Prep	Batch:	47788
			Spike		LCS	LCS						%Rec.		
Analyte			Added		Result	Qua	ifier	Unit		D	%Rec	Limits		
Diesel Range Organics (DRO)			2.50		1.907			mg/L			76	75 - 115		
								Cli	ient	Sam	ple ID: L	ab Contro	I Samp	le Dup
Matrix: Water												Prep Ty	ype: To	tal/NA
Analysis Batch: 48090												Prep	Batch:	47788
			Spike		LCSD	LCS	D					%Rec.		RPD
Analyte			Added		Result	Qua	ifier	Unit		D	%Rec	Limits	RPD	Limit
Diesel Range Organics (DRO)			2.50		1.986			mg/L			79	75 - 115	4	20
Lab Sample ID: MB 310-47696/1-A											Client Sa	ample ID: M	Nethod	Blank
Matrix: Solid											Prep T	ype: Silica	Gel Cl	eanup
Analysis Batch: 48384												Prep	Batch:	47696
	MB	MB												
Analyte	Result	Qualifier		RL		MDL	Unit		D	P	repared	Analyze	ed	Dil Fac
Diesel Range Organics (DRO)	<5.77			5.77			mg/Ko	9		05/0	8/14 11:42	05/16/14 1	5:53	1
Lab Sample ID: LCS 310-47696/2-A									CI	ient	Sample	ID: Lab Co	ontrol S	ample
Matrix: Solid											Prep T	ype: Silica	Gel Cl	eanup
Analysis Batch: 48384												Prep	Batch:	47696
			Spike		LCS	LCS						%Rec.		
Analyte			Added		Result	Qua	ifier	Unit		D	%Rec	Limits		
Diesel Range Organics (DRO)			82.6		21.29	*		mg/Kg			26	70 - 120		
Lab Sample ID: LCSD 310-47696/3-A								Cli	ient	Sam	ple ID: L	ab Contro	I Samp	le Dup
Matrix: Solid											Prep T	ype: Silica	Gel Cl	eanup
Analysis Batch: 48384												Prep	Batch:	47696
			Spike		LCSD	LCS	D					%Rec.		RPD
Analyte			Added		Result	Qua	ifier	Unit		D	%Rec	Limits	RPD	Limit

Method: TO-15 - Volatile Organic Compounds in Ambient Air

Diesel Range Organics (DRO)

Lab Sample ID: MB 200-72084/4 Matrix: Air Analysis Batch: 72084							Client S	ample ID: Metho Prep Type: T	d Blank otal/NA
-	MB	МВ							
Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Propylene	<5.00		5.00		ppb v/v			05/14/14 14:53	1
Dichlorodifluoromethane	<0.500		0.500		ppb v/v			05/14/14 14:53	1
1,2-Dichlorotetrafluoroethane	<0.200		0.200		ppb v/v			05/14/14 14:53	1
Chloromethane	<0.500		0.500		ppb v/v			05/14/14 14:53	1
Vinyl chloride	<0.200		0.200		ppb v/v			05/14/14 14:53	1

81.3

50.13 *

mg/Kg

62

70 - 120

81

20

Client Sample ID: Method Blank

Prep Type: Total/NA

2 3 4 5 6 7 8

-	

-							
Mathaali	TO 4E	Valatila	0		1		(Constinued)
wethod:	10-15 -	volatile	Ordanic	Compounds	in Ar	ndient Air	(Continued)
							(

Lab Sample	D: MB 20	0-72084/4	
Matrix: Air			

Analysis	Batch: 72084	

Analyse Result Outlier RL RL Init D Pergend Analysed DD Face 1.3-Butadiene -0.200 0.200 ppb v/v 0.501/414 14.63 1 Chioseshane -0.200 0.200 ppb v/v 0.51/414 14.63 1 Trichsonduconsettane -0.200 0.200 ppb v/v 0.51/414 14.53 1 Storportylachol -5.00 5.00 ppb v/v 0.51/414 14.53 1 Storportylachol -5.00 0.500 ppb v/v 0.51/414 14.53 1 Methylene Chioride -0.200 0.200 ppb v/v 0.51/414 14.53 1 Trins-12-Dichioresthane -0.200 0.200 ppb v/v 0.51/41/41 44.53 1 <t< th=""><th></th><th>MB</th><th>MB</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>		MB	MB							
1.3-Butalenie -0.200 0.200 ppb v/v 05/14/14 14:33 1 Demomentane -0.200 0.200 ppb v/v 05/14/14 14:33 1 Chloocebane -0.200 0.200 ppb v/v 05/14/14 14:33 1 Trichlardburomethane -0.200 0.200 ppb v/v 05/14/14 14:33 1 Fren TF -0.200 0.200 ppb v/v 05/14/14 14:33 1 Actions -5.00 5.00 ppb v/v 05/14/14 14:33 1 Actions -5.00 5.00 ppb v/v 05/14/14 14:33 1 Actions duilide -0.500 0.500 ppb v/v 05/14/14 14:33 1 Methyter Chioride -0.500 0.500 ppb v/v 05/14/14 14:33 1 1.1-Dichloroethane -0.200 0.200 ppb v/v 05/14/14 14:33 1 1.1-Dichloroethane -0.200 0.200 ppb v/v 05/14/14 14:33 1 1.1-Dichloroethane -0.200 0.200 ppb v/v 05/14/14 14:33<	Analyte	Result	Qualifier	RL	RL	Unit	D	Prepared	Analyzed	Dil Fac
Bromomethane <0.200 0.200 0.pb v/v 0.61/41/4 14:33 1 Thichbordhuromethane <0.200	1,3-Butadiene	<0.200		0.200		ppb v/v			05/14/14 14:53	1
Chloreshane -0.500 0.500 ppb vv 05/14/14 14.53 1 Trichtorofluxornehane -0.200 0.200 ppb vv 06/14/14 14.53 1 Freen TF -0.200 0.200 ppb vv 06/14/14 14.53 1 Actione -5.00 5.00 ppb vv 06/14/14 14.53 1 Actione -5.00 5.00 ppb vv 06/14/14 14.53 1 Carbon disulfie -0.500 0.500 ppb vv 06/14/14 14.53 1 Methy terbuly ether -0.200 0.200 ppb vv 06/14/14 14.53 1 1.1-Dichtorotehane -0.200 0.200 ppb vv 06/14/14 14	Bromomethane	<0.200		0.200		ppb v/v			05/14/14 14:53	1
The disconcentane 4.200 0.200 ppb v/v 05/14/14 14.53 1 Fisen TF 4.0200 0.200 ppb v/v 05/14/14 14.53 1 1.1-Dichforcethene 4.0200 0.200 ppb v/v 05/14/14 14.53 1 Isegreng Jacobia 4.500 5.00 ppb v/v 05/14/14 14.53 1 Isegreng Jacobia 4.500 5.00 ppb v/v 05/14/14 14.53 1 Methy iser Chiorite 4.500 5.00 ppb v/v 05/14/14 14.53 1 Methy iser Chiorite 4.500 0.500 ppb v/v 05/14/14 14.53 1 Methy iser Chiorite 4.5200 0.200 ppb v/v 05/14/14 14.53 1 Inter-1.2-Dichforcethene 4.200 0.200 ppb v/v 05/14/14 14.53 1 Inter-1.2-Dichforcethene 4.200 0.200 ppb v/v 05/14/14 14.53 1 Inter-1.2-Dichforcethene 4.200 0.200 ppb v/v 05/14/14 14.53 1 Interistabi 4.500 5.00	Chloroethane	<0.500		0.500		ppb v/v			05/14/14 14:53	1
Ehand < 5.00	Trichlorofluoromethane	<0.200		0.200		ppb v/v			05/14/14 14:53	1
Freen TF 4.0.200 0.200 ppb v/v 0.5/14/14 14:53 1 1.1-Dichlorosethene <0.000	Ethanol	<5.00		5.00		ppb v/v			05/14/14 14:53	1
1.1-Dickloreathene <0.200	Freon TF	<0.200		0.200		ppb v/v			05/14/14 14:53	1
Acetone 5.00 pp bv/v 05/14/14 14:53 1 Isopropylatchol <5.00	1,1-Dichloroethene	<0.200		0.200		ppb v/v			05/14/14 14:53	1
isopropyl alcohol \$.00 pp bv/v 05/14/14 14:53 1 Carbon disulfide <0.500	Acetone	<5.00		5.00		ppb v/v			05/14/14 14:53	1
Carbon disulfide 0.500 0.500 ppb v/v 0.51/1/14 14:53 1 Methyler Chloride 0.500 0.200 ppb v/v 0.51/1/14 14:53 1 Methyl terk-vilyt terker 0.200 0.200 ppb v/v 0.51/1/14 14:53 1 n-Hexane 0.200 0.200 ppb v/v 0.51/1/14 14:53 1 1.1-Dichloroethane 0.200 0.200 ppb v/v 0.51/1/14 14:53 1 1.1-Tichloroethane 0.200 0.200 ppb v/v 0.51/1/14 14:53 1 1.1.1-Tichloroethane 0.200 0.200 ppb v/v 0.51/1/14 14:53 1 1.1.1-Tichloroethane 0.200 0.200 pb v/v 0.51/1/14 14:53 1 1.1.1.1-Tichloroethane 0.200 0.200<	Isopropyl alcohol	<5.00		5.00		ppb v/v			05/14/14 14:53	1
Methylene Chloride 0.500 ppb v/v 05/14/14 14:53 1 Methylene Chloride 0.200 0.200 ppb v/v 05/14/14 14:53 1 Itrans 1.2:Dichloroethene 0.200 0.200 ppb v/v 05/14/14 14:53 1 1.1-Dichloroethane 0.200 0.200 ppb v/v 05/14/14 14:53 1 Viryl acetate 0.00 0.200 ppb v/v 05/14/14 14:53 1 Uryl acetate 0.500 ppb v/v 05/14/14 14:53 1 Chloroform 0.200 0.200 ppb v/v 05/14/14 14:53 1 Chloroform 0.200 0.200 ppb v/v 05/14/14 14:53 1 Cyclohoxane 0.200 0.200 ppb v/v 05/14/14 14:53 1 1.2-Dichloroethane 0.200 0.200 ppb v/v 05/14/14 14:53 1 Cyclohoxane 0.200 0.200	Carbon disulfide	<0.500		0.500		ppb v/v			05/14/14 14:53	1
Methyl terhautyl ether 0.200 pp v/v 05/14/14 14:53 1 trans. 1.2.Dichiorethene <0.200	Methylene Chloride	<0.500		0.500		ppb v/v			05/14/14 14:53	1
trans-1.2-Dichloroethene 0.200 ppb v/v 05/14/14 14:53 1 n-Hexane 0.200 ppb v/v 05/14/14 14:53 1 1.1-Dichloroethane 0.200 ppb v/v 05/14/14 14:53 1 Vn/j acetale 5.00 5.00 ppb v/v 05/14/14 14:53 1 Ehryl acetale 5.00 5.00 ppb v/v 05/14/14 14:53 1 Methyl Ehryl Ketone 0.500 ppb v/v 05/14/14 14:53 1 Chioroform 0.200 0.200 ppb v/v 05/14/14 14:53 1 Chioroform 0.200 0.200 ppb v/v 05/14/14 14:53 1 Cyclohexane 0.200 0.200 ppb v/v 05/14/14 14:53 1 Cyclohexane 0.200 ppb v/v 05/14/14 14:53 1 Cyclohexane 0.200 ppb v/v 05/14/14 14:53 1 L-Dichloroethane <	Methyl tert-butyl ether	<0.200		0.200		ppb v/v			05/14/14 14:53	1
n-Hexane <0.200 0.200 ppb v/v 05/14/14 14:53 1 1,1-Dichloroethane <0.200	trans-1,2-Dichloroethene	<0.200		0.200		ppb v/v			05/14/14 14:53	1
1,1-Dichloroethane <0.200	n-Hexane	<0.200		0.200		ppb v/v			05/14/14 14:53	1
Vinyl acetate < 5.00 ppb v/v 05/14/14 14.53 1 Ethyl acetate < 5.00	1,1-Dichloroethane	<0.200		0.200		ppb v/v			05/14/14 14:53	1
Ethyl acetate <5.00 ppb v/v 05/14/14 14:53 1 Methyl Ethyl Ketone <0.500	Vinyl acetate	<5.00		5.00		ppb v/v			05/14/14 14:53	1
Methyl Ethyl Ketone <0.500 ppb v/v 05/14/14 14:53 1 cis-1,2-Dichloroethene <0.200	Ethyl acetate	<5.00		5.00		ppb v/v			05/14/14 14:53	1
cis-1,2-Dichloroethene <0.200	Methyl Ethyl Ketone	<0.500		0.500		ppb v/v			05/14/14 14:53	1
Chloroform <0.200 0.200 pb v/v 05/14/14 14:53 1 Tetrahydrofuran <5.00	cis-1,2-Dichloroethene	<0.200		0.200		ppb v/v			05/14/14 14:53	1
Tetrahydrofuran < 5.00 pb v/v 05/14/14 14:53 1 1,1,1-Trichloroethane < 0.200	Chloroform	<0.200		0.200		ppb v/v			05/14/14 14:53	1
1,1,1-Trichloroethane <0.200 pp v/v 05/14/14 14:53 1 Cyclohexane <0.200	Tetrahydrofuran	<5.00		5.00		ppb v/v			05/14/14 14:53	1
Cyclohexane < 0.200 ppb v/v 05/14/14 14:53 1 Carbon tetrachloride 0.200 ppb v/v 05/14/14 14:53 1 Benzene 0.200 ppb v/v 05/14/14 14:53 1 1,2-Dichloroethane 0.200 ppb v/v 05/14/14 14:53 1 n-Heptane 0.200 ppb v/v 05/14/14 14:53 1 1,2-Dichloroethane 0.200 ppb v/v 05/14/14 14:53 1 1,2-Dichloropthane 0.200 ppb v/v 05/14/14 14:53 1 1,2-Dichloroptopane 0.200 ppb v/v 05/14/14 14:53 1 1,2-Dichloroptopane 0.200 ppb v/v 05/14/14 14:53 1 1 1.2-Dichloroptopene 0.200 ppb v/v 05/14/14 14:53 1 1 1.2-Dichloroptopene 0.200 ppb v/v 05/14/14 14:53 1 1 1.2-Dichloroptopene 0.200 ppb v/v	1,1,1-Trichloroethane	<0.200		0.200		ppb v/v			05/14/14 14:53	1
Carbon tetrachloride <0.200 0.200 ppb v/v 05/14/14 14:53 1 Benzene <0.200	Cyclohexane	<0.200		0.200		ppb v/v			05/14/14 14:53	
Benzene <0.200 0.200 pp v/v 05/14/14 14:53 1 1,2-Dichloroethane <0.200	Carbon tetrachloride	<0.200		0.200		ppb v/v			05/14/14 14:53	1
1.2-Dichloroethane<0.2000.200ppb v/v05/14/14 14:531n-Heptane<0.200	Benzene	<0.200		0.200		ppb v/v			05/14/14 14:53	1
n-Heptane<0.2000.200pb v/v05/14/14 14:531Trichloroethene<0.200	1,2-Dichloroethane	<0.200		0.200		ppb v/v			05/14/14 14:53	
Trichoroethene<0.2000.200pb v/v05/14/14 14:5311,2-Dichloropropane<0.200	n-Heptane	<0.200		0.200		ppb v/v			05/14/14 14:53	1
1,2-Dichloropropane<0.2000.200ppb v/v05/14/14 14:531Bromodichloromethane<0.200	Trichloroethene	<0.200		0.200		ppb v/v			05/14/14 14:53	1
Bromodichloropropene<0.2000.200ppb v/v05/14/14 14:531cis-1,3-Dichloropropene<0.200	1,2-Dichloropropane	<0.200		0.200		ppb v/v			05/14/14 14:53	1
cis-1,3-Dichloropropene<0.2000.200ppb v/v05/14/14 14:531Methyl isobutyl ketone<0.500	Bromodichloromethane	<0.200		0.200		ppb v/v			05/14/14 14:53	1
Methyl isobutyl ketone<0.5000.500ppb v/v05/14/14 14:531Toluene<0.200	cis-1,3-Dichloropropene	<0.200		0.200		ppb v/v			05/14/14 14:53	1
Toluene<0.2000.200ppb v/v05/14/14 14:531trans-1,3-Dichloropropene<0.200	Methyl isobutyl ketone	<0.500		0.500		ppb v/v			05/14/14 14:53	1
trans-1,3-Dichloropropene<0.2000.200ppb v/v05/14/14 14:5311,1,2-Trichloroethane<0.200	Toluene	<0.200		0.200		ppb v/v			05/14/14 14:53	1
1,1,2-Trichloroethane<0.2000.200ppb v/v05/14/14 14:531Tetrachloroethene<0.200	trans-1,3-Dichloropropene	<0.200		0.200		ppb v/v			05/14/14 14:53	1
Tetrachloroethene <0.200 0.200 ppb v/v 05/14/14 14:53 1 Methyl Butyl Ketone (2-Hexanone) <0.500	1,1,2-Trichloroethane	<0.200		0.200		ppb v/v			05/14/14 14:53	
Methyl Butyl Ketone (2-Hexanone)<0.5000.500ppb v/v05/14/14 14:5311,2-Dibromoethane<0.200	Tetrachloroethene	<0.200		0.200		ppb v/v			05/14/14 14:53	1
1,2-Dibromoethane<0.2000.200ppb v/v05/14/14 14:531Chlorobenzene<0.200	Methyl Butyl Ketone (2-Hexanone)	<0.500		0.500		ppb v/v			05/14/14 14:53	1
Chlorobenzene <0.200 0.200 pb v/v 05/14/14 14:53 1 Ethylbenzene <0.200	1,2-Dibromoethane	<0.200		0.200		ppb v/v			05/14/14 14:53	
Ethylbenzene <0.200 0.200 ppb v/v 05/14/14 14:53 1 m,p-Xylene <0.500	Chlorobenzene	<0.200		0.200		ppb v/v			05/14/14 14:53	1
m,p-Xylene <0.500 0.500 ppb v/v 05/14/14 14:53 1 Xylene, o- <0.200	Ethylbenzene	<0.200		0.200		ppb v/v			05/14/14 14:53	1
Xylene, o- <0.200 0.200 ppb v/v 05/14/14 14:53 1 Styrene <0.200	m,p-Xylene	<0.500		0.500		ppb v/v			05/14/14 14:53	1
Styrene <0.200 0.200 ppb v/v 05/14/14 14:53 1	Xylene, o-	<0.200		0.200		ppb v/v			05/14/14 14:53	1
	Styrene	<0.200		0.200		ppb v/v			05/14/14 14:53	1
Bromoform <0.200 0.200 ppb v/v 05/14/14 14:53 1	Bromoform	<0.200		0.200		ppb v/v			05/14/14 14:53	1
1,1,2,2-Tetrachloroethane <0.200 0.200 ppb v/v 05/14/14 14:53 1	1,1,2,2-Tetrachloroethane	<0.200		0.200		ppb v/v			05/14/14 14:53	1
4-Ethyltoluene <0.200 0.200 ppb v/v 05/14/14 14:53 1	4-Ethyltoluene	<0.200		0.200		ppb v/v			05/14/14 14:53	1
1.3.5-Trimethylbenzene <0.200 0.200 ppb v/v 05/14/14 14:53 1	1,3,5-Trimethylbenzene	<0.200		0.200		ppb v/v			05/14/14 14:53	1
1,2,4-Trimethylbenzene <0.200 0.200 ppb v/v 05/14/14 14:53 1	1,2,4-Trimethylbenzene	<0.200		0.200		ppb v/v			05/14/14 14:53	1

Lab Sample ID: MB 200-72084/4

Analysis Batch: 72084

1,3-Dichlorobenzene

Matrix: Air

Analyte

Client Sample ID: Method Blank

Analyzed

05/14/14 14:53

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prepared

D

Prep Type: Total/NA

Dil Fac

1

1

1

1

1

1

1

1

1

Dil Fac

9

Tentatively Identified Compound	None		ppb v/v					05/14/14 14:53
Tentatively Identified Compound	Est. Result	Qualifier	Unit	D	RT	CAS No.	Prepared	Analyzed
	МВ	МВ						
Dibromochloromethane	<0.200		0.200)	ppb v/	V		05/14/14 14:53
Naphthalene	<0.500		0.500)	ppb v/	v		05/14/14 14:53
Hexachlorobutadiene	<0.200		0.200)	ppb v/	v		05/14/14 14:53
1,2,4-Trichlorobenzene	<0.500		0.500)	ppb v/	v		05/14/14 14:53
1,2-Dichlorobenzene	<0.200		0.200)	ppb v/	v		05/14/14 14:53
Benzyl chloride	<0.200		0.200)	ppb v/	v		05/14/14 14:53
1,4-Dichlorobenzene	<0.200		0.200)	ppb v/	v		05/14/14 14:53
,								

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

MB MB

<0.200

Result Qualifier

Lab Sample ID: LCS 200-72084/3 Matrix: Air

Analysis Batch: 72084

	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Propylene	10.0	8.384		ppb v/v		84	70 - 130	
Dichlorodifluoromethane	10.0	9.625		ppb v/v		96	70 - 130	
1,2-Dichlorotetrafluoroethane	10.0	10.57		ppb v/v		106	70 - 130	
Chloromethane	10.0	8.845		ppb v/v		88	70 - 130	
Vinyl chloride	10.0	9.350		ppb v/v		94	70 - 130	
1,3-Butadiene	10.0	8.747		ppb v/v		87	70 - 130	
Bromomethane	10.0	9.544		ppb v/v		95	70 - 130	
Chloroethane	10.0	10.02		ppb v/v		100	70 - 130	
Trichlorofluoromethane	10.0	9.740		ppb v/v		97	70 - 130	
Ethanol	15.0	12.65		ppb v/v		84	70 - 130	
Freon TF	10.0	9.771		ppb v/v		98	70 - 130	
1,1-Dichloroethene	10.0	9.671		ppb v/v		97	70 - 130	
Acetone	10.0	9.586		ppb v/v		96	70 - 130	
Isopropyl alcohol	10.0	7.923		ppb v/v		79	70 - 130	
Carbon disulfide	10.0	11.07		ppb v/v		111	70 - 130	
Methylene Chloride	10.0	9.179		ppb v/v		92	70 ₋ 130	
Methyl tert-butyl ether	10.0	9.595		ppb v/v		96	70 - 130	
trans-1,2-Dichloroethene	10.0	10.11		ppb v/v		101	70 - 130	
n-Hexane	10.0	10.05		ppb v/v		101	70 - 130	
1,1-Dichloroethane	10.0	9.751		ppb v/v		98	70 - 130	
Vinyl acetate	10.0	8.354		ppb v/v		84	70 - 130	
Ethyl acetate	10.0	10.72		ppb v/v		107	70 - 130	
Methyl Ethyl Ketone	10.0	9.099		ppb v/v		91	70 - 130	
cis-1,2-Dichloroethene	10.0	9.416		ppb v/v		94	70 - 130	
Chloroform	10.0	9.734		ppb v/v		97	70 - 130	
Tetrahydrofuran	10.0	9.575		ppb v/v		96	70 - 130	
1,1,1-Trichloroethane	10.0	9.947		ppb v/v		99	70 - 130	
Cyclohexane	10.0	9.834		ppb v/v		98	70 - 130	
Carbon tetrachloride	10.0	10.04		ppb v/v		100	70 - 130	
Benzene	10.0	9.546		ppb v/v		95	70 - 130	
1,2-Dichloroethane	10.0	9.825		ppb v/v		98	70 - 130	

TestAmerica Cedar Falls

RL

0.200

RL Unit

ppb v/v

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-72084/3

Ma	trix:	Air	
A	- 1	- 0-	 70004

Analysis Batch: 72084							
	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
n-Heptane	10.0	9.213		ppb v/v		92	70 - 130
Trichloroethene	10.0	10.04		ppb v/v		100	70 - 130
1,2-Dichloropropane	10.0	9.409		ppb v/v		94	70 - 130
Bromodichloromethane	10.0	9.783		ppb v/v		98	70 - 130
cis-1,3-Dichloropropene	10.0	9.957		ppb v/v		100	70 - 130
Methyl isobutyl ketone	10.0	9.524		ppb v/v		95	70 - 130
Toluene	10.0	9.779		ppb v/v		98	70 - 130
trans-1,3-Dichloropropene	10.0	10.18		ppb v/v		102	70 - 130
1,1,2-Trichloroethane	10.0	9.816		ppb v/v		98	70 - 130
Tetrachloroethene	10.0	10.15		ppb v/v		102	70 - 130
Methyl Butyl Ketone	10.0	9.684		ppb v/v		97	70 - 130
(2-Hexanone)							
1,2-Dibromoethane	10.0	10.15		ppb v/v		102	70 - 130
Chlorobenzene	10.0	9.915		ppb v/v		99	70 - 130
Ethylbenzene	10.0	9.965		ppb v/v		100	70 - 130
m,p-Xylene	20.0	19.96		ppb v/v		100	70 - 130
Xylene, o-	10.0	9.801		ppb v/v		98	70 - 130
Styrene	10.0	10.31		ppb v/v		103	70 - 130
Bromoform	10.0	10.24		ppb v/v		102	70 - 130
1,1,2,2-Tetrachloroethane	10.0	9.796		ppb v/v		98	70 - 130
4-Ethyltoluene	10.0	10.57		ppb v/v		106	70 - 130
1,3,5-Trimethylbenzene	10.0	10.17		ppb v/v		102	70 ₋ 130
1,2,4-Trimethylbenzene	10.0	10.20		ppb v/v		102	70 - 130
1,3-Dichlorobenzene	10.0	10.78		ppb v/v		108	70 - 130
1,4-Dichlorobenzene	10.0	10.76		ppb v/v		108	70 - 130
Benzyl chloride	10.0	9.753		ppb v/v		98	70 - 130
1,2-Dichlorobenzene	10.0	10.74		ppb v/v		107	70 - 130
1,2,4-Trichlorobenzene	10.0	9.516		ppb v/v		95	70 - 130
Hexachlorobutadiene	10.0	11.26		ppb v/v		113	70 - 130
Naphthalene	10.0	8.468		ppb v/v		85	70 - 130
Dibromochloromethane	10.0	9.856		ppb v/v		99	70 - 130

Lab Sample ID: MB 200-72147/4 Matrix: Air

Analysis Batch: 72147 MB MB Analyte Result Qualifier RL RL Unit D Prepared Dil Fac Analyzed <5.00 5.00 05/15/14 13:31 Propylene ppb v/v 1 Dichlorodifluoromethane <0.500 0.500 ppb v/v 05/15/14 13:31 1 1,2-Dichlorotetrafluoroethane <0.200 0.200 ppb v/v 05/15/14 13:31 1 Chloromethane < 0.500 0.500 ppb v/v 05/15/14 13:31 1 Vinyl chloride <0.200 0.200 ppb v/v 05/15/14 13:31 1 1,3-Butadiene < 0.200 0.200 ppb v/v 05/15/14 13:31 1 Bromomethane <0.200 0.200 05/15/14 13:31 ppb v/v 1 Chloroethane < 0.500 0.500 ppb v/v 05/15/14 13:31 1 Trichlorofluoromethane <0.200 0.200 ppb v/v 05/15/14 13:31 1 Ethanol <5.00 5.00 ppb v/v 05/15/14 13:31 1 Freon TF <0.200 05/15/14 13:31 0.200 ppb v/v 1 1,1-Dichloroethene <0.200 0.200 ppb v/v 05/15/14 13:31 1

TestAmerica Cedar Falls

Client Sample ID: Method Blank

Prep Type: Total/NA

17

Client Sample ID: Method Blank

Prep Type: Total/NA

2 3 4 5 6 7

_	
	-7

Method: TO-15 - Volatile Or	ganic Compounds in	Ambient Air (Continued)

Lab Sample ID: MB 200-72147/4

Matrix: Air Analysis Batch: 72147

-	MB	MB						
Analyte	Result	Qualifier	RL R	L Unit	D	Prepared	Analyzed	Dil Fac
Acetone	<5.00		5.00	ppb v/v			05/15/14 13:31	1
Isopropyl alcohol	<5.00		5.00	ppb v/v			05/15/14 13:31	1
Carbon disulfide	<0.500	0	.500	ppb v/v			05/15/14 13:31	1
Methylene Chloride	<0.500	0	.500	ppb v/v			05/15/14 13:31	1
Methyl tert-butyl ether	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
trans-1,2-Dichloroethene	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
n-Hexane	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
1,1-Dichloroethane	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
Vinyl acetate	<5.00		5.00	ppb v/v			05/15/14 13:31	1
Ethyl acetate	<5.00		5.00	ppb v/v			05/15/14 13:31	1
Methyl Ethyl Ketone	<0.500	0	.500	ppb v/v			05/15/14 13:31	1
cis-1,2-Dichloroethene	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
Chloroform	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
Tetrahydrofuran	<5.00		5.00	ppb v/v			05/15/14 13:31	1
1,1,1-Trichloroethane	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
Cyclohexane	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
Carbon tetrachloride	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
Benzene	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
1,2-Dichloroethane	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
n-Heptane	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
Trichloroethene	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
1,2-Dichloropropane	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
Bromodichloromethane	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
cis-1,3-Dichloropropene	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
Methyl isobutyl ketone	<0.500	0	.500	ppb v/v			05/15/14 13:31	1
Toluene	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
trans-1,3-Dichloropropene	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
1,1,2-Trichloroethane	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
Tetrachloroethene	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
Methyl Butyl Ketone (2-Hexanone)	<0.500	0	.500	ppb v/v			05/15/14 13:31	1
1,2-Dibromoethane	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
Chlorobenzene	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
Ethylbenzene	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
m,p-Xylene	<0.500	0	.500	ppb v/v			05/15/14 13:31	1
Xylene, o-	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
Styrene	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
Bromoform	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
1,1,2,2-Tetrachloroethane	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
4-Ethyltoluene	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
1,3,5-Trimethylbenzene	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
1,2,4-Trimethylbenzene	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
1,3-Dichlorobenzene	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
1,4-Dichlorobenzene	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
Benzyl chloride	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
1,2-Dichlorobenzene	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
1,2,4-Trichlorobenzene	<0.500	0	.500	ppb v/v			05/15/14 13:31	1
Hexachlorobutadiene	<0.200	0	.200	ppb v/v			05/15/14 13:31	1
Naphthalene	<0.500	0	.500	ppb v/v			05/15/14 13:31	1

RL

D

0.200

Unit

ppb v/v

RL Unit

RT

ppb v/v

D

CAS No.

Prepared

Prepared

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

MB MB

MB MB

Est. Result Qualifier

None

<0.200

Result Qualifier

Lab Sample ID: MB 200-72147/4

Analysis Batch: 72147

Dibromochloromethane

Matrix: Air

Analyte

Client Sample ID: Method Blank

Analyzed

05/15/14 13:31

Analyzed

05/15/14 13:31

Prep Type: Total/NA

2 3 4 5 6 7 8 9

Dil Fac

Dil Fac

1

1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Matrix: Air Analysis Batch: 72147

Tentatively Identified Compound

Lab Sample ID: LCS 200-72147/3

Tentatively Identified Compound

Analysis Datch. 12141	Spike	1.09	1.00				% Bee	
Analyte	Spike	Result	Qualifier	Unit	п	%Rec	%Rec.	
	10.0	9.838	Quaimer	$-\frac{0}{nnb} \frac{1}{v/v}$		98	70 130	
Dichlorodifluoromethane	10.0	10.30		nnh v/v		103	70 130	
1 2-Dichlorotetrafluoroethane	10.0	10.00		nnh v/v		100	70 130	
Chloromethane	10.0	9 293		nnh v/v		03 03	70 130	
Vinvl chloride	10.0	8 860		nnh v/v		89	70 130	
1.3-Butadiene	10.0	8 827		nnh v/v		88	70 130	
Bromomethane	10.0	8 4 3 9		nnh v/v		84	70 130	
Chloroethane	10.0	8 968		nnh v/v		90	70 - 130	
Trichlorofluoromethane	10.0	9 607		ppb v/v		96	70 - 130	
Fthanol	15.0	12 49		nnh v/v		83	70 - 130	
Ereon TF	10.0	8 782		nnh v/v		88	70 130	
1 1-Dichloroethene	10.0	8 558		ppb v/v		86	70 - 130	
Acetone	10.0	9 480		ppb v/v		95	70 - 130	
Isopropyl alcohol	10.0	8 270		ppb v/v		83	70 - 130	
Carbon disulfide	10.0	9 852		ppb v/v		99	70 - 130	
Methylene Chloride	10.0	8 788		ppb v/v		88	70 - 130	
Methyl tert-butyl ether	10.0	9 541		ppb v/v		95	70 - 130	
trans-1 2-Dichloroethene	10.0	9 744		ppb v/v		97	70 - 130	
n-Hexane	10.0	9.147		ppb v/v		91	70 - 130	
1.1-Dichloroethane	10.0	8.829		v/v dqq		88	70 - 130	
Vinvl acetate	10.0	9.014		v/v dqq		90	70 - 130	
Ethyl acetate	10.0	9.992		v/v dqq		100	70 - 130	
Methyl Ethyl Ketone	10.0	8.047		v/v dqq		80	70 - 130	
cis-1,2-Dichloroethene	10.0	8.706		ppb v/v		87	70 - 130	
Chloroform	10.0	9.463		ppb v/v		95	70 - 130	
Tetrahydrofuran	10.0	9.842		ppb v/v		98	70 - 130	
1,1,1-Trichloroethane	10.0	10.32		ppb v/v		103	70 ₋ 130	
Cyclohexane	10.0	9.425		ppb v/v		94	70 ₋ 130	
Carbon tetrachloride	10.0	10.13		ppb v/v		101	70 ₋ 130	
Benzene	10.0	8.838		ppb v/v		88	70 - 130	
1,2-Dichloroethane	10.0	10.68		ppb v/v		107	70 ₋ 130	
n-Heptane	10.0	8.928		ppb v/v		89	70 ₋ 130	
Trichloroethene	10.0	9.198		ppb v/v		92	70 ₋ 130	
1,2-Dichloropropane	10.0	8.908		ppb v/v		89	70 - 130	
Bromodichloromethane	10.0	9.809		ppb v/v		98	70 - 130	
cis-1,3-Dichloropropene	10.0	9.755		ppb v/v		98	70 - 130	
Methyl isobutyl ketone	10.0	9.514		ppb v/v		95	70 - 130	
Toluene	10.0	9.178		ppb v/v		92	70 - 130	

Method: TO-15 - Volatile Organic Compounds in Ambient Air (Continued)

Lab Sample ID: LCS 200-72147/3

Matrix: A	ir	
Analysis	Batch:	72147

Analysis Balch. 72147								
	Spike	LCS	LCS				%Rec.	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
trans-1,3-Dichloropropene	10.0	10.21		ppb v/v		102	70 - 130	
1,1,2-Trichloroethane	10.0	9.139		ppb v/v		91	70 - 130	
Tetrachloroethene	10.0	9.185		ppb v/v		92	70 - 130	
Methyl Butyl Ketone	10.0	9.388		ppb v/v		94	70 - 130	
(2-Hexanone)								
1,2-Dibromoethane	10.0	9.529		ppb v/v		95	70 - 130	
Chlorobenzene	10.0	9.389		ppb v/v		94	70 - 130	
Ethylbenzene	10.0	9.591		ppb v/v		96	70 - 130	
m,p-Xylene	20.0	19.21		ppb v/v		96	70 - 130	
Xylene, o-	10.0	9.383		ppb v/v		94	70 - 130	
Styrene	10.0	9.501		ppb v/v		95	70 - 130	
Bromoform	10.0	9.694		ppb v/v		97	70 - 130	
1,1,2,2-Tetrachloroethane	10.0	9.304		ppb v/v		93	70 - 130	
4-Ethyltoluene	10.0	10.12		ppb v/v		101	70 - 130	
1,3,5-Trimethylbenzene	10.0	9.881		ppb v/v		99	70 - 130	
1,2,4-Trimethylbenzene	10.0	9.761		ppb v/v		98	70 - 130	
1,3-Dichlorobenzene	10.0	9.766		ppb v/v		98	70 - 130	
1,4-Dichlorobenzene	10.0	9.812		ppb v/v		98	70 - 130	
Benzyl chloride	10.0	9.100		ppb v/v		91	70 - 130	
1,2-Dichlorobenzene	10.0	9.821		ppb v/v		98	70 - 130	
1,2,4-Trichlorobenzene	10.0	9.146		ppb v/v		91	70 - 130	
Hexachlorobutadiene	10.0	9.006		ppb v/v		90	70 - 130	
Naphthalene	10.0	8.551		ppb v/v		86	70 - 130	
Dibromochloromethane	10.0	9.800		ppb v/v		98	70 - 130	

Method: Moisture - Percent Moisture

85.7

Percent Solids

Lab Sample ID: 310-30191-1 DU Matrix: Soil Analysis Batch: 47680							Client Sample ID: 1 - G Prep Type: To	P-1 6' tal/NA
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Moisture	19.4		19.9		%		3	20
Percent Solids	80.6		80.1		%		0.6	20
 Lab Sample ID: 310-30191-9 DU							Client Sample ID: 9 - GP	-6 16'
Matrix: Soil							Prep Type: To	tal/NA
Analysis Batch: 47680								
	Sample	Sample	DU	DU				RPD
Analyte	Result	Qualifier	Result	Qualifier	Unit	D	RPD	Limit
Percent Moisture	14.3		15.9		%			20

84.1

%

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

2

20

GC/MS VOA

Analysis Batch: 47990

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
310-30191-15	1 - GP-1	Total/NA	Ground Water	8260B	
310-30191-16	2 - GP-6	Total/NA	Ground Water	8260B	
310-30191-22	Trip Blank	Total/NA	Water	8260B	
LCS 310-47990/4	Lab Control Sample	Total/NA	Water	8260B	
MB 310-47990/7	Method Blank	Total/NA	Water	8260B	

Analysis Batch: 48111

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
310-30191-17	3 - GP-3	Total/NA	Ground Water	8260B	
310-30191-18	4 - GP-4	Total/NA	Ground Water	8260B	
310-30191-19	5 - GP-5	Total/NA	Ground Water	8260B	
310-30191-20	7 - GP-7	Total/NA	Ground Water	8260B	
LCS 310-48111/4	Lab Control Sample	Total/NA	Water	8260B	
MB 310-48111/7	Method Blank	Total/NA	Water	8260B	
Analysis Patch: 49251					

Analysis Batch: 48351

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-30191-20	7 - GP-7	Total/NA	Ground Water	8260B	
LCS 310-48351/4	Lab Control Sample	Total/NA	Water	8260B	
MB 310-48351/7	Method Blank	Total/NA	Water	8260B	

GC VOA

Prep Batch: 47690

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-30191-1	1 - GP-1 6'	Total/NA	Soil	5035	
310-30191-2	2 - GP-1 12'	Total/NA	Soil	5035	
310-30191-3	3 - GP-2 5'	Total/NA	Soil	5035	
310-30191-4	4 - GP-2 16'	Total/NA	Soil	5035	
310-30191-5	5 - GP-3 8'	Total/NA	Soil	5035	
310-30191-6	6 - GP-4 8'	Total/NA	Soil	5035	
310-30191-7	7 - GP-5 8'	Total/NA	Soil	5035	
LCS 310-47690/2-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 310-47690/23-A	Lab Control Sample Dup	Total/NA	Solid	5035	
MB 310-47690/1-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 47719

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-30191-8	8 - GP-6 6'	Total/NA	Soil	5035	
310-30191-9	9 - GP-6 16'	Total/NA	Soil	5035	
310-30191-10	10 - GP-7 6'	Total/NA	Soil	5035	
310-30191-11	11 - GP-7 13.5'	Total/NA	Soil	5035	
310-30191-21	MeOH Blank	Total/NA	Soil	5035	
LCS 310-47719/2-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 310-47719/21-A	Lab Control Sample Dup	Total/NA	Solid	5035	
MB 310-47719/1-A	Method Blank	Total/NA	Solid	5035	
Analysis Batch: 47735					

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
310-30191-8	8 - GP-6 6'	Total/NA	Soil	WI-GRO	47719

GC VOA (Continued)

Analysis Batch: 47735 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-30191-9	9 - GP-6 16'	Total/NA	Soil	WI-GRO	47719
310-30191-10	10 - GP-7 6'	Total/NA	Soil	WI-GRO	47719
310-30191-11	11 - GP-7 13.5'	Total/NA	Soil	WI-GRO	47719
310-30191-21	MeOH Blank	Total/NA	Soil	WI-GRO	47719
LCS 310-47719/2-A	Lab Control Sample	Total/NA	Solid	WI-GRO	47719
LCSD 310-47719/21-A	Lab Control Sample Dup	Total/NA	Solid	WI-GRO	47719
MB 310-47719/1-A	Method Blank	Total/NA	Solid	WI-GRO	47719

Analysis Batch: 47736

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-30191-1	1 - GP-1 6'	Total/NA	Soil	WI-GRO	47690
310-30191-2	2 - GP-1 12'	Total/NA	Soil	WI-GRO	47690
310-30191-3	3 - GP-2 5'	Total/NA	Soil	WI-GRO	47690
310-30191-4	4 - GP-2 16'	Total/NA	Soil	WI-GRO	47690
310-30191-5	5 - GP-3 8'	Total/NA	Soil	WI-GRO	47690
310-30191-6	6 - GP-4 8'	Total/NA	Soil	WI-GRO	47690
310-30191-7	7 - GP-5 8'	Total/NA	Soil	WI-GRO	47690
LCS 310-47690/2-A	Lab Control Sample	Total/NA	Solid	WI-GRO	47690
LCSD 310-47690/23-A	Lab Control Sample Dup	Total/NA	Solid	WI-GRO	47690
MB 310-47690/1-A	Method Blank	Total/NA	Solid	WI-GRO	47690

GC Semi VOA

Prep Batch: 47696

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
310-30191-1	1 - GP-1 6'	Silica Gel Cleanup	Soil	WI DRO PREP	
310-30191-2	2 - GP-1 12'	Silica Gel Cleanup	Soil	WI DRO PREP	
310-30191-3	3 - GP-2 5'	Silica Gel Cleanup	Soil	WI DRO PREP	
310-30191-4	4 - GP-2 16'	Silica Gel Cleanup	Soil	WI DRO PREP	
310-30191-5	5 - GP-3 8'	Silica Gel Cleanup	Soil	WI DRO PREP	
310-30191-6	6 - GP-4 8'	Silica Gel Cleanup	Soil	WI DRO PREP	
310-30191-7	7 - GP-5 8'	Silica Gel Cleanup	Soil	WI DRO PREP	
310-30191-8	8 - GP-6 6'	Silica Gel Cleanup	Soil	WI DRO PREP	
310-30191-9	9 - GP-6 16'	Silica Gel Cleanup	Soil	WI DRO PREP	
310-30191-10	10 - GP-7 6'	Silica Gel Cleanup	Soil	WI DRO PREP	
310-30191-11	11 - GP-7 13.5'	Silica Gel Cleanup	Soil	WI DRO PREP	
LCS 310-47696/2-A	Lab Control Sample	Silica Gel Cleanup	Solid	WI DRO PREP	
LCSD 310-47696/3-A	Lab Control Sample Dup	Silica Gel Cleanup	Solid	WI DRO PREP	
MB 310-47696/1-A	Method Blank	Silica Gel Cleanup	Solid	WI DRO PREP	

Prep Batch: 47788

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-30191-15	1 - GP-1	Total/NA	Ground Water	3510C	
310-30191-16	2 - GP-6	Total/NA	Ground Water	3510C	
310-30191-17	3 - GP-3	Total/NA	Ground Water	3510C	
310-30191-18	4 - GP-4	Total/NA	Ground Water	3510C	
310-30191-19	5 - GP-5	Total/NA	Ground Water	3510C	
310-30191-20	7 - GP-7	Total/NA	Ground Water	3510C	
LCS 310-47788/2-A	Lab Control Sample	Total/NA	Water	3510C	
LCSD 310-47788/3-A	Lab Control Sample Dup	Total/NA	Water	3510C	

GC Semi VOA (Continued)

Prep Batch: 47788 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 310-47788/1-A	Method Blank	Total/NA	Water	3510C	
Analysis Batch: 4809	0				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-30191-15	1 - GP-1	Total/NA	Ground Water	WI-DRO	47788
310-30191-16	2 - GP-6	Total/NA	Ground Water	WI-DRO	47788

010 00101 10	2 61 6	1 Otal/14/ (WI DIG	41100
310-30191-17	3 - GP-3	Total/NA	Ground Water	WI-DRO	47788
310-30191-18	4 - GP-4	Total/NA	Ground Water	WI-DRO	47788
310-30191-19	5 - GP-5	Total/NA	Ground Water	WI-DRO	47788
310-30191-20	7 - GP-7	Total/NA	Ground Water	WI-DRO	47788
LCS 310-47788/2-A	Lab Control Sample	Total/NA	Water	WI-DRO	47788
LCSD 310-47788/3-A	Lab Control Sample Dup	Total/NA	Water	WI-DRO	47788
MB 310-47788/1-A	Method Blank	Total/NA	Water	WI-DRO	47788

Analysis Batch: 48284

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
310-30191-1	1 - GP-1 6'	Silica Gel Cleanup	Soil	WI-DRO	47696

Analysis Batch: 48384

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-30191-2	2 - GP-1 12'	Silica Gel Cleanup	Soil	WI-DRO	47696
310-30191-3	3 - GP-2 5'	Silica Gel Cleanup	Soil	WI-DRO	47696
310-30191-4	4 - GP-2 16'	Silica Gel Cleanup	Soil	WI-DRO	47696
310-30191-5	5 - GP-3 8'	Silica Gel Cleanup	Soil	WI-DRO	47696
310-30191-6	6 - GP-4 8'	Silica Gel Cleanup	Soil	WI-DRO	47696
310-30191-7	7 - GP-5 8'	Silica Gel Cleanup	Soil	WI-DRO	47696
310-30191-8	8 - GP-6 6'	Silica Gel Cleanup	Soil	WI-DRO	47696
310-30191-9	9 - GP-6 16'	Silica Gel Cleanup	Soil	WI-DRO	47696
310-30191-10	10 - GP-7 6'	Silica Gel Cleanup	Soil	WI-DRO	47696
310-30191-11	11 - GP-7 13.5'	Silica Gel Cleanup	Soil	WI-DRO	47696
LCS 310-47696/2-A	Lab Control Sample	Silica Gel Cleanup	Solid	WI-DRO	47696
LCSD 310-47696/3-A	Lab Control Sample Dup	Silica Gel Cleanup	Solid	WI-DRO	47696
MB 310-47696/1-A	Method Blank	Silica Gel Cleanup	Solid	WI-DRO	47696

Air - GC/MS VOA

Analysis Batch: 72084

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-30191-24	Air 2	Total/NA	Air	TO-15	
LCS 200-72084/3	Lab Control Sample	Total/NA	Air	TO-15	
MB 200-72084/4	Method Blank	Total/NA	Air	TO-15	
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-30191-23			Air		
LCS 200-72147/3	Lab Control Sample	Total/NA	Air	TO-15	
MB 200-72147/4	Method Blank	Total/NA	Air	TO-15	

17

General Chemistry

Analysis Batch: 47680

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
310-30191-1	1 - GP-1 6'	Total/NA	Soil	Moisture	
310-30191-1 DU	1 - GP-1 6'	Total/NA	Soil	Moisture	
310-30191-2	2 - GP-1 12'	Total/NA	Soil	Moisture	
310-30191-3	3 - GP-2 5'	Total/NA	Soil	Moisture	
310-30191-4	4 - GP-2 16'	Total/NA	Soil	Moisture	
310-30191-5	5 - GP-3 8'	Total/NA	Soil	Moisture	
310-30191-6	6 - GP-4 8'	Total/NA	Soil	Moisture	
310-30191-7	7 - GP-5 8'	Total/NA	Soil	Moisture	
310-30191-8	8 - GP-6 6'	Total/NA	Soil	Moisture	
310-30191-9	9-GP-6 16'	Total/NA	Soil	Moisture	
310-30191-9 DU	9 - GP-6 16'	Total/NA	Soil	Moisture	
310-30191-10	10 - GP-7 6'	Total/NA	Soil	Moisture	
310-30191-11	11 - GP-7 13.5'	Total/NA	Soil	Moisture	

Date Collected: 0	5/05/14 16:3 5/07/14 09:3	30 35							Matrix: Soil Percent Solids: 80.6
Dava Tama	Batch	Batch	D	Dilution	Batch	Prepared	A	Lak	
Prep Type	Туре	method	Run	Factor	Number	or Analyzed	Analyst		
Total/NA	Prep	5035			47690	05/08/14 11:02	CMM	TAL CF	
Total/NA	Analysis	WI-GRO		1	47736	05/09/14 20:25	CMM	TAL CF	
Silica Gel Cleanup	Prep	WI DRO PREP			47696	05/08/14 11:42	EEE	TAL CF	
Silica Gel Cleanup	Analysis	WI-DRO		1	48284	05/15/14 08:06	BKT	TAL CF	
Total/NA	Analysis	Moisture		1	47680	05/08/14 09:00	SAS	TAL CF	
Client Sample	ID: 2 - GF	P-1 12'						Lab Sam	ple ID: 310-30191-

Client Sample ID: 2 - GP-1 12' Date Collected: 05/05/14 16:30 Date Received: 05/07/14 09:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			47690	05/08/14 11:02	CMM	TAL CF
Total/NA	Analysis	WI-GRO		1	47736	05/09/14 21:05	CMM	TAL CF
Silica Gel Cleanup	Prep	WI DRO PREP			47696	05/08/14 11:42	EEE	TAL CF
Silica Gel Cleanup	Analysis	WI-DRO		1	48384	05/16/14 16:57	BKT	TAL CF
Total/NA	Analysis	Moisture		1	47680	05/08/14 09:00	SAS	TAL CF

Client Sample ID: 3 - GP-2 5' Date Collected: 05/05/14 16:30 Date Received: 05/07/14 09:35

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			47690	05/08/14 11:02	CMM	TAL CF
Total/NA	Analysis	WI-GRO		1	47736	05/10/14 03:04	CMM	TAL CF
Silica Gel Cleanup	Prep	WI DRO PREP			47696	05/08/14 11:42	EEE	TAL CF
Silica Gel Cleanup	Analysis	WI-DRO		100	48384	05/16/14 21:43	BKT	TAL CF
Total/NA	Analysis	Moisture		1	47680	05/08/14 09:00	SAS	TAL CF

Client Sample ID: 4 - GP-2 16' Date Collected: 05/05/14 16:30 Date Received: 05/07/14 09:35

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			47690	05/08/14 11:02	CMM	TAL CF
Total/NA	Analysis	WI-GRO		1	47736	05/09/14 21:45	CMM	TAL CF
Silica Gel Cleanup	Prep	WI DRO PREP			47696	05/08/14 11:42	EEE	TAL CF
Silica Gel Cleanup	Analysis	WI-DRO		1	48384	05/16/14 17:29	BKT	TAL CF
Total/NA	Analysis	Moisture		1	47680	05/08/14 09:00	SAS	TAL CF

TestAmerica Cedar Falls

Matrix: Soil

Matrix: Soil

Matrix: Soil

Percent Solids: 84.6

Percent Solids: 88.1

Percent Solids: 82.8

Lab Sample ID: 310-30191-3

Lab Sample ID: 310-30191-4

Project/Site: 3D15	gineening, n	nc.						restAment	a 300 ID. 310-30131-2	
Client Sample	ID: 5 - GF	P-3 8'						Lab Sam	ole ID: 310-30191-5	
Date Collected: 0	5/05/14 16:	30							Matrix: Soil	
Date Received: 05	5/07/14 09:3	35							Percent Solids: 81.1	
Γ	Batch	Batch		Dilution	Batch	Prepared				5
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		Ð
Total/NA	Prep	5035			47690	05/08/14 11:02	CMM	TAL CF		
Total/NA	Analysis	WI-GRO		1	47736	05/09/14 22:25	CMM	TAL CF		
Silica Gel Cleanup	Prep	WI DRO PREP			47696	05/08/14 11:42	EEE	TAL CF		
Silica Gel Cleanup	Analysis	WI-DRO		1	48384	05/16/14 18:01	BKT	TAL CF		
Total/NA	Analysis	Moisture		1	47680	05/08/14 09:00	SAS	TAL CF		8
Client Sample	ID: 6 - GF	P-4 8'						Lab Sam	ole ID: 310-30191-6	9
Date Collected: 0	5/05/14 16:	30							Matrix: Soil	
Date Received: 05	5/07/14 09:3	35							Percent Solids: 80.4	
Γ	Batch	Batch		Dilution	Batch	Prepared				4.4
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		
Total/NA	Prep	5035			47690	05/08/14 11:02	CMM	TAL CF		
Total/NA	Analysis	WI-GRO		1	47736	05/09/14 23:04	CMM	TAL CF		
Silica Gel Cleanup	Prep	WI DRO PREP			47696	05/08/14 11:42	EEE	TAL CF		12
Silica Gel Cleanup	Analysis	WI-DRO		1	48384	05/16/14 18:33	BKT	TAL CF		
Total/NA	Analysis	Moisture		1	47680	05/08/14 09:00	SAS	TAL CF		
Client Sample	ID: 7 - GF	P-5 8'						Lab Sam	ole ID: 310-30191-7	
Date Collected: 0	5/05/14 16:	30							Matrix: Soil	
Date Received: 05	5/07/14 09:3	35							Percent Solids: 81.0	16
Γ	Batch	Batch		Dilution	Batch	Prepared				
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		17
Total/NA	Prep	5035			47690	05/08/14 11:02	CMM	TAL CF	_	
Total/NA	Analysis	WI-GRO		1	47736	05/09/14 23:44	CMM	TAL CF		
Silica Gel Cleanup	Prep	WI DRO PREP			47696	05/08/14 11:42	EEE	TAL CF		

Client Sample ID: 8 - GP-6 6' Date Collected: 05/05/14 16:30 Date Received: 05/07/14 09:35

Analysis

Analysis

WI-DRO

Moisture

Silica Gel Cleanup

Total/NA

_	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			47719	05/08/14 14:16	CMM	TAL CF
Total/NA	Analysis	WI-GRO		1	47735	05/09/14 07:07	CMM	TAL CF
Silica Gel Cleanup	Prep	WI DRO PREP			47696	05/08/14 11:42	EEE	TAL CF
Silica Gel Cleanup	Analysis	WI-DRO		1	48384	05/16/14 19:36	BKT	TAL CF
Total/NA	Analysis	Moisture		1	47680	05/08/14 09:00	SAS	TAL CF

1

1

48384

47680

05/16/14 19:04

05/08/14 09:00 SAS

BKT

TAL CF

TAL CF

Lab Sample ID: 310-30191-8

Matrix: Soil

Percent Solids: 82.7

Project/Site: 3D15	gineering, ii	nc.						TestAmen	ca Job ID: 310-30191-2	
Client Sample	ID: 9 - GF	P-6 16'						Lab Sam	ple ID: 310-30191-9	
Date Collected: 0	5/05/14 16:3	30							Matrix: Soil	
Date Received: 05	5/07/14 09:3	35							Percent Solids: 85.7	
Γ	Batch	Batch		Dilution	Batch	Prepared				E
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		J
Total/NA	Prep	5035			47719	05/08/14 14:16	CMM	TAL CF		
Total/NA	Analysis	WI-GRO		1	47735	05/09/14 07:47	CMM	TAL CF		
Silica Gel Cleanup	Prep	WI DRO PREP			47696	05/08/14 11:42	EEE	TAL CF		
Silica Gel Cleanup	Analysis	WI-DRO		1	48384	05/16/14 20:08	BKT	TAL CF		
Total/NA	Analysis	Moisture		1	47680	05/08/14 09:00	SAS	TAL CF		8
Client Sample	ID: 10 - G	iP-7 6'					l	_ab Samp	le ID: 310-30191-10	9
Date Collected: 0	5/05/14 16:3	30							Matrix: Soil	
Date Received: 05	5/07/14 09:3	35							Percent Solids: 81.9	
Γ	Batch	Batch		Dilution	Batch	Prepared				
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		11
Total/NA	Prep	5035			47719	05/08/14 14:16	CMM	TAL CF		
Total/NA	Analysis	WI-GRO		1	47735	05/09/14 08:27	CMM	TAL CF		
Silica Gel Cleanup	Prep	WI DRO PREP			47696	05/08/14 11:42	EEE	TAL CF		40
Silica Gel Cleanup	Analysis	WI-DRO		1	48384	05/16/14 20:40	BKT	TAL CF		13
Total/NA	Analysis	Moisture		1	47680	05/08/14 09:00	SAS	TAL CF		
Client Sample	ID: 11 - G	P-7 13.5'					l	_ab Samp	le ID: 310-30191-11	
Date Collected: 0	5/05/14 16:3	30							Matrix: Soil	
Date Received: 05	5/07/14 09:3	35							Percent Solids: 82.0	16
_	Batch	Batch		Dilution	Batch	Prepared				17
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		
Total/NA	Prep	5035			47719	05/08/14 14:16	CMM	TAL CF		
Total/NA	Analysis	WI-GRO		1	47735	05/09/14 09:07	CMM	TAL CF		
Silica Gel Cleanup	Prep	WI DRO PREP			47696	05/08/14 11:42	EEE	TAL CF		
Silica Gel Cleanup	Analysis	WI-DRO		1	48384	05/16/14 21:11	BKT	TAL CF		
Total/NA	Analysis	Moisture		1	47680	05/08/14 09:00	SAS	TAL CF		

Client Sample ID: 1 - GP-1 Date Collected: 05/05/14 16:30

Date Received: 05/07/14 09:35

Lab Sample ID: 310-30191-15 Matrix: Ground Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	47990	05/13/14 15:27	SJN	TAL CF
Total/NA	Prep	3510C			47788	05/09/14 08:22	EEE	TAL CF
Total/NA	Analysis	WI-DRO		1	48090	05/13/14 20:41	BKT	TAL CF

Dilution

Factor

Dilution

1

1

Run

Batch

47990

47788

48090

Batch

Number

Prepared

or Analyzed

05/13/14 15:03

05/09/14 08:22

05/13/14 21:13

Prepared

Analyst

SJN

EEE

BKT

Analyst

SJN

EEE

BKT

Lab

TAL CF

TAL CF

TAL CF

Lab

TAL CF

TAL CF

TAL CF

Client Sample ID: 2 - GP-6

Date Collected: 05/05/14 16:30

Date Received: 05/07/14 09:35

Client Sample ID: 3 - GP-3

Date Collected: 05/05/14 16:30

Date Received: 05/07/14 09:35

Prep Type

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Total/NA

Total/NA

Batch

Туре

Prep

Analysis

Analysis

Batch

Batch

Method

8260B

3510C

Batch

WI-DRO

Lab Sample ID: 310-30191-16 **Matrix: Ground Water**

Method Туре Run Factor Number or Analyzed Analysis 8260B 1 48111 05/14/14 00:45 3510C 47788 05/09/14 08:22 Prep Analysis WI-DRO 1 48090 05/13/14 21:46 Client Sample ID: 4 - GP-4 Date Collected: 05/05/14 16:30 Date Received: 05/07/14 09:35

Prep Type Total/NA	Batch Type Analysis	Batch Method 8260B	Run	Dilution Factor	Batch Number 48111	Prepared or Analyzed 05/14/14 00:21	Analyst SJN	– Lab TAL CF
Total/NA Total/NA	Prep Analysis	3510C WI-DRO		1	47788 48090	05/09/14 08:22 05/13/14 22:18	EEE BKT	TAL CF TAL CF

Client Sample ID: 5 - GP-5 Date Collected: 05/05/14 16:30 Date Received: 05/07/14 09:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	48111	05/13/14 23:57	SJN	TAL CF
Total/NA	Prep	3510C			47788	05/09/14 08:22	EEE	TAL CF
Total/NA	Analysis	WI-DRO		1	48090	05/13/14 22:51	BKT	TAL CF

Client Sample ID: 7 - GP-7

Date Collected: 05/05/14 16:30 Date Received: 05/07/14 09:35

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8260B		1	48111	05/13/14 23:32	SJN	TAL CF
Total/NA	Analysis	8260B		10	48351	05/16/14 14:28	SJN	TAL CF
Total/NA	Prep	3510C			47788	05/09/14 08:22	EEE	TAL CF
Total/NA	Analysis	WI-DRO		1	48090	05/13/14 23:24	BKT	TAL CF

Lab Sample ID: 310-30191-19 Matrix: Ground Water

Lab Sample ID: 310-30191-20

Matrix: Ground Water

				Lab Chr	onicle					
Client: Applied E Project/Site: 3D1	Engineering, li 15	nc.						TestAmerica J	lob ID: 310-30191-2	2
Client Sample	e ID: MeOF	Blank					L	ab Sample I	D: 310-30191-21	
Date Collected: Date Received:	05/05/14 00:0 05/07/14 09:3	00 35							Matrix: Soil	
	Batch	Batch		Dilution	Batch	Prepared				5
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		J
Total/NA	Prep	5035			47719	05/08/14 14:16	CMM	TAL CF		
Total/NA	Analysis	WI-GRO		1	47735	05/09/14 11:46	CMM	TAL CF		
Client Sample	e ID: Trip E	Blank					L	ab Sample I	D: 310-30191-22	
Date Collected:	05/05/14 00:0	00					_		Matrix: Water	•
Date Received:	05/07/14 09:3	35								ð
Γ	Batch	Batch		Dilution	Batch	Prepared				9
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		
Total/NA	Analysis	8260B		1	47990	05/13/14 11:48	SJN	TAL CF		
Client Sample	e ID: Air 1						L	ab Sample I	D: 310-30191-23	11
Date Collected:	05/05/14 16.	30					_		Matrix: Air	
Date Received:	05/07/14 09:3	35								
Γ	Batch	Batch		Dilution	Batch	Prepared				13
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		
Total/NA	Analysis	TO-15		2	72147	05/16/14 06:53	WRD	TAL BUR		
Client Sample	e ID: Air 2						L	ab Sample I	D: 310-30191-24	
Date Collected: Date Received:	05/05/14 16:3 05/07/14 09:3	30 35							Matrix: Air	16
	Batch	Batch		Dilution	Batch	Prepared				17
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab		
Total/NA	Analysis	TO-15		3.03	72084	05/14/14 23:47	BPL	TAL BUR		

Laboratory References:

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

TAL CF = TestAmerica Cedar Falls, 704 Enterprise Drive, Cedar Falls, IA 50613, TEL (319)277-2401

EPA Region

5

Certification ID

019-999-319

Authority

Minnesota

Expiration Date

12-31-14

17

Laboratory: TestAmerica Burlington

Laboratory: TestAmerica Cedar Falls The certifications listed below are applicable to this report.

All certifications held by this laboratory are listed. Not all certifications are applicable to this report.

Program

NELAP

Authority	Program	EPA Region	Certification ID	Expiration Date
Connecticut	State Program	1	PH-0751	09-30-15
DE Haz. Subst. Cleanup Act (HSCA)	State Program	3	NA	02-13-15
Florida	NELAP	4	E87467	06-30-14 *
L-A-B	DoD ELAP		L2336	02-26-17
Louisiana	NELAP	6	176292	06-30-14
Maine	State Program	1	VT00008	04-17-15
Minnesota	NELAP	5	050-999-436	12-31-14
New Hampshire	NELAP	1	2006	12-18-14
New Jersey	NELAP	2	VT972	06-30-14 *
New York	NELAP	2	10391	03-31-15
Pennsylvania	NELAP	3	68-00489	04-30-15
Rhode Island	State Program	1	LAO00298	12-30-14
US Fish & Wildlife	Federal		LE-058448-0	02-28-15
USDA	Federal		P330-11-00093	10-28-16
Vermont	State Program	1	VT-4000	12-31-14
Virginia	NELAP	3	460209	12-14-14

* Expired certification is currently pending renewal and is considered valid.

Client: Applied Engineering, Inc. Project/Site: 3D15

5
8
9
13

Method	Method Description	Protocol	Laboratory
8260B	Volatile Organic Compounds (GC/MS)	SW846	TAL CF
WI-GRO	Wisconsin - Gasoline Range Organics (GC)	WI-GRO	TAL CF
WI-DRO	Wisconsin - Diesel Range Organics (GC)	WI-DRO	TAL CF
TO-15	Volatile Organic Compounds in Ambient Air	EPA	TAL BUR
Moisture	Percent Moisture	EPA	TAL CF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates. WI-DRO = "Modified DRO: Method For Determining Diesel Range Organics", Wisconsin DNR, Publ-SW-141, September, 1995. WI-GRO = "Modified GRO: Method For Determining Gasoline Range Organics", Wisconsin DNR, Publ-SW-140, September, 1995.

Laboratory References:

TAL BUR = TestAmerica Burlington, 30 Community Drive, Suite 11, South Burlington, VT 05403, TEL (802)660-1990

TAL CF = TestAmerica Cedar Falls, 704 Enterprise Drive, Cedar Falls, IA 50613, TEL (319)277-2401

ANALYTICAL REPORT

Job Number: 310-30191-3

Job Description: 3D15

For: Applied Engineering, Inc. 1161 Wayzata Blvd. E. Suite 60 Wayzata, MN 55391 Attention: Mr. Thomas Greene

Approved for release. Derrick L Klinkenberg Project Manager I 5/19/2014 3:55 PM 14

Derrick L Klinkenberg, Project Manager I 704 Enterprise Drive, Cedar Falls, IA, 50613 derrick.klinkenberg@testamericainc.com 05/19/2014

TestAmerica Laboratories, Inc TestAmerica Cedar Falls 704 Enterprise Drive, Cedar Falls, IA 50613 Tel (319) 277-2401 Fax (319) 277-2425 <u>www.testamericainc.com</u>

5
8
9
13
14
17

EXECUTIVE SUMMARY - Detections

Client: Applied Engineering, Inc.

Job Number: 310-30191-3

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method
240 20404 42 6 CD 4					
Sieve Size 3 inch - Percent Finer	100.0			% Passing	D422
Gravel	0.0			% 1 4351119	D422
Hydrometer Reading 1 - Particle Size	35.6			um	D422
Sieve Size 2 inch - Percent Finer	100.0			% Passing	D422
Sand	95.8			%	D422
Hydrometer Reading 2 - Particle Size	22.6			um	D422
Sieve Size 1.5 inch - Percent Finer	100.0			% Passing	D422
Coarse Sand	0.4			% 1 4351119	D422
Hydrometer Reading 3 - Particle Size	13.1			um	D422
Sieve Size 1 inch - Percent Finer	100.0			% Passing	D422
Medium Sand	11.5			%	D422
Hydrometer Reading 4 - Particle Size	9.3			um	D422
Sieve Size 0.75 inch - Percent Finer	100.0			% Passing	D422
Fine Sand	83.9			%	D422
Hydrometer Reading 5 - Particle Size	6.5			um	D422
Sieve Size 0 375 inch - Percent Finer	100.0			% Passing	D422
Silt	2.3			%	D422
Hydrometer Reading 6 - Particle Size	3.3			um	D422
Sieve Size #4 - Percent Finer	100.0			% Passing	D422
Clav	1.9			%	D422
Hydrometer Reading 7 - Particle Size	1.4			um	D422
Sieve Size #10 - Percent Finer	99.6			% Passing	D422
Sieve Size #20 - Percent Finer	98.0			% Passing	D422
Sieve Size #40 - Percent Finer	88.1			% Passing	D422
Sieve Size #60 - Percent Finer	50.5			% Passing	D422
Sieve Size #80 - Percent Finer	11.9			% Passing	D422
Sieve Size #100 - Percent Finer	6.8			% Passing	D422
Sieve Size #200 - Percent Finer	4.2			% Passing	D422
Hydrometer Reading 1 - Percent Finer	3.8			% Passing	D422
Hydrometer Reading 2 - Percent Finer	3.4			% Passing	D422
Hydrometer Reading 3 - Percent Finer	2.9			% Passing	D422
Hydrometer Reading 4 - Percent Finer	2.9			% Passing	D422
Hydrometer Reading 5 - Percent Finer	1.9			% Passing	D422
Hydrometer Reading 6 - Percent Finer	1.2			% Passing	D422
Hydrometer Reading 7 - Percent Finer	1.2			% Passing	D422

EXECUTIVE SUMMARY - Detections

Client: Applied Engineering, Inc.

Job Number: 310-30191-3

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method	
310-30191-13 10 - GP-1						
Sieve Size 3 inch - Percent Finer	100.0			% Passing	D422	
Gravel	0.0			%	D422	
Hydrometer Reading 1 - Particle Size	35.9			um	D422	
Sieve Size 2 inch - Percent Finer	100.0			% Passing	D422	
Sand	96.1			%	D422	
Hydrometer Reading 2 - Particle Size	22.7			um	D422	
Sieve Size 1.5 inch - Percent Finer	100.0			% Passing	D422	
Coarse Sand	1.2			%	D422	
Hydrometer Reading 3 - Particle Size	13.1			um	D422	
Sieve Size 1 inch - Percent Finer	100.0			% Passing	D422	
Medium Sand	27.4			%	D422	
Hydrometer Reading 4 - Particle Size	9.3			um	D422	
Sieve Size 0.75 inch - Percent Finer	100.0			% Passing	D422	
Fine Sand	67.5			%	D422	
Hydrometer Reading 5 - Particle Size	6.8			um	D422	
Sieve Size 0.375 inch - Percent Finer	100.0			% Passing	D422	
Silt	2.0			%	D422	
Hydrometer Reading 6 - Particle Size	3.3			um	D422	
Sieve Size #4 - Percent Finer	100.0			% Passing	D422	
Clav	1.9			%	D422	
Hydrometer Reading 7 - Particle Size	1.4			um	D422	
Sieve Size #10 - Percent Finer	98.8			% Passing	D422	
Sieve Size #20 - Percent Finer	94.1			% Passing	D422	
Sieve Size #40 - Percent Finer	71.4			% Passing	D422	
Sieve Size #60 - Percent Finer	43.4			% Passing	D422	
Sieve Size #80 - Percent Finer	11.6			% Passing	D422	
Sieve Size #100 - Percent Finer	6.7			% Passing	D422	
Sieve Size #200 - Percent Finer	3.9			% Passing	D422	
Hydrometer Reading 1 - Percent Finer	3.0			% Passing	D422	
Hydrometer Reading 2 - Percent Finer	3.0			% Passing	D422	
Hydrometer Reading 3 - Percent Finer	3.0			% Passing	D422	
Hydrometer Reading 4 - Percent Finer	2.5			% Passing	D422	
Hydrometer Reading 5 - Percent Finer	1.9			% Passing	D422	
Hydrometer Reading 6 - Percent Finer	1.3			% Passing	D422	
Hydrometer Reading 7 - Percent Finer	1.3			% Passing	D422	
EXECUTIVE SUMMARY - Detections

Client: Applied Engineering, Inc.

Job Number: 310-30191-3

Lab Sample ID Client Sample ID Analyte	Result	Qualifier	Reporting Limit	Units	Method	
310-30191-14 14 - GP-1						
Sieve Size 3 inch - Percent Finer	100.0			% Passing	D422	
Gravel	0.2			%	D422	
Hydrometer Reading 1 - Particle Size	36.2			um	D422	
Sieve Size 2 inch - Percent Finer	100.0			% Passing	D422	
Sand	96.7			%	D422	
Hydrometer Reading 2 - Particle Size	22.9			um	D422	
Sieve Size 1.5 inch - Percent Finer	100.0			% Passing	D422	
Coarse Sand	1.6			%	D422	
Hydrometer Reading 3 - Particle Size	13.2			um	D422	
Sieve Size 1 inch - Percent Finer	100.0			% Passing	D422	
Medium Sand	23.2			%	D422	
Hydrometer Reading 4 - Particle Size	9.4			um	D422	
Sieve Size 0.75 inch - Percent Finer	100.0			% Passing	D422	
Fine Sand	71.9			%	D422	
Hydrometer Reading 5 - Particle Size	6.5			um	D422	
Sieve Size 0.375 inch - Percent Finer	100.0			% Passing	D422	
Silt	1.3			%	D422	
Hydrometer Reading 6 - Particle Size	3.4			um	D422	
Sieve Size #4 - Percent Finer	99.8			% Passing	D422	
Clay	1.8			%	D422	
Hydrometer Reading 7 - Particle Size	1.4			um	D422	
Sieve Size #10 - Percent Finer	98.2			% Passing	D422	
Sieve Size #20 - Percent Finer	88.4			% Passing	D422	
Sieve Size #40 - Percent Finer	75.0			% Passing	D422	
Sieve Size #60 - Percent Finer	29.9			% Passing	D422	
Sieve Size #80 - Percent Finer	8.9			% Passing	D422	
Sieve Size #100 - Percent Finer	4.8			% Passing	D422	
Sieve Size #200 - Percent Finer	3.1			% Passing	D422	
Hydrometer Reading 1 - Percent Finer	1.8			% Passing	D422	
Hydrometer Reading 2 - Percent Finer	1.8			% Passing	D422	
Hydrometer Reading 3 - Percent Finer	1.8			% Passing	D422	
Hydrometer Reading 4 - Percent Finer	1.8			% Passing	D422	
Hydrometer Reading 5 - Percent Finer	1.8			% Passing	D422	
Hydrometer Reading 6 - Percent Finer	0.2			% Passing	D422	
Hydrometer Reading 7 - Percent Finer	0.2			% Passing	D422	

METHOD SUMMARY

Client: Applied Engineering, Inc.			Job Number: 310-30191-3
Description	Lab Location	Method	Preparation Method
Matrix: Soil			
Grain Size	TAL BUR	ASTM D422	
Lab References:			
TAL BUR = TestAmerica Burlington			
Method References:			
ASTM = ASTM International			

METHOD / ANALYST SUMMARY

Method	Analyst	Analyst ID
ASTM D422	Degree, Steven L	SLD

SAMPLE SUMMARY

Client: Applied Engineering, Inc.

Job Number: 310-30191-3

			Date/Time	Date/Time	
Lab Sample ID	Client Sample ID	Client Matrix	Sampled	Received	
310-30191-12	6 - GP-1	Soil	05/05/2014 1630	05/07/2014 0935	
310-30191-13	10 - GP-1	Soil	05/05/2014 1630	05/07/2014 0935	
310-30191-14	14 - GP-1	Soil	05/05/2014 1630	05/07/2014 0935	

SAMPLE RESULTS

Client: Applied Engineering, Inc.

6 - GP-1

Client Sample ID:

Job Number: 310-30191-3

Lab Sample ID: Client Matrix:	310-30191-12 Soil				Date Date	e Sampled: 05/05/2014 1630 e Received: 05/07/2014 0935
		D422	Grain Size			
Analysis Method:	D422 N/A	Analysis Batch: Prep Batch:	200-72188 N/A	Ins La	strument ID: b File ID:	D422_import 310-30191-A-12.txt
Dilution:	1.0			Init	tial Weight/Volume:	195.9 g
Analysis Date:	05/09/2014 1730			Fir	nal Weight/Volume:	
Prep Date:	N/A					
Analyte	DryWt Corrected: N	Result (%	Passing)	Qualifier		NONE
Sieve Size 3 inch -	Percent Finer	100.0				
Sieve Size 2 inch -	Percent Finer	100.0				
Sieve Size 1.5 inch	- Percent Finer	100.0				
Sieve Size 1 inch -	Percent Finer	100.0				
Sieve Size 0.75 inc	h - Percent Finer	100.0				
Sieve Size 0.375 in	ch - Percent Finer	100.0				
Sieve Size #4 - Per	rcent Finer	100.0				
Sieve Size #10 - Pe	ercent Finer	99.6				
Sieve Size #20 - Pe	ercent Finer	98.0				
Sieve Size #40 - Pe	ercent Finer	88.1				
Sieve Size #60 - Pe	ercent Finer	50.5				
Sieve Size #80 - Pe	ercent Finer	11.9				
Sieve Size #100 - F	Percent Finer	6.8				
Sieve Size #200 - F	Percent Finer	4.2				
Hydrometer Readin	ng 1 - Percent Finer	3.8				
Hydrometer Readin	ng 2 - Percent Finer	3.4				
Hydrometer Readin	ng 3 - Percent Finer	2.9				
Hydrometer Readin	ng 4 - Percent Finer	2.9				
Hydrometer Readin	ng 5 - Percent Finer	1.9				
Hydrometer Readin	ng 6 - Percent Finer	1.2				
Hydrometer Readir	ng 7 - Percent Finer	1.2				

Job Number: 310-30191-3

Client: Applied Engineering, Inc.

Client Sample ID:	6 - GP-1				
Lab Sample ID: Client Matrix:	310-30191-12 Soil				Date Sampled: 05/05/2014 1630 Date Received: 05/07/2014 0935
		D422	Grain Size		
Analysis Method:	D422 N/A	Analysis Batch: Prep Batch:	200-72188 N/A	Instrument ID: Lab File ID:	D422_import 310-30191-A-12.txt
Dilution:	1.0			Initial Weight/Vo	ume: 195.9 g
Analysis Date:	05/09/2014 1730			Final Weight/Vol	ume:
Prep Date:	N/A				
Analyte	DryWt Corrected: N	Result (%)	Qualifier	NONE
Gravel		0.0			
Sand		95.8			
Coarse Sand		0.4			
Medium Sand		11.5			
Fine Sand		83.9			
Silt		2.3			
Clay		1.9			

Client: Applied Engineering, Inc.

Job Number: 310-30191-3

Client Sample ID:	6 - GP-1				
Lab Sample ID: Client Matrix:	310-30191-12 Soil			D D	ate Sampled: 05/05/2014 1630 ate Received: 05/07/2014 0935
		D422 (Grain Size		
Analysis Method: Dilution: Analysis Date: Prep Date:	D422 N/A 1.0 05/09/2014 1730 N/A	Analysis Batch: Prep Batch:	200-72188 N/A	Instrument ID: Lab File ID: Initial Weight/Volume Final Weight/Volume	D422_import 310-30191-A-12.txt e: 195.9 g e:
Analyte	DryWt Corrected: N	Result (ur	n)	Qualifier	NONE
Hydrometer Reading Hydrometer Reading Hydrometer Reading Hydrometer Reading Hydrometer Reading Hydrometer Reading Hydrometer Reading	g 1 - Particle Size g 2 - Particle Size g 3 - Particle Size g 4 - Particle Size g 5 - Particle Size g 6 - Particle Size g 7 - Particle Size	35.6 22.6 13.1 9.3 6.5 3.3 1.4			

Client: Applied Engineering, Inc.

10 - GP-1

Client Sample ID:

Job Number: 310-30191-3

Lab Sample ID: Client Matrix:	310-30191-13 Soil				Date Sampled: 05/05/2014 1630 Date Received: 05/07/2014 0935
		D422	Grain Size		
Analysis Method:	D422	Analysis Batch:	200-72188	Instrument ID:	D422_import
Dilution:	N/A 1.0	Ртер вают.	N/A	Initial Weight/Volu	ume: 184.53 g
Analysis Date:	05/09/2014 1731			Final Weight/Volu	ume:
Prep Date:	N/A				
Analyte	DryWt Corrected: N	Result (%	6 Passing)	Qualifier	NONE
Sieve Size 3 inch -	Percent Finer	100.0			
Sieve Size 2 inch -	Percent Finer	100.0			
Sieve Size 1.5 inch	- Percent Finer	100.0			
Sieve Size 1 inch -	Percent Finer	100.0			
Sieve Size 0.75 inc	ch - Percent Finer	100.0			
Sieve Size 0.375 in	nch - Percent Finer	100.0			
Sieve Size #4 - Per	rcent Finer	100.0			
Sieve Size #10 - Pe	ercent Finer	98.8			
Sieve Size #20 - Pe	ercent Finer	94.1			
Sieve Size #40 - Pe	ercent Finer	71.4			
Sieve Size #60 - Pe	ercent Finer	43.4			
Sieve Size #80 - Pe	ercent Finer	11.6			
Sieve Size #100 - F	Percent Finer	6.7			
Sieve Size #200 - F	Percent Finer	3.9			
Hydrometer Readir	ng 1 - Percent Finer	3.0			
Hydrometer Readir	ng 2 - Percent Finer	3.0			
Hydrometer Readir	ng 3 - Percent Finer	3.0			
Hydrometer Readir	ng 4 - Percent Finer	2.5			
Hydrometer Readir	ng 5 - Percent Finer	1.9			
Hydrometer Readir	ng 6 - Percent Finer	1.3			
Hydrometer Readir	ng 7 - Percent Finer	1.3			

Job Number: 310-30191-3

Client: Applied Engineering, Inc.

Client Sample ID:	10 - GP-1					
Lab Sample ID: Client Matrix:	310-30191-13 Soil				Date : Date	Sampled: 05/05/2014 1630 Received: 05/07/2014 0935
		D422 (Grain Size			
Analysis Method:	D422 N/A	Analysis Batch: Prep Batch:	200-72188 N/A	Instrume Lab File	ent ID: ID:	D422_import 310-30191-A-13.txt
Dilution:	1.0	·		Initial W	eight/Volume:	184.53 g
Analysis Date:	05/09/2014 1731			Final We	eight/Volume:	
Prep Date:	N/A					
Analyte	DryWt Corrected: N	Result (%)	Qualifier		NONE
Gravel		0.0				
Sand		96.1				
Coarse Sand		1.2				
Medium Sand		27.4				
Fine Sand		67.5				
Silt		2.0				
Clay		1.9				

Client: Applied Engineering, Inc.

Job Number: 310-30191-3

Client Sample ID:	10 - GP-1				
Lab Sample ID: Client Matrix:	310-30191-13 Soil				Date Sampled: 05/05/2014 1630 Date Received: 05/07/2014 0935
		D422	Grain Size		
Analysis Method:	D422 N/A	Analysis Batch: Prep Batch:	200-72188 N/A	Instrument ID: Lab File ID:	D422_import 310-30191-A-13.txt
Dilution:	1.0			Initial Weight/Volun	ne: 184.53 g
Analysis Date:	05/09/2014 1731			Final Weight/Volum	ne:
Prep Date:	N/A				
Analyte	DryWt Corrected: N	Result (u	m)	Qualifier	NONE
Hydrometer Readin	g 1 - Particle Size	35.9			
Hydrometer Readin	g 2 - Particle Size	22.7			
Hydrometer Readin	g 3 - Particle Size	13.1			
Hydrometer Readin	g 4 - Particle Size	9.3			
Hydrometer Readin	g 5 - Particle Size	6.8			
Hydrometer Readin	g 6 - Particle Size	3.3			
Hydrometer Readin	g 7 - Particle Size	1.4			

Client: Applied Engineering, Inc.

Client Sample ID:

14 - GP-1

Job Number: 310-30191-3

Date Sampled: 05/05/2014 1630

Lab Sample ID:	310-30191-14				Date Sampled: 05/05/2014 1630
Client Matrix:	Soll				Date Received: 05/07/2014 0935
		D422	Grain Size		
Analysis Method:	D422 N/A	Analysis Batch: Prep Batch:	200-72188 N/A	Instrument ID: Lab File ID:	D422_import 310-30191-A-14.txt
Dilution:	1.0			Initial Weight/Volu	me: 196.56 g
Analysis Date:	05/09/2014 1733			Final Weight/Volur	me:
Prep Date:	N/A			-	
Analyte	DryWt Corrected:	N Result (%	6 Passing)	Qualifier	NONE
Sieve Size 3 inch -	Percent Finer	100.0			
Sieve Size 2 inch -	Percent Finer	100.0			
Sieve Size 1.5 inch	- Percent Finer	100.0			
Sieve Size 1 inch -	Percent Finer	100.0			
Sieve Size 0.75 inc	h - Percent Finer	100.0			
Sieve Size 0.375 in	nch - Percent Finer	100.0			
Sieve Size #4 - Per	rcent Finer	99.8			
Sieve Size #10 - Pe	ercent Finer	98.2			
Sieve Size #20 - Pe	ercent Finer	88.4			
Sieve Size #40 - Pe	ercent Finer	75.0			
Sieve Size #60 - Pe	ercent Finer	29.9			
Sieve Size #80 - Pe	ercent Finer	8.9			
Sieve Size #100 - F	Percent Finer	4.8			
Sieve Size #200 - F	Percent Finer	3.1			
Hydrometer Readin	ng 1 - Percent Finer	1.8			
Hydrometer Readin	ng 2 - Percent Finer	1.8			
Hydrometer Readin	ng 3 - Percent Finer	1.8			
Hydrometer Readin	ng 4 - Percent Finer	1.8			
Hydrometer Readir	ng 5 - Percent Finer	1.8			
Hydrometer Readir	ng 6 - Percent Finer	0.2			
Hydrometer Readir	ng 7 - Percent Finer	0.2			

Job Number: 310-30191-3

Client: Applied Engineering, Inc.

Client Sample ID:	14 - GP-1					
Lab Sample ID: Client Matrix:	310-30191-14 Soil				Date S Date R	ampled: 05/05/2014 1630 Received: 05/07/2014 0935
		D422	Grain Size			
Analysis Method:	D422 N/A	Analysis Batch: Prep Batch:	200-72188 N/A	Instrument ID Lab File ID:):	D422_import 310-30191-A-14.txt
Dilution:	1.0			Initial Weight	Volume:	196.56 g
Analysis Date:	05/09/2014 1733			Final Weight/	Volume:	
Prep Date:	N/A					
Analyte	DryWt Corrected: N	Result (%)	Qualifier		NONE
Gravel		0.2				
Sand		96.7				
Coarse Sand		1.6				
Medium Sand		23.2				
Fine Sand		71.9				
Silt		1.3				
Clay		1.8				

Client: Applied Engineering, Inc.

Job Number: 310-30191-3

Client Sample ID:	14 - GP-1				
Lab Sample ID: Client Matrix:	310-30191-14 Soil			Da Da	ate Sampled: 05/05/2014 1630 ate Received: 05/07/2014 0935
		D422	Grain Size		
Analysis Method:	D422 N/A	Analysis Batch: Prep Batch:	200-72188 N/A	Instrument ID: Lab File ID:	D422_import 310-30191-A-14.txt
Dilution:	1.0			Initial Weight/Volume	: 196.56 g
Analysis Date:	05/09/2014 1733			Final Weight/Volume:	
Prep Date:	N/A				
Analyte	DryWt Corrected: N	Result (ur	m)	Qualifier	NONE
Hydrometer Reading	g 1 - Particle Size	36.2			
Hydrometer Reading	g 2 - Particle Size	22.9			
Hydrometer Reading	g 3 - Particle Size	13.2			
Hydrometer Reading	g 4 - Particle Size	9.4			
Hydrometer Reading	g 5 - Particle Size	6.5			
Hydrometer Reading	g 6 - Particle Size	3.4			
Hydrometer Reading	g 7 - Particle Size	1.4			

Particle Size of Soils by ASTM D422

Sieve	Particle	Percent	Incremental	
size	size, um	finer	percent	
3 inch	75000	100.0	0.0	
2 inch	50000	100.0	0.0	
1.5 inch	37500	100.0	0.0	
1 inch	25000	100.0	0.0	
3/4 inch	19000	100.0	0.0	
3/8 inch	9500	100.0	0.0	
#4	4750	100.0	0.0	
#10	2000	99.6	0.4	
#20	850	98.0	1.6	
#40	425	88.1	9.9	
#60	250	50.5	37.6	
#80	180	11.9	38.6	
#100	150	6.8	5.1	
#200	75	4.2	2.7	
Hyd1	35.6	3.8	0.3	
Hyd2	22.6	3.4	0.5	
Hyd3	13.1	2.9	0.5	
Hyd4	9.3	2.9	0.0	
Hyd5	6.5	1.9	1.0	
Hyd6	3.3	1.2	0.6	
Hyd7	1.4	1.2	0.0	

Soil	Percent of
Classification	sample
Gravel	0.0
Sand	95.8
Coarse Sand	0.4
Medium Sand	11.5
Fine Sand	83.9
Silt	2.3
Clay	1.9

Particle Size of Soils by ASTM D422

Siovo	Particla	Porcont	Incromontal	
Sieve	Faitible	Feicent	incremental	
size	size, um	finer	percent	
3 inch	75000	100.0	0.0	
2 inch	50000	100.0	0.0	
1.5 inch	37500	100.0	0.0	
1 inch	25000	100.0	0.0	
3/4 inch	19000	100.0	0.0	
3/8 inch	9500	100.0	0.0	
#4	4750	100.0	0.0	
#10	2000	98.8	1.2	
#20	850	94.1	4.7	
#40	425	71.4	22.7	
#60	250	43.4	28.0	
#80	180	11.6	31.8	
#100	150	6.7	4.9	
#200	75	3.9	2.8	
Hyd1	35.9	3.0	0.9	
Hyd2	22.7	3.0	0.0	
Hyd3	13.1	3.0	0.0	
Hyd4	9.3	2.5	0.5	
Hyd5	6.8	1.9	0.5	
Hyd6	3.3	1.3	0.6	
Hyd7	1.4	1.3	0.0	

Soil	Percent of
Classification	sample
Gravel	0.0
Sand	96.1
Coarse Sand	1.2
Medium Sand	27.4
Fine Sand	67.5
Silt	2.0
Clay	1.9

Particle Size of Soils by ASTM D422

Sieve	Particle	Percent	Incremental
size	size, um	finer	percent
3 inch	75000	100.0	0.0
2 inch	50000	100.0	0.0
1.5 inch	37500	100.0	0.0
1 inch	25000	100.0	0.0
3/4 inch	19000	100.0	0.0
3/8 inch	9500	100.0	0.0
#4	4750	99.8	0.2
#10	2000	98.2	1.6
#20	850	88.4	9.8
#40	425	75.0	13.4
#60	250	29.9	45.1
#80	180	8.9	21.0
#100	150	4.8	4.1
#200	75	3.1	1.8
Hyd1	36.2	1.8	1.3
Hyd2	22.9	1.8	0.0
Hyd3	13.2	1.8	0.0
Hyd4	9.4	1.8	0.0
Hyd5	6.5	1.8	0.0
Hyd6	3.4	0.2	1.6
Hyd7	1.4	0.2	0.0

Soil	Percent of
Classification	sample
Gravel	0.2
Sand	96.7
Coarse Sand	1.6
Medium Sand	23.2
Fine Sand	71.9
Silt	1.3
Clay	1.8

TestAmerica Burlington

Sediment Grain Size - D422

Client		
Client Sample ID	6 - GP-1	
Lab Sample ID	310-30191-A-12	
Dry Weight Determination		

Dry Weight Determination		
Tin Weight	1.01	g
Wet Sample + Tin	20.42	g
Dry Sample + Tin	17.11	g
% Moisture	17.05	%

Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)	
Sample Weight (Wet)		195.90		195.9
Sample Weight (Oven Dried)				162
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)	
Sample Split (oven dried) Sample >=#10	Tare (g)	Pan+Samp (g)	Samp (g)	0.65
Sample Split (oven dried) Sample >=#10 Sample <#10	Tare (g)	Pan+Samp (g)	Samp (g)	0.65 161

162

Date Received	5/7/2014
Start Date	05/09/2014 17:30
End Date	05/15/2014 17:16
	00,10,20111110
Non-soil material:	na
Shape (> #10):	subrounded
Hardness (> #10):	hard
Date/Time in oven	05/09/2014 17:31
Date/Time out of oven	05/12/2014 14:20
Hydrometer Data	
Serial Number	265739
Calib. Date (mm/dd/yyyy)	01/07/2014
Low Temp (C)	17.0
Reading at Low Temp	1.0045
High Temp (C)	23.0
	1 0000
Reading at High Temp	1.0030
Reading at High Temp	-0.00025
Reading at High Temp Hydrometer Cal Slope Hydrometer Cal Intercept	-0.00025 1.00875
Hydrometer Cal Slope Hydrometer Cal Intercept Default Soil Gravity	1.0030 -0.00025 1.00875 2.6500

Gravel/Sand Fraction (Sieves)

Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.0	Gravel	
2 inch	50000			0.00 g	100.0	Gravel	
1.5 inch	37500			0.00 g	100.0	Gravel	
1 inch	25000			0.00 g	100.0	Gravel	
3/4 inch	19000			0.00 g	100.0	Gravel	
3/8 inch	9500			0.00 g	100.0	Gravel	
#4	4750			0.00 g	100.0	Gravel	
#10	2000	462.92	463.57	0.65 g	99.6	Sand	Coarse
#20	850	389.66	392.33	2.67 g	98.0	Sand	Medium
#40	425	367.06	383.04	15.98 g	88.1	Sand	Medium
#60	250	346.07	406.91	60.84 g	50.5	Sand	Fine
#80	180	331.92	394.39	62.47 g	11.9	Sand	Fine
#100	150	335.73	343.93	8.20 g	6.8	Sand	Fine
#200	75	320.54	324.87	4.33 g	4.2	Sand	Fine
				0.00 g	4.2		

Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g)

Silt/Clay Fraction (Hydrometer Test)

Hydrometer Test Time (min)	Actual	Spec. Gravity	Temp C	Particle Size (Micron)	% Finer	Classification	Sub Class
2	2	1.0070	22.5	35.6	3.84	Silt	
5	5	1.0065	22.5	22.6	3.35	Silt	
15	15	1.0060	22.5	13.1	2.85	Silt	
30	30	1.0060	22.5	9.3	2.85	Silt	
60	63	1.0050	22.5	6.5	1.86	Silt	
250	253	1.0045	22.0	3.3	1.24	Clay	
1440	1400	1.0045	22.0	1.4	1.24	Clay	

TestAmerica Burlington

Sediment Grain Size - D422

Client	
Client Sample ID	10 - GP-1
Lab Sample ID	310-30191-A-13

Dry Weight Determination		
Tin Weight	1.03	g
Wet Sample + Tin	24.98	g
Dry Sample + Tin	21.16	g
% Moisture	15.95	%

Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)
Sample Weight (Wet)		184.53	184.53
Sample Weight (Oven Dried)			155
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)
Sample >=#10			1.93
Sample <#10			153
0/ D!			

155

5/7/2014
05/09/2014 17:31
05/16/2014 9:10
plant
subrounded
hard
05/09/2014 17:32
05/12/2014 14:20
265739
01/07/2014
17.0
1.0045
23.0
1.0030
-0.00025
1.00875
2 6500

Gravel/Sand Fraction (Sieves)

Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.0	Gravel	
2 inch	50000			0.00 g	100.0	Gravel	
1.5 inch	37500			0.00 g	100.0	Gravel	
1 inch	25000			0.00 g	100.0	Gravel	
3/4 inch	19000			0.00 g	100.0	Gravel	
3/8 inch	9500			0.00 g	100.0	Gravel	
#4	4750			0.00 g	100.0	Gravel	
#10	2000	462.92	464.85	1.93 g	98.8	Sand	Coarse
#20	850	380.94	388.21	7.27 g	94.1	Sand	Medium
#40	425	353.82	388.98	35.16 g	71.4	Sand	Medium
#60	250	350.68	394.15	43.47 g	43.4	Sand	Fine
#80	180	339.43	388.74	49.31 g	11.6	Sand	Fine
#100	150	330.73	338.33	7.60 g	6.7	Sand	Fine
#200	75	320.75	325.08	4.33 g	3.9	Sand	Fine
				0.00 g	3.9	1	

Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g)

Silt/Clay Fraction (Hydrometer Test)

Hydrometer Test Time (min)	Actual	Spec. Gravity	Temp C	Particle Size (Micron)	% Finer	Classification	Sub Class
2	2	1.0060	22.5	35.9	2.98	Silt	
5	5	1.0060	22.5	22.7	2.98	Silt	
15	15	1.0060	22.5	13.1	2.98	Silt	
30	30	1.0055	22.5	9.3	2.46	Silt	
60	57	1.0050	22.5	6.8	1.94	Silt	
250	247	1.0045	22.0	3.3	1.3	Clay	
1440	1394	1.0045	22.0	1.4	1.3	Clay	

TestAmerica Burlington

Sediment Grain Size - D422

Client	
Client Sample ID	14 - GP-1
Lab Sample ID	310-30191-A-14

1.02	g
28.89	g
24.86	g
14.46	%
	1.02 28.89 24.86 14.46

Sample Weights	Tare (g)	Pan+Samp (g)	Samp (g)
Sample Weight (Wet)		196.56	196.56
Sample Weight (Oven Dried)			168
Sample Split (oven dried)	Tare (g)	Pan+Samp (g)	Samp (g)
Sample >=#10			2.95
Sample <#10			165

168

Date Received	5/7/2014
Start Date	05/09/2014 17:33
End Date	05/16/2014 9:14
Non-soil material:	plant
Shape (> #10):	subrounded
Hardness (> $\#10$):	hard
Date/Time in oven	05/09/2014 17:34
Date/Time out of oven	05/12/2014 14:20
Hydrometer Data	
Serial Number	
	265739
Calib. Date (mm/dd/yyyy)	265739 01/07/2014
Calib. Date (mm/dd/yyyy) _ow Temp (C)	265739 01/07/2014 17.0
Calib. Date (mm/dd/yyyy) Low Temp (C) Reading at Low Temp	265/39 01/07/2014 17.0 1.0045
Calib. Date (mm/dd/yyyy) Low Temp (C) Reading at Low Temp High Temp (C)	265739 01/07/2014 17.0 1.0045 23.0
Calib. Date (mm/dd/yyyy) Low Temp (C) Reading at Low Temp High Temp (C) Reading at High Temp	265739 01/07/2014 17.0 1.0045 23.0 1.0030
Calib. Date (mm/dd/yyyy) Low Temp (C) Reading at Low Temp High Temp (C) Reading at High Temp Hydrometer Cal Slope	265739 01/07/2014 17.0 1.0045 23.0 1.0030 -0.00025
Calib. Date (mm/dd/yyyy) Low Temp (C) Reading at Low Temp High Temp (C) Reading at High Temp Hydrometer Cal Slope Hydrometer Cal Intercept	265739 01/07/2014 17.0 1.0045 23.0 1.0030 -0.00025 1.00875
Calib. Date (mm/dd/yyyy) Low Temp (C) Reading at Low Temp High Temp (C) Reading at High Temp Hydrometer Cal Slope Hydrometer Cal Intercept Default Soil Gravity	265739 01/07/2014 17.0 1.0045 2300 1.0030 -0.00025 1.00875 2.6500

Gravel/Sand Fraction (Sieves)

Sample Fraction	Size (um)	Pan Tare (g)	Pan+Sample (g)	Sample	% Finer	Classification	Sub Class
3 inch	75000			0.00 g	100.0	Gravel	
2 inch	50000			0.00 g	100.0	Gravel	
1.5 inch	37500			0.00 g	100.0	Gravel	
1 inch	25000			0.00 g	100.0	Gravel	
3/4 inch	19000			0.00 g	100.0	Gravel	
3/8 inch	9500			0.00 g	100.0	Gravel	
#4	4750	488.18	488.45	0.27 g	99.8	Gravel	
#10	2000	462.92	465.60	2.68 g	98.2	Sand	Coarse
#20	850	389.66	406.12	16.46 g	88.4	Sand	Medium
#40	425	367.06	389.54	22.48 g	75.0	Sand	Medium
#60	250	346.07	421.85	75.78 g	29.9	Sand	Fine
#80	180	331.92	367.23	35.31 g	8.9	Sand	Fine
#100	150	335.73	342.57	6.84 g	4.8	Sand	Fine
#200	75	320.54	323.48	2.94 g	3.1	Sand	Fine
				0.00 g	3.1		

Adjusted Hydrometer Sample Mass

Hydrometer Sample Mass (g)

Silt/Clay Fraction (Hydrometer Test)

Hydrometer Test Time (min)	Actual	Spec. Gravity	Temp C	Particle Size (Micron)	% Finer	Classification	Sub Class
2	2	1.0050	22.5	36.2	1.79	Silt	
5	5	1.0050	22.5	22.9	1.79	Silt	
15	15	1.0050	22.5	13.2	1.79	Silt	
30	30	1.0050	22.5	9.4	1.79	Silt	
60	63	1.0050	22.5	6.5	1.79	Silt	
250	241	1.0035	22.0	3.4	0.239	Clay	
1440	1388	1.0035	22.0	1.4	0.239	Clay	

DATA REPORTING QUALIFIERS

Lab Section

Qualifier

Description

QUALITY CONTROL RESULTS

Quality Control Results

QC Association Summary

		Report			
Lab Sample ID	Client Sample ID	Basis	Client Matrix	Method	Prep Batch
Geotechnical					
Analysis Batch:200-72	2188				
310-30191-12	6 - GP-1	Т	Solid	D422	
310-30191-13	10 - GP-1	Т	Solid	D422	
310-30191-14	14 - GP-1	Т	Solid	D422	

Report Basis

T = Total

Login Number: 30191 List Number: 1 Creator: Facciani, Melene K

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	no GP2 bottles, but gp6. go w/bottles per client
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 310-30191-3

List Source: TestAmerica Cedar Falls

Login Number: 30191 List Number: 2

Creator: Gagne, Eric M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	NO SEALS
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	AMBIENT.
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	Containers labels list sample start times only.
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	

Login Number: 30191 List Number: 3 Creator: Lavigne, Scott M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	123566
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	3.0C°/IR GUN ID 181. CF= 0
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

Login Number: 30191 List Number: 4 Creator: Gagne, Eric M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td>Lab does not accept radioactive samples.</td>	N/A	Lab does not accept radioactive samples.
The cooler's custody seal, if present, is intact.	True	No SEALS
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	N/A	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	AMBIENT
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Refer to Job Narrative for details.
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	CONTAINER LABELS LIST SAMPLE START TIMES ONLY.
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	N/A	
Samples do not require splitting or compositing.	N/A	
Residual Chlorine Checked.	N/A	

List Source: TestAmerica Burlington

List Creation: 05/12/14 11:10 AM

TestAmerica TestAmerica Sar	nple Rece n
THE LEADER IN ENVIRONMENTAL TESTING	310-30191 Chain of Custody
client: Applied ENG.	Project: Waste Mgmt.
City:	State:
Date: 5-7-14 Receiver's Initials:	CHTime (Delivered): <u>G:35</u>
Temperature Record: Thermometer:	Courier:
Cooler ID# (If Applicable)	506 UPS TA Courier
IR "Front" - 618	54108 FedEx TA Field Services
	S22 FedEx Ground Client
	353 US Postal Service Uther:
	Exceptions Noted:
	Sample(s) received same day of sampling
Coolant Record:	Evidence of chilling process
	Temp blank <0°C, samples NOT FROZEN
Wet ice	Temp blank <0°C, samples FROZEN
Blue ice	Temperature not taken: (indicate reason)
Dry ice	
Other:	
NONE	Non-Conformance Report Started
Custody Seals:	
Cooler Custody Seals Present? Coole	er Custody Seals Intacl?
Yes No	
Sample Custody Seals Present? Sample Sample Custody Seals Present?	Yes No
	S.
Revision: 20 Page	e 100 of 121 5/19/2014

Ċ

ł

TestAmerica Samp Tel 319-277-2401 · Fax 319-277-2425	ole Rec /
Client: Applied ENG.	roject: Maste Mant
City:	State:
Date: 5-7-14 Receiver's Initials: (Time (Delivered): $9:35$
Temperature Record: Thermometer:	Courier:
Cooler ID# (If Applicable) IR "E" - 111531506	
PACT IR "Front" - 618541	08 FedEx TA Field Services
Uncorrected Temp: IR "G" - 130195822	2 FedEx Ground Client
-> ₀ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	US Postal Service
	centions Noted
Temperature blank	Sample(s) not received in cooler
Temperature out of compliance	Sample(s) received same day of sampling
Coolant Record:	Evidence of chilling process
Received on ice	Temp blank <0°C, samples NOT FROZEN
Wet ice	Temp blank <0°C, samples FROZEN
Blue ice	Temperature not taken: (indicate reason)
Dry ice	
Other:	
	Non-Conformance Report Started
Custody Seals:	
Cooler Custody Seals Present? Cooler (Custody Seals Intact?
Sample Custody Socie Brosent?	
Yes Yes Yes	
Intator	2
Revision: 20	O1 of 121 5/19/2014

-

1700	Elm St., Suite 200	DAR FAC	LUJ IA	AE Pr	oj / P.O. # <u>3 0 / J</u> (Lat	o - PLE	EASE e	ensur	e thi	s Pi	roject	# ap	pea	rs or	Lab	Report
From	THAMAS COMMUN	50613	-	Site N	ame WASTE MANAGEM	ENT						\sim	' 1	Ś)	
Appli 2905	ied Engineering, Inc.			Site A	dress 12448 PENNSYCVAN	a Ave	S. Sam	pler Si	gnatu	re: _	Ĵ-	Ci	<u>· /</u>	Ju	ene	- <u>-</u>
Wayz Tel 9	zata, MN 55391-2533 52-939-9095	Fax 95	2-939-017	8 t	JAVAGE MN JJ.	378 Ing US	a.c	om					REQU	JESTE	D ANALY	/SES:
	Sample	2014		Soil Water	Location		HNU T ype	HHHH	^o resr- vative	#Con tain-	GRO	DRO	MTBE &	VOCs 465	Me Lead & F	∋tais 'CBs
		S-5	1630		(all samples grab unless noted)	Depth	30		(b) M	ers 4		(c)		(d)	(d) (a	2,d) Other
	<u>່</u>	17	1000		<u> </u>	12'	ND		$\overline{\mathcal{L}}$			V				
	<u> </u>	┼┼──			GP-2	 	30			+		~	~			
3		++-			<u> </u>	11'	ND			+		V	~			
-4	<u> </u>	┼╀─			GP-3	g'	NÐ			\uparrow		V	く			
	6	$\uparrow\uparrow$			GP-4	8'	ND		\mathbf{T}	1		1	~			
7	7	$\uparrow\uparrow$			68-5	8'	ND			+		~	V			
8	8				GP-6	6'	190					~	~			
9	9				69-6	16'	ND		\prod	T		~	~			
10	10				GP-7	6'	5					\checkmark				
11	11	4	4	4	GP-7	[35	N		\downarrow	1		く	く			
12	·				· · ·											
13	<u>Ч</u>				GP-1											×
14	10				L1											_ <u>+</u>
15	16				LI											*
16					······································											
17	-AIR-1-	+	· · · · · · · · · · · · · · · · · · ·								[]					
18	AIRST				······································						[]					-#*#
19				•												
20	omments:			·							[[
+	+ L morila				* ANALYZO	f G	RSIN	131	26	' v	<i>ג / ו</i>	UYi	opo,	лет	er.	1
res Po	Special Quote #	3100	5674		++ ANALYZO	E AI	R-	m	N	T	0-1	5-	-			
Sam	ples shipped on ice:	Xyes [] no		antes Muse I Les	Lab:	Provide	resu	lts in	MP	CA Re	eport	Tabl	ie 🕅	yes [] no
a M	etals to be analyzed inc	lude Arse	nic, Bariu	n, Cad	nium, Chromium, Lead, Mercury, Seleniu	um, and S	Silver. A	iso ana	lyze i	for P	OR[]y CB's	es (X)	no			
c Ar	nalyze sample constitue	nts per W	isconsin [upon arri	DNR GF	RO and/or DRO Methods; Also perform D	ry Weigh	it Analys	is								l
e Ca	alifornia Modified EPA N	Method 80	15												- 4 -	
		Relinqu	ished by:	0	· · · · · · · · · · · · · · · · · · ·		Receive	d by	- 1		2	,		2		5-6-
1. Sig	g., Date, & Time	D.C	<u>(. /</u>	<u>feo</u>	ne <u>S-6-14</u>	_ Sig., C	Company	: <u>I</u>	4	X	ar	6	<u> </u>	N	t	<u>> 09</u>
	ρ		P	мррне		Print N	vame Be	neath (SIG.:	R.	h.		~		i e .	- 1
	a Date Time 15/2	wh	XII	th-	- 3-6-14 /100	Sia. C	Company	· *	H	Sh	m		5~	6-	147	TW

То	Laboratory:		LAB	SAM	PLE CHAIN OF CUSTO)Y and		UE	ST	FO	R AI	NAL	YSI	ES			
TE	EST AMERICA		TAN PALS	EDR													1
17 (O Elm St., Suito 200-70	sola A	16101100	AE Pr	oj / P.O. # <u>3 D75</u> (La	b - PLE	EASE e	ensu	re th	is Pr	rojec	t# ap	opea	rs on	Lab	Report) 2
Erc	m:	TA S	TOKIŚ	Site Na	ame WASTE MANSGE	NENT	-				1	0	1	0			
291	plied Engineering, Inc.			Site A	ddress 12448 PENNSYLLAMA	AVe .	Samp	pler S	ignatu	ire: ,	<u> </u>	Í.	18	Len	ne		
Wa	yzata, MN 55391-2533	Fax 95	2-939-017	'8 4- +-	SAVAGE MN S	5378	pplied	den	gine	erin	103	a. c		IESTEI		SES.	4
Π	Sample	2014		Soil			Туре		Presr-	#Con	GRO	DRO		VOCs	Me	etals	5
#	Code	Date	Time	or Air	(all samples grab unless noted)	Depth	Soil	Level	(b)	ers	(c)	(c)	BTEX	(d)	(d) (a	a,d) Other	
1	·) ·	5-5	1630	W	<u> GP-1</u>	3			H_	4						<u>+</u>	
2	2		ļ ($\left \right $	GP.C				1			レ				<u>+</u>	7
3	3				GP-3				<u> </u>		ļ	V		~		*	8
4	<u> </u>				GP.Y							V.		~		<u>+</u>	
5	5				<u>GP.5</u>							V		~		*	9
6		¥	-1/	4	GP-7	4			4	\downarrow		レ	レ	~		≯	10
7					•												11
8					·												40
9	1														•		12
10		- A.															13
11																	14
12																	
13																	15
14					· · · · · · · · · · · · · · · · · · ·												16
15											· ·						17
16					· · ·												
17					······································												
18					, <u>, , , , , , , , , , , , , , , , , , </u>												
19					,												
20					· · ·												
	Comments:		L		¥ 17'5 155	 UM:\$	275	 []	 / {	11	101	עדע			1/4/		
-	TEST AMERICA	31005	5074	1		o met	DIE	У	(3	//		ي کر • ب	AN	N [A] [V U C Y S I S		
Sa	moles shinned on ice.	Mives [lno			l ah·	Provide	raci	ılte ir	MP		anort	Tahi	م ۲ ا م		1 no	
La	b: Provide Chromatogra	ams per N		quirem	ents: Nyes [] no	Lab: Pr	rovide Har	d Cop	y of La	b Rep	ort [])	/es X	no	° []]			
b	Type Preservative: M = N Apalyze sample constitue	Alethanol;	H = Hydro		Acid (HCI) Acid (HCI)	Dry Meigh		50 ali	aiyze		503						
d	All water samples to be F California Modified EPA	ILTERED	upon arri	val by L	ABORATORY	Jiy Weigi	n Analysi	3					-				
لمضيا		Relinqu	ished by:	~			Received	d by									ſ
	-	1 P.	N		5-6-14			7	A	ß.		k	>		ع ن	5-6-	Ŋ
1.	Sig., Date, & Time	<u>[]</u>	140	Applied	Lengineering, Inc. 0900	_ Sig., C Print N	Company: Name Ber	: <u>//</u> neath	Sig.:	Ŭů.	~0	14	u	U-		<u>04</u> c	J
	Br.	5/-	R.	Ĩ.	St14 12m	,		ļ	R,	h.	<.	-6-	14	17	10		
2. Prir	Sig., Date, Time $\underline{} \mathcal{O} \mathcal{U}$ at Name Beneath Sig.:		pe	v le		_ Sig., C Print N	Company: Name Ber	neath	<u>sig.:</u>		Ĝ	7	•			<u>7</u> [; /
				\checkmark	John 5- 6-14 1 100		N	Ľ	i and	H	//e	et.	e b	M	hain-tg	19107 [[4]	97
					Page 103 of 12	21	V								5/19/2	2014	

Login Number: 30191 List Number: 1

Creator: Facciani, Melene K

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	False	no GP2 bottles, but gp6. go w/bottles per client
Samples are received within Holding Time.	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Job Number: 310-30191-1

List Source: TestAmerica Cedar Falls

Certification Type: Batch □ Individual Canister Cleaning & Pre-Shipment Leak Test System ID # Cycles Cleaning Date Technician Cani System ID # Cycles Cleaning Date Technician Cani System ID # Cycles Cleaning & Pre-Shipment Leak Test Leak Test Initial Reading Final Reading Final Reading Final Reading Final Reading Port Can ID ("Hg) Cift Initial Reading Final Reading Final Reading Final Reading Final Reading Initial Presit ("Hg) <th< th=""></th<>
Canister Cleaning & Pre-Shipment Leak Test System ID # Cycles Cleaning Date Technician Cani D # Cycles Cleaning & Pre-Shipment Leak Test D # Cycles Cleaning & Pre-Shipment Leak Test Leak Test Leak Test Initial Reading Final Rea Initial Reading Final Rea Can ID ("Hg) Ofference* Gauge ID: G 1 Gauge ID: G 1 Can ID ("Hg) Time: YS 20 1 Tech: YA Tech: YA 2 ("Hg) Difference* Gauge ID: G 1 Teach: YA Tech: YA 2 4 SIVE A C ("C) Temp: 22 3 Get Cileria: Tech: YA Cileria 7
System ID # Cycles Cleaning Date Technician Canit D Initial Gauge ID GL 6L 6L Initial Final Adjusted Initial ² Initial Reading Final Rea Port Can ID ("Hg) ("Hg) ("Hg) Difference ³ Gauge ID: C C Gauge ID: C C 1 DO30 79.7 7.7 7.9 O.4 Date: 3U0 14 Date: 3U2 14 2 7.944 Image: State S
Initial Final Adjusted Initial Initial Reading Final Reading Port Can ID ("Hg) ("Hg) Difference ³ Gauge ID: C C C C C C C C C C
Port Can ID Initial ¹ Final Adjusted Initial ² Initial Reading Final Reading 1 5030 -295 29.7 -29.3 0.4 Date: 3100 14 Date: 3121 4 2 2944 -295 29.7 -29.3 0.4 Date: 3100 14 Date: 3121 4 3 4948 -295 29.7 -29.3 0.4 Date: 3100 14 Date: 3121 4 4 514.5 -29.5 0.4 Date: 3100 14 Date: 3121 4 4 514.5 - -29.3
Initial Final ("Hg) Adjusted Initial ² ("Hg) Initial Reading Final Reading 9 1 3 20 21 -29 0 1
Port Can ID ('Hg) ('Hg) (''Hg) Difference ³ Gauge ID: G I Gauge ID: G I 1 5630 -295 -29.7 -29.3 O. 4 Date: 3 I/2 I/4 Date: 3 I/4 Date: 3 I/4 Date: 3 I/4 Date: 3 I/4 Date:
1 2030 - 24) -29.5 C. Q Date: 310 14 Date: 31214 2 2944 Time: 000 Time: 1520 3 4948 Tech: Vit Tech: Vit 4 5145 BP: 75 ("Hg) BP: 29.3 5 4159 BP: 75 ("Hg) BP: 29.3 5 4159 BP: 75 ("G) Temp: 20.2 6 3360 3Acceptance Criteria: (1) The difference must be less than or equal to + 0.5 8 41447 1 1 11 Time frame was not met, the PM must authorize shipm 10 5412 1 11 time frame was not met, the PM must authorize shipm 10 5412 1 14 time frame was not met, the PM must authorize shipm 10 5412 1 14 time frame was not met, the PM must authorize shipm 11 5129 1 14 time frame was not met, the PM must authorize shipm 11 5129 1 14 time frame was not met, the PM must authorize shipm 12 14818 1 14 time frame was not met, the PM must authorize shipm 12 14818 1 14 time frame was not met, the PM must authorize shipm
2 2 2 1
3 4948 Image: Constraint of the second and the se
4 Difference, subtract the Adjusted Initial Pressure from the Final Pressure (See Acceptance Criteria) 70 calculate Difference, subtract the Adjusted Initial Pressure from the Final Pressure (See Acceptance Criteria) Clean Canister Certification Analysis & Authorization of Release to Inventory est Method: □T015 Routine □ Date Sequence Analyst 1 2 3 2 4 5 4 12 3 10 5 11 5 12 14 15 15 16 16 17 17 16 18 17 19 14 10 54 11 57 12 14 13 15 14 16 15 17 16 17 17 17 18 12 19 12 10 12 11 12 12 12
5 9 15 10 10 3
6 3.50 3Acceptance Criteria: 7 5.57 (1) The difference must be less than or equal to + 0.5 8 4.447 (2) Pressure readings must be at least 24 hours apart. 9 4.453 If time frame was not met, the PM must authorize shipm 10 5.402 If time frame was not met, the PM must authorize shipm 10 5.402 If time frame was not met, the PM must authorize shipm 11 5.402 Signature Date 12 4.818 Signature Date Batch Certification: The reading is taken on the "batch" canister and this value is used as the initial pressure for all canisters in the bat Date To calculate Adjusted Initial Pressure, subtract Final BP from Initial BP and add the result (positive or negative) to the initial pressure result or calculate Difference, subtract the Adjusted Initial Pressure from the Final Pressure (See Acceptance Criteria) Clean Canister Certification Analysis & Authorization of Release to Inventory est Method: ITO15 Routine ITO15 LL INJDEP-LL TO15 Inventory Level Secondary R Clean D Date Sequence Analyst 1 2 3 4 Limited Review Date 3/17/14
7 505 T (1) The difference must be less than or equal to + 0.5 8 444 F (2) Pressure readings must be at least 24 hours apart. 9 4453 If time frame was not met, the PM must authorize shipm 10 5402 PM Authorization: 11 529 Signature Date 12 4818 Signature Date 15 Signature Date Date 16 Clean Canister certification Analysis & Authorization of Release to Inventory Secondary R 17 Clean Canister Certification Analysis & Authorization of Release to Inventory Secondary R 17 Clean Canister Certification Analysis 1 2 3 4 18 U U/U Secondary R Secondary R 17 Can ID Date Sequence Analyst 1 2 3 4 Limited Review Date 12 Signature U/U U/U Signature Signature Signature Signature Date 12 U/U Signature III chail pressure for all canisters in the ball To calculate Difference, subtract the Adjusted Initial Pressure fr
8 UQUT (2) Pressure readings must be at least 24 hours apart. 9 U153 If time frame was not met, the PM must authorize shipm 10 5402 PM Authorization: 11 5129 PM Authorization: 12 U818 U818 12 U818 U818 12 U818 U818 13 Clean Canister and this value is used as the initial pressure for all canisters in the bat To calculate Adjusted Initial Pressure, subtract Final BP from Initial BP and add the result (positive or negative) to the initial pressure result To calculate Difference, subtract the Adjusted Initial Pressure from the Final Pressure (See Acceptance Criteria) Clean Canister Certification Analysis & Authorization of Release to Inventory est Method: TO15 Routine TO15 Routine TO15 LL NJDEP-LL TO15 Inventory Level Secondary R Can ID Date Sequence Analyst 1 2 3 4 Limited Review Date 5/23 3/12/14 65/9
9 9 9 9 9 9 10 5402 If time frame was not met, the PM must authorize shipm 10 5402 PM Authorization: PM Authorization: PM Authorization: 11 512 9
10 SHD2 PM Authorization: 11 Signature Date 12 URIS Signature Date Batch Certification: The reading is taken on the "batch" canister and this value is used as the initial pressure for all canisters in the bat Date To calculate Adjusted Initial Pressure, subtract Final BP from Initial BP and add the result (positive or negative) to the initial pressure result calculate Difference, subtract the Adjusted Initial Pressure from the Final Pressure (See Acceptance Criteria) Clean Canister Certification Analysis & Authorization of Release to Inventory Est Method: ITO15 Routine II TO15 LL INJDEP-LL TO15 Inventory Level Secondary R Gan ID Date Sequence Analyst 3/IZ/IY
11 5/29 Signature Date 12 U8/8 Signature Date Batch Certification: The reading is taken on the "batch" canister and this value is used as the initial pressure for all canisters in the bat Date To calculate Adjusted Initial Pressure, subtract Final BP from Initial BP and add the result (positive or negative) to the initial pressure result calculate Difference, subtract the Adjusted Initial Pressure from the Final Pressure (See Acceptance Criteria) Clean Canister Certification Analysis & Authorization of Release to Inventory est Method: ITO15 Routine II TO15 LL INJDEP-LL TO15 Inventory Level Secondary R Can ID Date Sequence Analyst< 1
12 U Signature Date Batch Certification: The reading is taken on the "batch" canister and this value is used as the initial pressure for all canisters in the bat To calculate Adjusted Initial Pressure, subtract Final BP from Initial BP and add the result (positive or negative) to the initial pressure rest To calculate Adjusted Initial Pressure, subtract Final BP from Initial BP and add the result (positive or negative) to the initial pressure rest To calculate Difference, subtract the Adjusted Initial Pressure from the Final Pressure (See Acceptance Criteria) Clean Canister Certification Analysis & Authorization of Release to Inventory est Method: TO15 Routine TO15 Routine TO15 LL NJDEP-LL TO15 Inventory Level Secondary R Can ID Date Sequence Analyst 1 2 3 4 Limited Review Date Signature Signature Signature Signature Signature Signature
Batch Certification: The reading is taken on the "batch" canister and this value is used as the initial pressure for all canisters in the batch To calculate Adjusted Initial Pressure, subtract Final BP from Initial BP and add the result (positive or negative) to the initial pressure result (posited to the pressure) (positive or negative) to the initial pres
Can IDDateSequenceAnalyst1234LimitedReview Date $\boxed{1.65}$ $\boxed{3/12/14}$ $\boxed{65/9}$ \boxed{UM} $\boxed{1.23}$ $\boxed{3/12/14}$ $\boxed{3/17/14}$
2050 3/12/14 65/9 WAD 5/17/14

Pre Cert	-Shipmer	nt Clean ype:	Canister	Certification	Rep 200 3427 Loca Bottl Sart)-215 tion Air- e Scinn pied 2/2	Storage 12-A- Storage 12-2014 1: 12-2014 1:	er 61. 2 CO AM	203-635	11 11 11 11 11 11 11 11 11 11 11 11 11 11		21 #4 A	510
		7	· V	Canister C	leaning & Pre	-Ship	ment l	Leak T	est	1999 - 1999 -			
	System ID			# Cycles		Cleaning Date Techni			Technic	cian Canister Size			
	- Okn 3/4			1 25	322/14 MT				(6L) 1L 3L				
						Leak Test							
		Initial ¹ Final Adjusted Initial ²			Initial Reading				F	inal I	Reading		
Port	Can ID	("Hg)	("Hg)	("Hg)	Difference	Gauge ID: 613			Gauge ID: (Gι	3		
1	4013	-2918	-30.1	-29.7	0.4	Date	: 3	24	M		Date: 3/2	1.51	14
2	4361				1	Time	× 10	30	,		Time: 15	40	·
3	4100					Tech	$: \mathcal{W}$	k			Tech: VS		
4	3437					BP:	29			("Hg)	BP: 29.)	("H
5	4335					Tem	p 2'	2_		(°C)	Temp: 22	、 、	(°
6	4150					³ Acc	eptanc	e Crite	ria:				`
7	209](1) T	he diffe	erence	must t	e less that	n or equal to	+ 0.5	
8	3538					(2) Pressure readings must be at least 24 hours apart.							
9	3553					If tim	e fram	e was i	not me	t, the PM i	must authoriz	e shi	pment of canist
10	5442				1	PM A	uthoria	zation:					
11	3515				47	1							
12	4907		\mathbb{V}	V		Signa	ture					Da	ite
¹ Batch	Certification:	The reading	g is taken or	n the "batch" caniste	er and this valu	ie is u	sed as	the ini	lial pre	ssure for a	II canisters ir	the	batch.
² To ca	Iculate Adjust	ed Initial Pre	essure, subt	ract Final BP from I	nitial BP and a	idd the	e result	t (positi	ve or r	legative) to	the initial pro	essur	e reading.
³ To cai	Iculate Differe	ence, subtrac	t the Adjust	ted Initial Pressure f	rom the Final	Press	ure (Se	e Acce	eptance	e Criteria)			Ū
			Clean Car	nister Certification	Analysis & A	uthori	zation	of Rel	ease t	o Invento	γ		
Test M	ethod: 🛛 TC	015 Routine	🗆 TO15 L		15		Inv	/entory	/ Leve		Seco	ndar	v Review
Ċ	Can ID	Date		Sequence	Analyst	1	2	3	4	Limited	Review Da	ite	Reviewer
-54	42	\											
31	137-T	325	14 6	0672 (6)	BL						3/25/	lu I	ALL
		- 1		~						·	<u> </u>	7	
													Na dina perintena perintena da matematika de p
												-+	
								- +					
												-+	
						{							

Loc: 200

5

17

Inventory Level 1: Individual Canister Certification Only. Certified clean to RLs listed in laboratory SOP for LLTO15.

Inventory Level 2: Individual or Batch Certification. Certified clean to 0.04 ppbv.

Inventory Level 3: Individual or Batch Certification. Certified clean to 0.20 ppbv.

Inventory Level 4: Individual or Batch Certification. Certified clean following procedures and RLs listed in laboratory SOP NJDEP-LLTO15.

Inventory Level Limited Use: Canisters may only be used for certain projects.

Comments:

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington	Job No.: 200-21306-1						
SDG No.:							
Client Sample ID: 5630	Lab Sample ID: 200-21306-1						
Matrix: Air	Lab File ID: 6519_09.D						
Analysis Method: <u>TO-15</u>	Date Collected: 03/09/2014 00:00						
Sample wt/vol: 1000(mL)	Date Analyzed: 03/11/2014 19:02						
Soil Aliquot Vol:	Dilution Factor: 0.2						
Soil Extract Vol.:	GC Column: <u>RTX-624</u> ID: <u>0.32(mm)</u>						
% Moisture:	Level: (low/med) Low						
Analysis Batch No.: 69389	Units: ppb v/v						

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
115-07-1	Propylene	1.0	U *	1.0	1.0
75-71-8	Dichlorodifluoromethane	0.10	U	0.10	0.10
75-45-6	Freon 22	0.10	U *	0.10	0.10
74-87-3	Chloromethane	0.10	U *	0.10	0.10
106-97-8	n-Butane	0.10	U *	0.10	0.10
75-01-4	Vinyl chloride	0.040	U	0.040	0.040
106-99-0	1,3-Butadiene	0.040	U	0.040	0.040
74-83-9	Bromomethane	0.040	U	0.040	0.040
75-00-3	Chloroethane	0.10	U *	0.10	0.10
593-60-2	Bromoethene(Vinyl Bromide)	0.040	U	0.040	0.040
75-69-4	Trichlorofluoromethane	0.040	U	0.040	0.040
64-17-5	Ethanol	1.0	U *	1.0	1.0
76-13-1	Freon TF	0.040	U	0.040	0.040
75-35-4	1,1-Dichloroethene	0.040	U	0.040	0.040
67-64-1	Acetone	1.0	U *	1.0	1.0
67-63-0	Isopropyl alcohol	1.0	U *	1.0	1.0
75-15-0	Carbon disulfide	0.10	U	0.10	0.10
107-05-1	3-Chloropropene	0.10	U *	0.10	0.10
75-09-2	Methylene Chloride	0.10	U	0.10	0.10
75-65-0	tert-Butyl alcohol	1.0	U	1.0	1.0
1634-04-4	Methyl tert-butyl ether	0.040	U	0.040	0.040
156-60-5	trans-1,2-Dichloroethene	0.040	U	0.040	0.040
110-54-3	n-Hexane	0.040	U	0.040	0.040
75-34-3	1,1-Dichloroethane	0.040	U	0.040	0.040
108-05-4	Vinyl acetate	1.0	U *	1.0	1.0
141-78-6	Ethyl acetate	1.0	U	1.0	1.0
78-93-3	Methyl Ethyl Ketone	0.10	U	0.10	0.10
156-59-2	cis-1,2-Dichloroethene	0.040	U	0.040	0.040
540-59-0	1,2-Dichloroethene, Total	0.040	U	0.040	0.040
67-66-3	Chloroform	0.040	U	0.040	0.040
109-99-9	Tetrahydrofuran	1.0	U *	1.0	1.0
71-55-6	1,1,1-Trichloroethane	0.040	U	0.040	0.040
110-82-7	Cyclohexane	0.040	U	0.040	0.040
56-23-5	Carbon tetrachloride	0.040	U	0.040	0.040
540-84-1	2,2,4-Trimethylpentane	0.040	U	0.040	0.040
71-43-2	Benzene	0.040	U	0.040	0.040

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name:	Job No.: 200-21306-1
SDG No.:	
Client Sample ID: 5630	Lab Sample ID: 200-21306-1
Matrix: Air	Lab File ID: 6519_09.D
Analysis Method: <u>TO-15</u>	Date Collected: 03/09/2014 00:00
Sample wt/vol: 1000(mL)	Date Analyzed: 03/11/2014 19:02
Soil Aliquot Vol:	Dilution Factor: 0.2
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 69389	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
107-06-2	1,2-Dichloroethane	0.040	U	0.040	0.040
142-82-5	n-Heptane	0.040	U	0.040	0.040
79-01-6	Trichloroethene	0.040	U	0.040	0.040
80-62-6	Methyl methacrylate	0.10	U	0.10	0.10
78-87-5	1,2-Dichloropropane	0.040	U	0.040	0.040
123-91-1	1,4-Dioxane	1.0	U	1.0	1.0
75-27-4	Bromodichloromethane	0.040	U	0.040	0.040
10061-01-5	cis-1,3-Dichloropropene	0.040	U	0.040	0.040
108-10-1	methyl isobutyl ketone	0.10	U *	0.10	0.10
108-88-3	Toluene	0.040	U	0.040	0.040
10061-02-6	trans-1,3-Dichloropropene	0.040	U	0.040	0.040
79-00-5	1,1,2-Trichloroethane	0.040	U	0.040	0.040
127-18-4	Tetrachloroethene	0.040	U	0.040	0.040
591-78-6	Methyl Butyl Ketone (2-Hexanone)	0.10	U *	0.10	0.10
124-48-1	Dibromochloromethane	0.040	U	0.040	0.040
106-93-4	1,2-Dibromoethane	0.040	U	0.040	0.040
108-90-7	Chlorobenzene	0.040	U	0.040	0.040
100-41-4	Ethylbenzene	0.040	U	0.040	0.040
179601-23-1	m,p-Xylene	0.10	U	0.10	0.10
95-47-6	Xylene, o-	0.040	U	0.040	0.040
1330-20-7	Xylene (total)	0.040	U	0.040	0.040
100-42-5	Styrene	0.040	U	0.040	0.040
75-25-2	Bromoform	0.040	U	0.040	0.040
98-82-8	Cumene	0.040	U	0.040	0.040
79-34-5	1,1,2,2-Tetrachloroethane	0.040	U	0.040	0.040
103-65-1	n-Propylbenzene	0.040	U	0.040	0.040
622-96-8	4-Ethyltoluene	0.040	U	0.040	0.040
108-67-8	1,3,5-Trimethylbenzene	0.040	U	0.040	0.040
95-49-8	2-Chlorotoluene	0.040	U	0.040	0.040
98-06-6	tert-Butylbenzene	0.040	U	0.040	0.040
95-63-6	1,2,4-Trimethylbenzene	0.040	U	0.040	0.040
135-98-8	sec-Butylbenzene	0.040	U	0.040	0.040
99-87-6	4-Isopropyltoluene	0.040	U	0.040	0.040
541-73-1	1,3-Dichlorobenzene	0.040	U	0.040	0.040
106-46-7	1,4-Dichlorobenzene	0.040	U	0.040	0.040
100-44-7	Benzyl chloride	0.040	U	0.040	0.040
FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington	Job No.: 200-21306-1				
SDG No.:					
Client Sample ID: 5630	Lab Sample ID: 200-21306-1				
Matrix: Air	Lab File ID: 6519_09.D				
Analysis Method: TO-15	Date Collected: 03/09/2014 00:00				
Sample wt/vol: <u>1000(mL)</u>	Date Analyzed: 03/11/2014 19:02				
Soil Aliquot Vol:	Dilution Factor: 0.2				
Soil Extract Vol.:	GC Column: RTX-624 ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 69389	Units: ppb v/v				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
104-51-8	n-Butylbenzene	0.040	U	0.040	0.040
95-50-1	1,2-Dichlorobenzene	0.040	U	0.040	0.040
120-82-1	1,2,4-Trichlorobenzene	0.10	U	0.10	0.10
87-68-3	Hexachlorobutadiene	0.040	U	0.040	0.040
91-20-3	Naphthalene	0.10	U ^ *	0.10	0.10

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington	Job No.: 200-21306-1				
SDG No.:					
Client Sample ID: <u>5630</u>	Lab Sample ID: 200-21306-1				
Matrix: Air	Lab File ID: <u>6519_</u> 09.D				
Analysis Method: TO-15	Date Collected: 03/09/2014 00:00				
Sample wt/vol: 1000(mL)	Date Analyzed: 03/11/2014 19:02				
Soil Aliquot Vol:	Dilution Factor: 0.2				
Soil Extract Vol.:	GC Column: <u>RTX-624</u> ID: 0.32(mm)				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 69389	Units: ppm v/v				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
76-14-2	1,2-Dichlorotetrafluoroethane	0.000040	U	0.000040	0.000040

TestAmerica Burlington Target Compound Quantitation Report

Data File: Lims ID: Client ID: Sample Type:	\\BTV-LIMS1\ChromData\CHC.i\2014 200-21306-A-1 5630 Client	40311-6519.b\6519_ Lab Sample ID:	09.D 200-21306-	1	
Inject. Date: Purge Vol: Sample Info: Misc. Info.: Operator ID:	11-Mar-2014 19:02:30 200.000 mL 200-0006519-009 21306-01 wrd	ALS Bottle#: Dil. Factor: Instrument ID:	8 0.2000 CHC.i	Worklist Smp#:	9
Method: Limit Group: Last Update: Integrator: Quant Method: Last ICal File:	\\BTV-LIMS1\ChromData\CHC.i\2014 AI_T015_ICAL 12-Mar-2014 07:14:38 RTE Internal/External Standard \\BTV-LIMS1\ChromData\CHC.i\2014	40311-6519.b\TO15_ Calib Date: ID Type: Quant By: 40103-5623.b\cma01	LLNJ_TO3_ 03-Jan-201 Deconvolut Initial Calibi 10.D	_CHC.m 4 15:48:30 ion ID ration	
Column 1 : Process Host:	RTX-624 (0.32 mm) XAWRK014		Det: MS SC	CAN	

Report Date: 12-Mar-2014 09:31:08		Chrom Revision: 2.2 28-Feb-2014 15:12:04							
TestAmerica Burlington Target Compound Quantitation Report									2
Data File:\\BTV-LIMS1\ChroLims ID:200-21306-A-1	C.i\2014	\20140311-6519.b\6519_09.D Lab Sample ID: 200-21306-1							
Client ID: 5630 Sample Type: Client	2.20			tlo#	0	\\(erkligt)	Crean #		4
Inject. Date: In-Mai-2014 19:0. Purge Vol: 200.000 mL Sample Info: 200-0006519-009	2:30		Dil. Fact	or:	8 0.200	vvorkiist s DO	Sinp#: 9		5
Misc. Info.: 21306-01 Operator ID: wrd			Instrume	ent ID:	СНС	.i			
Method: \\BTV-LIMS1\Chro Limit Group: AI_TO15_ICAL	mData\CH	C.i\2014	40311-65	19.b\TO	15_LLNJ	I_TO3_CHC.m			8
Last Update: 12-Mar-2014 07:14 Integrator: RTE	4:38		Calib Da ID Type:	ate:	03-Ja Deco	an-2014 15:48:30 prvolution ID)		9
Last ICal File: \\BTV-LIMS1\Chro	mData\CH	C.i\2014	Quant B 40103-56	y: 23.b\cma	a010.D	Calibration			
Column 1 : RTX-624 (0.32 mi Process Host: XAWRK014	m)				Det:	MS SCAN			
First Level Reviewer: desjardinsb			Date:		12-M	lar-2014 09:31:0	8		
Compound	Sig	RT	ADJ RT	DLT RT	Q	Response	On-Col Amt ppb v/v	Flags	13
1 Propene	41		3.186						
2 Dichlorodifluoromethane	85		3.261						
6 Chlorodifluoromethane	51		3.325						
7 1,2-DICHIOIO-1,1,2,2-letraliuoro 8 Chloromethane	85 50		3.555						
9 Butane	43		3.923						10
10 Vinyl chloride	62		3.976						17
11 Butadiene	54		4.056						
12 Bromomethane	94		4.798						
13 Chloroethane	64		5.054						
15 Vinyl bromide	106		5.471						
16 Irichlorofluoromethane	101		5.5//						
19 EINANOI 22 1 1 2 Trichloro 1 2 2 trifluoroo	45 101		0.234 6 710						
24 1 1-Dichloroethene	96		6 762						
25 Acetone	43		7.040						
26 Carbon disulfide	76		7.152						
27 Isopropyl alcohol	45		7.365						
29 3-Chloro-1-propene	41		7.595						
31 Methylene Chloride	49		7.904						
32 2-Methyl-2-propanol	59		8.166						
33 Methyl tert-butyl ether	/3		8.320						
36 Hevane	57		0.347 8 7/2						
37 1.1-Dichloroethane	63		9.270						
38 Vinyl acetate	43		9.361						
S 41 1,2-Dichloroethene, Total	61		10.200						
39 cis-1,2-Dichloroethene	96		10.434						
40 2-Butanone (MEK)	72		10.509						
42 Ethyl acetate	88		10.551						
* 43 Chlorobromomethane	128	10.914	10.920	-0.006	69	277354	10.0		

Report Date: 12-Mar-2014 09:31:08

Chrom Revision: 2.2 28-Feb-2014 15:12:04

Data File	e: \\	BTV-LIMS1\C	ChromData\CF	IC.i\2014	<u>0311-65</u>	19.b\651	9_09.D			
Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q		Respo	onse	On- p	Col Amt pb v/v	Flags
44 Tetra	hydrofuran		42		10.936					
45 Chlor	roform		83		11.064					
46 Cyclo	bhexane		84		11.293					
47 1,1,1	-Trichloroetha	ane	97		11.336					
48 Carbo	on tetrachlori	de	117		11.592					
51 Isooc	tane		57		12.046					
50 Benz	ene		78		12.094					
52 1,2-D	ichloroethan	е	62		12.296					
53 n-Hej	ptane		43		12.462					
* 54 1,4-C	Difluorobenze	ene	114	12.980	12.990	-0.010	93	1431313	10.0	
56 Trich	loroethene		95		13.471					
58 1,2-D	Dichloropropa	ne	63		14.068					
59 Meth	yl methacryla	ate	69		14.250					
60 1,4-D	Dioxane		88		14.319					
61 Dibro	momethane		174		14.335					
62 Dichl	orobromome	thane	83		14.639					
64 cis-1,	,3-Dichloropr	opene	75		15.600					
65 4-Me	thyl-2-pentar	none (MIBK)	43		15.904					
66 Tolue	ene		92		16.198					
70 trans	-1,3-Dichloro	propene	75		16.806					
71 1,1,2	-Trichloroeth	ane	83		17.190					
72 Tetra	chloroethene	è.	166		17.281					
73 2-He	xanone		43		17.649					
74 Chlor	rodibromome	thane	129		17.959					
75 Ethyl	ene Dibromic	de	107		18.236					
* 76 Chloi	robenzene-d!	5	117	19.128	19.128	0.0	83	1289407	10.0	
77 Chlor	robenzene		112		19.192					
78 Ethyl	benzene		91		19.336					
81 m-Xy	lene & p-Xyle	ene	106		19.592					
S 82 Xyle	enes, Total		106		20.100					
83 o-Xyl	ene		106		20.398					
84 Styre	ene		104		20.446					
85 Brom	oform		173		20.846					
86 Isopr	opylbenzene		105		21.033					
\$ 87 4-Bro	omofluorober	nzene	95	21.380	21.385	-0.005	91	934264	NC	
88 1,1,2	,2-Tetrachlor	oethane	83		21.652					
90 N-Pro	opylbenzene		91		21./16					
91 4-Eth	iyltoluene		105		21.892					
92 2-Chl	lorotoluene		91		21.908					
94 1,3,5	-Trimethylbei	nzene	105		21.994					
96 tert-B	Butylbenzene		119		22.469					
97 1,2,4	-Trimethylbei	nzene	105		22.559					
98 sec-E	Butylbenzene		105		22.778					
99 4-Iso	propyltoluene	9	119		22.976					
100 1,3-[Dichlorobenz	ene	146		23.013					
101 1,4-[Dichlorobenz	ene	146		23.152					
102 Benz	zyl chloride		91		23.360					
103 n-Bu	Itylbenzene		91		23.568					
105 1,2-[Dichlorobenz	ene	146		23.707					
107 1,2,4	4-Trichlorobe	nzene	180		26.338					
108 Hexa	achlorobutadi	iene	225		26.525					
109 Napł	hthalene		128		26.866					

WorkSheet Quantitation Report

Sig	RT	Lower RT	Upper RT	Q	Response	On-Col Amt ppb v/v	Ratio Range	Ratio	Flags
-----	----	-------------	-------------	---	----------	-----------------------	-------------	-------	-------

Report Date: 12-I	Mar-2014 09:31:08		Chrom Revision:	2.2 28-Feb-2	2014 15:12	2:04			1
Data File:	I estAr \\BTV-LIMS1\ChromData	nerica Burli a\CHC.i\201	ngton 40311-6519.b\651	19 09 D					
Injection Date:	11-Mar-2014 19:02:30		Instrument ID:	CHC.i			Operator ID:	wrd	
Lims ID:	200-21306-A-1		Lab Sample ID:	200-2130	6-1		Worklist Smp#:	9	
Client ID:	5630								
Purge Vol:	200.000 mL		Dil. Factor:	0.2000			ALS Bottle#:	8	
Method:	TO15_LLNJ_TO3_CHC		Limit Group:	AI_TO15_					
Column: RTX-62	4 (0.32 mm)		6510	Y Sca	ling: Meth	od Defined: S	cale to the Nth Large	est l'arget: 1	5
²¹			0017_		iroj. i otal	85)			
20-						21.3			6
10					+	Je()			
19					.128	uzei			· · · · · · · · · · · · · · · · · · ·
18-					9(16	ope			8
17-					e-dE	lluor			
					Izen	Ö			9
16			6 80		ober	Br			
15-			(12.		hlore	\$ 7			10
14-			ene		Ö *.				1.4
			Jenz						
			orok						12
00 12			Diflu						
×11-		(606	1,4-1						13
≻ ^{``}		10.	*						
10-		ane(14
9		Jeth							15
		nom							
0		pprol							16
7		lord							
6		ن *							17
5									
4									
3									
2									
1 1									
0	^ ^ ^		/[^					
3.0 5.0	7.0 9.0	11.0	13.0 15.0	17.0 Min	19.0	21.0	23.0 25.0	27.0 29.0	31.0

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington	Job No.: 200-21510-1
SDG No.:	
Client Sample ID: <u>3437</u>	Lab Sample ID: 200-21510-4
Matrix: Air	Lab File ID: <u>6672_005.D</u>
Analysis Method: <u>TO-15</u>	Date Collected: 03/22/2014 00:00
Sample wt/vol: 1000(mL)	Date Analyzed: 03/24/2014 14:34
Soil Aliquot Vol:	Dilution Factor: 0.2
Soil Extract Vol.:	GC Column: <u>RTX-624</u> ID: <u>0.32(mm)</u>
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 69811	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
115-07-1	Propylene	1.0	U *	1.0	1.0
75-71-8	Dichlorodifluoromethane	0.10	U	0.10	0.10
75-45-6	Freon 22	0.10	U	0.10	0.10
76-14-2	1,2-Dichlorotetrafluoroethane	0.040	U	0.040	0.040
74-87-3	Chloromethane	0.10	U	0.10	0.10
106-97-8	n-Butane	0.10	U	0.10	0.10
75-01-4	Vinyl chloride	0.040	U	0.040	0.040
106-99-0	1,3-Butadiene	0.040	U	0.040	0.040
74-83-9	Bromomethane	0.040	U	0.040	0.040
75-00-3	Chloroethane	0.10	U	0.10	0.10
593-60-2	Bromoethene(Vinyl Bromide)	0.040	U	0.040	0.040
75-69-4	Trichlorofluoromethane	0.040	U	0.040	0.040
64-17-5	Ethanol	1.0	U	1.0	1.0
76-13-1	Freon TF	0.040	U	0.040	0.040
75-35-4	1,1-Dichloroethene	0.040	U	0.040	0.040
67-64-1	Acetone	1.0	U	1.0	1.0
67-63-0	Isopropyl alcohol	1.0	U	1.0	1.0
75-15-0	Carbon disulfide	0.10	U	0.10	0.10
107-05-1	3-Chloropropene	0.10	U	0.10	0.10
75-09-2	Methylene Chloride	0.10	U	0.10	0.10
75-65-0	tert-Butyl alcohol	1.0	U	1.0	1.0
1634-04-4	Methyl tert-butyl ether	0.040	U	0.040	0.040
156-60-5	trans-1,2-Dichloroethene	0.040	U	0.040	0.040
110-54-3	n-Hexane	0.040	U	0.040	0.040
75-34-3	1,1-Dichloroethane	0.040	U	0.040	0.040
108-05-4	Vinyl acetate	1.0	U	1.0	1.0
141-78-6	Ethyl acetate	1.0	U	1.0	1.0
78-93-3	Methyl Ethyl Ketone	0.10	U	0.10	0.10
156-59-2	cis-1,2-Dichloroethene	0.040	U	0.040	0.040
540-59-0	1,2-Dichloroethene, Total	0.040	U	0.040	0.040
67-66-3	Chloroform	0.040	U	0.040	0.040
109-99-9	Tetrahydrofuran	1.0	U	1.0	1.0
71-55-6	1,1,1-Trichloroethane	0.040	U	0.040	0.040
110-82-7	Cyclohexane	0.040	U	0.040	0.040
56-23-5	Carbon tetrachloride	0.040	U	0.040	0.040
540-84-1	2,2,4-Trimethylpentane	0.040	U	0.040	0.040

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington	Job No.: 200-21510-1				
SDG No.:					
Client Sample ID: 3437	Lab Sample ID: 200-21510-4				
Matrix: Air	Lab File ID: <u>6672_005.D</u>				
Analysis Method: <u>TO-15</u>	Date Collected: 03/22/2014 00:00				
Sample wt/vol: 1000(mL)	Date Analyzed: 03/24/2014 14:34				
Soil Aliquot Vol:	Dilution Factor: 0.2				
Soil Extract Vol.:	GC Column: <u>RTX-624</u> ID: <u>0.32(mm)</u>				
% Moisture:	Level: (low/med) Low				
Analysis Batch No.: 69811	Units: ppb v/v				

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
71-43-2	Benzene	0.040	U	0.040	0.040
107-06-2	1,2-Dichloroethane	0.040	U	0.040	0.040
142-82-5	n-Heptane	0.040	U	0.040	0.040
79-01-6	Trichloroethene	0.040	U	0.040	0.040
80-62-6	Methyl methacrylate	0.10	U	0.10	0.10
78-87-5	1,2-Dichloropropane	0.040	U	0.040	0.040
123-91-1	1,4-Dioxane	1.0	U	1.0	1.0
75-27-4	Bromodichloromethane	0.040	U	0.040	0.040
10061-01-5	cis-1,3-Dichloropropene	0.040	U	0.040	0.040
108-10-1	methyl isobutyl ketone	0.10	U	0.10	0.10
108-88-3	Toluene	0.040	U	0.040	0.040
10061-02-6	trans-1,3-Dichloropropene	0.040	U	0.040	0.040
79-00-5	1,1,2-Trichloroethane	0.040	U	0.040	0.040
127-18-4	Tetrachloroethene	0.040	U	0.040	0.040
591-78-6	Methyl Butyl Ketone (2-Hexanone)	0.10	U	0.10	0.10
124-48-1	Dibromochloromethane	0.040	U	0.040	0.040
106-93-4	1,2-Dibromoethane	0.040	U	0.040	0.040
108-90-7	Chlorobenzene	0.040	U	0.040	0.040
100-41-4	Ethylbenzene	0.040	U	0.040	0.040
179601-23-1	m,p-Xylene	0.10	U	0.10	0.10
95-47-6	Xylene, o-	0.040	U	0.040	0.040
1330-20-7	Xylene (total)	0.040	U	0.040	0.040
100-42-5	Styrene	0.040	U	0.040	0.040
75-25-2	Bromoform	0.040	U	0.040	0.040
98-82-8	Cumene	0.040	U	0.040	0.040
79-34-5	1,1,2,2-Tetrachloroethane	0.040	U	0.040	0.040
103-65-1	n-Propylbenzene	0.040	U	0.040	0.040
622-96-8	4-Ethyltoluene	0.040	U	0.040	0.040
108-67-8	1,3,5-Trimethylbenzene	0.040	U	0.040	0.040
95-49-8	2-Chlorotoluene	0.040	U	0.040	0.040
98-06-6	tert-Butylbenzene	0.040	U	0.040	0.040
95-63-6	1,2,4-Trimethylbenzene	0.040	U	0.040	0.040
135-98-8	sec-Butylbenzene	0.040	U	0.040	0.040
99-87-6	4-Isopropyltoluene	0.040	U	0.040	0.040
541-73-1	1,3-Dichlorobenzene	0.040	U	0.040	0.040
106-46-7	1,4-Dichlorobenzene	0.040	U	0.040	0.040

FORM I AIR - GC/MS VOA ORGANICS ANALYSIS DATA SHEET

Lab Name: TestAmerica Burlington	Job No.: 200-21510-1
SDG No.:	
Client Sample ID: 3437	Lab Sample ID: 200-21510-4
Matrix: Air	Lab File ID: <u>6672_005.D</u>
Analysis Method: TO-15	Date Collected: 03/22/2014 00:00
Sample wt/vol: 1000(mL)	Date Analyzed: 03/24/2014 14:34
Soil Aliquot Vol:	Dilution Factor: 0.2
Soil Extract Vol.:	GC Column: <u>RTX-624</u> ID: 0.32(mm)
% Moisture:	Level: (low/med) Low
Analysis Batch No.: 69811	Units: ppb v/v

CAS NO.	COMPOUND NAME	RESULT	Q	RL	RL
100-44-7	Benzyl chloride	0.040	U	0.040	0.040
104-51-8	n-Butylbenzene	0.040	U	0.040	0.040
95-50-1	1,2-Dichlorobenzene	0.040	U	0.040	0.040
120-82-1	1,2,4-Trichlorobenzene	0.10	U	0.10	0.10
87-68-3	Hexachlorobutadiene	0.040	U	0.040	0.040
91-20-3	Naphthalene	0.10	U	0.10	0.10

TestAmerica Burlington Target Compound Quantitation Report

Data File: Lims ID: Client ID: Sample Type:	\\BTV-LIMS1\ChromData\CHG.i\201- 200-21510-A-4 3437 Client	40324-6672.b\6672_ Lab Sample ID:	_005.D 200-21510	-4	
Inject. Date: Purge Vol: Sample Info: Misc. Info.:	24-Mar-2014 14:34:30 200.000 mL 200-0006672-005 200-21510-a-4	ALS Bottle#: Dil. Factor:	4 0.2000	Worklist Smp#:	5
Operator ID:	WRD	Instrument ID:	CHG.i		
Method: Limit Group:	\\BTV-LIMS1\ChromData\CHG.i\2014 AI TO15 ICAL	40324-6672.b\TO15_	_LLNJ_TO3	_G.m	
Last Update:	25-Mar-2014 04:46:48	Calib Date:	20-Feb-201	4 21:54:30	
Integrator:	RTE	ID Type:	Deconvolut	ion ID	
Quant Method: Last ICal File:	Internal/External Standard \\BTV-LIMS1\ChromData\CHG.i\2014	Quant By: 40220-6246.b\6246_	Initial Calib 013.D	ration	
Column 1 : Process Host:	RTX-624 (0.32 mm) XAWRK003		Det: MS SC	CAN	

	Report Date: 25-M	ar-2014 08:00:29			Chrom F	Revision:	2.2 12-	Mar-2014 11:19:	24		
		Tes Target Co	tAmerio mpouno	ca Burlin d Quanti	igton tation Re	eport					2
	Data File: Lims ID: Client ID:	\\BTV-LIMS1\ChromD 200-21510-A-4 3437	ata\C⊦	IG.i\2014	40324-66 Lab San	72.b\667 nple ID:	2_005.E 200-) 21510-4			
	Sample Type: Inject. Date: Purge Vol: Sample Info: Misc. Info.: Operator ID:	Client 24-Mar-2014 14:34:30 200.000 mL 200-0006672-005 200-21510-a-4 WRD)		ALS Bot Dil. Fact	tle#: or: ent ID:	4 0.20 СНС	Worklist 00	Smp#: 5		4 5 6 7
	Method:	\\BTV-LIMS1\ChromD	ata\C⊦	IG.i\2014	40324-66	72.b\TO	15_LLN.	J_TO3_G.m			0
	Last Update: Integrator: Quant Method: Last ICal File:	25-Mar-2014 04:46:48 RTE Internal/External Stan \\BTV-LIMS1\ChromD	3 dard vata\CF	IG.i\2014	Calib Da ID Type Quant B 40220-62	ate: : y: 246.b\624	20-F Deco Initia 6_013.[eb-2014 21:54:3 provolution ID Il Calibration D	0		9 10
	Column 1 : Process Host:	RTX-624 (0.32 mm) XAWRK003					Det:	MS SCAN			
	First Level Review	er: lyonsb			Date:		25-N	1ar-2014 08:00:2	8		
	Com	npound	Sig	RT	ADJ RT	DLT RT	Q	Response	On-Col Amt ppb v/v	Flags	13
	1 Propene 2 Dichlorodifluorom 6 Chlorodifluorom 7 1,2-Dichloro-1,1 8 Chloromethane 9 Butane 10 Vinyl chloride 11 Butadiene 12 Bromomethane 14 Chloroethane 14 Chloroethane 16 Vinyl bromide 17 Trichlorofluoror 19 Ethanol 23 1,1,2-Trichloro- 24 1,1-Dichloroeth 25 Acetone 26 Carbon disulfide 27 Isopropyl alcoh 29 3-Chloro-1-prop 31 Methylene Chlor 32 2-Methyl-2-prop 33 Methyl tert-buty 34 trans-1,2-Dichlor 36 Hexane	methane ethane ,2,2-tetrafluoro nethane 1,2,2-trifluoroe ene ol pene pride panol d ether proethene	41 85 51 85 50 43 62 54 94 64 106 101 45 101 96 43 76 45 41 49 59 73 61 57	8.461	3.058 3.133 3.181 3.405 3.539 3.753 3.791 3.876 4.572 4.818 5.219 5.342 5.909 6.460 6.481 6.701 6.867 7.027 7.284 7.573 7.824 8.022 8.038 8.477	-0.016	54	1388	0.0304		14 15 16 17
C *	37 1,1-Dichloroeth 38 Vinyl acetate 39 cis-1,2-Dichloro 40 2-Butanone (MI 42 Ethyl acetate 5 41 1,2-Dichloroeth	ane pethene EK) hene, Total	63 43 96 72 88 61	10 524	8.921 9.023 10.060 10.103 10.183 10.200	0.010	70	544521	10.0		
	43 CHIOLODIOLIOM	endre	128	10.520	10.531	-0.005	10	0440ZT	10.0		

 Report Date: 25-Mar-2014 08:00:29
 Chrom Revision: 2.2
 12-Mar-2014 11:19:24

 Data File:
 \\BTV-LIMS1\ChromData\CHG.i\20140324-6672.b\6672_005.D

Duta Tito			niombatatoi	10.11201	100210	072.01007	2_000.L	, 		
Sig	RT (min.)	Adj RT (min.)	Dlt RT (min.)	Q		Respo	onse	C	Dn-Col Amt ppb v/v	Flags
11 Totra	bydrofuran		12		10 553					
45 Chlor	oform		83		10.555					
46 Cyclo	hexane		84		10.070					
47 1.1.1-	Trichloroetha	ine	97		10.981					
48 Carbo	on tetrachloric	de	117		11.248					
50 Benze	ene		78	11.708	11.714	-0.006	1	455	0.002282	
51 Isooc	tane		57		11.740					
52 1,2-D	ichloroethane	9	62		11.879					
53 n-Hep	otane		43	12.147	12.152	-0.005	9	1145	0.0129	
* 54 1,4-D	lifluorobenzer	ne	114	12.591	12.591	0.0	92	2988704	10.0	
56 Trichl	oroethene		95		13.083					
58 1,2-D	ichloropropar	ne	63		13.645					
59 Methy	yl methacrylat	te	69		13.859					
60 1,4-D	ioxane		88		13.891					
61 Dibro	momethane		174		13.907					
62 Dichlo	orobromomet	hane	83		14.217					
64 cis-1,	3-Dichloropro	pene	75		15.202					
65 4-Met	thyl-2-pentance	one (MIBK)	43	15 000	15.506	0.005	4 5	(01	0 000 400	
66 I Olue	ne 1 2 Disklass		92	15.822	15.827	-0.005	15	621	0.003482	
70 trans-	Trichleroothe	propene	/5		16.411					
70 Totro		ine	83		16.785					
72 Tella			100		10.940					
73 Z-He)	odibromomot	hano	43		17.201					
75 Ethyla	oubromomet		123		17.501					
* 76 Chlor	obenzene-d5		107	18 750	18 750	0.0	81	2/13/328	10.0	
77 Chlor	obenzene		117	10.757	18 823	0.0	01	2434320	10.0	
78 Ethyl	benzene		91	18 984	18 989	-0.005	1	1467	0 003960	
80 m-Xv	lene & p-Xvle	ne	106	19.240	19.246	-0.006	1	964	0.006365	
83 o-Xvl	ene		106	20.075	20.075	0.0	1	350	0.002214	
S 82 Xyle	nes, Total		106				0		0.008579	
84 Styre	ne		104		20.123					
85 Brom	oform		173		20.508					
86 Isopro	opylbenzene		105		20.744					
\$ 87 4-Bro	omofluoroben	izene	95	21.091	21.092	-0.001	98	889286	NC	
88 1,1,2,	2-Tetrachloro	bethane	83		21.343					
90 N-Pro	pylbenzene		91		21.450					
92 2-Chl	orotoluene		91		21.632					
91 4-Eth	yltoluene		105		21.637					
94 1,3,5-	Trimethylben	izene	105		21.739					
96 tert-B	utylbenzene		119		22.220					
97 1,2,4-	Trimethylben	izene	105		22.311					
98 sec-B	Butylbenzene		105		22.547					
99 4-Isop	oropyltoluene		119		22.745					
100 1,3-E	Dichlorobenze	ene	146		22.761					
101 1,4-D	Dichlorobenze	ene	146		22.894					
102 Benz	yl chloride		91		23.087					
103 n-Bu	tylbenzene		91		23.322					
105 1,2-D	Dichlorobenze	ene	146		23.429					
107 1,2,4	-Trichloroben	izene	180		25.992					
108 Hexa	achlorobutadie	ene	225		26.206					
109 Naph	nthalene		128		26.479					

WorkSheet Quantitation Report

Sig	RT	Lower RT	Upper RT	Q	Response	On-Col Amt ppb v/v	Ratio Range	Ratio	Flags
-----	----	-------------	-------------	---	----------	-----------------------	-------------	-------	-------

Report Date:	25-Mar-2014 08:00:2	29		Chrom Re	vision: 2	.2 12-Mar-201	4 11:19:2	4						1
Data File:		TestAme ChromData\C	rica Burli HG i\201	ngton 140324-6672	2 h\6672	005 D								
Injection Date	e: 24-Mar-2014	14:34:30	.110.11201	Instrument	t ID:	CHG.i			Operator ID:		WRD			
Lims ID:	200-21510-A-	4		Lab Samp	le ID:	200-21510-4	ļ		Worklist Smp	o#:	5			
Client ID:	3437													
Purge Vol:	200.000 mL			Dil. Factor		0.2000			ALS Bottle#:		4			
Method:	TO15_LLNJ_	103_G		Limit Grou	ip:	AI_TO15_IC	AL a. Mathad	Dofined. Co	ala ta tha Nith I		Torrat. 1			4
	624 (0.32 mm)				6672 005	Y Scaling	g: ivietnou	Defined: Sc		Larges	t Target: T			5
22				61)	0072_000		26	91)						
21-				12.5			18.7	21.0						
20-				je (d5(.	ne(2						
20				nzei			sue-c	nzei						
19				ope			enze	obe						8
18			331)	lluor			lobe	lluor						
17-			10.5	4-Di			Chic	omo						9
1/-			ine(*			*	4-Br						
16			etha					\$						
15			- E C C C C C C C C C C C C C C C C C C											
14-			bron											
<u>8</u> 12			loro											
000			ਦ *											
Σ^{12}														13
≻ ₁₁ -														
10-														
9														
8														
7														
<u></u>														17
0														
5														
4														
3														
									a second and a second second second second second second	****	<u></u>	*****		
1									and the state of t					
0	<u>11.04.101.01.01.01.01.01.01.01.01.01.01.01.01</u>	<u> - - - </u>			<u>1111.10.,1011.</u>	<u>LI. LI UU. ULU ANU. L</u> ANU. LAN	╨╨ <u>╴╺</u> ╙╌┞╸╹	May		1	- I			
2.0	4.0 6.0	8.0	10.0	12.0	14.0	16.0 Min	18.0	20.0	22.0 2	24.0	26.0	28.0	30.0	

Appendix G

Methodologies and Procedures, Including Field Screening of Soil, Other Field Analyses, Soil Boring, Soil Sampling, Soil Gas Air Sampling, Well Installation, and Water Sampling

The following methods were used to conduct this investigation:

Field Screening Methods

Field screening methods used to distinguish impacted soil from non-impacted soil included visual identification, any obvious odors, and use of a Photoionization Detector (PID)

PID Soil Analysis

PID analysis included use of a Photoionization Detector (PID) manufactured by HNU Systems, Inc. (Model PI-101 with a 10.2 eV lamp, calibrated to a benzene standard). Soil samples were collected from the Geoprobe acetate liner into a clean, sealable plastic bag. The bag was sealed and agitated. Vapor headspace readings were obtained by inserting the PID probe through the seal, extracting a vapor sample, and reading the meter level indicator.

Push-Probe Soil Borings

Push-probe technology uses small-diameter sampling rods which are driven through the soil to retrieve soil or water samples from a desired depth.

The push-probe equipment was operated by Stevens Drilling, Subcontracted to NCG Drilling, to collect soil samples at this location. The equipment was a Geoprobe 6600 track-mounted pneumatic percussion probe rod driver and hydraulic pulling system.

Soil samples were collected by driving the sealed core-sampler with a clean acetate liner to the desired depth. Upon removal from the bore hole, the liner containing the sample was retrieved from the core sampler.

Groundwater samples were collected from the temporary monitoring wells created by PVC well points pushed to the bottom of the boring. Samples were collected with 1/4" polyethylene tubing and a ball check valve. Water samples were immediately placed into sample vials and placed on ice for follow-up laboratory analyses.

The temporary wells were sealed in accordance with Minnesota Rules, Dept of Health, Wells and Borings, Chapter 4725.3850.

Method used to Measure Water Levels in Borings

The method used to measure water levels in borings was use of an electronic water level guage provided by the soil boring contractor.

Soil Gas

Soil gas samples were collected by driving the hollow threaded probe rods with a sacrificial drive point to the desired depth. The rods were then partially extracted, dislodging the sacrificial point, and exposing the soil interval of approximately one foot. The rods were air-sealed to the ground with wet bentonite, and PVC tubing (3/8" OD) was threaded to the bottom of the rod. The air inside the tubing was purged with a 60 cc syringe several times. The tubing was then connected to the Summa sampling canister and the sample collected. The Summa canisters were provided to the laboratory for Analysis by EPA method TO-15 (full scan) for compounds in the Minnesota Soil Gas List and THC.

Sample Handling Methods

Soil sample collection followed MPCA LUST Cleanup Program Guidance documents. Samples were collected using clean, latex gloves. GRO and BTEX samples were quickly measured and placed into sampling jars, preserved with methanol provided by the Laboratory. DRO samples were weighed and placed into sampling jars. All samples were immediately put on ice and kept cold until delivered to the laboratory with a chain of custody for analysis.

Samples were analyzed by the fixed-base laboratory in accordance with laboratory-specified guidelines and Wisconsin modified EPA methods for gasoline range organic (GRO) and/or diesel range organic (DRO) methods as applicable.

Laboratory Sample Analysis, Fixed-Base Laboratory

Laboratory analyses were conducted on selected samples. Samples were analyzed in accordance with MPCA guidelines at a state certified laboratory, for the constituents identified on the chain of custody. According to the laboratory, all analyses were performed using Wisconsin modified EPA methods or other EPA methods.

Appendix I

Grain Size Analysis, Hydraulic Conductivity Measurements, Other Calculations, and Lab Reports

Hydraulic Conductivity (K)

To calculate the hydraulic conductivity of the sediments, the Hazen method (Hazen 1911) was used. The Hazen approximation is:

 $K = C(d10)^2$

where

- K is the hydraulic conductivity (cm/sec)
- d10 is the effective grain size (cm)
- C is a coefficient based on the following table:

Very fine sand, poorly sorted	40-80
Fine sand with appreciable fines	40-80
Medium sand, well sorted	80-120
Coarse sand, poorly sorted	80-120
Coarse sand, well sorted, clean	120-150

The effective grain size (d10) was determined graphically from the grain size analysis. A graph was constructed for each sample of percent finer by mass versus grain size using a logarithmic scale for the sizes. The graph was used to determine the effective grain size, the final ten percent of material that passes through the sieves.

For this site: based on inspection of the grain size analysis graph, d10 = 0.0183 cm based on an estimation from the above table, C is determined to be: 50 K = C(d10)² = 50 x 0.0183² =0.0167 cm/sec multiply by 18,288 to get ft/day = **306 ft/day**

Aquifer Transmistivity (T)

 $T_{High} = Kb \text{ (estimated thickest aquifer dimension)}$ =K x b = 306 x 14 = **4,287 ft²/day**

Effective Porosity (n) (or Pe)

TABLE 3.1 Range of Porosity Values						
Soil Type	Porosity, p_t					
Unconsolidated deposits						
Gravel	0.25 - 0.40					
Sand	0.25 - 0.50					
Silt	0.35 - 0.50					
Clay	0.40 - 0.70					
Rocks						
Fractured basalt	0.05 - 0.50					
Karst limestone	0.05 - 0.50					
Sandstone	0.05 - 0.30					
Limestone, dolomite	0.00 - 0.20					
Shale	0.00 - 0.10					
Fractured crystalline rock	0.00 - 0.10					
Dense crystalline rock	0.00 - 0.05					
Source: Freeze and Cherry (1979).						

TAB	BLE 3.2 Represe	entative Porosity	v Val	ues	
	Total P	Total Porosity, p_t			prosity, ^a p_e
Material	Range	Range Arithmetic Mean		Range	Arithmetic Mean
Sedimentary material					
Sandstone (fine)	_ ^b	-		0.02 - 0.40	0.21
Sandstone (medium)	0.14 - 0.49	0.34		0.12 - 0.41	0.27
Siltstone	0.21 - 0.41	0.35		0.01 - 0.33	0.12
Sand (fine)	0.25 - 0.53	0.43		0.01 - 0.46	0.33
Sand (medium)	-	-		0.16 - 0.46	0.32
Sand (coarse)	0.31 - 0.46	0.39		0.18 - 0.43	0.3
Gravel (fine)	0.25 - 0.38	0.34		0.13 - 0.40	0.28
Gravel (medium)	-	-		0.17 - 0.44	0.24
Gravel (coarse)	0.24 - 0.36	0.28		0.13 - 0.25	0.21
Silt	0.34 - 0.51	0.45		0.01 - 0.39	0.2
Clay	0.34 - 0.57	0.42		0.01 - 0.18	0.06
Limestone	0.07 - 0.56	0.3		~0 - 0.36	0.14
Igneous rock					
Weathered granite	0.34 - 0.57	0.45		-	-
Weathered gabbro	0.42 - 0.45	0.43		-	-
Basalt	0.03 - 0.35	0.17		-	-
Metamorphic rock					
Schist	0.04 - 0.49	0.38		0.22 - 0.33	0.26
S	ource: McWorte	er and Sunada (19	977).		

For this site, the effective porosity for the fine sand is estimated to be its arithmetic mean, 0.33

Average horizontal Gradient

The Average horizontal Gradient was calculated by measuring the distance between wells and dividing by the overall change in ground water elevation. For this site:

dh / dl = 180 ft / 1.512 ft = 0.0084 (unitless)

where: dh is the distance between wells dl is the difference in elevation of the wells

Groundwater velocity (v)

Using above values of K=206; dh/dl=0.0084 and an effective porosity value of 0.33,

V = K x (dh/dl) / n = 206 x 0.0084 / 0.33 = 5.24

Where K=ft/day

Gradient and Flow Direction Calculations

The gradient and flow directions were based on the results of an EPA web-based calculator to determine Gradient and Flow direction (<u>http://www.epa.gov/athens/learn2model/part-two/onsite/gradient4plus-ns.htm</u>):

Hydraulic Gradient Gradient Calculation from fitting a plane to as many as fifteen points a x1 + b y1 + c = h1a x2 + b y2 + c = h2a x3 + b y3 + c = h3...a x15 + b y15 + c = h15

where (xi,yi) are the coordinates of the well and hi is the head

i = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

The coefficients a, b, and c are calculated by a least-squares fitting of the data to a plane

The gradient is calculated from the square root of $(a^2 + b^2)$ and the angle from the arctangent of a/b or b/a depending on the quadrant